
Semester Thesis - MLO lab, EPFL

Asynchronous updates for stochastic gradient descent

Supervisors: Dr. Sebastian Stich, Prof. Martin Jaggi

Author: Alberto Silvio Chiappa

July 11, 2018

Abstract

Finding convergence rates for numerical optimization algorithms is an important task, be-
cause it gives a justification to their use in solving practical problems, while also providing a
way to compare their efficiency. This is especially useful in an asynchronous environment, be-
cause the algorithms are often proven to be more efficient than their synchronous counterparts
by experience, but they lack the theory that justifies this property. Furthermore, analyzing
the various issues that can arise when inconsistency is taken into consideration, it is possible
to obtain a clearer picture of the downsides of inexact implementations one should be aware
of.
This work tries to address the problem of finding an expected convergence rate for the asyn-
chronous version of the widely popular stochastic gradient descent algorithm, applied to the
common class of problems that present a cost function with a sum structure. It follows a
similar approach to the one suggested by R. Leblond, F. Pedregosa and S. Lacoste-Julien in
"ASAGA: Asynchronous Parallel SAGA" (2016) [RLLJ16], also borrowing their formalization
of asynchronicity.
The main achievement of this work is a bound on the constant step size that guarantees con-
vergence in expectation of the algorithm. The relative convergence rate is also obtained. The
result is also partially validated by sequential models of an asynchronous environment.
We hope that this can be a basis for future applications of the same approach to more spe-
cific algorithms and that numerical experiments on real multiprocessor architecture can be
performed in the future to further validate the convergence rates.

1 Introduction

The parallelization of stochastic optimization algorithms like Stochastic Gradient Descent, Stochas-
tic Coordinate Descent and others is a necessary result in order for large machine learning problems
to exploit the computation power offered by distributed memory clusters. However, making it ef-
ficient has proven to be a challenging task, as most of these algorithms are intrinsically sequential.
Exact parallelization algorithms have been proposed (see, for instance, [BT93]), but, while work-
ing correctly, they have efficiency problems, mainly because of the large amount of time spent in
locking the threads to assure consistency. In fact, the rates achievable with multicore systems can
be incredibly high (for instance, the just released cluster Fidis at Epfl has a peak performance
of 401.3 TFLOPs [http://scitas.epfl.ch/hardware/fidis ]), which moves the bottlenecks in parallel
computation to the locking, which is needed for synchronization. Indeed, in order for the correct-
ness of the algorithm to be guaranteed, some threads must "lock" at certain critical points, waiting
for the other to complete their computations before starting to execute again. The time wasted
by the cores in both waiting and communicating hinders scalability and harms performance.
To make up for this issue, lock-free algorithms have been proposed. They are versions of well
known optimization algorithms that manage to avoid most of the (if not any) locking, at the
cost of introducing some inconsistency in the computation. A popular example of this class of
algorithms is "HOGWILD!" [FNW11]. Experiments show that they manage to reach a notable
speedup if compared to their exact counterpart, but the theoretical convergence guarantees are
usually proven for sparse problems. This means that the hypothesis according to which individual
update steps only modify a small part of the solution has to be introduced. Under this assumption,
memory overwrites can be considered as rare events, so their influence on the convergence rate can

1



be neglected.
However, depending on the application, sparsity can be condition that is not easy to guarantee, if
not impossible at all. For instance, one can simply think about a logistic regression problem. It is
characterized by the following cost function:

f(w) = −

N
∑

n=1

[

yn log(σ(xT
n w)) + (1 − yn) log(1 − σ(xT

n w))
]

, (1)

where xn ∈ R
d are the data relative to outcome yn ∈ {0, 1}, while σ : R → R is the sigmoid

function σ(x) = 1/(1 + e−x) and w is the weight vector (the solution we have to find).
Its minimization is one of the simplest examples of problems that can be addressed with Stochastic
Gradient Descent. The stochastic gradient can be expressed as

∇sf(w) = (σ(xT
n w) − yn)xn (2)

Despite only needing the data relative to one sampled observation, the resulting stochastic gradient
is not likely to present any sparsity, as it has the same number of zero elements as the data vector.
In order to be able to deal with such problems, we follow the same approach that is described in
[RLLJ16], in which the authors are able to obtain linear speedups also for non-sparse problems
(assuming they are not ill-conditioned). The first part of the asynchronous convergence estimate is
largely inspired by their work, as SGD can be seen as a simpler implementation of SAGA. However,
given the also simpler formulation, a cleaner convergence estimate could be found, that guarantees
convergence for larger step sizes.

2 Synchronous convergence estimate

First of all, we introduce the synchronous SGD problem and its convergence estimate for strongly
convex functions with Lipschitz-continuous gradient. This is not only a preliminary result to the
following part, but also a good reference for the subsequent results. In addition, it introduces some
of the techniques that will be used afterwards.
As a reminder, SGD is based on moving from the solution at step t to the solution at step t + 1
with the following update rule:

xt+1 = xt − γ∇sfi(xt) (3)

in which γ is the step size and fi is one of the functions whose sum forms the global cost. A sum
structure for the cost function is a fundamental requirement for this algorithm.

Theorem 1. Given the optimization problem

min
x∈Rd

f(x) =
1

n

n
∑

i=1

fi(x) (4)

where fi are µ-strongly convex functions with an L-Lipschitz continuous gradient, the Stochastic

Gradient descent algorithm performed with a constant step size γ = 1
L

has a guaranteed convergence

rate of ρ = µ
L

, which means that

E

[

‖xt+1 − x∗‖
2
]

≤ (1 − ρ)E
[

‖xt − x∗‖
2
]

(5)

where x∗ denotes the point in which the minimum is reached and xt the solution at iteration t.

Proof. Given the update rule of the stochastic gradient descent

xt+1 = xt − γgt (6)

where gt = ∇sft is the stochastic gradient of f, we can express the error at iteration t+1 as follows:

‖xt+1 − x∗‖
2

= ‖xt − γgt − x∗‖
2

= ‖xt − x∗‖
2

+ γ2 ‖gt‖
2

− 2γ〈xt − x∗, gt〉 (7)

Then we use the following important results due to strong convexity and Lipschitz-continuity of
the gradient of fi:

〈xt − x∗, ∇f(xt)〉 ≥ f(xt) − f(x∗)
µ

2
‖xt − x∗‖

2
(8)

2



and
‖∇f(xt)‖

2
≤ 2L (f(xt) − f(x∗)) (9)

Using these two inequalities1 and considering the inequality in expectation over the randomly
sampled data used to compute the stochastic gradient we get:

E

[

‖xt+1 − x∗‖
2
]

≤ E

[

‖xt − x∗‖
2
]

+ (2Lγ2 − 2γ) (E [f(xt)] − f(x∗)) − γµ ‖xt − x∗‖
2

≤ (1 − γµ)E
[

‖xt − x∗‖
2
]

+ 2γ(γL − 1) (E [f(xt)] − f(x∗))
(10)

Imposing γ = 1
L

concludes the proof.

3 Asynchronous convergence estimate

In this section we introduce the concept of asynchronicity and how it can be mathematically
modeled. As anticipated, a major issue for parallel implementations of SGD is the time spent on
communication between processors, which greatly hurts performance. Therefore, algorithms that
never lock the processes during execution have been successfully tested [FNW11]. They give up
consistency when reading the solution at the current time step in exchange for a faster execution.
Obviously, this introduces an error. The aim of this section is to find a convergence estimate
for SGD that takes into consideration the inconsistency of the reading step, but still manages to
guarantee a decrease in the expectation of the error.

3.1 Global ordering of the updates

A natural concept for iterative schemes is the ordering of the updates. While in a synchronous
framework its definition is obvious, in [RLLJ16] is pointed out for the first time (to our knowledge) a
quite important problem, that seems to have been neglected so far: in an asynchronous framework,
not all definitions of a global ordering are equivalent. Most important, some even popular definition
do not have the properties one would expect (and desire for the proofs). Following the scheme
outlined in [citation], we list the most popular definitions.

The "After Write" approach

The global counter records the number of successful writes into the shared memory. This means
that xt stands for the real content of the memory after t updates. On the other side, x̂t is the
local copy of the core that made the (t + 1)th update. These definitions make it impossible to
know what x̂t and it (which is the index sampled for the corresponding update, that leads to the
solution xt+1) will be at time t. Indeed, they depend on which core is going to write the update
xt+1 in the shared memory.
What is really problematic about this approach is that a dependence between the computation
time for the update and the sampled index it also leads to a dependency between x̂t and it. The
label of the update can be larger or smaller depending on how long it took to compute it. As this
independence is needed for a rigorous proof, it has to be guaranteed imposing that all the updates
have the same computation time. If this is too restrictive, another definition for the global ordering
had to be formulated.

The "Before Read" approach

According to this approach, the global t counter is updated before a core starts to read in the
shared memory. In this framework, x̂t is the tth inconsistent read and it the sampled index for the
update. Independence between the sampled index and the inconsistent read can be easily obtained
keeping the reading process the same for each update. It is clear that this requirement is much
weaker than a constant update time.
However, also this approach presents a downside. As the label is assigned before a core begins the
reading process, it may be corrupted not only by previous updates, but also by subsequent ones.
This means that x̂t can depend on ir for r > t

1Erratum 07/2018 SS: And under the assumption E

[

‖gt‖2
]

≤ 2L(f(xt) − f(x∗)). This inequality is assumed

throughout this work (in particular in Theorem 2). It holds for instance for functions where the stochastic gradients
vanish at the optimum, ∇fi(x

∗) = 0, ∀i ∈ [n].

3



The "After Read" approach

Defining x̂t as the (t + 1)th fully completed read makes up for the problem of the "Before Read"
approach, while also guaranteeing the independence of ir from x̂t for r > t. This is due to the fact
that this new definition really defines a global ordering on the x̂t iterates.

3.2 Model for asynchronicity

The numerical model of inconsistent update for SGD consists in considering that other processors
can write their computed solution in the shared memory while one other processor is reading. In
principle, any coordinate could be an element of a solution computed for any update before the
reading is performed. To ease the procedure, we make the assumption that at most τ updates
before the current one can interfere with the reading process. We have the following expression for
the difference between the "after read" partial solution and its inconsistent counterpart stored in
the local memory of a processor:

x̂t − xt = γ
t−1
∑

u=(t−τ)+

It(u)g (x̂u) (11)

where xt is the solution at step t, x̂t is its inconsistent read, γ is the step size, It(u) is the indicator
function of the updates u that have changed the data in the shared memory while the reading t
was taking place.
It is important to observe that the "after read" definition for the reference solution at step t allows
us to neglect the dependency from the sampled data in the computation of the gradient, as it only
influences it through the time the reading process takes. It is extensively explained (in the paper)
how this approach makes the reading time independent of the sampled data.

Theorem 2. Given the optimization problem

min
x∈Rd

f(x) =
1

n

n
∑

i=1

fi(x) (12)

where fi are µ-strongly convex functions with an L-Lipschitz continuous gradient, the Asynchronous

Stochastic Gradient descent algorithm with a constant step size

γ ≤
1

2L

(

pτ2

1 − ρτ
+ 1

)−1

(13)

has a guaranteed convergence rate of

ρ =
µ

2L(1 + pτ2) + µ(1 + τ)
(14)

This means that

E

[

‖xt+1 − x∗‖
2
]

≤ (1 − ρ)E
[

‖xt − x∗‖
2
]

(15)

where x∗ denotes the point in which the minimum is reached and xt the solution at iteration t.

In order to keep the proof of this theorem compact, the explanation of most results is delayed
to a few lemmas, that will be proven afterwards.

Proof. As it was done for the synchronous convergence estimate, we begin expressing the depen-
dence of the solution at step t + 1 from the solution at step t. To do this, we only have to use the
update rule for a gradient descent algorithm, according to which

xt+1 = xt − γgt (16)

where γ is the step size and gt is the stochastic gradient. This allows us to proceed as follows:

‖xt+1 − x∗‖
2

= ‖xt − γgt − x∗‖
2

= ‖xt − x∗‖
2

+ γ2 ‖gt‖
2

− 2γ〈x̂t − x∗, gt〉

= ‖xt − x∗‖
2

+ γ2 ‖gt‖
2

− 2γ〈x̂t − x∗, gt〉 + 2γ〈x̂t − xt, gt〉
(17)

4



In (17) xt is the "after read" solution at iteration t, x∗ is the exact minimizer of the functional,
gt = g(x̂t) is the stochastic gradient computed from the inconsistent read of xt and γ is the step
size. The steps simply consist in computing the square of the norm and adding and subtracting
the inconsistent read x̂t inside the inner product.
It should be observed that the inconsistent reading process generates an additional term (compared
to the same passage of the proof for the sequential algorithm):

2γ〈x̂t − xt, gt〉 (18)

whose sign is unknown. Bounding this term and isolating the negative contribution of

2γ〈x̂t − x∗, gt〉 (19)

will be the central aims of the proof.
From now on, we consider a batch size equal to 1. Therefore, the stochastic gradient gt is simply
∇fi(x̂t), with i = it is the index sampled at random at step t.
We can proceed with the manipulation of (17). Thanks to the definition of strong convexity applied
to fi:

〈x̂t − x∗, gt〉 = 〈x̂t − x∗, ∇fi(x̂t)〉 ≥ fi(x̂t) − fi(x
∗) +

µ

2
‖x̂t − x∗‖

2
(20)

By using (20) in (17) we get

‖xt+1 − x∗‖
2

≤ ‖xt − x∗‖
2

+ γ2 ‖∇fi(x̂t)‖
2

− 2γ
(

fi(x̂t) − fi(x
∗) +

µ

2
‖x̂t − x∗‖

2
)

+

+ 2γ2
t−1
∑

u=(t−τ)+

〈It(u)∇fk(u) (x̂u) , ∇fi(x̂t)〉
(21)

To obtain (21) the expression for the difference between the solution xt and its inconsistent read
x̂t, which is

x̂t − xt = γ

t−1
∑

u=(t−τ)+

It(u)g (x̂u) (22)

has been used.
At this point a clarification about the notation has to be made. Until this moment we have stressed
the fact that the stochastic gradient is computed only with one of the functions fi, sampled at
random. The sampled index i is, in principle, a function of the global index t. However, as pointed
out before, the "after read" definition of the global ordering does eliminate this dependency. Given
this important property, which will be fundamental to find an estimate in expectation, from now on
we just indicate the stochastic gradient as ∇s, without specifying the sampled index every time.
Thanks to the results presented in Lemma 1, Lemma 2 and 3, inequality (21) can be further
bounded by

‖xt+1 − x∗‖
2

≤

(

1 −
γ µ

1 + α

)

‖xt − x∗‖
2

+ τ γ2
(γµ

α
+ η

)

t−1
∑

u=(t−τ)+

It(u) ‖∇sf (x̂u)‖
2

+

+ γ2

(

1 +
1

η

)

‖∇sf(x̂t)‖
2

− 2γ (f(x̂t) − f(x∗))

(23)

For the following steps of the proof it is convenient to fix the values of the positive constants
coming from the previous inequalities: α = γµ and η = 1. However, this particular choice of α will
make it impossible to recover the estimate for the synchronous algorithm for τ → 0, as it will be
discussed later. This choice of the constants leads to the inequality

‖xt+1 − x∗‖
2

≤

(

1 −
γ µ

1 + γµ

)

‖xt − x∗‖
2

+ 2γ2τ

t−1
∑

u=(t−τ)+

It(u) ‖∇sf (x̂u)‖
2

+

+ 2γ2 ‖∇sf(x̂t)‖
2

+ −2γ (f(x̂t) − f(x∗))

(24)

To be able to keep the notation more synthetic, we define:

at = E

[

‖xt − x∗‖
2
]

et = E [f(x̂t)] − f(x∗) (25)

5



This allows us to express the expectation of the previous result in a compact form:

at+1 ≤

(

1 −
γµ

1 + γµ

)

at + 2γ2τE





t−1
∑

u=(t−τ)+

It(u) ‖∇sf(x̂u)‖
2



 + 2γ2
E

[

‖∇sf(x̂t)‖
2
]

− 2γet (26)

Thanks to Lemma 5 and Lemma 6, which use the Lipschitz continuity of the gradient of each fi

to bound the stochastic gradient in terms of f , the previous terms can be bounded and regrouped
to get the following simpler inequality:

at+1 ≤

(

1 −
γµ

1 + γµ

)

at + 4pLγ2τ

t−1
∑

u=(t−τ)+

eu + (4γ2L − 2γ)et (27)

In order to be able to express a convergence result getting rid of the historical updates we use the
same trick as in [RLLJ16].
We first define an auxiliary function, that considers all the errors (in expectation) up to step t:

Lt =

t
∑

u=0

(1 − ρ)t−uau 0 < ρ < 1 (28)

Now we are able to regroup the terms to get:

Lt+1 ≤ (1 − ρ)t+1a0 +

(

1 −
γµ

1 + γµ

)

Lt +

(

4γ2L
pτ2

1 − ρτ
+ 4γ2L − 2γ

) t
∑

u=0

(1 − ρ)t−ueu (29)

By imposing

γ =
1

2L

(

pτ2

1 − ρτ
+ 1

)−1

(30)

we get

Lt+1 ≤ (1 − ρ)t+1a0 +

(

1 −
γµ

1 + γµ

)

Lt (31)

which leads to:

at ≤ (1 − ρ)t+1a0 +

t
∑

u=0

[(

1 −
γµ

1 + γµ

)

(1 − ρ)t−u − (1 − ρ)t+1−u

]

au (32)

We finally impose that:

ρ =
γµ

1 + γµ
(33)

Relation (33) clearly shows that ρ satisfies the condition 0 < ρ < 1. This way we get the final
convergence estimate

at ≤

(

1 −
γµ

1 + γµ

)t+1

a0 (34)

We still have to find an explicit expression for the convergence rate. The previous result is not a
guarantee by itself, because the bound on γ depends on ρ, which is itself a function of γ. This
causes (33) to define a nonlinear relation between ρ and γ, which is quadratic. Simple computations
performed on equations (30) and (33) show that ρ = ρ(γ) is implicitly defined by the following
quadratic equation:

τ(2L + µ)ρ2 − (2L + µ + 2pτ2L + τµ)ρ + µ = 0 (35)

6



Lemma 7 shows how to solve the equation, isolates the only acceptable solution and finds a
weaker but simpler convergence rate certificate:

ρ ≥
µ

2L + µ + 2pτ2L + µτ
=

µ

2L(1 + pτ2) + µ(1 + τ)
(36)

The previous result, while finding an explicit expression for the convergence rate, also guarantees
its existence. This concludes the proof.

List of lemmas

Here follows the list of lemmas that are used in the proof of Theorem 2. These are not to be
intended as an effort to generalize some results that could be useful in other contexts. We decided
to organize the proof in this way because it is long enough for the reader to loose sight of the
problem as a whole. As all the lemmas are very closely linked to the main theorem, the notation
will stay the same and will not be defined at the beginning of each one.
Here is the list of the quantities that will be most frequently used:

• fi : R
d → R are µ-strictly convex functions of class C1 with an L-Lipschitz continuous

gradient.

• xt ∈ R
d is the update computed using x̂t−1 inconsistent read.

• x̂t ∈ R
d is the inconsistent read at step t, defined with the "After Read" global ordering.

• It(u) is an indicator function that assumes value 1 if the update u corrupts the shared memory
when the read x̂t is being performed, and 0 otherwise. p is the probability that each update
in range [t − τ, t − 1] has to interfere with the reading process.

• γ is the step size of the descent.

• ∇s denotes the stochastic gradient. When applied to f , it implies a random sampling of an
index i and the computation of the gradient of fi.

• 〈·, ·〉 denotes the standard R
d inner product and ‖·‖ the induced norm.

Also, we repeatedly use some popular inequalities:

• Cauchy-Schwartz: ∀a, b ∈ R
d it holds that 〈a, b〉 ≤ ‖a‖ ‖b‖

• Young: ∀a, b ∈ R
d, ∀α ∈ R+ it holds that 〈a, b〉 ≤ α

2 ‖a‖
2

+ 1
2α

‖b‖
2

• Bernoulli: ∀x ∈ R, ∀n ∈ N, x > −1 it holds that (1 + x)n ≥ 1 + nx

• Generalized Bernoulli: ∀x ∈ R, ∀r ∈ R, x > −1, 0 ≤ r ≤ 1 it holds that (1 + x)r ≤ 1 + rx

As it was done for the proof of Theorem 2, in order to keep the notation more synthetic, the
quantities at and et will be used. They are defined as follows:

at = E

[

‖xt − x∗‖
2
]

et = E [f(x̂t)] − f(x∗) (37)

Lemma 1. For any α > 0 the following inequality holds:

− ‖x̂t − x∗‖
2

≤
1

α
‖xt − x̂t‖

2
−

1

1 + α
‖xt − x∗‖

2
(38)

Proof. This result follows from an application of Young’s inequality. Thanks to the non-negativity
of the square of a binomial it is easy to show that, for any couple of vectors a, b ∈ R

d and for any
α ∈ R+,

2〈a, b〉 ≤ α ‖a‖
2

+
1

α
‖b‖

2
(39)

We can apply this inequality to the square of the sum of two vectors:

‖a + b‖
2

= ‖a‖
2

+ ‖b‖
2

+ 2〈a, b〉 ≤ (1 + α) ‖a‖
2

+ (1 +
1

α
) ‖b‖

2
(40)

7



Simply rearranging the inequality leads to:

− ‖a‖
2

≤
1

α
‖b‖

2
−

1

1 + α
‖a + b‖

2
(41)

By replacing

a = x̂t − x∗ a + b = xt − x∗ b = xt − x̂t (42)

we obtain the thesis of this lemma.

Lemma 2. The following inequality holds:

t−1
∑

u=(t−τ)+

It(u)〈∇sf(x̂u), ∇sf(x̂t)〉 ≤
η τ

2

t−1
∑

u=(t−τ)+

It(u) ‖∇sf(x̂u)‖
2

+
1

2η
‖∇sf(x̂t)‖

2
(43)

Proof. First of all, the following preliminary result has to be proven.

∥

∥

∥

∥

∥

N
∑

i=1

ai

∥

∥

∥

∥

∥

2

≤ N

N
∑

i=1

‖ai‖
2

(44)

The following bound can be shown:

∥

∥

∥

∥

∥

N
∑

i=1

ai

∥

∥

∥

∥

∥

2

=

N
∑

i=1

‖ai‖
2

+ 2

N
∑

i=1

∑

j>i

〈ai, aj〉 ≤

N
∑

i=1

‖ai‖
2

+ 2

N
∑

i=1

∑

j>i

(

1

2
‖ai‖

2
+

1

2
‖aj‖

2

)

(45)

One should observe that each ai appears in the inner sum i times as first member and N − i − 1
times as second member, for a total of N − 1 occurrences. This fully justifies inequality (44).
Thanks again to Young’s inequality and the just mentioned result, we can proceed as follows
towards the claim:

t−1
∑

u=(t−τ)+

It(u)〈∇sf(x̂u), ∇sf(x̂t)〉 ≤
η

2

∥

∥

∥

∥

∥

∥

t−1
∑

u=(t−τ)+

It(u)∇sf(x̂u)

∥

∥

∥

∥

∥

∥

2

+
1

2η
‖∇sf(x̂t)‖

2

≤
η τ

2

t−1
∑

u=(t−τ)+

It(u) ‖∇sf(x̂u)‖
2

+
1

2η
‖∇sf(x̂t)‖

2

(46)

where the last passage was possible because the terms of the sum are at most τ

Lemma 3. The following inequality holds:

∥

∥

∥

∥

∥

∥

t−1
∑

u=(t−τ)+

It(u)∇sf (x̂u)

∥

∥

∥

∥

∥

∥

2

≤ τ

t−1
∑

u=(t−τ)+

It(u) ‖∇sf (x̂u)‖
2

(47)

Proof. The result directly follows from (44).

Lemma 4. Let f : Rd → R be a convex functions with a L-Lipschitz continuous gradient. For any

x ∈ R
d and y ∈ R

d the following inequality holds:

f(y) ≥ f(x) + 〈∇f(x), y − x〉 +
1

2L
‖∇f(x) − ∇f(y)‖

2
(48)

Proof. First of all, we introduce the function

Φ(y) = f(y) − 〈∇f(x), y〉 (49)

This function can be shown to have the following properties:

• Φ(y) is convex

• ∇Φ(y) = ∇f(y) − ∇f(x)

8



• min
y∈Rd

Φ(y) = f(x) − 〈∇f(x), x〉

The convexity is very easy to check, as Φ(y) is the sum of a convex and a linear (thus convex)
function. The expression for the gradient can be obtained by observing that 〈∇f(x), y〉 defines
a linear function of y. Given the differentiability and convexity of Φ, the first order optimality
condition is both necessary and sufficient. It is clearly satisfied for y = x, which gives the expression
for the minimum of Φ.
Additionally, one should remember that a characterization of the L-Lipschitz continuity of the
gradient is provided by the following relation:

f(y) ≤ f(x) + 〈∇f(x), y − x〉 +
L

2
‖y − x‖

2
(50)

Now we have all the ingredients that are necessary to prove the result. We proceed as follows:

f(x) − 〈∇f(x), x〉 = min
y∈Rd

Φ(y) ≤ Φ

(

y −
1

L
∇Φ(y)

)

≤ Φ(y) − 〈∇Φ(y),
1

L
∇Φ(y)〉 +

L

2

∥

∥

∥

∥

∇Φ(y)

L

∥

∥

∥

∥

2

= Φ(y) −
1

2L
‖∇Φ(y)‖

2

= f(y) − 〈∇f(x), y〉 −
1

2L
‖∇f(y) − ∇f(x)‖

2

(51)

Simply rearranging the terms we obtain

f(y) ≥ f(x) + 〈∇f(x), y − x〉 +
1

2L
‖∇f(x) − ∇f(y)‖

2
(52)

which proves the claim.

Lemma 5. The following inequality holds for a convex function with a Lipschitz continuous gra-

dient:

E

[

‖∇sf(x̂t)‖
2
]

≤ 2Leu (53)

Proof. We start from lemma 4. If we choose y = x̂u and x = x∗ and we use the fact that at the
minimum point, under the assumption of smooth objective function, the first derivative is 0, we
can write:

E

[

‖∇sf(x̂u)‖
2
]

= E

[

‖∇sf(x̂u) − ∇sf(x∗)‖
2
]

≤ 2L (E [f(x̂u)] − f(x∗)) = 2Leu (54)

Lemma 6. If each update previous to the one labeled as t, up to the update t − τ , has a constant

probability p to interfere with the reading process, then

E





t−1
∑

u=(t−τ)+

It(u) ‖∇sf(x̂u)‖
2



 ≤ 2pL
t−1
∑

u=(t−τ)+

eu (55)

Proof. This result is a simple generalization of Lemma 5. We first need to observe that we do not
expect the duration of the writing process to change based on which index was sampled, and neither
on which is the current solution that is being written. Under these assumptions, the expectation
of the indicator function It(u) is the constant probability p. Therefore:

E





t−1
∑

u=(t−τ)+

It(u) ‖f ′(x̂u)‖
2



 =

t−1
∑

u=(t−τ)+

E

[

It(u) ‖f ′(x̂u)‖
2
]

=

t−1
∑

u=(t−τ)+

pt(u)E
[

‖f ′(x̂u)‖
2
]

= p

t−1
∑

u=(t−τ)+

E

[

‖f ′(x̂u) − f ′(x∗)‖
2
]

≤ 2pL

t−1
∑

u=(t−τ)+

eu

(56)

9



Lemma 7. Let Lt defined as

Lt =

t
∑

u=0

(1 − ρ)t−uau 0 < ρ < 1 (57)

with at satisfying the relation

at+1 ≤

(

1 −
γµ

1 + γµ

)

at + 4pLγ2τ

t−1
∑

u=(t−τ)+

eu + (4γ2L − 2γ)et. (58)

Then

Lt+1 ≤ (1 − ρ)t+1a0 +

(

1 −
γµ

1 + γµ

)

Lt +

(

4γ2L
pτ2

1 − ρτ
+ 4γ2L − 2γ

) t
∑

u=0

(1 − ρ)t−ueu (59)

Proof. Due to (58) we can write:

Lt+1 =

t+1
∑

u=0

(1 − ρ)t+1−uau = (1 − ρ)t+1a0 +

t
∑

v=0

(1 − ρ)t−vav+1

≤ (1 − ρ)t+1a0 +

t
∑

v=0

(1 − ρ)t−v





(

1 −
γµ

1 + γµ

)

av + 4pLγ2τ

v−1
∑

u=(v−τ)+

eu + (4γ2L − 2γ)ev





= (1 − ρ)t+1a0 +

(

1 −
γµ

1 + γµ

)

Lt + 4pLγ2τ

t
∑

v=0

v−1
∑

u=(v−τ)+

(1 − ρ)t−veu+

+ (4γ2L − 2γ)

t
∑

v=0

(1 − ρ)t−vev

(60)
The next step is to rearrange the terms of the double sum so that they can be grouped with the
negative sub-optimality term.

t
∑

v=0

v−1
∑

u=(v−τ)+

(1 − ρ)t−veu =
t

∑

u=0

min(u+τ,t)
∑

v=u+1

(1 − ρ)t−veu ≤
τ

(1 − ρ)τ

t
∑

u=0

(1 − ρ)t−ueu (61)

The last inequality is obtained by substituting of the index v in the internal summation with u + τ
and multiplying everything by τ . This is fine because the terms of the sum are increasing and they
are at most τ , so their sum is lesser or equal than τ times the last one.
Thanks to Bernoulli’s inequality:

(1 − ρ)τ ≥ 1 − ρτ (ρ < 1) (62)

which implies
1

(1 − ρ)τ
≤

1

1 − ρτ
(63)

we are able to regroup the terms to get:

Lt+1 ≤ (1 − ρ)t+1a0 +

(

1 −
γµ

1 + γµ

)

Lt +

(

4γ2L
pτ2

1 − ρτ
+ 4γ2L − 2γ

) t
∑

u=0

(1 − ρ)t−ueu (64)

Lemma 8. The only solution ρ of the quadratic equation

τ(2L + µ)ρ2 − (2L + µ + 2pτ2L + τµ)ρ + µ = 0 (65)

such that 0 < ρ < 1 is bound by

ρ ≥
µ

2L + µ + 2pτ2L + µτ
=

µ

2L(1 + pτ2) + µ(1 + τ)
(66)

10



Proof. The well known rule to find the two roots gives the following result:

ρ =
1

2τ(2L + µ)

(

2L + µ + 2pτ2L + τµ ±
√

(2L + µ + 2pτ2L + τµ)2 − 4τµ(2L + µ)
)

(67)

Some observations:

• The term under the square root is always positive. It can be regrouped as follows:

(2L + µ − τµ)2 + (2pτ2L)2 + 4pτ2L(2L + µ + τµ) (68)

• The root corresponding to the sign (−) has to be chosen, because for a very wide range of
parameters the one corresponding to the sign (+) is larger than 1.

• It can be shown that the solution corresponding to the sign (−) respects the bounds on ρ

We now have a convergence certificate, but its expression is quite complicated and not easy to
interpret. However, using again Bernoulli’s inequality, we have:

√

(2L + µ + 2pτ2L + τµ)2 − 4τµ(2L + µ)

= (2L + µ + 2pτ2L + τµ)

[

1 −
4τµ(2L + µ)

2L + µ + 2pτ2L + τµ)2

]
1
2

≤ (2L + µ + 2pτ2L + τµ)

[

1 −
1

2

4τµ(2L + µ)

2L + µ + 2pτ2L + τµ)2

]

= (2L + µ + 2pτ2L + τµ) −
1

2

4τµ(2L + µ)

2L + µ + 2pτ2L + τµ)

(69)

Now we use this result in (67) to find a weaker but simpler convergence rate certificate:

ρ ≥
µ

2L + µ + 2pτ2L + µτ
=

µ

2L(1 + pτ2) + µ(1 + τ)
(70)

4 Numerical experiments

The objective of the previous section was to give a convergence certificate for SGD that also ap-
plies to those problems, such as linear or logistic regression, in which even considering just one of
the terms of the cost function to compute an update produces a full gradient vector. This means
that this kind of algorithms are the ones that should be most sensitive to inconsistent readings or
delayed writings. To see these effects in action, we wrote some code that simulates what could
go wrong in a non-locking algorithm. It is obviously a very difficult task to simulate perfectly a
parallel code in a sequential environment, but we think these results can provide an idea of what
is really harmful to performance and what is not.

4.1 Multiple processors simulation

Before presenting the results obtained with our simulations, here we describe by means of a pseudo
code the algorithms we have used to model the asynchronicity in a sequential framework. This way
the reader can built himself an idea about which are the aspects of the problem that have been
modeled and the ones that have been neglected, also understanding to which extent our simulations
reproduce what could happen in a real application scenario.
First of all, we start from the synchronous algorithm that only models a multiprocessor execution
of the stochastic gradient descent. This sample algorithm can be applied to all the problems
that present a cost function with the special sum structure previously described (see, for instance,
Theorem 1). A real problem that can be taken as a reference is, for instance, the optimization of
the cost function associated to a logistic regression.

11



4.1.1 Synchronous multiprocessor stochastic gradient descent

With this first implementation we address the problem of modeling the behavior of a multiproces-
sor architecture with a sequential code, when the locking ensures the correctness of the algorithm.
The only difference with a purely sequential implementation of a stochastic gradient descent is
that all the cores compute an update at the same time, so their updates are all computed on the
same partial result. In practice, such an implementation behaves in the same way as a sequential
code using a batch size equal to the number of cores (or, if each core is already considering a batch
size larger than 1, let’s say B, this synchronous algorithm acts like the batch size was P × B, P
being the number of processors). The reason behind this equivalence is that the sum structure of
the objective function also holds for the gradient.
Each iteration of the algorithm consists of two steps: firstly, an inner cycle of the same size as
the number of processors computes all the updates, based on the same partial solution, and stores
them in a matrix; after the completion of this step, the partial solution is updated with all these
computed gradients. The step size γ can be either constant or adaptive. However, our theoretical
analysis, that we want to validate, is based on a constant step size.

Data: Data matrix ’tx’, labels ’y’, step size ’γ’
Result: weights ’w’, cost
Initialize ’w’, ’storedGradients’, ’iter’, ’proc’ ;
while iter < maxIter do

if proc < numProc then

sample y and tx at random;
grad = computeGradient(sampledTx, sampledY, w) ;
update storedGradients;
proc = proc +1 ;

else

for grad in storedGradients do

w = γ grad|;
loss = computeLoss(y, tx, w);
iter = iter +1;

end

end

end

Algorithm 1: Locking multiprocessor SGD

It should be noticed that, in order to apply the previous scheme to different problems, it is
enough to change the definition of the two functions "computeGradient" and "computeLoss".

4.1.2 Asynchronous models

These two following implementations are different efforts to model the asynchronicity of a parallel
environment in a sequential one. The first we are going to present is based on the observation
that, if no locking is imposed, the updates can be performed in an order that is different from the
one of the reading process. This happens when the computation of an update takes longer than
the one of another. It is a quite common circumstance if the cost function is composed by terms
that make use of data of different natures, that can potentially have different sizes. It is important
for the aim of this work to model such a possibility, because one of the strengths of the "After
Read" approach in defining a global ordering is that of giving an estimate that does not rely on
homogeneous computation time for the updates.
The implementation of the concepts we have just introduced has been made by storing a list of
the historical partial solutions in a matrix. At the time of computing the update of the solu-
tion, one of them is chosen at random, so that it is impossible to foresee the moment when the
update computed with a certain partial solution will be used. The number of solutions that are
stored has a similar meaning to the τ variable of Theorem 2, that was a limit to how old an update
that might interfere with the reading process could be. Here is a pseudo code of the said algorithm.

12



Data: Data matrix ’tx’, labels ’y’, step size ’γ’
Result: weights ’w’, cost
Initialize ’historicalW’, ’storedGradients’, ’iter’, ’proc’ ;
while iter < maxIter do

if proc < numProc then

sample y and tx at random;
sample w in historicalW at random;
grad = computeGradient(sampledTx, sampledY, w) ;
update storedGradients;
proc = proc +1 ;

else

for grad in storedGradients do

w = γ grad|;
loss = computeLoss(y, tx, w);
iter = iter +1;

end

end

end

Algorithm 2: Random update multiprocessor SGD

Although this first algorithm grasps a part of the problem, it completely neglects another
aspect. In fact, if we are allowing all the processors to freely access the shared memory at will,
we also have to consider the fact that more than one processor could access it at the same time.
This is especially true when the number of processors is large, which is the situation we are most
interested in. Such a circumstance can generate what we have named in Theorem 2 as inconsistent
reads: for instance, while a processor is reading the solution that is present in the shared memory
at that moment, some other processors could be computing an update. This means that not only
could the update of the solution have been computed on a partial solution relatively old, but also
that some of its coordinates came from different partial solutions. This inconsistency we are talking
about has been translated in our theorems into the following relation:

x̂t − xt = γ

t−1
∑

u=(t−τ)+

It(u)g (x̂u) (71)

In order to model this event in our code, a modification to the previous code has been made:
instead of sampling one whole solution of the historical record, at each update computation the
partial solution needed for the computation is created sampling each coordinate at random among
the corresponding coordinates of the recorded solutions. This means that each coordinate could
potentially come from a different partial solution. One might think that such a model is a little too
extreme, because is should be a relatively rare that so many processors update the solution during
a single reading process. This observation is true, but what we would argue is that the algorithm
still performs quite well, especially if the step size is not too large, which should be a strong guar-
antee that, under certain conditions, asynchronicity has a smaller impact on the performance per
iteration than one could expect.

13



Data: Data matrix ’tx’, labels ’y’, step size ’γ’
Result: weights ’w’, cost
Initialize ’historicalW’, ’storedGradients’, ’iter’, ’proc’ ;
while iter < maxIter do

if proc < numProc then

sample y and tx at random;
initialize w;
for coordinate in w do

sample coordinate in historicalW at random;
end

grad = computeGradient(sampledTx, sampledY, w) ;
update storedGradients;
proc = proc +1 ;

else

for grad in storedGradients do

w = γ grad|;
loss = computeLoss(y, tx, w);
iter = iter +1;

end

end

end

Algorithm 3: Random update multiprocessor SGD

4.2 Experiments with a simple model

In order to further test the convergence estimate that was obtained in Theorem 2, we now consider
a very simple optimization problem, for which it is possible to obtain the parameters we need. It
is a quadratic optimization problem. It can be stated as follows:

min
x∈Rd

f(x) =
1

2
xT Ax − bT x (72)

where A ∈ Md×d is a symmetric and positive definite matrix and b ∈ R
d is a vector.

This problem is a very good sample case, because it has all the properties required by Theorem 2
to be applied and al the quantities of interest can be easily computed.

Strong convexity

f(x) is of class C1, so the following characterization of strong convexity is equivalent to the defini-
tion:

∀x, y ∈ R
d 〈∇f(x) − ∇f(y), x − y〉 ≥ µ ‖x − y‖

2
(73)

Given the very special expression of f we have that

∇f(x) = Ax − b (74)

The symmetry of A is required for the last relation to be true. This means that the characterization
of strong convexity applied to f leads to the following expression:

(x − y)T A(x − y) ≥ µ ‖x − y‖
2

(75)

Given that A is positive definite, the inequality is satisfied if µ = λmin, where λmin is the smallest
eigenvalue of A. Also, µ cannot be larger than λmin, because equality holds if x−y is an eigenvector
relative to λmin.

Lipschitz continuous gradient

The gradient of f is linear, which obviously makes it Lipschitz continuous. To find out the conti-
nuity constant, we use again a characterization of this property:

〈∇f(x) − ∇f(y), x − y〉 ≥
1

L
‖∇f(x) − ∇f(y)‖

2
(76)

14



We use again the special expression of the considered f in order to get:

(x − y)T A(x − y) ≥
1

L
‖Ax − Ay‖

2

=
1

L
(x − y)T AT A(x − y)

=
1

L
(x − y)T A2(x − y)

(77)

Now we use the property of symmetric matrices of being diagonalizable through orthogonal matrices
to express A2 as QT D2 Q, where D2 is given by the elementwise square of the diagonal of D.
The previous expression can therefore be rewritten as

(x − y)T QT D Q (x − y) ≥
1

L
(x − y)T QT D2 Q (x − y) (78)

Introducing a vector z := Q (x − y) the inequality becomes

zT

(

D −
1

L
D2

)

z ≥ 0 (79)

This is true for any z ∈ R
d if and only if D − (1/L)D2 is positive semidefinite. The condition for

this to be true is that each of its eigenvalues is positive. Namely:

λi −
1

L
λ2

i ≥ 0 ∀i = 1...d (80)

We already know that λi > 0 because A is positive definite. We only have to impose that λi ≤ L ∀i,
which is satisfied if L = λmax.

Experiments

In order to gain control over the constants, we have obtained a fixed dimension orthogonal matrix
with the QR decomposition of a randomly generated matrix. Then we have obtained a symmetric
positive definite matrix with given eigenvalues through the product Q D QT , where D is a diagonal
matrix with predefined diagonal elements. Then we have solved the optimization problem previ-
ously analyzed, where λmax and λmin are L and µ, respectively.
The simulation have been run with the previously described sequential code that models the effects
of inconsistent reads in a parallel framework. As for the considered problem the update is also
sparse, the probability of interference p has been set to 1/d, with d the length of the gradient
vector. According to Theorem 2, the step size has been set to

γ ≤
1

2L

(

pτ2

1 − ρτ
+ 1

)−1

(81)

For the given γ, the theorem also provides a lower bound for the expected convergence rate:

ρ =
µ

2L(1 + pτ2) + µ(1 + τ)
(82)

The following plots show a comparison between the convergence rate obtained in the experiment
and the theoretical lower bound. The parameter τ , which states how many old update can corrupt
the current reading process, has been progressively increased. In all the figures we have also plotted
the theoretical lower bound obtained in Theorem 1 for the synchronous algorithm, which is

ρ = γµ (83)

Only in the first figure we have also plotted the convergence rate that we would expect from a
synchronous algorithm if a step size equal to 1/L was chosen. For the other figures we have decided
to omit this graph, because the step size that guarantees a convergence for the given value of τ is
too much smaller than 1/L and a comparison does not seem sensible.

15



0 5 10 15 20 25
Number of epochs

10−9

10−7

10−5

10−3

10−1

Er
ro

r

τ = 5

Experimental convergence
Guaranteed asynchronous convergence
Guaranteed synchronous convergence
Max synchronous guaranteed convergence

0 10 20 30 40 50 60
Number of epochs

10−6

10−5

10−4

10−3

10−2

Er
ro

r

τ = 10

Experimental convergence
Guaranteed asynchronous convergence
Guaranteed synchronous convergence

16



0 50 100 150 200
Number of epochs

10−6

10−5

10−4

10−3

10−2

10−1

Er
ro

r

τ = 15

Experimental convergence
Guaranteed asynchronous convergence
Guaranteed synchronous convergence

0 20 40 60 80 100 120 140 160
Number of epochs

10−6

10−5

10−4

10−3

10−2

Er
ro

r

τ = 20

Experimental convergence
Guaranteed asynchronous convergence
Guaranteed synchronous convergence

17



The algorithm we have chosen to test the theoretical results is the one described in the pseudo
code 3, as it seems the most conservative of the three. Although it seemed to overestimate the side
effects of asynchronicity, the theoretical convergence rate is respected: it actually even outperforms
the guaranteed synchronous convergence rate. The reason behind this better efficiency can be that
the convergence estimate we have obtained is a little loose and that the results we actually obtain
outperform the predicted behavior. This could be especially true for the considered example, in
which the problem is ideal under any point of view. The matrix is very well conditioned, the
Lipschitz constant L and the strong convexity constant µ have the same order of magnitude (they
have been fixed to 2 and 1, respectively). These desired properties are not so likely to be found in
practice, but it is still good news that the estimate works for a very basic problem. However, in
order to have a stronger validation of the theoretical result, we think that it needs to be checked
on a real size problem, with all the connected issues.
Furthermore, although we have tried to be conservative as far as the asynchronicity is concerned,
it is difficult to say if there is nothing else that could go wrong when running a gradient descent in
a real parallel processor. The loss of control on the inconsistency errors could also lead to a worse
convergence rate in practice.
Another observation is that the algorithm outperforms the theoretical estimates more and more as
τ gets larger. This may also suggest that maybe the way we have chosen to model this parameter in
our code does not match perfectly its abstraction in the theorem. Moreover, in a real application,
we are not sure how to estimate this parameter: we think that the number of processors can be a
reasonable upper bound to it, but it probably overestimates τ too much, leading to the choice of
a too small γ. The algorithm would still converge, but at a slower rate.
Finally, we have the confirmation that the step size is small enough to make the algorithm converge.
Again, some additional experiments showed that it was possible to choose a quite larger step size
without making the algorithm diverge. Again, this can explained with the fact that the problem is
very easy and almost everything seems to work with it. What we suggest is, however, to adopt an
even elementary algorithm to adjust the step size dynamically, as it is desirable to try to keep the
step size as large as possible. The fact that a small enough step size makes the algorithm converge
is still a good guarantee.

4.3 Experiments with a slightly more complex model

In this last section we consider a problem that involves the solution of a classification problem with
logistic regression. The function we want to minimize has the following form:

f(w) = −
N

∑

n=1

[

yn log(σ(xT
n w)) + (1 − yn) log(1 − σ(xT

n w))
]

(84)

In equation 84 xn denotes the data relative to the observed outcome yn. The variable yn can
assume either value 0 or 1, and σ(x) = 1/(1 + e−x) is the sigmoid function, while w is the weight
vector. We want to find the vector w that minimizes f(w), so that the misclassification error
is as small as possible. As already discussed in the introduction, the stochastic gradient can be
expressed as

∇sf(w) = (σ(xT
n w) − yn) xn (85)

We want to compare the performance of the synchronous algorithm with that of the two asnyn-
chronous models. As we are only simulating a parallel environment, it is impossible to draw
conclusions about the running time of the different algorithms on a real parallel cluster. However,
we can compare the performance per iteration, namely how large is the difference in convergence
rate between the synchronous and the asynchronous versions. We expect that if the convergence
rate is not too different, the benefit from running the algorithm asynchronously can be significant.
The sample dataset that has been used to test the regression algorithm is known as "Breast Cancer
Wisconsin" [Lic13] (available here: https://archive.ics.uci.edu/ml/datasets).

18



10−2 10−1 100 101

Number of epochs

50

100

150

200

250

300

Cl
as

sif
ica

tio
n 

er
ro

r

Synchronous algorithm
Random update order
Inconsistent read

(a) τ = 10.

10−2 10−1 100 101

Number of epochs

50

100

150

200

250

300

Cl
as

sif
ica

tio
n 

er
ro

r

Synchronous algorithm
Random update order
Inconsistent read

(b) τ = 20.

10−2 10−1 100 101

Number of epochs

50

100

150

200

250

300

Cl
as

sif
ica

tio
n 

er
ro

r

Synchronous algorithm
Random update order
Inconsistent read

(c) τ = 30

10−2 10−1 100 101

Number of epochs

50

100

150

200

250

300
Cl

as
sif

ica
tio

n 
er

ro
r

Synchronous algorithm
Random update order
Inconsistent read

(d) τ = 40

10−2 10−1 100 101

Number of epochs

50

100

150

200

250

300

Cl
as

sif
ica

tio
n 

er
ro

r

Synchronous algorithm
Random update order
Inconsistent read

(e) τ = 50

10−2 10−1 100 101

Number of epochs

50

100

150

200

250

300

Cl
as

sif
ica

tio
n 

er
ro

r

Synchronous algorithm
Random update order
Inconsistent read

(f) τ = 60

Figure 1: results obtained with the sinchronous and the two asynchronous models for different
values of τ

As we can observe in 1, form our simulation it is not possible to observe a clear difference in
efficiency per iteration when an asynchronous algorithm is used instead of a synchronous one, if
they use the same step size. What is not expected is that the convergence rate is almost the same
even increasing the parameter τ , which is the indicator of how much inconsistency is caused by
the asynchronicity. It is probably a limit of our simulation, because we expect it to have a certain
impact on the performance.
As a final remark, we want to underline the fact that the strongest limitation to the convergence
rate that asynchronicity introduces is the upper bound on the step size. If the simulation is
very large and the updates are not sparse, this can be a strong limit compared to a synchronous

19



simulation. Keeping the step size as large as possible while still achieving convergence is one aspect
that should not be neglected when implementing an asynchronous algorithm.

5 Conclusions and further development

The main achievement of this work is to give a proof for the convergence rate of SGD, one of the
most basic optimization algorithms, in an asynchronous framework, without any sparsity assump-
tion. We hope that the outlined procedure can be applied to more specific algorithms in order to
achieve similar convergence results.
Furthermore, another research topic could be to modify the model for asynchronicity and to try to
still find a convergence estimate: for instance, we considered that all the updates previous to the
considered one had the same probability to interfere with the reading process. However, we expect
that the further two updates are, the smaller is the probability they interfere with each other. If
a sufficiently fast decreasing probability distribution is chosen, it may be even possible to prove
similar results while getting rid of the parameter τ . As it represents an abstract concept, it is hard
to estimate in practice.
Finally, one aspect of the convergence result of Theorem (2) that could be improved is that the
synchronous convergence rate is not recovered for τ = 0. In fact, ρ = µ/(2L + µ) is a weaker result
than ρ = µ/L. The reason behind this difference is that, in (24), we choose α = γµ, but, in order
to retrieve the synchronous estimate, the parameter α must be set to 0 when τ = 0 (if τ 6= 0 it
is not possible to do so, because α appears as the denominator of a fraction). An additional free
constant could be used to make up for this issue.

Acknowledgement

I would like to thank Dr. Stich for the extensive help he gave me during our meetings and Prof.
Jaggi for assigning me this topic to work on, and also for putting me in touch with Prof. Lacoste-
Julien, who was able to give me the right hints to conclude the proof.

20



References

[BT93] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. TUGBoat, 14(3):342–351, 1993.

[FNW11] Christopher Ré Feng Niu, Benjamin Recht and Stephen J. Wright. HOGWILD!: A
Lock-Free Approach to Parallelizing Stochastic Gradient Descent. 2011.

[Lic13] M. Lichman. UCI machine learning repository, 2013.

[RLLJ16] F. Pedregosa R. Leblond and S. Lacoste-Julien. ASAGA: Asynchronous parallel SAGA.
2016.

21


