
Interactive Visual Exploration of Spatio-Temporal Urban
Data Sets using Urbane

Harish Doraiswamy
harishd@nyu.edu

Eleni Tzirita Zacharatou
eleni.tziritazacharatou@epfl.ch

Fabio Miranda
fmiranda@nyu.edu

Marcos Lage
mlage@ic.uff.br

Anastasia Ailamaki
anastasia.ailamaki@epfl.ch

Cláudio T. Silva
csilva@nyu.edu

Juliana Freire
juliana.freire@nyu.edu

ABSTRACT
The recent explosion in the number and size of spatio-temporal
data sets from urban environments and social sensors creates new
opportunities for data-driven approaches to understand and im-
prove cities. Visual analytics systems like Urbane aim to empower
domain experts to explore multiple data sets, at different time and
space resolutions. Since these systems rely on computationally-
intensive spatial aggregation queries that slice and summarize the
data over different regions, an important challenge is how to attain
interactivity. While traditional pre-aggregation approaches support
interactive exploration, they are unsuitable in this setting because
they do not support ad-hoc query constraints or polygons of arbi-
trary shapes. To address this limitation, we have recently proposed
Raster Join, an approach that converts a spatial aggregation query
into a set of drawing operations on a canvas and leverages the
rendering pipeline of the graphics hardware (GPU). By doing so,
Raster Join evaluates queries on the fly at interactive speeds on
commodity laptops and desktops. In this demonstration, we show-
case the efficiency of Raster Join by integrating it with Urbane and
enabling interactivity. Demo visitors will interact with Urbane to
filter and visualize several urban data sets over multiple resolutions.

ACM Reference Format:
Harish Doraiswamy, Eleni Tzirita Zacharatou, Fabio Miranda, Marcos Lage,
Anastasia Ailamaki, Cláudio T. Silva, and Juliana Freire. 2018. Interactive
Visual Exploration of Spatio-Temporal Urban Data Sets using Urbane. In
SIGMOD’18: 2018 International Conference on Management of Data, June
10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3183713.3193559

1 INTRODUCTION
Why do two regions in a city feel similar? Or different? What
are the characteristics that determine the quality of a city? The
stakeholders shaping the future of a city including architects, city
planners, and other policy makers typically rely on experience,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3193559

precedent and data analyzed in isolation to answer such questions
when making decisions that are critical in enabling vibrant and
sustainable environments. The recent explosion in the number and
size of spatio-temporal data sets from urban environments (e.g.,
[1, 5, 7]) and social sensors (e.g., [8, 10]) creates new opportunities
for data-driven approaches through which the stakeholders can
better collaborate and make more informed choices.

Architects, for example, need to have a strong understanding
of a neighborhood’s characteristics to identify potential sites for
development. By using the available open data sets and comparing
the neighborhood of interest with other neighborhoods, they can
understand its strengths and weaknesses and establish performance
thresholds from other well-known and well performing neighbor-
hoods. This will eventually facilitate the negotiation process with
the city planner, who is concerned with maintaining the quality
of the neighborhood. To satisfy such requirements, working in
collaboration with architects, we designed Urbane [2], a 3D visual
analytics framework that supports data-driven decision making in
the design of new urban developments. Among its various features,
Urbane allows users to visualize a data set of interest at different
resolutions over varying time periods. For example, the map view
in Figure 1 visualizes the number of pickups performed by New
York City’s (NYC) taxis in the month of January 2009 aggregated
over the neighborhoods of NYC. At the same time, Urbane also
enables the visual comparison of several data sets through the
data exploration view (see Section 3.1). These visualizations are
primarily accomplished through spatial aggregation queries that
compute an aggregate function over the result of a spatial join be-
tween two data sets, typically a set of points and a set of polygons.
This operation can be translated into the following SQL-like query:
SELECT AGG(ai) FROM P, R
WHERE P.loc INSIDE R.geometry [AND filterCondition]*
GROUP BY R.id

Given a set of points of the form P (loc,a1,a2, . . .), where loc and
ai are the location and attributes of the point, and a set of regions
R (id,дeometry), the query performs an aggregation (AGG) over the
result of the join between P and R. Functions commonly used for
AGG include the count of points and average of the specified at-
tribute ai . The geometry of a region can be any arbitrary polygon.
The query can also have zero or more filterConditions on the
attributes. In the above example, P is the taxi data, R is the set of
polygons representing the neighborhoods of NYC, AGG is the count
function, and the data is filtered over the given time range.

https://doi.org/10.1145/3183713.3193559
https://doi.org/10.1145/3183713.3193559
https://doi.org/10.1145/3183713.3193559

One of the main challenges in visual analytics systems is sup-
porting interactive responses to user queries and actions, since high
latency reduces the rate at which users make observations, draw
generalizations and generate hypotheses [4]. In a system like Ur-
bane, multiple spatial aggregation queries can be generated based
on the user interactions; thus providing efficient support for these
queries is crucial. However, this is challenging for several reasons.
First, the point-in-polygon (PIP) tests that associate data points to
polygonal regions containing them require time linear with respect
to the size of the polygons. Real-world polygonal regions have com-
plex shapes, often consisting of hundreds of vertices. This problem
is compounded by the fact that data sets can have hundreds of mil-
lions to several billion points. Second, since the query rate is very
high, delays in processing a query have a snowballing effect over
the response times. Furthermore, existing spatial join techniques,
common in database systems, are costly and often suitable only for
batch computations. Finally, while data cube-based structures (e.g.,
[3]) can be used to maintain aggregate values, they require costly
pre-processing and can incur prohibitively high memory overhead.
More importantly, these techniques do not support queries over ar-
bitrary polygonal regions, and thus are unsuitable for our purposes.

To address these challenges in processing spatial aggregation
queries over large spatio-temporal data sets, we introduced Raster
Join [9], a rasterization-based approach that leverages current gen-
eration graphics hardware (GPUs). As we show in [9], Raster Join
can execute queries involving over 868 million points in only 1.1 sec-
ond even on a current generation laptop.

In this demo, we integrate the Raster Join approach into Urbane,
thus allowing users to interactively explore, over space and time,
several urban data sets at multiple resolutions.

2 RASTER JOIN
The design of Raster Join builds on the following key insights:

• Insight 1: A spatial join between two data sets is essentially the
intersection observed when the two data sets are “drawn" on the
same canvas;
• Insight 2: There is no need to materialize the result of the spatial
join since the goal of the query is to compute aggregates; and
• Insight 3: When working with visualizations, small errors can be
tolerated if they cannot be perceived by the user in the visual
representation.

Insight 1 allows us to frame the problem of evaluating spatial ag-
gregation as renderings, using operations that are highly optimized
for the GPU. In particular, it allows us to exploit the rasterization
operation to convert a polygon into a collection of pixels. As part
of the driver provided by the hardware vendors, rasterization is
optimized to make use of the underlying architecture and thus max-
imize occupancy of the GPU. Using Insight 2, Raster Join couples
the aggregation operation with the actual join. The advantages of
this are twofold: (i) no memory needs to be allocated for storing
join results, allowing the GPU to process more input data, and thus
compute the result in fewer passes; and (ii) since no materialization
(and corresponding data transfer overhead) is required, query times
are improved. By allowing approximate results, Insight 3 eliminates
the need for costly PIP tests, leading to a significant performance
improvement over traditional techniques. Moreover, it allows an

Figure 1: The map view of Urbane. The density of NYC taxi
data (b) is visualized over the neighborhood regions (a) for a
chosen time range (c). The menu highlights this selection.

algorithmic design in which the input data is transferred only once
to the GPU, further reducing the memory transfer overhead.

We now briefly describe the graphics pipeline that forms the base
of our approach, followed by describing the Raster Join approach.
More details can be found in [9].

2.1 Rasterization-based Graphics Pipeline
The graphics pipeline, that is used to render a scene comprising of
a set of triangles, is composed of a series of processing stages. First,
the coordinates of all the vertices (of the triangles) are transformed
into a common world coordinate system, and then projected onto
the screen space. Next, triangles falling outside the screen (also
called viewport) are discarded, while those partially outside are
clipped. Parts of triangles within the viewport are then rasterized.
Rasterization converts each triangle in the screen space into a col-
lection of fragments. Here, a fragment stores the data corresponding
to a pixel. The fragment size therefore depends on the resolution
(the number of pixels in the screen space). In the final step, each
fragment is appropriately colored and displayed onto the screen.

Instead of directly displaying the rendered scene onto a physi-
cal screen (monitor), it is also possible to output the result into a
“virtual" screen. The virtual screen is represented by a frame buffer
object (FBO) and has a user-defined resolution. Each pixel of the
FBO has 4 32-bit values, corresponding to the red, blue, green, and
alpha color channels. Since our goal is to compute the result of a
spatial aggregation, we do not make use of any physical screen, but
we make extensive use of FBOs to store intermediate results.

2.2 Bounded Raster Join Approach
The design of Raster Join builds on the aforementioned insights.
Intuitively, our approach draws the points on a canvas and keeps
track of the intersections by maintaining partial aggregates in the
canvas cells. It then draws the polygons on the same canvas, and
computes the aggregate result from the partial aggregates of the
cells that intersect with each polygon. The above operations are
accomplished in two steps as described next.
1. Render points: Each point is transformed into the screen space,
and the fragment corresponding to it is rendered onto an FBO.

(a) (b)

Figure 2: Raster Join first renders all points onto an FBO stor-
ing the count of points in each pixel (a). It then aggregates
the pixel values corresponding to polygon fragments (b).

Figure 3: Input.

In this FBO, we use the color channels of
a pixel for storing the partial aggregate
(e.g., count, sum, etc.) of all the points
falling in that pixel. For example, for
the count aggregate, we add to the color
of the pixel (e.g. the red channel of the
pixel is incremented by 1). This step re-
sults in an FBO storing the aggregate
over points that fall into each of its pix-
els. Figure 2(a) illustrates this step when count is used to aggregate
on the example input shown in Figure 3.
2. Render polygons: In this step (Figure 2(b)), we incrementally
update the query result. To do so, we maintain a result array A of
size equal to the number of polygons which is initially set to 0. The
vertices of the polygons are first transformed into the screen space
as before. These transformed polygons are converted into discrete
fragments by the rasterization process. Each polygon fragment is
then processed as follows: the partial aggregate of points falling in
the pixel corresponding to this fragment is retrieved from the FBO
from the previous step, and is used to update the aggregate in the
result array corresponding to the polygon. After all polygons are
rendered, the array A stores the result of the query.
Bounding errors. The above technique is approximate, potentially
introducing errors for fragments that intersect the boundary of a
polygon. In the example of Figure 2(b), the false positive counts are
highlighted in white. Such errors can be controlled by increasing
the resolution at which the above renderings are performed—as the
pixel size decreases the approximate aggregates converge to the
actual result. Formally, the accuracy is controlled by specifying a
bound on the Hausdorff distance between the input polygons and
the pixel-approximated polygons. Note that this is acceptable in
real-world scenarios, where the data is inherently uncertain. For
example, neighborhood boundaries typically coincide with street
segments, and thus the entire street surface (and not just a thin
line) is considered to be the boundary (so the width of the street
can be used as the required bound). Furthermore, when working
with visualizations, it is often impossible to perceive small approxi-
mations. We would however like to note that, in case users require
exact results for further analysis, they can instead use an accurate
variant of the Raster Join approach (see [9]).
To implement our approach, we customized parts of the rendering
pipeline using OpenGL [6], a cross platform graphics API.

3 URBANE
In this section, we first briefly introduce the Urbane interface fol-
lowed by describing the integration of Raster Join to speedup the
visual exploration.

3.1 The Urbane Interface
The visual interface of Urbane is comprised of two components:
the Map View (see Figure 1) and the Data Exploration View.
Map View. This view is composed of a map rendering component.
The various menus and panels are overlaid on the map. Navigation
and operations onmap view such as panning, zooming, and rotating
the view are accomplished through mouse interactions. The main
menu (right side of map view in Figure 1) allows users to control all
the functionalities of the system. This includes loading or deleting
urban data sets as well as polygonal regions that define the different
resolutions. Users can then choose the data set to be visualized along
with the visualization resolution. For example, in Figure 1, the NYC
taxi data is chosen to be visualized and the aggregation is performed
over the neighborhoods of NYC (chosen polygonal regions). The
menu also allows users to toggle the data exploration view that
enables a comparative exploration of the different data sets.
Data Exploration View. The main goal of the data exploration
view is to support the analyses of urban data at two different
resolution levels—region and building. This view consists of two
components—a parallel coordinates chart (PCC) and a data table
(see Figure 4). At the region level, the PCC allows users to visually
analyze and compare multiple data sets across different polygonal
regions (selected via the menu), and the data table shows the values
for each of the regions. In the PCC, each data set (or dimension)
is represented as a vertical axis, and each region is mapped to a
polyline that traverses across all of the axes, crossing each axis at a
position proportional to its value for that dimension. This visual
representation is effective for analyzing multivariate data, and can
provide insights into the relationships between different indicators.
Users can also filter regions by brushing the desired range of values
on individual axes of the PCC. This updates the map by highlighting
all regions that satisfy the filter constraints (Figure 4(a)).

Users can also drill down into the building level by selecting a
region of interest from the data table, and choosing the building
option. At the building level, users can perform a similar exploration
as above, i.e., visualize and analyze the different data sets, but in
the context of each of the buildings within the selected region.
This operation is illustrated in Figure 4(b). Here, the value for each
building is computed by aggregating the data within a fixed radius
of the building. That is, the polygons used in the join correspond
to circles centered around the different buildings.

3.2 Integrating with Raster Join
The Raster Join approach primarily takes as input a set of points
and a collection of polygons, and computes the spatial aggregation
as the output. Even though it also supports filtering the data over
multiple attributes, it could still become inefficient to execute Raster
Join over an entire data set due to the memory transfer overhead
between the CPU and the GPU. Thus, to reduce this overhead, we
store the different urban data sets in a 3D grid index of fixed size,
where the dimensions correspond to the location (2 coordinates)
and time. The extent of the grid in time is provided as a hint by the

Figure 4:Multi-resolution exploration. Neighborhoods having a high density of subway stations are highlighted, and Financial
District is selected for further analysis (a). Exploring buildings in the selected region (b).

user, while in space it depends on the city that is being explored.
To handle outlier points that lie outside the defined extent, we
simply associate them with the closest grid cell. Based on the query
parameters—the time range and the extent of the polygonal data
sets, only data from the appropriate grid cells are transferred to the
GPU for further processing. In practice, this approach significantly
reduces the amount of data that is being transferred to the GPU.

Urbane generates queries for two different operations—visualizing
on the map, and visualizing on the PCC. For both these cases, we
execute Raster Join using a pre-configured 20 meter bound. How-
ever, users can change this bound if they require higher accuracy.

4 DEMONSTRATION
In our demonstration, we will allow visitors to interact with the
Urbane system including the following operations:
• Choose data sets to visualize along with the regions.
• Zoom and pan into regions of interest and control the accuracy of
the obtained results by modifying the Hausdorff distance bound.
• Filter regions using the PCC.
• Select a region of interest to analyze the data at the building level
resolution.
• Perform the same exploration as above (zoom, pan, filter on PCC)
at the building level.

In addition to letting visitors do their own exploration, we will
present two case studies that are part of an architect’s workflow:
1) Understanding the Financial District neighborhood in the broader
context of other neighborhoods in Manhattan; and 2) identifying
sites with development potential. Figure 4 illustrates an example.
As part of these case studies, we will use data sets from NYC. This
includes point data sets such as the taxi data, 311 noise complaints,

crime, sky exposure, subway and restaurant locations with sizes
varying from a few thousand points to hundreds of millions of
points; and polygonal regions such as neighborhoods and zip codes.
The demo will be run live on a laptop. Finally, we encourage visitors
to bring their own data sets that we can explore with Urbane.
Acknowledgements. This work was supported in part by: the
Moore-Sloan Data Science Environment at NYU; NASA; DOE; NSF
awards CNS-1229185, CCF-1533564, CNS-1544753, CNS-1730396,
and OAC 1640864; EU Horizon 2020, GA No 720270 (HBP SGA1);
EU FP7 (ERC-2013-CoG), GA No 617508 (ViDa); CNPq; and FAPERJ.
J. Freire and C. T. Silva are partially supported by the DARPA
MEMEX and D3M programs. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of DARPA.

REFERENCES
[1] Chicago Open Data 2018. https://data.cityofchicago.org/. (2018).
[2] N. Ferreira, M. Lage, H. Doraiswamy, H. Vo, L. Wilson, H. Werner, M. Park, and

C. Silva. 2015. Urbane: A 3D framework to support data driven decision making
in urban development. In Proc. IEEE VAST 2015. 97–104.

[3] L. Lins, J.T. Klosowski, and C. Scheidegger. 2013. Nanocubes for Real-Time
Exploration of Spatiotemporal Datasets. IEEE TVCG 19, 12 (2013), 2456–2465.

[4] Z. Liu and J. Heer. 2014. The Effects of Interactive Latency on Exploratory Visual
Analysis. IEEE TVCG 20, 12 (2014), 2122–2131.

[5] NYC Open Data 2018. http://data.ny.gov. (2018).
[6] D. Shreiner, G. Sellers, J. M. Kessenich, and B. M. Licea-Kane. 2013. OpenGL

Programming Guide: The Official Guide to Learning OpenGL, Version 4.3 (8th ed.).
Addison-Wesley Professional.

[7] TLC Trip Record Data 2017. http://www.nyc.gov/html/tlc/html/about/trip_
record_data.shtml. (2017).

[8] Twitter API 2018. https://dev.twitter.com/. (2018).
[9] E. Tzirita Zacharatou, H. Doraiswamy, A. Ailamaki, C. T. Silva, and J. Freire. 2017.

GPU Rasterization for Real-Time Spatial Aggregation over Arbitrary Polygons.
PVLDB 11, 3 (2017), 352–365.

[10] Yahoo Labs 2018. https://webscope.sandbox.yahoo.com/. (2018).

https://data.cityofchicago.org/
http://data.ny.gov
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://dev.twitter.com/
https://webscope.sandbox.yahoo.com/

	Abstract
	1 Introduction
	2 Raster Join
	2.1 Rasterization-based Graphics Pipeline
	2.2 Bounded Raster Join Approach

	3 Urbane
	3.1 The Urbane Interface
	3.2 Integrating with Raster Join

	4 Demonstration
	References

