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Abstract—Traditional sampling results assume that the sample
locations are known. Motivated by simultaneous localization
and mapping (SLAM) and structure from motion (SfM), we
investigate sampling at unknown locations. Without further
constraints, the problem is often hopeless. For example, we
recently showed that, for polynomial and bandlimited signals,
it is possible to find two signals, arbitrarily far from each other,
that fit the measurements. However, we also showed that this can
be overcome by adding constraints to the sample positions.

In this paper, we show that these constraints lead to a
uniform sampling of a composite of functions. Furthermore,
the formulation retains the key aspects of the SLAM and SfM
problems, whilst providing uniqueness, in many cases.

We demonstrate this by studying two simple examples of
constrained sampling at unknown locations. In the first, we con-
sider sampling a periodic bandlimited signal composite with an
unknown linear function. We derive the sampling requirements
for uniqueness and present an algorithm that recovers both the
bandlimited signal and the linear warping. Furthermore, we
prove that, when the requirements for uniqueness are not met,
the cases of multiple solutions have measure zero.

For our second example, we consider polynomials sampled
such that the sampling positions are constrained by a rational
function. We previously proved that, if a specific sampling
requirement is met, uniqueness is achieved. In addition, we
present an alternate minimization scheme for solving the resulting
non-convex optimization problem.

Finally, fully reproducible simulation results are provided to
support our theoretical analysis.

Keywords—Sampling, sampling at unknown locations,

SLAMping.

I. INTRODUCTION

As we navigate through our surroundings, we are able to
visually map the 3-D structure of the environment and at the
same time localize ourselves within it. As humans, we do this
so naturally that it is tempting to assume that the problem is
trivial. However, theoretically understanding this process is far
from easy.

The most obvious existing work in this direction comes from
the robotics and computer vision communities in the form
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Fig. 1: The connection between sampling at unknown locations
and SLAM/SfM. Here a camera moves along a trajectory
and takes images of a surface. The surface is painted with
a texture, which the camera measures. The locations of its
measurements is dictated by the surface geometry, trajectory
and camera orientations. Since none of these are known the
sample locations are unknown.

of simultaneous localization and mapping (SLAM) [1,2] and
structure from motion (SfM) [3,4]. In the traditional SLAM
problem, one considers a robot measuring distances and/or
directions between itself and a set of landmarks. Each time
the robot moves, it obtains an estimate of this movement
(from odometry sensors) and takes new measurements to the
landmarks. The aim is to use this data to estimate both the
location of the landmarks and the robot’s trajectory.

SfM is very similar. In this case, one typically has a set of
images of the same scene taken from different viewpoints. The
aim is to build a 3-D model of the scene and estimate the pose
of the camera for each of the input images. This is traditionally
done by extracting key feature points from the scene that can
be matched between views. Reconstructing the scene geometry
and camera poses is then a problem in multi-view geometry.

We see that in both these cases, the features/landmarks that
are considered are discrete. While this simplification leads to
practical algorithms, it does not fully model the underlying
continuous world. To do this, we argue that one needs to
consider the problem from a sampling perspective.

Sampling results have two main components: a signal model
and a sampling scheme. For example, in Nyquist-Shannon
sampling [5]-[7], one assume that the signal belongs to the
shift-invariant space of band-limited functions and the signal



is sampled at uniform known locations. Extensions have been
made in both of these directions, leading to additional sam-
pling results [8]-[10]. For example, on the signal model side,
sampling results have been developed for general-shift invari-
ant spaces and other more complex spaces [11,12]. On the
sampling scheme side, the known uniform sampling positions
have been generalized to the case of a small unknown additive
perturbation as well as non-uniform known locations [13,14].

In SLAM and SfM, we take measurements to land-
marks/features at unknown locations. Therefore, to develop a
sampling theory for these problems, we need to consider the
problem of sampling at unknown locations.

In this case, unsurprisingly, uniqueness is not guaranteed
in general. In fact, in [15], we show that, for polynomial
and bandlimited signals, it is possible to find a valid solution
arbitrarily far from the original signal (we review this result
in Lemma 1 of this paper).

However, despite this result, we know that algorithms exist
that can solve SLAM and SfM; therefore, given the correct
constraints, it is possible to recover the measurement positions
and underlying function from samples at unknown locations.
In this paper, we formulate a set of constraints on the sampling
positions, which both retain applicability to SLAM and SfM
and, at least in some cases, lead to uniqueness.

To see this, consider the toy problem depicted in Fig. 1.
Here we show a surface, which we assume is painted with
an unknown texture, being sampled by a camera at three
positions along an unknown trajectory. We could also remove
the trajectory and view this as three cameras viewing the
same surface. Note that here we assume that we are in
flatland but the general idea extends to higher dimensions.
As the figure shows, the cameras take samples of the texture
at non-uniform locations. Furthermore, these locations are
unknown, since they are governed by the unknown surface
and unknown camera poses. However, if we assume that the
surface and trajectory belong to some known function space,
the sample positions are no longer arbitrary!. In this paper,
we consider problems of this form; that is, functions sampled
at unknown locations but where the locations of the samples
are constrained by another function. As we show in the next
section, this can also be interpreted as a uniform sampling of
a composite of functions.

To emphasize, in this paper, we are proposing sampling
of a composite of functions as a problem with previously
unseen practical relevance. As a first analysis in this direction,
we do not analyze the full SLAM and SfM setups and the
algorithms we propose are not in anyway intended to be
practical algorithms that compete with the state of the art
in these fields. Instead, we study two simple incarnations of
constrained sampling at unknown locations:

1) We show that periodic bandlimited signals can be effi-
ciently recovered from an unknown linear warping.

2) We show uniqueness for polynomial signals constrained
by a rational function. This result originally appeared
in [15] but we present it here under the more general

'In the general case depicted in Fig. 1, we need an additional function
enforcing a ‘trajectory’ for the camera’s orientation.

framework we are proposing.

We believe that these two incarnations provide a first step to-
wards a deeper theoretical understanding of the more complex
SLAM and SfM problems.

In relation to prior work, sampling at unknown locations is
a relatively unexplored topic. For the continuous problem that
we consider in this paper, Browning proposed an alternating
least squares algorithm that converges to a local minimum [16]
and Kumar considered the case where the unknown sample
positions are governed by a stochastic model. He was able to
show that the reconstruction error is asymptotically inversely
proportional to the number of samples [17] [18].

Following the statistical theme, there is an interesting con-
nection between sampling composites of functions and single
index models [19]. These models, which are commonly used
in econometrics, add more flexibility to parametric models by
composing a linear function with a non-parametric function.
Typically, it is assumed that the underlying signal follows a
Gaussian distribution [20,21], although this condition has been
recently relaxed [22]. However, only the linear part of the
composite is recovered and only up to a scaling.

In the discrete case, Marziliano et. al. investigated the
recovery of bandlimited signals [23] and there is a connection
to the recent work on unlabelled sensing [24]-[28].

Additionally, since we consider a composite of functions,
there is a connection to previous works on sampling time-
warped signals [29]-[33]. In fact, in [34], we used a result
from [33] to show that, for particular warpings of bandlimited
signals, uniqueness can be guaranteed. We also proposed an
algorithm based on local bandwidth to recover the shape of a
surface from an image. Clerc et. al. introduced ‘warplets’ to
perform surface retrieval in a similar spirit [35].

In this paper, we also consider toy examples of surface
retrieval but using the two sampling results we develop for
composites of functions.

The rest of this manuscript is organized as follows. We
first define the problem of sampling at unknown locations
and show that in many cases it is ill-posed. We use this as
motivation to introduce the constraints that lead to a sampling
of a composite of functions. Then, we consider the two incar-
nations previously mentioned. Finally, we present simulations
results supporting our theoretical findings and conclude. The
code used for simulations is available at github.com/LCAV/
surface-reconstruction.

II. PROBLEM FORMULATION

In this section, we formalize the problem of recovering a
function from a finite set of samples at unknown locations,
show that the problem is in general ill-posed and show how
additional constraints on the sample positions can be used to
regularize it. In doing so we are effectively transforming the
problem of signal recovery from unknown irregular sample po-
sitions to that of regular sampling of a composite of functions.

Consider the following setup: let F be a linear space of
functions defined over some interval X C R and let T, be
a sampling or acquisition device that records the value of a
function, f € F, at the set of locations = [zg,...,ZN_1]
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Fig. 2: If we sample function f from some linear space (here
bandlimited) of continuous functions F, we can add to it some
perturbation. If the perturbation is small enough the samples
can be moved to match the perturbed function.

with z,, € X, n=0,..., N—1. Assume we observe f € F at
N unknown and distinct locations over the interval; that is, we
measure y = Ty f = {f(x0),..., f(xn_1)}, where z,, # 2.,
for i # j. The knowledge on the sampling device is limited. In
the most general case we consider, the only knowledge about
the sampling instants is their linear order, that is ¢ < z; <
< IN_1.

The question is whether we can recover the original f from
the set of observations. Since F is a linear space, recovering
functions is understood as finding the expansion coefficients
of the function f in the space 7.

We call a solution any function f € F that could have
been a source for the observed samples; that is, a function for
which there exists an ordered sequence {Zo,...,Zn_1} such
that z,, € X and f(Z,) = f(z,) foralln=0,...,N —1. Of
course, f itself is a solution.

A. Non-uniqueness

It is clear that, without any further constraints on the sample
positions, many solutions may exist. Except for trivial cases,
the problem is ill-posed, since every measurement introduces
a new unknown—its location. For instance, in the case of
sampling bandlimited signals at unknown locations one can
find many valid solutions by just adding a small perturbation
to the original samples [16] (see Fig. 2). However, in many
cases, the situation is even worse. As proved in [15, Lemma
1], for polynomial and bandlimited functions, one can find
a solution arbitrarily far from the original (in any norm). We
restate this result here using the notation adopted in this paper.

Lemma 1 (Pacholska er al, 2017). Let f € F and let

Yy = Tof = {f(z0),... f(wn-1)} be the samples of f.
Furthermore, suppose xo < 1 < --- < xn-_1. If

1) F is the class of polynomials of degree at most m, or
2) F is the class of real-valued, m-bandlimited functions,

then for any C > 0 there exists a function f € F such that
Ilf = fll > C and points & = [To,...,Tn_1], with Zg = xo
and Tn_1 = xN_1, such that f(x,) = f(Zy).

Proof: See [15]. [ |

T

Fig. 3: Illustration of the path of solutions generated by moving
along g € F from the initial f. The path of solutions (f, =
f+ag, dashed lines) defines a trajectories along which samples
can move (solid lines).

In the statement of Lemma 1, the bracket ||-|| can denote any
norm on the linear space . Additionally, note that the fixing
of the first and last samples (¥9 = zg and Tny_1 = TN_1)
is not necessary. However, without this restriction, it is very
easy to find another function that could have produced the
samples (e.g. shift the domain of the original function). The
lemma shows that, even with this additional restriction, it is
still possible to find a function, arbitrarily far from the original,
that could have produced the samples.

The proof of the lemma is based on the construction of
a function f, or equivalently on finding a direction g in the
linear space F, such that if we move in that direction (e.g. take
f =g+ f) the values of the maxima do not decrease and the
values of the minima do not increase. Such a function g then
defines a path of solutions, on which we can find a solution
arbitrary far from the original (see [15]). An illustration of this
path of solutions is shown in Fig. 3.

B. Constraining the sample positions

Lemma 1 gives one way in which sampling at unknown
locations can break. Whilst this is a negative result, it also
gives us some intuition of how we can fix the problem. More
precisely, the lemma gives us a path of solutions, which defines
a trajectory for the sample positions, see Fig. 3. If the samples
can move freely, they will adjust to any function on the path.
However, if we restrict the way samples can move, there is a
high chance that at least one of the samples will not lie on the
trajectory defined by the path. Therefore, adding any constraint
will remove at least some of the large scale ambiguity. This
observation motivates us to regularize the inverse problem by
adding a constraint on the allowed sample trajectories.

To do this, let’s constrain the sample positions. Let x =
[0, ...,xN_1] be the true sample positions. Instead of allow-



ing the sample positions to move arbitrarily, let’s only allow
sample positions & = [Ty, ..., Zn_1] satisfying the constraint
Zp, = (xy,), for all n; that is, we only allow sample positions
that are a function of the true sample positions. If ¢ is unknown
but comes from some known family of functions, maybe we
can recover the original function f.

An alternative way to constrain how samples can move is
to consider a uniform sampling of a composite of functions.
Let ¢ € ® be a function from a known space of functions,
®, and assume that the sample positions are x,, = @(nT)
where n € [0,..., N — 1]. That is, we uniformly sample the
composite f o, obtaining y = T, 1.nefo.. N1} (fop). Now,
although the true ¢ is unknown, we still know that any valid
set of sample positions must satisfy Z,, = @(nT'), for some
¢ € ®. Furthermore, to maintain the order of samples, let us
restrict ¢ to be a monotonically increasing function. It follows
that ¢ is invertible and we can define ¢ := $ o 1. With this
definition, we have &, = ¢(¢ *(x,)) = ¥(z,), showing the
equivalence to the previous formulation.

Therefore, by constraining the sampling positions, we have
changed the problem from sampling at arbitrary unknown
locations to sampling a composite of functions (f o) at known
uniform locations. We often think about ¢ as a warping of f.
We thus sample a warped version of f and wish to recover
both f and the warping ¢.

To summarize, let f € F be the signal of interest, and let
@ € ® be a warping function. The problem to solve is

find {feF,pecd}

1
s.t. Yy =Trmep,.. . n—13(fop). )

As a motivating example of the proposed framework, con-
sider a camera in flatland, i.e. a 2-D world, viewing a linear
surface z(x) painted with an unknown texture f as illustrated
in Fig. 4. We would like to recover both the texture and the
surface from a set of observations. Under this setup we can
distinguish between the following two scenarios:

1) Orthographic projection: In the orthographic projection
case, depicted in Fig. 4a, the sample positions are simply x,, =
nT cosd = ¢(nT); i.e., the warping function is a scaling:
p(x) € ® = {z — bz for b € R}, where in our example b is
the cosine of the unknown surface orientation §2. Note that,
in this example, the distance d of the surface from the camera
does not affect the measurements and is thus unrecoverable.

To find the corresponding constraint function ¢ € V¥, let
0 be the true surface orientation. The true sample positions,
Zn, are related to the sample positions, Z,, for a surface with
angle 6, by x,, cos§ = &, cos 6. Therefore,

i.e., the samples are constrained to move according to

b(z) € T = {x»—> xcos~9

cos 0

for § € (—7r/2,77/2)} .

2Since b = cos6, b € [—17 1}. However, for generality, we consider the
case b € R.

— Textlure l — Texture
— Surface — Surface
— Samples v — Samples
—— Camera plane — Camera
plane

(a) Orthographic projection (b) Perspective projection

Fig. 4: Orthographic and perspective projections. Examples of
sampling a warped signal, where the warping is define by the
camera. Note that in the orthographic projection the warped
samples are equally spaced, what is not the case for perspecitve
projection.

2) Perspective projection: Similarly, in the perspective pro-
jection case, depicted in Fig. 4b, for odd N, we have

nT'd _
veos —nTsinf

xpcost  nT
Tpsinf+d v

Ty =

o(nT);

i.e., the warping function is ¢(z) € ®, where
dz

——  ford,v e R" and
vecosf — xsinb

q):{x»—>

0 e (—7r/2,7r/2)}.

_ Let d and 0 be the parameters of the true surface and d and
0 be the parameters of any other surface. Then, since

T, cos T, cos

Tpsinf+d Fpsinf +d

we can find the constraint function from

N an cosf
In = = : = = ¥(xn);
dcos @ + x, sin(f — 0)

i.e., the constraint function satisfies 1) € ¥, where

U = {x —
0,0 (—w/z,ﬂ/z)}.

For the majority of this paper, we investigate setups related
to these two examples, and we focus on deterministic families
¥ and ®. However, the framework we are proposing can be
naturally extended to describe much of the existing works on
sampling at unknown locations. For example, replacing ® with
a space of random functions, we align with the probabilistic
framework of Kumar. When & is the space of i.i.d. random
variables independent of the input, we have the model analyzed
in [17] and when it is a random process we have the model
analyzed in [18]. The framework can also be used to describe
measurements taken approximately at known positions.

~da: cos _ for d,d € Rt and
dcosf + xsin(f — 6




In the following two sections, we consider two simple
cases intimately connected to the previous two examples: first,
we consider periodic bandlimited signals warped by a linear
function and, second, we consider polynomials with sample
locations constrained to be a rational function of the true
sample positions. In the first case, we show when the function
and sample locations can be retrieved and present an algorithm
that performs this recovery. In the second case, we present a
uniqueness result and an iterative algorithm that attempts to
find this unique solution.

III. PERIODIC BANDLIMITED SIGNALS WARPED BY A
LINEAR FUNCTION

In this section, we consider periodic bandlimited signal with
a linear warping. We describe the problem in terms of its
Fourier representation and show when the warping parameter is
unique. Finally, we propose an algorithm to recover the linear
warping and the signal with provable guarantees.

Let f(z) be a 7-periodic and bandlimited signal given by

K
f(x) — Z ag ej27rlmt/7-. (2)
k=—K

Note that a; corresponds to the Fourier Series (FS) coeffi-
cients of f(z). The warped signal is

K
(fop)(w)=flbx)= Y ape>™ /7, 3)
k=—K
where ¢(x) = bz, with b # 0, is a linear transformation

of the domain of f(x). This composite is sampled uniformly
with a sampling rate of T = 7/N (e.g. N samples per period)
producing the sequence y, = (f o ¢)(nT):

K
Yn = Z akejQTrkbn/N. (4)
k=—K

The goal is then to recover both f(z) and ¢(x) from the set
of observations. In other words, we would like to find ay,
to reconstruct f(z), and b to reconstruct ¢(x).

The main insight of our approach is that, in the Fourier do-
main, the signal f(z) corresponds to a set of Diracs uniformly
spaced in frequency:

K 2rk
Fw)=F{f(x)} = Z aid (w—). 3)
k=—K

By introducing a linear warping, we are effectively expanding
or contracting the spacing between those Diracs (modulo 27
as a result of sampling). It follows that the DTFT of y,, has
the following form:
K
Y ad(w—6k), we-m7, (6

k=—K

" 1
V() = Th

where the locations of the Diracs are given by

_ 2mbk

b=~ k=-K,... K. 7)

mod 2,

For simplicity, we will often use a = 2wb/N, as a basic
angular distance between Diracs.

To further help gain intuition, Fig. 5 visually shows an exam-
ple F(w) from (5) and the corresponding Y (e/*) from (6) for
different values of b. To recover b from ,,, we need to calculate
the Dirac positions observed in Y (e/“) and then find the
angular spacing « such that ka mod 2w, k=-K,... K,
matches these positions.

Therefore, we propose to solve the problem with the fol-
lowing three steps:

1) Find the positions of the Diracs in Y (e/);

2) Recover the warping parameter b;

3) Reconstruct the coefficients of f.

The next subsection focuses solely on the second step
and the uniqueness of b. The last subsection details all the
steps.

Intuitively, one should be able to reconstruct the signal
provided the Diracs cannot overlap — that is when N > 2Kb
— and we observe enough samples. We will show that it is
indeed possible to recover the signal under this assumption, as
well in other less restrictive cases as long as the set of Dirac
locations is uniquely identifiable.

Before we move to the details, let us introduce some useful
notation and observations. Throughout the section, we will be
using the average phase of the Diracs:

K K
s= Z eI = Z e Ik = D(ed?). 8
k=—K k=—K

Average phase is useful, because it does not depend on the pe-
riodicity, and thus does not depend on the order of the Diracs
on the circle; however, it still takes into account the mutliplicity
of Dirac locations. It also has a closed form and is referred to
as the Dirichlet kernel of order K:

K

D(ev) = Z e Ikw =

k=—K

sin(g (2K + 1))

sin( %)

©))

We will also be using S, to denote the set of Dirac positions:
Sy = {e?** |k € {~K,...,K}}. Note that S, can have less
than 2K + 1 elements, if some of the Diracs overlap. If the
Diracs do not overlap, the center of mass of S, is exactly
D(e?™).

A. Uniqueness of the warping

In this subsection, we formalize the notion of a unique
«, and therefore a unique b. In addition, we show that,
with reasonable assumptions, the number of non-unique cases
is finite.

Throughout the subsection, we assume that we know the
positions of all the elements of S,. We will see when it is
sufficient to reconstruct the signal.

Definition 1 (Equivalence). We say that  and & are equiva-
lent, if a # @ but S, = S3.

If @ and @ are equivalent, it is impossible to distinguish
the parameter of the warping, and therefore (in general)
impossible to recover the signal.
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Fig. 5: An example of the function F(w) and Y (e/¥)’s
for different values of b. Here, we define a@ = %b. In all
the examples, we set K = 3, 7 = 2K +1and N = 14
(T = 0.5). a. is defined in Theorem 5. For small enough
values of b, there is no aliasing in the Fourier domain.
However, for large values of b (for example b = 5), we have
aliasing and thus retrieving the value of b is not trivial.

Note, that for any [ € N, o and @ = 27l + o are equivalent.
In order to avoid this trivial equivalence, we will now assume
that a € (0, 7). One could relax this assumption, but then «
would only be recovered modulo 7.

Lemma 2 (Characterization of non-unique warping). For fixed
K, there is only a finite number of equivalent pairs (o, &), such
that a,a € (0, 7). Additionally, there are no equivalent pairs
such that o, a € (0,7/K).

Proof: We begin by proving the second statement of the
lemma. Let us assume that «, @ are equivalent. Note that if o €
(0,7/K), then there are no overlaps between Diracs, which is
equivalent to the condition N > 2K, stated earlier.

Therefore, we know that the Dirichlet kernel D(e’%) is

exactly the center of mass of S,. It follows that, since o and
@ are equivalent, the sets they generate are equal and their
centers of mass are equal; i.e., D(e/%) = D(e’®). But on the
interval (0,7/K), the Dirichlet kernel is monotonic?, so it can
be true only when & = «.

For the first part of the lemma, again assume that «, @ are
equivalent and thus S, = Si. It follows that e/® € S5 and
there exists m € {—K,..., K} such that « = ma mod 7.
Similarly, we can write @ = ma mod 7. This leads to « =
mma mod m. Therefore,

a(mm —1) =nd, (10)

for some ¢ € Z. This can only be true in the following two
cases:
1) mm—1 =0, or equivalently m = m = 1, since m and m
are integers. In this case, & = «, which is a contradiction.
2) a« = tn/(mm — 1) = pr/P, p,P € Z, that is, « is a
rational multiple of 7. Then, & is also a rational multiple
of m, which is clear because & = +ma-+mn, n € Z. What
is more, |mim—1| < K2+1. Then, P = |mim— 1| defines
a set of possible a’s: @ = mp/P, for p € {1,P — 1}.
Additionally, @ must also be in this set. This set has P—1
elements, and there can be at most (P —1)P/2 equivalent
pairs (for a given P). Thus, the total number of pairs is
bounded by

S P-DP e
— < (K< +1)°. (11)
P=2
This proves the first part of the lemma. ]

From the proof of Lemma 2, we can infer the following
observation.

Corollary 3. The number of a € (0, 7) such that some of the
Diracs overlap is finite.

Indeed, if two Diracs overlap, their positions have be equal
modulo 7, that is ka = ka mod m, or equivalently

ak — k) = fx,

for some ¢ € Z. However, this is the same form as (10) and
in the proof we have counted all o’s of this form.

Finally, by substituting o = 27b/N in Lemma 2, we observe
the following.

Corollary 4. Fix the sampling rate T = 7/N. For a given
(feasible) set of Diracs, there is unique b € (0, N/2K), that
explains the Diracs.

Equivalently, assuming that b € (0, B] for some B € R,.
If N > 2K B, then b can be reconstructed uniquely from the
Dirac positions.

B. Unwarping bandlimited signals with DIRAChlet

In this section, we present an algorithm to find the warping
parameters and the original signal from the set of samples.

3To see that Dirichlet kernel is monotonic, it is sufficient to check that the
derivative is not zero on this interval.
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Fig. 6: Finding o using DIRAChlet.

Since the method is based on the properties of the Dirichlet
kernel, we name our method DIRAChIlet (see Algorithm 1).

As mentioned earlier, we propose recovery via a three step
approach. The first step is to identify the locations of the
Diracs on the unit circle. Since (4) is a sum of complex
exponentials, line-spectral estimation methods [36] can be used
to retrieve the angular frequencies (locations) of the Diracs.
In particular, we propose to use Prony’s method [37,38] to find
the 6 locations of the Diracs from the observations ,,.
In order to recover 2K + 1 distinct locations, we need at least
22K + 1) = 4K + 2 samples of y,,.

The second step is to calculate b from the Dirac positions. If
Prony’s method returns 2K + 1 locations, we know there is no
overlap between Diracs and we can easily calculate the average
phase s, as in (8).

From s, we can recover « (and thus b) by solving

D(e?) = s. (12)

As an example, Fig. 6 shows the Dirichlet kernel and the hor-
izontal line s ~ 1.67, which is the value of s resulting from
K =3,b =16 and N = 14. To calculate o, we need
to intersect the Dirichlet function with this horizontal line
for which root search methods can be used (e.g. Newton’s
method). In Fig. 6, we can immediately see that, depending
on the value of the average phase s, a different number of
solutions can exists.

In the case when there are multiple solutions to (12),
on the interval (0, ), we find them all. Then, for each candi-
date solution @, we recalculate the corresponding positions of
the Diracs. If they match the positions recovered by Prony’s
method, we accept & as a solution and find the corresponding b.

Finally, in the third step, we use the calculated b (or b’s)
to solve for the amplitudes a; by solving a linear system of
equations. The complete estimation procedure is summarized
in Algorithm 1.

We will see in the following theorem that the DIRAChlet
algorithm exactly recovers unique solutions and, in the non-
unique case, it returns all valid solutions as long as Y (¢’*) has

Algorithm 1 DIRAChlet algorithm

Input: 4K + 2 samples of the sequence y,, = (f o ¢)(nT).
Output: All possible values for b and ay.
1: Find the position of warped Diracs, ) using Prony’s
method. X

: Calculate s = > e 9%,

[\

k—
3: Find all « € (0, ) satisfying
sin(§ (2K + 1))

sin(§)

These are the candidate o’s.
4: Prune the candidate a’s by keeping only those satisfying

0 = ka mod 27, k=-K,...,K.

5: Find all the valid values of b = Na/27.
6: Solve a linear set of equations to find ay.

)

2K +1 distinct Diracs.* Note that Y (e/*) fails to have 2K +1
distinct Diracs in two cases: either two or more Diracs overlap
or there are some missing frequencies (a; = 0 for some k).

With the described procedure in mind, we are now ready to
state the main result of this section.

Theorem 5 (Recovery of the signal). Let f(x) be a T-periodic
2K + 1 bandlimited signal as defined in (2). Let T = 7/N be
a fixed sampling rate and let the warping function be p(x) =
bx,b € (0, N/2). Consider a finite sequence of 4K +2 samples
of the following form:

Yn = (f © @)(nT)v (13)

From this sequence, if Y (/) has 2K + 1 distinct Diracs,
the DIRAChlet algorithm will recover all possible values of
b. Furthermore, if b is unique, the algorithm will recover the
function f exactly.

Moreover, let . be the smallest o such that D(e’®) attains
the value of its second maximum (see Fig. 7). Then, if

n=0,...,4K + 1.

(14)

the DIRAChlet algorithm finds only one, correct, candidate
solution. For smaller N, the algorithm finds multiple candidate
solutions, which are later pruned.

Proof: We have outlined a method for retrieving the signal
and linear warping from the set of observations. From the
assumptions of the theorem, we know that we have enough
samples to recover all the Diracs and that indeed 2K + 1
of them are recovered. Therefore, we can calculate s and
find its intersection with the Dirichlet kernel which returns
all candidate solutions of « € (0, 7). To complete the proof,

4We believe that the DIRACHIet algorithm can be extended to always
recover all possible solutions. However, we believe that handling these corner
cases would raise a large number of additional complications, which would
increase complexity and greatly reduce clarity.
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Fig. 7: The (absolute) Dirichlet kernel in blue and its envelope
in red for K = 3. As Theorem 5 states, if the s-line is above the
black dashed line, we are guaranteed to have a single candidate
solution for «. In (15), we provide a closed form but looser
bound shown in red.

we just need to show that below the bound N > 27b/«a., there
is only one candidate «.

Note that, for « € (0,.), the Dirichlet kernel D is
monotonically decreasing, D(e/®) > D(e’®<). In contrast,
since D(e?%) < |1/sin(a/2)|, D(e’*) = 1/sin(a,/2) and
1/sin(a/2) is strictly decreasing for o € (0,7, D(e’®) <
D(e?%<), for a € [a, 7). Therefore, there can only be one
intersection for o € (0, crc) and thus the solution is unique. W

Since there is no closed form for the locations of the extrema
of the Dirichlet kernel (except at & = 0), we can modify (14) to
have a closed form bound in the expense of slightly loosening
it. We can use the value of the Dirichlet kernel’s envelope at
the kernel’s second root to derive

Ge = D71 <1/sin<2;7j_1>) < a. (15)

Here, D~(-) is the inverse of Dirichlet kernel defined just over
the region [0, 27 /(2K + 1)], where it is monotonic. The value
of &, substituted in (14), provides a closed form, but slightly
looser bound. The value of &, is also shown in Fig. 7.

IV. POLYNOMIALS AND RATIONAL FUNCTIONS

In this section, we consider polynomials warped such that
the sampling positions are constrained by a rational function.
We give a uniqueness result and propose an iterative algorithm
that aims to find the unique solution.

Let f be a polynomial of degree K:

K
f(iL’) = Zakxka
k=0

where the coefficients a; € R are unknown. Next, assume that
we uniformly sample the composite function h = f o ; i.e.,

our measurements are y, = h(nT) = f(p(nT)). As explained
earlier, as well as thinking of ¢(z) warping f, we can also
consider ) = $ o ¢! constraining the possible sampling
positions.

We now prove that the polynomial exactly fitting the sam-
ples is unique, if 1 is a rational function with the degree of
its denominator not smaller than the degree of its numerator.
In addition, we will propose a simple iterative algorithm,
which attempts to find this unique solution. The algorithm
employs a simple Alternating Least Squares strategy similar
to Browning [16].

The uniqueness result is the following lemma.

Lemma 6 (Pacholska et al, 2017). Let F be the space of
polynomials of degree at most K. Let f be the sampled
polynomial and let 0 < xp < 1 < -+ < xny_1 < T be
the original sample positions. Let &, be any other sample
positions satisfying the constraint ; i.e. T, = ¥(x,). Let

p(zn)
1/) Tn) =
(zn) ()
where p and q are irreducible polynomials with degrees
satisfying: deg(p) < deg(q). If the number of samples N >
K(deg(q) + 1), then there is no polynomial g € F, [ % g
such that f(x,) = g(&,) for all n.

forallne[0...N —1], (16)

Note that this lemma does not use the ordering of the sam-
ples, and thus does not require monotonicity of the constrain
function 1. However, one could restrict the parameters of the
rational function describing ), so that it is monotone on some
interval containing [xg, zy—1].

To prove the lemma, we use the fact that the polynomial g
would have to have a higher degree than f in order to match
N > K(deg(q) + 1) samples.

Proof: Let g € F be a polynomial such that

9(Zn) =g (2252;) = f(z,) forallne0...N —1],

and let K, = deg(p) and K, = deg(q). For every z,, the
following equation is satisfied:

K K (LL') k
S aak =Y by (p n ) 7 (17
k=0

k=0 4(wn)

where a, and bg, K = 1,..., K are the coefficients of the
polynomials f and g, respectively. We can rewrite this as

K K
(Q(mn))KZakxfz = Zbk(p(xn))k(Q(xn))K_k- (13)
k=0 k=0

This equation defines a polynomial with degree at most kK =
max(K,K+ K, K,K). But, since K, > K,, k = (K, +1)K.
If the degree of f is not zero, the left hand side of (18)
cannot be equal to the right hand side everywhere. Therefore,
(17) has at most « solutions and hence the polynomial f is

unique, provided that n > (K, +1)K.
If f is a constant (degree 0), it is possible that both sides
of (18) are equal everywhere but this can only occur if f = g.
|



Once the solution is unique for a certain constraint 1,
it is also unique for the corresponding warping function ¢.
Therefore, theoretically, a non-convex optimization method
can be used to recover the sample positions and warping
parameters.

To begin with, the error we can optimize is the difference
between the true sample values and the re-estimated sample
values. We choose the standard Mean Squared Error (MSE).
In the constrained case, it has the following form:

C(z,a)=|V(@)a -yl (19)

where a is an estimated vector of coefficients of f and V is
an interpolation matrix at points & = [Zo,...,Zy—_1]. In the
polynomial case, V(&) is the Vandermonde matrix consisting

of the powers of & = [Zo,...,Zn_1]:
1 & &k
| | | 1 T ;zg
V@) =| 2 2 ... 2K | = )
[ | 1 2y A

For simplification from now on we shall use V for V ().
We wish to find the sample positions & and polynomial
coefficients @ that solve the following optimization problem:

&, 4 = argmin C(&, ).
x,a
When the conditions of Lemma 6 are met, we have @ = a
and &, = x, forallne[0...N —1].

Unfortunately, (19) is non-convex and thus the problem is
difficult to solve in practice. We utilize an alternating least
squares (ALS) algorithm with the following two steps:

1) Fix the matrix V' and solve for the coefficients a using

ordinary least squares (OLS).

2) Fix the vector a and make one step of gradient descent

with respect to &.

The gradient step is the part of the algorithm that depends
on the warping. In the general case, with no constraints but
fixed a, the derivative of C' in the direction z,, is

o =o((va), - 1) (5a) .

where (-),, denotes the n-th element in the vector. Therefore,
the gradient can be written as a column vector:

VsC =2(Va—f)o(V'a),

where o is the entrywise (Hadamard) product, and the entries
of V' are (V'), = kik=1, counting from 0, so V'a is
the derivative of the polynomial f evaluated at the points
oy, TN_1.

In order to include the warping function &, = ¢(nT, ),
we use the chain rule to replace the derivative over x, with
the derivative over a—the parameters of the transformation:

Vol =®'V,C,

Algorithm 2 Alternating Least Squares Algorithm (ALS)

Input: Sampled vector f, initial sample positions &
Output: Sample positions & and polynomial coefficients p.
1: Initialize sample transformation parameters o
2: while not converged do
3:  For current matrix V' := V calculate:

p=VIV)IVTf

Calculate @’
Update « :

a:=a-p8&(Vp—f)o(V'p))

6:  Calculate & = ()
7: end while

A

where ®’ is a matrix of partial derivatives of ¢©(Tn,a) with
respect to the parameters:

(i")im, = %(Tﬂ, ).
The matrix form of the gradient allows fast calculations. The
derivative matrix has to be recomputed every time, but one
expects the number of parameters to be small compared to
the number of samples. The OLS part is generally the most
expensive computationally and most sensitive to numerical
errors.

Naturally, full specification of the (ALS) algorithm requires
details of the step size and stopping criteria. This is described
in Section V with reference to the specific application. A
summary of the final algorithm is given in Algorithm 2.

V. SIMULATION RESULTS

We have presented two main scenarios for sampling at
unknown locations with constrained sampling positions: a peri-
odic bandlimited signal with a linear warping and a polynomial
with sampling positions constrained by a rational function.

We now present simulation results for these two problems
separately. The simulation code will be available online.

A. Periodic bandlimited signals

We start by evaluating the behavior of Algorithm 1 for
unwarping periodic bandlimitted signals in the presence of
noise. We set 7 = 2K + 1 and fixed @ = [a_k,...,ax]|"
and b to the following values:

a =[0.43, —0.15, —0.44, 0.67, —0.32, —0.76, —0.32,
0.67,—0.44, —0.15,0.43]7,
b=4.

Here, the values of a are just arbitrary random values and
K =5, since there are 2K + 1 values in a. As set out above,
we sample f(bx) with N samples per period. We study four
different values of IV, each corresponding to one of the regimes
studied above:
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Case 1: N > 2wb/a.: According to Theorem 5, this value of
N guarantees that in the noiseless case the DIRACh-
let algorithm will return one, correct, candidate o €
(0,7). Note that this value of N corresponds to

a < Qe.

Case 2: 2Kb < N < 27b/a.: We choose this value of
N so that the line s has several intersections with
the Dirichlet kernel D(e’*). In terms of « , this

corresponds to o, < a < /K.

Case 3: N < 2Kb: This value of N corresponds to o >

/K.
Case 4: N = br: This case results in s = 0 in the noiseless
case when 7 = 2K + 1 (our assumption in the
simulations).

In each case, we fix the value of N in the interval of
interest and run the simulation. Each value of N results
in different samples y,. We contaminate these samples by
random Gaussian noise with zero mean and varying variance:
UYn = Yn + €,. We choose the noise such that the value of SNR
ranges from -10dB to 40dB, where we define the SNR as

SNR = 10log,, (o7 /02 ) . (20)

Here, 0y, and o, are the empirical standard deviation of the
signal y,, and noise €,, respectively. This results in the noisy
observations ¥,. Then, we apply Algorithm 1 on these noisy
samples to estimate the values of b and aj, (and thus y,,); we
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Fig. 10: Error in reconstructing b from noisy observations ¥,
versus SNR. Here, the original b was set to 4.
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Fig. 11: Error in reconstruction of y,, from noisy observations
9Jn versus SNR.

call these estimated values l;, ay, and ¢, respectively. For each
value of SNR, we run 10,000 simulations.

When running the algorithm, one of three things can happen:

1) The algorithm can return no solution, for example when

the s-line does not intersect the kernel.
2) The algorithm can return multiple valid solutions (even
after pruning), for example when s = 0.

3) The algorithm can return a single solution (after pruning).

Figure 8 depicts the percentage of cases that have multiple
solutions and Fig. 9 shows the percentage of cases that have
only a single solution.

In Fig. 8, we see that, except for Case 4, there is always
a unique solution, for the full SNR range considered. This is
expected, since the non-unique cases form a finite set for o €
(0, 7). In Case 4 (s = 0), we expect to have multiple solutions
for high SNR, since we have fixed « to one of the cases from
this finite set. In Fig. 9, we see a similar behaviour except that,
at low SNR, we fail to always return a single solution. From
Fig. 8, we know that this occurs when the algorithm returns
no solution.

Next, in Figs. 10 and 11, we show the error in reconstructing
b and y,,, respectively. Again, we use the four cases detailed
above, with the original value of b set to 4. We compute the
average of the errors defined by

error(b) = “)%M ,

error(§,) = ”y"|y‘ ﬁ’:”? .
n
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In the case that the algorithm generates multiple solutions,
we choose the solution closest to the true value, when comput-
ing the above error. In Fig. 10, we observe that all cases, except
Case 1, have a similar behaviour, with a break point in the
curve at around 10dB. Case 1 has lower reconstruction errors
for low SNR values, which is not surprising since this case has
more oversampling. Also, the Dirichlet function has a small
slope in this part of its curve which results in smaller variation
in & with changes in s. Additionally, we observe that Case 1
does slightly worse for mid-SNR’s. This can be explained by
ill-conditioning, which occurs as & — 0. As shown in Fig. 11,
although Case 1 has a lower error for estimating b in low
SNR regimes, it has almost the same performance in estimating
yn. However, the ill-conditioning still makes the error slightly
worse at mid-SNR’s.

To further investigate this ill-conditioning as Diracs become
close (a« — 0), Fig. 12 shows a further simulation with five
different values of «, all less than (or equal to) a, = 0.157. In
this simulation, X =5, 7 =2K +1, N =30 and o« = 0.077w
corresponds to the case of b = 1. We see that, as « decreases,
the conditioning becomes worse and the performance degrades
at mid to high SNR’s.

B. Polynomials

To evaluate the performance of the ALS algorithm in the
polynomial case (see Algorithm 2), we simulate the surface
retrieval problem, introduced in Subsection II-B. We describe
how to alter Algorithm 2 to retrieve the angle.

We assume a polynomial texture and linear surface, with
unknown angle and offset. Recall that, assuming the pinhole
camera model, the sample positions are defined by

nTd
vecosl —nTsinf’

p(nT) =

Note that, from Lemma 6, we know that 2K samples are
sufficient to distinguish between different angles of the surface.
On the other hand, if the angle is found, the constraint v
becomes a linear function, and Lemma 6 does not tell us
anything about the recovery of the offset d. Note that changing
the distance of the surface from the camera is equivalent to
scaling the polynomial. But a scaled polynomial is also a
polynomial and therefore it is impossible to recover this offset.

This also suggests that it is difficult to relax the assumptions
of the lemma.

From the above reasoning, we know that we will be unable
to recover the offset of the surface. We thus ran a number
simulations with different polynomial degrees, surface orien-
tations and noise levels. We set the irretrievable distance d and
the focal length v to 1.

For each polynomial degree, surface orientation and noise
level, we ran 100 experiments with arbitrary random poly-
nomials. The polynomials were generated in the standard
polynomial basis. The coefficient of the highest power was
fixed to 0.5 and the remaining coefficients generated randomly
from a standard normal distribution N'(0, 1). We needed to fix
the first coefficient to ensure that it is not zero. This is because,
if the polynomial is similar to a polynomial of smaller degree,
the model becomes too powerful with respect to the data.

If not stated otherwise, each of the 100 tests was done for 13
different angles uniformly spaced between —20° and 20°. The
alternating algorithm is always initialized with b = 0. The
initialized sample values range from —1 to 1, and therefore
angles close to 45° cannot be recovered, because the line from
the origin to the last sample would also be 45° and would
thus never cross the surface. We are restricting the angles even
further because of stability problems, see Figure 16.

We add to the sample values noise generated from the
normal distribution A/(0, ), for different values of o. The
signal to noise ratio (SNR) — defined in (20) — varies between
-10dB and 200dB.

We report the error in position estimates defined as

error(a) = |§— 0. 21

Recall also that, since the algorithm knows only the sample
values, the cost function it minimizes is

C(zya) =||V(z)a -yl (22)

This cost function is in general not convex, see Fig. 13. This
means that, without any additional modifications, the algorithm
will sometimes miss the global minimum. This can be fixed
by choosing a number of different starting positions, or other
standard methods. In the noiseless case we know that the cost
function is equal to O if and only if we found the global
minimum. However, in the noisy case, distinguishing between
local minima might be difficult>.

In the simulations, we have seen the problems with local
minima for all degrees of polynomials. In our experience, when
the polynomial degree is small, local minima do not appear
often. As the degree of the polynomial increases they became
more common and lead to increased error even in the noiseless
case, see Figs. 14 and 15.

The reconstruction is not robust to noise, see Figs 15 and 17.
This is not a problem with the alternating algorithm, but with
the chosen cost function. With noise, the minima of the cost
function flatten out, because perfect fitting of the polynomial to

SNote that, for this 1D problem, it is easy to come up with a more robust
scheme, such as a simple grid-search. However, we have chosen the ALS
algorithm, because it generalizes easily to higher dimensions, and is therefore
more illustrative.



10!

100 1
1071 5
1072 5
1073 -
1074 -

107> 4

-40 -30 -20 -10 0 10 20 30 40
Angle [degrees]

Fig. 13: The cost function is not convex. The plot shows
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Fig. 14: Histogram of the errors for a polynomial of degree 4,
with no additional noise added. The distribution of the error
is clearly bi-modal. In more than 80% of cases the error is
smaller than 10719, yet the mean is around 2.5.

the samples is no longer possible. This is also the reason why
oversampling does not give a big improvement — although
the oversampling reduces the relative power of the noise, it
does not prevent minima from flattening out.

For angles inside the interval [—20°,20°], the error does
not vary significantly, see Fig. 16. Outside this interval the
algorithm becomes unstable. This is due to the geometry of
the problem and the fact that a small change in 6 leads to
a big change of the estimated sample positions and therefore
a big change in the estimated coefficients of the polynomial.
One can imagine that a change of variables or introducing a
varying step size depending on the current angle could widen
the stable region.

Finally, we needed to adjust the step size and the stopping
criteria of Algorithm 2. We chose step size [ to be inversely
proportional to the oversampling factor, in order to prevent
too large gradients. Large gradients can cause the algorithm
to move to angles 6 outside the allowed (—45°,45°) interval.
Therefore, we multiplicatively decrease § every time 6 would
become too extreme. We use different stopping criteria: when
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Fig. 15: Results of the ALS algorithm for different polynomial
degrees. The median error with no noise is shown in orange
(solid) and the median error with a small amount of additive
noise (SNR 80dB) is shown in blue (hatched). As one can
see, in the noiseless case, the algorithm breaks down at around
degree 6. In the noisy case, the errors are much bigger even
when the algorithm finds the global minimum. This makes the
error less dependent on the number of local minima, and thus
less dependent on the degree of the polynomial.
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Fig. 16: Median error for different angles, aggregated for 7
different polynomial degrees (2....,8). The blue dashed line
(left scale) shows the noiseless case, and orange (solid) line
shows an SNR of around 80dB. The decrease of error around
0 for the noiseless case is due to algorithm initialization at 0.

the cost function is small enough, when the cost function stops
changing and after a certain number of iterations. We noticed
that increasing the number of iterations does not improve the
results, and limiting the number of iterations might be seen as
a version of early stopping.

VI. CONCLUSION

We have proposed the problem of uniformly sampling
a composite of functions as a regularizer for sampling at
unknown locations. As we have shown, this formulation main-
tains many of the key aspects of practical problems such as
simultaneous localization and mapping (SLAM) and structure
from motion (SfM).

In addition, we have studied two simple examples and
demonstrated uniqueness in both cases. In one case, we have
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Fig. 17: Error for different signal to noise ratios, for polynomi-
als of degree 4. Around 40dB SNR, the mean error and median
error begin to differ. Unsurprisingly, the mean error flattens
when the few large errors dominate the mean. Oversampling
improves the results but not significantly. Oversampling 8
times gives error equivalent to no oversampling with SNR
10dB bigger, but this results in the small difference in error.

also provided an efficient algorithm that reaches this unique
solution and, in the other, we saw that the problem was not
stable in the presence of noise. An interesting topic for future
work is to attempt to improve stability by regularizing the
parameter values.

Moreover, we believe that there are many additional exam-
ples of sampling a composite of functions that can be solved.
For example, a promising research direction is probabilistic
warping functions, which would further connect the excellent
work of Kumar [17,18].

In terms of the connection to SLAM and SfM, much work
needs to be done to create practical algorithms from this type
of approach. However, simple extensions such as moving to
piecewise linear surfaces would already make a step in this
direction. In addition, ideas from single index models may
bridge the gap to higher dimensions.

Finally, we believe that it is important to understand the fun-
damental limit of such problems and our analysis contributes
to this understanding.
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