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ABSTRACT

Self-localization of nodes in a sensor network is typically
achieved using either range or direction measurements; in this
paper, we show that a constructive combination of both improves
the estimation. We propose two localization algorithms that make
use of the differences between the sensors’ coordinates, or edge
vectors; these can be calculated from measured distances and an-
gles. Our first method improves the existing edge-multidimensional
scaling algorithm (E-MDS) by introducing additional constraints
that enforce geometric consistency between the edge vectors. On
the other hand, our second method decomposes the edge vectors
onto 1-dimensional spaces and introduces the concept of coordinate
difference matrices (CDMs) to independently regularize each pro-
jection. This solution is optimal when Gaussian noise is added to
the edge vectors. We demonstrate in numerical simulations that both
algorithms outperform state-of-the-art solutions.

Index Terms— Range and direction measurements, sensor ar-
rays, calibration, node localization, measurement uncertainty.

1. INTRODUCTION

Consider a sensor network, where nodes can measure distances and
angles between each other. A natural question that arises is the re-
covery of the sensors’ locations given a set of such measurements.
This problem is central to many applications, including indoor local-
ization, autonomous vehicles, or intelligent warehouses.

If only distances are given, the problem is well studied; for in-
stance, the theory of Euclidean distance matrices (EDMs) provides
both a detailed description of fundamental limits and a plethora of
algorithms to localize the sensors [1, 2, 3, 4, 5]. There have also been
a number of interesting studies for the case of angle-only measure-
ments [6, 7, 8], although the theory is not as mature as the range-only
case.

However, setups leveraging both distance and angle measure-
ments did not attract as much attention. This is surprising given the
fact that a multimodal approach could provide a significant improve-
ment in accuracy and robustness.
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Common solutions in localization assume that we have a single
node, which we would like to estimate using measurements from a
number of anchors at fixed known positions. This problem is known
as lateration [9] when using distance measurements, and angula-
tion [10] with angle measurements.

In contrast, many applications require to jointly localize all
nodes of the network. For example, in signal processing, sen-
sor arrays are often employed to measure physical phenomena.
This includes wireless sensor networks measuring weather condi-
tions [11], ultrasonic sensors detecting breast cancer in ultrasound
tomography [12], and room geometry estimation from a microphone
array [13]. Furthermore, in the field of acoustics, the most accurate
solutions to common problems such as source localization, source
separation and noise reduction rely on microphone arrays with
precisely known microphone locations [14]. Therefore, accurate
localization of all sensors in the network is critical for many tasks.

In this paper, we consider algorithms for multimodal localiza-
tion of all nodes in a sensor network. Since the distance and angle
measurements are often of a fundamentally different nature, it is not
obvious how to combine them into a precise mathematical frame-
work [15]. We propose two new methods that achieve state-of-the-
art performance, each outperforming the other in a different noise
regime.

Our first method—constrained edge-kernel—is in a similar
spirit to the well-known multidimensional scaling (MDS) algo-
rithm [3]. It is an extension of [16], with additional constraints
added to the edge vectors to enforce geometric consistency.

The key components of our second proposed method are enti-
tled coordinate difference matrices (CDMs). CDMs have elegant
yet simple properties that we can leverage to find a closed-form so-
lution to reconstruct the sensor locations. This solution can easily
cope with multiple and missing entries by introducing weights for
each measurement. The two proposed methods are complementary
in the sense that the constrained edge-kernel performs better in the
case of high angle noise, while the CDM-based approach is better at
handling more noise in distances.

2. PROBLEM STATEMENT

Consider a set of points in a 2-dimensional space1 with coordinates
denoted by the vector xn ∈ R2 for n = 1, . . . , N . Stacking up all
the N vectors in a matrix yields the coordinate matrix X ∈ RN×2.

1In this paper, we derive all the results in 2D. The generalization to 3D
is mathematically straightforward for all the described algorithms. However,
their performance might substantially change in dimensions higher than 2,
which we aim to address in future work.
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Fig. 1. Localization setup in 2D. The measured distance d̃mn and the
directed angle α̃mn can be be mutually expressed with the vector
ṽmn or, equivalently, with the signed projections on the x- and y-
axis: x̃mn and ỹmn. Triangle ∆ℓ is such that vi − vh = vk.

We define the edge vector vmn corresponding to the pair of points
(xn,xm) by

vmn = xm − xn. (1)

The length of the edge vector is the distance between the points,
denoted by

dmn = ∥xn − xm∥2, (2)

while d̃mn refers to its noisy measurement. The orientation of the
vector is defined with a directed angle, meaning that it lies between
0 and 2π with respect to some common reference direction (in this
case the x-axis). This assumption is realistic because devices are
often equipped with a compass, providing their absolute orientation.
Therefore, we can use any off-the-shelf method [17] to measure the
directions of arrival and then convert them into directed angles. We
denote the noiseless and noisy measured directed angles by αmn

and α̃mn, respectively, as depicted in Fig. 1. Then, the coordinates
of edge vectors relate to distances and angles as

(vmn)x = dmn cosαmn and (vmn)y = dmn sinαmn. (3)

Our goal is to estimate the points X̂ , given noisy measurements
of distances d̃mn and angles α̃mn.

3. EDGE-KERNEL BASED SOLUTIONS

Before describing our constrained edge-kernel approach, we first
summarize the original edge-kernel method [16].

3.1. The Edge-Kernel Formulation

In [16], Macagnano et al. propose a new MDS formulation, referred
to as edge multidimensional scaling (E-MDS), which allows a uni-
fied processing of angle and range information. In the E-MDS-based
formulation, the entities are the vectors pointing from one point to
another, while the measure of dissimilarity is their inner product.

To simplify the notation and allow the construction of a matrix
whose elements depend on two edge vectors i and j, we first re-index

the edges vmn from (1) to vi with i = (m− 1)N − m(m+1)
2

+ n,
where m = 1, . . . , N − 1, n = m + 1, . . . , N , and i = 1, . . . , E,
E = N(N−1)

2
. If we consider a matrix consisting of elements vmn,

this corresponds to flattening the elements of its upper triangle in a
row-wise order. Then, we define the edge-kernel KE ∈ RE×E of a
fully connected point set with E edges and the element (i, j) as

(KE)ij = ⟨vi,vj⟩ = ⟨xm − xn,xq − xp⟩
= dmndpq cos (ϕij),

(4)

where dmn is defined in (2), and ϕij is the inner angle between vec-
tors vi and vj . In matrix form, (4) simplifies to

KE = V V ⊤ = dEd
⊤
E ◦Ω, (5)

where V ∈ RE×2 is the matrix of the edges, dE ∈ RE is the vector
of the edge lengths and ◦ represents the Hadamard (entrywise) prod-
uct. The elements Ωij of the angle matrix Ω contain the cosines of
the inner angles between vi and vj . From (5), it is easy to verify
that the rank of the edge kernel is at most 2. Given noisy angle and
distance measurements, the authors in [16] propose to reconstruct a
denoised kernel by imposing this low-rank constraint and positive-
semidefiniteness:

V̂ = argmin
V ∈RE×2

∥K̃E − V V ⊤∥F

= diag
(
d̃E

)
· [U Ω̃]1:E,1:2 · [ΛΩ̃]

1
2
1:2,1:2 ,

(6)

where K̃E = d̃Ed̃
⊤
E ◦ Ω̃ is the measured edge kernel and U Ω̃ and

ΛΩ̃ are the matrices of eigenvectors and eigenvalues of Ω̃, respec-
tively. Recovering the point set X from V̂ is straightforward once
we set the translation of X by fixing one point. It consists of solving
a sparse linear system of equations defined in [16].

3.2. Constrained Edge-Kernel

The above solution outperforms previous approaches, which include
distance-only techniques [18] as well as methods combining both
distances and angles [18, 19]. However, it neglects certain geometric
constraints, which means the recovered vectors are not guaranteed
to be geometrically consistent. Indeed, imposing the kernel struc-
ture ignores triangle equalities of the edge vectors. Therefore, we
propose a new method, which we call constrained edge-kernel, to
address this limitation.

To better exploit geometric information for denoising, we intro-
duce the novel notion of a triangle constraints matrix M ∈ RC×E .
This matrix incorporates the mutual dependencies of edge vectors
forming a triangle, with Mℓi = 1, Mℓk = Mℓj = −1, assuming
that the vectors vi, vj and vk form the triangle ∆ℓ (see Fig. 1).
The number of constraints C equals to the number of triangles in the
point set, C =

(
N
3

)
. The problem given in (6) can then be written as

the rank-constrained optimization,

K̂E =argmin
K

∥K̃E −K∥F

subject to K ∈ C and K ∈ R,
(7)

where we introduce the feasibility sets

R =
{
X ∈ RE×E : X ⪰ 0, rank (X) = 2

}
, (8)

C =
{
X ∈ RE×E : MX = 0

}
. (9)



Because of the rank constraint, Problem (7) is non-convex and,
furthermore, it has no analytic solution. In such situations, it is typi-
cal to relax the non-convex constraint.

To do this, we implement the widely used nuclear norm relax-
ation from [20]. Since the solution is constrained to be positive-
semi-definite, its nuclear norm is equal to its trace, resulting in the
following relaxation:

K̂E =argmin
K

∥K̃E −K∥F + λ trace (K)

subject to K ∈ C,K ⪰ 0,
(10)

where λ is a regularization parameter, which controls to what extend
the solution satisfies the rank property and the linear constraints, re-
spectively.

As an alternative to relaxation, we can apply the lift-and-project
method from [21]. It is an iterative method which consists of pro-
jecting the estimate at iteration k (K̂E,k) onto the feasible sets C
and R in an alternating fashion. The optimal projection onto the
non-convex set R is equivalent to the E-MDS solution given by (6).
The orthogonal projection of K̃E onto the convex set C is given by

K̂E,k+1 =
(
I −M⊤(MM⊤)−1M

)
K̂E,k. (11)

Experimentally, we found that this second approach shows
excellent convergence rate in simulations (convergence is always
achieved in at most two iterations), and no parameter tuning is
required, so we rely on this approach for the presented results.

4. COORDINATE DIFFERENCE MATRICES

Consider a set of 1-dimensional points whose locations are collected
in the vector s ∈ RN . We can compute their pairwise differences
and arrange them in a coordinate difference matrix, S:

S
def
= s1⊤ − 1s⊤, (12)

where 1 is the all-ones vector. In the following, we propose an algo-
rithm that estimates the points s from their pairwise differences S,
but first we show how one can relate the 2D multimodal localization
problem to CDMs.

We assume to measure distances dmn and angles αmn, from
which we can compute the edge vectors vmn by (3). The x- and
y-coordinates of the edge vectors are then used to create two inde-
pendent coordinate difference matrices Sx and Sy , such that Sx

mn =
(vmn)x and Sy

mn = (vmn)y . Observe that Sx (Sy) is a valid CDM,
as its entries are pairwise differences of 1-dimensional points ob-
tained by taking only x- (y-) coordinates of points in X .

Now, let us consider a generic CDM defined in (12). Assume
that we are given a set of differences and we would like to recon-
struct the original 1-dimensional points up to translation. In the
complete case, that is when all the pairwise distances between the
points are available, this task is as simple as averaging the rows of
S. However, the majority of problems have more restrictive condi-
tions: distances are noisy, measurements are missing or they appear
in multiple occurrences. Therefore, we introduce a masking ma-
trix W with non-negative integer entries, such that Wmn denotes
the number of measurements of the distance Smn. This formulation
allows multiple measurements of the same distance, which is partic-
ularly useful in case of noisy entries. We adopt the convention that
Wmm = 0 for all m; as we see later, this simplifies the notation.

A noisy and incomplete coordinate difference matrix S̃ is then
defined as S̃ = (S+Z)◦W , where the entries of Z are independent

Algorithm 1 Points recovery in 1D using CDMs

Input: An incomplete noisy CDM S̃ and its mask matrix W .
Output: The vector of 1D points s that minimizes (13).

Compute W ′ and S̃
′

from W and S̃ by removing the first row
and column.
Compute Λ′, such that Λ′

m = 1
Nm

, where Nm =
∑N

n=1 Wmn.

d′ = Λ′(S̃
′ ◦W ′)1

A′ = I −Λ′W ′

ŝ = (A′)−1d′

return
[
0 ŝ

]

noise realizations. In case we have multiple measurements between
the points sm and sn, Smn and Zmn are the average between the
measurements and the noise realizations, respectively.

Our goal now is to minimize the following cost function:

f(s) =
∑
m

∑
n

Wmn(sm − sn − S̃mn)
2. (13)

By calculating the Hessian matrix, it is easy to prove that the cost
function f(s) is convex. Thus, setting the first derivative of f(s) to
zero leads to the optimal solution:

∂f(s)

∂sm
= 2

N∑
n=1

(sm − sn − S̃mn)Wmn = 0.

⇒ ŝm =
1

Nm

N∑
n=1

snWmn +
1

Nm

N∑
n=1

S̃mnWmn, (14)

where Nm =
∑N

n=1 Wmn is the number of measurements in the
mth row in W . We can rewrite this result in matrix form

As = (I −ΛW )s = d, (15)

with Λ = diag
(

1
N1

, 1
N2

, . . . , 1
NN

)
and d = Λ(S̃ ◦W )1.

Observe that the points s and their translations s+ c lead to the
same CDM S:

(s+ c)1⊤ − 1(s+ c)⊤ = s1⊤ − 1s⊤.

Due to this translation invariance, rank(A) = N − 1, hence the
system of equations (15) is not invertible. To anchor the translation
and obtain a full-rank matrix, we arbitrarily fix s1 = 0 and remove
the first entry of d and s as well as the first row and column of A.
By defining the matrices Λ′ and W ′ analogously, (15) becomes

A′s′ = d′. (16)

The matrix A′ has a particular structure and belongs to the class
of the so-called M-matrices [22, 23]. One of their interesting prop-
erties is that they are inverse-positive; that is A′ is invertible and the
entries of (A′)−1 are non-negative. Hence, the estimated points are
given by ŝ = (A′)−1d′.

To summarize, Algorithm 1 formally states how we reconstruct
points in 1D from noisy and incomplete CDMs. By running Algo-
rithm 1 independently for CDMs S̃

x
and S̃

y
, we jointly reconstruct

the x- and y-coordinates of the points in X . A noteworthy observa-
tion is that the solution of the CDM-based algorithm is derived in a
closed-form using least squared error criterion in (14). Therefore, it
is optimal for Gaussian noise added on the edge vectors.
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Fig. 2. Simulated results of localization performance averaged over
1000 independent realizations of point sets, angle and distance noise.
We compare the proposed methods (CDM and constrained E-MDS)
with E-MDS and the distance-only MDS.

5. SIMULATION RESULTS

In this section, we compare both our algorithms with E-MDS, which
is the state-of-the art in multimodal localization, and MDS, which
provides a baseline for range-only measurements.

We run 1000 experiments with N = 6 points chosen uniformly
at random from the unit square at each iteration. The noise is added
independently to all pairwise distances and angles. This is motivated
by the fact that in most real-world scenarios, the measurements of
distances and angles are obtained in an independent manner, e.g.
from time-of-arrival and angle-of-arrival measurements. Thus, the
noise on the edge vectors is governed by independent noise on these
measurements, and the angular noise is amplified with larger dis-
tances (see Fig. 1). To reproduce this behavior, we run simulations
with independently randomly generated additive noise on the dis-
tances and angles between the points. The noise on distances and
angles is Gaussian with zero mean and standard deviation σd and
σα, respectively. Note that noise exceeding +/- π will distort the an-
gle noise distribution, however for the range of standard deviations
chosen in these experiments, this effect is negligible.

We evaluate the performance based on the root mean squared
error (RMSE) between the original and the estimated point set X̂ .
Fig. 2a shows the localization performance vs. distance noise level
for two chosen levels of angle noise (“low” and “high”, with σα =
6.2◦ and 28.6◦, respectively). For low enough angle noise, it is ben-
eficial to include angle information (left plot), since the three multi-
modal methods surpass the distance-only (MDS) algorithm. Further-
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Fig. 3. Difference of RMSE of the two proposed algorithms. A neg-
ative value means that CDM is better for this level of angle/distance
noise. Both σα and σd are linearly spaced between 0.01 and 0.5.

more, CDM and constrained E-MDS have a substantial advantage
over E-MDS. For higher angle noise, both our proposed methods
again significantly improve over E-MDS for any noise level on dis-
tances. They also demonstrate superior performance over MDS, as
long as the distance noise is non-negligible.

Similarly, Fig. 2b shows the localization performance vs. angle
noise level for two chosen levels of distance noise (“low” and “high”,
with σd = 0.06 and 0.17, respectively). The left plot shows that for
low distance and angle noise, it is beneficial to use both, but the
use of angle information becomes detrimental if it is significantly
noisier than the measured distances. For high distance noise, angular
information always significantly improves the localization result for
all investigated noise levels, again with favorable performance of our
methods.

All the plots in Fig. 2 show that CDM and constrained E-MDS
algorithms are affected quite differently by angle and distance noise;
this deserves additional investigations. To this end, we compare the
RMSE of the two methods for different values of distance and angle
noise. As the result in Fig. 3 suggests, CDM is more efficient on high
distance noise regimes, while constrained E-MDS performs better
when the angle noise is higher. Interestingly, when the two levels of
noise are equal, both algorithms perform equally well.

6. CONCLUSIONS

We have proposed two algorithms for multimodal sensor localiza-
tion that exploit geometric information of points in space. The first
method improves on the existing edge-multidimensional algorithm
by adding geometric constraints on triplets of points. In the second
algorithm, we explore a different perspective of the problem based
on a novel tool called CDM, which allows us to estimate the points’
coordinates independently along each dimension. Numerical sim-
ulations demonstrate that both proposed methods significantly out-
perform existing distance-based and multimodal localization algo-
rithms. Our future work focuses on analyzing the dependence of our
algorithms on the noise models, and obtaining a better understanding
of why both algorithms perform equally well with identical distance
and angle noise levels. Furthermore, we will extend their formula-
tion to 3D and study the performance of both algorithms. We expect
the CDM-based approach to benefit more from higher dimensional
setups, as it exploits both the azimuth and elevation, whereas the
edge kernel-based solution relies only on the smallest inner angle
between two vectors.
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