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SUPPLEMENTARY MATERIAL

Abstract—In this supplementary material, we give the proofs for the two theorems and one proposition of the paper. In addition, we
formalize the equivalence between camera localization and triangulation.
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1 PROOF OF THEOREM 1
Theorem 1. Consider a multi-camera system of M cameras,
each with an N × N pixel image sensor and define a fixed
region of interest, R, with a finite non-zero volume.

If we assume that the only source of uncertainty is pix-
elization, the expected `2 reconstruction error of any triangu-
lation algorithm is lower-bounded by a term that is inverse-
quadratically dependent on the number of cameras; i.e.,
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where U ∈ R is any point in the region of interest, and Û is
the result of reconstructing U, from its images in the multi-
camera system, using any triangulation algorithm. Here, the
expectation is taken over the location of the point U in the
region of interest.

Proof. A single N ×N pixel camera partitions the world
space into N2 regions. Combined with the partitions of
other cameras, this leads to a finite number of partitions.
Therefore, when a multi-camera system views the region
of interest, it splits it into a finite number of partitions.
Let P be the set containing the resulting partitions of R.

We can now consider the the expected `2 reconstruc-
tion error split over these partitions:
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Here, V(R) denotes the volume of the region of interest.
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The localization error over each partition depends
on both its size and shape. Among all partitions with
the same volume, the value of this integral would be
minimized if the shape was a sphere and the estimate,
Û, was at the centre of that sphere:∫∫∫
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‖c−U‖22 dU, (3)

where Hr is a sphere with centre c and radius r =
3
√

3V(C)/(4π). Evaluating this integral, we obtain∫∫∫
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4π
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3 , (4)

where K = 4π
5

3

√
3
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Combining (2), (3) and (4) yields
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This lower-bound would be minimized if the available
volume, V(R), was split equally among each of the
regions in the sum:

E
(∥∥∥Û−U
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Here, #P is the number of partitions (the cardinality of
P).

Since the volume of the region of interest, V(R), is
fixed, we just need to consider how the number of
regions, #P , grows as we add more cameras to the
system. To do so, we first consider how many regions
can be created from L planes in R3. In computational
geometry, this quantity is known as the number of
cells in an arrangement of hyperplanes (see for example
[Goodman and Pollack 1986]). It can be shown that, with
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L planes, the 3-D space R3 is partitioned into at most k
regions and k grows cubically with L, i.e. k = O(L3).

In our case, partitions are created by the boundaries of
the pixels. We can see that each camera in a multi-camera
system partitions the space with at most 2(N+1) planes
intersected by rays starting from the camera centre and
passing through pixel boundaries1 (we have an upper
bound since some or all of these planes may not pass
through the region of interest). Therefore, for M cameras,
we have at most 2M(N+1) such planes passing through
the region of interest and thus we can conclude that the
number of regions (#P) satisfies

#P = O
(
M3N3

)
. (6)

Substituting (6) into (5) gives
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which proves that E
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for fixed

N and R, hence the fact that best possible decay rate for
a geometric reconstruction algorithm is quadratic.

2 PROOF OF PROPOSITION 1
Proposition 1. Consider a multi-camera system viewing a
point and assume that the image points are subjected to `q-
norm bounded noise:

‖ui − Pi(U)‖q ≤ δ for i = 1...M.

Then, any algorithm that minimizes the (`q, `∞)-norm of the
reprojection error is a q-consistent triangulation algorithm.

Proof. The proof will be by contradiction. Let Û be the
minimum (`q, `∞)-norm solution:

Û = arg min
U

max
i=1..M

‖ui − Pi(U)‖q . (7)

Assume that Û is not q-consistent. Then, there exists
an i such that ∥∥∥ui − Pi(Û)

∥∥∥
q
> δ. (8)

Alternatively, let U c be a q-consistent estimate. By
definition,

‖ui − Pi(U c)‖q ≤ δ for all i = 1...M. (9)

Therefore,

max
i=1..M

∥∥∥ui − Pi(Û)
∥∥∥
q
> max
i=1..M

‖ui − Pi(U c)‖q . (10)

But, this contradicts (7) and thus Û must be q-
consistent.

1. In the case of orthogonal projection, rays do not originate from
the centre of the camera, but their cardinality and hence the rest of the
proof remain unchanged.

3 PROOF OF THEOREM 2

The proof makes use of the following corollary.

Corollary 1 (Powell and Whitehouse 2016). Assume ran-
dom vectors {φi}Mi=1 ⊂ Rd are i.i.d. and uniformly distributed
on the unit d-dimensional sphere. Suppose a point in Rd is
orthogonal projected onto the random vectors and subjected
to zero-mean uniform bounded noise with bandwidth δ. Then,
constants c1, c2 > 0 exist such that

E{(WM )2} ≤ c2d
3δ3

M2
, ∀M ≥ c1d ln d. (11)

Here, WM is the radius of the smallest d-dimensional sphere
containing the consistency region formed from the M samples.

Proof. See [Powell and Whitehouse 2016, Corollary 6.2].

Theorem 2. Place M cameras in a plane, i.i.d. uniformly at
random on a finite radius circle oriented towards the centre
of the circle. Define the region of interest, R, to be the
intersection of the field of view of all cameras as M → ∞
and place a point anywhere in this region.

Furthermore, assume that the images of the world point in
the cameras are perturbed with `∞ uniform bounded noise;
i.e., for the world point U, the image ui in the i-th camera is

ui = Pi(U) + εi, (12)

where εi is zero-mean uniform bounded random satisfying
‖εi‖∞ ≤ δ.

In this situation, the expected `2 reconstruction error of
any ∞-consistent triangulation algorithm is upper-bounded
by a term which decreases quadratically with the number of
cameras; i.e.,

E
(∥∥∥Û−U
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where U ∈ R is any point in the region of interest, and Û is
the result of reconstructing U, from its images in the multi-
camera system, using a∞-consistent triangulation algorithm.
Here, the expectation is taken over both the noise and the
camera locations.

Proof. Let U = [UX , UY , UZ ]T , εi = [εi,x, εi,y]T and
assume, without loss of generality, that the circle lies in
the X-Z plane.

Before considering the central projection case, we as-
sume the cameras are orthographic. In this case, the
vertical coordinate of the image points are given by

ui,y = UY + εi,y, i ∈ [1,M ]. (14)

The y-coordinate of the world-space ∞-consistency
region is the following 1-D interval:{

ÛY : max
i
εi,y − δ ≤ ÛY − UY ≤ min

i
εi,y + δ

}
.
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Therefore, the maximum reconstruction error in this
coordinate is

E := max
ÛY ∈Cy

∣∣∣ÛY − UY ∣∣∣
= max

{∣∣∣max
i
εi,y − δ

∣∣∣ , ∣∣∣min
i
εi,y + δ

∣∣∣}
= max {El, Eu} , (15)

where El := |maxi εi,y − δ| = δ − maxi εi,y and Eu :=
|mini εi,y + δ| = mini εi,y + δ are the absolute values of
the lower and upper bounds, respectively.

The expected maximum squared error can be com-
puted as

E
(
E2
)

=

∫ ∞

0

λ2
dP (E ≤ λ)

dλ
dλ = 2

∫ ∞

0

λP (E ≥ λ) dλ,

where P(·) represents the probability. Furthermore, from
(15), we have

P (E ≥ λ) = P (El ≥ λ ∪ Eu ≥ λ)

= P (El ≥ λ) + P (Eu ≥ λ)− P (El ≥ λ ∪ Eu ≥ λ) .

Recalling that εi,y is uniformly distributed on [−δ, δ], we
can calculate each term as

P (El ≥ λ) = P (εi,y ≤ δ − λ, i ∈ [1,M ])

=

(
1− λ

2δ

)M
for 0 ≤ λ ≤ 2δ,

P (Eu ≥ λ) = P (εi,y ≥ λ− δ, i ∈ [1,M ])

=

(
1− λ

2δ

)M
for 0 ≤ λ ≤ 2δ,

and

P (El ≥ λ ∪ Eu ≥ λ) = P (λ− δ ≤ εi,y ≤ δ − λ, i ∈ [1,M ])

=

(
1− λ

δ

)M
for 0 ≤ λ ≤ δ.

Therefore,
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and so

E
(∣∣∣ÛY − UY ∣∣∣2) ≤ 14δ2

(M + 1)(M + 2)
<

14δ2

M2
, (16)

for any ∞-consistent estimate ÛY of UY .
Let’s now consider the horizontal coordinate of the

image points. If we continue to assume orthographic
projection, we have

u1,x
u2,x

...
uM,x

 =


− sin θ1 cos θ1
− sin θ2 cos θ2

...
...

− sin θM cos θM


[
UX
UZ

]
+


ε1,x
ε2,x

...
εM,x

 .

This is a linear inverse problem in two dimensions,
seeking unknowns UX and UZ . The solution defines the
x and z coordinates of the world-space ∞-consistency
region. Since the x and z coordinates cannot be split
into 1-D intervals, the geometry of the resulting 2-
D consistency region is more complex than for the y
coordinate; however, the assumption that the cameras
are uniformly distributed on the circle simplifies this
geometrical dependence. This is exploited in [Powell and
Whitehouse 2016] to prove various bounds including
Corollary 1. Directly applying this corollary yields

E

(∥∥∥∥[ÛXÛZ
]
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[
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2

)
≤ K1δ

2

M2
, (17)

for any ∞-consistent estimate [ÛX , ÛZ ]T of [UX , UZ ]T .
Here, K1 is a constant independent of the number of
cameras and the support of the bounded noise.

Combining (16) and (17) yields
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2

M2
,

for the orthographic case. Here K2 is a constant inde-
pendent of the number of cameras and the support of
the bounded noise.

Now, to extend this result to the pinhole camera case,
let r be the radius of the circle and f be the focal length of
all cameras. Then, the pinhole projection ∞-consistency
region corresponding to an image point measurement
with a noise bandwidth of δ has a smaller volume than
the ∞-consistency region of an orthogonal projection,
with larger bandwidth and a circle of interest of radius
r−f . The bandwidth δequiv of this corresponding parallel
projection camera is computed as

δequiv = δ

(
1 +

r − f
f

)
= δ

(
r

f

)
. (18)

This means that we can upper-bound the reconstruc-
tion error of a circular array of M pinhole cameras with a
measurement error bandwidth of δ, with the reconstruc-
tion error of a circular array of parallel cameras, with the
bandwidth δequiv as defined above. Using this fact, we
have the following bound:

E
(∥∥∥Û−U

∥∥∥2
2

)
≤ K2δ

2r2

M2f2
. (19)

4 EQUIVALENCE BETWEEN TRIANGULATION
AND CAMERA LOCALIZATION

As briefly mentioned in the main text, triangulation is
equivalent to a restricted version of camera localization,
where one assume that the orientation of the camera
is known. Therefore, the scaling laws derived for trian-
gulation also apply to this restricted version of camera
localization. To formalize this, we now define the camera
localization problem and prove the equivalence.
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Definition 4. A camera localization problem takes as input

L = {K,R} ∪ {(ui,Ui)|1 ≤ i ≤M}, (20)

and estimates the unknown camera centre C as follows:

Ĉ = arg min
C̃

M∑
i=1

∥∥∥ui − P̃(Ui)
∥∥∥p
p′
. (21)

Here, P̃(·) denotes denotes the projection operator corre-
sponding to the camera matrix P̃ = KR[I|−C̃], where K
and R are the known intrinsic and orientation matrices
of the camera, respectively. In addition, the (ui,Ui) pairs
denote M world points along with their projections onto
the image plane of the camera. Finally, p′ and p are the
image-space and residual-space norms, respectively.

Proposition 2. The solution to a camera localization problem
L = {K,R} ∪ {(ui,Ui)|1 ≤ i ≤ M} is the same as the
solution to a triangulation problem T = {(ui,Pi)|1 ≤ i ≤
M}, where Pi = KR[I| −Ui].

Proof. From Definition 4, the solution to L is given by

Ĉ = arg min
C̃

M∑
i=1

∥∥∥ui − P̃(Ui)
∥∥∥p
p′
, (22)

where P̃(.) is the projection operator corresponding to
the camera matrix P̃ = KR[I| − C̃]. Now,

KR[I| − C̃]

[
Ui

1

]
= −KR[I| −Ui]

[
C̃
1

]
. (23)

Therefore, denoting the projection operator correspond-
ing to the camera matrix Pi = KR[I| −Ui] by Pi(.), we
have

P̃(Ui) = Pi(C̃). (24)

Note that there is no sign difference here because the
sign difference in (23) cancels when converting from
homogeneous to Cartesian coordinates.

Substituting (24) into (22) yields

Ĉ = arg min
C̃

M∑
i=1

∥∥∥ui − Pi(C̃)
∥∥∥p
p′
. (25)

By replacing C̃ with U and comparing to Definition 1
of the main text, we see that Ĉ = Û, hence proving the
proposition.


