Can we link theory to observations in natural flows?

Andrea Cimatoribus

ÃĽcole Polytechnique FÃľdÃľrale de Lausanne

PSI, 14 February 2017

CV in one slide

What	When
Batchelor in Chemistry (Uni Trieste, IT)	2001-2005
Internship at INOGS (IT)	2005
Master in Physics (Uni Trieste, IT)	2005-2008
Internship at Elettra Synchrothron (IT)	2008
PhD at KNMI/Uni Utrecht (NL)	2009-2013
Post-doc at NIOZ (NL)	2013-2016
Post-doc at EPFL (CH)	2016-2018

- 17 peer-reviewed papers and proceedings
- Lots of (open-source) software
- Several datasets collected
- Conferences, workshops (EGU, Euromech,...)
- Summer schools: DAMTP Cambridge, Alpine Summer School

• Can we link theory to observations?

An overview of my work at NIOZ and EPFL

Context: Increasing amount and quality of observational data.

Opportunity to obtain a "statistical" description.

- Focus on full dataset instead of single events.
- In practice: spectra, structure functions, PDFs, PCA,...

Statistics of temperature, velocity,...

- scale-dependence of variability;
- intermittency (e.g., time/space dispersion of turbulence events);
- hints on underlying physical mechanisms;
- identification of different regimes at different scales.

Statistics of temperature, velocity,...

- scale-dependence of variability;
- intermittency (e.g., time/space dispersion of turbulence events);
- hints on underlying physical mechanisms;
- identification of different regimes at different scales.

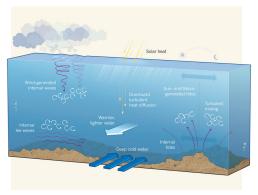
Well-established field (IWs, turbulence):

- relatively well understood theory (single-process level);
- laboratory studies.

Statistics of temperature, velocity,...

- scale-dependence of variability;
- intermittency (e.g., time/space dispersion of turbulence events);
- hints on underlying physical mechanisms;
- identification of different regimes at different scales.

Well-established field (IWs, turbulence):

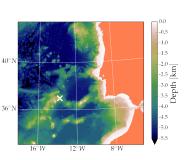

- relatively well understood theory (single-process level);
- laboratory studies.

In the field:

- We cannot control what we observe in the field,
 - e.g. control parameters are variable / undefined.
- Statistics can help extracting information from "noisy" data.

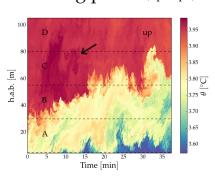
Turbulent transport in the deep ocean (NIOZ)

- Vertical transport in the ocean interior is poorly understood
- Hypothesis of mixing "hot-spots" with sloping bottom
- Sparse observations, poorly understood dynamics

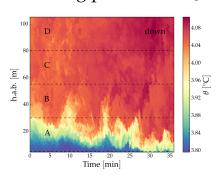


MacKinnon, 2013

Data


Latitude
Longitude
Max. depth
Min. height above seafloor
Seafloor slope
Number of sensors
Vertical spacing
Depth range
Deployment
Recovery
Sampling rate

36° 58.885′ N 13° 45.523′ W 2205 m 5 m 9.4° 144 0.7 m 100.1 m 13 Apr 2013 12 Ago 2013 1 Hz



Data

Cooling phase (upslope)

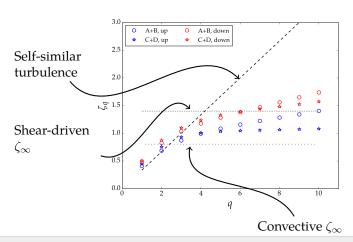
Warming phase (downslope)

Generalised structure functions (GSF)

GSFs provide a way to characterise variability in a flow:

$$\gamma_q \equiv \gamma_q(r) = \langle |\Delta_r \theta|^q \rangle$$

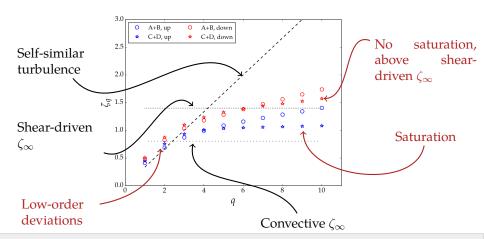
So-called "scaling ranges" have been predicted by theory and observed in the laboratory:

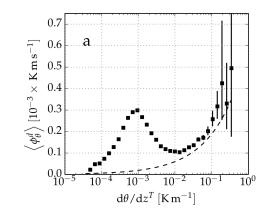

$$\gamma_q \sim r^{\zeta(q)}$$
.

- $\zeta(q) = q/3$ if turbulence were fully self-similar (non-intermittent), for r within the "turbulence inertial range".
- In reality, $\zeta(q) = \zeta_{\infty}$ for q > 10 (saturation):
 - Grid turbulence, shear driven $\rightarrow \zeta_{\infty} \approx 1.4$
 - Convective turbulence, buoyancy driven $\rightarrow \zeta_{\infty} \approx 0.8$

Generalised structure functions (GSF)

... many steps afterwards...


Scaling exponent within the turbulence inertial range.


Generalised structure functions (GSF)

... many steps afterwards...

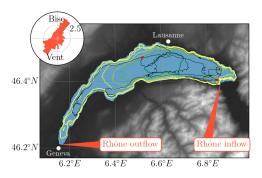
Scaling exponent within the turbulence inertial range.

Flux-gradient relation

Long-term averaging enables to identify simple *mean* behaviour in an otherwise highly variable environment.

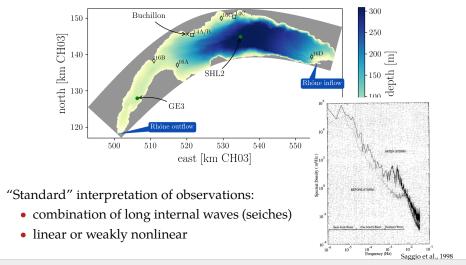
Conclusions I

Evidence of convection in field observations

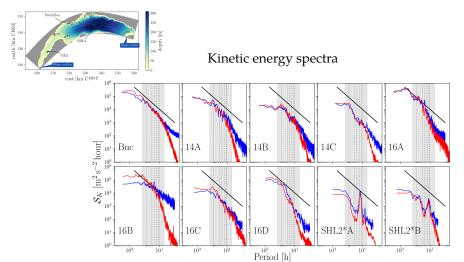

- Previously hypothesised, but hard to measure.
- Implications for efficiency of turbulent transport:
 - Implications for transport of heat, CO₂, nutrients,...
- Generalised structure functions enable to identify points of contact between laboratory and field results...
- ...and discrepancies!
- Much more not shown here.

- A. A. Cimatoribus and H. van Haren. Temperature statistics above a deep-ocean sloping boundary. J. Fluid Mech., 775:415

 –435, 2015.
- A. A. Cimatoribus and H. van Haren. Estimates of the temperature flux-temperature gradient relation above a sea floor. J. Fluid Mech., 793:504–523, 2016.

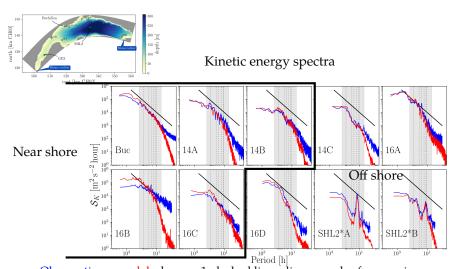

Transport in coastal areas (EPFL)

- In a linear, rotating flow, cross-isobath velocity is zero.
- How does cross-shore transport take place?


Velocity spectra

Lake Geneva

Velocity spectra


Lake Geneva

Observations, model, slope = -1, dashed lines: linear modes frequencies

Velocity spectra

Lake Geneva

Observations, model, slope = -1, dashed lines: linear modes frequencies

Conclusions II

Nonlinearity cannot be neglected.

- Linear models predict sharp spectra, which are only observed off-shore,
 - or by considering short time intervals
- Broad spectra from longer time series suggest strongly nonlinear dynamics (more "turbulence"-like)
 - Confirmed by numerical modelling results.
- Classical tools like PCA, struggle to capture relevant dynamics in the highly variable, strongly forced, Lake Geneva.
- Andrea A. Cimatoribus, U. Lemmin, D. Bouffard, and D. A. Barry. Nonlinear Dynamics of the Nearshore Boundary Layer of a Large Lake (Lake Geneva). J. Geophys. Res. Oceans, in press, 2018.

Conclusions

- Field observations are growing in size and quality.
- A statistical description allows testing theories in a natural (uncontrolled) environment,
 - whose overall, mean behaviour is usually the most interesting one.
- Sometimes, statistical quantities can surprise:
 - Simple behaviour out of highly turbulent environments
 - Nonlinear behaviour (instabilities? vortices?) in a low energy environment
 - from very common power spectra!

Thanks for listening.

Andrea.Cimatoribus@epfl.ch
[La Palma, Islas Canarias]