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Author Preface
In the mid 19th century, Hermann von Helmholtz formulated the theory of unconscious

inference (Hatfield, 2002) to detail how the mind spontaneously resolves uncertainty so as to

adequately reconstruct the world around it. Helmholtz’s call to the mind’s role in the process

is almost apologetic in his treatise (Helmholtz /Southall, 1925); understandably so, as, at the

time, the mind (brain) was unobservable and thus arguments on its involvement could not

be proven. Helmholtz further posited that unconscious inference was not limited to visual

perception but could explain all forms of sense-perception and also writes that perception is

the result of a form of practice, or learning, to integrate features of a stimulus into a percept, an

idea that harkens to a Bayesian learning process. Helmholtz’s treatise made use of binocular

rivalry examples to underline his theories.

Nearly two centuries after Helmholtz’s treatise, we examine this possibility armed with two

powerful tools: formal accounts of uncertainty that offer a precise means by which to capture

inferential processes; and fMRI, with which we can literally look into the mind. By applying a

common computational account of both perceptual and financial uncertainty during human

fMRI, we aim to answer the longstanding question put forth by Helmholtz and that is whether

the same neural system is responsible for inferential processes regardless of whether a decision

is deliberate, as in the case of a cognitive judgment, or (seemingly) spontaneous, as in visual

perception.

The following work explores several questions pertaining to decision-making under uncer-

tainty. First, guided by previous pupillometry studies using predictive coding accounts of

expected uncertainty (risk) and its error (surprise), we seek to find noradrenergic involvement

in uncertainty processing, as assessed by locus coeruleus activation using fMRI. Second, we

seek to investigate specific uncertainty-related variables, namely confidence, surprise and

information, in a financial uncertainty task, with the aim of mapping said variables? formal

definitions to specific neural representations. Third, we aim to generalize previous findings

on the neural representation of uncertainty, specifically of surprise, by searching for common

patterns of activation in two distinct tasks, one cognitive and objective, the other perceptual

and subjective, in the same individuals. The first question presents a significant technical

challenge as evidence of noradrenergic activity relies on detecting activity in a very small

brainstem structure, the locus coeruleus. Nonetheless, the impact of finding evidence in favor

of noradrenergic modulation of decision-making under uncertainty cannot be understated,

as this link can guide our understanding of various questions in neuroeconomics, such as the

impact of stress on risk assessment and taking, as well as inform our definitions of impaired
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Preface

decision-making in several psychiatric and neurological diseases. The second question can

better inform the use of different computational frameworks to assess various forms of uncer-

tainty and their related variables, with an aim to both advance our understanding of human

behavior but also with an eye towards applying this knowledge towards the advancement of

artificial intelligence. The third question aims to provide evidence of a more philosophical

debate, which harkens back to the Helmholzian view: if a common neural system exists to

process uncertainty, we can more confidently believe in the assumption that the brain is an

inference machine and cast further neuroscientific questions within that simple and elegant

definition of what, to date, appears an impossibly complex system to define. Lausanne, 15

Février 2018 L.K.
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Abstract
From the moment we wake up in the morning to the day’s ebb when we settle in to sleep,

we are bound to the task of decision-making. Some of these decisions barely register in our

consciousness, if at all, while others, less shy, take a more prominent place at our mind’s table.

Regardless of the importance or difficulty of the decision, few, if any, are made with perfect

information: being such a small of part of a large system, we can only know so much. Further,

the system itself sends us noisy information for us to encode and decode as best we can. How

do we do this? How do we continuously and, for the most part successfully, resolve uncertainty

in order to survive and even flourish? We propose to define uncertainty in decision-making as

a computational process, in line with information-processing theories of neural mechanisms.

To that end, we investigate the neural correlates of uncertainty processing using functional

magnetic resonance imaging (fMRI) in humans within a predictive coding framework. The

field has already produced considerable evidence showing that decisions are made with the

aim of maximizing utility, a process involving the dopaminergic reward system. We turn our

focus to the uncertainty surrounding predictions and their concomitant errors by conducting

a two-part fMRI experiment on 23 subjects. In the first session, we elicited objective, cognitive

(financial) uncertainty in a gambling task. In the second session, we exposed individuals to

subjective, perceptual uncertainty, in the form of visual illusions. Our fMRI results, modeled

by computational definitions of surprise, confidence and information, show that 1) the brain

employs computational principles to resolve uncertainty; 2) certain regions are consistently

implicated in processing said uncertainty, notably insular cortex regions, across modalities

(cognitive and perceptual), be it of a subjective or objective nature. These findings support the

notion that the brain is an active inference machine, a paradigm within which further aspects

of cognition can be investigated.

Keywords: decision-making; model-based fMRI; uncertainty; surprise; confidence; informa-

tion; insula; locus coeruleus; computational psychiatry; predictive coding
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Résumé
La prise de décision est une tache que nous sommes contraints d’effectuer en continu durant

nos heures d’éveil. Certaines décisions ne demandent pas trop de réflexion tandis que d’autres

nous angoissent. Indépendamment de l’importance ou de la difficulté de la décision, rares

sont celles faites avec une information parfaite : comme chaque individu fait partie d’un

grand système, nous sommes limités dans notre capacité d’avoir une vision complète des faits.

De plus, le système lui-même nous envoie des informations bruitées. Malgré cet incertain

intrinsèque de notre environnement, nous réussissonsà poursuivre notre chemin de façon

adéquate, voire optimale. Comment parvenons-nousà continuellement résoudre l’incertain

pour survivre et même prospérer? Nous proposons de éfinir l’incertain dans la prise de

décision comme étant un processus computationnel, en ligne avec les téories probabilistes

concernant les processus cérébraux. Nous exploitons de surcroit les téories venant des sciences

économiques, psychologiques, informatiques ainsi pour caractériser la surprise ; la confiance ;

et l’information, en relation avec l’incertain. Afin de répondreà nos questions dans le contexte

de comportement chez l’être humain, nous étudions la représentation cérébrale du traitement

de l’incertainà l’aide d’imagerie en résonance magnétique fonctionnelle (IRMf ), dans un

cadre de codage prédictif. Des études précédentes ont déjà fournit des preuves démontrant

que la prise de décisions est guidé par le but de maximiser l’utilité, un processus impliquant

le système de récompense dopaminergique. Nous focalisons sur l’incertain engendré par

nos prédictions, ainsi que leurs erreurs, en réalisant une expérience IRMf en deux parties sur

23 sujets. Lors de la première session, nous avons suscité l’incertain objectif (cognitif) dans

une tâche de jeu. Dans la deuxième session, nous avons provoqué l’incertain perceptuel et

subjectif en exposant les mêmes sujetsà une illusion d’optique. Nos résultats dÍRMf montrent

que 1) le cerveau utilise des principes computationnels pour résoudre l’incertain ; 2) certaines

régions sont particulièrement impliquées dans le traitement de l’incertain, notamment le

cortex insulaire. Ces résultats soutiennent l’idée que le cerveau est une machineà inférence

statistique, un paradigme dans lequel d’autres aspects de la cognition peuvent être étudiés.

Mots-clés : prise de decision ; IRMf ; incertain ; risque ; surprise ; confiance ; information ; insula ;

locus coeruleus; psychiatrie computationnel ; théorie de l’information; codage prédictif
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1 Decision-Making Under Uncertainty –
an Overview

1.1 Introduction

Humans and animals engage in decision-making continuously during their waking hours.

Decisions can come in myriad forms across sensory and cognitive domains and can be

viewed in terms such as important or trivial, snap or deliberative. Regardless of these various

features, the decision process has a common framework, wherein an agent is confronted

with more than one possibility at one time and, following an event, usually an action, obtains

an outcome. In the following chapter, we detail the process and lay the groundwork of our

experimental questions concerning decision-making under uncertainty. We first describe

the commonly held view of reward-guided decision-making before introducing the problem

of uncertainty. We then detail the different conceptual prisms through which uncertainty is

examined, before defining several different forms of uncertainty that are pertinent to our own

research framework. We end with a short review of brain regions we believe are especially

relevant to uncertainty processing in the context of our research study.

1.2 The rational decision-maker

The rational decision-maker, or homo economicus, is an agent that always acts to maximize

his gain and minimize his costs (von Neumann & Morgenstern, 1945). Deviations from

this goal are dubbed irrational yet individuals show a wide variety of irrational biases in

their decision-making (Kahneman, 2014). Rather than framing these common behaviors

as irrational ones, it behooves us to further clarify how rewards and costs are viewed. After

all, humans and other agents are generally more complex than mere reward-maximizing

machines. For instance, human decision-making is inevitably subject to affective modulation

(Smith, 1759). In more recent times, neuroscientific investigations into decision-making using

neuroimaging generated the somatic-marker hypothesis, whereby emotionally salient signals

mediated decision processes (Damasio et al., 1994).

As mentioned, rational choice theory is challenged by observed human decision-making,
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Chapter 1. Decision-Making Under Uncertainty – an Overview

meaning that individuals do not always act to maximize their interest. For instance, Kahneman

and Tversky (1979) famously set out to elucidate on decision-making under uncertainty.

Uncertain options appear to incur a penalty relative to sure options, even if the former have a

higher average return, dubbed expected utility. Kahneman and Tversky formulated Prospect

Theory to explain this ?irrationality? and in sum suggest that humans are loss and risk-averse

(Kahneman & Tversky, 1979). Another known bias is found in the framing effect, whereby the

same option offered in different contexts will prompt differing choices, again often violating

axioms of expected utility. A simple gambling experiment framing sure versus uncertain

options in terms of either wins (a positive frame) or a loss (negative frame) found subjects

predictably shied away from options framed as a loss.. It has been suggested that individuals

may not rely on computations when making decisions under uncertainty or in complex

environments, but may resolve such quandaries by relying on affective processes or heuristics

(Gilovich et al., 2002). Imaging data confirmed an amygdalar role in the framing effect bias,

suggesting limbic system involvement in decision-making; further, subject-specific rationality

correlated with increased activity in the orbitofrontal cortex (de Martino et al., 2006). an

area associated with the valuation process (Padoa-Schioppa & Assad, 2006). While affect-

driven deviations from rational decision-making have been observed, it is hypothesized that

irrationality can be explained in other ways too. Current research applies computational

accounts of various decision sub-processes (O’Dogherty et al., 2007), with an eye towards

capturing hidden variables beyond mere reward maximization to explain observed biases in

choice behavior. The implication of this line of research is that humans are in fact rational ?

only our limited knowledge of latent variables and hidden processes makes behavior appear

irrational.

1.2.1 Reward

The most parsimonious manner by which to describe decision-making is to frame it as a means

to maximize fitness, which in turn leaves us with the conclusion that a drive to maximize

rewards and concomitantly minimize costs guides decision-making. This goal is taken as a

given in economics, where research is performed under the assumption of homo economicus,

or rational man, who acts only to increase his benefit (von Neumann & Morgenstern, 1945). In

psychology, this drive has been found experimentally, first in Pavlovian conditioning, then

operant condition and formalized by the Rescorla-Wagner model (Lieberman, 2000) <insert

equation here>. Conditioning is a form of learning and one can see that decision-making

can also be viewed as a learning process. If a given decision leads to reward, it is more likely

to be repeated, but if it leads to a cost, it is more likely to be eschewed in the future. While

economists understood reward-guided decision-making to be obvious, psychological research

on the phenomenon provides empirical evidence supporting the assunption.

2



1.2. The rational decision-maker

1.2.2 Reinforcement Learning

Given the extensive research on conditioning in humans and animals, it was not long before

the information science community turned to the Rescola-Wagner model with the aim of

simulating the process so as to teach a machine to learn (Sutton & Barto, 1988). Sutton and

Barto borrowed from the Rescorla-Wagner model amongst other sources to contribute to the

array of algorithms dubbed Reinforcement Learning algorithms. The reinforcement-learning

problem was outlined in the context of artificial intelligence research. Sutton and Barto’s aim

was to characterize a learning process that better approximates a ’real’ learner than do other

machine learning algorithms that generally fall into supervised and unsupervised learning

categories. Sutton and Barto point out that the former is limited (the agent needs to be told

what is correct) and the latter doesn’t necessarily seek a goal, or reward, but a pattern. Rein-

forcement learning starts with an agent that is forced to interact with her environment and in

so doing learns to reach her goals. Crucially, this agent can integrate uncertainty into the pro-

cess and can therefore act in new contexts without additional, explicit instruction. Amongst

the different reinforcement learning algorithms developed, temporal difference learning is

one whose computational account has been most readily applied to animal behavior (Houk

et al., 1995; Schultz, 1998). In temporal difference learning, an agent learns the value of an

action depending on a subsequent event?s temporal distance relative to the action. Impor-

tantly, the agent makes a prediction on a future event that is iteratively adjusted by the error

between the actual event and its prediction. While psychological research in animals inspired

reinforcement learning, it has developed independently; fittingly, we can now borrow from

its developments to better refine models of human learning and decision-making processes,

creating a highly beneficial loop between the two fields.

1.2.3 Homeostasis

Maximizing reward or utility is a clear means by which an agent can ensure survival. The goal

of decision-making then, regardless of the type of decision, can be seen as a way to maintain

homeostasis (Korn & Bach, 2015), a specific physiological state required for an agent to survive.

Given the ubiquity of ’irrational’ decision-making (Taleb, 2001; Kahneman, 2014), we must

question whether it is reward alone that acts to maintain homeostasis. Indeed, it has been

suggested that minimizing uncertainty may be a critical factor for an agent (Friston, 2010).

This introduces the exploration-exploitation dilemma, where an individual must consider the

implications of pursuing a known rewarding policy, and in so doing disregard risky options,

when other unknown actions may prove to be even more rewarding. This dilemma is therefore

encapsulated by two competing drives, ’staying safe’ or ’maximizing reward’, though these

strategies nonetheless share the ultimate goal of maintaining homeostasis.
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1.3 Uncertainty

Uncertainty is an inevitable feature of our environment that we are confronted with continu-

ously because an individual only has access to partial information and available information

is noisy. This unavoidable limitation is essential to our understanding of how we perceive

the world: in interacting with the environment, we can only approximate its reality (Gregory,

1997). Research on decision-making has emphasized reward-guided behavior, however, the

implications of the predictive nature of such behavior is that it is inherently probabilistic, and

thus by extension, includes uncertainty. Research on decision-making under uncertainty has

been implicated in the field of economics (Kahneman & Tversky, 1979) as well as in other

fields. The advent of neuroeconomics now allows us to scrutinize its neural dimension. Below

we review the problem of uncertainty in more detail.

1.3.1 Decision-making under uncertainty

We have seen that the decision-making process requires quantities related to reward maxi-

mization. Specifically, an agent needs to: predict a reward when selecting an action; assign a

value to the outcome; and must distinguish between the two. Given that predictions are by

their nature probabilistic, we can also deduce that other variables are at play in the process,

namely the uncertainty surrounding an agent’s estimation process. Different forms of quanti-

tative uncertainty exist, each of which may 1) have a specific impact on behavior; 2) possess a

distinct neural correlate; 3) may in principle be impaired.

1.3.2 The human problem

So far we have hypothesized that human behavior is driven by reward maximization specif-

ically but more generally as a means to maintain homeostasis. However, an agent does not

have a complete map of the environment and therefore must estimate the value of actions

leading to desired outcomes. This estimate, being probabilistic, must entail an integration

of uncertainty. How does an individual compute and integrate uncertainty? At what level of

the process does uncertainty manifest? Where in the brain are these quantities computed?

What type of scenario demands uncertainty considerations? Are these computations labile in

time or in the face of disease? Do these processes differ within and across individuals? Finally,

are they encoded by a specific neurotransmitter? Statistical principles and quantities give us

a means by which we can test the process of uncertainty integration. We must assume that,

given our species’ success, humans do not simply rely on guesswork (Parr & Friston, 2017).

How then does a human make approximations on which course is best? It is evident that a

learning process must be at play. Yet, in introducing the concept of uncertainty integration

into the decision-making processes, we are confronted with a slew of potential considerations.

Does an agent merely engage in trial-and-error decisions until an optimum is reached? Such a

model-free approach may be straightforward in its implementation, but is also costly, time-
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consuming, and ultimately rigid, an unsuitable feature in a dynamic environment. Does an

individual then generate a map of his environment, which allows for simple changes in one

element of the model over another? Such model-based learning may be more advantageous

for a human, but is also subject to a significant initial cost (Glaescher et al., 2010). What can be

seen from such approaches is that they are not free of uncertainty. Errors can be minimized

but can never converge to 0. Ergo, uncertainty remains to be accounted for.

How does the brain implement these processes? What regions are involved in encoding

different facets of uncertainty when faced with a decision? Crucially, how is decision-making

affected when one of these brain regions is impacted by disease? Latent or hidden variables

are factors that we cannot observe and uncertainty fits such a specification well. However, we

can infer their existence, dynamics and effects via observed variables (Vilares & Kording 2011).

In detailing the role of different uncertainty variables in the brain, we can better inform other

fields in which they may be of use, such as in neurofinance, neuroeconomics and machine

learning. At a more immediate and compelling level, this work will help us identify specific

failures in the cognitive domain, and in so doing offer precise therapeutic approaches for

decision-making impairments .

1.3.3 Themachine problem

Uncertainty is not only a feature of the human experience. Current research and development

on artificial intelligence and pattern recognition also encounters the quandary, namely how

to model an intelligent agent or machine that can confront and address uncertainty. The

question of uncertainty is glaringly obvious in the machine learning field because the field

itself is founded on statistics and probability, whereas the idea that humans act according

to such principles is not necessarily a given. An example of an artificial model developed to

emulate human intelligence is the belief, desire and intention (BDI) model that is endowed

with intent and belief; where belief resides, so must uncertainty. While formal accounts of

reinforcement learning can be applied to human research, they are formulated in the context

of artificial intelligence. Questions on how such systems confront uncertainty form an active

line of research (Blum & Langley, 1997; Lorini, 2006; Proedrou, 2002). How best to capture and

quantify different forms of uncertainty can thus lead to more efficient machines. In the case

of surprise, for instance, if the phenomenon is indeed a dynamic experience that may lead to

learning, its reflection in an intelligent agent would be of great value (Demey, 2015).

1.4 Various Frameworks for the Investigation of Uncertainty

Because uncertainty presents a problem in a wide variety of contexts, several frameworks from

different fields have been put forth to capture and define associated quantities. All the fol-

lowing frameworks assume probabilistic models and thus include uncertainty and its related

variables (Feldman & Friston, 2010). Key in this thesis is the view that the brain is an inference

machine, an old idea whose conception is found in the 11th century scientist Alhazen’s trea-
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tise on visual perception, and further developed in Hermann von Helmholtz’ work (Gregory,

1973) and is now, with the technological advances afforded us by neuroscience, actively being

investigated by several researchers. The brain as inference machine hypothesis highlights the

following: as the organ receives various stimuli, it must estimate what the latter predicts. In

essence, the brain’s job is to formulate hypotheses about its environment and to test these hy-

potheses against the evidence (Gregory, 1997; Friston, 2012). Researchers in the neuroscience

of decision-making specifically have employed several different frameworks within which

to study this notion. While these frameworks are in some studies compared to one another,

they are neither mutually exclusive nor canonical. Below we focus our non-exhaustive review

on frameworks that are especially relevant to our research, namely, information theory; the

mean-variance theorem; Bayesian frameworks; signal detection theory; predictive coding;

and the free energy principle.

1.4.1 Information Theory

In the communication sciences, uncertainty is described as the problem inherent to a system

that seeks to reconstruct a signal after its reception. That is, how is uncertainty integrated

when a system encodes and then decodes a signal? In 1948 Claude Shannon (Shannon, 1948)

described the problem in a signal-processing context and in so doing birthed the field of

information theory. When a system receives a signal, or information, it must then interpret

the signal as accurately as possible given its inherent noise, or uncertainty. This uncertainty

is dubbed the entropy of the system. Importantly, information comes with a probability

distribution. The more improbable the signal, the more surprising it is; the negative log of its

probability captures this quality of the signal. The information theoretic notion of entropy

is a more slippery concept to map to human experience. Entropy represents the amount of

information needed to resolve an uncertainty and is, in Shannon’s original paper, represented

by bits. While information theoretic formulations of uncertainty were not, in their initial

conception, meant to characterize the human experience, they have been recently applied to

studies on uncertainty in humans (Mars et al., 2005; Strange et al., 2008; O’Reilly et al., 2013)

. Indeed, information theory is framed in elegant formulations, compelling a researcher to

consider its application in the study of human behavior.

1.4.2 Expected Utility AndMean-Variance

In economics, two contrasting theories on utility maximization have been examined in the

context of pure expected utility (the probability of an outcome p times its value at outcome,

U) relative to a mean-variance framework, whereby an agent is guided towards a utility

maximization simply by knowing the mean and variance of a distribution (Kroll et al., 1984).

Thus in using a mean-variance analysis, an agent accounts for risk (as captured by the variance)

in addition to her expected utility, and seeks to either minimize this risk for a desired return or

maximize her return for a given level of risk. Mean-variance theory was cast in the framework

of financial decision-making, with the general conclusion that investors should diversify their
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portfolios with the aim of minimizing risk (Markowitz, 1954). While this course may seem

obvious in modern-times, the concept is not as intuitive as straight utility maximization (von

Neumann & Morgenstern, 1945) and this may indeed reflect risk’s second-order mathematical

definition. How does the question of mean-variance impact neural processes of decision-

making? Learning through expected utility can be a lengthy process, because an option’s

expected value doesn’t necessarily reflect the range of options. However, mean-variance

theory would facilitate learning, as it does not entail repeated trial-and-error (D’Acremont &

Bossaerts, 2008). Importantly, behaving according to the mean-variance theorem would allow

us to walk around making decisions with only two values, namely the mean and the variance

of options, leaving us neurally unencumbered. If humans deploy a mean-variance analysis in

computing option values, then we would expect distinct correlates for expected utility and

variance, which have indeed been found in the brain (Preuschoff et al., 2008; Tobler et al.,

2007). These studies thus applied a mean-variance framework in the context of neuroimaging

studies on human decision-making.

1.4.3 Free Energy

The free-energy principle posits that a system seeking equilibrium must minimize its free

energy, a quantity characterized by both a surprise measure and entropy. Because a biological

system needs to maintain homeostasis, it follows that the probability of being in a given state

must have low entropy, meaning a small number of possible states. As seen above, entropy is

an information-theoretic quantity formalized by the negative log of a probability of the event.

According to this principle, a biological system would seek to minimize this average surprise

in order to maintain homeostasis. In its formal account, free energy imposes a bound on

surprise; thus there is an upper limit to the number of states entropy provides. In a predictive

coding context, minimizing free energy consists of minimizing the prediction error and in a

Bayesian brain consists of updating prior beliefs. Crucially, in both cases, the system seeks

to converge on an optimal prediction for a given cue. The Free Energy Principle is a valuable

framework in that it integrates several models that share theoretical elements, and this at

times from different fields, to explain the brain. Especially pertinent models include predictive

coding, information theoretic and Bayesian models (Friston, 2010).

A cornerstone of the Free Energy Principle is that surprise minimization drives behavior,

because the brain seeks to reduce its states to a set number and thus conserve energy. The

Free Energy Principle has been proposed as a unifying brain theory. While this thesis does

not claim to do as much, Free Energy is a compelling corollary to our investigative questions,

because it takes into account questions on surprise, belief and information. It must be noted

however that the premise Free Energy rests on, that a system seeks to minimize surprise so as to

maintain homeostasis, may be challenged when contrasted with the exploration-exploitation

dilemma.

An example used to illustrate the drive to minimize surprise is in considering a fish in water (low
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surprise, homeostasis) versus a fish out of water (high surprise, deviating from homeostasis)

(Friston, 2010). This example illustrates the necessity of minimizing surprise and free energy.

At first glance, one summarily concludes that the fish out of water lives an undesirable outcome.

However, when one considers that a fish out of water that survives the outcome may well

eventually evolve towards a human state, one can reconsider the premise of staying in the water

as a uniquely desirable state. In more general terms, free energy minimization represents the

drive to minimize error so as to maintain homeostasis. However, there may be a competing

drive to allow error above and beyond its minimum, so as to explore, or invite surprise.

Evolution itself is driven by error, albeit stochastically. Some individuals, on the other hand,

actively and consciously seek error, and aim for surprise, presumably with the intent to expand

their repertoire of possible states, or increase their entropy. While the exploration-exploitation

dilemma is a topic of investigation in the decision sciences, to our knowledge it has not been

addressed in the framework of the free energy principle.

1.4.4 Predictive Coding

The predictive coding framework is a model formulated by Rao & Ballard in the context of

visual information processing. In brief, higher level cortical areas make predictions on stimuli,

sending these messages to lower-level visual areas, which in turn send messages back up,

in the form of prediction errors to indicate a mismatch between a prediction and the actual

percept. The premise lies in the correlation of a quantized stimulus, such as a pixel, with those

nearby. In such a case, adjacent pixels share features and thus an approximation of many such

stimuli can be made, rather than have costly and redundant mapping of one neuron say, per

pixel. At several layers of a hierarchical model network, predictions are made and then tested

by lower level layers, down to the lowest (sensory) levels, which capture the initial image (Rao

& Ballard, 1999). Predictive coding makes use then of the framework where expectations are

predictions, and outcomes are prediction errors, the latter which update and tune subsequent

predictions. The concept is simple yet powerful enough to account for neural processes.

Notably, predictive coding allows for the examination of uncertainty in a single iteration of a

decision (prediction → outcome → error) and thus provides a parsimonious means by which

to examine uncertainty in an experimental setting.

1.4.5 BayesianModels of Uncertainty

Normative models of the brain and behavior first 1) hypothesize on the brain’s role; 2) build

models that would achieve that role and 3) test these models against observed behavior. In a

sense, this manner of examining brain and behavior takes a reverse engineering approach.

Thus in this view, the brain’s role is that of an inference machine, which approximates the truth

of the world by estimating its descriptive features, or parameters. A compelling framework

within which to cast this model of the brain is in Bayesian models (Knill & Pouget, 2004; Beck

et al., 2008; Ma & Jazayeri, 2014). The brain makes a prediction on the environment given

available evidence and updates this prediction as new evidence is obtained. In its canonical
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form, the Bayesian model encapsulates the problem of decision-making under uncertainty

though not all problems fit the model. These theories also imply that human behavior is Bayes

optimal. People adjust their inference based on evidence before them. Not only are we acutely

aware that this optimality doesn’t hold for individuals, but there is significant evidence that

our priors are not so mutable and our choice preferences sticky (Dave & Wolfe, 2003; Taleb,

2001; Kahneman, 2014).

1.5 The different forms of uncertainty

Broadly speaking, uncertainty represents the unknown. By this definition, a study of the

phenomenon would be limited. Fortunately, various forms of uncertainty can be identified and

quantified (Bland & Schaefer, 2012). Below, we briefly review the following forms of uncertainty

and their related quantities, namely: ambiguity; risk; volatility; surprise; confidence and

information.

1.5.1 Ambiguity

Ambiguity is a form of uncertainty whereby an agent does not know the underlying distribu-

tions of the problem she faces (Knight, 1921). In this case, the outcome probabilities associated

with specific actions are unknown. An example of ambiguity is the response ’maybe’ to a

yes/no question. While we understand the answer to be either yes or no, we cannot predict

how likely the answer will be yes, respectively, no. At best, we can attribute chance proba-

bilities to each possible outcome. Ambiguity is thus an unknown unknown. A key feature of

ambiguity is that it can be a form of reducible uncertainty, meaning that over several tries,

one can uncover the specific outcome probabilities associated with an event. Thus, in some

contexts one can learn the probabilistic structure of a system by repeated sampling. In the

case of the ’maybe’ response, such an answer may carry information if it comes from a known

acquaintance (eg: maybe probably means yes/ maybe probably means no). Ambiguity is

generally thought of as an unpleasant state of being (Lauriola & Levin, 2001). If an agent has

no guiding information on how best to decide, that agent will try to leave the ambiguous state,

either by avoiding irreducible uncertainty or by learning. The Ellsberg paradox illustrates how

a preference for risky choices over ambiguous ones violates subjective expected utility theory.

Individuals consistently prefer choosing an option with known probabilities (risk) over an

option with unknown contingencies, even if odds are winning are low in the first option, while

the odds of winning may be high in the second (Segal, 1987).

Neural Correlates of Ambiguity

As ambiguity is a distinct form of uncertainty, it may also inhabit a specific region of the

brain. A study investigated the possible neural differentiation of known uncertainty (risk) from

ambiguous uncertainty examined a control group and a group of patients with lesions in the
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orbitofrontal cortex (Bechara et al., 2000). This patient group was selected because previous

studies on their performance in a decision-making paradigm, the Iowa Gambling Task, showed

deficits in the latter. Ambiguous conditions elicited OFC and amygdalar activation relative to

the risky condition while risky decisions activated the dorsal striatum (caudate). Importantly,

dorsal striatal activation scaled with the expected value of reward in this study while evidence

of such value tracking did not appear in the OFC or amygdala. The authors suggest this finding

provides evidence that ambiguity impacts the expected value of a reward. Time-courses

of activation in the three regions shows a rapid response in the OFC and amygdala and a

comparatively delayed response in the dorsal striatum to uncertainty. In the patient group,

subjects could not differentiate between certain; ambiguous and risky decisions, which is

noteworthy because such an agent will act in accordance with expected utility theory (Hsu et

al., 2005).

1.5.2 Risk

When sampling reduces ambiguity in a problem, the resulting uncertainty becomes a known

unknown, or risk. Specifically, outcome probabilities associated to a set of options are known.

Thus an agent possesses some information that guides her choice behavior. The distinction

between ambiguity and risk is an important one because a large body of research on human

decision-making tests the process with the use of the Iowa Gambling Task (IGT) (Bechara et

al., 2004). In the IGT, subjects select cards from different decks to obtain a desired outcome;

with each deck representing an (initially unknown) probability of win/loss. Several studies

have found impaired performance in the IGT associated with specific populations, such

as in Parkinsonian patients; adolescents; schizophrenia patients; and patients with OFC

lesions (Ryterska et al., 2013; Hooper et al., 2004; Shurman et al., 2005; Fellows & Farah, 2004).

While this task is thought to investigate risky decision-making, it includes ambiguity initially,

which should be reduced to risk at some point in the task (if risk processing specifically is

unimpaired). The point at which subjects learn the probabilistic structure of the task may

differ across individuals, as it will depend on a subjective learning rate. Indeed, some healthy

subjects never learn the underlying structure of the IGT. Therefore, studies using the IGT as a

means to assess decision-making should be viewed with caution, as the source of any observed

impairment is confounded by several quantities (risk, ambiguity and learning rate, in addition

to reward valuation). Thus some patients thought to be impaired in risk-processing may in

fact have specific difficulties with ambiguity, and not risk per se (Buelow & Suhr, 2009). A more

precise way to characterize risk is by taking it to be the variance of a probability distribution

(Weber et al., 2004; Preuschoff et al., 2006). In this way, risk is unsigned and not burdened by

psychological constructs of what bad may come in predicting an event.

The Neural Correlates of Risk

Where is risk encoded? Several studies have found risk signals in the orbitofrontal cortex

(Bechara et al., 2000; Krain et al., 2006). The orbitofrontal cortex also has a well established role
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in valuation proper, which may integrate risk values overall. A study looking at risk and its error

specifically examined neurons in the orbitofrontal cortex of the monkey (O’Neill & Schulz,

2013). Pains were taken to control for value related variables but it is worthy of note that

the risk prediction error calculated in the above study investigated the interval between the

timepoint prior to cue and following cue, and not at outcome. A search for neural correlates of

risky financial decision-making finds the ventral striatum (NAcc) implicated in risky choices

as well as in errors resulting from the latter, while risk-free choices and their errors were

reflected in anterior insula activation. Here, a risky choice is defined as one which has an

associated probability of reward but whose expected value is higher than a certain option.

Importantly in this study, NAcc activity predicted a risky choice and anterior insula activity

predicted a safe, or certain choice, irrespective of the outcome. Interestingly, in this study,

ACC activation correlated with a measure of uncertainty, or conflict and specifically when

probabilities spanned midpoints between maximal uncertainty (p=0.5) and low uncertainty

(0.9, 0.1) (Kuhnen & Knutson, 2005).

While many studies characterize risky decision-making with probabilistic tasks, we focus on

studies that formalize risk as the variance of probability distribution. A study investigating

risk as variance and its corollary errors in an fMRI experiment employing the IGT found risk

prediction errors correlating with activity in the ACC, inferior frontal gyrus, insula, striatum

and amygdala (Li et al., 2010). The authors note that IFG involvement may be due to action

selection specifically. Among other studies examining risk as variance, risk signals have been

found in posterior parietal cortex, cingulate cortex, striatum, amygdala, and insula (Huettel et

al., 2006; Preuschoff et al., 2008; Tobler et al., 2007; O’Neill and Schultz, 2010; d’Acremont et

al., 2009).

1.5.3 Volatility

Volatility is yet another form of uncertainty that has implications in economic forecasting

(Cont, 2006) but is also applied more generally to human decision-making behavior (Payzan-

LeNestour et al., 2013). Volatility can be thought of as unexpected uncertainty and relates

to the unknown engendered by a change in a known probabilistic environment. A volatile

environment thus includes a measure of sudden changes in the generative model of the

observer; it is of note that the canonical method of quantifying volatility in finance is by taking

the standard deviation of trade returns over the course of a year. Thus volatility must be

integrated over several trials. In a reinforcement-learning context, an environment that is

recognized as a volatile one should prompt a higher learning rate (Kennerley et al., 2007; Niv

et al., 2012). Further, a volatile environment prompts agents to use the most recent events

to update their models, while in stable environments, models should reflect the average of

individual events. While volatility is not a focus of our study, we briefly describe it above

because it can be confused with surprise, in that it is unexpected uncertainty. We propose that

volatility can only be derived from a model while surprise can arise from a single event.
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1.5.4 Surprise

Surprise is a response to an expectation violation. This response may prompt amazement,

bewilderment, dismay, humor, shock and a slew of other subsequent responses, but it’s most

parsimonious definition is that surprise arises from an unexpected event. Thus below, we

detail surprise at its minimum, and how best to model the latter in a mathematical sense. We

do not address the emotional quality of surprise or its consequence, or even its uniqueness to

sentient beings, rather what are the necessary and sufficient conditions for the phenomenon.

Surprise occurs at the outcome of a process. Because surprise is an unexpected event, it also

encapsulates uncertainty and is thus a measure of the latter. Questions on the formulation

and neural representation of surprise take pride of place in this thesis, as it is one of our

primary lines of investigation. Below, we treat the problem of surprise to date in the context of

information theoretic, Bayesian and predictive coding points of view. One feature of surprise

is that, while it can be described with a mathematical account, it is also, in the conscious

human experience, more readily identified as an affective state. Thus, we feel surprised.

Further, in the affective context of surprise, we experience physiological changes and even

a physical response, such as a gasp or startle. With regards to the quantification of surprise,

the phenomenon has been defined according to two dimensions. In the first, surprise is a

stimulus-bound response to an unexpected event. In the second, this response can act as a

learning signal that shifts one’s expectations. Surprise quantification is linked to information

but the exact general nature of the relationship across different fields such as information

theoretic domains and the human experience, remains elusive.

Given the uncertain environment within which we operate, we hypothesize that a response

to a surprising event is crucial to a system, as it may signal an important change in the

environment. A ready example of this is found in climate change denial. While the weather

forecast is consistently probabilistic, surprising meteorological events have been on the rise

(even in California). Categorizing these events as freak occurrences rather than a signal of

system-wide change may have potentially devastating consequences, including loss of life.

Thus our brains must be uniquely tuned to register surprising events so we can better predict

what our environment will offer in the future.

Surprise as Prediction Error

Several authors cite an unsigned prediction error as surprise (Glaescher et al., 2010; Preuschoff

et al., 2011; Hayden et al., 2011). Surprise can be captured by the prediction error because

the latter signals a difference between an outcome and an expectation. Studies have found

that the prediction error is modulated by surprise ? that is prediction errors depend on the

context in which they occur. Improbable prediction errors are then those that occur in a stable

environment. Such prediction errors can be said to be more surprising than prediction errors

that occur in a volatile environment. One study investigating prediction error responses under

different cognitive loads in a dual-task paradigm found that prediction error responses in
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one task were not altered by the cognitive load demand of another concurrent task. Here

surprise was taken to be the unsigned prediction error in an EEG study employing an oddball

paradigm (Garrido et al., 2016). Interestingly, in this study surprise is the mismatch negativity

response, or the difference in EEG signal between a standard and odd tone within a given

window following the sound ( 150 ms). This response did not alter during an N-Back task

(a task with a high cognitive load), suggesting that our sensitivity to surprise is a low-level

function that operates automatically.

Shannon Surprise

The field of information theory was born in 1948, with the publication of Claude Shannon’s

seminal paper Ä Mathematical Theory of Communication(̈Shannon, 1948). Shannon studied

the problem of encoding and decoding transmitted signals over channels to determine how

much information (entropy) is necessary to sufficiently reconstruct a signal. Importantly,

events with a low frequency of occurrence encapsulate the most information and the most

surprise. This surprise is quantified as the negative log of its probability. Thus surprise can

be viewed as an item of information. What is the relationship between Shannon surprise

and information? The former indicates a quantity associated with an outcome that conveys

some amount of information, where the most probable outcome is the least informative.

Shannon entropy on the other hand presides over the model space, encapsulating an average

of surprise over possible outcomes and their associated probabilities. Shannon entropy can

thus be computed prior to an outcome. It is important to stress that Shannon borrowed the

term surprise for his theory but did not apply the concept to human surprise. More recently

however, neuroscientists have seized the opportunity to investigate surprise via its information

theoretical account (Strange et al., 2005; Mars et al., 2008), as the latter plausibly explains

the human experience as well. This characterization of surprise is not without its detractors

however.

Bayesian Surprise

If a surprising event defies our current expectations, it may alter our future expectations.

That change can cast surprise as a learning signal. More specifically, if surprise changes our

expectations of a given cue, one can argue that a Bayesian process is at play, whereby our

prior distributions regarding a given cue change into posterior distributions. If one considers

the zen koan of a tree falling in a forest, we can pose the question: if an event is improbable

but you don’t learn from it, is it surprising? Some have proposed that surprise can only be

quantified by evidence of learning. Thus, a Bayesian model of surprise has been proposed to

challenge information theoretic accounts of surprise (Itti & Baldi, 2005; Itti & Baldi, 2009; Itti &

Baldi, 2010; Bencomo & Bellagoun, 2014). Specifically, Itti & Baldi posit that not only must a

surprising event result in a shift in belief distributions but that the shift is surprise itself.To

quantify this update, they employ a distance measure, specifically a Kullback-Leibler (KL)

divergence or relative entropy. In this context, surprise will decrease in a stable environment
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as the distance measure converges to 0 with increasing learning trials. A distinction between

Shannon Surprise and a KL divergence model of Bayesian Surprise is that the former is taken

over the data space while the latter measures model differences. Itti & Baldi take the example

of a uniform prior distribution where each model is as likely as the next to explain the data.

The probability of the data given the model is then equal to the probability of the data.

For a highly improbable event, the Shannon Surprise tends to infinity bits. However, using

Bayesian surprise, we see that that the posterior distribution is equal to the marginal distribu-

tion, and thus we are left with 0 units of surprise (’wows’), as the distribution does not shift.

Intriguingly, Itti and Baldi argue that improbable events may be surprising but not useful if all

other events are also improbable and thus low probability alone should not define surprise.

They underline this quandary by taking the example of snow (white noise) on a television

screen, relative to an unexpected television program. The first has the highest amount of Shan-

non Surprise, or information, but is the least surprising because it is the most boring, while the

second will capture our attention and is thus more surprising, namely it will shift our Bayesian

prior. In their discussion, they touch upon a crucial facet of information, decision-making

and uncertainty, which has yet to be appropriately treated in the behavioral sciences, and

that is relevance. Itti & Baldi therefore propose that information includes three components:

Surprise (as defined in Bayesian terms); Shannon entropy; and relevance (Baldi & Itti, 2010).

From the information above, the quantification of surprise remains a matter of debate. KL

divergence can be seen as the data packet that updates a model while Shannon information

can be viewed as a signal to reorient the system. From a human perspective, surprise is

associated with an improbable event, be it in the form of Shannon surprise or a prediction

error. Learning from such an event is possible but not necessary. Similarly, surprise may not

be necessary for learning. The two are often correlated however in experimental paradigms.

Below, we review key studies examining this dual aspect of surprise.

The P300 event related potential in EEG studies is often viewed as a ’surprise’ signal. While its

occurrence correlates with the presence of an unexpected stimulus, its computational account

is not well elucidated. A study investigating trial-by-trial variations in signal amplitude using

information theoretic models found stimulus-bound surprise best explained fluctuations

in the P300 signal. Surprise in this study was quantified by Shannon surprise but data were

also fit to a Bayesian model of surprise, where the latter is captured by the KL divergence.

The two models differ in that KL divergence measures the difference between a posterior

and a prior distribution following an event and thus captures an average quantity of surprise

summed over all probabilities, whereas the information theoretic model captures surprise as

a change probability related to one outcome. This distinction is not merely theoretical: the KL

divergence implies that the model changes due to one event, an inefficient and thus unlikely

mechanism by which humans integrate surprising information. The information theoretic

model of surprise was found to explain P300 variations better than the KL divergence or a

categorical model (where surprise was formulated as the probability of the event, with less

probable events being more surprising). Further, in this experiment, the task was presented in
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blocks. Information theoretic surprise was quantified within blocks (a forgetting condition)

and across blocks. They found that the forgetting model of surprise best explained the data

(Mars et al., 2008).

To tease out their respective contributions (if indeed they are dissociable) an experiment was

performed investigating surprise as Shannon information versus surprise-induced updating

as a KL divergence. Here the key variable dissociating the two facets of surprise was rele-

vance, thus it was assumed that only relevant surprising events would lead to an update. The

paradigm applied was a saccade response task where surprising events included stimulus

presentation in an improbable location; update-worthy events were presented in a different

color relative to ’one-off’, irrelevant events. Interestingly, saccade reaction times for surprising

events increases but for update trials, it is the dwell time that increases. No significant effect of

prior entropy was observed. Shannon surprise correlated with posterior parietal cortex while

KL divergence correlated with ACC activity (O’Reilly et al., 2013).

To distinguish the neural correlates of a surprising event’s potential dual roles, Strange and

colleagues (Strange et al., 2005) applied a stimulus bound information theoretic measure to an

event as well as an average entropy measure to the same event. To investigate the contributions

of both measures in the neural response to an event, they performed an fMRI experiment

where subjects engaged in a probabilistic learning task involving the selection of an item from

a pool of four stimuli. Their aim was to identify hippocampal responses to entropy alone,

after controlling for stimulus-bound surprise. The surprise bound to each choice reflects

the frequency with which a particular stimulus had previously been encountered. Entropy

activated bilateral regions in the cortex and thalamus, but interestingly did not provoke activity

in the striatum and insula (Strange et al., 2005). Their results also show a hippocampal-specific

response to entropy that is not found for surprise. The modulation of the hippocampus by

entropy is viewed as learning that such an event can occur (Strange et all, 2005, Schiffer et al.,

2012), which supports the notion that surprising events act as learning signals.

A feature of surprise is that it is costly to a system. Experimental evidence shows an increase

in reaction time with unexpected events for instance (O’Reilly et al., 2013). Surprise-induced

updating would further tax the system, and can be viewed as a switching cost (Monsell, 2003).

While the first cost cannot be avoided, the second one can. Thus perseverance in maintaining

what is perhaps an outdated belief is a common occurrence (Nickerson, 1998). Indeed, the

notion that humans are Bayes optimal is severely challenged by evidence pertaining to choice

preferences (Dave & Wolfe, 2003; Sharot et al., 2010; Sharot et al., 2012). The results above

suggest that in humans, surprising events will not necessarily entail learning. This conclusion

is supported by research in the artificial intelligence field, specifically in the modeling of belief-

desire-intention (BDI) agents. Because these models attempt to simulate human affective

and motivational dynamics, surprise is considered. In one framework, surprise is defined

as having two components, one that signals a mismatch and another, later ’second-order’

component involved in revising a belief. One can see how these two functions of surprise

can map to information theoretic or prediction error surprise and KL divergence, respectively.
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Lorini & Castelfranchi indeed argue that not all surprising events will lead to a revision of

belief, or update in the Bayesian sense (Lorini & Castelfranchi, 2006).

The Neural Correlates of Surprise

As we have seen above, formal accounts of surprise vary. However, fMRI studies on surprise

generally identify similar neural correlates. Surprise, as absolute risk prediction error, was

found encoded in the anterior cingulate cortex (Hayden et al., 2011). Surprise as absolute

reward prediction error may correlate with the reward prediction error (RPE) however and thus

a question emerges on the differentiation of the separate impact of both errors on the system,

either temporally or spatially (Fouragnan et al., 2017). Learning from an RPE will inform which

actions to repeat in the future while learning from surprise should guide an agent towards

allocating attentional resources. While studies have found distinct neural representations of

RPE and surprise, their respective dynamics, due to fMRI?s poor temporal resolution, remain

elusive. In a paradigm employing fMRI and simultaneous EEG during a probabilistic reversal-

learning task, RPE valence and unsigned RPE (Surprise) overlapped temporally but with a

different spatial distribution. Surprise engaged dorsolateral prefrontal cortex, bilateral insula,

medial prefrontal cortex, inferior frontal, supramarginal, angular and precentral gyrii. A recent

study examined surprise-related neural activity in contrast to a prediction confirming related

inactivity using a visual task in monkeys. The researchers found that outcomes confirming a

prediction elicited a significant neural suppression while surprising events yielded a slight,

non-significant neural enhancement (Ramachandran et al., 2017).

1.5.5 Information (Entropy)

As seen above, investigating surprise necessitates a consideration of information theoretic

quantities, namely surprise but also information, or entropy. Shannon entropy is the amount

of information needed to obtain a correct response in units of bits. Thus, in an uncertain

context, it would be the amount of information necessary to answer a question; formally, it

is the lowest number of yes/no questions required to resolve uncertainty. When applying

these measures to human behavior, we can enter a slippery slope. Surprise can be informative,

but what of the entropy of a decision? An EEG study investigated the possible dissociation of

Shannon entropy and Shannon surprise in relation to task switching in a modified version

of the Wisconsin Card Sorting Task (Kopp & Lange, 2013) with the aim of differentiating the

P300 index into its P3B and P3A components. They find the P3b component present for

all task switches, which correspond to surprise, while the P3a was modulated by entropy,

increasing with the most uncertain outcomes. An fMRI study employing Shannon entropy

as an uncertainty measure in an economic task found neural correlates of the quantity in

pre-supplementary motor Cortex, mid-cingulate cortex and thalamus (Goni et al., 2011).
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1.5.6 Confidence

When one considers uncertainty, one has to consider confidence. Confidence can be thought

of as a measure of certainty, with an emphasis on the term measure. Confidence, like un-

certainty, ambiguity, and surprise, can be defined in quantitative terms or as an emotional

response. While we may denote confidence with a point estimate, the latter usually implies an

interval; that is, we explicitly experience confidence as a graded value, not a binary one (Kiani

& Shadlen, 2009; Meyniel et al., 2015). Confidence is resolved when outcomes are certain.

Thus confidence can only be sampled in the Bardo state between prediction and outcome. The

importance of confidence in decision-making should be outlined here, as this computation is

what permits a decision-maker to act; it is the belief that one is correct. Therefore, without

confidence, action becomes difficult, if not impossible.

For instance, one can view the phenomenon of learned helplessness as an outcome of having

no confidence. When animals cannot learn contingencies between cues and aversive out-

comes, that is, when conditions are ambiguous; risk is maximal; and confidence is lowest,

they eventually cease to respond to a cue at all and resign themselves to a state of learned

helplessness (Seligman, 1972). The importance of confidence in decision-making has even

been highlighted as the most important variable with respect to decision-making (Pouget et

al., 2016).

Given the importance of confidence in decision-making (Goette et al., 2015; Bendahan et al.,

2017), its neural corollary is the topic of current study. In a study using signal-detection theory,

yet another framework within which to investigate uncertainty, confidence signals have been

found encoded in the rat orbitofrontal cortex using neural recordings (Kepecs et al., 2008).

This study introduced uncertainty as task difficulty, which in this specific case represented

ambiguous odors; thus a 50/50 odor mixture was the most difficult to categorize. Subjective

confidence was estimated as the distance between a trial sample’s category and a memory of

previous samples categorizations. Further, confidence correlated with a willingness to wait

for a reward. Intriguingly, a similar study in humans did not find linear increases in OFC with

decision confidence computed as a measure of discriminability but in medial prefrontal and

anterior cingulate cortices (Rolls et al., 2010). Perceptual confidence has been linked to signals

in the human and macaque striatum (Ding & Gold, 2012; Hebart et al., 2016). In an fMRI

paradigm investigating confidence and a decision variable using signal detection theory in

a random dot motion task, Hebart and colleagues find striatal signals relating to increases

in decision confidence and insula signals with decreases in confidence. Here, the decision

variable is taken to be the amount of sensory evidence in favor of one option. The confidence is

the distance between the decision variable on the ith trial and a subject’s criterion; confidence

is quantified by self-report. A key element of the study was to examine the relationship of

self-reported confidence to accuracy, for which the authors find a linear correspondence.

Interestingly, without explicitly alluding to confidence as inverse variance, Lebreton and

colleagues formalized confidence as a second order function of value assignation. They found

that confidence values were encoded in the ventromedial prefrontal cortex, an area adjacent
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to the orbitofrontal cortex (Lebreton et al., 2015).

While several authors emphasize the subjective quality of confidence, confidence can be

computed in an objective manner. The relationship between the two quantities, subjective

and objective confidence, has recently been investigated and objective confidence has indeed

been found to correlate with subjective accounts (Sanders et al., 2016).

Thus uncertainty arises in different forms and engenders other related variables, such as

confidence, surprise and information. It is of note that ambiguity can sometimes be reduced

to risk; that confidence and risk are two sides of the same coin, depending on the operational-

ization method used; that surprise and volatility, two forms of unexpected uncertainty, are not

equivalent though they can be related.

1.6 The role of neuromodulators in the encoding of decision vari-

ables

Decision-making is a dynamic process. Within the frameworks discussed above, encoding

different values requires a means by which to do so. In the human brain, this process can

plausibly be attributed to different neuromodulators. Two key neuromodulators of decision-

making are reviewed here: dopamine and noradrenaline. Dopamine’s importance in encoding

decision-making variables is of such weight that we cannot by-pass a cursory review of its role.

We review noradrenaline in more detail, however as we hypothesize that it plays a specific role

in uncertainty processing.

1.6.1 Dopamine

While extensive evidence supports the notion that dopamine codes reward and its prediction

in a monotonically increasing manner (Schulz et al., 1997; Schulz, 1998), its role in uncertainty

encoding is less clear. In one study, dopaminergic neurons were found to encode uncertainty

in primates (Fiorillo et al., 2003). Fiorillo and colleagues recorded 188 midbrain dopamine

neurons during a Pavlovian task. No activity was recorded when a cue fully predicted a reward

but probabilistic reward did elicit expected activity. Interestingly, this activity persisted even

after training, when the animal had presumably learned the contingencies of the task. Cues

embodied a range of reward probabilities, including the most uncertain at 0.5, and Fiorillo

and colleagues note an increase in sustained activity between cue and outcome that scaled

with increasing uncertainty (or converged to 0.5). Intriguingly, reward and uncertainty-related

activations appeared in the same population of dopaminergic neurons but the dynamics of

phasic activity related to reward magnitude differed from the uncertainty related activity in

that the latter was slower and sustained. The studies this thesis is based on also point to

a dopaminergic involvement in uncertainty processing: specifically risk (as variance) and

risk prediction error signals were found encoded in the striatum, implicating dopamine in

a financial uncertainty task (Preuschoff et al., 2006). Thus dopamine likely plays a role in
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uncertainty encoding, however, it may be specific to certain forms of uncertainty and not

others. Entanglements at the neural and computational levels offer a distinct opportunity for

further experimental investigation.

1.6.2 Noradrenaline

Noradrenaline is a hormone and neurotransmitter (Doya, 2008). Here, we will focus on its role

in the central nervous system as a neurotransmitter that engages the sympathetic nervous

system. In the brain, noradrenaline is produced by two small brainstem nuclei that together

form the locus coeruleus (LC). Noradrenaline is synthesized from tyrosine, as is dopamine; and

its direct precursor is the latter, only one enzymatic step away. Thus the chemical structure

of dopamine and noradrenaline are similar (Briand et al., 2007). Noradrenaline’s primary

general role is in arousal and alertness; its activity during sleep is muted. Its role in the

fight or flight response and more specifically in response to stress, has been widely noted

(Glavin, 1985). Globally, noradrenaline functions to increase metabolic expenditure. Crucially,

noradrenergic dynamics vary, making it an ideal candidate as a neuromodulator (Doya, 2008).

While noradrenergic neurons are concentrated in a very small nucleus of the brainstem, they

project widely to both the spinal cord and throughout the brain. More recently, noradrenaline’s

role in cognitive and behavioral processes has been investigated. For instance, Cahill &

McGaugh have found a noradrenergic modulation of memory formation (Cahill et al., 1996;

Rimmele et al., 2016). Studies in rats have found noradrenergic responses to reward but more

importantly for our research, to contingency changes in probabilistic learning tasks (Bouret &

Sara, 2004; Aston-Jones et al., 1997). A shift in a task’s structure implies uncertainty; therefore

a noradrenergic response to the latter may signal uncertainty encoding (Yu & Dayan, 2005;

Aston-Jones & Cohen, 2005; Preuschoff et al., 2011).

Neurophysiological recordings of noradrenergic activity show acute and replicable spikes

in response to stimuli (Lestienne, 2001), an ideal quality in a neuromodulatory candidate.

Further, noradrenaline is widely viewed as being necessary for attention (Robbins, 1984).

It has been hypothesized that through arousal, noradrenaline enhances synaptic plasticity,

which would facilitate learning but also support its role in signaling uncertainty. Evidence

of noradrenergic involvement of salience comes from rat studies, where unexpected stimuli

evoked LC activity that resolves when the stimulus was not paired with a relevant consequence

(such as reward) (Herve-Minielle & Sara, 1995). Animal studies on noradrenaline show LC

neurons firing in two ways: a tonic mode and a phasic mode, mirroring mid-brain dopamine in

this capacity. The phasic mode is seen to fire for novelty, which, again, relates to uncertainty. In

reviewing studies on noradrenaline, Aston-Jones formulated a theory on its role and suggested

that noradrenaline encodes an adaptive gain for relevant neural circuits in the face of stimuli

that require increased attention; and this adaptive gain facilitates improved performance

(Aston-Jones, 2005). A signal detection task study in monkeys shows a phasic noradrenergic

response to rewarding cues and not distractors, suggesting that the NE response is specific to

relevant stimuli, and not merely salient ones (Aston-Jones et al., 1994). Further, this response
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is found highest when an animal performs well (Aston-Jones et al., 1997). Pharmacological

challenge studies show that the alpha2 receptor agonist clonidine (administered directly via

microinfusion) lowered tonic NE activity, which in turn enhanced phasic activity and improved

task performance in a monkey (Rajkowski et al., 1994). The most notable contribution of

Aston-Jones’ adaptive gain model is that it offers a mechanism by which agents engage in

exploration and exploitation. A ’greedy’ agent guided solely by utility will repeatedly exploit a

given policy that certainly yields reward; however, in exploring, an agent may lose utility in

the interim while pursuing an even more rewarding policy. The balance between these two

courses may be reflected in noradrenergic phasic and tonic modes. Elevated tonic NE activity

promotes ’random’ behavior and exploration while phasic firing, which correlates with focus

on a given task and concomitant high performance, may model exploitation.

What happens when noradrenaline is affected? In Parkinson’s disease, noradrenergic activity is

affected before dopaminergic deterioration (Rommelfanger & Weinshenker, 2008). Parkinson’s

disease profiles include behavioral changes, including cognitive impairment, decision-making

deficits, and apathy. While therapeutic approaches have focused on dopaminergic replace-

ment therapy to resolve motor symptoms, the implications of noradrenergic failures have

been by the by neglected (Loued-Khenissi & Preuschoff, 2015).

1.7 Brain Regions Associatedwith theNeural Representation ofUn-

certainty

Neuroimaging research on decision-making has yielded a widespread area of brain regions

involved in the process, including limbic regions, frontal and prefrontal cortices, parietal

cortices and the striatal system (Ernst & Paulus, 2005). Guided by recent studies, we describe

areas thought to be especially involved in decision-making under uncertainty. Here, we briefly

detail regions examined in the experimental parts of this thesis, to explain our focus on them.

1.7.1 The Anterior Cingulate Cortex

The anterior cingulate cortex (ACC) is a medial brain region that spans the cortex from the

posterior part of the corpus callosum through to the anterior portion. The ACC had previously

been enlisted as a limbic region, not unlike the insula (Bush et al., 2000) however the anterior

cingulate cortex in particular has been implicated in a variety of high-level cognitive functions,

such as planning and control (Ridderinkhof, 2004). The region was hypothesized to play

a prominent role in conflict monitoring (Botvinick et al., 2001) as it correlates with error

commission, uncertainty and impulse inhibition. Considerable empirical evidence has since

widely supported this function of the ACC (Pochon et al., 2008; Botvinick et al, 2004). It is

thus a region that often appears in studies on decision-making, as the latter process implies

the inclusion of conflict. Shenhav et al. (2013) attempt to clarify the ACC’s function without

reducing it and suggest the region is specifically responsible for cognitive control, that is,
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staying a course when competing influences vie for the system’s attention or resources. They

frame the ACC’s role as that of an evaluator of cognitive control demands, or the region that

computes the expected value of control. Studies show ACC activity scaling with task difficulty

(Venkatraman & Huettel, 2012).

The ACC may also be linked to negative outcomes, such as pain (Shackman et al., 2011)

however, as Shenhav and colleagues note, conflict can be viewed as a negative, unpleasant

state. Intriguingly, ACC activity correlates with both magnitude and probability of reward

in both neural recordings and neuroimaging studies (Wallis & Kennerley, 2011; Knutson et

al., 2005; Bartra et al., 2013). The ACC has specifically been implicated in the reinforcement-

learning framework. Several studies have found ACC activity in relation to prediction errors,

from feedback related negativity signals in EEG (Miltner et al., 1997; Nieuwenhuis et al., 2005).

ACC has also been found to encode reward prediction in addition to its errors (Amiez et al.,

2006; Rushworth & Behrens, 2008). Interestingly, these signals are tied to the prediction error

and not necessarily to a monetary loss in economic paradigms. Further, ACC activity is tied

to prediction errors regardless of sign (Bryden et al., 2011; Hayden et al., 2011), suggesting it

specifically plays a role in surprise (Cavanagh et al., 2012; Behrens et al., 2007).

Interestingly, ACC activity is found in imaging studies investigating exploration over exploita-

tion in humans (Daw et al., 2006; Amiez et al., 2012; Cavanagh et al., 2012). If ACC signals a

surprising event, it may also prompt an exploratory response to reassess a structure’s contin-

gencies. In addition to co-activating with the insula, the ACC projects to the striatum (Choi

et al., 2012; Haber & Knutson, 2010), which is a central actor in the predictive coding model

of learning and decision-making. Finally, the ACC has strong connections with the LC, main

site of noradrenergic production in the brain, which itself may signal the need for exploration

in the face of an error, or surprise, or a conflicting outcome of some sort (Aston-Jones &

Cohen, 2005; Gilzenrat et al., 2010; Jepma & Nieuwenhuis, 2011; Murphy et al., 2011). A study

probing decision-making performance in ACC lesioned monkeys examined whether activity

is linked to error alone or to encoding a history of action-outcome contingencies to formulate

predictions. Lesioned monkeys did not show an immediate impairment in performance on

a reward-guided learning task, but could not integrate trial outcomes into a policy. Further,

in a dynamic foraging task where rewarding outcomes were probabilistic, lesioned monkeys

also displayed impaired performance on average and not for specific trials (Kennerley et al.,

2006). The ACC’s role in integrating prior outcomes and generating predictions was further

found in a paradigm that did not necessarily elicit an error (Brown & Braver, 2005). In a

task where subjects could either recognize an error or received feedback on an error from an

external source, the ACC was implicated in both (Holroyd et al., 2004). As uncertainty begets

conflict, we expect the ACC to be implicated in our studies in particular, as the region is clearly

implicated in processing conflict at a higher level.
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1.7.2 Insula

The insula is a bilateral, cortical region that has been implicated in myriad functions (Nieuwen-

huys, 2012) but is generally involved in interoception, the process by which internal signals, or

stimuli, are interpreted into declarative states. Interoception is thought necessary for emo-

tional awareness (Wiebking et al., 2015; Zaki et al., 2012). The insula has previously been

found to play a role in uncertainty signals, specifically prediction errors (Preuschoff et al.,

2008). If one considers that uncertainty engenders a feeling, then one can see how the insula

is implicated in guiding decisions (Singer et al., 2009). A study investigating the impact of

interoceptive awareness on insular activity in the Iowa Gambling task found a correlation

between individuals high in interoceptive awareness and decision-related insular activity

(Werner et al., 2013). A defining feature of the insula is its membership to the brain’s salience

network, a collection of regions, primarily the anterior cingulate cortex and insula, which

correlate with engagement in resting-state fMRI. This fact attributes the insula with more

than affective processes and suggests that its role is central to human experience (Menon and

Uddin, 2010).

A notable feature of the insula is that it likely does not have an animal homologue (Craig,

2009) though this hypothesis has been vigorously challenged and others believe monkeys do

have an insular-like structure (Nieuwenhuys, 2012). Menon and Uddin note that the common

factor across studies in which the insula appears is the presence of a deviant stimulus amongst

other, presumably expected, stimuli. In terms of connectivity, the insula along with the ACC

receive afferent projections from the spinal cord, which brings bodily signals to the cortex

via the thalamus (Craig, 2002, 2003). Projections from the insula descend into the brainstem.

This characterization of insular connectivity is limited however in that it was identified in

animals. Another intriguing feature of the insula and the anterior cingulate cortex is that

both include von Economo neurons (Allman et al., 2010), the latter which have large axons

and can thus relay information rapidly. While several studies have implicated the ACC in

decision-making tasks, the insula has appeared less often. In addition to its involvement in risk

and risk prediction error signals specifically (Preuschoff et al., 2008), it has been implicated in

uncertainty in several other studies (Critchley et al., 2004; Xue et al., 2010; Jones et al., 2011;

Weller et al., 2009).

Menon & Uddin suggest that the insula does indeed have a cognitive control function be-

yond its apparent involvement in emotional processing, but that the region is responsible

for transient signals that are then relayed to the ACC and PFC regions and thus acts as a

switching region, a hypothesis that is supported by its inclusion in the salience network,

which deactivates the ’default-mode’ network in restating-state fMRI studies. This hypothesis

is further supported by an EEG-fMRI study investigating the temporal dynamics of insular

activation in an oddball paradigm (Crottaz-Herbette and Menon, 2006). While some propose a

functional division in the insula along the anterior and posterior axis, with the former playing

a role in awareness and the latter more relevant to visceral states, such spatial differentiation

remains elusive. The insula has further been implicated in exploratory states, which may
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be confounded with uncertainty-inducing, or surprising outcomes (Laureiro-Martinez et al,

2014). In the context of our work, we zero in on the insula especially as it relates to the ACC;

and because it’s role in awareness and interoception may play a particular role in translating

computations, which we cannot assume occur explicitly, into states of awareness (Singer et al.,

2009; Medford & Critchley, 2010).

1.7.3 Striatum

The striatum’s role in learning and specifically in reinforcement learning has been studied

extensively (Hollerman & Schulz, 1998; O’Dogherty et al., 2003; McClure et al., 2003; Schulz,

1998; Abler et al., 2006; Pessiglione et al., 2006; Balleine et al., 2007; Daw et al. 2011). While

several regions have been implicated in prediction error encoding, a meta-analysis of studies

on the topic reveals that it is the striatum that is singularly implicated in the process (Garrison

et al., 2013). Expected utility for instance, which is captured in reward prediction, elicits

increased striatal activity in a monotonic fashion (Tobler et al., 2007). Both reward prediction

and its error are encoded in the striatum and evidence suggests uncertainty is integrated in the

region as well (Fiorillo et al., 2003) as does previous work highlighting the region’s involvement

in uncertainty-related prediction and prediction errors (Preuschoff et al., 2006). The striatum’s

function is not limited to reward based learning however. Motivation and incentive salience,

or desire, play a role as well although the long-held view of the striatum as a pleasure center is

no longer widely accepted (Berridge, 2013).

Beyond decision-making and learning, the dorsal striatum mediates motor function. As

such, in Parkinson’s disease, whose neural hallmark is dorsal striatal degeneration, motor

deficits are the most dramatic and impactful symptoms. While a dorsal-ventral pattern of

degeneration in relation to motor symptom etiology is clear in Parkinson’s patients, such a

mapping for functionally distinct cognitive symptoms is less obvious. Some have suggested

that dorsolateral striatum mediates ’goal-directed’ learning while ventromedial captures trial

and error learning but such distinctions, borrowed from animal studies, are difficult to verify

in humans (Doherty et al., 2014). A review of studies investigating functionally distinct roles

for dorsal and ventral striatal regions in reinforcement learning finds conflicting evidence for

such a spatial mapping (Garrison et al., 2013). Thus the whole striatum emerges as a prime

candidate within which to look for neural signals of uncertainty.

1.7.4 The Locus Coeruleus

The locus coeruleus (LC) is a nucleus of the brainstem that is the primary site of noradrenaline

secretion in the brain. The nuclei are present bilaterally and are shaped into two long and

narrow structures beginning just under the IVth ventricle on the superior dorsal lateral pons.

Its mean dimensions are 14.5x2.5x2 mm (Fernandes et al, 2012). The region is easily seen on

histological slices because it is pigmented by neuro-melanin, a by-product of its synthesis,

which gives the region its name. Activity in the nucleus is generally related to alertness:
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LC activity is low during sleep cycles. The LC projects widely to cortical regions, as well

as sub-cortical regions that are key to motivational states, such as the thalamus, nucleus

accumbens and amygdala. Importantly, LC noradrenergic neurons interact with dopaminergic

neurons in the substantia nigra. In Parkinson’s disease, LC degeneration is widespread and

observed substantia nigra degeneration may result from the latter (Srinivasan & Schmidt, 2003;

Rommelfanger & Weinshenker, 2007; Loued-Khenissi & Preuschoff, 2015). The LC is not visible

with standard in-vivo imaging techniques in humans. However, a specific T1-TSE sequence

that exploits the gradient offered by the nuclei’s pigmentation has succeeded in localizing

the region with MRI (Sasaki et al., 2006; Keren et al., 2009). The LC has been implicated in

the exploration-exploitation trade-off (Laureiro-Martinez et al., 2014). Pupil dilation is, to

date, taken to be a proxy for LC activation (Murphy et al., 2014). Given previous work finding

increased pupil dilation in response to unexpected uncertainty or surprise (Preuschoff et al.,

2011), we hypothesize that the LC may be specifically involved in uncertainty signaling.

1.8 Patient Populations

A quality of neurological and psychiatric conditions is that they often entail cognitive deficits,

subtle impairments in the cognitive domain that are generally placed under the rubric of

executive dysfunction (Petersen et al., 2014). Executive dysfunction is usually identified with

the use of neuropsychological tasks that are meant to capture specific functions such as

planning and working memory. Model-based accounts of learning and decision-making offer

a means by which we can capture such subtle deficits (Maia & Frank, 2011). Indeed, as we

know that reinforcement-learning mechanisms rely on striatal dopamine, disorders in which

dysfunction of the system are known hallmarks become prime candidates within which to

examine specific sub-processes that may be impacted. Examples of such conditions include

Parkinson’s disease, schizophrenia and drug addiction. For instance, schizophrenic patients

have been found to show a reduction in striatal response to prediction errors (Waltz et al., 2009).

In Parkinson’s disease, deficits in tasks such as the IGT may reflect a decreased learning ability

with respect to probabilities specifically (Sinz, et al., 2008; Euteneuer et al., 2009; Delazer et al.,

2009; Gleichgerrcht et al., 2010) and have been linked putatively to reward processing deficits

(Aarts et al., 2012; Ryterska et al., 2013; Muhammed et al., 2016). Thus, several studies have

attempted to characterize dysfunctional risk processing in decision-making tasks. Pertl and

colleagues (Pertl et al., 2015) tested patients with mild cognitive impairment (MCI) on a range

of decision-making tasks, including the Game of Dice Task, which requires risk processing.

They found patients performed worse than controls in the Game of Dice specifically but

performed comparably to controls in other tasks. Parkinson’s disease patients are thought to

have impaired reward sensitivity (Muhammed et al., 2016) however, this may be modulated by

apathy. Thus it is not clear that Parkinsonians are impaired in reward processing per se; they

may in fact have trouble assigning meaning to cues because of co-morbid apathy, a state of

affairs that may present outwardly as dysfunctional reward sensitivity. The role of apathy in

decision-making impairments in Parkinsonians was also found in a study using the Balloon
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Analog Risk Task (Buelow et al., 2013).

Anxious individuals are thought to be impaired in their decision-making processes, perhaps

by being especially risk-averse (Charpentier et al., 2017). Using a reinforcement-learning

framework, Browning and colleagues (Browning et al., 2015) find that anxious individuals

have a specific deficit in updating their predictions in volatile versus stable environments.

In their study, anxious individuals were impaired in their ability to adjust to volatility in an

environment with potentially aversive outcomes, a feature reflected in a decreased pupillary

response to volatility and in learning rates between stable and volatile tasks. The anxious

individuals maintained similar learning rates in both environments while the control group

increased their learning rate for the volatile tasks (Browning et al., 2015).

A recent study investigating the dissociation between confidence and action in a predictive

inference task found a distinct impairment in patients suffering from obsessive-compulsive

disorder (OCD). Vaghi and colleagues sought to study the evolution of confidence and action

in a learning task. OCD patients often engage in repetitive behavior that is exaggerated

relative to need (such as cleaning or, in the opposite case, hoarding), yet often recognize

that their behavior is dysfunctional (van den Hout & Kindt, 2003). The authors exploited this

dissociation between action and belief, as OCD patients’ belief are seemingly accurate, while

their behavior contradicts the latter. If confidence is a belief about the state of the world,

then an action should relate to that belief. Here, the possible dissociation between action and

confidence was investigated. Following an error in a spatial task, patients’ learning rates were

consistently higher than controls’, though they scaled correctly with error magnitude. Further,

patients’ confidence matched controls, indicating that this part of the decision process was not

altered by their pathology. Thus if patient behavior is driven by prediction errors rather than

confidence estimates, it suggests that patients may use a model-free strategy to navigate their

environment rather than a model-based one. Importantly, in this study confidence measures

are obtained via self-report and are thus subjective (Vaghi et al., 2017). Autistic patients are

known to have difficulty seeing illusions. Thus, within the frameworks reviewed above, they

may possess a distinct deficit in their inference processes (Lawson et al., 2015). This possibility

was investigated in the context of a Bayesian framework, and the results suggest that autistic

patients may not form priors, and thus cannot have posteriors in the form of say, a perceptual

switch (Pellicano & Burr).

Finally, while it is not a disease, stress, both of the acute noradrenergic and delayed, cortisol-

mediated kind, may have specific effects on uncertainty processing (Goette et al., 2014; Ben-

dahan et al., 2017). A very recent study found adults subjected to early-life stress showed a

deficit in learning with regards to probabilistic losses in a gambling task. Specifically, they

showed decreased neural activity in loss anticipation and increased response at loss outcome.

These results are remarkable in that they come from a longitudinal study and are conducted

on people who are not necessarily stressed in adulthood (Birn et al., 2017). At a less dire

level, stress effects on financial decision-making can have a significant impact, for instance in

traders, and is thus currently an important topic of research in neurofinance (Kandasamy et
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al., 2013).

1.9 Notes onModel-Based Approaches

The capture of cognitive variables in human behavioral research is generally enhanced with

the use of a formal account. Many variables of interest can be though of as latent variables,

not readily observable or operationalized even with well-thought out tasks. Such model-based

approaches thus offer a more precise tool by which to discern hidden variables contributing to

an overt signal on a trial-by-trial basis. A caveat to this approach is that several models may be

viable candidate algorithms for the brain. One manner in which to test these models, usually

against behavioral data, is to perform a model comparison test, usually either an Aikake or

Bayesian Information Criterion test. However, the latter tests do not disprove a hypothesis

but rather provide evidence in favor in favor of one model over another. This point is a crucial

one to consider; in choosing specific models to explain a given phenomenon, we may be

leaving a viable candidate out of our set list. Indeed, we might even be leaving out the best

candidate for a process (Mars et al., 2012). It is of this author’s view that model-based methods

be guided by the same principles as hypothesis testing in general, and not merely, say, the

number of free parameters in the model. A choice of model therefore needs to be anchored,

formally or empirically, in previous studies, even if those come from different fields. Further,

an understanding of human and neural behavior ought to provide a frame of reference to a

researcher. For instance, while Bayesian methods are a popular means by which to model

human behavior, we must remember that decades of psychological research, if not millennia

of human history, would suggest that the human, with his many biases, is decidedly not Bayes

optimal. Our view is that the models reviewed above need not compete against one another.

They provide useful tools by which to address the problem of inference, by nature of being

probabilistic. One can note that they are not necessarily mutually exclusive: for instance, Free

Energy incorporates Shannon Surprise and Bayesian Surprise. Thus we review them here to

provide context to the story of uncertainty, not to pit one model agains another.

1.10 Conclusion

The review above details the context of our research questions, by first exposing the sometimes

hidden importance of uncertainty in decision-making. We then outline the different model

frameworks that uncertainty is cast in, as it is a problem many fields are confronted with

and not a unique feature of human behavior. We briefly delineate the studies on the neural

representation of uncertainty, focusing on key regions and neuromodulators. And finally, we

provide a short summary of how these frameworks can perhaps better explain ill-defined

deficits in several patient populations.
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2 In Search of the LC: The needle in the
graystack

2.1 Introduction

If uncertainty is an inevitable and ubiquitous factor in the process of decision-making, there

must be a neural system responsible for tracking it. As dopamine encodes reward signals in

decision-making and learning, it is possible that another neuromodulator tracks uncertainty-

related variables. One emerging candidate for the latter is noradrenaline (Yu & Dayan, 2005;

Doya, 2008), a monoamine whose chemical structure closely resembles dopamine. Indeed,

noradrenaline synthesis is one enzymatic step removed from that of dopamine. Thus in

this chapter, we seek to investigate this potential link by training our sights on the locus-

coeruleus noradrenergic system (LC-NE). One overarching aim in this work is to find evidence

of noradrenergic involvement in uncertainty processing, as indexed by a significant BOLD

response in the locus coeruleus (LC), the main site of noradrenergic neurons in the brain. This

goal is ambitious and fraught, given the LC’s size and location in the brainstem. In this chapter,

we detail a series of pilot studies performed to determine if LC localization is feasible with the

use of MRI.

The ground-breaking findings on dopamine’s role in reward-guided learning and decision-

making (Bayer & Glimcher, 2005; Glimcher, 2011; Schultz et al., 1997; Schultz, 2000) have

prompted a search for similar functions among other neuromodulators. Noradrenaline (NE)

in particular has emerged as potential candidate in uncertainty signaling (Yu & Dayan, 2005;

Doya, 2008; Preuschoff et al., 2011). Noradrenaline has a dual role in the central and peripheral

nervous system. In the former, it engages the sympathetic nervous system, mobilizing the

body for action, by prompting increased heart rate, blood pressure and glucose utilization. In

the latter, it increases vigilance and alertness. Thus noradrenaline orients the system towards

a salient signal. Noradrenergic neurons are few, in spite of the neurotransmitter’s importance

to the system. As mentioned, most of these neurons are located in a small brainstem area

called the locus coeruleus (LC), which takes its name from the pigmentation of its cells due to

the presence of neuromelanin in noradrenaline, a by-product of its synthesis. While the locus

coeruleus is small, its projections are widespread across the brain and into the cortex.
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Previous work investigating risk and risk prediction errors in a pupillometry task finds increases

in pupil dilation with larger risk prediction errors (surprise) (Preuschoff et al., 2011; Nassar et

al., 2012 Kloosterman et al., 2015). As pupil dilation is an index of LC-NE activity (Murphy et al.,

2014), the finding suggests that the LC encodes surprise specifically but may more generally

encode uncertainty variables.

2.1.1 Does noradrenergic activity encode uncertainty processing?

In examining neuromodulatory roles for different kinds of uncertainty, Yu & Dayan hypoth-

esized that acetylcholine (Ach) and NE signal expected uncertainty (risk) from unexpected

uncertainty (surprise). Noradrenergic responses to novel stimuli or a sudden change in the

environment are acute and resolve rapidly following exposure (Aston-Jones & Cohen, 2005)

while Ach dynamics are slower. Yu & Dayan propose a computational framework whereby

acetylcholine interacts with noradrenaline in a top-down manner, while large, bottom up

signals from NE increase ACh levels. We hypothesize that uncertainty, and surprise specifically,

is encoded by noradrenaline. As we cannot determine the direct relationship between the

two in healthy humans without, at the least, introducing a pharmacological challenge, we

propose to attempt to localize LC activation in fMRI as a proxy for noradrenergic activity. LC

neuronal firing is closely coupled to noradrenergic release (Berridge & Abercrombie, 1999).

While many regions are innervated by projections from the LC, such as the insula and the ACC,

those large cortical regions have heterogeneous makeup and thus their activation cannot be

said to reflect noradrenergic activity alone.

2.1.2 Pupil dilation as an index of LC activity

In non-human primates tonic pupil diameter is correlated with baseline LC activity (Rajkowski

et al, 1993; Rajkowski et al., 1994). Single unit cell recordings in monkeys, show LC activity

predicts a pupil response (Joshi et al., 2016). In humans, Murphy et al (2014) demonstrated a

correlation between LC BOLD response and the pupil reflex (see below). Studies investigating

the role of LC-NE in behavioral processes have used pupil dilation as an index of noradrenergic

activity (see Nieuwenhuis et al., 2005 for an overview of earlier studies). In more recent studies,

pupil dilation as a proxy of LC noradrenergic activity correlates with uncertainty and surprise

specifically, as captured in a financial uncertainty task (Preuschoff et al., 2011).

In the perceptual domain, pupil dilation increases just prior to a reported perceptual switch for

an ambiguous stimulus (Einh"auser et al., 2008), which suggests that perceptual uncertainty

may also be modulated by the LC-NE system. The relationship between LC-NE activity and

pupil response remains a putative one, due to the difficulty in imaging the LC in vivo. Thus,

great care must be taken when attributing a cognitive process to one mediated by the LC-NE

system via the pupillary response.
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2.1.3 Imaging the LC

Establishing the relationship between pupil dilation and LC-NE activity in humans using

functional imaging is problematic at best. The locus coeruleus is a very small bilateral region

at the posterior border.of the brainstem, which introduces cerebrospinal noise in it signal. The

LC’s small size and location has sparked controversy surrounding its identification (Minzen-

berg et al., 2008; Astafiev et al., 2010) in fMRI studies. The unique challenges to its structural

and functional identification with MRI (Keren et al., 2015) has prompted the neuroimaging

community to proceed with great care and caution when studying the LC. One recent study

reports a correlation between the LC BOLD response, localized with the use of a probabilistic

map (Keren et al., 2009) with pupil dilation in an oddball task (Murphy et al., 2014). The

experiment examined two key questions relating to fMRI of the LC, and that is whether or

not to apply a smoothing kernel to such a small set of voxels and whether or not to apply

physiological correction to fMRI time-series. It has been hypothesized that the LC’s location in

the brainstem makes it particularly susceptible to cardiac and respiratory artifacts on the one

hand. However, physiological correction may be challenging in relation to functional imaging

of the region for two reasons: 1) noradrenergic activity in the central nervous system may be

correlated with peripheral activity, meaning LC activity may be positively correlated with an

increase in heart rate and respiration; 2) adding physiological regressors to a design matrix

unnecessarily could wash out what is expected to be a small signal change in the LC, even

though evidence suggests there are no significant physiological artifacts in brainstem imaging.

The Murphy study (Murphy et al., 2014) examines LC activity with and without smoothing and

physiological correction. Further, they employ a neuromelanin sensitive sequence (Sasaki et

al., 2006) to structurally localize the LC within subjects. While this study was successful, the

task employed was a very simple one while our global aim is to link latent variables linked

to a high-level process. Further, the study trained its functional imaging sequence on the

brainstem, whereas we aim to identify cortical structures in addition to the LC. Therefore, our

first step in addressing our research questions was to determine how best to reliably capture

LC-NE activity with the use of MRI.

In the following sections, we detail pilot studies related to the functional and structural

localization of the LC in healthy humans using pupillometry and fMRI. In study 1, we attempt

to indirectly localize the LC by administering a visual stimulus known to reliably elicit BOLD

activity in neighboring brainstem nuclei. In study 2, we perform a pupillometry study to

confirm the suitability of a localizer experiment, the auditory oddball task, to ultimately

directly localize the LC using fMRI. In study 3, we administer this task during fMRI acquisition

using three different sequences in a within-subject design to determine which one best

captures a BOLD response in the LC.
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2.2 Structural localization of the locus coeruleus

The first quandary we encounter in our objective to link noradrenaline to uncertainty signaling

via locus coeruleus BOLD response is in structurally identifying any significant cluster that

may arise in the region. Common neuroimaging atlases, such as AAL (Tzourio-Mazoyer et al.,

2002) and the Neuromorphometrics atlas (Neuromorphometrics, Inc.) do not include a map

of the LC or subregions of the brainstem. Indeed, the LC, while clearly visible on histological

slices due to its pigmentation is not visible in T1, T2 or PD weighted images (Sasaki et al., 2006).

A recent attempt has been made however to exploit the paramagnetic properties of iron-rich

neuromelanin and thus provide a contrast for both the LC and the substantia nigra (Sasaki

et al., 2006). The fast spin echo sequence has been dubbed neuromelanin-sensitive and its

clear advantage is that it is a non-invasive means by which to examine LC and substantia

nigra morphometric changes. Keren and colleagues (Keren et al., 2009) used this sequence

to produce a probabilistic map of the LC (Figure 2.1). The group used a high resolution

(0.4 mm by 0.4 mm in plane resolution) neuromelanin sensitive sequence on 44 subjects,

ranging in ages from 19 to 79 years old and subsequently validated spatial coordinates with

LC identification in post-mortem human brains, obtaining a correlation of r = 0.90. Based

on this procedure, two probabilistic maps normalized to the MNI152 template image, were

made available for general use, the first encompassing 1 standard deviation from the mean

map and the second, two standard deviations from the mean map. As mentioned, the atlas

is a probabilistic map; in the figure below, one can see that the right LC ’skips’ a slice for

instance, which is not reflective of an anatomical feature. Further, the process by which it was

generated is conservative. This may cause difficulty especially in the transverse plane, where

the LC spans, with the Keren atlas, 3 mm. Nonetheless, given that no neuromelanin sensitive

sequence was available for our use and given the great care with which the Keren atlas map,

we decided, as have others (Murphy et al. 2014; Naegeli et al., 2018) to employ the 2 standard

deviation map to confirm LC activity in our subsequent studies. Specifically, we will train our

search on peak voxels identified in the Keren study as being shared by 95% of subjects at the

following coordinates: -4.7, -37.3, -27 (left LC); and 5.8, -37.2, 27 (right LC). The range of LC

voxels found in the study are as follows (in MNI coordinates) : for left LC, x = -2.5: -7; y = -36:

-39; z = -18:-33; for right LC, x = 4:8; y = -36: -39; z = -18: -33. The range in the y direction is

especially narrow; thus we will scrutinize voxels falling within an additional error margin of

+/- 4 mm.

2.3 Pilot Study 1: Indirect LC Localization via Opto-Kinetic Nystag-

mus

In a first instance, we sought to verify that small brain stem nuclei could be localized and

activated at all using fMRI. As the link between uncertainty and LC is a putative one, imaging

the LC itself would be a poor proof of concept that would eventually turn into a circular

argument. We thus turned to the much better established link between eye movements,
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Figure 2.1 – Probabilistic LC atlas map (Keren et al., 2009). The map in blue is overlaid on
transverse slices of the canonical T1 image. At -26, the right LC "disappears", underscoring
the probabilistic nature of the map. Overall, this map illustrated the very limited spatial extent
of the region, highlighting the difficulty of assigning significant BOLD responses to the LC.

specifically the optokinetic nystagmus (OKN) reflex and brainstem nuclei. OKN refers to

the involuntary periodic saccades healthy individuals make when viewing what appears to

be moving lines. For instance, when looking at a moving train, our eyes follow the train in

its forward translation before returning to a point of origin, where the saccade is repeated

again (horizontal OKN). A vertical OKN (vOKN) can also be induced when viewing a stimulus

moving in an upward or downward motion. Animal studies have identified an optokinetic

complex dubbed the cortico-pretectopontine-olivo-cerebellar system (Simpson et al., 1998),

and linked brainstem vestibular nuclei to the OKN (Mazzena et al., 1974; Buettner & Buttner,

1979). OKN is thought to implicate the oculomotor nucleus (superior); dorsolateral pontine

nucleus (ventral); and tegmental pontine reticular nucleus (ventral) (Mustari et al., 1994). We

tried to replicate findings by Bense et al. (2006) that identified active brainstem nuclei adjacent

to the LC, in response to an OKN induction. This fMRI study investigated different BOLD

responses in hOKN and vOKN to determine if a pattern similar to that found in non-human

animals (Hoffmann et al., 1988) could be identified in humans. Bense and colleagues found

clusters in the dorsal medullary and pontine areas of the brainstem while vOKN correlated

with clusters in the dorsal ponto-mesencephalic region of the brainstem. While the OKN is

not of direct interest to our research question, the paradigm provided a means by which we

could assess the feasibility of 1) imaging small brainstem nuclei and 2) potentially verify the

accuracy of the functional mapping of LC later on..

2.3.1 OKN Experimental Procedure

We recruited 11 subjects for the experiment (4F, average age 24.33 years). In a first instance,

following intake, subjects were fitted with cardiac and respiratory sensors in the scanner bore

(BioPac, BioPac Systems Inc, Goleta, CA). We then proceeded to acquire a localizer scan (voxel

size 0.5 x 0.5 x 7 mm; 1 slice; FOV 250 mm; TR = 8.6 ms; TE = 4 ms, FA = 20 ◦ ), followed by a

gre-field mapping scan (voxel size 3 x 3x 3 mm; 64 slices; FOV 192 mm; TR = 1020 ms; TE =

10 ms; 2mm slice thickness; FA 90◦), to correct for magnetic field inhomogeneity. We then
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acquired whole brain functional data during the induction of an optokinetic nystagmus (OKN)

for 11 subjects We used a standard fMRI sequence with the following parameters: 3.5 mm

resolution; TR= 2.46 s; 2D EPI; matrix size 64 x 64; 39 slices; 117 volumes (FOV = 224 mm; slice

TE = 63.1 ms; FA = 90 ◦ ). Participants were instructed to passively view the stimuli presented.

The stimuli were comprised of sinusoidal gratings, moving grids of black and white stripes, in

either a vertical (VOKN) or horizontal (HOKN) direction. Stimuli were presented for a block of

32 seconds in duration, followed by a rest condition of 32 seconds. OKN stimuli were projected

onto a mirror in the scanner bore. Each OKN inducing stimulus was presented 3 times, totaling

9 trial blocks per experiment. Following EPI acquisition, we acquired individual anatomical

T1 volumes (MPRAGE, voxel size= 1 x 1 x 1 mm; FOV = 256 mm; (slice) TR = 2000 ms; TE =2.39

ms; FA = 9 ◦ ; matrix size 256 x 256).

2.3.2 OKN Imaging Results

To establish whether there was any brainstem activation related to OKN similar to that reported

by (Bense et al., 2006), we addressed two particular points of discussion with respect to fMRI

of brainstem regions concerning physiological correction and smoothing. Our preprocessing

pipeline included: generation of voxel displacement maps (VDM); applying VDM to functional

scans before warping and realigning to subject’s mean functional image; bias field correction;

co-registration to individual subject anatomical scan; and segmentation (6 tissue probability

maps) and normalization to the MNI152 template. We then analyzed group data unsmoothed;

smoothed to 3 mm (just under the width of the Keren LC map in the transverse plane); and

smoothed to 8 mm (a more standard Gaussian filter). Generally speaking, it is suggested that

when looking for a response in a small region, one uses a small smoothing filter. Of course,

a small smoothing filter in turn skirts the edge of what is required for random field theory

(Friston et al., 1995). In practice, the choice of smoothing kernels is not well defined for smaller

regions. Murphy and colleagues did however address the smoothing versus non-smoothing

question with regards to the LC and we opt to take this course as well. We further address

another point of contention with regards to brainstem fMRI and that is whether or not to

correct for physiological noise. Our intuition is again, in line with Murphy et al.’s concerns,

in that LC response may be correlated to cardiac and respiratory rates. Nonetheless, we

apply retrospective physiological correction (RETROICOR, Glover et al., 2000) to our data, to

compare corrected versus uncorrected response signals in the brainstem. The RETROICOR

suite of functions adds 14 nuisance regressors to the design matrix of an analysis, in addition

to the 6 standard nuisance regressors related to head movement. All in all, we obtain 12 group

level data sets: hOKN and vOKN unsmoothed; smoothed at 3 mm FWHM; smoothed at 8 mm

FWHM; with and without physiological correction.

2.3.3 OKN imaging Data for horizontal and vertical OKN, Group Level

A second level analysis was performed on 11 subjects to investigate brainstem activation in

response to horizontal and vertical OKN stimulation. Due to the study’s small sample size
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Figure 2.2 – Statistical map of horizontal OKN in 11 subjects (p =0.001, unc.). The top row (1)
shows statistical maps without physiological correction. The bottom row (2) shows physiologi-
cally corrected statistical maps. Column one shows unsmoothed maps; column 2 shows data
smoothed to 3 mm FWHM; column 3 shows columns smoothed to 8 mm FWHM. Significant
clusters in the occipital lobe are seen in all six statistical maps; none in the brainstem.

and our expectation of a weak response in the brainstem, we apply a low threshold of p =

0.001, uncorrected to our data. All contrasts for all smoothing kernels as well as physiological

corrected and uncorrected data, yielded reliable activation in the visual cortex (bilateral

occipital fusiform gyrii). Group level analysis did not yield activation in the brainstem. Below,

we describe results for hOKN and vOKN output from different pre-processing conditions.

Results for hOKN show increased activation with higher smoothing filters as expected. Further,

higher activation is seen in physiologically corrected data (see Figure 2.2). Yet no brainstem

activity appears in our analyses above.

Like hOKN, statistical maps for vOKN in all pre-processing conditions show significant clusters

in the occipital lobe. Signal strength is increased with smoothed data (columns 2 and 3 in

Figure 2.3). Interestingly, a cingulate response appears prominently in the 8 mm FWHM

condition. On a more relevant note with regards to our question of interest, we see a small

brainstem cluster in physiologically uncorrected data for images smoothed to 3 and 8 mm.

A close up view of these significant voxels in the brainstem/cerebellum appear admittedly
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Figure 2.3 – Statistical map of vertical OKN in 11 subjects (p =0.001, unc). The top row (1) shows
statistical maps without physiological correction. The bottom row (2) shows physiologically
corrected statistical maps. Column one shows unsmoothed maps; column 2 shows data
smoothed to 3 mm FWHM; column 3 shows columns smoothed to 8 mm FWHM. Significant
clusters in the occipital lobe are seen in all six statistical maps as well as in the cingulate,
especially in column 3; a small cluster in the cerebellum/brainstem border is noted for data
smoothed to 3 and 8 mm and uncorrected for physiological regressors.

noisy for maps smoothed to 3 mm (Figure 2.4, panel A). However, panel B shows what appears

to be a reliable cluster, in a clean brainstem. No stray voxels appear but for this cluster on

the edge of the left cerebellar peduncle, lateralized relative to where we would expect the

left LC. Of course, it may be indeed an artifact of pulsation, as this cluster does not survive

physiological correction.

2.3.4 Pilot Study 1 - Summary

The study above suggests that indirect localization of the LC by inducing an OKN is not feasible.

In a first instance, our group results yielded only one significant cluster in the brainstem, for

data smoothed to 8 mm. This cluster does not survive physiological correction; given the

cluster’s location at the boundary of the 4th ventricle, this disappearance may indeed signal
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Figure 2.4 – A close-up view of the brainstem in statistical maps of vOKN smoothed to 3 mm
and 8 mm FWHM (p =0.005, unc.) The data above were not subject to physiological correction.
Panel A crosshairs at (1; -31; -13); Panel B crosshairs at (-9; -32; -26).

its identity as an artifact. What is clear from our data is that we do not replicate the findings in

the Bense paper (Bense et al., 2006). Thus brainstem imaging is fraught even when using basic

sensory stimuli such as moving gratings. In a second instance, the original paper investigating

OKN-induced brainstem activity concedes that clusters found encompass several nuclei,

which, in the case of vOKN includes the LC, though it is not limited to it. Given the difficulty

in attributing a cluster to a specific brainstem nucleus, we must conclude that an indirect

localization of the LC is not a practical endeavor. Third, we probed two questions that emerge

in pre-processing fMRI for small, brainstem regions, concerning 1) smoothing; 2) physiological

correction. With regards to smoothing, statistical maps in unsmoothed data appear too noisy

to be reliable. Further, BOLD response is, in hOKN, as expected, higher in smoothed relative

to unsmoothed data. The question then becomes which smoothing kernel to use? The 3

mm kernel also yields questionably noisy data. Indeed, in vOKN, stray voxels are seen in the

brainstem, which may simply be noise. As for physiological correction, our only significant

cluster in the brainstem is washed away with the inclusion of the 14 cardia and respiration

regressors. On the one hand this suggests the correction did what it was meant to do; on the

other hand, as LC activity is correlated with autonomic function, we may not want such a

"correction". Therefore, we will continue to explore these two pre-processing questions in

our next pilot study. Finally, we employed a standard EPI sequence in this study. However,

in consideration of how difficult capturing a cognitively-driven BOLD response in the LC is

likely to be, we may benefit from more tailored sequences. Our next study will thus probe the

sensitivity of alternative sequences on brainstem BOLD response. In sum, given the difficulty

in adequately localizing any nucleus in the brainstem, as well as the lack of consistency across
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subjects, we opted to abandon indirect functional localization in favor of direct functional

localization.

2.4 Pilot Study 2: Pupil Dilation in The auditory oddball paradigm

Given our conclusions on Pilot study 1, we set about finding a task that would directly stim-

ulate LC activity. The auditory oddball task emerged as a reliable candidate for our search

(Nieuwenhuis et al., 2005). The oddball paradigm is the simplest of detection tasks. A deviant

stimulus (the oddball) is introduced in a stream of standard stimuli (standards). Previous

research has shown that it elicits the P300 event related potential in EEG studies, as well as

pupil dilation. It has also been found to elicit LC activity (Murphy et al., 2014). Most impor-

tantly, under our (and other) models of uncertainty and surprise that we employ in financial

gambling tasks, the deviant stimuli generate large signals, i.e., the oddball task likely poses an

upper limit to the statistical power of our gambling task. Indeed the oddball has been used to

elicit a very basic form of surprise (Timmerman et al., 2017). If we cannot find strong BOLD

responses with this task then the more subtle effects that we expect in the card game (Chapter

3) are unlikely to emerge. Thus we first administered an auditory version of the task on a small

group of subjects outside of the scanner to determine if indeed pupil dilation in relation to the

oddball would be found significant relative to standard tones before administering the task

inside the scanner.

2.4.1 Pitch versus duration deviance

While previous studies have found both pupil dilation and LC activity correlating with oddball

stimuli, different deviant features can confer oddball status to a stimulus. Studies examining

mismatch negativity (MMN) event-related potentials in comatose patients employ the auditory

oddball paradigm (Juan et al., 2016). The types of deviants used in the study include: 1) pitch; 2)

duration; 3) location. According to these studies, duration deviants induce the strongest MMN

signal. While EEG studies cannot map signals to brainstem regions and fMRI cannot identify

the mismatch negativity signal (150 ms post-stimulus), due to poor temporal resolution, we

hypothesized that a stronger mismatch signal would elicit stronger pupil dilation and thus

more significant LC activity.

2.4.2 Experimental procedure

The task was coded in Matlab using the PsychophysicsToolBox (Brainard, 1997; Pelli, 1997;

Kleiner et al, 2007). Pupil data were recorded with a monocular configuration (left eye) on an

Eyelink 1000 eyetracker (SR Research, Ottawa, Ontario) sampled at 1000 Hz. Subjects were

seated facing a screen and a keyboard, with the screen placed 30 cm away from the eyetracker

head mount. Subjects placed their chins on the chin rest and rested their foreheads against

the headmount. Following a 9 point calibration, the task began. Subjects were asked to press a
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key on a keyboard for standard tones, and another key for oddball tones while viewing a black

fixation cross on a grey screen in a darkened room. Sounds were played over speakers in a

quiet room. All experiments were performed on campus at the Ecole Polytechnique F’ed’erale

de Lausanne.

Table 2.1 – Oddball Task Parameters

Task Trials ISI Odd Deviance Standard Odd Standard Odd

Frequency Pitch Pitch Duration Duration

Task 1 500 1800 20% Duration 1000 Hz 1000 Hz 100 ms 175 ms
Task 2 500 1800 20% Pitch 1000 Hz 1500 Hz 100 ms 100 ms

2.4.3 Pupil Trace Preprocessing

Pupil data were analyzed as follows. Blinks were first removed from pupil data via cubic

spline interpolation. The latter were flagged as beginning with a faux-saccade start message

preceding the blink start message and ending with a faux-saccade end message following

the blink end message. Time-series were partitioned into trials then separated into odd and

standard trials. Time-series for each condition were then averaged across trials. Baseline

measures were taken as being the last 100 ms of the preceding trial. Individual time-series

averages were then meaned across subjects to yield a grand mean.

The traces above show a reliable difference in pupil dilation for oddball versus standard tones

(Figure 2.5). Indeed the traces are similar between task conditions. We examine significant

differences in pupil dilation for both task conditions to determine if one yields more differences

than the other (Figure 2.6).

2.4.4 Auditory Oddball Pupillometry Study: Results and Conclusion

Time-courses of the pupil trace were similar for both deviants (Figure 2.5). However, the rates

of statistically significant tests are higher for the duration oddball (341 significantly different

time-points in the long deviant condition versus 219 in the high pitch condition). In spite of

these statistical tests, participants reported greater subjective ease in identifying the pitch

deviant in the experiment. Given the additional noise participants are subjected to in an MRI

scanner, we opted to err on the side of caution with respect to these subjective reports and

employ a pitch deviant version of the oddball in our fMRI LC localization task.

2.5 Pilot Study 3: fMRI Sequence Comparison Study

We set out to test the oddball paradigm, which has previously yielded promising results in

terms of LC-NE driven pupil dilation and LC localization in fMRI studies. The aim of this pilot
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Figure 2.5 – Grand mean average time-courses for the two oddball tasks. Red curves indicate
oddball trials while blue curved denote standard trials. The top panel shows time-courses for
the duration deviant while the bottom panel represents pitch deviants. Significant differences
in time-courses are found in the time window bound by the dashed green lines (starting at
800 ms following the start of the sound).

was to localize LC functional activity with fMRI and, as we expect this endeavor to be difficult,

we sought to test different fMRI sequences in the same subjects performing the same task, to

determine if one sequence would offer a better signal to noise ratio (SNR) overall in identifying

LC activity. The known trade-offs in fMRI are temporal resolution, spatial resolution, spatial

extent (which is linked to temporal resolution) and SNR. Thus, while it may appear that simply

increasing the spatial resolution of our sequence would aid us in identifying the LC, we would

incur a significant cost in SNR, as well as time. To determine what the best sequence would

be to perform our experiments on uncertainty, we ran a pilot imaging study to test three

different sequences. . Specifically, we used 1) the same standard sequences employed in

the OKN experiment; 2) a high spatial resolution sequence; 3) and a multi-echo sequence.

The first sequence, as we saw above, did not yield promising data for BOLD response in the

brainstem; nonetheless, it is a standard sequence and thus provides a ’control’ condition for

our sequence comparison study. An obvious attempt to mitigate the difficulty in imaging the

LC because of its size is to increase spatial resolution. Of course, the problem with such a
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Figure 2.6 – Representation of t-tests between standard and oddball tones for each task
(duration deviant in blue, pitch deviant in green). P-values are on the y axis while trial time
is on the x-axis. Significant tests appear at roughly 800 ms following the start of the sound.
Oddball effects appear to resolve faster for pitch deviants ( 1200 ms) while duration deviants
continue to the end of the trial (1600 ms).

straightforward course is that high spatial resolution comes with an increase in repetition

time, which complicates eventual task design and more importantly lowers the SNR. Indeed,

such a high resolution sequence could not easily be accomplished for a whole brain sequence

without a concomitantly impractical length of time on task. The multi-echo sequence presents

an interesting option however. Multi-echo sequences, as the name implies, include more than

one echo time (TE) per repetition time (TR); thus several volumes are acquired per effective

volume, resulting in an increase in data, and thus SNR. The net effect of a multi-echo sequence

is a brain-wide increase in SNR with repetition times and spatial resolution similar to the

standard sequence (Poser et al., 2006).

2.5.1 Sequence Comparison Study: Experimental Procedure

Fourteen subjects were recruited from the Universit’e de Lausanne and EPFL campus (Mean

age: 20.73; 6 F). Participants provided informed consent and were screened for MR compatibil-
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ity before entering the MR room. In the bore, subjects were fitted with cardiac and respiratory

sensors (BioPac, Systems Inc., Goleta, CA). Once settled in the bore, we performed a 3-point

eyetracking calibration (Eyelink Eyetracker 1000 S). We chose a 3 point calibration because

the bottom of the "screen" could not be detected by the camera (monocular setup, right eye).

Instructions were provided on a screen, projected into the bore through a mirror. Sounds

were embedded within the instructions. Sound was delivered via MR compatible headphones.

Participants were instructed to provide a button press for one kind of sound (the 1000 Hz) and

another button press for the other sound (1500 Hz tone).

All scans were acquired on a Siemens 3T Prisma, at the Centre Hospitalier Universitaire Vaudois

in Lausanne, Switzerland. Subjects performed 3 blocks of the task, with one sequence assigned

to each, in a counterbalanced fashion across subjects, such that each subject was scanned

with all three sequences. Sequences used included a standard sequence; a high resolution

sequence; and a multi-echo sequence.

• Sequence 1: ’Multi-Echo’; voxel size = 3 x 3 x 2.5 mm; 2DEPI; Multi-Echo sequence; TR

= 1.92 s; 34 slices; FOV 192 mm; (slice) TR = 80 ms; (slice) TE (1) = 17.4 ms; FA = 90 ◦ ;

matrix 64 x 64; 417 volumes (800 seconds), no dummies.

• Sequence 2: ’High Resolution’; voxel size = 1.5 x 1.5 x1.5 mm, TR = 3.528 s, 48 slices; FOV

= 192 mm; (slice) TR = 63 ms; slice (TE) = 30.8 ms; FA = 15 ◦ ; matrix = 128 x 128; 227

volumes (800 seconds), no dummies.

• Sequence 3: ’Standard’; 3.5 mm, TR = 1.262 s, 20 slices; FOV = 224 mm; (slice) TR = 63.1

ms; (slice) TE = 30 ms; FA = 90 ◦ ; matrix 64 x 64; 634 volumes (800 seconds), 5 dummies.

Because the high-resolution sequence did not cover the whole brain, all sequences above

were of limited spatial extent, so as to more adequately compare LC activity across sequences

(See Figure 2.7). The bounding box for the sequences was restricted to the lower portion

of the brain encompassing the brainstem (Figure 2.7). Task parameters were as follows:

450 trials, 15% oddball, 1.6 s ISI, 1500 Hz Odd Tone, 1000 Hz Standard tone, 100 ms sound

duration. Scans were preprocessed and analyzed using SPM 12. Our preprocessing pipeline

included: generation of voxel displacement maps (VDM); applying VDM to functional scans

before warping and realigning to subject’s mean functional image; bias field correction; co-

registration to individual subject anatomical scan; and segmentation (6 tissue probability

maps) and normalization to the MNI152 template. We performed analyses on both smoothed

(8 mm FWHM, 3 mm FWHM) and unsmoothed images. On the one hand, smoothing increases

signal-to-noise ratio (Friston, 1995); on the other hand, we considered that activity in the LC

might be lost when a smoothing kernel is applied. Thus we examined both.
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Figure 2.7 – Representation of bounding box used for the sequence comparison study. All
three sequences were limited in their spatial extent, so as to better compare responses in the
brainstem region across sessions. Brain coverage was thus not guided by centering on the
AC-PC line; rather, we took care to include as much as the brainstem and thalamus as possible.

2.5.2 Sequence Comparison Study: Group Level Results

In the following analyses, we used a statistical threshold of p=0.001 uncorrected. We first

determined whether or not any voxels in the area of the brainstem known to include the LC

survived thresholding before applying small volume correction analyses using the Keren LC

atlas (Keren et al., 2009).

Sequence 1

For the standard sequence at a 3.5mm resolution (’Standard’), no significant voxels survive

in the brainstem in images smoothed to 3 mm and 8 mm FWHM and, both uncorrected and

corrected for physiological artifacts (Figure 2.8).

We conclude therefore that this standard sequence should not be used in our future studies.

Sequence 2

In the high-resolution sequence, we find voxels adjacent to the edge of the LC atlas. in images

smoothed to 3 and 8 mm FWHM, corrected and uncorrected for physiological artifacts (p

=0.005 uncorrected) (Figure 2.9).

The high-resolution sequence yields promising results with significant voxels found just

outside the boundary of the LC map (Figure 2.10). As in the OKN study, smoothing appears

to yield more reliable statistical maps, with data visibly less subject to noise (Figure 2.9).

Physiological correction does not remove cerebellar/brainstem activation, nor does it impact

signal intensity. While results are significantly improved on the standard sequence, we must
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Figure 2.8 – Statistical maps for Oddball > Standard tones. All maps overlaid on the canonical
T1 image were thresholded at p =0.005, uncorrected. Panel A shows results smoothed to 3
mm FWHM, uncorrected for heartbeat and respiration; Panel B shows results smoothed to
3 mm FWHM, physiologically corrected; Panel C shows results smoothed to 8 mm FWHM,
physiologically corrected.

concede that they remain imperfect. Of greater concern is the eventual difficulty of developing

a whole brain sequence using high-resolution parameters.

Sequence 3

In the multi-echo sequence (’Multi-echo’), we find a small cluster of voxels at (-2,-44, -22),

again in the vicinity of the LC atlas but that are not included in the map. These results were

found in physiologically corrected images only (both at 3 and 8 mm FWHM).

The multi-echo sequence yields results in the brainstem for physiologically corrected data in

data smoothed to 3 and 8 mm FWHM (Figure 2.11). As in the high-resolution sequence, the

significant voxels found lie at the border of the LC atlas, which is a conservative map (Figure

2.12). As expected, only data smoothed with a large filter yields visually compelling results.

The 3 mm images simply appear noisy. Tellingly too, is that the voxels adjacent to the LC

are not the same ones found in the high-resolution sequence. Nonetheless, the important

takeaway from these results is that the multi-echo sequence can detect a BOLD response in

the brainstem, while the standard sequence could not.

While the method Keren and colleagues used to characterize the LC is reliable, namely through

neuro-melanin sensitive MR on a large cohort and validated against post-mortem brains, it

is worthwhile to note that the map as applied to a canonical T1 image, over which statistical

maps are overlaid, sees a portion of the atlas covering the ventricle. Given the narrowness

of the probabilistic LC map in the transverse direction, moving forward, we decide to focus

on clusters namely surrounding the coordinates (-5, -37, -27) and (6, -37, -27) in the left and

right hemispheres respectively, the coordinates for which 95% of participants in the Keren et

al study show peak voxels. Nonetheless, even if significant voxels in the LC vicinity are found,

42



2.5. Pilot Study 3: fMRI Sequence Comparison Study

Figure 2.9 – Contrast for Oddball > Standard tones (p =0.005, uncorrected). The top row shows
whole brain statistical maps (3mm FWHM, no physiological correction; 3 mm FWHM, with
physiological correction; 6 mm FWHM, with physiological correction). The bottom row shows
the same contrast for the same preprocessing steps as those in row 1 but zoomed in on the
following voxels (0 -31 -22). Significant voxels appear in the vicinity of the LC, notably in the
cerebral peduncle in all 3 images.

we will also examine the rest of the brainstem to determine if other nuclei appear active, as in

the Bense et al. study (Bense et al., 2006).

2.5.3 In-scanner Pupillometry Results

We performed the same analyses on pupil data acquired in the scanner as we did on pupil data

acquired outside the scanner. Out of 13 subjects, 12 had usable pupil recordings in sessions 1

and 2; and 10 were included in analyses for session 3. While the data acquired in the scanner is

noisier than that collected outside of the scanner, we still see a significant difference in oddball

versus standard tone pupil trace in the same time window as in the behavioral study, namely

between 600 and 800 ms (Figure 2.13). This difference is dampened however in session 3,

which is perhaps indicative of a vigilance decrement.

43



Chapter 2. In Search of the LC: The needle in the graystack

Figure 2.10 – Statistical maps of Oddball > Standard tones (3 mm with physiological correc-
tion) in the high-resolution condition (p =0.005, unc.) in red and fuchsia overlaid on the T1
canonical image. The LC atlas is also overlaid (in light turquoise). Significant voxels are seen
in all three orientations, bilaterally, just adjacent to the LC map.

2.5.4 Sequence Comparison Study: Conclusion

The fMRI results above informed our choice of EPI sequence for experimental studies inves-

tigating uncertainty. Of the 3 sequences, we selected the multi-echo sequence because it

captured BOLD responses in the brainstem and also because it could be reasonably tailored

for a close-to-whole brain analysis, which allows us to investigate other regions of interest

in our study. The high-resolution sequence on the other hand, given its long repetition time

(TR), would prove problematic in the whole-brain domain, even though it yielded the most

promising results with regards to LC localization. We opt to retain the smoothing process in

our subsequent analyses as well, given our aim to examine cortical regions but also in light of

the brainstem results found above. Data smoothed to 3mm data yields scattered voxels across

the region, which may indeed reflect noise. Physiological data correction may improve results

as well though we opt not to employ it in light of our questions of interest regarding surprise

and sympathetic system engagement.
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Figure 2.11 – Statistical maps of Oddball > Standard tones (8 mm with physiological correc-
tion) in the high-resolution condition (p =0.005, unc.) in red and fuschia overlaid on the T1
canonical image. The LC atlas is also overlaid (in light turquoise). Significant voxels are seen
just adjacent to the LC map notably in the sagittal orientation.

2.6 Summary of results

Taken together, results of our three pilot experiments provide guidance in how to proceed

experimentally in our study. First, with regards to structural localization in future studies, we

opt to link any brainstem activation to a probabilistic LC atlas (Keren et al., 2009). Second,

based on results above, we determine that indirect localization of the LC via OKN stimulation

is not feasible. Third, in light of the LC ’s role in autonomic function, we must consider that

applying physiological correction to data may remove relevant variance and thus compromise

results. Thus, we will not apply physiological correction later on in our pre-processing pipeline.

Fourth, we replicate findings that the auditory oddball paradigm reliably elicits pupil dilation,

within and without the scanner. Fifth we determine that pupil data acquired in the bore is far

noisier and more difficult to process than pupil data acquired outside the scanner. Sixth, in

considering whether or not to apply a smoothing kernel to our image data, we decide to retain

the smoothing process, given that unsmoothed data yielded 1) noisy statistical maps; 2) we aim

to investigate larger structures that benefit from smoothing. Seventh, we determine that using

a multi-echo sequence, developed to increase signal to noise ratio and specifically to rescue
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Figure 2.12 – Grand mean time courses for odd (red) versus standard (blue) tones, acquired in
the scanner, for three separate imaging sessions.

signal drop-out in orbitofrontal regions, is preferable to other available sequence options

when taking into consideration the tradeoffs inherent to fMRI research namely, SNR, time,

spatial resolution and spatial extent as well as the susceptibility that is potentially introduced

by LC ’s proximity to CSF.

The LC lies in the dorsal pons. It is part of the reticular formation in the brainstem. Subregions

ventral to the LC include the medial lemniscus, the central tegmental tract, the medial longi-

tudinal fasciculus and reticular formation nuclei (nucleus reticularis centralis superior and

nucleus reticularis tegmenti pontis); in the dorsal direction, the superior cerebellar peduncle;

and in the superior direction, the inferior and superior colliculi followed by the periaqueductal

grey (PAG). With respect to fMRI, we do not expect significant BOLD responses arising from

tracts, (although see Gawryluk et al., 2014 for a review on white matter fMRI activations in the

corpus callosum) two neighboring pontine nuclei must be considered: the trochlear and motor

nuclei of the trigeminal nerve. The superior cerebellar peduncle is an obstacle to localization

efforts, as it not only lies just behind the LC but also flanks the region. Finally, with respect

to inferior and superior colliculi, these regions are easily identifiable on T1 images and thus

significant clusters found within their bounds can be assigned correctly. The PAG is superior

to the aforementioned colliculi, and thus, again, can be easily classified as being ’out of LC’.

Interestingly with respect to the PAG, it encompasses a cholinergic nucleus, the laterodorsal
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tegmental nucleus. As seen above, Ach represents another neuromodulator of interest with

respect to decision-making under uncertainty. BOLD response in the PAG has been linked to

aversive prediction errors (Roy et al., 2014) as well as uncertainty-modulated pain response

(Yoshida et al., 2013). In summary, the dorsal wall of the pons provides a natural boundary

for the LC, as does the inferior colliculus. Bounds in the ventral and inferior direction are less

clear and thus clusters crossing the atlas bounds should be subjected to significant scrutiny.

The question of whether or not to apply physiological correction to fMRI data from the

brainstem is a pertinent one (Harvey et al., 2008; Brooks et al., 2013). It is of note that in

the Brooks study, signal variation due to physiological effects was low ( 2%) in the region

of the LC specifically. Applying physiological correction to our data may prove problematic.

If LC activity correlates with increases in cardiac and respiratory rates, for instance in the

experience of surprise, then correcting for such artifacts may in fact divert pertinent variance

away from what is expected to be a difficult to detect, small signal change. As our subsequent

fMRI paradigms will be event-related, we expect low frequency noise to be removed by high-

pass filter. Finally, the most pertinent recent study investigating LC bold responses found

no differences in physiologically versus non-physiologically corrected LC BOLD responses

(Murphy et al., 2014). Thus, we will not be including physiological correction in our future

pre-processing pipelines.

The process of smoothing fMRI data is a means of increasing SNR as well as a method to model

data for parametric tests. With a region as small as the LC, applying a smoothing kernel may

well have the effect of obliterating any significant voxels in the region. If only 2 or 3 voxels

display a significant BOLD response, then averaging their intensity across neighboring voxels

may have the net effect of erasing a significant response. On the other hand, not smoothing

data ignores the problem of noise in the signal and presents a problematic state of affairs

with regards to parametric tests down the line, as the application of random field theory

mediates family-wise error correction. In our auditory oddball pilot experiment above, we

find unsmoothed results indeed yield questionable statistical maps, increasing our odds of

assigning significant LC activity to noise. Further, Murphy and colleagues also compared

smoothed (6 mm FWHM) and unsmoothed data and found that unsmoothed data reduced

the significant cluster in the region of the LC (Murphy, 2014). As we aim to investigate cortical

regions as well as the LC in future studies, we opt, based on the reasoning and evidence above,

to include smoothing in our pre-processing pipeline.

The controversy surrounding LC localization with the use of MRI is acute (Minzenberg et al.,

2008; Astafiev et al., 2010) and elicits strong, almost partisan views on what does and what

does not constitute the LC. On the other hand, the drive to assign the LC-NE complex to

a specific cognitive function is significant. As these high-level relationships are difficult to

measure in non-human animals, that is, non-invasively through fMRI, our methodology with

respect to measuring the LC remains limited. What is remarkable in the LC debate is that one

side will assign LC BOLD response to brainstem areas that are suspiciously far from the LC (e.g.

the inferior/superior colliculus) (Minzenberg et al., 2008) while the other side categorically
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negates the possibility of an LC-specific BOLD response in fMRI results. The middle road in

the debate thus becomes razor sharp for what is a researcher to do with a significant cluster in

what appears to be the vicinity of the LC’ Such clusters should not be ignored. In an attempt

to avoid controversy, researchers have taken to equivocating and identifying such clusters

as being ’in the vicinity of the LC’, a path we take in the rest of the thesis. It must be stressed

that, in our case, ’in the vicinity of the LC’ encompasses a specific definition based on the LC

Keren atlas. The LC Keren atlas is a probabilistic map of the region and thus we will anchor

our future experiments on the bilateral voxels that are shared by 95% of the subjects tested in

the study. We feel this conservative approach to LC functional identification is sufficient to

make the claim that a significant cluster in the brainstem may fall in the vicinity of the LC.

As mentioned, the search for a neuromodulator responsible for uncertainty signaling is a

compelling quest. Our and other’s views on noradrenergic involvement in uncertainty have

been guided by a series of relationships: pupil dilation to risk processing; LC to pupil dilation

to risk processing; LC to NE, to LC-NE to pupil dilation and risk processing; and therefore

NE to risk processing. A chink in any of the above links obviously compromises the final

association of NE to risk processing. What has not been addressed in our view is the potential

pitfall in assigning noradrenergic activity to LC. While all LC neurons produce noradrenaline,

and it is known that the LC projects to nearly all regions of the brain save for the basal ganglia

(Nagai et al., 1981), its effects downstream appear heterogeneous (Schwartz & Luo, 2015).

Subsets of neurons within the LC have been found to differ along a ventral-dorsal gradient, in

both morphology as well as co-expression of neuropeptides (galanin and neuropeptide Y).

The LC is also heterogeneous in terms of neurotransmitter receptors, with α 1 receptors being

more abundant in the anterior portion of the region, relative to α 2 receptors in the posterior

region (Chamba et al., 1991). Acetylcholine also elicits LC neuron firing, further complicating

a narrow LC-NE relationship (Egan & North, 1986). As mentioned, LC efferent projections

are widespread however evidence suggests that neurons projecting to the forebrain are con-

centrated in dorsal LC while those projecting to the cerebellum and spinal cord are found in

ventral LC (Loughlin et al., 1986). In another study, anterior cells were found projecting to the

hypothalamus while posterior cells projected to the thalamus. Cells projecting to the cortex

were found across the whole region (Mason & Fibiger, 1979). It is in my view the relationship

between LC response and specific noradrenergic activity that merits more scrutiny. While

LC neurons do not project to the substantia nigra; globus pallidus or striatum, they have

been found to stimulate dopaminergic neurons in the hippocampus (Yamasaki & Takeuchi,

2017; Wagatsuma et al., 2018). Further, LC stimulation modulates dopamine downstream

via the ventral tegmental area (VTA) (Park et al., 2017). Thus even if an uncertainty-related

BOLD response is found in the LC, it may not be linked to noradrenaline per se, but in fact

dopamine. The LC itself, again in spite of its small size, represents a heterogeneous set of

neurons (Schwartz & Luo, 2015). It is indeed perhaps too simplistic to assign noradrenergic

signaling to the LC. Therefore, in our future studies, while we will seek to determine if BOLD

responses correlate with the LC, as a means of informing the question, we will make no strong

claims on noradrenergic involvement textit per se in uncertainty signaling.
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3 Of Outcomes and Expectations: the
Neural Representation of Confidence,
Surprise and Information
Abstract

How does confidence relate to surprise? And surprise to information? All are at play in the

decision-making process albeit at different time-points. Surprise manifests at the outcome of

a decision, when all variables are revealed, while confidence arises between a decision and

its outcome, in the face of partial information. Both phenomena are prime candidates for

neuroscientific study, because they can be formalized by a computational account and also be-

cause they represent affective states. By exploiting this dual representation of confidence and

surprise as computation and feeling, we can investigate their common neural representation

in the insula. Further, information theoretic accounts of surprise cast it as information, but for-

mal accounts also show that more information correlates with less surprise (Schwartzenbeck

et al., 2015; Itti & Baldi, 2009). To address this quandary, we explore the neural representation

of information as a confidence error, by using an information theoretic account to capture its

signal at the outcome of a trial, while controlling for surprise as prediction error. We investi-

gate these questions in the context of a gambling task in a model-based functional magnetic

resonance imaging experiment. Specifically, we assign confidence as inverse prediction risk;

surprise as absolute prediction error; and information as Shannon entropy, in parallel to

reward and reward prediction errors at distinct time-points a task. We find a common insular

involvement for all three variables of interest; LC, striatal and anterior cingulate activation for

surprise; and cuneus and frontal lobe correlates for information, specifically. These results

support the notion that the insula plays a central role in prediction errors; objective confi-

dence, as precision, is reflected in regions previously linked to uncertainty; the brain encodes

surprise and information as distinct quantities.

3.1 Introduction

What purpose does surprise serve? From a phenomenological perspective, surprise serves to

alert an organism to a change in her environment. A surprising event is thus one that violates
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expectation, or, in other words, a signal of an improbable event. In addition to its role of alarm

bell, surprise could be used as a learning signal, in which some information is gained from the

surprise itself. In Claude Shannon’s seminal paper on Information Theory (Shannon, 1948), he

elegantly demonstrates the notion of surprise as information. While Shannon’s work alluded

to signal processing and the problem of encoding and decoding information, we can, some

70 years later, borrow from his work and apply the concept of surprise as information in the

context of human behavior.

As natural environments are probabilistic, our expectations and predictions reflect estimates

of what we believe will happen. These estimates may contain information about the (expected)

uncertainty. As probabilities, expectations are endowed with a variance, or the second moment

of its probability. Previous work has characterized this variance as expected uncertainty, or risk,

inherent to a reward (or utility) prediction (Preuschoff et al., 2006). The outcome of a reward

prediction elicits a learning signal in the form of a reward prediction error in the brain, a

process that relies on the striatal dopaminergic system and that has been well-characterized in

previous literature (Schulz et al., 1997; Hollerman & Schulz, 1998; Abler et al., 2006; Glaescher et

al., 2010; Pessiglione et al., 2006; Garrison et al., 2013), both computationally and empirically.

Previous work has further identified a risk prediction error related to risk, which we term

surprise, in the anterior insula as well as in the striatum (Preuschoff et al., 2006; Preuschoff et

al., 2008). Just as an agent learns through the reward prediction error, which serves to adjust

subsequent reward predictions, surprise as risk prediction error should serve as a learning

signal that tunes subsequent risk prediction. Unlike the reward prediction error, surprise

does not necessarily have a hedonic valence. We expect surprise to occur independently of

reward, so long as it violates the confidence an agent has in her predictions. Thus a loss can

be, affectively and computationally, just as surprising as a reward. Information theory posits

that surprise is information, a plausible consideration in light of the fact that a surprising

event can add to our a priori knowledge of the world. However, it has been noted that surprise

and information, as quantified by an information theoretic framework, may be differentiated

into a stimulus-bound surprise and a Bayesian surprise, or information gain (Itti & Baldi,

2009). Namely, maximal information (in the form of entropy) can carry the least surprise, as

quantified by an improbable event. Entropy in information theory is the quantity by which

a system can reconstruct a message; that is, given a problem, how many yes/no questions

are needed to resolve it? When uncertainty is minimal, that is when an agent has a degree of

confidence in the matter, we can see that entropy, or the information gain, will be low and

surprise, if the outcome is unexpected, will be high. However, when uncertainty is maximal,

and confidence low, the amount of information provided by an outcome is also maximal, while

the surprise carried by the outcome is low, as expectations are not well defined. In viewing

this question through the Free Energy Principle framework, we see that these two quantities

together define free energy. A question worthy of study then is to determine if surprise and

information are differentiated in their neural representation.

And what of confidence? Confidence, like surprise and uncertainty, is often thought of as a

feeling but its mathematical definition has been extensively used in the fields of statistics and
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economics (Manski, 2004; Cesarini et al., 2006) and has more recently attracted interest in the

field of neuroscientific examination of decision-making (de Martino et al., 2013; Rolls et al,

2010; Kepecs et al., 2008; Kiani & Shadlen, 2009). Pouget and colleagues (Pouget et al., 2016)

write that confidence is the probability of being correct given the evidence, which distinguishes

it temporally from certainty, and further posit that, in the case of a continuous variable, can be

represented by the inverse variance of said variable. Confidence as inverse variance fits with

our definition of risk as variance; the higher the risk, the lower the corollary confidence. Such

a measure is also called precision and is an objective measure of confidence. Most studies

on confidence in decision-making employ a subjective measure of confidence, obtained via

self-report or inferred from such measures as reaction time. While studies above implicate

the orbitofrontal and parietal cortices in confidence encoding, Lak and colleagues (Lak et

al., 2017) recently found that midbrain dopamine encodes confidence in addition to reward

prediction in monkeys; similarly Hebart and colleagues (Hebart et al., 2015) also find striatal

involvement in confidence, supporting a dopaminergic role in uncertainty. Specifically, they

employed a choice-dependent model of confidence in a task exploiting perceptual ambiguity.

If one is to consider confidence as the degree to which we believe we are correct, we must

consider the confirmation of our belief. This is distinct from surprise or reward prediction

error but relates to the information contained in a given trial, or what is dubbed entropy

or average surprise in information theory. If confidence is precision, then information is

accuracy; at the outcome of a gamble, we can view this information gain as a confidence

error. We do not expect this quantity to engage regions related to a sympathetic response

as we would for surprise, nor do we expect this quantity to induce conflict in an agent, even

though it is a prediction error. Crucially, we examine this variable at the outcome of a trial

to solve the following quandary: are surprise and information one and the same or are they

neutrally distinct? If information gain is a confidence prediction error, is it represented in the

brain? Does such a quantity even register at the outcome of a trial? While surprise can be

informative, it has been argued that the greater the information content, the lower the surprise;

thus we can differentiate them in a formal account. We examine whether disassociating the

two variables yields distinct patterns of neural activity. If they do, it better supports the notion

that information, or entropy, is indeed different from surprise.

In the following study, we examine three main questions in the context of cognitive (financial)

uncertainty. We seek to examine the neural representation of distinct uncertainty-related

variables, notably confidence, surprise and information, as formalized by precision (inverse

variance), absolute prediction error and Shannon entropy. Specifically we hypothesize that

1) surprise as error-detection will elicit a BOLD response in the insula, striatum, anterior

cingulate and the LC; 2) that objective confidence signals, will be reflected in the insula; 3)

that information-related neural signals will be distinct from surprise. We first seek to confirm

the existence of these signals, distinct from reward-related variables, in regions related to risk

and reward processing. We test our hypotheses using fMRI within the context of a gambling

paradigm that elicits both reward and risk predictions as well as their concomitant errors

while controlling for motivational, learning and motor effects, to determine whether these
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changes in neural activity are confirmed within a set of brain regions (notably the striatum

and insula) known to be implicated in reward learning and risk signals (Preuschoff et al., 2006;

Preuschoff et al., 2008; Kuhnen & Knutson, 2005; Hsu e al. 2005; Lak et al., 2017).

3.2 Materials andMethods

To address our research questions, we employed a gambling task performed during functional

magnetic resonance imaging (fMRI) acquisition. We used an auditory version of a card game

(Preuschoff et al., 2006), where subjects had an equal probability of winning or losing 1 CHF

( 1 USD) at each round, starting with an initial endowment of 25 CHF. At each round, subjects

were instructed to place a bet via manual button press on whether a second card drawn from a

deck of ten cards would be higher or lower than a first card drawn from the same deck. The bet

is made prior to any card being drawn, at which point outcome probability is at .5, or maximal

uncertainty and the expected value of reward is 0. Following the bet, subjects heard the value

of the first card. After a 5.5 second interval, subjects heard the value of the second card. After

another 5.5 s interval, subjects were instructed to report whether they had won or lost the

round. An incorrect response incurred a penalty of 25 ¢off a round’s total payoff. Each trial

lasted approximately 25 s. Inter-trial intervals durations were randomly jittered (2-5s). All

possible card pairs, excluding pairs of identically valued cards, were presented to each subject

in a random order, totaling 90 trials per experiment. These 90 trials were divided into three

sessions of 30 trials each, to give subjects a chance to rest in between sessions. Each session

began with a new 25 CHF endowment. The order in which specific card pairs were presented

was randomized; thus no two subjects played the same sequence of gambles. Throughout the

experiment, subjects viewed a black fixation cross on a grayscale screen projected into the

MRI bore. Auditory stimuli were coded using the voice of ’Alex’ from Mac OSX text-to-speech

function. At the end of the experiment, subjects were paid the resulting payoff of one of the

experimental blocks. The entire experiment was conducted in English. The Ethics Committee

of the Canton of Vaud, Switzerland, approved the experiment.

3.2.1 Participants

Twenty-five healthy participants (10 F, average age 25.13 years) were enrolled in the experi-

ment. Participants were recruited via paper and online advertisements targeting the student

populations of Ecole Polytechnique Fédérale de Lausanne and Université de Lausanne. Exclu-

sion criteria included metal implants, previous psychiatric illness, and psychotropic drug use

within the past year. Inclusion criteria included proficiency in English.

3.2.2 Procedure and Task Description

Subjects were sent electronic versions of information relating to the risks and benefits of the

experiment the night before their scheduled session. On the day of the experiment, this infor-
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Figure 3.1 – Sample Trial Timeline. Subjects are first instructed to choose whether a second
card drawn from a deck of 10 cards will be higher or lower than a first card (t1). At t2, subjects
hear the value of the first card, whereupon they can make a prediction on their expected
reward, risk, respectively confidence. At t3, subjects hear the value of the second card, at
which point they know whether they have won or lost the round, and incur a reward prediction
error, surprise and a confidence error (information). At t4, subjects are asked to report whether
they have won or lost as a means of assessing their attention. Trials lasted roughly 25 s each.
Inter-trial jitter was randomly set to 2-5s. Subjects played 90 round of the trial divided into 3
blocks of 30 trials.

Figure 3.2 – Uncertainty Related Variables in a one-shot decision process. If the brain as an
inference machine, we expect it to make predictions related to uncertainty when faced with
a cue: first, risk at cue; followed by risk and confidence, post-decision; followed by errors
relating to both predicted risk (Surprise) and confidence (Information gain)

mation was reviewed with the subject before obtaining their written and informed consent.

Subjects were then asked to undergo screening prior to the scanning session to ensure their

compatibility with the procedure, as well as to collect relevant information on their medical

history. We then provided an oral explanation of the gambling task before proceeding to the
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scanner room. The task was coded in Matlab (Matlab and Statistics Toolbox Release 2013a,

The MathWorks, Inc., Natick, Massachusetts, United States) and the PsychophysicstoolBox

(Brainard, 1997; Pelli, 1997; Kleiner et al, 2007) and incorporated the Eyelink Toolbox functions

(Cornelissen et al., 2002). Following the end of the experimental session, subjects were paid for

their time and debriefed. Payment of their task-related payout was reserved for a subsequent

second experimental session, to lower rates of attrition.

3.2.3 Imaging Procedure

All scans were acquired on a Siemens 3T Prisma, at the Centre Hospitalier Universitaire

Vaudois in Lausanne, Switzerland. Once in the scanner room, subjects were fitted with a

heart-rate monitor on their finger and respiration rate sensor around their mid-section, for

physiological monitoring via BioPac (BioPac Systems Inc., Goleta, CA). Once settled in the

bore, we acquired first a localizer scan, followed by a gre-field mapping scan to correct for

magnetic field inhomogeneities. We then alerted subjects to the beginning of the task and

functional sequence. In a first instance, prior to MRI acquisition, we performed a 3-point

calibration on the in-scanner eye-tracker (EyeLink SR 1000, SR Research, Ottawa, Ontario), as

we aimed to collect pupillometry measures related to task activity. Following this, we displayed

task instructions on the screen projected onto a mirror within the bore. Subjects could then

signal their readiness for the scan, upon which the first of three EPI sequences was launched.

As the task was auditory in nature, once the EPI sequence was launched, we presented subjects

with a black fixation cross centered on a grayscale screen throughout the experiment. The task

itself was sounded with the use of Mac OSX text-to-speech function, with the voice of ’Alex’,

transmitted to the subject via MR compatible headphones. Parameters for our sequence were:

2D EPI, Multi-Echo sequence, 3 x 3 x 2.5 mm resolution, with a TR=2.72 s (34 slices; slice TR =

80 ms; slice TE = 17.4 ms; FOV = 192 mm; FA = 90; matrix size 64 x 64). Following the three

task sessions, subjects were told they could close their eyes and rest while we acquired their

T1 structural MRI (MPRAGE; 1 x 1 x 1 mm; slice TR = 2000 ms; slice TE = 2.39 ms; FOV = 256

mm; FA = 9; matrix size = 256 x 256). The task related session lasted approximately 36 minutes

while the imaging session lasted approximately 50 minutes; the whole experimental session,

including intake and debrief lasted approximately 90 minutes.

3.2.4 Behavioral Analysis

All 25 subjects completed the task. Of these, 4 were found to have made more than 3 errors

in at least one session (an error being either a false report of the outcome at the end of a

trial, or a missed bet). These subjects were excluded from subsequent analyses, as errors of

commission and omission may reflect a lack of attention to the task and thus compromise

result interpretability, given that no action is required from the time-points of interest. Average

task-related payout per participant was 29.57 CHF; across all sessions and subjects, payoffs

were in the range of 13-39 CHF.
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Table 3.1 – Decision Variables Across Sessions

Variable F p Mean Mean Mean
Session 1 Session 2 Session 3

Predicted Reward 0.0389 0.9619 0.0100 0.0104 0.0013
Risk 27.3517 <0.0001* 0.5921 0.6666 0.5167

Confidence 27.35 <0.0001* 0.0004 -0.0740 0.0759
Risk Prediction Error 13.4 <0.0001* -0.0720 -0.0457 0.1092

RPE 3.4 0.0337 -0.0247* -0.0546 0.0558
Absolute RPE 5.603 0.0037* 0.5561 0.6438 0.5713

Shannon Entropy 24.6024 <0.0001* 0.6364 0.7047 0.5623

As our task was designed to be completely random, we performed post-hoc analyses on

potential differences for several variables of interest across sessions. We performed an ANOVA

to determine if any one session contained more of one type of card value for card 1 and found

no significant differences across sessions (F = 0, p =.996). We then performed ANOVAs on

the mean differences of higher bets and lower bets across sessions and found no significant

differences (F = .19, p =.8324 and F = 0.2, p =0.8204, respectively), indicating that subjects

understood the random nature of the task and did not ’switch’ strategies across sessions. We

then sought to determine if there was a difference in bet choices and found a significant bias

for selecting a higher bet in all sessions (F = 34.69, p <0.001). We cannot conclude that there is

a bias towards selecting higher bets in spite of this result, because buttons indicating a higher

bet were consistently on the right side for all subjects. Thus our significant results may reflect

handedness rather than bet preference.

Finally, we performed F tests on all decision variables across sessions to determine if differ-

ences existed in levels of exposure to our respective variables of interest.

We took the decision to fully randomize card pair presentations within and across experimental

sessions to ensure neither order effects, nor inadvertent learning were introduced into the

study. All subjects experienced a different sequence of card pair presentations. We expected

no differences in decision-making variables means across sessions. Post-hoc tests contradict

that expectation and thus preclude us from undertaking tests on across-session effects.

3.2.5 Imaging Analysis

Scans were preprocessed and analyzed using SPM 12. We first generated voxel displacement

maps (VDM) and applied these to functional data. We then warped and realigned data to the

mean image before apply a bias-field correction. Then data were co-registered to individual

anatomical volumes before being segmented (6 class tissue probability maps) and normalized

to the MNI152 template and smoothed to 8 mm FWHM. The resulting images were then

used for analysis. The course we took to perform analyses on fMRI data was as follows. We

designed three model-based GLMs. In the first, we modulated card 1, offset by 1 second, with
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reward prediction, as well as confidence; and card 2, with regressors separated by win or loss

outcomes, offset by 1 second, with surprise as risk prediction error as well as reward prediction

error. In the second GLM, we modulated card 1 with the same parameters as those above but

at card 2, we applied absolute reward prediction error as surprise and added a third parametric

modulator, that of Shannon Entropy, as a measure of information; further, as winning RPEs

correlate with absolute RPEs, we did not separate regressors according to outcome. We offset

the sampling of the BOLD response to take into account the time duration of the card value’s

sounding, which lasts 1 second. The difference between risk prediction error and absolute

reward prediction error are that the first is a quadratic function, while the second is linear.

They are qualitatively the same otherwise. In a third GLM, we maintained the same design

as GLM 2, but we swapped the third parametric modulator at card 2, that is information,

with a Kullback-Leibler (KL) divergence measure, which would reflect a potential ’learning’

across the session. We applied these designs at the single subject level before performing a

random-effects analysis at the group level. We then tested for whole brain activation, as a

means to inform our analyses, first at p=0.05, FWE corrected, then at p=0.001, cluster-level

corrected. Should cluster-level correction yield significant voxels in specific contrasts of

interest, namely confidence, surprise and information, we proceed to using non-parametric

statistical tests, as a means to overcome both false positives (with cluster level correction)

and false negatives (with whole-brain family wise error correction; see Eklund et al., 2016).

Because we are using model-based fMRI to investigate cognitive processes, we do not expect

large changes in the BOLD response. Therefore, we identified 7 a priori regions of interest

(ROIs) (13 bilateral, but for the locus coeruleus) in advance of any analyses to apply small

volume corrections. We constrained our choice of regions to the striatum (caudate, putamen

and nucleus accumbens); anterior cingulate cortex; insula (posterior and anterior); and the

locus coeruleus. All ROIs employed in our analyses came from the Neuromorphometric Atlas

except for the locus coeruleus map. The latter ROI employed came from identification of the

region with a neuromelanin-sensitive MRI sequence from Keren and colleagues (Keren et al.,

2009). Given results from our pilot data suggesting this map may not be suitable for analysis,

we created two LC ROIs centered at the peak voxel identified by the Keren paper (within which

95% of individual regions were contained). In addition, our specific investigation of the locus

coeruleus eschewed cluster-level correction, as we do not expect to find a cluster for such a

small region.

It is worthy of note that many brain regions have been implicated in decision-making pro-

cesses, such as the amygdala, dorsolateral and ventro-medial prefrontal cortices and or-

bitofrontal cortices however, we constrained our choice of a priori regions to better focus on

those specifically relevant to our paradigm, as found in previous studies employing the same

task (insula and striatum), as well as regions we hypothesize to be implicated in uncertainty

processing (anterior cingulate and the locus coeruleus).

The designs above were repeated for each of the three sessions before being concatenated for

estimation. The two primary time-points of interest were at 1 second after the start of card 1’s

sounding and at 1 second after the start of card 2’s sounding. After hearing the value of card 1,
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Figure 3.3 – The general linear model. Model-based fMRI analyses of the Card Game. Regres-
sors included in the model are presented above, including a sound regressor (bet and report
instructions); a motor regressor (Bet Choice and report responses); a regressor for Card 1’s
sounding; a regressor for Card 1’s offset, modulated by prediction values; a regressor for Card
2’s sounding; and a regressor for Card 2’s offset, modulated by error values. Motion correction
regressors of no interest are also included in our design matrices but are not shown here.
Parametric modulators are represented in colored blocks. Outcome variables were separated
into winning and losing trials in a first instance, to check win related BOLD responses.

the subject can make a reward prediction, a risk prediction and a concomitant confidence

estimate. After hearing card 2, the subject can experience a reward prediction error as well as

surprise and information. Because confidence and risk prediction after card 1 are negatively

correlated, only confidence was included as a parametric modulator to card 1.

3.2.6 TheModels

Our computational model for reward prediction after card 1 reflects the probability of winning

given the bet placed (higher or lower), and card 1’s value. The reward prediction error at

card 2 reflects the trial outcome (win or loss) minus the reward prediction. Risk prediction

(uncertainty) at card 1 is taken as the variance of the reward prediction; and confidence is

taken to be the inverse of this risk prediction (a precision term). At card 2, two numerically

equivalent models quantified surprise as error: the risk prediction error, computed as the

actual minus expected reward prediction error and the absolute reward prediction error.

At card 2, information was also included as parametric modulator in the form of Shannon

entropy, an information theoretic measure. While we have reviewed several possible models
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for surprise, including Shannon Surprise and Bayesian KL divergences, we do not employ

the latter two, as they are better suited to learning tasks. Because our task begins with an

equal probability of outcome and ends with a terminal state that is independent of prior and

future outcomes, we do not expect any learning to occur. In other words, the model space of

the task is confined to a trial; the trial begins with a flat prior and ends with a deterministic

outcome. Trials are assumed to be independent. Where there may be a learning effect is in the

unlikely event that a subject counts card pairs as they are presented, because each possible

card pair is only presented once. Should a subject deduce that each card pair is only presented

once and retain card pair values as the trial proceeds, then we may expect the model space

to expand to the experimental session. We nonetheless controlled for the possibility that a

subject counted cards during the experimental sessions. We computed a Bayesian update

measure by employing a Dirichlet counting process, as per Strange et al. (Strange et al., 2005),

where wins were counted across a session, and included this measure of learning or divergence

in a general linear model as a parametric regressor at Card 2. No significant voxels emerged,

even when lowering the threshold to p=0.05, uncorrected.

The following quantities are computed in the prediction phase of the experiment (t2 in Figure

3.1):

E(Rew ar d) =∑
p(outcome | car d1,Bet )∗xoutcome (3.1)

where x denotes the trial reward.

Ri sk = E [(E(Rew ar d)−Rew ar d)2] (3.2)

Con f i dence = E(Rew ar d)2 −Ri sk (3.3)

We opt to use this value of confidence as opposed to the true inverse of the risk because risk

values do include zero values (when the outcome is sure).

The following quantities are computed in the outcome phase of the experiment (t3 in Figure

3.1):

δ= Rew ar d −E(Rew ar d) (3.4)

Sur pr i se = |δ| (3.5)

Ri skPr edi ct i onEr r or = δ2 −Ri sk (3.6)

H s =−pwi n ∗ log2(pwi n)− ((1−pwi n)∗ log2(1−pwi n)) (3.7)
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Figure 3.4 – Graphical representation of the computational accounts employed in our model-
based fMRI study. The top plot shows prediction values computed at t2: reward prediction
for higher bets (blue) and lower bets (green), as well as confidence (black dashed lines) and
risk (red dashed lines). The bottom plot shows decision variables computed at t3, at the
trial outcome for reward prediction error in winning trials (green), loss trials (red), as well as
unsigned errors, notably surprise (absolute prediction error in black dots; risk prediction error
in black dashes) and information (blue dashes).

p(wi ni ) =
∑i

1 W i ns +1
∑i

1 Outcomes +1
(3.8)

Above, we define information as being a confidence error. One manner in which to further

define such an error is to cast the confidence error explicitly as 1 (true outcome) minus the
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confidence of the true outcome at t2.

Con f i denceEr r or = 1−Con f i dence (3.9)

When we compute such a value, we find that an explicit confidence error is simply a scaled form

of our information value (Shannon entropy in equation 3.7, above). We see this relationship

clearly in Figure 3.4.

Figure 3.5 – Explicit confidence error and Shannon information plotted for the 10 possible
outcomes at Card 2. We see that confidence error and Shannon information present the same
quantities, scaled relative to one another.

3.3 Neuroimaging Results

3.3.1 Confirmatory Analyses

To validate our data and replicate previous findings in reward-based decision making we first

inspect the (known) BOLD response to auditory stimuli; reward prediction; reward prediction

error and reward.
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Contrast Sound

As expected, our auditory stimuli yield highly significant clusters in bilateral auditory cortex at

p =0.05, FWE.

Figure 3.6 – Statistical maps for the auditory contrast. Here, we plot statistical maps thresh-
olded at p =0.05, FWE for auditory contrast overlaid on the canonical T1 image (0, -28, 6).
Event onsets included in the regressor include the sounding of bet instructions, of card 1, of
card 2 and the instruction to report trial outcome. Significant clusters are found bilaterally in
the auditory cortex.

Contrast Win > Loss

To test for reward related activity, regressors for winning outcomes were separated from

regressors for loss outcomes and contrasted against one another. These regressors were taken

one second after the start of the sounding of card 2’s value with the aim of confirming reward

related neural activation. At p =0.001, cluster level corrected (k = 35), we obtain a significant

cluster of 1344 voxels in the region of the anterior cingulate cortex, a region implicated in

reward processing, though we did not detect striatal activation as expected.

We also test a Loss > Win contrast and found no significant clusters, in line with previous

findings (Preuschoff et al., 2006).

Expected Reward

We then tested for reward prediction activation following card 1 (p=.001, k = 27). No significant

clusters emerged at the whole brain level. Our SVC analyses show significant activations in
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Figure 3.7 – Statistical map thresholded at p =0.001, cluster level correction k = 35, for win >
loss contrast (-8, .49, 14). Maps are overlaid over the canonical brain. A large significant cluster
in the anterior cingulate is visible on the map. No significant clusters in the striatum were
found however.

right dorsal (caudate, putamen) and ventral striatum (See Appendix A, Table A.1).

Reward Prediction Error

We then tested for activation following card 2 for the reward prediction error, to determine if a

neural pattern similar to ones found previously would emerge, namely in striatal regions. At

the whole brain level (p =.001, k=27), significant clusters are found in the left putamen and

right caudate extending into the left and right ventral striatum (see Appendix A, Table A.2).

3.3.2 Exploratory Analyses

The following analyses concern our questions of interest, centered on investigating the neural

representation of uncertainty related variables, namely confidence, surprise and information.
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Figure 3.8 – Statistical map for expected reward, thresholded at p=0.001, cluster level corrected
(k = 35) (2, 13, -6) and overlaid on the T1 canonical image. A cluster in the right striatum is
visible in the image but is not significant at the whole brain level. SVC analysis using the same
threshold reveals significant clusters in the right dorsal striatum extending into right nucleus
accumbens.

Confidence at Card 1

We performed a t-test on the offset of card 1’s sounding parametrically modulated by con-

fidence, computes at t2 (See equation 3). Recall that at the beginning of each trial, the risk

prediction is the same; the latter changes following card 1, as the subject updates her risk.

Confidence here is orthogonal to reward prediction (experienced during the same time inter-

val) but is anti-correlated with risk. Using this definition of confidence in the human realm is

ideal, because in our task, confidence is objective. Thus we need not concern ourselves with

potential subjective effects. Its relation to surprise is also clear: the higher this confidence

at card 1, the higher the surprise will be at card 2. No significant voxels were found for risk

prediction at the group level (a negative t-test contrast on the confidence at card 1). We then

performed a test on confidence values at card 1. Whole brain analyses reveal bilateral activa-

tion in the angular gyrus (p =0.001, k = 31), right middle frontal gyrus and anterior insula, as

well as left middle frontal gyrus and superior frontal gyrus. SVC analyses confirm a significant

cluster in the right anterior insula (See Appendix A, Table A.3).
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Figure 3.9 – Statistical maps for the RPE contrast, thresholded at p=0.001, cluster level corrected
with k = 27 (0, 0, -4) overlaid on the T1 canonical brain. We find the expected pattern of BOLD
responses here, including in the ACC as well as bilaterally in the striatum.

Figure 3.10 – Cluster level corrected statistical maps for confidence, (thresholded at p =0.001; k
= 31) (-2, 18, 7). The map is overlaid on the T1 canonical image. A significant cluster in the
right anterior insula is seen in the coronal orientation

The statistical map of the confidence contrast shows a cluster in the brainstem that may be

in the region of the LC. We performed an SVC analysis on the region using an LC centered
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volume at (-5 -37 -26) and (6 -37 -27) with a 10 mm radius.

Table 3.2 – Confidence Brainstem Cluster

cluster cluster cluster cluster peak peak peak peak
p(FWE-corr) p(FDR-corr) equivk p(unc) p(FWE-corr) T equivZ p(unc) x y z

0.015 0.348 25 0.348 0.009 4.41 3.64 0 0 -30 -24
0.023 3.89 3.32 0 -6 -30 -18

0.011 0.26 36 0.26 0.007 4.57 3.74 0 4 -34 -34
0.009 4.41 3.64 0 0 -30 -24

Figure 3.11 – Close up image of t cluster in the region of the LC for the confidence contrast at
the whole brain level (p =0.001, k = 31). The right panel shows the cluster in question, while
the right panel shows the cluster’s position relative to the LC Keren atlas (Keren et al., 2009).
As in Chapter 2, the cluster sits just at the border of the LC map. However, we note that the
cluster does extend into the anterior portion of the brainstem into other nuclei.

Though we find significant clusters with that definition, we cannot conclude that this cluster

is in fact in the LC, because it extends anteriorly in the brainstem (see Table 3.6 for peak

coordinates). Recall however that the Keren map is probabilistic but subject LC’s spanned the

following coordinates: for left LC, -2.5:-7; -36:-39; -18:-33; and right LC, 4:8; -36:-39; -18:-33.

With that in mind, the second peak voxel found in table 3.6 with our left LC centered ROI

would fall into the LC proper. We cannot say as much about the right LC, notably in that it’s y

coordinate, at -34, falls out of the map’s narrow range (-36:-39).

We then performed statistical non-parametric tests on the contrast, as a more stringent

method of investigating confidence related neural signals. We find significant clusters in

bilateral angular and middle temporal gyrii, as we as left middle frontal gyrus and right

anterior insula (p =0.05, FWE) (See Appendix A, Table A.4).
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Figure 3.12 – Sagittal view of brainstem cluster for the confidence contrast in the region of the
LC overlaid on the canonical T1 image (Green and yellow map). The blue cluster shows the LC
atlas. Again, the cluster is clearly just adjacent to the LC map, yet we cannot conclude that it is
in fact and LC BOLD response captured for the confidence contrast

Surprise following Card 2

Here, we examine neural activity that correlates with Surprise following card 2. In the first

design, we apply the risk prediction error as a measure of surprise to replicate results from

previous experiments (Preuschoff et al., 2006). No significant voxels were found for this model.

We then use a different model of surprise to investigate related activity beyond the reward

prediction error: absolute (unsigned) reward prediction error. Surprise as absolute RPE yields

significant activation bilaterally in the insula, right caudate and right ACC, as well as several

other cortical regions. SVC analyses confirm bilateral activity in anterior cingulate, insula as

well as dorsal striatum (see Appendix A, Table A.5).

As in confidence, we find a significant cluster in the region of the LC. We perform an SVC

analysis without cluster level correction at p=0.001, centered at (-5 -37 -26) and (6 -37 -27),

respectively, with a 10 mm radius for each. We find significant activity for the LC in left and

right ROIs using this ROI.

Just as in confidence, peak voxels found lie just outside the narrow definition of LC y coordi-
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Figure 3.13 – Thresholded non-parametric statistical map (p =0.05, FWE) for confidence
overlaid on an axial zlice of the T1 canonical image (z = 34). We see a cluster in the right
anterior insula and left middle temporal gyrus.

Figure 3.14 – Statistical maps of the surprise contrast overlaid on the T1 canonical image,
thresholded at p =0.001, cluster level corrected (k=34) (0, 0, 0). The image shows significant
clusters in the ACC (sagittal view), bilateral striatal clusters (coronal view); and bilateral
anterior insula clusters (axial view). A brainstem cluster also appears in the sagittal view.

nates from the Keren study. This limitation poses a challenge in assigning the observed cluster
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Table 3.3 – Surprise Brainstem Cluster

cluster cluster cluster cluster peak peak peak peak
p(FWE-corr) p(FDR-corr) equivk p(unc) p(FWE-corr) T equivZ p(unc) x y z

0.003 0.089 98 0.089 0 6.34 4.64 0 -6 -34 -28
0.010 0.494 43 0.247 0.002 5.19 4.08 0 -2 -32 -28

0.007 4.55 3.72 0 6 -30 -18
0.016 4.05 3.42 0 2 -28 -22

0.035 0.892 1 0.892 0.038 3.57 3.1 0.001 8 -34 -34

Figure 3.15 – Close up view of significant clusters in the region of the LC. The right panel shows
the thresholded statistical map for surprise (red) overlaid on the canonical T1 image, as well
as the Keren LC atlas (blue). The left panel shows the cluster extending posteriorly towards the
left cerebellar peduncle in the axial view, as we would expect the LC to do. The coronal slice
shows clusters bilaterally, sitting below the inferior colliculi.

to the LC.

We then performed non-parametric permutation tests for surprise. This test yielded significant

clusters in the following regions (p =0.05, FWE): bilateral superior temporal gyrii, anterior

cingulate cortex; right posterior orbital gyrus (extending in to the right anterior insula); and

left anterior insula, inferior/middle frontal gyrus, middle temporal gyrus and caudate (see

Appendix A, Table A.6).
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Figure 3.16 – Surprise contrast thresholded statistical map (p =0.001) overlaid on the T1
canonical image (green). Also visible one the image is the Keren LC atlas (blue). As in the
confidence contrast above and the oddball contrasts in Chapter 2, a cluster is found just at the
anterior border of the map, precluding firm conclusions on LC localization.

Information After Card 2

We then examined BOLD responses for the information at Card 2. As in the other contrasts,

we first perform a whole-brain a cluster level corrected analysis (p =0.001, k =31) which

yielded significant clusters in bilateral occipuital gyrii; left supramarginal and superior frontal

gyrii; and right putamen and superior frontal gyrii and then an SVC analysis with the previous

analyses’ threshold which yielded significant clusters in bilateral posterior and anterior insulae

and dorsal striatum (caudate and putamen) (see Appendix A, Table A.7).

A nonparametric statistical test also revealed a distinct pattern of activation for information as

compared to surprise, however, information gain also shows common activations with sur-

prise, namely in the right anterior insula. This test yielded bilateral clusters in the cuneus; left

supramarginal and lingual gyrii, central operculum, calcarine cortex; and right anterior insula,

superior occipital gyrus, superior frontal gyrus, postcentral gyrus, putamen and cerebellum

(see Appendix A, Table A.8).
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Figure 3.17 – Statistical maps of the non-parametric statistical maps for the surprise contrast
overlaid on canonical image. The image shows clear bilateral insular engagement as well as a
cluster in the right middle temporal gyrus.

Figure 3.18 – Statistical map of the information contrast, thresholded at p =0.001, cluster level
corrected ( k= 31) overlaid on T1 canonical image (0, 37, 9). The image above shows bilateral
clusters in the insula and right putamen as well bilateral frontal gyrii (axial view).
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Figure 3.19 – Statistical maps of the non-parametric tests for the information contrast (p =0.05,
FWE) overlaid on the T1 canonical image. The coronal slice (x= 48), shows bilateral activity in
the cuneus while the axial view (z = 42) shows a cluster in the right anterior insula.

3.4 Discussion

The results above show that 1) objective confidence correlates with the insula, a region pre-

viously linked to uncertainty processing; 2) surprise elicits activity in the insula, striatum,

anterior cingulate cortex; 3) Information, as distinct from surprise, exhibits common acti-

vations in the insula and distinct responses in frontal gyrii and cuneus for information. By

using a formal account of all three measures while controlling for reward-related decision

variables as well as task-related phenomena, such as overt learning and motor action, we link

confidence, surprise and information to distinct neural correlates and further show an insular

involvement in all three.

3.4.1 Confidence

Our results support the notion that confidence, or the degree to which one believes she is

correct, occupies a particular role in decision-making variables. Confidence measures in

human studies often suffer from being a self-reported, subjective measure. Here, objective

confidence is easily captured by the inverse variance computed after card 1. We do not

replicate the findings for neural signals of risk at the same time-point (Preuschoff et al., 2006).

This negative finding may be due to several factors: first, we employ an auditory version of the

same task; second, we use a different EPI sequence; third we test a different cohort. It is not

unreasonable to suppose that sensitivity to risk versus confidence will differ across individuals,

as one is the degree to which one believes she is incorrect and the other is the degree to which

one believes she is correct. Thus a risk-averse individual may be more preoccupied with the

former and in principle, this attribution of importance towards one form of uncertainty over
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another may be reflected in the BOLD response. Importantly, we note that a negative group

result for prediction risk does not imply an either/or weighting of risk versus confidence. We

assume an individual considers both variables in the decision-making process, only we did

not find a BOLD response reflecting each in our study. Our sample size precludes us from

investigating the risk versus confidence distinction in individuals but we can support the

notion of confidence over risk, should the two compete for space in neural representation.

Confidence guides our belief towards what we think will work, while risk guides our belief on

what will go wrong. In our day to day, it may be beneficial to weight predictions more on what

will work rather than on what will not, as the latter cannot guide our actions. In addition, as we

used an auditory version of the task, the prediction period of 5.5 seconds instead of the original

7 seconds in the visual paradigm may have hampered the development of a (prediction) risk

BOLD response.

The key confidence-related neural correlates found in our study are the insula and the middle

temporal gyrus (MTG). We hypothesized that the insula would play a role in confidence

assessment, as it is a computation that translates to a feeling, in line with the region’s role in

interoception. Confidence-related BOLD responses in the MTG offer an intriguing result as

well. The region has previously been implicated in a prospective memory task (Okuda et al.,

2003) as well as subjective confidence (Chua et al., 2006). Indeed, a meta-analysis of studies

on confidence finds a consistent role left medial temporal gyrus for (subjective) confidence

(White et al., 2014). While our initial research question was guided by the search for LC-NE

involvement in uncertainty encoding, we did not expect confidence per se to elicit brainstem

activity in the vicinity of the LC. Our SVC analyses using LC centered spherical ROIs yield

significant clusters (at p =0.001, uncorrected) however, the cluster extends into the anterior

portion of the brainstem, which we have seen in chapter 2 provides an especially problematic

area for which to assign specificity. The question remains as to what this brainstem cluster

reflects, as our design matrices account for auditory, motor and first order effects such as

reward prediction. With regards to confidence, it is of note that we do not find orbitofrontal

cortex or striatal involvement for confidence as in other studies. This may be due to the fact

that we control for valuation, which implicates the OFC, as well as reward prediction, which

calls on striatal activation.

3.4.2 Surprise

The study of surprise has implications for both pattern recognition algorithms as well as

human behavioral study. In machine learning, surprise details an unexpected outcome from

a generative model whose computational definition can come in many forms. In humans,

surprise can be characterized as a physiological and affective response to the unexpected.

Formal accounts of the phenomenon include Shannon surprise (Shannon, 1948); Bayesian

surprise (Itti & Baldi, 2009); and a predictive coding account of surprise (as absolute pre-

diction error or risk prediction error). Shannon surprise, or the negative log of an event’s

probability, represents average surprise over time, which is not easily mapped to our paradigm.
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Bayesian surprise captures the difference between prior (expected outcomes) and posterior

distributions (actual outcomes) but, as an update, does not necessarily reflect an alerting

signal. Importantly, Bayesian surprise must assume a shift in probability distributions, which

subjects should not expect in our task, as none occur but for the difference between before and

after card 1. Incidentally, this value of Bayesian surprise is equivalent to our prediction risk

calculation at Card 1, which we input into our design and which yielded no significant results

at acceptable thresholds. Studies investigating computational models of surprise fit to human

behavior remain sparse and generally elicit surprise by introducing saliently different stimuli at

low frequency (Michelon et al., 2003; Parris et al., 2009), however such stimuli incorporate phe-

nomena that are related but distinct from surprise, such as novelty and incongruence. Here, by

controlling for both the reward prediction error and the information gain in a gambling task,

we can confidently assert that our measure of surprise captures surprise as error-detection

specifically. The fact that activation patterns include the anterior insula meshes well with

the notion of surprise as a feeling (Singer et al., 2009); surprise-related activity in the ACC

corresponds to an event’s conflict induction; the caudate’s role in surprise fits well with its

involvement in learning. Our initial aim was to identify an LC BOLD response for surprise

that would corroborate previous studies correlating pupil response to surprise (Preuschoff et

al., 2011). While we identify a cluster in the vicinity of the LC, it extends anteriorly into the

brainstem, precluding a firm identification of a surprise-related LC BOLD response.

3.4.3 Surprise as learning signal

By design, our task does not include explicit learning or decision-making (except for time-

points of no interest, including bet placement and trial outcome report) so as to allow for

a clear picture of latent decision variables to appear in the BOLD response; specifically, all

trials start with an equal probability of winning so no learning or strategizing can occur. As

each trial starts with a flat prior, we did not employ a Shannon surprise metric to capture

surprise, opting instead for absolute values of the prediction error. Nonetheless, in our model,

we expect learning signals in the forms of prediction errors to arise merely in response to

expectations made after cue presentation. Thus, surprise (as well as the reward prediction

error) may encode a learning signal that adjusts predictions for a given cue. Should we not

see a surprise signal, we can hypothesize that learning will be diminished, an interesting,

if distressing, state of affairs that may suggest dysfunction and even pathology, such as in

problem-gamblers or other forms of addiction. Indeed, Parkinson’s disease, whose neural

signature begins in dorsal striatal degeneration, is known to increase the risk of addictive and

compulsive behaviors (Voon et al., 2006). While some evidence points to the role of dopamine

replacement therapy in the etiology of PD-related addictive behaviors (Vaillancourt et al., 2013,

Cools et al. 2001), studies on impaired reward processing have yielded mixed results (Schott et

al., 2007; van Eimeren, 2009; Euteneuer et al., 2009). Our findings thus offer an opportunity to

investigate whether it is specifically an inability to experience surprise that is compromised in

patients.
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Chapter 3. Of Outcomes and Expectations: the Neural Representation of Confidence,
Surprise and Information

3.4.4 Confidence and Information as Precision and Accuracy

The brain is often cast as a type of machine and thus applying concepts from the engineering

sciences may aid us in elucidating its function. Confidence and information in our study

were viewed through the prism of the brain as an inference machine, within which an agent

computes several measures to best resolve the problem of uncertainty. The application of

Shannon surprise to human behavior is appealing because the formulation is simple and

intuitive. However, while surprising events can be informative, information may not be

surprising. It has been shown that when information (in the form of Shannon entropy) is

high, surprise is low. In the case of an ambiguous prediction, say hovering around 0.5, the

information provided by an outcome will be high, as the outcome can take several possible

states and will resolve the maximum uncertainty. By contrast, in such a case, surprise will be

low, as we have no dominant expectations. Thus equivocating surprise with information may

be counterintuitive, a quandary highlighted by Itti & Baldi (2010). In addition, this distinction

is formalized in the Free Energy Principle as both quantities (surprise and entropy r) together

define Free Energy. While Free energy is usually formalized specifically as Shannon surprise

and a KL divergence, it does not preclude its formulation as absolute prediction error and

Shannon entropy. Indeed, we cast the latter as a type of learning, as information, or confidence

error, in our paradigm represents an information gain at the trial outcome, relative to the

confidence (in Shannon terms, the redundancy (Shannon, 1948)) at card 1. We differentiated

the two phenomena and control for their respective contribution to the neural signal at the

same time-point. Our study clearly disambiguates the two values by using a predictive coding

account of surprise instead of Shannon surprise. As mentioned, the information gain at

outcome can be viewed and computed as a confidence error. It is the distance between truth

and confidence. Indeed, one minus confidence yields a quantity that is equivalent to Shannon

entropy, multiplied by some constant. Our imaging results further offer an intriguing story

regarding information gain on the brain; the insula remains correlated with information, again

suggesting that this region is crucial for translating lower-level prediction error signals into

states of awareness (Singer et al., 2009). Other information-related regions include frontal

regions and the cuneus. The cuneus in particular has previously been implicated in learning

rates (Payzan-LeNestour et al., 2013). Notably, the anterior cingulate cortex in information-

related statistical maps is absent. This underlines the quality of information gain, in that it

does not represent a conflict, even while being a prediction error.

We conclude here that objective confidence is to information, what precision is to accuracy.

The information gained from an outcome in a given probabilistic environment encapsulates

the difference between a confidence prediction (the precision) and the certainty of the terminal

state. Like in other cases, it may be the information processing that is specifically impaired

in various decision-making dysfunctions and thus it is worthwhile to track its emergence in

probabilistic paradigms.
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4 Are Perceptual Switches Surprising?

4.1 Introduction

Sensory perception is an automatic process that, in healthy humans, is not subject to delibera-

tion and does not necessarily require conscious awareness. Thus the feature of uncertainty

in sensory perception may be puzzling at first glance, since we perceive our environment

with such ease and efficiency. Nonetheless, this deception is likely a credit to unseen work

performed in the brain. If we consider first the noise surrounding the stimuli we perceive,

then we must account for perceptual uncertainty processing. Second and more obvious, when

we concede that individuals perceive the same stimuli differently, we must again deduce that

the brain integrates uncertainty about a stimulus, with different outcomes for different people.

Third, an individual does not necessarily map the external world to an internal represen-

tation in a consistent manner over time, which hints at an inferential process with regards

to perception. Finally, when we consider the phenomena of visual illusion, the evidence of

perceptual uncertainty is laid bare: if we can give two names to a same stimulus, which one

is the true name? In questioning the mechanisms of visual perception specifically, the 11th

century scientist Ibn Al Haytham (Alhazen) was the first to propose that visual perception

requires an inferential process (Howard, 1996; Pelillo, 2016) that leads to a judgment, albeit a

hidden one. Alhazen’s treatise was prescient in that he challenged the notion that 1) visual

perception was a holistic, instantaneous process; 2) suggested the mind (soul) resolved the

process, not merely the eye. Later on, Hermann von Helmholz (von Helmholz/Southall, 1925)

coined the term unconscious inference with regards to visual perception, and posited that

such a process supported perception. With the use of fMRI and a predictive coding account of

bistable perceptual switches, we peek under the hood of observed phenomena to capture the

neural processes implicated in the perception of ambiguous visual stimuli.

4.1.1 Inferential nature of Perceptual decision-making

What is meant by perceptual decision-making? Can we choose to perceive the environment as

we want? It is important to distinguish here and elsewhere that perceptual decision-making
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generally removes the ’I’ from the agent. That is the decision is not declarative or intentional

and its conscious component appears spontaneous. Nonetheless, unbeknownst to us, a

decision-process is taking place. The surrounding environment is noisy and thus perception

is probabilistic - a given stimulus can take on more than one state to the observer. In order to

function however, the observer must infer what the state is. Thus we can apply the framework

of the brain as an inference machine to perceptual problems as well. While it seems that visual

perception is passive and automatic, the process involves a construction of sorts, because

the input to the visual systems is riddled with noise and there is a variability inherent to the

external to internal mapping of stimuli. Thus an inferential process is likely at work resolving

uncertainty (Gregory, 1997; Alais & Blake, 2005). With some stimuli, such as as visual illusions,

this ambiguity is made flesh in that the inferential process breaks through the consciousness

barrier. With such stimuli, we can actually report on perceptual changes. These illusions

generally have more than one conformation and the most common type are bistable illusions,

such as the Necker Cube (Necker, 1832). How do bistable illusions arise? Stimuli that can’t be

resolved into one representation offer the viewer more than one perceptual interpretation.

That is the stimulus ’flips’, or ’reverses’ from one percept to another. This feature is a property

of the unchanging stimulus. Thus if the stimulus is stable, why is our perception not? What

happens when we perceive a switch in an illusion?

4.1.2 Visual Illusions: Perceptual UncertaintyManifest

Visual illusions offer an ideal way by which to examine perceptual inference questions, as the

change in perception in the face of a stable stimulus clearly delineates an object’s ambiguity

and thus the probabilistic nature by which we recognize it as one thing or another. Illusions

are not limited to the visual domain and can also come in many forms, including motion from

stability; multi-stable illusions and binocular rivalry (Gregory, 1997). Below, we will briefly go

over studies on the latter two.

Binocular Rivalry

When two objects are simultaneously presented to each eye, a perceptual conflict occurs,

where stimuli compete for conscious representation. This phenomenon is termed binocular

rivalry and is a form of perceptual uncertainty. Einhäuser and colleagues (Einhäuser et al.,

2014) investigated brain regions involved in either passively viewing or actively reporting

perceptual changes. Perceptual changes were predicted by pupillometry. By using fMRI, they

determined how the perceptual switch alone (in the passive condition) engaged specific brain

regions and how these differed from brain regions responding to the active condition, where

subjects had to report the change when it occurred. They find frontal areas implicated in the

active condition only, suggesting that monitoring for the reporting of the switch as opposed to

the switch per se drives neural activity. The switch itself implicated lower-level brain areas.

The stimuli used to induce binocular rivalry were dynamic and static gratings. By measuring

the optokinetic nystagmus induced by the moving grating, a subject’s dominant percept could

76



4.1. Introduction

be inferred. For the static grating, pupil dilation was measured as an index of perceptual

change.

One advantage of binocular rivalry is that many different stimuli can elicit perceptual bista-

bility, including simple stimuli that engage low-level visual areas and more complex images

that can easily and predictably be dissociated in imaging studies (Sterzer et al, 2007). Thus

these stimuli can induce a conflict at both the visual and perceptual levels. Intriguingly,

the temporal dynamics of binocular rivalry are similar to those of bistable illusions, as are

the effects of interrupting stimulus presentation, which suggests a common mechanism for

perceptually ambiguous stimuli. These stimuli differ from bi-stable stimuli in other ways

however; for instance, an intermediate or mixed versions of the stimuli can be perceived.

Binocular rivalry further differs from ambiguous stimuli in that it is in fact two different stimuli

that are presented to a subject. Imaging studies using binocular rivalry show evidence of

activation for the suppressed image in regions implicated in specific stimulus categories (e.g.

faces). This feature is found in visual illusions as well (Moradi & Heeger, 2009). However, in

a study using the Rubin face-vase figure, it was found that fusiform face area activity prior

to stimulus presentation was higher in trials where the face percept was ultimately reported,

which provides evidence for a model in which random fluctuations in neural systems bias

one perceptual state over another (Hesselman et al., 2008). Rees (Rees, 2007) points to the

extrastriate visual cortex as a candidate for conscious visual perception, however, activity in

certain regions is not always associated with conscious experience.

Dynamics of Perceptual DecisionMaking

Above, we hint at the importance of perceptual switch dynamics. Predictable, periodic percep-

tual switches hinder the notion that an inferential process is at play to some degree, because

such a time constant would imply a true, binary switch, from one receptive field to another.

But evidence of such a regular dynamic is not found. Two theories are offered in the literature

regarding the dynamics of the neural impetus to switch. As mentioned, one view is that an

adaptation occurs to one percept and those neurons, once fatigued, hand over the reins to

another set of neurons that are specific to an alternative percept. This model assumes a period-

icity to the perceptual alternation, as there is no reason to believe that these processes vary in

time. The model is termed an oscillator model (Moreno-Bote et al., 2007). A challenge to this

model is the attractor network, where attractor states represent alternative percepts as troughs

in the system; noise drives perception towards one or the other minimum (’attractor’) state in a

stochastic manner. Both models have found support in experimental studies (Moreno-Bote et

al., 2007). A significant challenge to the oscillator model is that dominance times, or time spent

perceiving a given percept, are not fixed but vary stochastically. This feature of perceptual

multistability supports an attractor network model of perceptual switches, where random

noise accumulates over time until a threshold is reached, at which point conscious perception

lands in a different trough. In the case of bistable illusions, a first percept is ’chosen’ at random;

fluctuating activity will then, over time, eventually overcome the decision barrier and settle
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in an alternative local minimum, which is the other perceptual state. Thus, when viewing

a percept in a given state, perception destabilizes over time (on average, 5-6 s) (Kornmeier

& Bach, 2012). Morena-Bote et al. (2007) propose a hybrid model of attractor and oscillator

models that describes observed data.

Modeling Perceptual DecisionMaking

Can Bayesian frameworks explain perceptual uncertainty? As seen above, the theory that

multistability arises from neural adaptation alone is no longer a widely held view. Evidence

points to an interplay between top-down and bottom-up processing (Gregory, 1997). Thus it

is possible that, in making a perceptual decision on a particularly ambiguous stimulus, many

factors are integrated to generate a probabilistic model of a percept. In such a case, ambiguity

may be resolved through Bayesian inference. Sundareswara and Shrater (2008) investigated

this possibility by using a Necker Cube paradigm. The authors biased the dominant percept of

the Necker Cube by surrounding the stimulus with flankers of disambiguated Necker Cubes.

Such contextual stimuli have previously been found to influence the amount of time spent in a

given percept (the one in concordance with the flankers’ orientation) and this bias was found

in their behavioral experiment. They further replicated the known bias that individuals tend to

see the cube in its from-above orientation more often. The increase in time spent in a biased

percept and a decrease in time spent in the opposing percept indicated to the authors that

ambiguity was decreased. The authors exploited this variation to propose a Bayesian inference

model using Markov Renewal Processes that explained switching behavior by attributing dif-

ferences in percept probability based on time spent in a given perceptual state. Weilnhammer

et al. (2017) have revisited Bayesian frameworks to provide a neurocomputational account of

bistable perception, this time casting the switch as a prediction error. In using a predictive

coding account to model perceptual switches in Lissajous figures during an fMRI experiment,

they find neural correlates in the anterior insulae as well as inferior frontal gyrii, which sup-

ports our hypothesis of uncertainty processing occurring in this region in particular. While a

predictive coding account has been set forth to explain bistability in binocular rivalry (Hohwy

et al., 2008; Dayan, 1998), the two studies above are, to our knowledge, the only empirical

studies ones investigating visual perceptual switches as prediction errors.

4.1.3 Neural correlates of bistable perception

Competing theories on the neural correlates of visual bistable perception include the hypothe-

sis that the switch in perception arises from low-level visual areas versus the notion that it is

non-sensory, cortical processes that resolve ambiguity. In support of high-level modulation of

perceptual switches, an fMRI study investigating auditory bistability, Kondo & Kashino (2007)

found prefrontal cortex activation specific to endogenous perceptual switches, as opposed to

a change in perceptual stimulus.

In binocular rivalry, the BOLD response in the V1 region of visual cortex can predict changes

78



4.1. Introduction

in perception (Haynes & Rees, 2006). Indeed, TMS over V1 has been found to cause perceptual

alternations (Pearson et. al, 2007). Evidence for Lateral Geniculate Nucleus (LGN), another

early visual processing region, involvement in perceptual switches has also been found (Wun-

derlich et al., 2005). Taken together, these findings suggest low-level visual processing in

perceptual switches, however, electrophysiological studies found no evidence of early visual

processing regions’ involvement on perceptual fluctuations (Sterzer et al., 2009). When faced

with perceptual decisions, macaques show an increase in activity in lateral intraparietal (LIP)

neurons, which becomes steeper with more difficult decisions. Further this study showed that

response (in this case an eye movement) was consistently initiated when activity summed

to a specific threshold, which suggests that the decision process happens over time with the

accumulation of information (Huk & Shadlen, 2005). There is conflicting evidence regarding

implicated brain regions depending on the methods used to assess neural activity and this

conflict may result from the fact that electrophysiological methods measure spike trains while

perceptual processes reflect changes in local fields potentials; because fMRI and EEG are

more likely measuring local field potentials rather than neural spikes (Logothetis et al., 2001),

evidence culled from studies using the latter may better capture activity related to perceptual

processes.

Event related potentials in the parietal region roughly 250 ms before a button response were

found with motion reversals in an EEG study using stroboscopic stimuli as well as Necker Cube

Switch reversals (Str"uber and Herrmann, 2002) and with orientation reversals of the Necker

cube (Str"uber et al., 2001). Evidence of decreased neural activity is found in ambiguous versus

disambiguated stimulus variants (Leopold and Logothetis, 1999; Kornmeier and Bach, 2006;

Moreno-Bote, 2007; Pitts et al, 2010). Kornmeier and Bach (2009) postulate that this dip in

neural activity may reflect the so-called flatness of attractor states more ambiguous states

should have a lower barrier of transition than disambiguated variants. In studies investigating

stimuli that spontaneously switch, extrastriate visual activity is correlated with conscious

perception (Tong et al., 1998). Most functional neuroimaging studies consistently show activity

in parietal and frontal regions in response to perceptual switches ( Sterzer & Kleinschmidt,

2007; Sterzer et al., 2009; Kanai et al., 2010; Britz et al., 2011; Megumi et al., 2015; Zaretskaya

et al., 2010; Kornmeier & Bach, 2012) though not all (Fraessle et al., 2014). These findings

lend support to a top-down modulation of visual processing from higher-order cortical areas

though it has been argued that fronto-parietal involvement may reflect downstream activation

from visual areas following a perceptual change. Temporal resolution in fMRI does not readily

allow for a temporal disambiguation in brain activity although Sterzer & Kleinschmidt (2007)

have found a right PFC activation prior to a V5/MT activation during a perceptual switch. An

EEG study also found that right parietal activity came before a perceptual switch in a Necker

Cube paradigm (Britz et al., 2009). Taken together, a review of the neural correlates of bi-stable

perception presents an inconclusive picture. Evidence for low- versus high-level neural region

involvement is mixed. As we have seen, Sterzer, Kleinschmidt and Rees (2009) suggest that

cortical activity drives the perceptual switch while other groups have found low level regions

driving the phenomenon (Kornmeier & Bach, 2004; Kornmeier & Bach, 2005). One must
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consider the fact that different studies employ varied bi-stable stimuli, each of which may

be endowed with non-generalizable features. From a predictive coding perspective, such an

ambiguous state of affairs indeed offers an opportunity to investigate perceptual switches as

prediction errors, as predictive coding includes bi-directional processes in its formulation

(Rao & Ballard, 1998).

4.1.4 When does the reversal occur?

The most straightforward way to report a perceptual switch is via button press, which intro-

duces sources of error with respect to the motor response and reaction time. That is, how

good of a temporal precision does the manual response provide in relation to the conscious

experience of the switch? The perceptual switch necessarily occurs before the response. This

question was addressed in an EEG study of the Necker Cube. By using depth cues, the Necker

cube was disambiguated into its respective percepts and reaction times measured for the

latter. Median response time was 616 ms (Kornmeier et al., 2011).

Another manner in which to assess true reversal times is by interrupting stimulus presentation

(Orbach et al. 1966). Necker cubes were presented for varying durations with varying ISIs.

It was found that switch frequency decreased with ISIs longer than 400 ms, however, for

ISIs shorter than 400 ms, reversal rates increased as compared to continuous presentation.

Intriguingly, switches occurred close to onset for ISIs shorter than 400 ms. O’Donnell et al

(1988) exploited this feature of Necker Cube reversals in an EEG paradigm. By presenting

ambiguous and unambiguous cubes, they found a fronto-parietal positivity in both exogenous

and endogenous stimulus change that occurred roughly 550 ms after onset of a disambiguated

cube and 650 ms after onset of an ambiguous cube. It is hypothesized (Struber and Hermann,

2002) that this positivity indicated a consciousness of the reversal, leaving the switch to occur

sometime between 0 and 650 ms after stimulus onset. Kornmeier and Bach (2012) point

out that all EEG experiments find a slow positivity from parietal to frontal dominance which

occurs between 400 and 500 ms after stimulus onset and 100-150 ms prior to response in

the onset’ paradigm. In the manual response paradigm, this positivity peaks at 250 ms prior

to motor response. The parietal positivity according to several authors correlates to a P3b

component, which may reflect an awareness, or a consciousness of an event (Dehaene and

Changeux, 2011).

Kornmeier and Bach used a Necker Cube Paradigm with a presentation time of 800 ms, to

allow for detection of a P300 potential and to minimize the chance of a switch occurring

in that time, and an ISI of 400 ms. Subjects were asked to report their percept following

presentation (during the ISI to control for ERP signals related to motor-planning) in two

conditions. In one, they were asked to report a current percept that differed from a previous

one (indicating a reversal) and in the other, a current percept that was the same as the last one

(indicating a stability). They further presented subjects with disambiguated versions of the

cube in a control condition. The endogenous reversal condition elicited a positivity (RP) at

80



4.1. Introduction

130 ms post-stimulus onset that was most pronounced at the occipital lobe. This signal has

been found across different bi-stable stimuli. The authors suggest this signal arises from a

decision conflict, which would contribute to an increase in the response time for perceptual

switches in ambiguous stimuli (Kornmeier & Bach, 2005). In studies investigating perceptual

switches against so-called ’replay’ conditions, where disambiguated versions of the stimuli

are presented as a control condition to the bi-stable percept, numerous studies report a right

lateralization in fronto-parietal areas (Brascamp et al., 2015; Britz et al., 2008). Finally, support

for frontal and parietal cortices’ involvement in perceptual reversal comes from lesion patients,

who experience attenuated perceptual switches (Rees, 2001; Kanai et al., 2010; Scoccia, 2014).

4.1.5 OtherModalities

While most research has focused on visual perception, multistable perception exists for au-

ditory as well as tactile stimuli (Gregory, 1997; Kondo et al., 2017). Evidence suggests that,

while intra-subject variability exists across modalities, these phenomena emerge from com-

mon mechanisms. For instance, Kondo & Kashino (2007) found that dwell times for auditory

percepts follow a gamma distribution, just as they generally do in visual paradigms. Auditory

multi-stability presents in two general classes: auditory streaming and verbal transformations

(Warren & Gregory, 1958. While common points may exist between different sense modalities,

the auditory multistability field presents a research area that can stand on its own; wherefore,

a detailed review extends beyond the limits of this thesis.

4.1.6 Conscious or Unconscious?

When the perception of a stimulus changes while the stimulus stays the same, we can put forth

questions on consciousness. When are we conscious of the switch? That is when are we able

to recognize and declare that a perceptual switch has occurred? Is there a process immediately

preceding the switch that can be attributed to unconscious processes, notably relating to the

resolution of ambiguity? Kommeier & Bach (2012) found that a decision on a percept occurs

at least 340 ms before a subject can respond. In reviewing several EEG studies on bistable

perception, they suggest that somewhere between 250-500 ms before a key press, conscious

recognition of a switch occurs, though the switch may happen before then. Further, 1000

ms prior to a button response is when gamma power increases and alpha-power decreases,

activity that suggests higher-level cognitive processes (Kornmeier & Bach, 2005). The authors

posit that a percept switch differs from a perceptual choice. This distinction may specifically

relate to each event’s quality of consciousness that is the unconscious decision bound and

the conscious one.

Finally, what does a perceptual switch represent? Our nominal answer to this question is that

a perceptual switch represents uncertainty in a stimulus. One possibility is that the switch

encapsulates a perceptual prediction error. As mentioned, a very recent fMRI study examined

this possibility. Weilnhammer and colleagues employed a model-based fMRI experiment em-
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ploying Lissajous figures, a bistable illusion, by fitting a predictive coding model to behavioral

data. Their prediction error model elicited a significant activation in the right anterior insula

(Weilnhammer et al., 2017), a region implicated in other forms of prediction error.

4.2 Perceptual Uncertainty Experiment

We endeavored to investigate the neural correlates of perceptual uncertainty by employing a

stimulus that induces a bi-stable illusion. We specifically sought to capture a similar pattern

of neural activity for perceptual switches by casting these as prediction errors, just as we do

in the financial uncertainty task and performing the experiment on the same subjects that

performed the financial uncertainty task. We examine the question of perceptual inference in

an fMRI paradigm by exploiting the ambiguity of the Necker Cube, a structure drawn by Swiss

crystallographer Louis Albert Necker in 1832 that induces an optical illusion, an overt form of

perceptual uncertainty (Necker, 1832).

The Necker Cube is a transparent cube whose vertices are visible to a subject. Thus an

individual can perceive the cube in one of two conformations, from below or from above,

with the lower face or upper face appearing in the foreground. The (conscious) perceptual

switch between the two percepts happens spontaneously. The ambiguity inherent in the

illusion thus offers a means by which we can induce perceptual uncertainty in a laboratory

setting. The Necker Cube in its standard conformation can be said to be ambiguous: that is,

there’s an about equal probability of perceiving the cube in one way, or in another. In order to

better capture different levels of uncertainty and thus mimic our cognitive uncertainty task,

we modified the Necker Cube so as to bias a subject’s perception towards one conformation

or another. By warping the angles of the vertices in an incremental fashion, we introduced

different levels of bias to the cube (Einhäuser et al., 2004). It is of note that 1) the ambiguous

Necker Cube is already biased towards a from above percept; 2) the Necker Cube’s ambiguity

is vulnerable to individual subjectivity (Einhäuser et al., 2004). Thus, while we objectively bias

the cube towards one percept or another in an incremental fashion, it is not guaranteed that

an individual’s subjective perception will match this objective distortion.

In order to investigate a perceptual form of uncertainty that most closely matches our financial

uncertainty task, we administered two separate tasks to subjects. The objective of the first

task was to obtain a participant’s individual psychometric curve fit to our objectively biased

stimuli. In the second task, we present biased stimuli from the participant’s own subjective

curve to determine what happens in the brain when a given subject experiences a switch for

a stimulus biased to a given degree or, what the neural correlates of increasing (decreasing)

uncertainty are for a perceptual stimulus. As in the Card Game, because the switches happen

spontaneously, we control for neural activity related to decision-making variables of no interest

(such as deliberation, anticipation and learning), thus capturing a succinct account of neural

activity related to uncertainty processing. Further, our task offers no monetary incentive, thus

eschewing reward-related variables.
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In the following experiment, we investigate the following questions: 1) In applying a formal

account of risk, as variance, to viewing the Necker Cube, will we observe a BOLD response?

Will this BOLD response occur in the insula and striatum? 2) Can we model the perceptual

switch as a prediction error? Will such a modulation yield a BOLD response? Specifically, can

we apply a measure of surprise to the perceptual switch and in so doing observe similar neural

patterns to that found for surprise in the financial uncertainty task?

4.2.1 Procedure and Task Description

Sessions for the perceptual uncertainty task were scheduled to occur between 5 and 10 days

following the financial uncertainty experiment. Subjects were sent electronic versions of infor-

mation relating to the risks and benefits of the experiment the night before their scheduled

session. On the day of the experiment, this information was reviewed with the subject before

obtaining their written and informed consent. Subjects were then asked to undergo screening

prior to the scanning session to ensure their compatibility with the procedure, as well as

to collect relevant information on their medical history, including, specifically, any history

of neurological or psychiatric disorders or psychotropic drug use in the past year. We then

provided an oral explanation of the Necker Cube tasks before proceeding to the scanner room.

The experimental paradigm was coded in Matlab using the Psychophysics ToolBox (Brainard,

1997; Pelli, 1997; Kleiner et al., 2007) and incorporated the Eyelink Toolbox (Cornelissen et al.,

2002) functions. Following the end of the experimental session, subjects filled out two ques-

tionnaires: the trait component of the State and Trait Anxiety Inventory (STAI-T, Spielberger &

Sydeman, 1994) and the DOSPERT risk preferences scale (Weber et al., 2002). They were then

paid for their time as well as their payout from the Card Game, and debriefed.

Participants

The study was conducted on 23 subjects (9 f) with a mean age of 25.13 years. Twenty of the

subjects also participated in the Financial Uncertainty Study. For seventeen of the above

subjects, MPM maps (1.5 mm) as well as diffusion (NODDI) data were also acquired. Pupil

data was obtained for 20 of the 23 subjects. Participants were recruited via paper and on-

line advertisements targeting the student populations of Ecole Polytechnique Fédérale de

Lausanne and Université de Lausanne. Exclusion criteria included metal implants, previous

psychiatric illness, and psychotropic drug use within the past year. Inclusion criteria included

proficiency in English.

Imaging Procedure

All scans were acquired on a Siemens 3T Prisma, at the Centre Hospitalier Universitaire

Vaudois in Lausanne, Switzerland. Once in the scanner room, subjects were fitted with a

heart-rate monitor on their finger and respiration rate sensor around their mid-section, for
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physiological monitoring via BioPac (BioPac Systems Inc., Essen, Germany). Once settled in

the bore, we acquired first a localizer scan, followed by a gre-field mapping scan to correct

for magnetic field inhomogeneities. We then alerted subjects to the beginning of the task and

EPI sequence. In a first instance, prior to EPI acquisition, we performed a 3-point calibration

on the in-scanner eye-tracker (EyeLink 1000, SR Research, Ottawa, Ontario), as we aimed to

collect pupillometry measures related to task activity. We then displayed task instructions

on the screen projected within the bore. Subjects could then signal their readiness for the

scan, upon which the EPI sequence was launched and task 1 commenced. Task 1 lasted 20

minutes. At the end of task 1, a subject’s individual psychometric curve was derived and input

to task 2, a process which lasted roughly 1-2 minutes. Following this, we alerted subjects that

task 2 would start shortly, whereupon we performed the eyetracking calibration again before

launching the second EPI sequence, along with task 2. Parameters for our EPI sequence were

the same as those used in the Card Game (see Chapter 3 for detailed sequence parameters):

2D EPI, Multi-Echo sequence, 3 mm resolution, with a TR=2.72 s. Following the task sessions,

subjects were told they could close their eyes and rest while we acquired MPM maps (1.5

mm) as well as diffusion data (NODDI sequence). As all subjects performing the Necker

Cube task had previously performed the Card Game task, we did not reacquire a subject’s

individual anatomical scan (T1 MPRAGE, 1mm resolution; see Chapter 3 for detailed sequence

parameters). The task related sessions lasted approximately 40 minutes while the imaging

session lasted approximately 50 minutes; the whole experimental session, including intake

and debrief lasted approximately 90 minutes.

Necker Cube - Task 1

In task 1, subjects were presented with 21 different versions of the Necker Cube. The stimuli

differed in the angles of their vertices that biased the stimulus towards being perceived from

above (+1) or from below (-1), and this at regular intervals of 5% from the fully ambiguous

Necker Cube (at 0). Each of the 21 stimuli was presented 10 times, for 3 seconds each. Following

the 3-second presentation time, subjects had a two second time window during which they

could report their last percept (in case a switch had occurred during the viewing period). Thus

each trial lasted a total of 5 seconds and subjects responded to 210 trials in total (Figure 4.2).

Upon completion of the task, subjective percentages of percept reports were tallied for each

stimulus (a frequency of a given percept out of 10 same stimuli presented) and fit to a sigmoidal

curve. This fitting procedure allowed for the creation of subjectively biased stimuli for the

subsequent task. Importantly, a subject’s true ambiguous cube value was determined as the

inflection point of the curve; this point is dubbed the point of subjective equality (PSE) and

represents the point at which a subject perceived the cube from above or from below in an

equiprobable manner(see Figure 4.3).

1

1+e−k∗(x−PSE)
(4.1)
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4.2. Perceptual Uncertainty Experiment

Figure 4.1 – The Necker Cube Stimuli. The two top cubes show stimuli biased towards a from
below view (100% bias towards from above in the left panel, 50% bias towards from below
in the right panel). The fully ambiguous cube is seen in the middle. The bottom row shows
stimuli biased towards a from above view (50% bias towards from above in the left panel, 100%
bias towards from below in the right panel).

In task 2, subjects were presented with 5 different kinds of stimuli, subjectively biased at 20%,

35%, 50%, 65% and 80% towards a from above percept, based on their individual psychometric

curve. Stimuli were presented on a grayscale screen projected into the bore. These stimuli

were presented in 11 trials, for 80 seconds at a time, in a random order. Each stimulus type

was presented twice, but for the fully ambiguous cube, which was presented 3 times. During

the trial, subjects were asked to report their first percept with a manual button press and to

indicate perceptual switches via button press as they arose, if they arose. Button presses were

made on an MRI compatible response box. Individual subjects were asked to report "from

above" responses on one side of the button box, and "from below" responses on the other side.

To avoid lateralization confounds, these sides were switched for each subject. Four of the 11

trials also included a "replay" condition, where heavily disambiguated Necker Cube stimuli
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Figure 4.2 – An overview of the perceptual uncertainty experiment. In task 1, subjects are
presented with 21 versions of the cube, 10 times each, for a total of 210 trials. Subjects report
their percept following a 3 second viewing period. Results of this task generate an individual
psychometric curve, which is then used to derive 5 subjective stimuli, biased towards a 20%,
35%, 50%, 65% and 80% likelihood of being viewed from above. In task 2, subjects are presented
with each of these 5 stimuli for 80 seconds at a time, and asked to report their initial percept,
and then subsequent perceptual switches, if and when they arise.

were presented at the same time-points that prior switch reports were made in the previous

experimental trial.

4.3 Necker Cube Behavioral Results

4.3.1 Behavioral Results: Necker Cube Task 1

In a first instance, we plotted the distribution of several measures relating to the individual

results of the fitting task. As our manipulation of the Necker Cube constitutes a novel task, we

deemed the following tests necessary to ensure that the stimulus manipulation did indeed yield

the desired and expected outcomes. Subject responses from task 1 were fit to a sigmoid curve

to determine subjective perceptions of objective stimuli. From this fit, several parameters can
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4.3. Necker Cube Behavioral Results

Figure 4.3 – Representative subject psychometric curves. The left panel shows an example of a
poor fit. The right panel represents an example of a good fit, with a point of subjective equality
approaching a 0 bias, or an objectively ambiguous Necker Cube.

be obtained, including: the point of subjective equality (PSE), which is the particular stimulus

bias value at which a given subject perceives the Necker Cube from above or from below

equiprobably; and the k parameter for a given subject, which determines the steepness of an

individual’s response curve (Figure 4.4). We further plot the distribution of two goodness-of-fit

measures: the sum of squared errors (SSE); and R2 (Figure 4.5). Finally, we plot the distribution

of STAI-T anxiety measures (Figure 4.6), as one of our peripheral interests lay in assessing the

impact of anxiety on uncertainty-related behavior.

The histogram of PSE values across 22 subjects shows a spread spanning from -1 (stimulus

most biased towards being viewed from below) to 0.5 (stimulus objectively biased towards

being viewed from above 75% of the time), confirming our expectation that such a point is

indeed subjective. At the same time, we see that most subjects’ PSEs (17) cluster just below and

at 0 (the true ambiguous Necker Cube). This result suggests that a fully subjective ambiguous

cube is biased slightly towards a from below perspective (Figure 4.4).

In plotting correlation coefficients of subjective responses to the fit curve, we find again a

range of values, underscoring intersubject variability in perception. At the same time, most

values (15/22) exceed 0.8, indicating a good fit between objective stimulus values and subject
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Figure 4.4 – Top Plot: Distribution fit of point of subjective equality (PSE) values across subjects
(n = 22). PSE values constitute the inflection point of the sigmoid curve, or the point at which
subjects are equally likely to perceive the cube from above or from below. This point is thought
to vary across individuals and differ from the "true" ambiguous Necker Cube. We plot a
histogram of PSE values above to gain a picture of the measures spread across subjects. We see
above that most PSEs cluster at or just below zero (17/22 subjects). One subject in particular
has a PSE hovering at -1 (a stimulus most biased towards being viewed from below). The
variability in PSE values confirms inter-individual differences in Necker Cube perception. At
the same time, a high frequency of PSE values clustered around the true PSE suggests that
subjective Necker Cubes do not stray far from objective versions. Bottom plot: k parameter
spread across subjects. This value indicated the steepness of the curve. The histogram shows
both variability across subjects as well as a positive value for all subjects.

perception (Figure 4.5).

In plotting psychometric measures of trait anxiety (STAIT), we find a variance again across

subjects (Figure 4.6). For STAIT scores, it must be noted that scores ranged from 40-54, a span

that may not detect high or low anxious individuals. The STAI-T scale was not formulated to

assess clinical anxiety but scores that may signal anxiety symptoms have been suggested to be

anywhere from 39 to 55, which would place all subjects above in a high anxious group. It is

important to stress that normative STAI-T scores vary with age, gender and geography. We

do not, then, assume that our cohort is particularly anxious. Further, no subjects were native

English speakers and thus their responses to the inventory may have been more conservative

for reasons of language comprehension. All in all, the distribution of the scores collected

would allow us to probe individual anxiety profiles in relation to other variables, however,
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4.3. Necker Cube Behavioral Results

Figure 4.5 – Distribution of goodness of fit measure of individual curves against a logistic fit.
We fit individual values of correlations between subjective values and the logistic function as
a means of assessing subjective measures’ fits. Most regression coefficients ((15/22) exceed
0.8 and all exceed 0.4. The histogram plot confirms that the manipulation introduced in task
1 conforms to expectations (that is behavioral data roughly follows the logistic model). On
the other hand, we again see a variability in individual response curves, which underscores
the subjective nature of the task. Distribution of sum of squared errors (SSE) measures of
individual subjective fit curves to the logistic fit. Here, we plot the SSE values in a histogram to
gain a picture of subjective responses’ fit. SSE values appear to follow a normal distribution
across subjects. Of note is the low value of SSE’s across the experimental pool.

significant investigations into the STAI-T would require an expanded sample size.

Reaction Times

Next, we checked to see if any differences were found in reaction times between percepts and

across stimulus bias values. A t-test was conducted on the average reaction time to button

press for from above versus from below percepts and yielded no differences (p =0.1790, t =
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Figure 4.6 – Distribution of STAIT (Trait Anxiety) scores across subjects. Responses to the
anxiety scale were acquired following the experimental session in 21 subjects. Subject scores
ranged from 40 to 54. We plot these values to a histogram above to determine if scores provide
a range, and what the description of the histogram suggests. The histogram above does
show variability but does not appear to follow a normal distribution. Indeed, while the STAI-
T inventory was not developed to assess clinical anxiety, a higher score indicates a higher
likelihood of experiencing anxiety symptoms. Here, our data show that all subjects fall in the
higher end of the STAIT spectrum ( scores greater than 40).

1.39, df = 21). A second t-test was performed on the average reaction time to button press for

most ambiguous versus least ambiguous stimuli and yielded no differences (p=0.9917, t = -0.1,

df = 21).

A 2-way (Subject x Bias Level) ANOVA was performed on individual subjects’ average reaction

time per stimulus. There was no effect of stimulus on reaction time (F = 1.32, p =0.1636, df =

20) but there were significant differences across subjects (F= 47.87, p <0.0001, df = 21) (Figure

4.7).

The result above again underscores the subjectivity of Necker Cube perception, as reaction

times in Task 1 differ across individuals but not for other dimensions such as stimulus value or

percept.

Percept Bias

Perceptual reversals for the Necker Cube are known to show a bias for the from above percept

(Troje & McAdam, 2010; Kornmeier et al., 2009; Sundareswara & Schrater, 2008). To determine

whether our data corroborates this feature of the stimulus, we tested for the frequency of "from
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4.3. Necker Cube Behavioral Results

Figure 4.7 – Average Subject Reaction Time Per Stimulus Type in task 1. Task 1 includes 21
different biases of the Necker Cube Stimulus. Above, we computed each subject’s average
reaction per stimulus type, obtaining 21 different values for 22 subjects. The y-axis shows
average reaction time; the x-axis shows stimulus type grouped for each subject. Each color
denotes a stimulus type. A 2-way ANOVA yields no significant differences in reaction time
across stimuli but does yield significant differences in reaction time across subjects.

above" to "from below" percept selection in Task 1. Subjects selected from above percepts

significantly more frequently than they did from below percepts (p =0.0023, t = 3.47, df = 21).

The results of this test above thus show a significant bias towards viewing the cube from above

versus from below (Figure 4.8), replicating previously reported findings. This bias portends

a potential confound in other results as the assumed symmetry in perception may not be

present. In attractor state parlance, the from-above state may present a deeper trough that the

from-below state. A formal investigation of oscillator, attractor and hybrid models of bi-stable
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Figure 4.8 – Average Number of "from above" versus "from below" reports in Necker Cube
Task 1 in 22 subjects. From-above response frequency averages are shown in dark blue while
average frequency of from-below responses are in light turquoise. Average frequencies are
denoted on the y-axis. Results show a significant preference for from-above percept response
across subjects (p =0.0023).

dynamics is beyond the scope of this thesis. Nonetheless, we describe a possible model of

bi-stability that may better describe Necker Cube dynamics (Figure 4.9).

4.3.2 Behavioral Results, Necker Cube Task 2

In task 2 we first tested behavioral data to determine if the more ambiguous stimuli elicited

more perceptual switches, as we would expect it to. We performed an ANOVA on 3 levels of

ambiguity: fully ambiguated; partially ambiguated (cube bias at 35%/65%) and disambiguated

(cube bias at 20%/80%). While no significant differences were found (F=1.93, p = 0.1545, df =

54), a post-hoc t-test yielded significant differences for average switch frequency between the

most and least ambiguous conditions (p <0.001, t = 5.27, df = 18)(Figure 4.10).

We then tested to see if a preference for from above percepts was replicated in Task 2. To do so,

we conducted a t-test on the frequency of first percepts in each trial being from above versus

those reported as from below. Subjects again showed a bias towards a "from above" percept

(p=0.0027, t = 3.47, df = 18) (Figure 4.11).

92



4.3. Necker Cube Behavioral Results

Figure 4.9 – A schematic representation of Necker Cube bi-stability, incorporating findings
above on an overall preference for the from-above perceptual state. The black ball represents
an agent’s perceptual state. Two minima are described here, one for the from-above confor-
mation and the other for the from-below view. We propose that the perceptual states are
not equivalent; namely, the attractor state for the from-above percept is deeper. Thus the
perceptual state in the from-above conformation needs more noise accumulation to escape
to the alternative state; the corollary would imply that it is easier to escape the from-below
perceptual state, as its barrier to transition is lower.

Perceptual Switch Dynamics

The dynamics of perceptual reversals remain a topic of considerable interest and study

(Moreno-Bote et al., 2007; Zhou et al., 2004; Shpiro et al., 2009). Below, we describe analyses

relating to the amount of time spent in one state or another (the dwell time, or dominance

time) prior to a perceptual switch. We do so to ensure that 1) we replicate a gamma distriution

of dwell times between switches; 2) to determine if biased cubes in particular also display

such a distribution. Biased cubes incurring the same dynamic as fully ambiguous cubes lend

support to the notion that perceptual switches in biased cubes are qualitatively similar to those

in the ambiguous version, thus making comparisons across ambiguity levels more credible.

We first tested to see if the amount of time spent in a from above perceptual state differed
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Figure 4.10 – Mean switch frequency for each of three levels of ambiguity in Necker Cube Task
2 in 19 subjects. An ANOVA test shows no significant difference in means while a post-hoc
t-test between least and most ambiguous stimulus types shows significantly more switches in
the most ambiguous condition relative to the least ambiguous condition (p < 0.001).

from time spent in a from below perceptual state, across all conditions. A t-test revealed a

significant difference in average dwell times spent in from above versus from below states in

19 subjects (p=0.0025, t =3.5, df =18 ). Again, a preference was found for the from above state

(Figure 4.12).

In summarizing our findings across task 1 and task 2, both in perceptual reports and in dwell

times between from-above and from-below states, we confirm that a significant bias towards

from

We then sought to find a perceptual dominance effect for different bias levels by calculating

the ratio of the amount of time spent in the from above percept over the amount of time spent

in the from below percept for each stimulus condition (per Einhäuser et al., 2008). A cube

biased towards a from-above percept should elicit longer dwell times in the from above state.

The ratio of experimental dwell times should follow a linear pattern with the bias level. Results

show that dwell times for the from-above percept increase with the subjective bias value of
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4.3. Necker Cube Behavioral Results

Figure 4.11 – Average frequency of "from above" and "from below" perceptual assessments
for first responses within a trial in Task 2. From-above responses are represented in the dark
blue bar graph while from-below responses are contained in the light turquoise bar graph.
The y-axis represents task averages across 19 subjects. Recall that in Task 2, subjects are asked
to provide their first percept in a trial; therefore the responses represented above are not
perceptual switches. Subjects reported stimuli to be from-above more frequently than they
cast them as from-below percepts (p = 0.0027).

the stimulus across subjects, though the values found also support an overall preference for

the from-above state irrespective of stimulus bias (Figure 4.13). When looking at individual

subjects, we find a linear relationship (r > 0.80) between subjective fit values and dwell time

ratios for 13 out of 18 subjects (Table 4.1).

An ANOVA investigating the effect of stimulus bias and perceptual choice on dwell times shows

a significant main effect of stimulus bias (F = 5.3; p = 0.0003, df = 4) and percept (F = 97.84; p<
0.0001, df = 1) as well as a significant interaction of these effects (F= 13.59; p < 0.0001, df = 4).

To ensure that our manipulation held, and that the subjective uncertainty captured by fit values

obtained from task 1 were replicated in task 2, we performed a correlation between subjective

fit values and relative dominance ratios. Specifically, we correlated averaged subjective fit

values from task 1 to average relative dominance ratios computed from task 2 across subjects

that were ultimately included in our analyses in task 2, and subjects that experience more

than 1 switch in each ambiguity condition in task 2, totalling 18 subjects. These measures are

highly correlated (R =.99, p = 0.002, Figure 4.14).
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Figure 4.12 – Bar graph representing the average amount of time spent in a from-above state
(dark blue graph) versus a from-below state (light turquoise graph) in 19 subjects. The average
dwell time is plotted on the y-axis. Subjects spent significantly more time in the from-above
state on average across the experimental session (p =0.0025.

Previous studies on the Necker Cube have yielded several ongoing debates, one of which is the

emergence of a drift in dominance times with time on task (Zhou et al., 2004; van Ee, 2005).

That is, some studies have found evidence of an increase in dominance duration with time

on task which would support some form of learning in relation to the perceptual switch. To

determine if there may be a change in dominance times with time-on-task, we split each 80

second trial into 4 time bins of 20 seconds each and obtained the mean dominance time for

each time bin. We then performed an ANOVA to search for differences in mean dominance

duration depending on time interval and bias (Figure 4.15). No main effect of interval was

found, (F=0.62; p =0.6046, df = 3); a main effect of bias was found, in line with our results above

(F=5.7; p = 0.0002, df = 4) and no significant interaction between interval and stimulus bias

was found (F= 0.42; p = 0.9557, df =12).

We finally examined the distribution of dwell times, both across all conditions as well as within

the 3 different ambiguity levels (at 50%, 35%/65% and 20%/80%) to 1) determine if our results

replicated previous findings that fit dwell time distributions best to a gamma distribution; 2)

to see if the expected gamma distribution was found for biased Necker Cubes. All latencies

irrespective of stimulus bias followed a gamma distribution (Figure 4.16) with scale parameters

falling within the expected range of 3-5 (Gigante et al., 2009). Interestingly, the latter increases
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Figure 4.13 – Ratio of dwell time in "from above" to dwell time in "from below" states, according
to stimulus value (bias) across subjects (n =19). Each bar in the plot represents the average
ratio across subjects for a given bias level, with 1 denoting least biased and 5 denoting most
biased towards a from-above percept. Ratios were normalized and bounded to values between
-1 to 1, with -1 indicating all viewing time spent in a from-below state and 1 representing all
viewing time in a from-above state. Our data show that stimuli most biased towards a from-
below state (bar graph 1) yields a dwell time ratio of 0 - indicating that subjects spent an equal
amount of time in the two perceptual states. We assume this is due to the overall preference
subjects show for the from-above state, irrespective of stimulus bias. Nonetheless, we see
in the plot above that time spent in the "-above" perceptual state increases with increasing
stimulus bias for that percept, and this in an linearly increasing manner.

with cube disambiguation, a feature that may not be spurious but that has yet to be analysed

in this thesis.

A last sanity check with respect to the data concerned correlations between: different goodness

of fit measures and parameters obtained in Task 1; possible correlations with the latter and two

personality measures, risk taking and trait anxiety; and finally possible correlations between

both fit measures, parameters, personality traits and Task 2 results, the latter which include

average dwell times and switch frequencies.

Of 22 subjects who completed Task 1, 3 were removed from analysis in Task 2. Of these,

2 did not complete the Risk questionnaire scale and 1 did not complete the anxiety scale.

We then plotted a correlation matrix with measures for 17 subjects to determine significant
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Table 4.1 – We list correlation coefficients and associated p values for individual subjects when
plotting individual dominance ratios per stimulus bias to the stimulus bias. Here we sought to
ensure that a majority of subjects conformed to the linear relationship in figure 4.13, to ensure
the relationship holds beyond the possibility of outlier values. Of 18 subjects (3 were excluded
from Task 2 for poor performance; an additional subject was excluded due to not experiencing
switches while viewing the most highly biased stimulus), 12 show r 2 values >0.8.

r p

0.9520 0.0125
0.9054 0.0344
0.9851 0.0022
0.3755 0.5334
0.9438 0.0158
0.8958 0.0397
-0.1730 0.7809
0.4503 0.4467
0.9695 0.0064
0.8659 0.0578
0.9115 0.0312
0.6769 0.2094
0.9239 0.0249
0.6131 0.2715
0.8803 0.0488
0.8769 0.0509
0.7340 0.1579
0.8880 0.0442

Table 4.2 – Maximum likelihood estimates for gamma distribution parameters of dwell times
across subjects in all stimulus conditions as well as ambiguous, partially ambiguous and
disambiguated stimulus conditions.

MLE (Gamma Distribution)
k θ

All Dwell Times 1.5457 3.2922
Ambiguous Stimulus Dwell Times (50%) 1.5975 2.8688

Partially Ambiguous Stimulus Dwell Times (35%/65%) 1.5943 3.1817
Disambiguated Stimulus Dwell Times (20%/80%) 1.4834 3.7866

relationships between dwell times, fit parameters and questionnaire measures (Figure 4.17). A

significant portion of early studies on the Necker Cube and bistable illusions sought to identify

personality measures that correlate with subjective perceptual experience of ambiguous

stimuli (Lidberg et al., 1978; Rogers, 1988), and thus we sought to determine in a first instance

if our data suggest such a relationship with anxiety and/or risk profiles.
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4.3. Necker Cube Behavioral Results

Figure 4.14 – Correlation matrix of subjective fit values to relative dominance ratios. Results
show that stimulus values pulled from task 1 are significantly correlated with the dwell time of
a given stimulus bias in task 2 (r=0.99; p =0.002).

Both goodness of fit measures (SSE and R2) are negatively correlated (r =-0.64, p =0.0057 ).

Fit parameters (k and the PSE) are positively correlated (r =0.51, p = 0.0380); k and SSE are

negatively correlated ( r = - 0.80, p < 0.001). Thus the lower the SSE, the steeper the curve and

the higher the R2 .

Similarly, behavioral data from Task 2 were significantly correlated with one another. Average

dwell time correlated significantly with its mode, variance, and switch frequency, as expected.

Anxiety measures did not correlate significantly with behavioral data though anxiety scores do

show a relationship with switch frequency (R =0.43, p = 0.0810) and concomitantly, a decrease

in the dwell time average (R = -0.38, p =0.1585). While the correlation was not significant,

it must be stressed that the low sample size (n=17) coupled with a comparatively narrow

range of scores (40-54) may dampen the relationship. Given the interest in anxiety’s effects on

uncertainty in decision-making (Hartley & Phelps, 2012) and on perceptual rivalry (Meredith,

1967), we deem this finding to be worthy of further investigation. Risk scores on the other

hand show no relationship with any of the above measures.
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Figure 4.15 – Average Dwell Time in 1st through 4th time intervals (20 seconds each) across
trials in Task 2, differentiated according to stimulus bias value (1-5 corresponding to 20%-80%).
An ANOVA shows no significant drift in dwell time, that is dwell times do not vary across 20
second trial time bins, indicating no habituation or learning takes place during a trial. The
y-axis represents average dwell time while the x-axis describes stimulus bias levels (1:5) split
into separately colored time bins.

Data Quality Control

Although we control for subjectivity in Task 1, the nature of the experiment is such that

falsifying responses is challenging. We excluded one subject from task 1 based on their

behavioral data, which saw all Necker Cubes classified as being from above. No other subjects

were removed, irrespective of their psychometric curve parameters or goodness of fit, as we

have no other objective criterion by which to distinguish bad results (the subject removed

presented an extreme case which we can confidently classify as not following task instructions).

In task 2, we exclude 3 additional subjects on the basis of their behavioral data. Specifically,

we excluded subjects whose switch responses were the same in more than 20% of their switch

responses (i.e. 20% of switch responses were same consecutive percepts) in more than 3

experimental trials. Further, of the perceptual switches included in analyses, only those

followed by a switch to the alternative percept were included.

In task 2, of the 19 subjects remaining, we took further quality control measures with regards

to report and replay conditions. Specifically, for our analyses on the replay condition, we

excluded replay trials for which the replay condition included +/- 25% replay reports than
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Figure 4.16 – Histogram of dwell times fit to a gamma distribution. The top left graph shows
the distribution for all stimuli; the top right graph shows the distribution of disambiguated
stimuli. The bottom two graphs show dwell times for partial and fully ambiguous stimuli from
left to right, respectively. All dwell times appear to fit a gamma distribution.

switch reports in the previous report trial.

4.4 Neuroimaging Results - Perceptual Uncertainty

4.4.1 Imaging Analysis

Scans were preprocessed and analyzed using SPM 12. We first generated voxel displacement

maps (VDM) and applied these to functional data. We then warped and realigned data to the

mean image before apply a bias-field correction. Then data were co-registered to individual

anatomical volumes before being segmented (6 class tissue probability maps) and normalized

to the MNI152 template and smoothed to 8 mm. The resulting images were then used for

analysis. Our data analysis plan follows the one used in the Card Game. We first conduct

a whole-brain analysis, with a threshold of p =.05, (FWE corrected) before proceeding to a

cluster level corrected whole brain analysis (p=.001) to determine if any voxels survive this

threshold. We then perform a small volume correction with the same list of a priori regions as

in the Card Game. Following this, we perform an non-parametric permutation tests using per

Eklund et al. (Eklund et al., 2016) using the SnPM toolbox (http://warwick.ac.uk/snpm).

4.4.2 General LinearModels

We employed model-based fMRI analysis to capture the variance of an event’s average signal

amplitude according to a given measure representing risk and surprise. As in the Card Game,
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Figure 4.17 – Correlation Matrix for Psychometric Curve Parameters; Goodness of Fit Measures;
STAI-T and DOSPERT measures; and summary statistics for dwell times (n = 17).

given the nature of the phenomena studied, we do not expect thresholded statistics to survive

family-wise error corrections and thus plan to further scrutinize results with the use of small

volume corrections with our list of 7 a priori regions of interest.
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Figure 4.18 – General Linear Model Designs for Task 1

4.4.3 fMRI Results: Necker Cube Task 1

To better match the fMRI design of our financial uncertainty task, we constructed a GLM

containing 3 regressors of interest. The first contained onsets for stimulus presentation, offset

by 1 second, with a duration of 2 seconds, modulated by subjective risk values. These were

obtained by pulling subjective bias values for each stimulus generated by fitting behavioral

results to a sigmoidal curve, and squaring them. This regressor of interest was offset relative

to the event (stimulus presentation) following results from Preuschoff et al (Preuschoff et al.,

2006; Kuhnen & Knutson, 2005), in which risk processing was found to be delayed relative to

stimulus onset. We also included two 0 duration regressors for the button press separated into

response type (1 or -1 percept) and 6 motion regressors of no interest.

We performed a t-test on the parametric modulation of the first regressor to determine percep-

tual risk activation. Whole brain analyses as well as non-parametric permutation tests yielded

no significant results.

We then applied SVCs to our preselected ROIs and find a significant cluster in the right anterior

insula (p =0.038 FWE , T = 3.68, k = 14) (Figure 4.19).

We also performed 2 t-tests to determine if an up response differed from a down response

(Up > Down; Down > Up) and found no differences. A conjunction analysis of the responses

regressors yielded activations in motor areas as expected.

4.4.4 fMRI Results: Necker Cube Task 2

We then set out to investigate perceptual uncertainty given both the task design and behavioral

results. Recall that behavioral results in task 2 suggest that, while the manipulation of the

stimulus yielded the expected responses (that is, subjective responses to ambiguity in task 2
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Figure 4.19 – Statistical maps overlaid on glass brain and canonical T1 image, for perceptual
risk in task 1. The statistical map was thresholded at p =.005, uncorrected, for visualization
purposes

reflected subjective responses to ambiguity in task 1 according to the response curve), it did

so in a skewed manner, where up percepts were favored regardless of stimulus bias. Further,

in considering the phenomenology of the perceptual switches, one has to account for the fact

that the switch is surprising in and of itself, regardless of stimulus value. That is, the perceptual

switch of a fully ambiguous cube should elicit surprise by virtue of its spontaneity, and this in

a low level domain (visual perception). For the same reason, we cannot exclude the possibility

of dwell time modulations on the surprise signal, again, regardless of stimulus bias. That is,

given that a subject would expect her visual field to remain unchanged, the longer this stability

lasts, the more surprising it should be when a switch occurs. Of course, it is possible that

such a surprise would be conscious, while other regions may respond to shorter dwell times

with more surprise; that is a system may exist in the brain that expects a perceptual switch.

Finding neural correlates of regions implicated in shorter dwell times would lend credence

to the attractor model, which presupposes an accumulation of noise over time. In task 2, we

constructed 5 different GLMs to investigate uncertainty related to perceptual switches.

GLM 1: Report Vs Replay

In a first instance, we sought the differences in neural activation between true switch reports

and replay presses. Two t-tests were conducted: Report > Replay and Replay > Report. Report

regressors included switch onsets only for trials that matched subsequent replay responses to

within 25%. All other trials were excluded.

In the first t-test, Report > Replay, no significant differences emerged at p =0.001, cluster level

corrected (k=25 voxels). In the second t-test, Replay > Report, we find widespread bilateral

activations at (p=0.001, cluster level corrected, k = 25 voxels) notably in bilateral angular,

middle frontal, and middle temporal gyrii; right occipital fusiform gyrus; and left superior

frontal gyrus (see Appendix B, Table B.2).
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Figure 4.20 – Representative general linear model designs performed on Necker Cube task 2
fMRI data.

These results are in-line with previous findings that replay-related activity elicits more neural

activation than ambiguous stimuli (Kornmeier & Bach, 2012). This is also in line with the

105



Chapter 4. Are Perceptual Switches Surprising?

Figure 4.21 – Statistical maps for Replay > Report condition (p=.001, k = 25), overlaid on glass
brain and canonical T1 image

notion that increased uncertainty may activate more neurons at a low activity rate while

less uncertainty (such as in the disambiguated stimuli of the replay condition) will activate

fewer neurons but more strongly (Vilares & Kording, 2011). Notably, activity is confined to

regions that are not included in our list of a priori regions of interest in relation to uncertainty

processing.

GLM 1: High versus Low Probability Perceptual States

Here we constructed a GLM composed of two regressors : Switch onsets for switches to high

probability percepts (e.g. -1 for a stimulus biased at 20%) against switches to low probability

percepts (e.g. 1 for a stimulus biased at 20%). Switch onsets for fully ambiguous stimuli

(unbiased cube, 50% value) were not included in the regressors. Two t-tests were conducted:

High Probability Switch > Low Probability Switch and Low Probability Switch > High Probability

Switch. The aim here is to gain a picture of uncertainty across biases.

No results were found for High Probability Switch > Low Probability Switch. For Low Probability

Switch > High Probability Switch, significant activation did not survive FWE cluster correction.

Similarly, SVC analyses on our regions of interest did not yield significant results.

While the uncorrected statistical maps above hint at clusters in the ACC and right anterior

insula for low probability states (a crude measure of most surprising stimuli), none of the

analyses above yield significant results.

GLMs 3 and 4: Modulating Perceptual Switches by Surprise values

In the following GLMs, we separated switch onsets according to whether they indicated a

switch to a from above state (1) or a from below state (-1) before modulating them with a

surprise value. The only switch onsets included in the regressor for an 1 switch were those

followed by a -1 switch, and the only onsets included in the 1 regressor were those followed by
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Figure 4.22 – Statistical Maps for Low Probability > High Probability (threshold used in image,
p =.005, k =57, for visualization purposes), overlaid on glass brain an canonical T1 image.

a -1 switch. We separate switches according to percept (and thus lose a degree of freedom)

because the two are not equivalent. Further, we included 7 regressors of no interest (replay

presses and 6 motion regressors). GLMs 3 and 4 differ in the surprise model used only:

we perform an analyses on surprise as risk prediction error; as well as surprise as absolute

prediction error, just as we did in the Financial Uncertainty task. Recall that these two models

do not differ numerically but in their curves. Thus we modulate switch regressors by two

values: a given switch’s surprise value based on the percept and stimulus bias; and the previous

dwell time of the switch - that is the amount of time spent in the previous perceptual state. We

expect that the longer the dwell time, the higher the surprise will be, regardless of stimulus bias

conditions. These GLMs are meant to capture the surprise signal inherent to the perceptual

switch alone.

Up >Down

Figure 4.23 – Statistical Maps for Up > Down Switch contrast (p =.001, k =23) in Necker Cube,
Task 2 overlaid on glass brain and canonical T1 image.

The Down > Up switch t-test yielded no significant activation (p =0.001, k = 22 voxels). These
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contrasts were conducted as controls, to ensure that different percept switches were equivalent.

Thus, we did not expect any significant BOLD responses to emerge. However, we encounter

an incidental finding in relation to the contrast. A pattern emerges for switches into the

from-above percept. Recall that behavioral results indicate an overall bias for the from-above

state. This bias may suggest a preferences for this state and be reflected in the BOLD response

found. On the other hand, an incongruity in relation to the perceptual state may be captured

by the BOLD response. We believe this explanation is unlikely. If the from-above state is

the congruent state, based on the behavioral results, then we would expect the Down > Up

contrast to reflect a BOLD response. In searching for a plausible explanation, given the regions

implicated, notably the precuneus and the angular gyrus, we suggest that it is lying supine in

the scanner while perceiving the cube to be from above that presents an incongruity. Both the

angular gyrus and the precuneus have been implicated in body position and representation

(Blanke et al., 2002; Lopez et al., 2008; Seghier 2013; Cavanna & Trimble, 2013).

Switch Contrast

We then performed a conjunction analysis by combining regressors for both kinds of swiches

to examine switch-related neural activity. As switches are reported via button press, this

regressor is confounded by motor effects, thus we cannot conclude that statistical maps relate

to a main effect of switch alone. Cluster level corrected (p =0.001, k = 37) results show bilateral

activity in the anterior insula, thalamus, supramarginal gyrii as well as extensive activation

patterns in the cerebellum and brainstem. In addition, clusters were found in right putamen

and left nucleus accumbens (See Appendix B, Table B.3).

Figure 4.24 – Statistical maps for the Switch response contrast (p =.001, k =37), overlaid on
glass brain and canonical T1 image.

SwitchModulated by Surprise as Risk Prediction Error

Here we separated switch onsets according to whether they indicated a switch to a from above

state (Up) or a from below state (Down) before modulating them with their surprise value.
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In GLM 3, the surprise value was calculated by squaring the value of the stimulus p(Up) , to

obtain a quadratic function similar to that used in the financial uncertainty task whereby

notably, a switch under full ambiguity should yield the least surprise and a switch under least

ambiguity should yield the most.

Sur pr i seup =−4∗pup +8∗p2
up Sur pr i sedown = 4−12∗pup +8∗p2

up (4.2)

Whole brain analysis yielded no significant clusters (p=.001, k = 29), nor did statistical non-

parametric tests.

Figure 4.25 – Statistical maps of surprise as risk prediction error (p =0.001, k = 28) overlaid on
glass brain and canonical T1 image. While clusters in the bilateral insular cortex appear in the
image, these are not significant in a whole brain analysis.

We then applied SVC correction to our list of a priori ROIs. A cluster (k = 7) in the right anterior

insula yielded a p value of 0.05 (FWE). (See Appendix B, Table B.4)). Results above show

significant activation in the right insula both the cluster and peak levels, as well as in the left

insula at peak levels.

SwitchModulated by Surprise as Absolute Prediction Error

In GLM 4, we modulate switch onsets by absolute prediction error, as we did in the Financial

Uncertainty task. Prediction errors are calculated by subtracting an expected perceptual

state from the switch state, denoted by either -1 or 1. We then take the absolute value of

the resulting error, to emulate the absolute reward prediction error in our gambling task.

Cluster level correction (p =0.001, k = 30) yields no significant results; nor did statistical non-

parametric tests. SVC analyses yield a significant cluster in the right anterior insula (p = 0.039,

FWE; k =13) (See Appendix B, Table B.5).
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Figure 4.26 – Statistical maps of surprise as risk prediction error (p =0.001, k = 28) overlaid on
glass brain and canonical T1 image. While clusters in the bilateral insular cortex appear in the
image, these are not significant in a whole brain analysis.

SwitchModulated by Previous Dwell Time

Here switch onset regressors were parametrically modulated by the switch reports preceding

dwell time that is the amount of time spent in the previous perceptual state. We hypothesize

that the longer the dwell time, the higher the surprise will be, regardless of stimulus bias

conditions. This test is meant to capture the surprise signal inherent to the perceptual switch

alone, or a binary form of surprise, because we assume that an agent consciously expects

an unchanging stimulus to remain static in her perception. Results of a t-test on combined

parametrically modulated regressors of the switches reveal widespread activation at p=.0001,

cluster corrected (k=12). A high threshold was used because the resulting map appears noisy.

Most, notably, the T-map shows significant activity in the dorsal striatum (putamen), one of

our regions of interest. Regions surviving cluster-level correction include bilateral precuneus

and middle occipital gyrus; thalamus; left temporal pole; left anterior insula; left middle

temporal gyrus; and right mid-cingulate gyrus (See Appendix B, Table B.6).

Figure 4.27 – Statistical map of dwell time modulation on the perceptual switch (p =0.0001, k =
12), overlaid on glass brain and canonical T1 image.
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We next moved on to an SVC analysis using our preselected ROIs. Results yield significant

responses in the left anterior insula and right ventral striatum, as well as bilateral dorsal

striatum (See Appendix B, Table B.7).

Effect of Surprise and Previous Dwell-Time

We next sought to combine the values associated with surprise given a stimulus bias condition

and percept with the surprise associated with the previous dwell time. To do so, we performed

a conjunction analysis on both parametrically modulated regressors. Whole brain cluster-

corrected (p =0.001, k = 28) results are found in bilateral occipital fusiform gyrus, as well as

right middle occipital and right precentral gyrus (See Appendix B, Table B.8).

Figure 4.28 – Statistical map of dwell time modulation in conjunction with surprise modulation
on the perceptual switch (p =0.0001, k = 12), overlaid on glass brain and canonical T1 image.

As in the above contrasts of interest, we proceed to an SVC analysis of dwell time and surprise

using our list of pre-defined ROIs which yields significant clusters in bilateral anterior insula

(See Appendix B, Table B.9).

Effect of Information

We performed a group level t-test to determine if information plays a role in perceptual

uncertainty. No significant voxels survived even at a low threshold (p =0.05) suggesting that in

an involuntary, perceptual context, information quantities do not play a role at the moment of

a switch.

Inverse Dwell Time

Finally, we investigated the potential neural activity associated with shorter dwell times on

the brain. Thus we parametrically modulated switch onsets by the inverse of their previous
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dwell times, instead of their dwell time. No results were found in performing a t-test on this

parametrically modulated regressor.

4.5 Discussion

In the work detailed above, we employed a novel bi-stable perception task using the Necker

Cube illusion to 1) probe the possibility that a spontaneous perceptual switch can be formal-

ized as a prediction error; 2) to determine if the neural correlates of a perceptual prediction

error match those found for a cognitive prediction error in the same subjects. Our fMRI results

generally point to a common involvement of the insula in response to prediction errors in

both financial and perceptual domains.

In a first instance, our behavioral results confirm a bias towards the "from above" percept in

the perception of the Necker Cube, irrespective of stimulus conformation. In our first task,

subjects classified more stimuli as viewed from above than "from below". Further, points of

subjective equality were downshifted from truly (objectively) ambiguous Necker Cubes. In our

second task, subjects spent significantly more time overall in "from above" perceptual states

than in "from below" states. Further, first percepts in task 2 were reported as being "from

above" significantly more frequently than "from below". These findings replicate a known

feature of Necker Cube perception (Kornmeier et al., 2009; Sundareswara & Schrater, 2009;

Kornmeier et al., 2017) though to our knowledge, it is not clear that an explanation for the

bias has been elucidated. One could hypothesize that humans tend to view things from above,

making this perceptual state, in Bayesian terms, a hyperprior; few navigate the environment

with necks craned upward, although an interesting task would be to test a from-above bias

in small children. Regardless, as mentioned, to our knowledge, no formal investigation of

the bias has been performed. A recent study investigated the bias for from-above percepts in

Aspergers’ patients and found that the latter are not susceptible to the bias (Kornmeier et al.,

2017). They argue that this discrepancy results from a lack of top-down control in individuals

on the autism spectrum, though it is not clear how top-down control influences a percept

bias per se. Indeed, autistic individuals often do not experience perceptual switches (Happe,

1996) and a Bayesian formulation of the reversal process suggests that autistic individuals

may not hold priors with regards to ambiguous stimuli (Pellicano & Burr, 2012), a reasonable

explanation for differences in illusion perception but not for the from-above bias.

The implication of the bias may have an impact on the dynamic modeling of Necker Cube

switches. Namely, if perceptual alternations are viewed through the lens of an attractor model,

then one must consider one attractor to be stronger than another. These results compromise

our manipulation of the Necker Cube to a degree, as a cube biased towards a from-above

percept is not equivalent to one biased towards a from-below percept. Nonetheless, applying

subjective psychometric fits from task 1 controls for this bias. Psychometric curves for most

subjects fit to a logistic function in task 1, as seen in fit parameters and points of subjective

equality values. Further, in calculating a relative dwell time ratio per cube bias in task 2, we
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find a positive linear relationship between the ratio and increasing bias towards from-above

percepts. Thus the manipulation we perform on the Necker Cube persists above and beyond

what appears to be a general preference towards from above percepts.

A significant question of interest regarding Necker Cube reversals concerns their dynamics.

As mentioned in the introduction, initial views on perceptual reversals presupposed that

percepts alternate in a regular, periodic fashion (Blake & Logothetis, 2002) in a model dubbed

the oscillator model, however evidence has accumulated that perceptual switches occur in a

stochastic manner, suggesting that switches result from random noise accumulation rising to

some threshold before landing in an alternative perceptual state, a model dubbed the attractor

model (Gigante et al., 2009). Fitting perceptual state dwell times to a gamma distribution

provides evidence that dwell times are indeed random (Borsellini et al., 1972). In addition,

we find dwell time distributions for stimuli at all 3 levels of ambiguity (low, medium, high)

with scale parameters falling within the reported range in the literature (3-5, Gigante et al.,

2009). This result supports our manipulation of the Necker Cube as we see that perceptual

switches in the face of biased cubes behave nonetheless in a similar fashion to those for fully

ambiguous cubes.

Perceptual switches are thought to be spontaneous and involuntary (Sterzer & Kleinschmidt,

2007; ) however, there are questions on whether reversals are subject to volitional control

(Hugrass & Cuther, 2012; van Ee et al., 2005) and a type of learning effect (Gigante et al., 2009;

Pastukhov & Braun, 2008). The question has been studied within the context of probing the

neural source of the switch: namely, does a perceptual switch arise from low-level brain areas

(Polonsky et al., 2000; Parkonen et al., 2008; Pearson et al., 2007) or is it modulated by higher

level regions? As seen above, there is evidence for both possibilities (Wang et al., 2013; Long &

Toppino, 2004; Sterzer et al., 2009). Possible learning effects in perceptual switches indirectly

implies a top-down influence of the process, and thus supports the Helmholtzian notion

of an inferential process, while an automatic, memoryless experience of the switch would

suggest a bottom-up process. Of course, when viewed from a hierarchical predictive coding

account, such a dichotomy is not necessarily firm, as predictions and prediction errors are

iterative processes where information is exchanged between low- and high-level areas in a

bidirectional fashion (Rao & Ballard, 1998). We find no differences in dwell times across a trial

in any ambiguity conditions, suggesting that perceptual reversals are memoryless, automatic,

spontaneous and not subject to endogeonous learning effects. We do not go as far as claiming

that this provides evidence of a low-level process, for what makes the perceptual switch but a

conscious experience of it? Our subjects must report on their switches, and thus must be able

to recognize and declare their perceptual state, a process we believe is necessarily anchored to

the high-level cortical domain. At the same time, our negative findings on dwell time drifts in

our data support the assumptions we held in undertaking the task, namely that perceptual

switches are spontaneous and involuntary and not subject to habituation or learning effects.

The assymmetry between from above and from below states introduces a confound in our

results. While we account for that nuisance in separating up and down switches, and further
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verify that stimulus bias overcomes perceptual bias, the finding offers its own possible future

line of investigating, notably because it is bolstered by neuroimaging results. In comparing

switches into "from above" versus "from below" states, we find significant activity in the visual

cortex but also in the angular gyrus and cuneus. Because we don’t see significant activity

in response to a "from below" perceptual switch, we conclude that switching to a "from

above" percept may induce an incongruence in body awareness (Blanke & Mohr, 2005), and

perceptual cues (Dyde et al., 2009). A subject lying down would expect to see things from

below, as indicated by gravity and vestibular cues, yet the visual cue perceived runs contra to

this expectation. The regions found in particular support this hypothesis; the angular gyrus is

involved in spatial, body awareness and incongruence of the latter, for instance in out-of-body

experiences (Farrer, 2008; Arzy et al., 2006). Given the behavioral preference of from-above

percepts, one might expect "from-below" states to trigger increases in neural activity. This

particular finding, while incidental, offers a means by which to investigate neural correlates of

such a phenomenon.

Because we employed an fMRI paradigm, our task cannot capture perceptual switches alone.

The perceptual switch as reported includes a motor response; our modulation of the switch is

done to capture its degree of uncertainty. Thus we measured switch related BOLD responses

by introducing replay trials as control conditions. Replay trials present disambiguated versions

of the Necker Cube, presented at the same times as previously reported conditions. The replay

condition is meant to capture BOLD responses related to viewing the cubes, deciding to

report on a cube’s conformation and related reaction times. Contrasts for report versus replay

conditions show no significant activation for report > replay, but do yield widespread bilateral

activations in angular, frontal and middle temporal gyrii in the replay > report condition.

These regions do not overlap with those included in our a priori regions, the latter which

were chosen for their particular role in decision-making under uncertainty. We did not find

a significant perceptual switch specific response relative to replay responses in contract to

other studies. Using Lissajous figures as bistable stimuli, Weilnhammer and colleagues found

report > replay BOLD responses in bilateral middle and inferior frontal gyrii, as well as in

the right parietal regions (Weilnhammer et al., 2013) while Sterzer & Kleinschmidt found

bilateral inferior cortical activity in report conditions using a motion-from-stability stimulus

(Sterzer & Kleinschmidt, 2007). On the other hand, using a visual grating rivalry task, Sterzer

& Rees found no significant differences in percent signal change between rivalry and replay

conditions (Sterzer & Rees, 2008). Further, the manipulation we introduce in the experimental

stimuli may blur differences between biased cubes in the report condition relative to the more

heavily biased cubes in the replay condition. Our results for this contrast are, interestingly,

in line with previous findings that suggest perceptual ambiguity dampens neuronal spiking

activity (Emadi & Esteky, 2013). We nonetheless account for replay responses by including

them as regressors in our analyses.

Other fMRI studies investigating bistable perception have generally found a fronto-parietal

involvement for perceptual switches (Lumer et al., 1998; Sterzer et al., 2002; Sterzer & Klein-

schmidt, 2007; Sterzer et al., 2009). Here, we do not focus on the perceptual switch per se.
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only by how its modulated by uncertainty. Viewed through the lens of a predictive coding

account, we first applied the notion of risk, borrowed from a neuroeconomic framework, to

task 1. Specifically, we modulated a subject’s viewing period by a (prediction) risk value, as this

form of uncertainty occurs prior to the outcome of a decision. Thus in our view, the switch

occurs at the outcome of some (involuntary, perceptual) decision. We cannot control for the

possibility that a switch occurs during the 2 second window we consider. Nonetheless, we

assume that this period represents a prediction window. Therefore, we modulate it by risk,

or the variance of the expected "from-above" prediction. Using small volume correction, we

succeed in finding a significant cluster in the right anterior insula using this formal account.

In task 2, we train our focus on the switch. We cannot adequately capture the prediction

period in task 2 because the dwell times between switches vary a great deal; thus we cannot

safely sample the BOLD response at a specific point in time. We assume the switch to be an

outcome of an unseen decision-making process. Although one may argue that either a long

dwell time may be rewarding in and of itself, or that a switch is rewarding because it reduces

monotony and boredom, we generally assume that reward related variables do not affect

our paradigm. In any case, reward is not of central interest to our research question, rather,

uncertainty is. Thus we investigate the impact of switch induced surprise on the brain. We

apply two similar accounts of surprise, risk prediction error, and absolute prediction error. As

in the Card game, we find a specific role for the right anterior insula in response to surprise as

absolute prediction error at the switch. These results are found with small volume correction

analyses and do not survive whole-brain cluster level correction of statistical non-parametric

tests. We propose that the BOLD response is not as robust in the perceptual paradigm for

several reasons. 1) We modulate the switch by using subject’s own bias values computed from

their individual subjective fits; nonetheless, we cannot be certain that this subjectivity remains

constant between task 1 and task 2. 2) We encounter a significant difficulty in controlling for

errors in task 2, as we cannot identify errors of omission or commision in the experiment. We

pre-process the data by only including switches that are followed by a switch to an alternative

state, but nonetheless, switches input to our analyses cannot be falsified, and thus may be

errors. 3) We only extract 5 values of surprise from task 2, whereas the financial uncertainty

task had 9. Thus the Necker Cube task has comparatively less variance in its output, which

may be reflected in the BOLD response.

In spite of these potential limitations, our results are remarkable because we lift a cognitive

model of surprise and apply it to a perceptual paradigm, with all that the latter implies:

spontaneity, automaticity, subconscious and of course a lack of deliberation or control. By

using a predictive coding framework inspired by both an economic theorem (mean-variance

theorem) as well as a reinforcement learning algorithm on a perceptual uncertainty task we

obtain 1) any BOLD response at all; 2) a BOLD response in the same region (insula) as found

in our financial uncertainty task using the same formal accounts on the same subjects.

We further scrutinize the role that the previous dwell time has on the experience of the

perceptual switch and find striatal as well as insular involvement. Interestingly, the effect
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of the inverse of the dwell time does not yield any significant activity, which suggests that

it is longer and not shorter dwell times which are more salient to the switch experience.

This supports the idea that the switch is not expected. Given behavioral data examining a

potential drift in dwell time with time on task, we can conclude that there is no learning or

expectation suppression effect that is that a perceptual switch remains pertinent throughout

the experiment. In combining previous dwell time (an estimated surprise value specific to

the switch) and a computational account of stimulus-bound surprise, we find again bilateral

anterior insula clusters.

Few studies have modeled perceptual switches as prediction errors. In a Necker Cube paradigm,

Sundareswara & Schrater bias stimuli with flankers and apply a Markov Renewal Process

framework to dwell times with the aim of characterizing switches as inferential processes

(Sundareswara & Schrater, 2008). A more recent fMRI study applied a Bayesian framework to

perceptual switches in a Lissajous figure paradigm, this time explicitly framing switches as

prediction errors (Weilnhammer et al., 2017). While both the stimulus and formal account

used differ from ours, Weilnhammer and colleagues nonethless find a significant cluster in the

right anterior insula with regards to switches as prediction errors, thus solidifying our results

as well. Of note in our results, in relation to reinforcement learning, is the pointed absence of

BOLD responses in the striatum. This null result may be due to the concomitant absence of

reward, motivational and learning drives.

As seen above, our model-based analyses on risk and surprise in the Necker Cube firmly

suggest a role for the right anterior insula in particular in the processing of perceptual uncer-

tainty, which is in line with previous literature (Sterzer & Kleinschmidt, 2010). Indeed Sterzer

& Kleinschmidt’s review on the insula’s role in perceptual switches is titled "often observed

but barely understood", and does not address its plausible role in inferential processes. We

propose that the insula emerges in perceptual uncertainty paradigms because the insula is

uniquely tuned to uncertainty and thus reflects the nature of perception as an inferential

process. This insight is invaluable because such a formal framework, regardless of which

specific account or paradigm is used, can allow us to test populations that are not susceptible

to illusions, such as autistic (Pellicano & Burr, 2012) and schizophrenic (Schmack et al., 2015)

individuals

To conclude, in using a formal account borrowed from reinforcement learning and neuroe-

conomics, we find a BOLD response in the insula for switches cast as prediction errors. Our

results support 1) high level cortical involvement in bistable perception and more generally

support the notion of perception as an inferential process. In the future, a falsifiable perceptual

uncertainty task, such as the dot-motion task, may further inform the inferential nature of

perceptual uncertainty processing.
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5 A Common Neural Representation of
Uncertainty in the Insula

5.1 Introduction

In the previous chapter, we describe studies pertaining to the neural representation of un-

certainty in two separate tasks, one objective and cognitive, and the other subjective and

perceptual, in a same pool of subjects. We find common surprise-related BOLD responses in

the insula for both tasks pertaining. In the following chapter, we attempt to directly compare

these two tasks in a first instance. In a second instance, we perform a different analysis of the

data sets with the aim of using a multi-variate pattern approach to determine if a more cogent

picture of our research questions may emerge.

While neuroimaging has afforded us a distinctly powerful and galvanizing means by which

to neurally investigate human behavior, difficult questions regarding the statistical reliability

of results abound particularly in relation to the large number of statistical tests performed

on each brain volume and the control of the concomitant false positive error rate (Woo et

al., 2014). These concerns reached an apex recently that put into question a great deal of

published results (Eklund et al., 2016). While pains were taken to address multiple compar-

ison errors in previous chapters, here we opt to recast our data as a classification problem.

Specifically, we seek to determine the neural patterns of activation related to specific levels of

uncertainty and not necessarily a significant difference in BOLD signal between baseline and

experimental condition. Such an analysis would allow us to target our research question from

a different perspective and importantly may yield more insight into the neural representation

of uncertainty than would standard hypothesis testing (Haxby, 2012). To that end, we first cast

data from our two experiments into three levels of uncertainty (low, medium and high), and

perform a standard general linear model analysis. We next investigate the parameter weights

for each condition in regions of interest, to determine if they differ significantly from one

another. Finally, we perform a multivariate pattern analysis to determine if 1) neural activity

can accurately classify conditions according to their labels; 2) if the maps of such activity

resemble one another across tasks (cognitive and perceptual).
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5.2 Categorical Univariate Analyses

To further scrutinize the common neural activity found in our two tasks, we re-analyzed our

fMRI data from Chapters 3 and 4, with the aim of directly comparing BOLD responses between

the two tasks in a within subject design. We separated our fMRI data sets for the financial and

perceptual uncertainty task into three categories, without modeling onsets. In the Card Game

(Chapter 3), these categories refer to onsets for low, medium and high risk and high, medium

and low surprise. We then did the same for the Necker Cube tasks, albeit with low, medium

and high ambiguity of stimuli (which represents low, medium and high risk in task 1, and high,

medium and low surprise in task2). We first perform standard parametric tests on our imaging

analyses before examining different regressors parameter weights.

5.2.1 Financial Uncertainty : Categorical Analyses

We performed a categorical analysis by separating regressors at card 1 and card 2 according to

three levels of risk and surprise respectively.

Financial Uncertainty - Main Effect of Risk

We performed an ANOVA across three different levels of risk (respectively, confidence) at the

group level. Cluster level correction (p =0.001; k =24) yields a significant cluster notably in the

right anterior insula, as well as bilateral inferior occipital gyrii; left fusiform gyrus; and right

angular gyrus. SVC analyses confirms bilateral insular engagement (See Appendix C, Table

C.1). The amygdala, long known to modulate decision-making, particularly with respect to its

affective component, makes its first appearance here in our study, though the cluster found

for the region does not reach significance (p =0.081; k = 176).

Financial Uncertainty, Risk at Card : ParameterWeights ANOVA

We then extracted percent signal changes for each level of risk in our 13 regions of interest (7

bilateral and the LC) and performed an ANOVA on the latter to determine if any significant

differences emerged in pitting these coefficients against each other; and further to obtain a

measure of confidence in the direction of the difference, if any.

Results of the ANOVA show significant differences in nearly all relevant regions, except for the

ventral striatum. These differences appear to be driven by the lowest risk (highest confidence)

condition; notably, high and medium risk levels do not appear to differ.

Financial Uncertainty, Surprise at Card 2 : - ANOVA

We perform the same mass univariate analysis for different categories of surprise (respectively,

information), this time at card 2. Cluster level corrected results (p=0.001, k = 23) show bilateral
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Figure 5.1 – Statistical map of main effect of risk (respectively, confidence) at card 1 (p =0.001;
k= 24) -2 -3 -6.

Figure 5.2 – Average percent signal changes in 7 ROIs according to risk level. Our model derived
5 different levels of risk in the task. Risk levels were divided into low (no risk); medium (the
next two quantities of risk); and highest (the two highest quantities of risk.

anterior insula responses as well as significant clusters in the left supramarginal and left

middle frontal gyrii; and right postcentral and middle temporal gyrii. SVC analyses on our list

of a priori regions find significant bilateral BOLD responses in the ACC; anterior and posterior

insulae; and caudate (See Appendix C, Table C.2).
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Table 5.1 – ANOVA results on differences between average percent signal changes across
different levels of risk in 7 ROIs.

Region F p

LACC 8.8268 0.0004*
RACC 11.5628 0.0001*
LAIns 7.2490 0.0015*
RAIns 8.3925 0.0006*
Lcaud 5.0238 0.0096*
Rcaud 4.5689 0.0142*

LC 12.6222 0.0000*
LPIns 2.4771 0.0925*
RPIns 3.6342 0.0324*
LPut 7.0930 0.0017*
RPut 4.3033 0.0179*
LVStr 1.4937 0.2328
RVStr 0.9247 0.4022

Figure 5.3 – Main effect of surprise (respectively, information) (p =0.001; k = 23) overlaid on
glass brain and canonical T1 image (1 0 1).

Financial Uncertainty, Surprise at Card 2: ParameterWeights ANOVA

We then extracted percent signal changes for each level of surprise in our 13 regions of interest

(7 bilateral and the LC) and performed an ANOVA on the latter to determine if any significant

differences emerged between surprise levels and to further gain a picture of any trends (linear

or non) in the differences.
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Figure 5.4 – Average percent signal changes in 7 ROIs according to surprise level. We derived 9
levels of surprise in our task. Here, we group the three lowest, three middle, and three highest
levels of surprise to obtain 3 classes of the value.

We performed an ANOVA on the percent signal changes associated with each level of sur-

prise (respectively, information) and find significant differences in all regions but for the left

posterior insula.

Table 5.2 – ANOVA results on differences between average percent signal changes across
different levels of surprise in 7 ROIs.

Region F p

LACC 9.5771 0.0002*
RACC 10.212 0.0002*
LAIns 11.9647 0.0000*
RAIns 8.9257 0.0004*
Lcaud 13.0086 0.0000*
Rcaud 9.3871 0.0003*

LC 6.1698 0.0037*
LPIns 2.7938 0.0692
RPIns 3.6986 0.0306*
LPut 13.6017 0.0000*
RPut 11.6956 0.0001*
LVStr 7.2418 0.0015*
RVStr 6.2546 0.0034*

A cursory view of these values shows a pattern similar to that of risk at card 1; highest surprise

(lowest information), drives the difference in means, while lowest and medium surprise do

not appear to differ from one another. This result provides us with a sanity check on our
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framework, as it mirrors the trend found for risk in card 1, sampled at a different timepoint,

namely in that we assume highest risk to prompt the least surprise and lowest confidence to

yield the most information.

5.2.2 Perceptual Uncertainty: Categorical Analyses

The categorical analysis of the perceptual uncertainty task is more fraught than that of the

gambling task because of the subjective nature of the categories as well as the overall bias in

percept towards the form above percept. Thus we perform two kinds of categorical analysis:

one examining different levels of uncertainty (3 levels) and one examining the different levels

of bias (towards the from above percept; 5 levels). We first performed a categorical analysis of

uncertainty by separating trial types according to 3 levels of uncertainty.

Necker Cube Task 2 - Categorical Analyses

In task 2, we repeat the same analyses as we did for task 1, namely by looking at a main effect

of ambiguity on neural activity as well as a main effect of stimulus bias towards the from above

percept. To that end, we designed two general linear models.

Figure 5.5 – Representative schemas of general linear model designs for the categorical analysis
of the Necker Cube Task 2 fMRI data
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Necker Cube Task 2 - Main Effect of Ambiguity

Similarly to Task 1, we performed a GLM that included 3 regressors of interest, in addition to 7

regressors of no interest (1 to account for replay presses and 6 to account for motion regressors).

These regressors included switch onsets separated according to stimulus ambiguity: High

(50%), Mid (35%/65%) and Low (20%/80%). We then performed an ANOVA to investigate a

main effect of perceptual ambiguity on the brain.

Results show bilateral activation in the middle temporal gyrus as well as in the insula (anterior

extending to posterior) and the putamen. In addition, significant clusters were found in the left

inferior frontal gyrus, and right middle frontal gyrus. We then applied SVC to our list of ROIs,

which yielded significant bilateral clusters in bilateral insulae and putamen (See Appendix C,

Table C.3).

Figure 5.6 – Statistical map of the main effect of stimulus ambiguity on perceptual switches,
Necker Cube Task 2 (p =0.001, k =22) (6 4 8).

As in the financial uncertainty task, we next extracted parameter weights to determine how

percent signal changes vary across different levels of ambiguity in the perceptual uncertainty

task.

Results above show that, once again, the insula plays a significant role in the representation

of uncertainty. However, it must be noted that percent signal changes appear to show a u-

shaped relationship to one another, where higher signal changes correspond to lowest and

highest ambiguity. While this trend may, prima facie, appear counterintuitive, one could argue

that the partially ambiguous stimulus may be the most ambiguous stimulus; in a sense, the

most ambiguous stimulus is known to be perceptually unreliable, while the least ambiguous

stimulus is known to be perceptually reliable, while the stimulus at the midpoint may not
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Table 5.3 – ANOVA results for the main effect of ambiguity on percent signal changes in the
Necker Cube, Task 2, in 7 ROIs

Region F p

lACC 1.4516 0.2432
rACC 1.2410 0.2972
lAIns 4.0229 0.0235*
rAIns 3.1351 0.0515
lCaud 0.8038 0.4529
rCaud 3.6501 0.0326*

LC 4.7389 0.0127*
lPIns 4.7939 0.0121*
rPIns 2.8169 0.0686
lPut 1.9092 0.1581
rPut 2.5875 0.0845
lVStr 1.4516 0.2432
rVStr 1.2410 0.2972

Figure 5.7 – Graphical representation of average percent signal changes across 3 levels of
ambiguity in 7 ROIs.

occupy a clear category or expectation.

Necker Cube Task 2 - Main effect of ’from above" Bias

Here we sought to find differences in neural activity related to the bias level of switches. Thus

we constructed a GLM with 5 regressors of interest, as well the 7 regressors of no interest

(replay presses and motion regressors). Each of the 5 regressors included perceptual switch
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reports for a specific bias condition related to the probability of viewing the cube from above.

An ANOVA shows differences bilaterally in the anterior insula and in the anterior cingulate

cortex (p = 0.05, FWE), as well as in the thalamus and cerebellum (See Appendix C, Table C.4).

Figure 5.8 – Statistical map for the main effect of f̈rom aboveb̈ias in Necker Cube, task 2 (
p=0.05, FWE corrected) (0 17 1).

Prominent clusters in the bilateral insula appear here as well and this at a whole brain, FWE

corrected threshold. We must conclude that the effect of viewing objects from above in the

scanner induces a significant effect at the level of insula, above and beyond the effects of

ambiguity. We nonetheless moved on to investigating a main effect of f̈rom aboveb̈ias on

percent signal changes in our preselected ROIs.

Results above suggest a strong effect of bias towards f̈rom abovec̈onformation, particularly

in the insula (anterior and posterior) as well as in the right striatum (dorsal and ventral) and

right anterior cingulate cortex and LC.

Taken together, results above confirm a predominant role of the anterior insula in encoding

uncertainty across cognitive and perceptual domains. Nonetheless, the trend of percent signal

changes across categories suggests that additional analyses should be performed to reinforce

this relationship.

5.3 Multivariate Pattern Analyses - Preliminary Analyses

The General Linear Model represents the canonical means by which to analyse fMRI data

(Friston, 1995). The model relies on a mass univariate approach. However, several authors

are advocating for a multivariate-approach because of the problems a univariate approach
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Table 5.4 – Main effect of f̈rom aboveb̈ias on average percent signal changes in 7 ROIs

Region F p

lACC 0.7587 0.5551
rACC 4.6925 0.0018*
lAIns 7.0615 0.0001*
rAIns 11.1467 0.0000*
lCaud 1.5746 0.1885
rCaud 9.8983 0.0000*

LC 8.2071 0.0000*
lPIns 3.3749 0.0130*
rPIns 4.0423 0.0048*
lPut 1.9688 0.1066
rPut 4.9993 0.0011*
lVStr 0.7587 0.5551
rVStr 4.6925 0.0018*

Figure 5.9 – Graphical representation of average percent signal change across subjects for
varying levels of stimulus bias towards a f̈rom abovep̈ercept in 7 ROIs.

offers (Poline & Brett, 2012). The univariate approach relies the independent testing of each

voxel to determine significant changes in the BOLD signal in relation to an experimental event.

However, the assumption of independence of a voxel does not conform to the assumption

that voxels in a region, or subregion of the brain should not be independent. To date, the

application of a smoothing kernel to brain data was one means by which to control for this

local dependence (Friston, 1995). However, the advent of multi-variate methods that rely

on the information content of patterns of activation afford us another means by which to

investigate variations in brain activity in relation to an experimental event (Haynes, 2015).

Our primary goal in separating our fMRI datasets into categories as opposed to a parametric
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design was to determine if multivariate analyses methods would succeed in identifying similar

patterns of activation in classifying data according to level of uncertainty, namely 3 different

levels of risk and surprise for the financial uncertainty task (respectively confidence and

information); and ambiguity in the perceptual uncertainty task.

We employ the decoding toolbox (Hebart et al., 2015) and perform a linear classification

technique that relies on a support vector machine with a fixed cost function, c = 1. Each

individual subject’s dataset is separated into a training set and a test set with a leave-one out

cross validation test. In financial uncertainty, 2 of three sessions are used as training sets while

the third was cast as a test set. For the perceptual uncertainty task, as there was one session

only, we separated trials i=1:k into two sessions, one for odd indices and the other for even

ones. This creates a design where there are two sessions, one employed for training and the

other for testing.

Results of this analysis yield accuracy values, where successful classification yields a value

above chance (thus 33.33% for the three different classes of uncertainty) for each voxel, for

each individual subject. In addition, the technique yields accuracy maps for the brain data.

5.3.1 Financial Uncertainty: Surprise (Information) Classification

We obtained accuracy maps using a linear classification algorithm for 21 subjects with a

searchlight method. We then normalized all subjects’ accuracy maps to the MNI template

before smoothing normalized images to a 8 mm FWHM Gaussian filter. Finally, we performed

a t-test on these images in a random effects model. It is important to note that this test is

qualitatively different from standard group level analyses, because accuracy maps represent

information content. Thus here, the t-test does not represent hypothesis testing, as a below

chance result is meaningless (Allefeld et al., 2016). At best, the t-test we perform emulates a

fixed effects analysis. Therefore, the maps below indicate that some subjects show an above

chance classification accuracy in certain regions of the brain, however, we cannot make a

population level inference about the maps.

The image below is representative only (Figure 5.10), as cluster level correction may not be

an accurate means by which to represent information culled from this analysis. Using a

cluster level corrected threshold (p =0.001; k = 41), we find significant clusters in bilateral

anterior insulae; left inferior temporal gyrus, transverse temporal gyrus, left calcarine and

right superior occipital cortex (See Appendix C, Table C.5).

In addition to the insula and the anterior cingulate, results above show a cluster in the left

putamen, similar to accuracy maps for risk. Further, in addition to regions we expect to emerge

in this analysis, we find a cluster in the entorhinal cortex.
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Figure 5.10 – Average accuracy maps for the classification of different levels of surprise catego-
rization in the financial uncertainty task. The average represented here is the result of a fixed
effects analysis and is not corrected for inter-individual variability. (2 7 -16)

5.3.2 Perceptual Uncertainty: Surprise Classification

We obtained accuracy maps using a linear classification algorithm for 19 subjects with a

searchlight method (Figure 5.11). As in the financial uncertainty task, we then normalized

all subjects accuracy maps to the MNI template before smoothing normalized images to a

8 mm FWHM Gaussian filter. Finally, we performed a t-test on these images in a random

effects model. We performed a nominal group level t-test but no significant clusters emerged.

Nonetheless, we show group level maps below as a means to represent the information

contained in the pattern found.

Accuracy maps for single-subject classification show a cluster in the left putamen, and left

anterior insula, as we find in the financial uncertainty task, as well as a cluster in the left

entorhinal cortex, as in the cognitive uncertainty task. In addition, here we find patterns

of activity in the orbital gyrus, as region known to be implicated in decision-making and

valuation (Padoa-Schioppa & Assad, 2006).

5.4 Parameter weights correlations

The results above and in previous chapters support common neural activations associated

with uncertainty processing and surprise in cognitive and perceptual domains. To obtain

a more granular picture of this commonality, we explore beta weight estimates for surprise

linked to gamble outcomes and surprise linked to visual illusions within subjects.
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Figure 5.11 – Average accuracy maps for the classification of different levels of ambiguity
categorization in the perceptual uncertainty task (2 7 -16). As in Figure 10, the average here
does not take into account inter-subject variance.Therefore, these maps must be viewed with
caution, as outliers may potentially drive the average.

We extract beta parameters for all subjects that successfully performed both tasks, leaving

us with a sample size of 14. Beta parameter extraction is performed for ROIs that show both

common activations in both tasks for surprise and that are included in our a priori lists, which

leaves the bilateral anterior insula. We also include the LC as an especially relevant region for

our research questions and reference region for this analysis, (region VI-VII of the cerebellum

vermis). Finding a reference region for two tasks that engage audition and vision as well

as decision-making is no small feat and indeed, cerebellar activity is seen in the Card Game

however, we were guided in our choice by the following criteria: a wish to avoid cortical regions,

as these tend to be less well defined; finding a low-level region; and choosing a mid-line region,

to avoid laterality effects. While we see a linear relationship between insular values across

tasks, none are significant (Figure 11).

5.5 Discussion

Herein, we conduct a series of analyses to corroborate our model-based findings on common

neural representations of uncertainty across cognitive and perceptual domains. We opt for a

categorical model of investigation, which implies a loss in variance in our data, with an aim to

deploy multivariate pattern approaches, yet we still find a role for the insula in particular with

regards to uncertainty processing when performing a standard univariate analysis on these

unmodeled data.
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Figure 5.12 – Correlation matrix of group average beta weights for surprise in the financial un-
certainty task (odd columns) and surprise in the perceptual uncertainty tasks (even columns)
in bilateral insula, cerebellar vermis and locus coeruleus.

Table 5.5 – Correlation matrix of p values associated with regression of surprise coefficients
from financial (CG) and perceptual (NC) uncertainty tasks in bilateral insula, cerebellar vermis
and locus coeruleus in 14 subjects. Results in red show a strong inter-task relationship that
does not reach significance

L Ains CG L Ains NC R Ains CG R Ains NC Cer CG Cer NC LC CG LC NC

L Ains CG 1.0000 0.0617 0.0000* 0.1017 0.1365 0.6550 0.5378 0.1720
L Ains NC 0.0617 1.0000 0.0565 0.0000* 0.8442 0.2695 0.2079 0.3365
R Ains CG 0.0000* 0.0565 1.0000 0.0620 0.0860 0.5296 0.4680 0.4263
R Ains NC 0.1017 0.0000* 0.0620 1.0000* 0.8308 0.2164 0.2644 0.2794

Cer CG 0.1365 0.8442 0.0860 0.8308 1.0000 0.5341 0.1205 0.4338
Cer NC 0.6550 0.2695 0.5296 0.2164 0.5341 1.0000 0.6285 0.1913
LC CG 0.5378 0.2079 0.4680 0.2644 0.1205 0.6285 1.0000 0.1842
LC NC 0.1720 0.3365 0.4263 0.2794 0.4338 0.1913 0.1842 1.0000

We first tested for mean differences across three different levels of risk and three different levels

of surprise. We find a main effect for both risk and surprise in the insular cortex, corroborating

our findings in Chapter 3.

Parameter weights extraction in the financial uncertainty task support our assumed relation-

ship between risk and surprise, notably that higher signal percent changes for low risk, a

prediction variable, are mirrored by higher percent signal changes for high surprise, a predic-

tion error variable. A significant main effect of risk is seen in all regions except for the ventral
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striatum, however only the anterior cingulate cortex, LC (as assessed by the Keren atlas) and

left anterior insula see a linear decrease in BOLD response with increased risk, though differ-

ences between medium and low risk do not appear important. This result segues well with

the notion that increased risk, or a convergence towards ambiguity (Knightian uncertainty)

decreases neural activity (Vilares & Kording, 2011). Our categorical univariate analysis on

surprise also shows a significant main effect of surprise in all ROIs, except for the left posterior

insula. This effect appears to be driven by high surprise in particular, as low and medium levels

of surprise do not differ from one another. Nonetheless, BOLD responses increase linearly with

surprise in bilateral anterior cingulate cortex, LC and ventral striatum. The ventral striatum’s

increase for surprise is telling, as we expect surprise to act as a learning signal, a process which

is hypothesized to occur in the region in particular (Daw et al. 2011; Grahn et al., 2009; Wise et

al., 2004; McClure et al., 2003; Shohamy, 2011).

We performed a similar categorical analysis on Task 2 of our perceptual study in Chapter

4. We constructed regressors composed of switches for low, medium and high levels of

perceptual ambiguity (respectively, surprise). An F test probing a main effect of ambiguity

finds a significant insular involvement, although the clusters seen span the posterior as well as

the anterior insula, putting in question the commonality of the BOLD response found in the

categorical analysis of perceptual uncertainty relative to that of financial uncertainty, at least

with respect to the insula. To examine the relationship between the different levels of ambiguity

beyond mere significant differences, we performed ANOVAs on percent signal changes in

our 13 ROIs. We find significant differences in the left posterior insula, left anterior insula,

right caudate and LC. In plotting these quantities however, we do not see a linear relationship

emerging; we find lower BOLD response signal changes for partial ambiguity relative to high

or low ambiguity. This pattern is unexpected; however, it may be that partially ambiguous

stimulus is in reality more ambiguous than either fully ambiguous or disambiguated stimuli.

Finally, because of our findings in Chapter 4 in relation to the asymmetry between from-

above and from-below percepts, we also probed a main effect of bias towards the from above

perspective. We separated switch onsets according to which stimulus condition they occurred

in (cubes biased from 20-80% towards the from-above perspective). Here, whole brain results

thresholded at p=0.05 corrected for family wise error shows bilateral anterior insula activation,

as well as in the anterior cingulate cortex. Together, these regions form the principal actors

of the salience network (Uddin, 2015), the network we posit to be especially relevant to

surprising events. An ANOVA on percent signal changes for different bias conditions in 13

ROIs shows a significant difference in the right anterior cingulate cortex, which scales linearly

with increasing bias towards the from above perspective. Indeed, in all regions, percent signal

changes for switches in the 80% condition are markedly higher than in all other conditions.

This finding could be an artifact but we suggest otherwise. These results underscore our

behavioral findings from Chapter 4. Specifically, we suggest that not only are switches in the

80% condition more surprising than in the 50% or 35%/65%, but they are more surprising

than the 20% condition. We hypothesize that we hold both a strong prior for perceiving a

disambiguated cube and that we hold a strong prior for perceiving a cube from above. Thus
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we weight a cube’s unsigned ambiguity by our preferred, or most sensible, or most expected

percept, which is the from-above percept. Switches in this condition may thus induce the

strongest surprise, a possibility that is corroborated by our fMRI data.

Our primary aim in conducting this analysis was to perform a classification on our differing

levels of uncertainty across tasks, to determine common and distinct neural patterns of

activation in the different tasks. We reiterate here that MVPA techniques do not yield a

statistical result in line with hypothesis testing; that is we are not testing to see if average

patterns found are at below chance level. Instead, we seek an above chance classification

accuracy, or odds of correctly predicting an out-of-sample datum to its true label. Thus,

below-chance results are not directly applicable in this context, nor are group-level inferential

statistics. Our results above are preliminary, as we may be better served by performing

a representational similarity analysis, as well as permutation tests on our accuracy maps.

Nonetheless, the goal of our MVPA analysis was to determine if the same regions found in

our univariate analyses emerged here. The insula appears in both tasks’ MVPA accuracy

maps. Further, a cluster in the left putamen, as well as in the left entorhinal appear in the

Card Game and Necker Cube tasks. Finally orbitofrontal regions emerge in the Necker Cube

task. While we do not highlight this region in this thesis, the OFC has a prominent role the

decision-making literature, specifically in relation to valuation. While the insula appears in

both group accuracy maps for the Card Game as well as the Necker Cube Task, the remaining

patterns of information content between the two tasks do not resemble one another. Thus,

further analyses are warranted to probe the results above, with the aim of solidifying our

findings in previous chapters.

Our results in this Chapter, as well as in Chapters 3 and 4, repeatedly find the insula involved

in different kinds of uncertainty (risk and surprise) and different domains (perceptual and

financial). BOLD responses in this region are significant in both model-based analyses (Chap-

ters 3 and 4); categorical analyses (this Chapter). Further, classification of BOLD responses

according to uncertainty levels finds insular involvement (this Chapter). As our studies were

conducted in the same pool of subjects, we extracted beta weights for surprise in the Card

Game and surprise in Task 2 of the Necker Cube for the 14 subjects who performed both tasks.

We extracted beta weights in bilateral insula and the LC (Keren atlas), the former because it is

both in our list of a priori regions and also because, as noted, it is found in all analyses related

to uncertainty; and the latter because it was, at least initially, a prime region of interest with

respect to uncertainty and surprise in particular. We also extract surprise-related beta weights

for the cerebellum, as a reference region. We find a linear relationship for financial (cognitive

surprise) as well as perceptual surprise, bilaterally, though the p values found do not reach

significance (p = 0.0617 and p = 0.0620, in left and right insulae, respectively). We hypothesize

that statistical significance ultimately eludes us due to the low sample size of n = 14. Tellingly,

our reference region shows no correlation in surprise related beta weights across tasks, which

shows that it is not a system-wide within subject correlation that we find in the insula.

The insula was introduced in Chapter 1 of this thesis but, unlike other regions reviewed in
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the introduction, it has subsequently played a leading role in uncertainty processing in each

of the following Chapters, including this one, across all forms of data analysis and in both

experimental tasks. Thus, we must pose the following question: why the insula?

Studies using fMRI have found insula BOLD responses in relation to several phenomena.

A considerable body of evidence implicates the insula in language (Ackermann & Riecker,

2004; Ackermann & Riecker, 2010; Ardila et al., 2014); auditory processing (Bamiou et al.,

2003); interoception, or awareness of bodily signals (Craig & Craig, 2009; Craig, 2011); pain

(Peyron et al., 2000); disgust (Wicker et al., 2003); addiction and drug craving (Naqvi & Bechara,

2009; Naqvi & Bechara, 2010; Garavan, 2010); gustatory function (Small, 2010); perception

(Sterzer & Kleinschmidt, 2010); decision-making (Weller et al., 2009; Preuschoff et al., 2008;

Singer et al, 2009) and emotion in general (Gasquoine, 2014). One could be forgiven for

disregarding insular responses altogether and declaring the region a cortical junk drawer. An

urge to do just that with regards to the insula likely comes from how significant results have

been reported; namely, in neuroimaging studies, a specificity of function is often explicitly

stated with regards to the insula in a particular study, which of course is challenged when a

following unrelated study finds a similar BOLD response. We argue that rather than ignore

insular responses in neuroimaging study, we must seek a commonality in the functions

mentioned above. Indeed, an attempt at this has already been made, by casting the insula as

an interoceptive center, a region that integrates bodily states into awareness (Craig & Craig,

2009). Interoception in itself already presents a specific, if broad category that can readily

explain particularly salient emotions (love, fear, psychological pain) as well as sensory states

(tasting, craving, disgust, pain). Awareness of said states can also explain the insula’s putative

role in language processing: awareness generally includes a declarative function, which is most

readily translated into language production. Thus the interoception explanation covers most

of the studies referenced above. But then what of the insula’s role in uncertainty processing,

decision-making, prediction errors and perception?

This facet of the insula has indeed been examined more recently (Klein et al., 2007; Klein et al.,

2013), specifically the insula’s role in error awareness. Thus the plot thickens with this idea,

because it is not mere error detection that we attribute to the insula, but error in addition to an

awareness of it that is crucial to the insula. While error is generically viewed as synonymous to

a conflict or a mistake, from a predictive coding perspective, it is simply a difference between

two states. For instance, in Chapter 3, we cast our information quantity as a confidence error,

a quantity we believe does not engender conflict, but does encompass a difference. Klein and

colleagues briefly allude to predictive coding to note that it is compatible with their account

but do not examine the point in more detail.

In a related manner, the insula (and the anterior cingulate cortex) has emerged as a main

component of the salience network in resting state fMRI states (Menon & Uddin, 2010). Indeed,

one could argue that salience is an alternative to a neutral state - or the default mode network.

Salience in itself implies error or deviation - or at the very minimum, a difference from a

neutral or default state.
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Prior to the advent of neuroimaging, lesion cases provided the best means by which to assign

function to location in neurological studies. In the case of the insula, lesion studies appear

problematic, for few are isolated to the region (Gasquoine, 2014). Nevertheless, we review

some evidence suggesting that insula dysfunction leads to an impaired awareness of prediction

errors. For instance, it has been found that individuals with insula lesions quit smoking more

easily (Naqvi et al., 2007). If one views craving as a homeostatic prediction error, one can

see that a lack of awareness of the error may result in an inability to identify the bodily state

of craving, leading to an ease in smoking cessation. Several studies report various language

impairments following insular dysfunction (Ardila et al., 2014; Shuren, 1993). As mentioned,

most insula lesions also affect neighboring language related locations, however, findings

related to impaired language processing in patients does not contradict the region’s putative

role in awareness, as such a function implies the living of a declarative state. Indeed, most

studies on the insula’s role in language focus on speech production, a by-product of declarative

capabilities.

Taken together, we hypothesize that the insula’s involvement in uncertainty processing reflects

its role in acting as a mediator between prediction errors (irrespective of origin) and declarative

states. Thus, if a state can be named and it arises from a prediction error, we would expect

insular involvement. Such a capacity could explain the studies reviewed above as well as our

findings. For instance, pain can be named and should, at least in principle, result from a

prediction error. The same can be said for disgust. However, prediction errors that are not

expected to engender an awareness or declarative state, such as early trials in an implicit

learning task, would not be expected to elicit insula activation.

Recall that all the uncertainty related phenomena that we study straddle both computational

accounts as well as feeling states, including surprise, confidence and uncertainty. We propose

that the insula applies a transfer function to these errors, whose output is a name (Figure 13).

The role of the insula we propose is based on the model proposed by Singer et al., 2009 and

incorporates Craig’s view of interoception as well as Klein’s view of insula modulating error

awareness. This function of the insula would be far from trivial. For instance, what happens

if an individual’s transfer function goes awry, perhaps mistaking love for fear? What is clear

when one considers computational accounts of human function and behavior is that we

do not assume that humans explicitly or consciously make these calculations. Our task in

Chapter 3 is exceptional in that we assume adult subjects are capable of easily and explicitly

computing, for instance, their probability of winning in a trial.It is an example of conscious

inference, as opposed to Helmholzian unconscious inference or Fristonian activer inference.

We concede that outside of the financial realm, it is difficult to find concrete examples where

we expect individuals to explicitly compute. say, the variance of a given cue’s value in day-to-

day decisions. Such a process would be unrealistically taxing. We do assume however that the

brain does make these computations, even if the conscious brain does not, just as an infant

understands gravity, yet does not know it’s related equation. In this sense, we propose that

computations effective meaning are made explicit via the insula, which in essence transforms
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Figure 5.13 – A proposed model for insular function. We hypothesize that the insula integrates
prediction errors arising from computations in lower levels of the brain, before applying a
transfer function to the latter, to output a declarative state available to consciousness. Here
the insula acts as a translator between the computational brain and the word.

values into easy to understand categories, such as "I am somewhat unsure" or "I am more

informed", etc. just as it does for visceral input.

5.6 Conclusion

In this chapter, we sought to pull together results from our tasks in Chapters 3 and 4, conducted

in the same pool of subjects, to directly compare uncertainty related BOLD responses in a

perceptual task versus a cognitive one. We find the insula emerging as a uniquely relevant

region to uncertainty across tasks. Because the insula has also been implicated in a wide

variety of phenomena, we propose a model to integrate our view of the region’s role, namely in

low level signals, including prediction errors, before translating them into declarative states.
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6 Conclusion

6.1

The work outlined above offers several insights into decision-making under uncertainty. We

begin by considering the question of how humans address the problem of uncertainty, under

the assumption that 1) uncertainty is a feature that permeates all our interactions: 2) the

brain resolves this uncertainty. We thus work within the paradigm whereby we view the

brain as an inference machine. From this starting point, we view human decision-making as

an inferential process. We parsed the decision-making process into different components,

namely its predictive components and its error components before applying probabilistic

models that capture the hidden mechanisms we assume are at play when the human and its

brain are faced with uncertainty.

6.2 Questions Posed

• In a first instance, to probe noradrenergic involvement in uncertainty processing, we

performed a neuroimaging study to indirectly localize the locus coeruleus. In a first

instance, we undertook to indirectly localize the locus coeruleus, the main site of nora-

drenergic neurons in the brain, using fMRI. Such a method of indirect localization did

not prove fruitful. We then performed a pupillometry study using an auditory oddball

task, to elicit a reliable cognitive pupil response, a putative proxy of noradrenergic activ-

ity. We then administered this task in an MRI scanner over three different sequences, to

determine which would yield the best brainstem BOLD response. Results of our pilot

studies ultimately guided us towards a different approach with respect to our main

questions of interest; namely, we concluded that LC localization with fMRI methods is

tenuous. Our subsequent studies thus focused on other regions in the brain to probe

their role in uncertainty processing.

• Next, we aimed to disentangle the BOLD responses to three key variables related to

decision-making under uncertainty. We first investigated the uncertainty predictions,
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notably risk, as variance; and confidence, as precision. We next investigated surprise,

as absolute prediction error, and information, as a confidence error. We find objective

confidence engages the insula, when controlling for reward expectation. As confidence

is a form of belief, this finding underscores the importance of belief in decision-making

under uncertainty. With regards to uncertainty-related prediction errors, we find insular

and anterior cingulate involvement that scales with surprise. Intriguingly, we also find

a common insular activation for information, our confidence error, as well as distinct

patterns in the cuneus and frontal cortex. Thus we disassociate the signals of these

two quantities, surprise and information, in the brain and in so doing provide evidence

that information is not always surprising, and that information is reflected in the BOLD

responses, a novel finding.

• Finally, we administer a novel perceptual uncertainty task to the same subjects that

performed the financial uncertainty task above. We induce uncertainty by presenting

the Necker Cube illusion, with cubes biased towards one percept or another. By applying

a predictive coding account to perceptual switches, we model the perceptual switch as a

unsigned prediction error, or surprise. In so doing, we find bilateral insula involvement

for perceptual surprise. This finding provides strong evidence of a dedicated role for the

insula in general uncertainty processing, irrespective of domain or modality.

6.3 Impact of Findings

The work herein has borrowed concepts from several different fields, including neuroscience,

philosophy, psychology, economics, signal processing and machine learning. It has concomi-

tantly generated findings that impact three broad areas.

• The neural evidence of decision variables related to uncertainty, namely confidence,

surprise and information allows us to enrich the framework within which we investigate

neuropsychiatric illnesses. Namely, several of the latter involve subtle impairments in

executive function, and decision-making in particular, but quantifying such disruptions

can prove challenging. In Parkinson’s disease, for example, performance on decision-

making tasks is not always impaired (Ryterska et al., 2013). Schizophrenia, depression,

anxiety and obsessive-compulsive disorder all similarly appear to engender decision-

making impairment but the exact nature of the deficit remains elusive. Indeed, most

tasks are meant to capture the operationalization of a given decision-variable without a

computational formulation. By defining specific variables with a computational account,

we can better differentiate those processes that may be uniquely affected by a disease

state. In so doing, rehabilitative and therapeutic plans targeting specific dysfunctions

can be refined. In Parkinsonians, evidence of decision-making dysfunction may be due

to a dopaminergic overdose linked to dopamine therapy flooding intact striatal regions,

and not to the disease itself (Aarts et al, 2012). Similarly, in obsessive-compulsive

disorder, specific impairment in prediction error integration may be responsible for
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aberrant behavioral responses, rather than a system-wide cognitive impairment. Finally,

one can imagine that a system that cannot resolve the surprise signal - that is a patient

that does not show surprise signals - would exhibit significant behavioral impairments

that interfere with daily tasks. Thus, the differentiation of decision-variables above and

beyond rewards and outcomes, as well as their computational definitions, formulated

to capture their hidden nature, presents a powerful tool with which to address clinical

questions.

• Currently, artificial intelligence algorithms look to reproduce human behavior. This

endeavor necessitates a simplification of a complex system, which in turn elaborates

simple and powerful models of cognitive processes in the human. By testing these

models empirically, we can better assess whether the model is correct, at least in its

presumption of imitating a human being. Empirical testing of these algorithms can

thus better inform their suitability for a given task. In the case of learning and decision-

making, one can see how a truly intelligent machine would need to know how to resolve

uncertainty in its many forms. If we can create machines capable of integrating and

employing, for instance, a surprise signal, or relying on its confidence estimates, we

would be endowing said machine with a uniquely intelligent human capability. In other

words, capturing the elusive states of confidence and surprise, as well as, potentially,

their dynamics, adds to our understanding of how we can quantify the latter and thus

refine decision-making processes in a machine.

• Finally, this work provides empirical evidence that we are inference machines. By show-

ing common brain areas correlating with uncertainty encapsulated in two different

domains, namely a high-level cognitive domain such as numerical cognition, and a

low-level perceptual domain such as visual perception, we provide evidence supporting

Hermann von Helmholtz’ initial ideas on the brain’s purpose in relation to its envi-

ronment. The empirical findings in our imaging data therefore suggest our continual

exchange with the environment (the environment not being limited to what is external

to the physical body). That is, we engage in a constant process of approximation. A

corollary to this conclusion is that, if our seemingly optimal functioning as a species is

based on approximations, on what is good enough to move forward across a lifespan, it

is because we are limited in our capacity to perceive and integrate. Thus, our empirical

data support an epistemological idea: we cannot know the truth. Aside from the fact

that we may not need to know the truth, providing empirical evidence suggesting that

we cannot know what is true is a valuable, if sobering insight into our human behavior.
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Expected Reward p =.001; k = 27; SVC Analysis 

cluster cluster cluster cluster peak peak peak peak     

p(FWE-

corr) 

p(FDR-

corr) 

equivk p(unc) p(FWE-

corr) 

T equivZ p(unc) x y z 

{mm} 

 

0.026 0.877 18 0.405 0.019 4.21 3.52 0 10 14 -6 R 

Caud 

0.038 0.521 11 0.521 0.022 4.21 3.52 0 14 10 -10 R 

Put 

0.004 0.265 32 0.265 0.003 4.31 3.58 0 12 12 -8 R 

VStr 

    0.006 4.03 3.4 0 10 16 -6  
Table A.1 SVC analyses results for the expected reward contrast on 13 ROIS 
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RPE Contrast p =.001; k = 27 

cluster cluster cluster cluster peak peak peak peak     

p(FWE-

corr) 

p(FDR-

corr) 

equivk p(unc) p(FWE-

corr) 

T equivZ p(unc) x y z 

{mm} 

 

0 0 5108 0 0.023 6.96 4.9 0 -20 34 42 Left Superior 

Frontal 

Gyrus 

0 0 756 0 0.05 6.48 4.7 0 -40 36 -10 Left Lateral 

Orbital 

Gyrus 

0 0 1746 0 0.07 6.28 4.61 0 -60 -48 -6 Left Middle 

Temporal 

Gyrus 

0 0 1478 0 0.095 6.09 4.53 0 42 34 12 Right 

Inferior 

Frontal 

Gyrus 

0.007 0.008 362 0.001 0.213 5.58 4.28 0 -32 -10 -4 Left 

Putamen 

0.006 0.007 382 0.001 0.337 5.27 4.12 0 14 12 -2 Right 

Caudate 

(Accumbens) 

0.055 0.042 214 0.008 0.762 4.54 3.72 0 -2 -60 22 Precuneus 

0.044 0.041 229 0.006 0.796 4.48 3.69 0 -48 -62 24 Left Angular 

Gyrus 

0.057 0.042 211 0.008 0.797 4.48 3.68 0 16 60 20 Right 

Superior 

Frontal 

Gyrus 

0.066 0.044 201 0.009 0.835 4.41 3.64 0 2 -8 34 Right Mid-

cingulate 

Gyrus 

Table A.2 Table of results for activity related to the reward prediction error.  
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Confidence, p =0.001; k = 31 

cluster cluster cluste

r 

clust

er 

peak pea

k 

peak peak     

p(FW

E-

corr) 

p(FD

R-

corr) 

equiv

k 

p(unc

) 

p(FW

E-

corr) 

T equiv

Z 

p(unc) x y z 

{mm} 

 

0.026 0.04 300 0.004 0.086 6.0

6 

4.51 0 34 36 12 Right 

Inferior 

Frontal 

Gyrus 

0.004 0.009 477 0.001 0.107 5.9

2 

4.45 0 64 -

48 

26 Right 

Angular 

Gyrus 

0.005 0.009 454 0.001 0.213 5.4

9 

4.24 0 -

44 

46 8 Left 

Middle 

Frontal 

Gyrus 

0.001 0.003 681 0 0.241 5.4

1 

4.2 0 -

36 

-

56 

34 Left 

Angular 

Gyrus 

0.038 0.042 270 0.006 0.368 5.1

1 

4.04 0 32 22 -6 Right 

Anterio

r Insula 

0.041 0.042 263 0.007 0.586 4.7

4 

3.83 0 -

16 

30 30 Left 

Superio

r frontal 

Gyrus 

Confidence SVC Analyses 

cluster cluster cluste

r 

clust

er 

peak peak peak peak     

p(FW

E-

corr) 

p(FD

R-

corr) 

equiv

k 

p(unc

) 

p(FW

E-

corr) 

T equiv

Z 

p(unc

) 

x y z 

{mm

} 

 

0.002 0.027 162 0.027 0.004 5.11 4.04 0 32 22 -6 R 

Ains 

Table A.3 Whole brain analyses (p=0.001, cluster level corrected) and SVC analyses of the confidence 

contrast. 
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Confidence - Statistical Non Parametric Tests - p =0.05 FEW corrected  

Cluster 

Level 

Voxel Level  

k P(FWE -corr) Pseudo-t x y z  

67 0.0067 5.66 58 -54 28 r Angular Gyrus 

24 0.0082 5.58 46 -30 -2 r Middle Temporal Gyrus 

6 0.0175 5.28 -34 -56 36 l Angular Gyrus 

9 0.0196 5.24 -50 -30 -6 L Middle Temporal Gyrus 

9 0.0292 5.05 32 24 -6 r Ant. Insula 

6 0.0332 4.99 -42 46 6 l middle frontal Gyrus 

5 0.0347 4.97 -56 -50 38 l supramarginal Gyrus 

Table A.4 Results of statistical non-parametric tests for the confidence contrast (FEW corrected at p =0.05). 

Regions implicated include frontal cortical gyrii; anterior insula and importantly middle temporal gyrii.  
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ABS RPE, p =0.001; k = 34 

cluster cluster cluster cluster peak peak peak peak     

p(FWE-

corr) 

p(FDR-

corr) 

equivk p(unc) p(FWE-

corr) 

T equivZ p(unc) x y z 

{mm} 

 

0 0 3900 0 0.01 7.34 5.05 0 -28 20 -2 L Ains 

    0.032 6.6 4.75 0 -20 -6 8 Thalamus 

    0.066 6.17 4.56 0 -40 34 12 Left 

Inferior 

Frontal 

Gyrus 

0 0 2538 0 0.03 6.63 4.77 0 40 22 -10 R Ains 

    0.037 6.52 4.72 0 32 24 -12 R 

Posterior 

Orbital 

Gyrus 

0 0 2045 0 0.037 6.52 4.72 0 -62 -46 22 L 

Supramar

ginal 

Gyrus 

0 0 1003 0 0.056 6.26 4.61 0 60 -40 -2 R Middle 

Temporal 

Gyrus 

0.001 0.001 674 0 0.1 5.91 4.45 0 14 10 4 R Caudate 

0 0 1586 0 0.194 5.5 4.24 0 6 28 16 R ACC 

ABS RPE SVC 

cluster cluster cluster cluster peak peak peak peak     

p(FWE-

corr) 

p(FDR-

corr) 

equivk p(unc) p(FWE-

corr) 

T equivZ p(unc) x y z 

{mm} 

 

0 0.004 333 0.004 0.004 5.14 4.06 0 0 30 14 L ACC 

    0.008 4.83 3.89 0 -10 24 26  

    0.032 4.08 3.44 0 -2 42 14  

    0.035 4.03 3.4 0 -8 36 14  

0.001 0.033 215 0.017 0.002 5.5 4.24 0 6 28 16 R ACC 

    0.024 4.16 3.49 0 6 24 32  

0 0.004 347 0.004 0 6.96 4.9 0 -28 22 -2 L AIns 

    0.005 4.99 3.97 0 -36 10 4  

    0.043 3.84 3.29 0.001 -28 14 -18  

0 0.002 428 0.002 0 6.4 4.67 0 30 22 -10 R Ains 

    0.001 6.11 4.54 0 40 20 -10  

    0.001 5.78 4.38 0 34 20 0  

0.003 0.106 130 0.053 0.001 5.88 4.43 0 -14 12 6 L Caud 

    0.002 5.34 4.16 0 -16 4 14  
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    0.003 5.11 4.04 0 -18 10 12  

0.045 0.834 2 0.834 0.031 3.87 3.3 0 -8 6 2  

0.002 0.032 165 0.032 0.001 5.73 4.36 0 12 12 4 R Caud 

    0.001 5.54 4.27 0 18 8 14  

0.008 0.184 76 0.129 0.001 5.83 4.4 0 -22 -4 8 L Put 

    0.008 4.68 3.8 0 -30 0 -2  

0.012 0.184 57 0.184 0.014 4.39 3.63 0 -26 14 -2  

    0.024 4.1 3.45 0 -16 8 -10  

    0.036 3.86 3.3 0 -20 10 -2  

0.013 0.892 52 0.203 0.011 4.52 3.71 0 24 -6 6 R Put 

    0.028 3.99 3.38 0 20 6 2  

0.035 0.892 12 0.549 0.025 4.05 3.42 0 28 12 2  

    0.032 3.93 3.34 0 30 8 2  

    0.04 3.8 3.26 0.001 26 16 2  

0.047 0.892 4 0.75 0.027 4.02 3.4 0 26 14 -8  

Table A.5 Whole brain cluster level corrected results of surprise as absolute reward prediction error; the 

lower half of the table shows results of SVC analyses for the surprise contrast on 6 (12 bilateral) ROIs. 
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Surprise SnPM 

k pFWE-Corr pFDR-corr Pseudo-t puncorr x y z  

594 0.0012 0.0035 6.34 0.0001 32 22 -10 R Posterior Orbital 

Gyrus 

 0.0013 0.0035 6.28 0.0001 44 20 -10  

 0.0131 0.0035 5.31 0.0001 38 14 0  

350 0.0017 0.0035 6.21 0.0001 -62 -44 24 L Supramarginal 

Gyrus 

 0.0056 0.0035 5.71 0.0001 -58 -52 6  

320 0.002 0.0035 6.09 0.0001 -30 22 -4 L Ains 

191 0.0026 0.0035 6 0.0001 -42 34 12 L Inferior Frontal 

Gyrus 

207 0.0046 0.0035 5.8 0.0001 56 -34 -2 R Superior 

Temporal Gyrus 

 0.0059 0.0035 5.66 0.0001 50 -28 -4  

25 0.0073 0.0035 5.61 0.0001 -20 -4 8 L Caud 

40 0.0092 0.0035 5.48 0.0001 2 28 14 R ACC 

149 0.0092 0.0035 5.47 0.0001 -64 -36 -6 L Middle Temporal 

Gyrus 

 0.0093 0.0035 5.47 0.0001 -52 -30 -4  

18 0.0232 0.0044 5.05 0.0002 54 -44 12 L Superior 

Temporal Gyrus 

13 0.0266 0.0044 4.98 0.0002 18 8 12 R Caud 

3 0.0319 0.0035 4.91 0.0001 0 22 42 Supplementary 

Motor Gyrus 

14 0.0327 0.0035 4.91 0.0001 -38 14 28 L Middle Frontal 

Gyrus 

2 0.0347 0.0044 4.88 0.0002 -10 26 26 L ACC 

Table A.6 Results of non-parametric statistical tests. Bilateral anterior cingulate cortex involvement 

remains as does activity in left caudate and left anterior insula. 
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Information; p =0.001; k=31 

cluster cluster cluste

r 

cluste

r 

peak pea

k 

peak peak     

p(FWE

-corr) 

p(FDR

-corr) 

equiv

k 

p(unc

) 

p(FWE

-corr) 

T equiv

Z 

p(unc

) 

x y z 

{mm

} 

 

0 0 2984 0 0.004 8.0

3 

5.31 0 -

46 

-

36 

40 Left 

Supramargin

al Gyrus 

0 0 4088 0 0.062 6.2

7 

4.61 0 24 -

70 

24 Right Middle 

Occipital 

Gyrus 

0 0 844 0 0.105 5.9

4 

4.46 0 24 -

62 

-26 Left Middle 

Occipital 

Gyrus 

0 0 1838 0 0.16 5.6

8 

4.33 0 22 4 16 Right 

Putamen 

0 0 769 0 0.229 5.4

5 

4.22 0 -

32 

38 18 Left Middle 

Frontal 

Gyrus 

0.009 0.009 390 0.001 0.35 5.1

6 

4.07 0 24 60 4 Right 

Superior 

Frontal 

Gyrus 

Information, SVC analysis 

cluster cluster cluste

r 

cluste

r 

peak peak peak peak     

p(FWE

-corr) 

p(FDR

-corr) 

equiv

k 

p(unc

) 

p(FWE

-corr) 

T equiv

Z 

p(unc

) 

x y z 

{mm

} 

 

0.006 0.081 93 0.081 0.002 5.42 4.2 0 -

28 

16 10 A Ins L 

    0.028 4.12 3.46 0 -

38 

-2 8  

    0.028 4.11 3.46 0 -

34 

2 8  

    0.029 4.09 3.44 0 -

42 

-4 8  

0.011 0.257 62 0.147 0.003 5.33 4.16 0 32 18 10 Ains R 

    0.005 5.08 4.02 0 30 22 8  

    0.017 4.37 3.62 0 34 4 8  

0.02 0.257 37 0.257 0.007 4.87 3.91 0 34 -8 12  
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0.045 0.775 3 0.775 0.041 3.74 3.22 0.001 -

18 

0 18 Caud L 

0.04 0.667 6 0.667 0.009 4.58 3.74 0 20 4 18 Caud R 

0.021 0.667 26 0.341 0.015 4.31 3.58 0 16 18 12  

0.003 0.063 107 0.063 0.002 5.15 4.06 0 38 -

12 

12 Pins L 

0.011 0.228 42 0.228 0.018 4.09 3.45 0 -

38 

-

12 

8 Pins R 

0.005 0.075 97 0.075 0.007 4.81 3.87 0 -

24 

12 6 Put L 

    0.009 4.65 3.78 0 -

26 

2 8  

0.004 0.166 115 0.055 0.003 5.21 4.1 0 32 2 2 Put R 

    0.004 5.04 4 0 26 6 10  

    0.004 5.04 4 0 26 2 12  

    0.016 4.33 3.6 0 28 -6 12  

Table A.7 Results of information contrast, sampled after Card 2; The upper part of the table shows results 

of a whole brain analysis (p =0.001, cluster level corrected k = 31) and the bottom half shows SVC analyses 

results on 6 ROIs. 
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Information, SnPM, p =0.05 FWE 

k pFWE-Corr pFDR-

corr 

Pseudo-

t 

puncorr x y z Region 

147 0.0001 0.0034 7.49 0.0001 -44 -34 40 L Supramarginal 

Gyrus 

72 0.0053 0.0034 5.54 0.0001 -12 -72 26 Left Cuneus 

40 0.0073 0.0034 5.44 0.0001 32 18 10 R Ains 

69 0.0171 0.0043 5.17 0.0002 20 -70 24 Right Cuneus 

 0.0189 0.0034 5.11 0.0001 14 -74 30  

19 0.0184 0.0034 5.13 0.0001 32 -76 20 R Superior Occ. 

Gyrus 

16 0.0211 0.0034 5.07 0.0001 -52 -8 24 R Postcentral Gyrus 

5 0.0315 0.0043 4.94 0.0002 -18 -52 -14 Cerebellum 

5 0.0382 0.0034 4.87 0.0001 26 60 4 R Superior Frontal 

Gyrus 

9 0.0389 0.0034 4.86 0.0001 26 2 10 R Putamen 

9 0.04 0.0034 4.85 0.0001 -54 -22 12 L Central Operculum  

3 0.0421 0.0043 4.82 0.0002 -16 -68 6 L Calcarine cortex 

2 0.0462 0.0034 4.78 0.0001 -8 -74 -10 L Lingual Gyrus 

3 0.0465 0.0034 4.77 0.0001 24 -60 -22 Cerebellum 

Table A.8 Results of non-parametric statistical tests for information. In addition to a cluster in the right 

anterior insula, we find a bilateral cluster in the cuneus, as well as clusters in the frontal lobe and 

cerebellum.  
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Task 1 t-Test –p=001; k = 31; SVC 

cluster cluster cluster peak peak peak     

p(FWE-

corr) 

equivk p(unc) p(FWE-

corr) 

T p(unc) x y z 

{mm} 

 

0.038 14 0.168 0.064 3.68 0.001 34 24 0 rAIns 

 
Table B.1 Significant SVC results for perceptual risk in Task 1 in the Right Anterior Insula 
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Task 2 -GLM1 -t-test - Replay > Report, p =0.001, k=25  

cluster cluster cluster peak peak peak   null Region 

p(FWE-

corr) 

equivk p(unc) p(FWE-

corr) 

T p(unc) x y z {mm}  

0 969 0 0.001 10.14 0 -54 -56 42 Angular 

Gyrus L 

   0.028 7.3 0 -42 -58 40  

0 1850 0 0.002 9.24 0 46 30 30 Mid 

Frontal 

Gyrus R 

0 871 0 0.041 7.04 0 -2 32 46 Superior 

Frontal 

Gyrus 

0 1100 0 0.045 6.98 0 -46 12 44 Mid 

Frontal 

Gyrus L 

0 1290 0 0.055 6.84 0 36 -52 40 Angular 

Gyrus R 

0.001 518 0 0.327 5.59 0 60 -34 -6 MTG R 

0 594 0 0.518 5.21 0 36 -80 -10 Occ. 

Fusiform 

Gyrus R 

0.038 238 0.004 0.638 5 0 -58 -32 -10 MTG L 
Table B.2 Whole Brain Analyses for Replay > Report condition (p =.001, k = 25)  
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Task 2 -T-Test - Up > Down, p =.001, k= 23  

cluster cluster cluster peak peak peak   nu

ll 

 

p(FWE-corr) equivk p(unc) p(FWE-corr) T p(unc) x y z  Region 

0 5418 0 0.017 7.71 0 -8 -92 16 L 

Occipital 

Pole 

   0.023 7.53 0 -16 -42 34 Precuneus 

   0.049 6.99 0 -14 -56 26 Precuneus 

0 706 0 0.25 5.86 0 -46 -52 26 R 

Angular 

Gyrus 

0.021 255 0.002 0.289 5.75 0 56 -56 22 L 

Angular 

gyrus 

Table B.3 Whole Brain results for contrast Up > Down switches (p =.001, k = 23), in the Necker Cube, Task 
2.  
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Table B.4  Whole brain results for switch response (p =.001, k = 37). 

Task 2 –T-Test - Switch, p =.001, k=37 

cluster cluster peak peak peak peak   null 

p(FW

E-

corr) 

equivk p(FWE-

corr) 

p(FDR-

corr) 

T p(unc) x y z {mm} Regio

n 

0 1119 0.009 0.085 7.82 0 -44 16 -4 L AIns 

0 4231 0.013 0.085 7.6 0 -32 -56 -26 Cerebellum 

  0.021 0.085 7.25 0 30 -54 -30  

  0.029 0.085 7.03 0 -40 -60 -28  

0 1605 0.026 0.085 7.1 0 -12 -22 -14 Ventral DC 

0 947 0.057 0.125 6.58 0 58 10 2 L AIns 

0 868 0.162 0.13 5.87 0 48 -40 28 R 

Supramarginal 

Gyrus 

0.003 603 0.366 0.206 5.27 0 10 -2 6 Thalamus 

0.032 333 0.45 0.221 5.1 0 -66 -38 30 R 

Supramarginal 

Gyrus 
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SVC Analysis - Switch Modulated by Surprise and Previous Dwell Time 

cluster cluster cluster peak peak peak     

p(FWE-corr) equivk p(unc) p(FWE-

corr) 

T p(unc) x y z 

{mm} 

 

0.059 4 0.721 0.047 3.93 0 -30 18 10 AIns L 

0.05 7 0.621 0.039 4.04 0 38 24 2 Ains R 

 

Table B.5  SVC results for switch onsets modulated by surprise as risk prediction error. 
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NC Task 2 - Abs RPE -p =0.001, k = 30 

cluster cluster cluster cluster peak peak peak peak peak     

p(FWE-

corr) 

p(FDR-

corr) 

equivk p(unc) p(FWE-

corr) 

p(FDR-

corr) 

T equivZ p(unc) x y z {mm}  

0.039 0.498 13 0.498 0.022 0.282 4.34 3.54 0 36 26 2 Ains 

R 

Table B.6 SVC analysis of surprise as absolute prediction error in Necker Cube task 2. 
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Whole Brain Analysis - Switch Modulated by Previous Dwell Time;  p =.0001; k =12 

cluster cluster peak peak peak   null  

p(FWE-corr) equivk p(FWE-corr) T p(unc) x y z {mm} Region 

0.025 80 0.024 7.37 0 16 -22 4 Thalamus 

0 371 0.024 7.37 0 -46 -20 28 L Central 

Operculum 

0.001 180 0.026 7.33 0 -22 -20 -4 L Ventral DC 

  0.042 6.98 0 -26 -14 -10  

0 494 0.053 6.83 0 -24 26 -6 L AIns 

0 468 0.073 6.62 0 56 -14 24 R Parietal 

Operculum 

0 231 0.082 6.53 0 -38 14 -30 L Temporal 

Pole 

0.042 65 0.088 6.49 0 -44 -72 24 L Middle 

Occipital 

Gyrus 

0.023 82 0.115 6.3 0 12 -50 12 Precuneus 

0 272 0.118 6.29 0 -20 -62 24 Precuneus 

0 278 0.13 6.22 0 50 -68 16 R Middle 

Occipital 

Gyrus 

0.002 172 0.207 5.89 0 4 -2 46 R Mid 

Cingulate 

Gyrus 

0.037 69 0.362 5.48 0 -48 -62 10 L Middle 

Temporal 

Gyrus 

 

Table B.7 Whole brain analysis for switch onset modulated by previous dwell time (p=.0001, k =12) 
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SVC Analysis - Switch Modulated by Previous Dwell Time;  p =.0001; k =12 

cluster cluster peak peak peak     

p(FWE-corr) equivk p(FWE-

corr) 

T p(unc) x y z 

{mm} 

 

0.003 16 0.001 6.25 0 -28 28 4 Ains L 

0.001 40 0.002 5.95 0 -38 8 -6  

0.007 6 0.005 5.24 0 -32 12 10  

0.006 8 0.009 4.93 0 -32 14 -20  

0.008 1 0.008 4.8 0 -14 14 -4 Caud L 

0.004 9 0.002 5.66 0 14 18 -6 Caud R 

0.001 42 0.001 6.26 0 -28 -14 -8 Put L 

0 67 0.003 5.56 0 -22 12 -10  

  0.003 5.5 0 -22 18 -2  

  0.007 4.98 0 -28 10 -2  

0.008 3 0.008 4.89 0 18 18 -8 Put R 

0.001 7 0 5.82 0 14 18 -8 VStr R 

  
Table B.8 SVC analysis results for switch onset modulated by previous dwell time  
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Whole Brain Analysis - Switch Modulated bySurprise and Previous Dwell Time;  p =.001; k =28 

cluster cluster peak peak peak   null 

p(FWE-corr) equivk p(FWE-corr) T p(unc) x y z {mm} Region 

0 738 0.394 5.38 0 -22 -80 -14 L 

Occipital 

Fusiform  

0.003 460 0.451 5.27 0 32 -74 -14 R 

Occipital 

Fusiform 

0.011 351 0.457 5.25 0 34 -82 26 R Middle 

Occipital 

0.014 332 0.672 4.88 0 50 10 26 R 

Precentral 

Gyrus 

 

Table B.9 Whole Brain analysis for switch onset modulated by previous dwell time and surprise (p=.0001, k 
=28) 
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SVC Analysis - Switch Modulated by Surprise and Previous Dwell Time 

cluster cluster peak peak peak     

p(FWE-

corr) 

equivk p(FWE-

corr) 

T p(unc) x y z {mm} AIns L 

0.032 20 0.02 4.45 0 -30 18 10  

  0.027 4.27 0 -32 22 6  

0.02 36 0.035 4.09 0 30 26 8 Ains R 

  0.045 3.96 0 38 24 0  

 

Table B.10 SVC analysis of switch onset modulated by both previous dwell time and surprise 
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Catergorical Risk Card Game - p =0.001; k =24 

cluster cluster cluster peak peak peak peak     

p(FWE-

corr) 

p(FDR-

corr) 

equivk p(FWE-

corr) 

F equivZ p(unc) x y z 

{mm} 

 

0 0 977 0.177 15.73 4.29 0 48 -

74 

8 Right 

Inferior 

occipital 

gyrus 

0.041 0.047 219 0.185 15.62 4.27 0 -

30 

-

38 

-16 Left 

Fusiform 

Gyrus 

0 0 626 0.199 15.45 4.25 0 -

40 

-

64 

-12 Left 

Inferior 

occipital 

gyrus 

0.007 0.01 338 0.277 14.64 4.15 0 32 22 -6 R Anterior 

Insula 

0 0 763 0.312 14.34 4.11 0 60 -

56 

26 R Angular 

Gyrus 

0.081 0.079 176 0.145 16.2 4.34 0 34 -6 -28 
R 

Amygdala  

Categorical Risk Card Game SVC Analyses  

cluster cluster cluster peak peak peak peak     

p(FWE-

corr) 

p(FDR-

corr) 

equivk p(FWE-

corr) 

F equivZ p(unc) x y z 

{mm} 

 

0.03 0.334 21 0.032 10.11 3.45 0 -

28 

24 2 Ains L 

0.001 0.009 186 0.003 14.64 4.15 0 32 22 -6 Ains R 

   0.017 11.23 3.64 0 44 0 2  

   0.024 10.59 3.54 0 38 4 -6  

0.009 0.149 48 0.015 10.58 3.53 0 38 0 -4 Pins L 

   0.026 9.67 3.37 0 40 -8 2  

 

Table C.1 Results of ANOVA on main effect of risk (respectively, confidence) at card 1, separated according 
to low, medium and high risk. The top table represents whole brain analyses, while the lower portion of the 
table shows SVC analyses.  
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Table C.2 Results of ANOVA on main effect of surprise (respectively, information) at card 2, separated 
according to low, medium and high surprise. The top table represents whole brain analyses, while the lower 
portion of the table shows SVC analyses.  

 

Categorical Surprise Card Game - p =0.001; k =23 

cluster cluster cluster peak peak peak peak     

p(FWE-

corr) 

p(FDR-

corr) 

equivk p(FWE-

corr) 

F equivZ p(unc) x y z 

{mm

} 

 

0 0 675 0.072 17.94 4.55 0 -60 -48 22 Left 

Supramarginal 

gyrus 

0.008 0.009 319 0.11 16.95 4.43 0 62 -10 30 Right 

Postcentral 

gyrus 

0.021 0.02 255 0.277 14.72 4.16 0 50 -28 -6 Right Middle 

Temporal Gyrus 

0.001 0.003 447 0.499 13.15 3.94 0 -34 18 -2 Left Anterior 

Insula 

0.003 0.004 393 0.521 13.02 3.92 0 44 22 -10 Right Anterior 

Insula 

0.028 0.022 235 0.623 12.44 3.83 0 -46 12 30 Left Middle 

Frontal Gyrus  

Categorical Surprise Card Game - SVC 

cluster cluster cluster peak peak peak peak     

p(FWE-

corr) 

p(FDR-

corr) 

equivk p(FWE-

corr) 

F equivZ p(unc) x y z 

{mm

} 

 

0.033 0.624 22 0.056 9.34 3.31 0 0 36 24 ACC L 

0.04 0.44 13 0.054 9.15 3.27 0.001 2 36 24 ACC R 

0.001 0.014 192 0.006 13.15 3.94 0 -34 18 -2 A Ins L 

0.03 0.323 21 0.02 11.05 3.61 0 -28 14 -18  

0.001 0.008 184 0.008 12.65 3.87 0 40 22 -4 A Ins R 

   0.011 12.14 3.79 0 42 20 -8  

   0.017 11.26 3.65 0 32 22 -2  

0.013 0.374 38 0.005 12.91 3.9 0 -14 2 14 Caud L 

0.011 0.153 45 0.008 12.13 3.79 0 12 10 4 Caud R 

0.039 0.648 5 0.033 9.28 3.3 0 36 -10 16 P Ins L  

0.016 0.272 26 0.009 11.5 3.69 0 -40 -14 10 P Ins R 
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Task 2 - ANOVA - Ambiguity - p=.001, k = 22- cluster  

cluster cluster peak peak peak   null Region 

p(FWE-

corr) 

equivk p(FWE-

corr) 

F p(unc) x y z {mm} 

0 1289 0.003 27.65 0 50 -60 0 Right Middle 

Temporal 

gyrus 

0 987 0.03 21.46 0 -54 -58 0 Left Middle 

Temporal 

Gyrus 

0.005 348 0.088 18.71 0 14 16 36 Supplementary 

Motor Cortex 

0 837 0.122 17.87 0 4 -62 12 Right 

Calcarine 

Cortex 

0.007 320 0.128 17.75 0 40 -26 0 Right Anterior 

Insula 

0 539 0.152 17.31 0 -34 -6 -2 Left Posterior 

Insula 

0 825 0.189 16.75 0 -44 14 16 Left Inferior 

Frontal Gyrus 

0.016 269 0.299 15.53 0 52 4 10 Right Anterior 

Insula 

0.016 268 0.334 15.22 0 44 42 26 Right Middle 

Frontal Gyrus 

Task 2 - ANOVA - Ambiguity – SVC Analysis 

cluster cluster peak peak peak   null  

p(FWE-

corr) 

equivk p(FWE-

corr) 

F p(unc) x y z {mm}  

0.025 26 0.017 11.76 0 -38 -2 0 lAins 

0.049 9 0.034 10.36 0 -28 20 8  

0.008 64 0.019 11.45 0 40 -2 8 rAins 

  0.027 10.73 0 36 6 8  

0.022 17 0.012 11.44 0 34 -16 4 lPIns 

0.02 20 0.016 10.97 0 38 -6 0  

  0.037 9.32 0.001 38 -10 -2  

0.005 67 0.001 16.16 0 -38 -12 -4 rPIns 

0.004 91 0.005 13.89 0 -32 -6 -2 lPut 

  0.007 13.22 0 -30 -16 -6  

0.02 28 0.021 10.99 0 32 -14 4 rPut 

  0.044 9.59 0 30 -18 6  
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Table C.3 Whole brain analysis of main effect of ambiguity on switch response in Necker Cube, Task 2 
(p=0.001; k =22) SVC results of main effect of ambiguity in the Necker Cube, Task 2 on 7 a priori ROIs and 
subsequent SVC analysis. 
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Task 2 - ANOVA - Bias - p =0.05, FWE 

cluster cluste

r 

peak peak peak   null  

p(FWE-

corr) 

equiv

k 

p(FWE-

corr) 

F p(unc) x y z 

{mm} 

 

0 316 0 26.12 0 36 -52 -28 Cerebellum 

  0.001 16.68 0 26 -60 -20  

0 433 0 25.39 0 52 10 2 R AIns 

  0.014 12.82 0 36 8 8  

0 478 0 21.13 0 64 -38 24 R Supramarginal Gyrus 

  0 18.56 0 56 -38 28  

0 522 0 20.97 0 -50 2 4 L AIns 

  0 18.53 0 -48 -2 12  

  0 17.23 0 -40 12 0  

0 91 0 20.43 0 -18 -68 -46 Cerebellum 

0 368 0 18.75 0 -36 -60 -26 Cerebellum 

  0 18.53 0 -40 -58 -34  

  0.002 15.02 0 -26 -58 -28  

0 284 0 18.43 0 0 18 36 Middle Cingulate Gyrus 

  0.002 15.31 0 -10 32 32  

0.001 41 0 17.12 0 18 -64 -48 Cerebellum 

0 96 0.004 14.26 0 12 -14 8 Thalamus 

0.001 39 0.005 13.99 0 -14 -18 8 Thalamus 

0.003 23 0.008 13.46 0 36 44 36 R Middle Frontal Gyrus 

         

Table C.4 Whole brain analysis results for the main effect of stimulus bias (bias towards “from above” ), p 
=0.05, FWE ,corrected  
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cluster cluster cluster cluster peak peak peak peak    

p(FWE-

corr) 

p(FDR-

corr) 

equivk p(unc) p(FWE-

corr) 

T equivZ p(unc

) 

x y z 

{mm} 

 

0 0 12651 0 0.01 8.23 5.31 0 64 -4 12 R. Anterior 

Insula 

0.014 0.008 572 0.001 0.028 7.53 5.06 0 -36 -4 -44 L Inf. 

Temporal 

Gyrus 

0 0 5317 0 0.076 6.88 4.82 0 -42 -34 4 L. 

Transverse 

Temporal 

Gyrus 

0.001 0 1024 0 0.292 5.96 4.42 0 -14 -80 2 L.Calcarine 

Cortex 

0 0 1399 0 0.515 5.51 4.21 0 8 36 36 Anterior 

Cingulate 

Cortex 

0.071 0.033 385 0.005 0.653 5.28 4.09 0 24 -72 40 R. Superior 

Occipital 

Cortex 

0.093 0.037 355 0.006 0.908 4.79 3.83 0 -64 10 14 L. Anterior 

Insula 

Table C.5 Table of results showing clusters emerging from a group level analysis on accuracy maps for the 
classification of data into correct categories of surprise (respectively, information) levels.  
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 CURRENT
OPINION Apathy and noradrenaline: silent partners to mild

cognitive impairment in Parkinson’s disease?

Leyla Loued-Khenissi a and Kerstin Preuschoff b

Purpose of review

Mild cognitive impairment (MCI) is a comorbid factor in Parkinson’s disease. The aim of this review is to
examine the recent neuroimaging findings in the search for Parkinson’s disease MCI (PD-MCI) biomarkers
to gain insight on whether MCI and specific cognitive deficits in Parkinson’s disease implicate striatal
dopamine or another system.

Recent findings

The evidence implicates a diffuse pathophysiology in PD-MCI rather than acute dopaminergic involvement.
On the one hand, performance in specific cognitive domains, notably in set-shifting and learning, appears
to vary with dopaminergic status. On the other hand, motivational states in Parkinson’s disease along with
their behavioral and physiological indices suggest a noradrenergic contribution to cognitive deficits in
Parkinson’s disease. Finally, Parkinson’s disease’s pattern of neurodegeneration offers an avenue for
continued research in nigrostriatal dopamine’s role in distinct behaviors, as well as the specification of
dorsal and ventral striatal functions.

Summary

The search for PD-MCI biomarkers has employed an array of neuroimaging techniques, but still yields
divergent findings. This may be due in part to MCI’s broad definition, encompassing heterogeneous
cognitive domains, only some of which are affected in Parkinson’s disease. Most domains falling under the
MCI umbrella include fronto-dependent executive functions, whereas others, notably learning, rely on the
basal ganglia. Given the deterioration of the nigrostriatal dopaminergic system in Parkinson’s disease, it
has been the prime target of PD-MCI investigation. By testing well defined cognitive deficits in Parkinson’s
disease, distinct functions can be attributed to specific neural systems, overcoming conflicting results on PD-
MCI. Apart from dopamine, other systems such as the neurovascular or noradrenergic systems are affected
in Parkinson’s disease. These factors may be at the basis of specific facets of PD-MCI for which
dopaminergic involvement has not been conclusive. Finally, the impact of both dopaminergic and
noradrenergic deficiency on motivational states in Parkinson’s disease is examined in light of a plausible
link between apathy and cognitive deficits.

Keywords

apathy, learning, neuroimaging, noradrenaline, Parkinson’s

INTRODUCTION

Mild cognitive impairment (MCI) refers to cognitive
decline that does not meet the clinical criteria for
dementia. MCI is a widely reported comorbid factor
in Parkinson’s disease [1]. Whereas MCI can predict
dementia in Parkinson’s disease [2], MCI assessment
accuracy based on cognitive batteries is relatively
poor [3,4]. As such, neuroimaging techniques are
now being used to identify its neural signature. MCI
is a profile that arises in many populations, includ-
ing the aged and Alzheimer’s patients. Since its
cause is unknown, it is unclear whether the same
mechanism prompts its emergence in different dis-
eases [5]. Further, MCI incorporates deficits across

heterogeneous cognitive domains [6], most related
to fronto-dependent executive function [7], but at
times inclusive of learning processes [8,9]. Studies
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on Parkinson’s disease MCI (PD-MCI) have been
inconclusive with regards to the domains affected
and dopaminergic involvement. PD-MCI is thought
to be a consequence of cortical dopaminergic
changes in Parkinson’s disease arising from com-
promised fronto-striatal circuits, notably the meso-
cortical and nigrostriatal loops (see Fig. 1) [10].
However, evidence of changes in prefrontal dopa-
mine is equivocal [8,11,12]. Since Parkinson’s disease

is marked by nigrostriatal dopaminergic loss, basal-
ganglia-dependent learning processes have been
studied extensively [13,14], with a particular focus
on the striatum. It is generally thought that the
ventral and dorsal striatum play distinct functional
roles, which are only partially understood to date.
The dopamine overdose hypothesis may explain
observed selective impairment in Parkinson’s
disease patients on dopaminergic replacement
therapy (PDON) relative to unmedicated patients
(PDOFF) [15]. In early Parkinson’s disease, the dor-
sal striatum displays extensive degeneration,
whereas the ventral striatum remains preserved.
Dopaminergic medication relieves dorso-related
motor symptoms, but may overdose a functional
ventral striatum, prompting selective behavioral
impairments such as impulse control disorders
(ICDs). PDOFF populations thus offer a window
into dorsal striatum-dependent functions. Further
questions regarding cognitive deficits converge on
recent recognition that apathy is a common symp-
tom in early Parkinson’s disease [16]. Questions on
apathy’s behavioral impact and its neural basis
remain open. Dopamine has long been the focus
of Parkinson’s disease research; however, disease
characteristics extend beyond the dopaminergic
system, suggesting other factorsmay drive observed
deficits.

KEY POINTS

� Neuroimaging research supports a diffuse neural
marker for PD-MCI with a neurovascular basis
emerging as a strong candidate in its cause.

� Though difficult to image, the locus coeruleus
noradrenaline complex, given its widespread cortical
projections, chemical link to dopamine, and marked
deterioration in Parkinson’s disease, should be
investigated as a strong contributor to Parkinson’s
disease behavioral impairments.

� The widespread emergence of apathy in Parkinson’s
disease, supported by behavioral and EEG markers,
should be investigated in relation to a dopaminergic or
noradrenergic neural basis and known cognitive
profiles in Parkinson’s disease.

Motor area

Nigrostriatal pathway
LC projections

Locus coeruleus

Ventral tegmental

Substantia nigra

Dorsal striatum

Mesocortical pathway

Anterior cingulate
cortex (ACC)

Prefrontal
cortex

FIGURE 1. An overview of brain regions implicated in MCI, Parkinson’s disease, and the locus coeruleus noradrenergic
system. MCI test batteries primarily include executive function, which is traditionally linked to the prefrontal cortex (as well as
the anterior cingulate cortex). PD is characterized by a damaged nigrostriatal pathway that starts in the substantia nigra and
projects to the dorsal striatum (dashed lines). Noradrenergic projections start from the locus coeruleus and project out to the
cortex and the cerebellum (dotted lines). LC, locus coeruleus; MCI, mild cognitive impairment; PD, Parkinson’s disease.
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NEUROIMAGING MILD COGNITIVE
IMPAIRMENT
The search for biomarkers of PD-MCI has employed
various neuroimaging measures including func-
tional, structural, and diffusion measures. Although
this endeavor has yielded a number of potential
biomarkers, the evidence has simultaneously gener-
ated a less ordered view of PD-MCI signatures and
causes. Cognitive scores in Parkinson’s disease
patients correlate with dorso-fronto parietal connec-
tivity; inhibited subcortical primary sensory acti-
vation; and preserved nigrostriatal pathways in
resting-state functional magnetic resonance imag-
ing (fMRI), but not with presynaptic dopaminergic
uptake [17]. Atrophy in various cortical regions is
associated with neuropsychiatric symptoms [18

&

], as
well as MCI in some studies [19,20,21

&

,22
&

,23],
though others found no such differences in
PD-MCI compared to Parkinson’s disease without
MCI [24,25]. The expected effect of MCI on the
subcortical regions is even less clear, though hippo-
campal atrophy was found to predict conversion to
PD-MCI and to dementia from PD-MCI in a longi-
tudinal study [26]. Research has also investigated
white matter differences, which can indicate neuro-
vascular abnormalities [27]. White matter hyper-
intensities were found to predict cognitive decline
[24], and several recent studies reported white
matter abnormalities in PD-MCI [26,28,29]. Early
Parkinson’s disease patients specifically show evi-
dence of atherosclerosis alongside white matter
hyperintensities – factors that lead to microvascular
injury and possible cognitive decline [30

&&

]. Inter-
estingly, both orthostatic and prandial hypotension
is a sign of noradrenergic disturbance [13,31], a
neurotransmitter which is affected early in Parkin-
son’s disease [32]. The evidence suggests PD-MCI’s
neural footprint remains difficult to delineate even
with various imaging measures, though neurovas-
cular abnormalities emerge as strong causal candi-
dates. Neurovascular differences indeed correlate
with MCI in other patient populations [33–36].
The studies above do not show a distinct link
between dopamine and PD-MCI, but they do yield
an array of diffuse neural correlates, which may
reflect the fuzzy nature of MCI’s behavioral charac-
terization.

COGNITIVE FLEXIBILITY IN PARKINSON’S
DISEASE

Parkinson’s disease patients display executive dys-
function, but evidence on specific domains affected
remainsmurky [37,38]. One persistent finding is set-
shifting impairment in Parkinson’s disease patients
[1,39]. Cognitive flexibility appears to rely on the

dorsal striatum [40
&&

] and medication response cor-
relates with improved task switching in Parkinson’s
disease, further supporting the dorsal striatum’s
role in cognitive flexibility [41]. One fMRI study
in PDOFF patients found no impairment in
set-shifting, but did reveal atypical task-related
activation in the cortex, suggesting compensatory
anomalous cortical activity inhibits behavioral
impairment [42]. Previous studies produced con-
flicting results on medication’s remedial effects on
set-shifting impairment, but the studies above sup-
port striatal dopamine’s role in cognitive flexibility,
as well as a cortical up-regulation in early stages of
the disease, perhaps masking striatal deficiencies.

LEARNING DEFICITS IN PARKINSON’S
DISEASE

Reinforcement learning has been extensively
studied in Parkinson’s disease [43–45] to support
models cast within a basal ganglia dopaminergic
framework. When controlling for medication
effects, studies reveal deficits in learning from
trial-by-trial feedback [46], a hallmark of implicit
learning [47]. Indeed, a meta-analysis found Parkin-
son’s disease patients to be significantly impaired in
implicit learning across 27 studies using the serial
reaction time task [48]. While implicit learning is
thought to depend on the basal ganglia, explicit,
declarative learning relies on the hippocampus and
medial temporal lobe [49]. The interplay between
the two systems has yet to be defined [50], but a
selective impairment in Parkinson’s disease would
suggest implicit learning occurs in the dorsal stria-
tum. Most tasks measuring one type of learning
versus another rely on both mechanisms [51], but
recent evidence suggests explicit and implicit learn-
ing can be dissociated bymanipulating a task’s feed-
back structure (delayed versus discrete) [52]. An
[11C] raclopride PET study showed striatal (accum-
bens) D2 release accompanied learning from dis-
crete feedback in a probabilistic classification task
[53

&&

]. Further, learning from delayed feedback acti-
vates the hippocampus, whereas learning from
immediate feedback engages the striatum [48]. A
study investigated competing learning mechanisms
in Parkinson’s disease, with two initial tasks that
tested novel tool features (explicit) and novel tool
skill (implicit), and a follow-up task that assessed
both learning acquisitions 3weeks later. Patients did
not differ from controls in either the initial learning
session or on knowledge of novel tool attributes in
the follow-up session; however, the Parkinson’s dis-
ease group did not retain skilled tool use [54

&&

]. Two
more recent studies highlight differences in reten-
tion for Parkinson’s disease patients. An initial test
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of sequence learning was not affected in Parkinson’s
disease, though patient retention a week later was
[55]. Patients tested on an implicit learning
sequence task performed as well as healthy controls
in a first block, but not in a second block [56].
Further, no differences were found in an implicit
learning task of semantic categorization between
healthy controls and Parkinson’s disease patients
[57,58]. These divergent findings call into question
the impairment of implicit learning in Parkinson’s
disease, as well as its dependence on the dorsal
striatum. It has been posited that dorsal striatal
dopaminergic signals are necessary for performance,
or action-selection, rather than learning per se
[14,43,59,60]. These two roles may be specific to
distinct striatal regions, but action-selection is often
used to determine learning. Thus, recent studies
have examined the functional dissociation of the
dorsal and ventral striatum in relation to learning
acquisition (or memory encoding) and action-selec-
tion (or memory retrieval). An fMRI study in the
healthy controls investigated stimulus-response
learning with feedback, followed by a session that
assessed how well associations were learned. Acti-
vation in the ventral striatum was confined to the
learning session, whereas activation in the dorsal
striatum emerged in the second session, where
associations had already been learned and the task
demand was appropriate response selection [61]. A
novel fMRI study dissociated dopamine’s roles in
anticipation and reward to determine whether
placebo would be as effective as dopaminergic
replacement therapy in Parkinson’s disease reward
learning. Both placebo and medication groups
exhibited learning signals in the ventral striatum
[62]. Vo et al. [63], in 2014, found PDOFF patients
learned stimulus–response associations as well as
controls, whereas PDON patients were impaired.
Further, PDOFF patients outperformed controls
and PDON patients, supporting the hypothesis that
cortical D1 is up-regulated in Parkinson’s disease
[64,65]. The studies listed above support the dorsal
striatum’s role in action-selection, but a recent case
study of a patient suffering bilateral damage to the
dorsal striatum showed specific impairment in
learning stimulus values and not action values
[66]. The evidence suggests a different frame within
which to study functions specific to the ventral and
dorsal striatum. Notably, learning’s dependence on
the ventral striatum and action-selection’s reliance
on the dorsal striatum merit closer scrutiny in
future studies.

APATHY
Apathy is a common, early symptom in Parkinson’s
disease that predictsMCI and dementia [67]. Apathy

may significantly impact processes requiring motiv-
ation, such as action-selection and cognitive task
performance, if not cognition itself. While apathy’s
neural correlates remain unknown, the search for a
neural mechanism of Parkinson’s disease apathy
focuses on the dopaminergic system. Compared to
healthy and Parkinson’s disease controls, apathetic
patients showed a reduction in left limbic striatal
and frontal connectivities in resting-state fMRI,
though apathy scores showed no correlation with
structural differences [68

&&

]. An fMRI study [69]
examined dopaminergic medication effects during
an emotional Stroop task in PDON and PDOFF
patients, and found that when presented with nega-
tive Stroop stimuli, PDOFF patients had higher apa-
thy scores, decreased fear recognition, and reduced
anterior cingulate cortex (ACC) activation. While
ACC activation was recovered with medication, it is
interesting to note that the cingulate receives pro-
jections from the locus coeruleus noradrenaline
(LC-NE) system [70]. Though Parkinson’s disease-
related apathy is an early symptom, it can also
emerge following deep brain stimulation (DBS)
implantation as a suspected consequence of dopa-
minergic medication washout. Increased apathy
after DBS correlated with reduced right ventral stria-
tal activity in a PET study [71]. Further, dopamine-
resistant apathy correlated with nucleus accumbens
atrophy [72

&

]. Like MCI, apathy in Parkinson’s dis-
ease is primarily assessed via psychometric scale
[73], but electroencephalogram (EEG) studies have
yielded compelling behavioral and physiological
consequences of Parkinson’s disease apathy. An
event related potential (ERP) study measured feed-
back-related negativity (FRN) in response to gains
and losses. Apathetic patients showed a reduced
difference between FRN for losses and FRN for gains
when compared to Parkinson’s disease patients and
healthy controls [74]. In a similar vein, an EEG study
examined differences in ERPs between Parkinson’s
disease patients and healthy controls during the
Iowa Gambling Task – a task of decision-making
under ambiguity [75]. ERP for gains differed from
ERP for losses in the healthy controls, as expected,
but no differences emerged in Parkinson’s disease
patients. Another study reported a blunted P3 signal
in apathetic PDOFF patients [76] (a P3 signal arises
upon encounter of a salient stimulus). Furthermore,
Parkinson’s disease patients did not display the Von
Restorff effect, where novelty enhances stimulus
recall [77

&

]. In the same study, the P3 signal was
larger for novel stimuli in healthy controls relative
to patients, irrespective of medication status, impli-
cating a nondopaminergic system. A potential can-
didate is the noradrenergic system whose activation
has been linked to the P3 signal via pupillometry
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studies [78,79]. And while the neural correlates to
apathy above implicate the ventral striatum, it
should be noted that the region receives projections
from the LC in addition to its dopaminergic projec-
tions. The dearth in research on apathy’s link to
observed cognitive deficits provides an avenue of
investigation into the motivational factors of
cognitive performance.

THE NORADRENERGIC SYSTEM

Parkinson’s disease research has centered on the
dopaminergic system; however, many of the
observed cognitive deficits may also be linked to a
pathological noradrenergic system in Parkinson’s
disease patients. Post mortem analysis of Parkinso-
nian brains reveals Lewy body accumulation in the
LC [80], as well as a reduction in frontal norepi-
nephrine and serotonin, but not dopamine [81,82].
LC degeneration precedes nigrostriatal neural loss
[32]. Dopamine and noradrenaline are both tyro-
sine-derived catecholamines; their interaction may
be of particular interest [83], given that the LC-NE
system has widespread cortical projections (Fig. 2)
[84]; noradrenaline may protect against dopamin-
ergic deficiency [85]; and noradrenaline modulates
dopaminergic activation [86]. Indeed, recent
research in learning and decision-making has
already moved beyond the bounds of the basal
ganglia to scrutinize LC-NE’s contribution to these
functions [87,88]. As such, there is now compelling

evidence that LC-NE degeneration in Parkinson’s
disease may contribute to PD-MCI [89]. Specifically,
cognitive inflexibility in early Parkinson’s disease
could reflect early dysfunction of the LC-NE system
[90]. Adaptive gain theory [91] describes LC
neurons’ dual firing modes: a phasic mode that
signals exploitation, and a tonic mode that prompts
exploration. A compromised LC-NE system could
lead to decreased tonic noradrenergic transmission,
inhibiting flexibility and enhancing perseveration
[90]. A dysfunctional LC-NE system could further
prevent patients from registering salient signals
demanding action, which may explain action-selec-
tion deficits and contribute to Parkinson’s disease-
related apathy. Neuroimaging evidence of LC-NE
involvement in Parkinson’s disease has been sparse
to date, due to the difficulty inherent in imaging a
small, brainstem region [92], but among the many
neurotransmitter systems affected in Parkinson’s
disease [93,94], noradrenaline’s characteristics stand
out as markedly relevant to the study of cognitive
function.

CONCLUSION

Mild cognitive impairment in Parkinson’s disease
is not confined to dopaminergic deficits per se,
behooving us to consider nondopaminergic mech-
anisms for its emergence. Two lines of investigation
merit closer future inspection: the role apathy plays
in observed behavioral deficits and the LC-NE’s

PD-MCI

MCI in other
disease

populations Neurovascular
deficits

Locus
coeruleus

degeneration

Apathy

Set
shifting
deficit

Executive
dysfunction

Action
selection

deficit

Dorsal striatal
degeneration

Substantia
nigra

degeneration

Learning
deficits

FIGURE 2. An overview of recent findings related to PD-MCI. Circles represent known neural correlates; diamonds represent
putative behavioral symptoms. Solid lines indicate known relationships while dashed lines represent possible links between
factors. MCI, mild cognitive impairment; PD, Parkinson’s disease.
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influence on learning, apathy, and distinct
measures of MCI in a Parkinson’s disease model.
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