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Abstract

The WiseSkin project aims to provide a non-invasive solution for restoration of a natural

sense of touch to persons using prosthetic limbs. Although there are functional myoelectric

prostheses available today, their use remains limited due to a lack of sensory function in the

prosthesis. By embedding sensor nodes into the silicone coating of the prosthesis, which

acts as a sensory skin, WiseSkin targets to provide improved gripping, manipulation and

mobility for amputees. Flexibility, freedom of movement and comfort demand unobtrusive,

highly miniaturized, low-power sensing capabilities built into the artificial skin, which is then

integrated with a sensory feedback system. Wireless communication between the sensor

nodes providesmore flexibility, better scalability and robustness compared to a wired solution,

and is therefore a preferred approach for WiseSkin. Design of an RF transceiver tailored for the

specific needs of WiseSkin is the topic of this work.

The properties of FM ultra-wide band (FM-UWB) modulation make it a good candidate for

High-Density Wireless Sensor Networks (HD-WSN). Transceiver simplicity and robustness

to frequency offsets enable ultra-low power consumption and a high degree of integration,

thereby reducing the size and cost of the node. Furthermore, FM-UWB is robust against

narrow-band interferers and can support multiple users operating simultaneously in the

same band, providing reliable communication and useful options for high-level protocol

optimization.

The proposed FM-UWB receivers take advantage of short range to reduce power consumption,

and exploit robustness of this wideband modulation scheme. The LNA, which is usually

identified as the biggest consumer, is removed and signal is directly converted to dc, where

amplification and demodulation are performed. Owing to the signal bandwidth of 500 MHz,

relatively large frequency offset and phase noise can be tolerated, and a low-power, free-

running ring oscillator can be used to generate the LO signal, allowing to achieve overall

power reduction. The receiver is therefore referred to as an “approximate zero-IF” receiver. To

compensate for the LO offset, all of the stages following the mixers provide higher bandwidth

than necessary, and the ring oscillator is periodically calibrated to keep the offset within

defined limits. Two receiver architectures are studied. The first one performs quadrature

downconversion, and owing to the demodulator linearity, provides the multi-user capability.

In the second receiver, quadrature demodulation is replaced by the single-ended one. Due to

the nature of the demodulator, sensitivity degrades, and multiple FM-UWB signals cannot be
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Abstract

resolved, but the consumption is almost halved compared to the first receiver.

The proposed approach is verified through two integrations, both in a standard 65nm bulk

CMOS process. In the first run, a standalone quadrature receiver was integrated (with the

second FSK demodulation and baseband off-chip). Power consumption of 423μWwas mea-

sured, while achieving -70dBm sensitivity. Good narrow-band interference rejection and

multi-user capability with up to 4 FM-UWB channels could be achieved. In the second run, a

full transceiver is integrated, with both quadrature and single-ended receivers and a trans-

mitter, all sharing a single IO pad, without the need for any external passive components or

switches. The quadrature receiver, with on-chip baseband processing and multi-user support,

in this case consumes 550μW, with a sensitivity of -68dBm. The low power receiver consumes

267μW, and provides -57 dBm sensitivity, at a single FM-UWB channel. The implemented

transmitter transmits a 100 kb/s FM-UWB signal at -11.4 dBm, while drawing 583μW from the

1V supply. The on-chip clock recovery allows reference frequency offset of up to ±8000ppm.

Since state of the art on-chip RC oscillators can provide accuracy below ±2100ppm across the

temperature range of interest, the implemented transceiver demonstrates the feasibility of a

fully integrated FM-UWB radio with no need for a quartz reference or any external compo-

nents. In addition, the transceiver can tolerate up to 3dBm narrow-band interferer at 2.4 GHz.

Such a strong signal can be used to remotely power the sensor nodes inside the artificial skin

and enable a truly wireless WiseSkin solution.

Key words: ultra-wideband, low power, wireless communication, RF, transceiver, UWB, fre-

quency modulation, FM-UWB, FDMA, WSN, WBAN, power harvesting
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Résumé

Le projet WiseSkin vise à développer une solution non-invasive pour redonner aux amputés

utilisant des prothèses la sensation naturelle du toucher. Bien que des prothèsesmyoélectrique

existent aujourd’hui, l’absence de fonction sensorielle limite leur utilisation. En intégrant

des nœuds de capteurs dans le revêtement en silicone de la prothèse qui fait office de peau

artificielle, WiseSkin vise à améliorer la manipulation, la mobilité et la préhension de la main

artificielle. Flexibilité, liberté de mouvement et confort nécessitent des moyens de détection

discrets, hautement miniaturisés et à faible consommation qui peuvent être intégrés dans

la peau artificielle et faire partie d’un système de rétroaction sensorielle. Par rapport à une

communication filaire, la communication sans fil apporte plus de flexibilité, une meilleure

évolutivité et une robustesse améliorée, ce qui en fait la solution préférée. La conception d’un

émetteur-récepteur RF adapté aux besoins particuliers de WiseSkin est le sujet de ce travail.

Les propriétés de la modulation de fréquence à bande ultra-large (FM-UWB) en font une

bonne candidate pour les réseaux de capteurs sans fil à haute densité (HD-WSN). La simplicité

de l’émetteur-récepteur ainsi que la robustesse contre les offsets de fréquence permettent

une consommation d’énergie très faible et un fort degré d’intégration, permettant ainsi de

réduire la taille et le prix des nœuds de capteurs. Par ailleurs, étant donné que la FM-UWB est

résistante aux interférences à bande étroite et permet à plusieurs utilisateurs de communiquer

dans la même bande simultanément, elle garantit une communication fiable et fournit des

options intéressantes pour l’optimisation du protocole à haut niveau.

Les récepteurs FM-UWB proposés ici profitent de la courte distance entre les nœuds pour

réduire la consommation tout en exploitant la robustesse de cette modulation. Ceci permet

d’éliminer l’amplificateur à faible bruit qui est un des plus grand consommateur d’énergie. Le

signal RF d’entrée est alors directement converti à une fréquence null par unmélangeur, et

ensuite amplifié et démodulé. Grace à la largeur du signal de 500 MHz, l’offset de fréquence

et le bruit de phase peuvent être tolérés, permettant ainsi d’utiliser un oscillateur en anneau

pour générer la porteuse (LO) et ainsi réduire la consommation. Le récepteur est donc nommé

récepteur à fréquence intermédiaire environ égale à zéro (AZ-IF). Pour compenser l’offset de

fréquence, tous les étages suivant le mélangeur ont une bande passante élargie et l’oscilla-

teur est périodiquement calibré pour maintenir la fréquence dans les limites désirées. Deux

architectures de récepteurs sont étudiées. La première effectue une conversion en quadra-

ture, qui grâce à la linéarité du démodulateur, permet de distinguer les différents signaux
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Résumé

FM-UWB. Dans la deuxième architecture, la conversion en quadrature est remplacée par une

conversion directe sans quadrature. A cause de la nature de ce récepteur, la sensibilité est

réduite et le récepteur n’est plus capable de distinguer les signaux multiples à l’entrée, mais la

consommation est réduite de moitié par rapport à la première architecture.

Deux circuits intégrés ont été fabriqués dans une technologie CMOS 65nm standard pour

démontrer la validité de l’approche proposée. Seul le récepteur à conversion en quadrature a

été intégré sur la première puce (avec la partie bande de base et le deuxième démodulateur FSK

à l’extérieur). La consommation mesurée est de 423μWpour une sensibilité de -70dBm. De

plus, une bonne robustesse contre les interférences à bande étroite a été démontrée jusqu’à 4

canaux FM-UWBparallèles. La deuxième puce contient l’émetteur-récepteur complet, avec les

deux types de récepteurs (à conversion en quadrature et sans quadrature) partageant une seule

entrée/sortie avec le transmetteur, permettant ainsi d’eliminer tous les composants externes,

comme par exemple le commutateur ou les composants passifs. Le récepteur à conversion en

quadrature, avec la partie bande de base et le support de communications multi-utilisateur

consomme 550μW, pour une sensibilité de -68dBm. Le récepteur sans quadrature consomme

267μWavec une sensibilité de -57dBmpour un seul canal FM-UWB. Le transmetteur transmet

un signal à 100 kb/s, avec une puissance de -11.4 dBm tout en consommant 583μW avec une

tension d’alimentation de 1V. Le circuit de récupération d’horloge tolère un décallage de

fréquence allant jusqu’à ±8000ppm. Etant donné que les oscillateurs RC de référence ont une

précision de ±2100ppm pour la gamme de température visée, l’émetteur-récepteur fabriqué

ici démontre la faisabilité d’une radio FM-UWB complètement intégrée ne nécessitant aucun

composant externe ni cristal de quartz. Par ailleurs, l’émetteur-récepteur peut tolérer des

interférences à bande étroite d’une puissance allant jusqu’à 3dBm à 2.4GHz. Un signal aussi

puissant pourrait d’ailleurs être utilisé pour alimenter les nœuds de capteurs dans la peau

artificielle sans contact, permettant une solution WiseSkin complètement sans fils.

Mots clés : bande ultra-large, faible consommation, communication sans fil, RF, émetteur-

récepteur, UWB, modulation de fréquence, FM-UWB, FDMA, WSN, WBAN, récupération

d’énergie
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1 Introduction

Advances in the fields of micro-electro-mechanical systems (MEMS), wireless communica-

tions andmicroelectronics have enabled ever more powerful, miniaturized devices capable

of sensing, processing and communicating the data. These devices fueled the rapid expan-

sion of wireless sensor networks (WSN) in domains and applications such as environmental

monitoring, infrastructure monitoring, transport, retail, healthcare and others. Furthermore,

they opened door to realizing a vision of the internet of things (IoT), i.e., a widespread net-

work of interconnected objects capable of not only sensing the world around them, but also

interacting with it, with the ultimate goal of improving the quality of our daily lives.

Electronics, combined with advanced biological and biomedical technology, paved the road to

new solutions such as smart materials. These solutions, based on sensor networks, could find

use in health and safety applications (e.g., prosthetics, handling hazardous substances etc.) as

well as tactile robotics. The WiseSkin Nano-Tera project aims to develop a smart material that

could restore a natural sense of touch to persons who have lost a limb and are using prosthesis.

This material can be seen as a network, consisting of a potentially very large number of sensor

devices, capable of communicating among each other and conveying the information from

the skin to the central processing unit in charge of stimulating the patient and restoring the

natural sensation of touch. The WiseSkin tactile skin for prosthetics is the main application

andmotivation behind this work. The core of the work focuses on a hardware implementation

of a radio optimized for use in short range wireless sensor networks.

With the IoT and wireless sensor networks in focus, the reduction of size and power of the

sensor nodes has been an important research topic over the past few years. Size of the node

is usually directly proportional to its price, which is one of the main driving forces behind

the effort to reduce it, especially when a large number of nodes are needed. In addition,

in medical applications, where nodes may need to be placed on or inside the human body,

size plays a crucial role as the nodes must not interfere with patient’s movement and should
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have a minimal impact on his life. By lowering power consumption of nodes one can either

extend the autonomy, which is a paramount when talking about remote battery powered

sensor nodes (e.g., environmental monitoring in isolated locations), or implanted devices,

or use a smaller battery with lower capacity, again allowing to make it smaller. Eventually,

as the consumption continues to decrease, it might become possible to fully power sensor

nodes with energy harvested from the environment. With the wireless transceiver as the key

component of the node, and the main bottleneck, a lot of effort has been directed towards

improving its characteristics. Today’s devices have already come a long way, and are capable

of lasting for years using just a small battery, but as more andmore demanding applications

appear, such as WiseSkin, further enhancements are necessary.

1.1 The WiseSkin Project

The loss of a hand or a limb is a catastrophic event with major implications on the quality of

life and daily activities of the person. Although various different types of prostheses have been

made, their capabilities to this date remain limited. Sophisticated limbmanipulation requires

a complex coordination between motor commands, performed motion and sensory feedback.

Replacing a lost hand, therefore, remains a major challenge, that is still a topic of interest for

both engineers and clinicians. The focus of the WiseSkin project [1] is on the sensory feedback,

aiming to restore the sense of tactility to the amputees, however, the concepts developed here

could also be applied to other fields of use such as robotics.

A natural sense of tactility is needed in order to provide sensory feedback that would then

allow precise control of all types of myoelectric hand prostheses, but also the lower limb

prostheses allowing, for example, to enhance balance. The concept of the WiseSkin solution is

illustrated in Fig. 1.1. The touch information is recorded by sensor nodes and conveyed to the

Figure 1.1: The WiseSkin concept.
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control unit that processes the data and generates stimulation patterns for the tactile display.

The tactile display then stimulates the patient’s stump allowing him to perceive different

objects and surfaces in contact with the prosthesis. Aside from providing sensory feedback,

the WiseSkin solution should also help the patients to experience prosthesis as a part of their

body, enhancing the feeling of body ownership and restoring a natural sense of touch, and

allowing the patient to use the prosthesis without continuous visual monitoring.

The problem of restoring a sense of touch to a person using a prosthetic arm is complex and

bears numerous difficulties. Within the scope of the WiseSkin project the aim is to create a

kind of artificial skin, or a glove that would be used on top of a prosthetic arm (or possibly a leg)

and behave much like the real skin. The sensors embedded in the skin would detect pressure

when an object comes in contact with the prosthesis and convey this information to the

patient. Ideally, the sensors would provide not only the data about the pressure, but also shear,

providing for example the information on a slipping object. The information on temperature

and humidity could be added in order to provide as realistic feeling as possible. Building all

these capabilities into miniaturized sensor nodes becomes difficult. In addition, all the data

from sensors must be delivered and processed in real time in order to provide a natural feeling

and functional control of the artificial limb [2]. The solution is further constrained by by the

requirements for ease of use, freedom of movement and natural look, that impose highly

miniaturized, unobtrusive and low power sensing capabilities. Although in some cases the

minimum tactile capability might be restored with only one sensor per finger, many sensors

of different types working together could be needed to enable a true natural feeling. For this

reason the targeted solution must be scalable, and the communication between sensors is

critical. For a small number of sensors, wired communication seems like a natural way to go,

however, as this number increases, it becomes apparent that the wireless approach provides

better scalability and more flexibility. Provided that it can handle the data capacity, and

that the radio consumption does not add a significant load to the existing battery, a wireless

solution also offers better reliability, ease of manufacturing and lower production cost. In that

regard, the future goal would be to have fully wireless nodes, with the power either delivered

without contact, or provided by means of energy harvesting. At the moment, however, a wired

powering system is necessary, with wires capable of stretching and bending with the skin,

without breaking or significantly increasing electrical resistance. Finally, a reactive, fast and

low power sensor-to-person interface is essential, as a key part of the whole system.

The work within the WiseSkin project consisted of research in several different areas such as

microelectronics, materials engineering, communications, human-machine interfaces etc.

with the goal to push the forefront of available technologies. At the same time, a demonstrator

showing the main concepts was developed using the commercially available components,

that allowed for easier and more reliable system integration. The developed sensor node,

that consists of a microcontroller unit (MCU), a pressure sensor and a radio with antenna

is shown in Fig. 1.2. The existing technology allowed to integrate all the components on a

rigid PCB, 17mm long and 12mmwide, allowing to place one node on each finger, but the

solutions developed over the course of the project should allow further miniaturization and
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Figure 1.2: The WiseSkin sensor node.

higher degree of integration in the future. The research focused on four topics with particular

challenges that will be discussed in the following text.

1.1.1 Miniature Sensing Module

Dexterous limbmanipulation and gripping require detection of forces, torques, position and

contact shape by miniature sensors embedded in the skin. The additional difficulty is that

these sensors must endure frequent physical contact while still operating reliably, which is

why durability and robustness are just as important as other sensor characteristics. Over

the course of the WiseSkin project a fully soft solution based on integration of a gold strain

gauge into the PDMS substrate was developed. Gauge is fabricated using Au-implantation

through a microfabricated shadowmask. Measured performance indicated gauge factor (GF,

ratio of relative change in resistance due to the mechanical strain) of 25, compared to thin

film solutions with the GF of 2. A solution for large area tactile surfaces was explored as well,

with the idea of developing a material with a low gauge factor, but that can withstand large

mechanical strains without affecting its electrical properties [3].

For the WiseSkin prototype, the air pressure sensor LPS25H from ST Microelectronics was

used [4]. The MEMS sensor, packaged together with the readout and calibration circuits,

and a digital SPI interface, could easily be integrated into the sensor node. The sensor was

encapsulated in the PDMS, effectively creating an air bubble at the sensor input. Applying

pressure on top of the sensor node compresses air in the bubble, resulting in increased

pressure that can be detected by the sensor. Once calibrated, the sensor could be used for

touch detection with relatively good linearity.

1.1.2 Tactile Display

For the purpose of the WiseSkin project, idea is to use a non-invasive interface between

the patient and the prosthesis. Unlike the approach from [2], where electrodes are directly

connected to nerve endings, there is no need for complex surgery. Unfortunately, purely

tactile, external stimulation is much more limiting in terms of patterns and motions that
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Figure 1.3: The concept of tactile feedback.

can be distinguished by the patient. On the other hand, the non-invasive approach greatly

reduces the risk for the patient, simplifies the use of the prosthesis (for example, it can be

freely removed when needed) and is generally more convenient.

The concept of the tactile sensory feedback is shown in Fig. 1.3, the tactile stimuli is conveyed

from sensors on the artificial skin to the tactile display that stimulates the patient’s stump.

The solution relies on patient’s “phantom map”, that is the area on the remaining part of

the arm where generated stimuli create the sensation of touching a part of the amputated

hand. Depending on the location of the activated sensor and the pressure intensity, the tactile

display unit should generate the corresponding stimulation pattern, inducing a physiologically

natural perception of stimuli.

Different devices can be used to stimulate the phantommap, some examples include electrical

devices, mechanotactile, vibrotactile, or devices using air pressure or temperature. Here,

the choice was narrowed down to vibrotactile devices that produce vibrations of different

frequency or intensity andmechanotactile devices that apply different levels of force to the

skin [5, 6]. The difference between the two is in the latency, precision, human perception and

control. The challenge is to produce a tactile display that can react quickly, without causing

significant additional latency, and can create different patterns that represent different events.

Furthermore, it must be flexible enough to adapt to each patient’s phantommap, as this map

changes significantly from one person to the other. Different machine learning algorithms

can be applied to detect the phantommap distribution [7] and then adjust the tactile display

for each case. Tests with amputees have shown the feasibility of the non-invasive approach,

and have so far demonstrated the ability to distinguish different fingers by using mechanical

(force and vibration) stimulation.
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(a) (b)

Figure 1.4: Conceptual view of the skin (a) and one of the WiseSkin prototypes (b) from [8]

1.1.3 Power Distribution

The original intent in the WiseSkin project was to use metallic wires on top of the flexible

substrate to power the sensor nodes. These wires would have to be flexible and stretchable in

order to conform to the shape of the skin. For example, during a grip the skin on the dorsal

side of the hand stretches and the material used for the skin, together with the metallic layer,

needs to stretch as well, without degrading the electrical performance.

Different approaches have been used in the past to enable stretchability of electronic con-

ductors. Solid conductors can be made elastic by proper geometric design, for example

meandering is one straight-forward way to achieve this. However, the elasticity is typically

limited to one predefined direction. A different approach to stretchable electronics are the

liquid metal conductors, which have good electrical performance, but are difficult to manu-

facture in a well controlled manner. A solution that resulted from the work on the WiseSkin

was a combination of the two. A new class of biphasic solid-liquid conductors was invented,

that kept the unhindered conductivity of the liquid solution and the ease of manufacturing

of the solid conductors. The solution is based on a bilayer metallization sequence, starting

with a thin layer of gold on top of the PDMS substrate followed by thermal evaporation of

liquid gallium, that results in a thin film consisting of solid intermetallic alloy AuGa2 forming

a continuous network and dispersed bulges [9]. The solution achieved low sheet resistance

of less than 1Ω/�, and gauge factor approximately equal to 1, meaning the resistance is

practically unaffected by stretching.

The view of different layers and one of the prototypes are shown in Fig. 1.4. One issue that

posed problems with prototypes was the contact between the stretchable wire and the rigid

sensor node. These contacts would often break during experiments, disconnecting the supply

line and detaching a node from the rest of the system. Instead of carefully engineering

the contacts, and finding ways to provide a more reliable connection, a wireless powering

approach is proposed in this work. Since the existing stretchable wires constitute a waveguide,

the RF energy could be transferred from the source to the nodes without significant losses,
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therefore providing good energy efficiency. The proposed approach also simplifies the system,

easing production and improving the system reliability.

1.1.4 Wireless Communication

Althoughmore complex than wired communication, wireless communication offers better

potential for scaling, flexibility and ease ofmanufacturing, and is a preferred solution from that

perspective. In addition, wireless solution could be extended to other WSN applications where

sensor nodes are battery powered. The wireless approach poses challenges with respect to low

power consumption, latency and robustness. Compared to other parts of the system, such as

the stimulation actuators, the existing Bluetooth radios already consume a very small amount

of power, that does not pose a significant additional burden on the battery. Lowering the radio

consumption could, however, allow to power the sensor nodes without wires, through energy

harvesting, in the future. Latency is constrained by the requirement to provide a natural sense

of touch, meaning that the information from the sensors must be conveyed to the stimulation

module within several tens of milliseconds. The work on wireless communication is split into

two parts, one that focuses on the optimization of radio, and another that targets protocol

optimization.

For the implemented prototype with only 5 nodes, the amount of traffic and routing paths are

not critical and there is no need for special techniques. These issues tend to become more

important as the number of nodes grows, which is expected in the future. Thus need arises for

a specific protocol that will provide the needed scalability, handle traffic surges and guarantee

reliability. The developed protocol [10] uses two modes, a low-traffic mode optimized for

power efficiency, and high-traffic mode that minimizes response time and is activated by an

event such as detection of touch. The emphasis is on adaptability, capability to conform to

different conditions and clever use of available resources. Instead of avoiding packet collisions

(two transmitters sending data using the same channel) and wasting time and energy, the

protocol leverages them by using constructive interference among different nodes, and in this

way achieves state of the art performance.

Wireless transceiver designed for short range communications with a potentially large number

of devices in a small area is the central topic of this dissertation and will be thoroughly

addressed in the following chapters. A Bluetooth Low-Energy device developed by CSEM [11]

was used for the WiseSkin prototype from Fig. 1.2. In the future, this radio should be replaced

by amore optimal, ultra low power radio such as the one developed in this work, that leverages

the short communication distance.

1.2 Low Power Wireless Communications - the Overview

Reducing the power consumption of radios has been a topic of research for quite a long time.

In recent years, the search for energy efficient means of communication and constant effort

7
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to lower the power consumption of wireless transceivers have been primarily driven by the

growing popularity of the internet of things (IoT) [12]. First conceived by K. Ashton in 1999 in

the context of supply chain management, the term internet of things has since spread to cover

a wide range of applications such as healthcare, transport, environmental monitoring etc. For

the worldwide network of interconnected objects to become a reality, different elements are

needed, from sensors and low power communication devices, all the way to the data analytics

and learning algorithms able to extract useful information from the huge amount of gathered

data. Wireless sensor networks play a key role in the IoT vision. Finding ways to scale-up

the number of connected devices, while reducing the power and coping with the increased

interference, remains a difficult challenge. Although WiseSkin is a very particular application,

a number of challenges are similar to those already present in WSNs developed for IoT. In

that regard, some of the solutions can be borrowed from the IoT world, but also, the solutions

developed specifically for the WiseSkin could find use in the broader WSN context.

Different approaches and different standards are used to connect various objects depending

on specific limitations of the application. Perhaps the best known and the most widely used

low power connection standard is the Bluetooth standard. It provides complete wireless

connectivity services, not just wireless transport, and is commonly implemented in audio

streaming, data transfer and broadcasting devices. Although initially designed for small

networks consisting of up to seven peripherals connected to a master device (such as a

computer, or a smart phone), Bluetooth has evolved over the years and now supports different

network topologies with a much larger number of devices. It targets ranges from tens to

hundreds ofmeters, and data rate in the order of 1Mb/s. Another similar standard is the ZigBee

or the IEEE 802.15.4, with the same communication distance and lower data rates that go up to

250 kb/s. Unlike Bluetoth, it targets mainly industrial applications, and therefore the emphasis

is on security, robustness and scalability, providing support for high node counts. As of

2012, enhanced ZigBee specifications also include secured connectivity to batteryless devices,

powered from energy sources like motion, light or vibration. For short range communication

at distances of up to 10 cm, NFC is the most commonly used technology, however, due to

the low frequency used, the coupling inductors tend to be quite large. At the other end of

the spectrum are the ultra narrowband communication standards such as LoRa or Sigfox,

targetingwide area networks (WAN) and connection overmore than 5 km. They are specifically

designed for low cost mobile devices, providing bidirectional mobile communication at data

rates from just 10b/s to 50 kb/s, which is suitable for low rate communication with sensors.

In general, commercially available low power radios consume between 5mW and 20mW in

receive state. Their consumption is usually limited by the receiver noise figure and linearity

requirements. In transmit mode, consumption can vary anywhere between 5mW and 200mW,

and is typically determined by the transmit signal power and the power amplifier efficiency.

To minimize consumption and extend battery life, these devices are nearly always duty cycled,

meaning that they sleep most of the time, and only wake up for a short period of time to

receive or transmit a packet of data. This allows batteries to last for months or years instead

of hours or days. Turning a node on less frequently results in decreased power consumption,
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however at the same time the minimum latency increases. This latency-power trade-off is a

common characteristic of duty cycled systems.

A number of other protocols and standards exist, however, due to the specificity of theWiseSkin

approach, there is currently no available solution adjusted for this case. Bluetooth or ZigBee

transceivers could be used, but their performance surpasses the needs of WiseSkin in terms

of sensitivity. Instead, a more optimal radio should trade the unnecessary sensitivity for

power consumption. Existing short range solutions such as NFC or the RFID, need a relatively

large coil, and are not suited from the size perspective. A custom radio is therefore required,

tailored for the specific needs of WiseSkin, in order to achieve good overall performance, while

maintaining small size and power consumption.

Aside from the widely used commercially available radios, a number of different technologies

can be found in the literature. Different narrowbandwake-up receivers can be found, reporting

power consumption below 100μW, and some even going down to 100nW. This is roughly 2-5

orders of magnitude below Bluetooth and ZigBee radios with peak consumption between

5mW and 20mW. The wake-up receivers are used to continuously listen and monitor the

channel. Once the transmitted data is detected, they will turn on the main receiver in charge

of data communication. The idea behind wake-up receivers is to break the latency-power

trade-off that exists in duty-cycled systems. To achieve this their power consumption must be

lower than the average consumption of standard receivers, which requires aggressive use of

low power techniques. The achieved levels of power consumption come at a price in sensitivity,

data-rate or interference rejection, and generally speaking the relatively limited capabilities of

wake-up receivers.

An interesting technology from the WiseSkin viewpoint are the ultra wideband (UWB) radios.

They are intended to provide robust and reliable communication while maintaining relatively

low complexity and power consumption. Unfortunately, the UWB radios need wideband

circuits, which typically require more power than the narrowband circuits of similar perfor-

mance. For this reason, given the same sensitivity level, the UWB radios will always lag behind

narrowband radios when it comes to power consumption. On the other hand, what they

loose in sensitivity (or alternatively power) they gain elsewhere. The UWB radios are known to

maintain good performance in channels with frequency selective fading, or in the presence of

interferers. One of the interesting properties of the UWB radios is also the robustness against

frequency offset. Due to large bandwidth of the transmit signal, a small error in frequency can

be tolerated without a significant impact on the performance. The tolerable error is in fact

several orders of magnitude higher than that of narrowband radios. For this reason frequency

synthesis can be greatly simplified, allowing to avoid PLLs or similar power hungry blocks. In

addition, a UWB radio could be implemented without the need for a reference oscillator with

an external quartz crystal, and in that regards, it could offer a higher degree of integration and

miniaturization than the narrowband radios. As a consequence, the size and cost of the sensor

nodes can be reduced.
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For the particular case ofWiseSkin, robustness against fading, inherent resilience to interferers,

tolerance to different receiver imperfections and high degree of integration, are all in favor

of the UWB radio. Owing to the short distance between the adjacent sensor nodes, lower

sensitivity, compared to narrowband radios with similar power consumption, can be tolerated.

Two UWB schemes are dominantly used for low power applications, these are the impulse

radio (IR) UWB and the frequency modulated (FM) UWB. Since the latter is known for its low

complexity and lower peak power consumption it was chosen for implementation.

1.3 Dissertation Scope and Organization

As mentioned in the above sections, the goal of the work presented here is to reduce the power

consumption of an FM-UWB transceiver, while aiming to reduce the number of external,

off-chip components as much as possible. Different architectural and circuit techniques are

employed to achieve this, andwill be thoroughly discussed in the chapters to come. Aside from

consumption, the transceiver is also designed to providemulti-user communication capability,

allowing multiple transceivers to communicate simultaneously in the same frequency band.

Such capability is extremely useful when the number of sensor nodes starts to grow, and

allows better scalability and lower latency compared to systems that exploit only TDMA (Time

Division Multiple Access).

Throughout the work conducted in this project, a somewhat unexpected discovery was made.

Namely, the above mentioned stretchable power wires, initially intended for supplying power

to the nodes, indeed act as a waveguide (see Fig. 1.4). Owing to the rather low loss of the

structure, the power could be delivered to nodes "wirelessly" with a relatively high efficiency.

Although the solution is not wireless, in the sense that metallic layers are still needed, it

is contactless and enables better reliability and lower cost than the fully wired approach.

However, in order to allow simultaneous communication and powering, the FM-UWB radio

has to be capable to receive data in the presence of a strong interfering signal used to provide

power.

The dissertation is organized as follows:

Chapter 2 explains the fundamentals of FM-UWBmodulation and demodulation, with some

possible directions for further development. The main reported receiver and transmitter

architectures are presented, explained and compared to each other. Finally, FM-UWB receivers

are compared to IR-UWB and ultra low-power narrowband receivers, and pros and cons of

different approaches are highlighted and discussed.

Chapter 3 presents the two developed receiver architectures. The “approximate zero IF” (AZ-

IF) receiver architecture is derived from the “uncertain IF” architecture, previously employed

to reduce consumption of the narrowband wake-up radios. The principle of operation is

demonstrated, and combined with system-level simulation in order to estimate the expected

performance of the two receivers.
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Chapter 4 describes the first implementation of the low power, quadrature approximate zero

IF receiver. First, all the circuits are explained in detail together with the most important

simulation results. Then the measurement results are reported. The receiver performance is

characterized in different conditions, with narrowband and wideband interferers and using

different variations of FM-UWBmodulation, demonstrating in that way some of the interesting

features of the FM-UWB approach.

Chapter 5describes the implementation of the fully integrated, lowpower FM-UWB transceiver.

Aside from the quadrature AZ-IF receiver, a single-ended receiver is added, providing a mode

with even lower power consumption. As in the previous case, the two receivers are charac-

terized under different operating conditions. In this case the emphasis is on robustness to

narrowband interferers (allowing to power the node using a 2.4GHz narrowband signal), and

frequency offset tolerance. The implemented receiver is proven to tolerate clock offsets large

enough to make use of an external quartz reference unnecessary, making it the first FM-UWB

transceiver that can truly be implemented with no external components.

Chapter 6 is focused on wireless power transfer. First, a concept of powering sensor nodes

through a flexible and stretchable waveguide is described, highlighting its benefits in the con-

text of WiseSkin. As a proof of concept, measurements are conducted using simple waveguide

samples, and a 2.4GHz antenna designed for the initial WiseSkin prototype. The measured

results are combined with the reported efficiencies of the state of the art rectennas to estimate

the achievable efficiency of the proposed powering solution.

Chapter 7 concludes the dissertation, providing a summary of achieved results and contribu-

tions, and pointing to potential research topics for future work.
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2 FM-UWB as a Low-Power, Robust
Modulation Scheme

Ultra-wideband (UWB) systems were originally intended to provide robust, low-cost, low-

complexity and low power wireless solutions for localization and communication. The first

UWB systems were based on a time domain approach, they used a very short pulse to carry

the information. Initially, they were used in radar systems, where pulse duration translated

into spatial resolution. When used for communications, these pulses could be modulated

using one of the standard approaches, most commonly the binary phase shift keying (BPSK)

or pulse-position modulation (PPM). This was impulse radio (IR) UWB, and although it was

able to provide robust, high-speed communication, it came at the price of circuit complexity

and relatively high power consumption. The frequency-modulated (FM) UWB was developed

as an easy to implement, complementary solution, preserving robustness and offering low to

medium data rates. This analog spread spectrum technique is intended for short to medium

range applications that require a reliable communication link, low cost and high degree of

integration andminiaturization, and therefore perfectly fits the WiseSkin requirements.

This chapter begins by introducing the fundamentals of FM-UWB, explaining the modulation

and demodulation principles and basic transmitter and receiver architectures. Then, the

Gerrits’ BER approximation is presented and extended to cases with multiple FM-UWB users

and narrowband interferers. Finally, possible extensions of standard FM-UWBmodulation

are briefly discussed, highlighting its potential evolution. In the second part of this chapter,

state of the art FM-UWB receivers and transmitters are discussed and analyzed, and a brief

summary of their key characteristics is provided. They are also compared to narrowband and

IR-UWB radios to point out the advantages and disadvantages of the FM-UWBmodulation

scheme.
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Figure 2.1: Principle of FM-UWB signal modulation.

2.1 Principles of FM-UWB

2.1.1 FM-UWB Modulation

The FM-UWB can be seen as an analog spread-spectrum technique. In its basic form it is a

double FMmodulation. A low modulation index FSK, called a sub-carrier, is followed by a

high modulation index FM (β� 1) to achieve large bandwidth. The principle of FM-UWB

modulation is shown in Fig. 2.1. The resulting FM-UWB signal can be represented as [1]:

sUW B (t )= A cos

(
ωc t +Δω

∫t

−∞
m(t )dt

)
= A cos

(
ωc t +φ(t )

)
, (2.1)

where ωc is the center frequency, Δω = 2πΔ f is the frequency deviation and m(t) is the

normalized, FSKmodulated sub-carrier. According to definition, to be considered UWB the

signal must either exceed 500MHz or 20% of its center frequency. The bandwidth of the FM

signal can be approximated using the Carson’s rule [1]:

BF M = 2 fm(β+1) = 2(Δ f + fm). (2.2)

In the above equation fm is themaximum frequency in the FSK signal spectrumwhich depends

on the sub-carrier center frequency fSC and the data rateR , according to fm = fSC +R . Spectral

properties of the FM-UWB signal depend on the sub-carrier waveform. For an FM signal with
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sUWB(t) sdem(t)

Figure 2.2: Wideband FM demodulator.

modulation index much larger than unity, quasi-stationary approximation is valid and the

FM-UWB signal power spectral density (PSD) will be a function of the probability density

function (PDF) pm of m(t ) [2]:

SF M−UW B (ω)= πA2

2

[
pm

(ω−ωc

Δω

)
+pm

(ω+ωc

Δω

)]
. (2.3)

As long as the sub-carrier frequency is reasonably low (keeping the second FMmodulation

index high, β � 1), the FM-UWB spectrum will be largely determined by the sub-carrier

waveform. For an ideal triangular sub-carrier the FM-UWB spectrum will be flat with a

relatively steep roll-off. A steeper roll-off can be achieved using a sinusoidal sub-carrier, but

this results in curved spectrum shape, with peaking at the edges of the band [3]. As a result

the maximum transmit power must be lowered in order to comply with the spectral mask. At

higher sub-carrier frequencies, or equivalently lower modulation index (practically β< 20)

equation (2.3) is no longer valid, and good spectral properties of the FM-UWB signal are be

lost.

Performance of the FM-UWBmodulation can be studied using a wideband FM demodulator

presented in Fig. 2.2. After multiplying the signal sUW B with its delayed version and disregard-

ing the high-frequency components, signal at the output of the demodulator will be given by

[1]

sdem(t )=
A2

2
cos(ωcτ+φ(t )−φ(t −τ)). (2.4)

By choosing the time delay equal to an odd multiple N of the quarter period of the carrier

center frequency τ = N T /4 = Nπ/2ωc (N = 1, 3, 5,...) equation (2.4) can be written in the

following form:

sdem(t )= (−1)(N+1)/2 A2

2
sin(φ(t )−φ(t −τ)) (2.5)

= (−1)(N+1)/2 A2

2
sin

(
τ

dφ(t )

d t

)
(2.6)

= (−1)(N+1)/2 A2

2
sin

(
N
πΔω

2ωc
m(t )

)
, (2.7)

under the assumption that delay τ is much smaller than the period of the modulating fre-
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quency fm . The bandwidth of the demodulator, herein defined as the frequency range over

which the demodulator characteristic is monotonic, depends on N and is given by

Bdem = fc
2

N
. (2.8)

A small delay deviation results in offset between the demodulator center frequency and the

FM-UWB signal center frequency. This offset will lead to a distortion of the output signal that

is dependent on the bandwidth of the signal and the demodulator. It should be noted that

the demodulated signal is proportional to the square of the input amplitude (as seen from

equation 2.7). This results in expanded dynamic range of the demodulated signal, for example

a 10dB variation in the input amplitude causes 20dB variation in the demodulated signal

amplitude. Furthermore, the signal to noise ratio (SNR) at the demodulator output will be a

non-linear function of the input SNR. Based on simplified analysis provided in [1] the SNR at

the demodulator output is given by

SNRout = BRF

BSC

SNR2in
1+4SNRin

, (2.9)

where SNRin and SNRout represent the signal to noise ratio at the input and the output of the

demodulator, respectively. The ratio BRF /BSC is the ratio of the FM-UWB signal bandwidth

and sub-carrier bandwidth, and can be seen as a kind of processing gain. The BER can then

be calculated as shown in [1]

Pb = 1

2
erfc

⎛
⎝
√
SNRout

2

⎞
⎠ . (2.10)

The erfc function is defined as:

erfc(x)= 2�
π

∫∞

x
e(−t2)d t . (2.11)

A comparison between FM-UWB and FSK signals having equal power is given in Fig. 2.3. The

ratio of energy per bit and noise power spectral density at the inputEb/N0 is used instead of

SNRin in order to provide a fair comparison. This ratio is defined as

Eb/N0 = SNRin
BRF

R
. (2.12)

In the given example BRF=500MHz, the sub-carrier modulation index is βsub=0.5 (the same

modulation index is used for FSK) and R is the data rate. In terms of BER, the FM-UWB is

clearly suboptimal compared to standard FSKmodulation. This is not surprising considering

that the larger signal bandwidth results in higher noise power, that ultimately lowers the

input SNR. Part of the lost SNR will be recovered in the process of demodulation owing to the

processing gain, however the BER degradation compared to the FSK remains notable. The gap

between the twomodulations decreases with increasing the FM-UWB data rate, and hence
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Figure 2.3: Comparison of standard orthogonal FSK and FM-UWBmodulation.

higher data rates should yield better performance. However, higher data rates will also require

higher sub-carrier frequencies, which results in loss of the spectral properties of the FM-UWB

signal.

Compared to narrowbandmodulations, FM-UWB is clearly suboptimal in terms of sensitivity.

There are however some benefits that are perhaps not apparent at a first glance. FM-UWB

offers robustness against frequency selective fading and interferers. The behavior of FM-UWB

signal in a multipath environment has been studied in [4]. It has been shown that even in

severe environments performance degradation of FM-UWB is only minor. Owing to the fact

that the signal is spread over a very large band, frequency selectivity is not as harmful as it is

for narrowband signals (this can be seen as a kind of frequency diversity). The second benefit

of using FM-UWB is its inherent robustness to narrowband interferers. Unlike narrowband

systems that rely purely on filtering, the FM-UWB provides some inherent interferer rejection.

This further implies that it does not require an increase of the receiver complexity or external

filters to provide good performance, hence providing higher potential for miniaturization.

2.1.2 Multi-User Communication and Narrowband Interference

In a wireless sensor network, multiple nodes may need to communicate at the same time. One

way to resolve this is the time-division multiple access (TDMA), that allocates time slots in

which certain nodes can transmit or receive. This approach requires precise synchronization

between the nodes, and as the number of nodes in the network grows, the latency increases

quickly. Use of other techniques, such as frequency-division multiple-access (FDMA), where

different frequencies are allocated to different users, may reduce the overall latency and

synchronization requirements. This section studies the behavior of an FM-UWB system in the

presence of multiple input signals and is mainly based on the approach presented in [1].

Suppose there are two signals present at the input of the wideband FM demodulator (Fig. 2.2)
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s1(t ) and s2(t ). At the demodulator output the signal will be given by:

sdem = s1(t )s1(t −τ)+ s2(t )s2(t −τ)+ s1(t )s2(t −τ)+ s1(t −τ)s2(t ). (2.13)

Let us assume that the s1(t) is the FM-UWB signal and the s2(t) is a narrowband interferer.

The component s1(t )s1(t −τ) corresponds to the demodulated sub-carrier. The component

s2(t )s2(t −τ) is the FM demodulated narrowband signal. Since its bandwidth is rather small

compared to the FM-UWB bandwidth, this component will be located close to dc and can

easily be filtered out. It will therefore not influence the sensitivity of the receiver (at least in

the ideal case). The last two terms in equation (2.13) constitute the residual signal that will

pollute the useful signal [1]:

W (t )= s1(t )s2(t −τ)+ s1(t −τ)s2(t ) (2.14)

The low-frequency terms of the residual signal W (t) will fall within the sub-carrier band,

effectively increasing the noise floor of the receiver and lowering sensitivity. Assuming the

narrowband signal is located close to the FM-UWB signal center frequency, residual signal will

be located at baseband frequencies from 0 to BRF /2. If flat spectrum of the residual signal is

further assumed, then the signal to interference ratio can be estimated as [1]:

SIR= 20log

(
A1

2A2

)
−10log

(
BRF

2BSC

)
, (2.15)

where A1 and A2 are the amplitudes of the two input signals. Factor BRF /2BSC is a result of

sub-carrier filtering. Interestingly, the amount of interference rejection is proportional to the

FM-UWB processing gain.

Multiple FM-UWB signals can be distinguished by assigning different sub-carrier frequencies

to different users. This technique will be referred to as the sub-carrier FDMA (SC-FDMA).

Assuming that the signals s1(t ) and s2(t ), from equation (2.13), are the two FM-UWB signals

it is clear that the simultaneous demodulation of different FM-UWB signals is possible. The

component s2(t)s2(t −τ) will in this case correspond to the second demodulated FM-UWB

signal. As long as the sub-carrier frequency of the second signal is separated from the first,

the two can be distinguished and demodulated separately. The principle of multi-user com-

munications using the SC-FDMA is illustrated in Fig. 2.4. Multiple signals transmitted from

different nodes can be demodulated either by a single node (for example gathering data from

multiple sensors simultaneously), or by different nodes (e.g. to allow isolation of different

parts of the network).

Just like in the case of the narrowband interferer residual signal will cause sensitivity degra-

dation. Assuming two FM-UWB signals at the input, with aligned center frequencies, equa-
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Figure 2.4: FM-UWBmulti-user communication.

tion (2.14) can be written as:

W (t )= A1A2

2
cos

(
ωcτ+φ1(t )−φ2(t −τ)

)+ A1A2

2
cos

(
ωcτ+φ2(t )−φ1(t −τ)

)
(2.16)

≈ (−1)(N+1)/2A1A2 sin

(
τ

2

(
dφ1(t )

d t
− dφ2(t )

d t

))
cos

(
φ1(t )+φ2(t )

)
(2.17)

= (−1)(N+1)/2A1A2 sin

(
Δωτ

2
(m1(t )−m2(t ))

)
cos

(
φ1(t )+φ2(t )

)
. (2.18)

The residual signal is proportional to the difference of the twomodulating signals multiplied

by the factor cos
(
φ1(t )+φ2(t )

)
, which is a signal that occupies a bandwidth of BRF = 2Δ f .

Again, assuming the spectrum of the residual signal is flat, signal-to-interference ratio can be

estimated as [1]:

SIR= 20log

(
A1

2A2

)
−10log

(
BRF

BSC

)
. (2.19)

The achievable BER is limited by the SIR. Increasing the number of users, or increasing the

difference in power levels between the two users, reduce the SIR and could eventually prevent

correct demodulation of the useful signal. The maximum required BER will ultimately limit

the tolerable SIR, and subsequently, the number of users or the maximum acceptable power

difference.

The analysis conducted by Gerrits in [1, 5] can be extended to the case of multiple FM-UWB

users in the presence of noise. Assuming that the delay can be considered relatively small

and that the noise autocorrelation function is Rn(τ)= 1 for values of the delay τ= Nπ/2ωc ,

the noise analysis can be simplified while maintaining good accuracy. The result reported in

[6] can be generalized for the case of M FM-UWB users. Under the above assumptions the

19



Chapter 2. FM-UWB as a Low-Power, Robust Modulation Scheme

demodulator output signal is given by

sdem = (s1+ s2+·· ·+ sM +n)2 (2.20)

=
M∑

i=1
s2i +2

M∑
i=1

M∑
j=i+1

si s j +
M∑

i=1
si n +n2. (2.21)

Terms of the form s2i correspond to the demodulated sub-channel i . Terms of the form 2si s j ,

i �= j , correspond to the interference among different FM-UWB signals, the number of these

terms is M(M −1)/2. Finally, following the same reasoning as in [1, 5], and assuming that all

the noise and interference terms are independent, the output signal to noise and interference

ratio (SNIR) is given by

SNIRk,out =
BRF

BSC

S2k
N2+4∑M

i=1Si N +4∑M
i=1

∑M
j=i+1Si S j

, (2.22)

where Si corresponds to the input power of signal si and N is the input noise power. For a

multi-user environment two cases are of particular importance:

1. Two FM-UWB users of different input power levels

2. M FM-UWB users of equal power levels

For the case of two users, equation (2.22) reduces to

SNIR1,out = BRF

BSC

S21
N2+4S1N +4S2N +4S1S2

(2.23)

= BRF

BSC

SNR21,in
1+4SNR1,in(1+SIR−1

in )+4SNR21,inSIR−1
in

, (2.24)

where SIRin = S1/S2. Compared to equation (2.9) two additional terms exist that depend on

the input signal to interferer ratio SIRin. Furthermore, for increasing values of SNR1,in the

output signal to noise and interference ratio SNIR1,out, is no longer limited by noise, but solely

by the interference and approaches

SNIR1,out = BRF

BSC

SIRin
4

, for SIRin� 1, (2.25)

which is the limit from equation (2.19). As an example, consider that the FM-UWB signal is

used with RF bandwidth BRF =500MHz, using a 100kb/s sub-carrier, with orthogonal FSK

and a modulation index of 1 (BSC =200 kHz). The required SNIR for orthogonal FSK to achieve
a BER of 10−3 is approximately 13dB. The maximum difference in power levels between the

two FM-UWB signals is then 21dB.

For the case of M users of equal input power, S1 = S2 = ·· · = SM = S, the equation (2.22)
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Figure 2.5: FSK sub-channel frequency allocation and limits due to distortion.

reduces to

SNIRout = BRF

BSC

S2

N2+4MSN +2M(M −1)S2 (2.26)

= BRF

BSC

SNR2in
1+4MSNRin+2M(M −1)SNR2in

. (2.27)

Again, if the signal power is sufficiently higher than the noise power, the output SNIRout
becomes a function of FM-UWB signal bandwidth and the number of users:

SNIRout = 1

2M(M −1)
BRF

BSC
, for SIRin� 1, . (2.28)

The above equation can be used to determine the maximum achievable number of users, for

a given minimum required signal to noise and distortion ratio. For example, assuming the

same system parameters as above (BRF =500MHz, R =100 kb/s, BSC =200 kHz), themaximum

number of equal power users is 16. In both described cases FM-UWB signal bandwidth can be

increased in order to increase the achievable SNIRout.

The limits predicted by equations (2.25) and (2.28) assume an ideal system since they only take

into account a limited number of effects. In practical systems, these limits are upper bounds

and will be difficult to achieve. The above analysis only considers an ideal AWGN channel,

with a perfectly flat frequency characteristic. In reality, this will never be the case. Part of the

channel transfer function will come from the transmitter and receiver, and part will come

from the wireless channel (multi-path propagation). Intuitively, one can see the FM-UWB

signal as a carrier that slowly moves across a broad frequency range. Since the equivalent

channel transfer function is not constant, the amplitude will vary with the instantaneous

carrier frequency. Assuming that the channel does not change with time, amplitude will be a

periodic function, with the period of the sub-carrier. Even if the wideband FM demodulator

is perfect, these amplitude variations will result in the appearance of harmonics. Aside from

the channel transfer function, the harmonics will also appear as a product of non-linearities

in the receiver chain. Finally, these harmonics will limit the useful sub-carrier band to one

octave. If fSC ,mi n is the minimum sub-carrier frequency, then spectrum above 2 fSC ,mi n will
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Figure 2.6: ACPR for filtered and non-filtered FSK signal, as a function of channel separation
(100 kb/s data rate, modulation index 1).

be corrupted by the second and higher order components. The quality of any useful signal

at frequencies above 2 fSC ,mi n would, therefore, be degraded by the harmonics of other sub-

carriers, preventing correct demodulation (Fig. 2.5). With one octave limit for the sub-carrier

band, the lowest sub-carrier frequency fSC ,mi n =1MHz, and 200 kHz wide FSK channels, the

number of sub-carrier channels that can be accommodated is 5. This number can be increased

by increasing fSC ,mi n . In principle, the effect of channel transfer function can be canceled out

by equalization of the input FM-UWB signal. However, equalization techniques are complex,

they would drastically increase power consumption of the receiver, and as such are not suited

for low power systems.

In the previous example, it was assumed that the FSK channels can be placed adjacent to

each other. This is impractical for two reasons. The first reason is that the undesired channels

must be filtered out before the final FSK demodulation. Because of the finite quality factor

of the filter, some spacing must be introduced between the channels. The second reason

is interference among adjacent FSK channels. Theoretically the spectrum of the FSK signal

is infinitely wide. Although largest portion of the channel power is located inside the band

defined by Carson’s rule, part of the spectrum will leak to side channels and interfere with

adjacent users. This effect is quantified by the adjacent channel power ratio (ACPR), and is

defined as the ratio of the power inside the channel to the power in the adjacent channel.

The ACPR generally depends on the type of modulation, pulse shaping filter and transmitter

non-linearity. In the case of FSKmodulation, typically Gaussian pulse shaping is used. The

shape of the Gaussian pulse is determined by the bandwidth-time (BT) parameter, defined as

the ratio between the 3dB filter bandwidth and data rate. Decreasing the BT parameter results

in more compact spectrum, but increases the inter-symbol interference as the pulse duration

increases (over several bit periods). ACPR as a function of channel separation, for different

values of the BT parameter, is given in Fig. 2.6. Although filtering can be used to reduce

interference, this was rarely done in reported FM-UWB implementations. The reason is that it

adds complexity on both transmitter and receiver sides, and since multi-user communication
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with FM-UWB has rarely been explored it was not needed. Interference among channels can

always be decreased by increasing the channel separation, but this also reduces the number

of available FSK channels. For a system with BRF =500MHz, R =100 kb/s, BSC = 200 kHz, the

required SNIR of the FSK signal to achieve a BER of 10−3 is 13dB. If a channel separation of
100 kHz is used, with no filtering, then the adjacent channel power can be at most 20dB above

than the desired channel power. This will correspond to 10dB difference in power between

the two FM-UWB signals. For this particular case, it is the ACPR that will limit the maximum

tolerable power difference between the two users and not the interference from the residual

signal (equation (2.25))

Additional constraints may come from the receiver non-linearity and limited dynamic range.

Due to the quadratic demodulator characteristic, the dynamic range requirements are higher

for the circuits following the wideband FMdemodulator. If one of the FSK signals is sufficiently

strong it may saturate the circuits causing suppression of weaker FSK signals (FM capture

effect). Since there is typically a trade-off between power and dynamic range in amplifiers,

a larger acceptable power difference between the received signals will come at the cost of

increased power consumption.

Different choice with respect to the system parameters leads to different performance in

terms of complexity, sensitivity, data rate, number of channels and power consumption. By

modifying the RF bandwidth, sub-carrier frequencies, dynamic range etc., it is possible to

perform various trade-offs and to optimize the FM-UWB transceiver according to the specific

needs of the system.

2.1.3 Beyond standard FM-UWB

The FM-UWB modulation was originally intended as double FM modulation, where a low

modulation index FSK is followed by a large modulation index FM. It is an optional mode in

the IEEE 802.15.6 standard for wireless body area networks [7]. According to the UWB PHY

specifications, two modulations are supported; IR-UWB as mandatory and FM-UWB as an

optional mode. For FM-UWB, the data rate is set to 250 kb/s, using a continuous phase (CP)

FSK modulation, centered at 1.5MHz, with a frequency deviation of 250 kHz. A Gaussian filter

is used for pulse shaping with the BT parameter set to 0.8. For the sub-carrier waveform, either

a triangular, a sawtooth, or a sine waveforms are allowed.

Strict standard definitions do not allow different sub-carrier frequencies, higher or lower data

rates, or multi-user communication. The lack of flexibility limits the use of FM-UWB inWBAN

applications, and does not allow FM-UWB to reach its full potential. In general, the sub-carrier

modulation does not need to be limited to 250 kb/s 2-FSK. Speed and modulation order could

be modified according to the channel conditions (a less frequency selective channel allows

higher data rates). A transmitter implementing a data rate of 1Mb/s has been reported in

[8], that demonstrates the feasibility of moving to higher data rates. Furthermore, higher

order FSK can be explored such as 4-FSK and 8-FSK, allowing to further boost communication
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Figure 2.8: Example of transmission on two channels, time domain sub-carrier signal (a) and
transmitted signal spectrum (b).

speed. One such transmitter is reported in [9]. Finally, it would also be possible to use PSK

modulations without affecting the good spectral properties of FM-UWB. Other variations are

possible, and one example is the Chirp-UWB (C-UWB) modulation [10], that is a trade-off

between FM-UWB and IR-UWB. Instead of continuous frequency sweep, a single up or down

chirp is transmitted depending on the input bit. The duration of the chirp is much lower

than the symbol duration and allows duty cycling of the transceiver at a symbol level, thus

saving power. At the same time the duration of the pulse is much longer than in the case of

IR-UWB and does not require precise synchronization. One downside of C-UWB is that the

good spectral properties of the FM-UWB signal are lost.

A minor modification of a standard FM-UWB signal can be used to enable simultaneous
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2.2. State-of-the-Art FM-UWB Transceivers

transmission onmultiple sub-channels. Instead of using a single FSK sub-channel, multiple

sub-channels can be summed, and the resulting signal used to modulate the RF carrier. This

would allow a single transmitter to transmit different messages to multiple receivers at the

same time. The concept is shown in Fig. 2.7. In order to preserve the same frequency deviation,

if M sub-channels are used, sub-carrier signals are scaled by a factor 1/M . The example for

two sub-carriers is shown in Fig. 2.8. Unfortunately, the flat spectrum of the transmitted signal

is lost and, as a consequence, transmit power will have to be decreased in order to maintain

the signal below the spectral mask defined for the UWB band. The spectrum will take the

shape of the PDF of the modulating signal (as shown by equation (2.3)) which is in this case

an average of the two sub-carrier signals, and is no longer a triangular waveform. The exact

shape of the resulting sum of sub-carrier signals will depend on the number of sub-channels,

their frequencies and initial phases. The BER calculation can be extended to the case of M

sub-channels. The only difference compared to standard FM-UWB is that the power of each

channel is scaled by M . This is equivalent to reducing the RF bandwidth by the same factor

and hence the SNRin will be scaled as well. Equation (2.9) can then be modified accordingly to

estimate the output SNR:

SNRout = BRF

BSC

SNR2in/M2

1+4SNRin/M
. (2.29)

The probability of error is then calculated in the same way as for the single user case. One

advantage of the proposed modification compared to the described multi-user scheme is that

a larger number of channels can be used in the same bandwidth. If orthogonal sub-carrier

frequencies are used, therewill be no interference between the channels on the receiver side (in

that sense the proposed scheme resembles OFDM). In the multi-user case, transmitters would

have to be perfectly synchronized to preserve orthogonality, which is practically impossible,

and as a result produces interference among different users. The only way to solve this is to

separate and filter out the unwanted channels.

An existing degree of freedom in the proposed modulation technique is the sub-channels

scaling. If different receivers are located at different distances from the transmitting node, the

received power, and subsequently the BER, may vary. This can be circumvented by using a

different scaling factor for each of the channels. Smaller scaling factor could be assigned to

more distant receivers, in order to improve the BER on their sub-channels. As long as the sum

off all scaling factors is 1, themaximum frequency deviation will remain the same, maintaining

the signal spectrum within the defined limits.

2.2 State-of-the-Art FM-UWB Transceivers

One of the main advantages of the FM-UWB is the simplicity of the transceiver architecture,

which offers a low power consumption and a high degree of integration. Different transmitter

and receiver implementations have been presented in the literature. They will be discussed

in the following paragraphs, with a focus on both architecture and circuit level techniques.
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Figure 2.9: FM-UWB receiver architectures reported in the literature.

Finally, FM-UWBwill be compared to state of the art narrow-band and IR-UWB receivers, to

gain insight into some of the advantages and drawbacks of the chosen modulation scheme.

2.2.1 FM-UWB Receivers

Different FM-UWB receiver architectures found in the literature are presented in Fig. 2.9. The

originally proposed wideband FM demodulator based on a delay line demodulator is depicted

in Fig 2.9(a). Two other implementations are based on an FM discriminator, they rely on

filtering to convert the input FM signal into an amplitude modulated (AM) signal. Conversion

characteristics of all the demodulators are shown in Fig. 2.10.

The FM-AM characteristic of the delay line demodulator was studied in the previous section

(equation (2.7)). The output AM signal will be a sine function of the input frequency. It can be

seen that the choice of delay is a trade-off between the conversion gain and the bandwidth

26



2.2. State-of-the-Art FM-UWB Transceivers

ffc

BUWB

f

f
Delay-Line

Demodulator

Regenerative
Demodulator

Dual-BPF
Demodulator

f

t

t

t

Sub-Carrier signal

A

A

A

Bdem

Bdem

Demodulator FM-AM 
conversion characteristic

t

f
Instantaneous frequency vs. time

Figure 2.10: Frequency-to-amplitude conversion characteristic of reported FM demodulators.

of the demodulator. Decreasing delay leads to lower conversion gain, but also increases the

useful frequency range. In addition, this delay is constrained to a discrete set of values and

must be equal to an odd multiple of the quarter period of the carrier frequency. It must be

determined precisely in order to avoid frequency offset. In practice, a small offset will always

be present as a result of process variation, however since the transmitted signal is at least

500MHz wide, this offset should not have a major impact on the receiver performance. The

first fully integrated FM-UWB receiver based on a DL demodulator was described in [11]. It

achieves a sensitivity of -88dBmwhile consuming 9.4mW. The demodulator itself consumes

around 5.8mW, and the additional 3.6mW are used by the LNA.

An LNA that provides high gain across a large bandwidth inevitably requires more power

compared to a narrowband LNA. In order to reduce the power consumption, a narrow-band

regenerative receiver was proposed in [12]. This approach allows for preservation of high

gain and relatively good noise figure, while minimizing the power consumption. The high-Q

filtering is in fact implemented in the LNA and its center frequency corresponds to either

the highest or the lowest frequency of the FM-UWB signal. The band-pass filter behaves as

a frequency discriminator that converts the input FM signal into an AM signal, that is then

converted to IF using an envelope detector. Due to the high-Q factor of the filter that results in

a very nonlinear FM-AM conversion characteristic, the demodulated signal will be a train of

pulses whose frequency corresponds to the sub-carrier frequency (Figure 2.10). The receiver
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from [12] consumes 2.2mW while achieving -84dBm sensitivity. A later implementation

presented in [13] introduced several improvements at the circuit level (most notably current

reuse among several blocks) which resulted in power consumption of only 560μW and only a

slight reduction of sensitivity. Although the regenerative receiver achieved significant power

savings, there are some downsides to this architecture. Narrow-band interferer rejection

mostly relies on the high-Q input filtering. If the interferer falls inside the pass-band it

could easily saturate the stages following the LNA and prevent reception. Indeed, such a

scenario could be avoided by introducing the on-chip tuning circuit that could shift the filter

center frequency, but this adds complexity to the system. The second downside comes from

the nonlinear FM-AM conversion. If several FM-UWB signals were to occupy the same RF

band, the weaker signals would be attenuated in the nonlinear conversion process, which

would prevent correct demodulation. This is known as the capture effect [14], and limits the

regenerative receiver to cases where only one FM-UWB signal is transmitted in the given RF

band.

In an attempt to improve the linearity of the regenerative demodulator, amodified architecture

was proposed in [15]. Instead of using just one band-pass filter, a second branch was added

(Figure 2.9(c)), resulting in a Dual Band-Pass Filter (DBPF) demodulator, otherwise known as

a balanced frequency discriminator. The two filters are tuned to the highest and the lowest

frequency in the FM-UWB signal spectrum, they are followed by the two envelope detectors

that remove the RF carrier from the signal, and the difference of the two IF signals finally yields

the demodulated sub-carrier. The equivalent linearized characteristic is shown in Figure 2.10.

Compared to the original regenerative receiver, the Q-factor of the two filters can be lowered,

which allows some power savings per filter, but the two still consumemore than the single filter

from [13]. The dominant source of power consumption remains the wideband LNA, that must

provide equal gain over the entire band in the DBPF receiver. The two architectures perfectly

illustrate the trade-off between linearity and power consumption in FM-UWB receivers. The

implementation from [15] consumed 3.8mW, and achieved -78dBm of sensitivity. The same

architecture was reused in [10] for demodulation of a Chirp-UWB signal, where symbol-level

duty-cycling of the receiver was used to bring down the average power consumption to 0.6mW.

The DBPF receiver exhibits better narrow-band interferer rejection compared to a standard

regenerative receiver and should perform better in scenarios with multiple FM-UWB users,

although such capability was not confirmed by measurements.

A performance summary of different FM-UWB receivers is given in Table 2.1. Each of the

proposed architectures has its own advantages and disadvantages. Receiver from [11] generally

has the best performance but is also the most power hungry. The regenerative receiver can

provide a very low power consumption while maintaining good sensitivity, but at the cost

of linearity. A trade-off between linearity and interference rejection on one side, and power

consumption on the other, is demonstrated with the balanced frequency discriminator from

[15]. One thing that is in common for all the architectures is that the largest contributors to the

power consumption are the RF blocks, mainly the LNA. Therefore, one approach to decreasing

consumption would be to minimize the number of RF blocks, or to completely remove them if
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Table 2.1: Performance summary of state-of-the-art FM-UWB receivers

Reference [11] [16, 12] [17] [15] [10] [18, 13]

Year 2009 2010 2012 2013 2014 2014
Demodulator RF-DL Reg RF-DL DBPF DBPF Regen.
Frequency [GHz] 7.5 3.75 3.8 3.75 8 4
Power cons. [mW] 9.4 2.2 7.2 3.8 0.6/4* 0.58
Supply [V] 1.8 1 1.6 1 1 1
Data rate [kb/s] 50 100 50 100 1000 100
Sensitivity [dBm] -88 -84 -70 -78 -76 -80.5
NB SIR [dB] -25 -30 - -23 - -18
SC-FDMA Yes No - No No No
Efficiency [nJ/b] 188 2.2 144 38 1 5.8
Tech. node [nm] 250 90 180 65 65 90

*Power consumption is 0.6mWwith duty-cycling and 4mWwithout duty-cycling.

possible. This approach will be studied in the following chapters.

2.2.2 FM-UWB Transmitters

Unlike the FM-UWB receivers, the architecture of FM-UWB transmitters has remained un-

changed over the past several years. Considering its simplicity (Figure 2.1) it is clear that there

is not a lot of potential for improvement at the architectural level. In fact, the reduction of

power on the transmitter side is mainly a result of improvements at the circuit level. Every

FM-UWB transmitter consists of three blocks, the sub-carrier generator, the VCO (sometimes

as a part of a PLL or an FLL) and a power amplifier (PA).

The sub-carrier generator synthesizes the triangular waveform that is used to drive the VCO.

As the sub-carrier frequencies are rather low (typically 1-2MHz) this block does not contribute

significantly to the overall transmitter consumption. One way to implement it is a Direct

Digital Synthesis (DDS) as described in [19]. The advantages of digital implementation are

the simple and precise frequency control without the need for calibration. The drawback of

the fully digital approach becomes apparent at higher data rates, where higher sub-carrier

frequencies are needed. In [8] 51MHz sub-carrier frequency is used. Since roughly 20 points

per period are needed to generate a reliable sub-carrier waveform, a DDS would need to

operate at a clock speed of more than 1GHz, which would be difficult to implement and

would consume a significant amount of power. Instead, a relaxation oscillator is used within a

PLL, a simpler and lower power solution in this case. Another interesting approach that leads

to a very low power consumption is a free-running relaxation oscillator that is periodically

calibrated using an FLL [20]. In this case, a digital frequency control is provided through a

capacitor bank, however this approach is usually not precise enough if multiple sub-carrier

channels are to be used. Additionally, it might occupy a larger area due to the size of capacitors

needed at the frequency of interest.
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The twomain parts of the FM-UWB transmitter that essentially determine its power consump-

tion are the VCO and the PA. In the case where transmitted power is 10dBm or more, the

transmitter efficiency was dominated by the PA, however at lower output powers, such as

-10dBm the contribution of the VCO becomes quite significant. In some of the earlier imple-

mentations, the RF carrier was synthesized using an LC VCO within a PLL [21, 8]. To decrease

power, the frequency synthesizer is duty cycled, making the frequency dividers active for only

10% of the time. Although this allowed some savings, the power consumption was still on the

order of 10mW. A significant improvement wasmade when the LC oscillator was replaced with

a ring oscillator [20, 9]. This was possible owing to the loose phase noise constraints of the

FM-UWBmodulation. Additionally, instead of the quasi-continuous PLL, an FLL calibration

loop was used [20]. Since the FM-UWB spectrum is very wide, the center frequency can

deviate slightly without a major impact on performance and it does not need to be monitored

continuously. Therefore, once calibrated, the VCO can operate in a free running manner until

temperature or some other external factor causes a significant frequency shift. Since these

external processes are usually slow, calibration only needs to be done once in a few hours

or days, which makes the average power consumption of such an FLL practically negligible.

The described approach led to the first sub-milliwatt FM-UWB transmitter [20]. The next

step in reducing the VCO consumption was reducing the frequency of oscillation. Since an

N-stage ring oscillator produces N equally spaced phases, these phases can be combined to

produce a frequency that is N times higher [22]. It is then possible to use a ring oscillator that

works at a frequency that is N times lower than the carrier center frequency. The approach

was demonstrated in [22] and used for the FM-UWB transmitter in [13] to reduce the power

consumption down to 0.63mW. A three-stage ring was used that oscillated at one third of the

carrier frequency, which resulted in the VCO power consumption of less than 90μW.

Even though the VCO cannot be neglected, the PA remains themost power-hungry block in the

system. The key to further reducing the power consumption of an FM-UWB transmitter is an

efficient power amplifier. However, design of an integrated PA for such a low power and wide

band poses a number of challenges. In standard narrow-band applications targeting 10dBm

output power or more, the most efficient approach is to use a switching PA such as class D or E.

The first problemwith class E is that the output matching network is set to a very narrow range

of frequencies and achieving good efficiency over a large band would be impossible. Second

problemwith switching amplifiers is that their efficiency is directly related to the on-resistance

of the switch, which dictates the minimum size of the output transistor. In addition, the PA

must be driven by a square wave with very sharp transitions to minimize the turn-on time of

the switch. The two requirements impose very hard constraints, resulting in power dissipation

in the driving circuits that is comparable to that of the PA. Therefore, when the driving circuit is

also accounted for, switching PAs seemnot to be the best solution. The linear power amplifiers,

classes A, AB, B and C, do not achieve as high efficiency, but their driving requirements are

also lower. Moving from class A to class C operation, the maximum attainable efficiency

increases, but the power gain decreases and larger driving signal is necessary, thus again

shifting the burden from the PA to the driver. A good compromise is the class AB that attains
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Table 2.2: Performance summary of state-of-the-art FM-UWB transmitters

Reference [21] [8] [20] [17] [9] [10] [18, 13]

Year 2010 2011 2011 2012 2013 2014 2015
SCModulation 2-FSK 2-FSK 2-FSK 2-FSK 8-FSK 2-FSK 2-FSK
Frequency [GHz] 3.8 3.8 4 3.8 3.75 8 4
Bandwidth [MHz] 600 700 500 560 500 500 500
Power cons. [mW] 9.6 18.2* 0.9 8.7 1.14 3.5** 0.63
Supply [V] 1.6 1.6 1 1.6 1 1 1
Data rate [kb/s] 10 1000 100 50 750 1000 100
Out. power [dBm] -14.5*** -12.8 -10.2 -13.7 -14 -11*** -10.1
Efficiency [nJ/b] 960 18.2* 9 174 1.5 0.39 3.1
Tech. node [nm] 180 180 90 180 65 65 90
*Excluding the output PA.
**In continuous mode, 0.39mWwith duty cycling.
***Estimated from figure.

decent efficiency and does not need a rail-to-rail input signal. In fact, all of the transmitters

reported in [20, 9, 13], which achieve the lowest power consumption reported so far, use a

complementary class AB power amplifier.

For linear PAs in general, optimal efficiency is obtained when the output voltage swing is

maximized. In case of a complementary class AB or B amplifier, maximum output voltage

swing is equal to the supply voltage. The load resistance seen from the power amplifier, must

therefore be chosen such as to provide the desired output power. The problem with low

power transmission is that the value of the optimal load resistance is relatively high. As a

consequence a large transformation ratio of the matching network is needed, which then

increases the losses in the network. One way to solve this problem would be to reduce the

supply voltage. However, such an approach would require another circuit (a DC-DC converter)

that would lower the voltage to the desired level. This would not only increase complexity

but also introduce its own losses and possibly require off-chip components. A better and

simpler way is to apply current reuse technique demonstrated in [13], where the PA and the

driver share the same current. Since the effective PA supply voltage is lower, there is no need

for such a high transformation ratio of the matching network and, at the same time, the PA

bias current is used to supply the driver. The efficiency of the transmitter can therefore be

improved without any increase in complexity, which led to the current lowest power FM-UWB

transmitter [18, 13], as shown in Table 2.2.

2.2.3 FM-UWB against IR-UWB and Narrowband Receivers

IR-UWB is a time domain approach to ultra-wideband communications. The IR-UWB uses

pulses of very short duration to achieve the desired bandwidth, and the pulses are modulated

using one of the standard digital modulations, such as on-off keying (OOK), pulse position
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modulation (PPM), PSK or FSK. Table 2.3 summarizes the performance of some of the IR-

UWB receivers. Compared to FM-UWB, the IR-UWB is targeting higher data rates, typically

above 1Mb/s, and in some cases going up to 1 Gb/s, and as a result, it also achieves better

efficiency. Energy per bit of FM-UWB receivers remains above 1nJ/b, while some of the

IR-UWB implementations achieve an improvement by an order of magnitude. At the same

time IR-UWB receivers exhibit much higher power consumption, in some cases exceeding

100mW. Another downside of IR-UWB is that the higher complexity usually typically results in

larger silicon area and, also a more difficult, costly and time consuming implementation. This

higher complexity is associated to synchronization difficulties inherent to IR-UWB. Short pulse

duration means that precise synchronization is required to detect and demodulate pulses

(especially in the case of PPM). This translates into a need for a precise frequency reference,

and complex and power-hungry baseband signal processing, sometimes involving a digital

signal processor (DSP). Since the targeted application doesn’t require high data rates, and a

highly integrated and miniaturized solution is preferred, FM-UWB has an advantage, even

though it may not always be the most energy efficient solution.

Table 2.3: Performance summary of IR-UWB receivers

Reference [23] [24] [25] [26] [27] [28]

Year 2009 2008 2006 2010 2009 2013
Modulation BPSK BPSK OOK OOK OOK BPSK
Frequency [GHz] 8 4 4.1 4 3-9 2.4
Power cons. [mW] 4.3* 98 81 1.64 156 1.28*
Supply [V] 1.2 1.2 1.8 1 1 1.2
Data rate [Mb/s] 40 1000 200 1 50 12.5
Sensitivity [dBm] -52 -41 -72 -60 -53 -16**
Efficiency [nJ/b] 0.11 0.98 0.4 1.64 3.12 0.012
Tech. node [nm] 130 65 180 130 90 180

*No LNA
**50mV input signal in 50Ω system

Narrowband radios are widely used in WSN applications today. A wide variety of commer-

cial Bluetooth, ZigBee and similar transceivers are readily available and can easily be inte-

grated into sensor nodes. These kind of transceivers typically consume between 5mW and

10mW, provide data rates from 1kb/s to 1Mb/s and sensitivity varying from -80dBm down

to -100dBm. To conserve power, the sensor nodes typically employ duty cycling, enabling

autonomy on the order of one year (using for example a CR2032 battery, and a duty cycle

roughly equal to 0.01). Although these radios could be used for the WiseSkin application, they

are clearly not optimized for this case.

From the perspective of a short-range WSN, an interesting class of narrowband receivers are

the “wake-up” (WU) receivers. The purpose of the wake-up receiver is to constantly listen,

and then turn-on the main receiver once the wake-up message has been received (signifying

32



2.2. State-of-the-Art FM-UWB Transceivers

that there is data to be transmitted). The main idea behind the WU receiver is to break the

power-latency trade-off in duty cycled networks. If a receiver in aWSN is periodically switched

on, network latencywill depend on the duty cycle. In order to decrease latency, duty cyclemust

be increased, hence increasing power consumption. Assuming an auxiliary receiver can be

made, that consumes sufficiently low power, the main receiver could be turned on only when

needed, allowing to reduce both latency and power consumption. State of the art WU receivers

are shown in Tab. 2.4. Most WU receivers target data rates ranging from 10kb/s to 100kb/s,

while achieving power consumption from 100μW to 100nW. The complexity and architecture

of these radios are quite different. Most of the sub-microwatt implementations are based on

the use of an envelope detector with an external matching network. These are quite simple

and have a limited scope of use. Some of the more sophisticated receivers provide interferer

rejection and sensitivity comparable to standard Bluetooth receivers [29], but they are more

power-hungry. Energy efficiency can vary depending on data rate, sensitivity and carrier

frequency, but implementations achieving values below 1nJ/b have been demonstrated.

Table 2.4: Performance summary of narrowband receivers

Reference [30] [31] [29] [32] [33] [34]

Year 2009 2012 2016 2014 2011 2013
Modulation OOK OOK OOK OOK FSK OOK
Frequency [GHz] 2 0.915 2.4 0.868 0.4 2.4
Power cons. [μW] 52 0.98 99 3 44 0.116
Supply [V] 0.5 1.2 0.5 2.5 1 1.2
Data rate [kb/s] 100 100 50 0.064 200 12.5
Sensitivity [dBm] -72 -41 -92 -83* -70 -43.2
Efficiency [pJ/b] 520 0.98 1980 46.9 220 9.28
Tech. node [nm] 90 65 65 130 130 130

*Defined as 1%missed wake-up events

Compared to FM-UWB, narrowbandWU receivers clearly have the advantage when it comes

to power consumption at comparable data rates and sensitivity levels (not taking into account

fading and frequency selectivity). This is not surprising considering that FM-UWB receivers

need to amplify and demodulate signal that is at least 500MHz wide. The wideband amplifier

that provides the same gain and noise figurewill inevitably consumemore than its narrowband

equivalent. To make things worse, FM-UWB is inherently sub-optimal compared to the

standard FSK (as shown in Fig. 2.3), andwill provide higher BER for the same input signal power.

However, FM-UWB provides other benefits that may not be apparent at first. It is inherently

robust against interferers, unlike NB radios that need to rely on filtering. Owing to the spread

spectrum, FM-UWB is also robust against frequency selective fading. Narrowband radios

might be unable to establish a link due to a notch in the channel frequency characteristic,

whereas the FM-UWB only suffers a minor performance degradation. Also, FM-UWB could

provide support for multi-user communication at almost no increase in power consumption.

Finally, FM-UWB has better potential for miniaturization, enabling implementations with
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no off-chip components. Every narrowband radio needs a crystal oscillator to provide a

precise frequency reference, and in most cases other off-chip components are needed to

provide additional filtering, or output matching. Thanks to robustness to reference frequency

offset, that partially comes from the large signal bandwidth, FM-UWB is capable of using an

imprecise, on-chip reference oscillator, while still providing reliable communication. The

combination of robustness, architecture simplicity and high degree of integration are, finally,

the main arguments in favor of FM-UWBwhen compared to narrowband radios.

2.3 Summary

The first part of this above chapter describes the main principles of the FM-UWBmodulation.

Basic calculations related to the modulation technique are presented and extended to the

cases with multiple users. The described techniques, such as multi-user communication and

multi-channel transmission, can be used to optimize the system performance according to

the specific needs. Different sub-channels can be used, trading data-rate per channel with the

number of available sub-channels, depending on the number of nodes in the network and

their purpose.
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Figure 2.11: FM-UWB transmitters and receivers, evolution of power consumption. Type of
demodulator used in each receiver is indicated on the graph.

In the second part of the chapter, the state of the art FM-UWB transceivers are discussed along

with the the most important power reduction techniques reported in the literature. These

techniques, combined with technology scaling, led to sub-milliwatt power consumption levels

in today’s implementations. The evolution of power consumption over the past 8 years is

illustrated in Figure 2.11 for both transmitters and receivers, from which a decrease by a factor

of 20 can be observed. However, the narrow-band receivers still have the edge, at least with

respect to power consumption. The proposed wake-up receivers found in literature consume

from 100μW [29] all the way down to 100nW [31]. FM-UWB can hardly compete with such low

34



References

levels, a simple consequence of the fact that wide-band circuits require more power to achieve

the same performance in terms of gain and noise figure. On the other hand, the FM-UWB

brings higher resilience to interferers, without off-chip components such as SAW filters, better

performance in frequency selective channels and higher potential for miniaturization. All

of these are very favorable capabilities that could assure a place for FM-UWB in short-range

applications such as wireless body area networks.
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3 Reducing the Power of FM-UWB re-
ceivers: the Approximate Zero IF
Architecture

The primary goal of this work is to reduce the power consumption of an FM-UWB transceiver. In duty

cycled wireless sensor networks the bottleneck is typically the receiver. This is because transmitters

only need to be turned on when there is a need to transmit data. As a result their power consumption

will only be a small fraction of the overall power consumed by the network. Receivers, on the other hand,

need to capture the transmitted data andmust therefore be turned on periodically to check whether

data is being transmitted. This is why the power consumption of the network will almost entirely

be determined by the receiver power consumption. Lowering the duty cycle ratio, or equivalently,

increasing the duration of the period between the two on states of the receiver, can be used to bring

down network power consumption, but it will also increase latency. In systems like WiseSkin, where

sensors need to provide pressure information to the patient, latency constraints are imposed by the

physiological characteristics of the human body. In order to provide a natural sense of touch, the delay

from sensors to actuators must not be larger than the time it takes for neurons to convey information

from the fingers to the brain. Once the maximum delay limit is reached the only way to reduce network

power consumption is to reduce the consumption of the FM-UWB receiver.

Another property that could be of use in the receiver is the capability to handle multiple FM-UWB

signals at the same time. This requirement comes from the fact that potentially a large number of sensor

nodes may be located close to each other. Providing the multi-user capability would then allow to

parallelize data transfer and decrease network delay. Normally, receivers with such capability need good

linearity and dynamic range, which again come at the price of power consumption. Fortunately, since

the distance between nodes is not large, and in the targeted application it is less than 1m, sensitivity is

not a limiting factor, and can in this case be sacrificed for the benefit of multi-user communication and

energy efficiency.

This chapter describes the proposed architecture, intended to further reduce the power consumption

of an FM-UWB receiver. Two architectures are explored, one that aims to provide the multi-user

communication capability, and another that attempts to aggressively lower the power consumption,

while essentially neglecting all other aspects.
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Figure 3.1: Principle of operation of the uncertain IF receiver.

3.1 The Uncertain IF Architecture

It is a common observation that in any type of circuits there is a correlation between the frequency of

operation and power consumption. The simplest example is the CMOS logic gate, where it can be shown

that the dynamic power consumption is proportional to the frequency of operation Pd yn ∝ f CV 2.

Similar conclusion holds for other types of circuits, for example, amplifiers typically need more power

to achieve the same gain at higher frequencies (or to provide larger bandwidth). As a consequence, the

most power-hungry blocks in the receivers are the ones that operate at RF. These are usually the Low

Noise Amplifier (LNA), needed to provide a good noise figure, and the frequency synthesizer, where the

dominant consumers are the voltage controlled oscillator and frequency dividers. A typical example

could be the Bluetooth receiver presented in [2], where the LNA consumes around 25% of the overall

power, and 53% of the power is used for the PLL, including the DCO.

Due to the large bandwidth of the FM-UWB signal, precise frequency synthesizers can be completely

removed. Gain at high frequencies, however, remains a bottleneck. Consider the FM-UWB receiver

from [3], where the LNA consumes 1.6mW, or 73% of the overall power consumption. A similar case is

found in [4], where the LNA consumes 55% of the entire receiver consumption. The preamplifier and

the demodulator in the FM-UWB receiver from [5], both operating at RF, consume around 3mA and

6mA, respectively. Removing the LNA from the design, or loosening the specifications on RF gain and

noise figure, could lead to significant power savings.

The opportunity to decrease power consumption by moving the gain stages from RF to IF was first

recognized by Pletcher [6], who demonstrated this approach through the implementation of the

“Uncertain IF” receiver. In this design the LNA is merged with the mixer into a single current reuse

block, the active mixer. Combined with the external bulk acoustic wave (BAW) resonator, it provides

the input matching, and converts the RF signal to IF, where the gain stages are located. The lack of

voltage gain at RF simplifies the design and allows for low dc current of the active mixer. Although

the power hungry LNA is eliminated from the design, the LO signal must now be generated in order

to perform the downconversion. For the proposed design from [6] to be truly power efficient, the LO

generator must consume sufficiently low power. A simple three-stage, CMOS ring oscillator used in

this design consumes very little power and provides a rail to rail output signal, but this comes at a price.

Ring oscillators are generally sensitive to changes in supply voltage and temperature, phase noise is

relatively high compared to LC oscillators, and finally the output frequency is rather unstable and tends
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to drift with time. This is the key point of the architecture from [6]. Instead of using a PLL to stabilize

the oscillator frequency, the IF amplifier bandwidth is increased to allow for LO frequency offset. Hence

the name “uncertain IF” receiver is used. The described principle is illustrated in Fig. 3.1. The designed

oscillator generates the LO signal that remains within the ±100MHz range from the center frequency.

To account for this offset, the IF amplifier is designed with a bandwidth of 100MHz, assuring that

the downconverted signal falls inside the desired band. Using 100MHz amplifiers to amplify a signal

with 10 kHz bandwidth is a necessary overhead, but still results in less power consumed than if a PLL

were used to generate the LO signal. The oscillator, however, does need to be calibrated periodically to

compensate for the drift due to temperature or supply voltage variation, andmaintain the LO frequency

within the defined limits. Owing to the fact that these changes are slow, the calibration will only be

done once in a few hours, resulting in a negligible overhead in terms of power consunmption. The final

stage of the receiver is the envelope detector that demodulates the transmitted OOK (on-off keying)

signal. It should still be noted that a relatively good noise performance in this case was achieved using

a narrowband BAW filter that is precisely tuned to the frequency of the transmited signal. Finally, the

receiver from [6] reached a power consumption of only 50μW, for an input signal at 2GHz, and is still

among the lowest consuming narrowband receivers in the literature today.

The same principle can be applied to the FM-UWB signal. Instead of implementing the wideband

amplifiers at RF, the input signal is directly downconverted to zero center frequency using an active

mixer (LNA and mixer stack), allowing amplification and processing to be done at low frequencies.

Since the LO signal is generated using an imprecise ring oscillator, a certain frequency offset will always

be present between the LO signal and the center frequency of the input signal. Hence, the proposed

receiver is referred to as the “Approximate Zero IF” receiver. The aforementioned offset should be

relatively small compared to the 500MHz wide input signal, and so the necessary overhead, i.e. larger

bandwidth of the IF amplifiers and the demodulator, will be relatively small. Moving the main gain

stages fromRF to IF results in higher noise figure (NF) of the receiver chain. Since only a limited amount

of gain is available at high frequencies, noise of the IF stages will contribute more significantly to the

overall noise figure. At the same time, the power consumed by the IF amplifiers can now be greatly

reduced since they operate at low frequencies instead of RF, and the same overall gain comes at a lower

price.

3.2 The Approximate Zero IF Receiver with Quadrature Downcon-

version

The first proposed receiver architecture is based on a delay line demodulator described in the previous

chapter. This demodulator has already been used in some receiver implementations [5, 7]. In its

original form it operates directly at RF, and the delay needs to be tuned precisely to the signal center

frequency. The demodulator can be moved from RF to baseband, without changing its functionality, if

two signal branches are used with a 90◦ phase shift between them [8]. The two signals can easily be

generated by using quadrature LO signals for downconversion.

The proposed receiver architecture is shown in Fig. 3.2. Some of the blocks that will be present in

the actual implementation are omitted for clarity, and to emphasize functionality. The input signal is

directly converted to zero frequency by the mixer. Since a ring oscillator will be used to generate the

LO signal, some frequency offset will always be present, meaning that the downconverted signal will

never be precisely centered at zero, and the architecture is therefore named the “Approximate Zero IF”

architecture. The downconverted signal will then be amplified by the IF amplifiers. In Fig. 3.2 only
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Figure 3.2: Block diagram of approximate zero IF receiver with IQ downconversion.

filters are shown to emphasize limited bandwidth of the IF path. In this work a 500MHz wide FM-UWB

signal is used. After downconversion the signal would ideally occupy frequencies from zero to 250MHz.

Accounting for a frequency offset of ±50MHz, 300MHz should be sufficient for the bandwidth of the IF

path. The case remains the same with the demodulator bandwidth. It needs to be larger in order to

accommodate the input signal with a frequency offset.

The principle of operation of the demodulator can be described through the following mathematical

model. The simple calculation presented here follows the approach from [9], extending it to account

for the LO frequency offset. The aim of the calculation is to explain the principle of operation and

provide insights into the main trade-offs when choosing the delay of the demodulator, which is the

main design parameter in this case and determines the bandwidth of the demodulator. The FM-UWB

signal at the input of the receiver can be represented as

s(t )= A cos(ωc t +φ(t )), (3.1)

where ωc = 2π fc is the carrier center frequency of the signal and φ(t ) is the time varying phase, which

is the integral of the sub-carrier wave (usually a periodic triangular or sine signal):

φ(t )=Δω

∫t

−∞
m(t )dt . (3.2)

The sub-carrier wave m(t) is normalized to the interval [-1,1], and Δω is the frequency deviation

corresponding to half of the FM-UWB signal bandwidth Δω = 2πΔ f = πBUW B . The signal is first

converted to baseband, such that the signals in the in-phase and quadrature branches are given by

si (t )= A cos(ωc t +φ(t ))cos(ωosc t ) (3.3)

sq (t )= A cos(ωc t +φ(t ))sin(ωosc t ) (3.4)

where the conversion gain of the mixer is assumed to be unity for simplicity. Note that since the

carrier frequency ωc does not correspond ideally to the locally generated frequency ωosc , there will

be a residual term after mixing that is equal to the difference of the two frequencies. The two filtered,
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Figure 3.3: Principle of operation of approximate zero IF receiver with IQ downconversion.

downconverted components at the demodulator input are:

si ,l p (t )=
A

2
cos(ωo f f t +φ(t )) (3.5)

sq,l p (t )=− A

2
sin(ωo f f t +φ(t )) (3.6)

where ωo f f = 2π fo f f =ωc −ωosc is the frequency offset of the LO signal. The two quadrature signals

are then multiplied with the delayed copy of each other in the process of demodulation. The signals at

the output of the two demodulator mixers are:

si ,dem(t )=− A2

4
cos(ωo f f (t −τ)+φ(t −τ)) sin(ωo f f t +φ(t )) (3.7)

sq,dem(t )=− A2

4
cos(ωo f f t +φ(t )) sin(ωo f f (t −τ)+φ(t −τ)). (3.8)

Finally, the difference of si ,dem(t ) and sq,dem(t ) results in the following signal:

sdem(t )=
A2

4
sin(ωo f f τ+φ(t )−φ(t −τ)). (3.9)

Following the same approach as in [9], assuming time interval τ is small enough that φ(t) does not

43



Chapter 3. Reducing the Power of FM-UWB receivers: the Approximate Zero IF
Architecture

change too significantly, equation (3.9) can then be approximated by

sdem(t )≈
A2

4
sin(ωo f f τ+τ

dφ(t )

d t
) (3.10)

= A2

4
sin(ωo f f τ+τΔωm(t )), (3.11)

which in fact corresponds to the demodulated signal. The last equation reveals the sinusoidal FM-AM

characteristic of the demodulator, showing that it, in fact, acts as a baseband equivalent of the RF delay

line demodulator. The illustration of the demodulation principle and the equivalent demodulator

characteristic are given in Fig. 3.3. The shape of the output demodulated signal is shown for two

different values of the delay, assuming that a certain frequency offset is present in the LO signal. The

amplitude and the shape of the demodulated signal depend on the demodulator delay τ and the

frequency offset fo f f , as illustrated in Fig. 3.3. The demodulator bandwidth can be defined as the

monotonic part of the characteristic, i.e. τ×BDE M = π/2. Increasing the delay results in decreased

demodulator bandwidth, which increases the amplitude, but also distorts the output signal. Note that

unlike with the RF delay line demodulator, the delay τ is no longer related to the input signal center

frequency. Ideally, in the case of the RF delay line demodulator, τ should be equal to the integermultiple

of the quarter period of the center frequency N T /4. Any deviation of τ results in mismatch between

the demodulator center frequency and the signal center frequency. The end effect is equivalent to the

LO frequency offset in the approximate zero IF receiver.

The conversion gain is defined as the ratio of the fundamental amplitude of the demodulated signal

and the amplitude of the signal at the demodulator input:

Gconv = A(1)

A/2
= C1 A2/4

A/2
= A

2
C1. (3.12)

The coefficientC1 corresponds to the fundamental component of the demodulated signal normalized

to A2/4 and accounts for the non-linear characteristic of the demodulator. This coefficient will depend

on τ and fo f f . Assuming a triangular sub-carrier wave, C1 and C2 (normalized second harmonic

amplitude) are calculated and plotted in Fig. 3.4 as functions of the frequency offset, for several different

values of the delay τ. These graphs show the trade-off between the distortion and the conversion gain

mentioned above. Choosing larger τ, such that the demodulator bandwidth is smaller than the signal

bandwidth, for example Bdem= 200MHz, will indeed result in a higher gain, but will also make it more

sensitive to the carrier offset. For the value of τ selected to provide 500MHz bandwidth, the conversion

gain is practically half of that obtained for BDE M= 200MHz, but remains almost constant even for a

very high carrier offset. The conversion gain remains the same for both noise and signal at the input,

and in that sense doesn’t affect the SNR. However, in a practical realization the demodulator itself will

generate noise, and with this noise taken into account higher conversion gain will yield a higher output

SNR. It should also be noted that a high demodulator bandwidth (together with IF bandwidth BI F ) also

results in a higher noise bandwidth, which combined with lower gain inevitably leads to a degradation

of sensitivity. Looking at the second harmonic, the increase of distortion that comes with the decrease

of bandwidth becomes evident. In the ideal case, with no carrier offset, the second harmonic will be

zero. However, for the proposed receiver architecture this will never be the case and the amplitude of

the second harmonic will depend on offset and demodulator delay. Finally as a compromise between

the gain, sensitivity to frequency offset and distortion, a bandwidth of 300MHz can be chosen for the

demodulator implementation and the same value should be used for the bandwidth of the preceding

IF amplifiers.
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Figure 3.4: Normalized fundamentalC1 and second harmonic amplitudeC2 at the output of
the demodulator vs. the offset frequency. First harmonic is proportional to conversion gain.
Four curves are plotted for four different values of the demodulator bandwidth (or equivalently
different values of the delay τ).

The proposed demodulator can be used to simultaneously demodulate two or more FM-UWB signals.

If an additional FM-UWB signal, occupying the same RF bandwidth but using a different sub-carrier

frequency, is present at the input of the receiver, the signals in the I and Q branches are given by

si ,l p = A1

2
cos(ωo f f τ+φ1(t ))+ A2

2
cos(ωo f f τ+φ2(t )) (3.13)

sq,l p =− A1

2
sin(ωo f f τ+φ1(t ))− A2

2
sin(ωo f f τ+φ2(t )). (3.14)

Following the same steps as in the above calculation the demodulated signal can then be derived as

sdem = A2
1

4
sin(ωo f f τ+τ

dφ1(t )

d t
)+ A2

2

4
sin(ωo f f τ+τ

dφ2(t )

d t
)+W (t ). (3.15)

Aside from the first two terms, which represent the two demodulated signals, an additional term,W (t )

appears. This term corresponds to the intermodulation product of the two FM-UWB signals. The effect
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is the same as for the case of the RF delay line demodulator, where the additional term corrupts the

two useful signals and limits the achievable BER. Fortunately, as will be shown, this term will be spread

across a large frequency, allowing to filter out most of it in the baseband. TheW (t ) term is given by

W (t )= A1A2

4
sin(ωo f f τ+φ1(t )−φ2(t −τ))

+ A1A2

4
sin(ωo f f τ+φ2(t )−φ1(t −τ)). (3.16)

Using the same approximation as in the single-user case, assuming τ is very smallW (t ) can be rewritten

as

W (t )≈ A1A2

4
sin

(
ωo f f τ+

τ

2

dφ1(t )

d t
+ τ

2

dφ2(t )

d t

)
sin

(
φ1(t )+φ2(t )

)
(3.17)

= A1A2

2
sin

(
ωo f f τ+

τΔω

2
(m1(t )+m2(t ))

)
sin

(
Δω

∫t

−∞
(m1(t )−m2(t ))dt

)
(3.18)

= A1A2

4
w(t ). (3.19)

The intermodulation productW (t ) consists of two factors. The first one, proportional to the sum of the

two sub-carrier signals, is the slow-varying envelope. Clearly the shape of the envelope will depend

on the demodulator delay τ, and the frequency offset fo f f , and therefore these two parameters will

affect the average power of the intermodulation product. The second factor is spread from 0 to 2Δω,

which is equal to the signal bandwidth BUW B , with the instantaneous frequency that is proportional to

the difference of the two sub-carrier signals. Since the intermodulation product is spread over a very

wide band, only a small fraction of its power will fall into the useful sub-carrier band BSC . The effect

of inter-user interference will be similar to the elevated noise floor at the output of the receiver. This

results in a degradation of sensitivity as either the number of users or the power of additional users

increase. For a given targeted bit error rate, interference among users will ultimately limit the number

of users or the difference in power levels between the two FM-UWB signals that can be handled at the

same time.

The average power of the intermodulation product can be calculated as

W (t )2 = A2
1A2

2

16
w(t )2 = A2

1A2
2

16
CMU (3.20)

FactorCMU is the normalized average power of the intermodulation product and depends on τ and

fo f f . It is calculated for two triangular sub-carrier waves and presented in Fig. 3.5(a). The decrease of

the demodulator bandwidth (increase of τ) in this case leads to increased power of the intermodulation

product. Making the approximation that the spectrum of W (t) is flat across the entire band [9], the

output signal-to-interference ratio (SIR) can be calculated as

SI Rout = 10log10

(
A2
1|C1|2

A2
2CMU

BUW B

BSC

)
, (3.21)

where factor |C1|2/CMU is added to the original formula from [9] to account for the frequency offset

[10]. Fig. 3.5(b) shows how this factor changes with the frequency offset for different demodulator

bandwidths. As expected the best result is obtained for the highest demodulator bandwidth. The

difference is, however, not too significant compared to the case with 300MHz bandwidth. At the same

time, extending the demodulator bandwidth also requires the extension of the IF amplifier bandwidth,
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Figure 3.5: CoefficientCMU (a) and correction factor |C1|2/CMU for SIR (b) as functions of the
frequency offset. Four curves are correspond to three different values of the demodulator
bandwidth (or equivalently values of the delay τ).

which finally leads to increased power consumption. For this reason 300MHz is chosen as a good trade-

off between power and distortion and is the bandwidth that will be used in the receiver implementation

described in the following chapter.

3.3 The Approximate Zero IF Receiver with Single-Ended Downcon-

version

As a general rule, quadrature downconversion is needed in direct downconversion receivers, otherwise

part of the information will be lost, and it will be impossible to recover the data. However, because of

the properties of the FM-UWB signal, transmitted bits can be recovered even if the signal is directly

converted to zero using only a single branch. Shift to a single-ended receiver architecture enables

some power savings. First of all, only one IF amplifier can be used, allowing to halve the power of the

IF stages. In addition, the simplified FM demodulator should also allow some savings compared to
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Demodulator

LF FilterED

DCO

d/dts
IF Filter sif sdem

Figure 3.6: Block diagram of approximate zero IF receiver with single-ended downconversion.

the IQ delay line demodulator. Finally, the most important savings come from the DCO. Quadrature

demodulation requires quadrature LO generation that tends to be power costly. Using a single-ended

oscillator simplifies the circuit and allows to reduce power by a factor of more than 2 for the same

oscillation frequency.

The operation of the demodulator can be explained using a simplified receiver model, presented in

Fig. 3.6. Like in the previous case the input FM-UWB signal can be represented as

s(t )= A cos(ωc t +φ(t )), (3.22)

where φ(t ) is again the integral of the sub-carrier wave, and ωc is the center frequency. After downcon-

version, the signal at the mixer output is given by

smi x (t )= k A cos(ωc t +φ(t )+φ0)cos(ωosc t ) (3.23)

The IF low-pass filter removes all the high frequency components, resulting in the signal at the filter

output given by

si f (t )=
A

2
cos(ωo f f t +φ(t )), (3.24)

where ωo f f is the offset frequency, that is equal to the difference of the LO frequency and the signal

center frequency. The following stage, a differentiator, converts the FM signal into an AM signal given

by

d si f (t )

d t
= A

2
sin(ωo f f t +φ(t ))

(
ωo f f τ0+τ0

dφ(t )

d t

)
, (3.25)

where τ0 is the time constant of the differentiator. The resulting signal is then demodulated using the

envelope detector. Here, an ideal square law envelope detector is assumed, resulting in the output

signal given by

sdem(t )=
A2

4
sin(ωo f f t +φ(t ))2

(
ωo f f τ0+τ0

dφ(t )

d t

)2

= A2

8
(1−cos(2ωo f f t +2φ(t ))

(
ωo f f τ0+τ0

dφ(t )

d t

)2
(3.26)

The low-pass filter following the envelope detector will practically remove the fast changing component
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Figure 3.7: Principle of operation of the approximate zero IF receiver with single-ended
downconversion.

cos(2ωo f f t +2φ(t )), resulting in the signal at the filter output given by

sdem(t )=
A2

8

(
ωo f f τ0+τ0

dφ(t )

d t

)2
. (3.27)

For simplicity, let us assume that the sub-carrier signal is a sine wave. The demodulated signal is then

sdem(t )=
A2

8

(
ωo f f τ0+Δωτ0 sin(ωsc t )

)2 (3.28)

= A2

8
τ20(ω

2
o f f +2ωo f f Δωsin(ωsc t )+Δω2 sin2(ωsc t )) (3.29)

= A2

8
τ20

(
ω2

o f f +2ωo f f Δωsin(ωsc t )+Δω2
(
1

2
− 1

2
cos(2ωsc t )

))
. (3.30)

In the ideal case the offset frequency is zero, ωo f f = 0, and the only remaining useful term is the term

at twice the sub-carrier frequency

sdem,2(t )=
A2

16
Δω2τ20 cos(2ωsc t ). (3.31)

The demodulation cannowbeperformedusing this signal. The same conclusion holds for the triangular

wave since it can be represented by the Fourier series, in which case again, the second harmonic of the
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Figure 3.8: Normalized fundamentalC1 and second harmonic amplitudeC2 at the output of
the demodulator.

demodulated sub-carrier wave can be used for the final FSK demodulation. Interestingly, if an ideal

differentiator is used and if infinite IF bandwidth is assumed, the amplitude of the second harmonic

will be independent of the frequency offset. The first harmonic will appear with the increase of the

frequency offset, however in this case, this component can be filtered out by the LF band-pass filter.

The principle of the single-ended baseband FM demodulator is shown in Fig. 3.7. In the derivation, an

ideal differentiator was used and infinite IF bandwidth was assumed. In a realistic implementation

the IF bandwidth will affect the useful signal and will cause the second harmonic of the demodulated

signal (used for demodulation) to decrease with frequency offset. Also, the ideal differentiator, used

for derivation, will be replaced by a lossy (non-zero dc gain) first order high-pass filter. This filter will

have a certain cut-off frequency after which the transfer function flattens. The equivalent FM-AM

characteristic should finally resemble the characteristic at the bottom of the Fig. 3.7.

The first and second harmonic of the demodulated signal are plotted in Fig. 3.8 as functions of the

offset frequency. The calculation is done for a triangular sub-carrier signal with varying IF bandwidth.

As explained previously, the first harmonic is close to zero for small frequency offsets, and increases

as the offset increases. The second harmonic (useful part of the signal), decreases with the frequency
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offset. This decrease is purely a consequence of the limited demodulator bandwidth, since the second

harmonic after a perfect square law envelope detector remains constant regardless of the offset. The

amplitude of the second harmonic shows less variation with the frequency offset as the IF bandwidth

increases. Ideally, the IF bandwidth should then be extended to get the best performance, however this

again requires more power for the IF amplifiers, and in the receiver implementation a bandwidth of

300MHz will be used as a good trade-off.

3.4 Receiver Sensitivity Estimation

The first step in estimating the receiver sensitivity is to find the output BER as a function of the SNR at

the receiver input. For the approximate zero IF receiver with quadrature demodulation, the FM-AM

conversion characteristic is equivalent to the one of the RF delay line demodulator. The only difference

between the two is that the demodulator is located at the baseband instead of RF. The expectation

is then that the BER performance of the two receivers remains the same, meaning that the same

approximation can be used to estimate the BER. The hypothesis is verified using the high-level model

corresponding to the one shown in Fig. 3.2. A bandwidth of 300MHz was used for the IF filters, and

2MHz for the LF filter that filters the demodulated FSK signal. The bandwidth of the demodulator

is chosen larger than the IF bandwidth and is set to aproximately 350MHz. The simulation results

are compared to the Gerrits’ approximation [9] in Fig. 3.9. The simulation points match well with the

calculated curve, validating the use of Gerrits’ approximation for the proposed quadrature receiver.

In the case of the single-ended receiver architecture, the Gerrits’ approximation no longer holds in it’s

original form. However, looking at the receiver structure, after the squaring operation of the envelope

detector, the same products appear as in the case of the delay line demodulator. In principle the same

approach can be used as in [9], with the difference that the useful signal amplitude is half of the one in

the case of the delay line demodulator. The resulting output SNR is then given by

SNRout = BRF

BSC

(SNRin/4)2

1+SNRin
. (3.32)

The rest of the calculation remains the same as for the delay line demodulator. The resulting calculated

BER curve is shifted by approximately 6dB compared to the BER of the quadrature receiver. This is
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Figure 3.9: Simulated and calculated BER curves for the approximate zero IF receiver.
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the price paid for the simplified receiver architecture. The calculated BER curve is compared to the

simulated points in Fig. 3.9. The used model corresponds to the block diagram of Fig. 3.6. The IF

bandwidth of 300MHz was used in the simulation, and a high-pass filter with a cut-of frequency of

300MHz replaced the differentiator. Such implementation should roughly correspond to the actual

implementation of the single-ended receiver.

The two BER curves provide the information on the minimum SNR needed at the receiver input in

order to achieve the desired BER. Typically, for low power wireless receivers a BER of 10-3 is taken as the

reference point. The sensitivity of the receiver is then defined as the signal level at the receiver input

needed to achieve this BER. To calculate this sensitivity, the noise power at the receiver input must first

be calculated. The equivalent input referred noise of the receiver in dBm is given by

N = 10log(kTBUW B/1mW)+N F, (3.33)

where N F is the noise figure of the receiver, and 10log(kTBUW B/1mW) is the thermal noise power

in dBm at the receiver input at a temperature of T = 25◦C . The used FM-UWB signal bandwidth is

BUW B=500MHz. Considering that the main target is to lower the receiver power consumption and that

the LNA will be either completely removed, or have very limited performance, relatively high noise

figure of the receiver should be accounted for. In [6] the total noise figure of the active mixer and the IF

amplifiers is 23dB. The high noise figure is a consequence of the mixer first architecture and low power

gain of the first stage, which results in significant contribution from the IF amplifier. For this design,

a 20dB noise figure will be assumed in order to calculate the achievable sensitivity of the FM-UWB

receiver. The sensitivity is then calculated as

Si n = 10log(kTBUW B/1mW)+N F +SNRmi n . (3.34)

For the quadrature receiver minimum input SNRmi n=-11.5 dB, which results in a receiver sensitivity of

around Si n=-78.5 dBm. For the single-ended receiver the minimum input SNR is approximately 6dB

higher, which results in sensitivity of Si n=-72.5 dBm. Achievable sensitivity, although low compared to

typical narrowband receivers that achieve levels lower than -90dBm (for example, typical Bluetooth

receivers), is sufficient for communication in body area networks at distances below 1m. The presented

calculation and simulation are valid in an ideal case, where the LO frequency is perfectly aligned with

the center frequency of the FM-UWB signal. Since the idea behind power reduction is to use a low

quality oscillator whose frequency might drift with time, the sensitivity degradation due to frequency

offset should be estimated as well. This is done using the same high-level model, and the results are

presented in Fig. 3.10

The 50MHz offset is taken as a maximum offset that should be tolerated, and the LO frequency must

be maintained within these limits. In the practical implementation this will be achieved using a

calibration FLL loop that is periodically turned on (e.g. by a microcontroller when temperature exceeds

certain limits). The sensitivity degradation for a 50MHz frequency offset and for the receiver with

quadrature downconversion is reported in Fig. 3.10(a). As can be seen, this degradation is below

1dB, confirming empirically the initial hypothesis that the frequency offset does not cause a major

sensitivity degradation. In the case of the receiver with single-ended downconversion this degradation

amounts to around 1.6dB, as seen in Fig. 3.10(b) showing that the simplified architecture is slightly

more susceptible to frequency offsets.

It should be noted here that the given calculation and simulationmodels only account for a noise source

at the input of the receiver. The separate contributions of receiver blocks are accounted for through the
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Figure 3.10: Simulated and calculated BER curves with and without frequency offset for
the approximate zero-IF receiver with quadrature downconversion (a) and single-ended
downconversion (b).

noise figure, however what is not accounted for is the noise generated by the FM demodulator (delay

line demodulator for the quadrature, and envelope detector for the single-ended receiver). Due to the

nonlinear nature of FM demodulators, the output noise will be depend on the input signal level. In

order for the presented sensitivity estimation to be valid, the noise of this block must be negligible

compared to the noise from other sources. This requirement is simply achieved by increasing the

gain of the stages preceding the demodulator, and it is in fact this requirement that sets a limit for the

combined gain of the LNA, mixer and the IF amplifier.

3.5 Summary

This chapter presents the general approach to receiver power reduction through use of “uncertain IF”

and “approximate zero IF” architectures. The main idea is to loosen constraints on RF stages, that

usually consume the most power, and shift the burden to IF where high gain comes at a lower price in

terms of power. Two different receiver architectures are proposed. The quadrature approximate zero

IF receiver targets to reduce consumption, but also to provide enough linearity to support multi-user
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communication. Potential to parallelize communication through sub-carrier FDMA, on top of existing

TDMA could bring both latency and power savings at a network level. The second architecture, the

single-ended FM-UWB receiver architecture, aims solely to reduce power consumption. The used

approach sacrifices all other performance aspects in order to provide the lowest possible consumption

level, and could be used when there is no need for SC-FDMA. The analysis of the two architectures is

presented, providing some insight into the key points and the principle of operation, together with a

short sensitivity analysis that estimates the achievable receiver performance.

The implementation of the concepts presented here is the subject of the following chapters. First,

the quadrature approximate zero IF FM-UWB receiver is implemented and characterized standalone.

Then, in the second iteration, a full transceiver is integrated. Both receiver are placed on the same die,

with the idea to use the single-ended FM-UWB receiver as a low power mode.
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4 Quadrature Approximate Zero-IF
FM-UWB Receiver

The previous chapters explained the basics of FM-UWBmodulation, discussed the existing state of

the art and introduced two new architectures for an FM-UWB receiver. The concept of the proposed

approximate zero-IF architecture with quadrature downconversion is brought to life in this chapter.

The work is mainly oriented towards exploiting the short communication range, in order to lower power

consumption of the receiver, but also to provide means to efficiently communicate as the number of

sensor nodes in the network scales up. This is achieved through the use of the sub-carrier FDMA, that

allows to distinguish multiple FM-UWB signals sharing the same RF band.

The chapter starts by introducing the top-level architecture of the integrated receiver. The following

section deals with the details of circuit design, focusing on the key approaches and techniques used to

reduce the power consumption of the most important circuits. Measurements of the implemented

receiver are presented in Section 4.3. Beyond the intended data rate of 100 kb/s, the receiver is charac-

terized in additional scenarios (higher speed,M-FSKmodulation, multi-channel transmission) showing

the true potential of the FM-UWBmodulation. Finally, the chapter is concluded with a summary of

achieved results and a comparison with similar receivers from the literature.

4.1 Receiver Architecture

The aim of this work is to reduce power of the FM-UWB receivers beyond the current state of the art

while preserving the demodulator linearity and multi-user communication capability. As the LNA and

other blocks operating at RF have been shown to consume the most power in previously implemented

receivers, the strategy here is to first downconvert the signal to baseband, and then perform all the

processing at low frequencies. Since power consumption in all of these blocks typically increases with

frequency, moving them to baseband should result in significant power savings.

An oscillator, that was not needed in previous FM-UWB receiver implementations, is now necessary

to generate the LO signal. Only if the LO can be implemented with a reasonable power budget can

the approximate zero-IF architecture lower the overall consumption. Fortunately, ring oscillators in

deep sub-micron technology nodes are known to consume very little and can be used here for such
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Figure 4.1: Receiver block diagram.

LO generation. The downside of using a low power ring oscillator is its high phase-noise, unstable

oscillation frequency and high susceptibility to environmental changes. Ring oscillators are almost

exclusively used in closed loop systems such as PLLs, where the oscillator is locked to a reference

frequency, and all the aforementioned problems disappear. However, a PLL would require frequency

dividers and these would add a significant contribution to the receiver power consumption. Instead of

implementing a PLL, a free-running oscillator is used for this implementation and owing to the large

FM-UWB signal bandwidth, some of the issues, such as phase noise, are circumvented. Frequency

dividers are still needed, but they are used as part of the FLL calibration loop and are turned on only

when calibration is necessary. That is mostly to compensate for frequency drift due to temperature or

supply voltage variations. Fortunately, since these changes are slow and the calibration is not needed

very often, the FLL calibration circuits will not pose a significant overhead to the receiver consumption.

The high-level block diagram of the implemented receiver is shown in Fig. 4.1, with the main receiver

at the bottom and the test receiver at the top. The two receivers are implemented in order to asses

the performance loss due to the on-chip, low power ring oscillator. They are identical in all aspects

except for the LO. The main receiver uses the ring oscillator, whereas the test receiver uses an external

signal to drive the mixer. Since this is a direct conversion receiver, quadrature LO signals are generally

needed to perform correct demodulation. In the main receiver these are generated directly by the ring

(multiple stages produce different phases, as will be shown later), while the test receiver uses an RC-CR

network to provide quadrature signals, allowing to reduce the number of input pads. The difference in

performance between the two receivers will be reported in the measurement section.
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4.2. Circuit Implementation

As already mentioned, the idea is to reduce power consumption by removing the RF blocks. It can be

seen in Fig. 4.1 that the LNA is still present, however in this implementation it is simply a transcon-

ductance amplifier that converts the input voltage into current that is then downconverted by the

mixer. The two can also be regarded as an active mixer with an input matching network. Since this is

practically a mixer-first receiver the noise figure will be higher compared to a more standard approach

with the LNA in front, but this remains an acceptable price for the achieved power savings. The main

gain stages are placed at baseband (here referred to as IF amplifiers), allowing to achieve higher gain

at lower power. Since the oscillation frequency of the ring oscillator is not stable, the bandwidth of

these amplifiers is increased to account for a ±50MHz carrier frequency offset. Instead of 250MHz

that would normally be sufficient to amplify a downconverted 500MHz wide signal, the bandwidth

of IF amplifiers is extended to 300MHz. The IQ delay line demodulator is a modified version of the

demodulator from [1], adjusted for baseband operation, as described in the previous chapter.

The receiver presented here only implements the first FM demodulation. The resulting demodulated

sub-carrier signal is buffered and is available at the receiver output. This signal is then converted to

digital domain using an ADC, allowing the further data processing to be conducted off-line. The second

FSK demodulation, and all the additional baseband processing (e.g. channel filtering) is implemented

in software, allowing to measure BER performance of the receiver. It should be noted that this idealized

approach yields a somewhat better performance than otherwise achievable with a low-power hardware

implementation, but can nevertheless be used to asses performance of the integrated blocks. All of

the implemented circuits can be controlled through an SPI bus, allowing to tune the bias current,

resonance frequency, gain and bandwidth of different blocks and switch them on or off. Details of

circuit implementation are given in the following section.

4.2 Circuit Implementation

4.2.1 RF Frontend

The LNA and themixer, shown in Fig 4.2, are stacked in order to save power. The circuit can also be seen

as an active mixer with the input matching network. An active mixer is chosen for downconversion

because unlike a passive mixer, it provides voltage gain and does not require a rail to rail LO swing,

preventing excessive consumption in the LO buffers. The used LO swing is around 300mV peak to peak

(single-ended), which is sufficient for the chosen circuit topology. Increasing the swing to 1V, would

result in an increase of the LO buffer power consumption by more than a factor of 9 (proportional to

V 2
LO), hence justifying the choice of an active mixer. The transistor M1 acts as a main transconductance

stage, that converts the input voltage into current before the downconversion. Center-tapped sym-

metric inductor L1 acts as a transformer and boosts the equivalent transconductance of transistor M1

[2, 3], without the increase of power consumption, making this approach ideal for a low power design.

Disregarding capacitor CT for the moment, and assuming C2 is large enough to be considered as a

short circuit at the frequencies of interest, the equivalent transconductance seen from the gate of M1 is

given by

Gm,eq = ΔI1
ΔVG

= (k +1)Gm1

1+ jωLGm1(1−k2)
, (4.1)

where k is the transformer coupling coefficient. As k approaches 1 (ideal transformer) the equivalent

transconductance becomes purely real and equal to 2Gm1. It has been shown that, for the same current
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Figure 4.2: Schematic of the LNA/Mixer.

consumption, this approach achieves higher gain and larger bandwidth compared to the standard

inductively degenerated LNA [3].

It was shown in [2] that the input impedance of the transformer feedback LNA is given by (assumingC2

is large,CGS 
C1, k = 1,CT = 0 and ω2L2G2
m1� 1)

Zi n ≈ 1

jωC1
+ jωL+2ω2L2Gm1. (4.2)

Resonance frequency is then ω2
0 = 1/LC1. In this design tuning capacitor CT is added to provide

capability to tune the resonance frequency and to compensate for small component variations. With

CT the expression of the input impedance becomes:

Zi n ≈ 1

jωC1
+ jωL

1−ω2LCT (2−k2)

1−2ω2LCT
+ω2L2Gm1k(1+k)

1−ω2LCT (1−k)

1−2ω2LCT
. (4.3)

In the above expression it is assumed thatCT 
C1, which means that close to resonance ω2LCT < 1.

Assuming k = 1 4.3 can be further simplified to:

Zi n ≈ 1

jωC1
+ jωL

1−ω2LCT

1−2ω2LCT
+ 2ω2L2Gm1

1−2ω2LCT
, (4.4)

which shows that the resonance frequency is now a function ofCT . Unfortunately,CT also affects the

real part of the input impedance, however it is still possible to achieve good matching and roughly 10%

tuning range of the resonance frequency.

A common problem in active mixers is that the bias current required by the transconductance M1

and switching transistors MM1−4 is not the same. Bias current of M1 is set by the input matching

condition and the desired voltage gain. Voltage gain of the active mixer is proportional to the product
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of the transconductance and the load resistance Gm1RM1−4. At the same time, the dc point of the

output voltage and the LO feedthrough(I+/− and Q+/− outputs) are dependent on the product of

the bias current and load resistance IbRM1−4. Increasing the voltage gain, either through Gm1 (and

consequently Ib) or through RM1−4 lowers the output bias voltage and increases the LO feedthrough.

To add a degree of freedom and break this dependence, “current stealing” technique can be used. This

is accomplished using the transistor M2, that sinks part of the M1 bias current. In this way mixer bias

current can be set independently of the M1 bias current, allowing to break the dependence between

the voltage gain on one side and and dc bias and LO feedthrough on the other. As a consequence, load

resistor values can be increased to maximize voltage gain without causing excessive LO feedthrough. In

addition to current stealing, since the gate of M2 is connected to the LNA input through a large capacitor

C3, it also contributes to the overall transconductance, further increasing voltage gain. The approach is

similar to the complementary LNA presented in [4], with the difference that the bias currents of M1

and M2 are not the same. The addition of M2 has some downsides in a practical implementation. More

complex layout of the LNA will result in increased parasitics, and more importantly drain capacitance

of M2 will be added to the parasitic capacitance at the mixer input, effectively reducing bandwidth

of the RF front-end. To compensate for the added capacitance, the equivalent input resistance of the

mixer can be reduced by increasing the size of the switching transistors MM1−4, but this comes at price

of increasing the load of the LO buffers.

In this design resistors RM1−4 can be switched between 22kΩ and 14kΩ and provide two gain steps for

the mixer. Since the voltage gain is obtained entirely at baseband frequencies, after mixing, it comes

at a lower cost in terms of power, and eliminates the need for a resonant load, thereby saving silicon

area. Achieved voltage gain is around 15dB over a 600MHz bandwidth, for the maximum gain setting.

Simulated current consumption is 70μA from a 1V supply. The input referred 1dB compression point

of the RF frontend is at -19dBm. The price to be paid for low power consumption is elevated noise

figure, which in this case is 15dB according to simulations (this is including the LNA and the mixer).

Even though it is higher than the typical values found in standard receiver implementations, it is still

acceptable for communication over short distances.

4.2.2 IF Amplifier

The mixer is followed by the I and Q IF amplifiers that provide most of the voltage gain. Each IF

amplifier is a cascade of three modified CMOS Cherry-Hooper (CH) amplifiers shown in Fig. 4.3. The

basic concepts that come from [5] were further developed in [6], where emitter-follower was introduced

in the feedback, and the first CMOS version was presented in [7]. A CH amplifier is a feedback amplifier

with a second order transfer function. Compared to a cascade of standard differential pairs, feedback

amplifiers offer larger bandwidth for the same power consumption. This is why these amplifiers were

originally used for high data rate optical receivers, targeting bandwidths of more than 1GHz. In this

case, the design was optimized for 300MHz bandwidth and low power consumption. By controlling

the Q-factor of the transfer function, behavior close to the edge of the pass-band can be controlled. In

this particular case peaking was used to compensate for the slight drop in the LNA/mixer conversion

gain close to the band edges and provide a relatively flat overall gain characteristic.

The small-signal schematic of the half-circuit is given in Fig. 4.3. CapacitorsC1 andC2 are a combination

of gate capacitance (in the case of C2 this would be the gate capacitance of the following stage) and

layout parasitics. CapacitanceCz introduces a zero in the transfer characteristic, and is used to prevent

offset accumulation in the IF amplifiers. Although, strictly speaking, the downconverted FM-UWB
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Figure 4.3: Schematic of the IF amplifier, and the equivalent small-signal schematic of half
circuit.

signal occupies frequencies from 0 to 250MHz, a zero in the transfer function will not affect the

performance of the demodulator as long as this zero is low compared to the signal bandwidth. In this

case the zero is placed around 1MHz, and since it will not affect the behavior in the pass-band it is not

considered in the small-signal analysis. Gain in the pass-band is given by [7]

Av0 =
Gm1(R1+R2)(1/Gm5+R f )

(1/Gm3+R1)
. (4.5)

AssumingGm5R f � 1 andGm3R1� 1 the above expression reduces to

Av0 ≈
Gm1(R1+R2)R f

R1
. (4.6)

As the voltage gain is a function of the ratio of the two load resistors R1 and R2, gain switching can be

implemented by switching the value of R2. The second order transfer function of the CH amplifier is

given by

Av (s)=
Gm1Gm3(R1+R2)(1+Gm5R f )

Gm5(1+Gm3R1)+ s(C1(1+Gm5R f )+Gm5C2(R1+R2))+ s2C1C2(R1+R2)(1+Gm5R f )
.

(4.7)

Again, assuming the transconductances are high enough thatGm5R f � 1 andGm3R1 � 1 leads to the

simplification of the expression that reduces to

Av (s)=
Gm1Gm3(R1+R2)R f

Gm3R1+ s(C1R f +C2(R1+R2))+ s2C1C2(R1+R2)R f
. (4.8)

CapacitorsC1 andC2 are determined by the size of the differential pair transistors and the layout para-

sitics. Gain, bandwidth and Q-factor of the amplifier transfer function are then set by the resistances of

R1, R2 and R f , which can be used as design parameters.

Simulated gain of the standalone LNA/mixer, and the LNA/mixer together with IF amplifiers is shown

in Fig. 4.4(a). Overall gain of all the stages preceding the FM demodulator is around 53dB, with
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Figure 4.4: Simulated conversion gain and noise figure of the RF and IF stages.

approximately 38dB provided by the IF amplifier. Each CH amplifier cell requires 20μA of current,

which results in 120μA consumed by the I and Q IF amplifier chains. Equivalent 6th order filtering

characteristic provides the attenuation of 32dB at an offset frequency of 500MHz. Gain control is

implemented through switching of R2, that can take one of the values 6kΩ, 18kΩ and 30kΩ, while

R1 = 24kΩ. With three cascaded stages, the designed IF amplifier provides 6 different gain levels and

one additional level is provided by switching the mixer load resistors RM1−4. Different gain levels can
be seen in Fig. 4.4(a). Fig. 4.4(b) shows the simulated noise figure of the standalone RF frontend and

of the RF frontend and the IF amplifiers together. The RF frontend provides around 15dB of voltage

gain, however the power remains low. This is a consequence of low bias current of the LNA/mixer, that

results in a low value of transconductance. As a result the noise added by the IF amplifiers will increase

the total noise figure by approximately 3dB. The noise figure of the standalone IF amplifier is around

5dB in the pass-band. Finally, even though the noise figure is higher compared to more conventional

receiver implementations, the achieved levels still provide enough sensitivity for communication over

short distances.
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Figure 4.5: Simplified schematic of the quadrature DCO.

4.2.3 LO Generation and Calibration

The proposed receiver is intended for use in the lower part of the UWB band, targeting 500MHz

wide signal centered around 4GHz. The emphasis of the work described here is on reducing the

power consumption of the receiver, while still preserving the capability to operate in an environment

where several FM-UWB transceivers might be communicating at the same time. The power reduction

dominantly comes from the fact that the gain stages operate at low frequencies, while no voltage

gain is provided at RF. However, such an approach can only be beneficial if the LO signal can be

generated efficiently. Additional difficulty is the need for quadrature signals since a 90◦ shift is generally
required for correct demodulation in a direct conversion (zero IF) receiver. Providing such signals

at 4GHz tends to be power costly. Fortunately, owing to the properties of FM-UWB and the chosen

receiver architecture, the oscillator constraints are quite loose. Due to the large bandwidth of the

FM-UWB signal, phase noise is not a major concern (-80dBc at 10MHz offset according to [8]) and no

precise frequency generation is needed, and so a simple free-running ring oscillator can be used to

provide carrier signals for downconversion. When it comes to power consumption, ring oscillators are

advantageous compared to LC oscillators, as they benefit from technology scaling. Inductor quality

factor, which is a limit to power consumption of integrated LC oscillators, remains constant and

practically independent of technology. On the other hand, gate capacitance and interconnect parasitic

capacitances, that determine consumption of ring oscillators, decrease with technology scaling. This

enables the reduction of power consumption of the ring oscillator, making the proposed approach

favorable for future implementations.

The oscillator schematic is shown in Fig. 4.5. A chain with an even number of inverters is needed to

provide quadrature signal generation, however such a circuit would latch on its own. In order to prevent

latching, and force a 180◦ shift parallel inverters are added between the corresponding nodes (grey
inverters in Fig. 4.5). A different way to see the implemented oscillator would be as a pseudo-differential

two stage ring oscillator, where each stage consists of four inverters and the differentialmode is enforced

by the parallel inverters [9, 10]. The two stages provide a 90◦ phase shift, and additional 180◦ shift is
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Figure 4.6: Simulated frequency and current consumption of the DCO.
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Figure 4.7: Schematic of the frequency divider.

provided by cross-coupling the stages assuring a reliable start-up. The series and parallel inverters

are sized differently, W/L ratios in nm are shown in Fig. 4.5, dimensions were optimized for low power

consumption. One of the difficulties in designing very low power ring oscillators is that capacitive

load is dominantly determined by the capacitance of the interconnect wires, and is layout dependent.

Careful layout design with several iterations is needed to minimize power consumption. Correct phase

relations between different signals are guaranteed by symmetry, however a small quadrature error

is present due to mismatch between transistors. The error will vary from die to die and according

to Monte Carlo simulations their standard deviation is σφ = 2.6◦. Frequency is controlled via supply
current of the current starved CMOS inverters. All inverters share the same current source as this

approach was proven to perform better than the solution with a separate current source for each

inverter, or inverter pair [9].

Since process-voltage-temperature (PVT) variations can have a significant impact on the oscillation

frequency, the digitally controlled oscillator (DCO) was designed to cover the frequency range from

3GHz to 5GHz, thus assuring that it can be tuned correctly under all conditions. A 6-bit current DAC is

used to provide the supply current, resulting in less than 30MHz frequency resolution. The frequency

step is not constant due to non-linear characteristic of the DCO and decreases as the oscillation
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Figure 4.9: Frequency divider, waveforms at different points.

frequency increases. At 4GHz the DCO produces a 300 mV peak-to-peak single-ended signal while

consuming 140 μA (including the buffers). Simulated oscillation frequency and current consumption

of the DCO, as functions of input code, are shown in Fig. 4.6 for different DAC reference currents.
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Since the oscillation frequency of the DCO is imprecise and prone to environment changes it must

be calibrated periodically to assure correct operation (e.g. to compensate for temperature). Since

environmental changes are slow, the calibration would only need to be done once in a few hours or

potentially even days, meaning that the consumption of the calibration circuitry on average remains

negligible compared to the receiver consumption. The calibration can be done using a frequency-

locked loop (FLL) that is turned on as needed. The FLL was not integrated in this implementation,

however it can be added externally using a microcontroller or an FPGA, and the available output from

the on-chip frequency divider. A fixed ratio, integer frequency divider is implemented as a cascade

of 10 divide-by-2 cells. By selecting outputs from different dividers, one of the four divide ratios 128,

256, 512 and 1024 can be selected as an output for calibration. Each cell is a simplified version of a

dynamic 2/3 divider circuit described in [11]. It was designed to cover a somewhat larger range of

frequencies than the DCO to assure reliable operation. Owing to the simplified structure, the circuit

from Fig. 4.7 can work up to 6GHz. Since the divider requires a rail-to-rail input signal, it is preceded by

a buffer from Fig 4.8 that performs differential to single-ended conversion and amplifies the signal. The

first stage of the buffer is a pseudo-differential amplifier that uses positive feedback to boost the gain.

The positive feedback is implemented using the cross-coupled transistors M3 and M4 that provide a

negative transconductance. This negative transconductance is used to minimize the equivalent output

conductance of the amplifier and increase gain. The differential amplifier is followed by inverters

that further amplify the LO signal and produce a rail-to-rail voltage at the output. The whole buffer

consumes around 250μW at 4GHz and its power consumption is proportional to the input frequency.

Figure 4.9 shows simulated waveforms at the buffer input and output, and divider signals in different

points. The whole divider chain consumes around 150μW, and largest part of the consumption is

coming from the first two stages that operate at the highest frequencies.

The frequency divider buffer itself is connected to the LOI+ and LOI− outputs of the DCO buffers.

Dummy load is added to LOQ+ and LOQ− to prevent amplitude mismatch between the I and Q LO

signals. Even though the DCO itself can produce a sufficiently large output amplitude, the four buffers

(Fig. 4.5) need to be placed between the internal nodes of the DCO and the inputs of the mixer and

divider. This is done to decouple the oscillation frequency from the mode of operation (reception

or calibration). The input capacitance of the divider buffer varies with the bias current of the two

input transistors, and is different in the on and off state. If these buffers were connected directly

to the DCO, the change in load capacitance would cause a shift in frequency after calibration. In

addition, the presence of DCO buffers reduces coupling between the external signal and the DCO, thus

preventing the pulling effect (shift in frequency caused by external signal). The four buffer inverters

consume around 80μA, almost 60% of the entire DCO consumptionwhich is a significant but necessary

overhead.

4.2.4 FM Demodulator

The implemented wideband FM demodulator is a modified version of the delay-line demodulator

presented in [1]. In order to conserve power, the demodulator has beenmoved from RF to baseband,

but it now requires quadrature inputs to perform correct FM demodulation. Additional benefit of

moving the demodulator to baseband is that there is no need for precise delay generation, as it is no

longer related to the input signal frequency. The only limit is coming from the demodulator bandwidth

that is inversely proportional to the delay. The implemented delay-line demodulator is presented in

Fig. 4.10. Two double-balanced Gilbert’s mixers perform multiplication of the I and Q signals with

their delayed copies. The output currents of the two cells are combined to implement subtraction and
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Figure 4.10: Schematic of the wideband FM demodulator.

produce the demodulated signal. Top inputs of Gilbert’s mixer are connected directly to the outputs of

the IF amplifier (gates of transistors M3−6). Source followers are placed between the IF amplifier and

bottom inputs (gates of transistors M1,2) to provide a correct dc level of the input voltage. The delay

path consists of source followers MSF1,2 and bottom transistors of the Gilbert’s mixer M1,2. For a first

order filter with a pole at ωp it can be shown that the delay through the filter is equal to 1/ωp , for a

signal whose maximum frequency is sufficiently below the cut-off frequency. In this case the total delay

is a sum of delays that come from two poles. First one is associated to the source follower and is given

by

τ1 ≈ CG1

Gm,SF1
, (4.9)

where the capacitance CG1 accounts for the total capacitance seen at the gate of M1. Since M1 is a

relatively small transistor, parasitics will contribute a significant portion of the total load.

Due to the asymmetry of the double balanced mixer with respect to the two signal paths, some delay

will inherently exist between the bottom and top inputs. This delay is caused by the pole that exists

due to the parasitic capacitance at the drain of M1. To provide better control of the delay and reduce

dependence on parasitics, an additional MOM (metal-oxide-metal) capacitor is added in this node

(C1,2), resulting in the delay that is given by

τ2 ≈ C1

Gm3+Gm4
. (4.10)

All the transistors in the FM demodulator are biased in weak inversion. Since the transconductance

of each transistor is proportional to the bias current, delay of the demodulator can consequently be

controlled by the bias currents Ib,SF and Ib,M . Two bit control of the bias current is provided to allow

delay tuning after production. Load resistors R1 and R2 can be switched between the two values to

provide two gain settings. The FM demodulator input and output waveforms are shown in Fig. 4.11.

The figure shows the input sub-carrier signal (top), the I and Q signals (middle) and the demodulated
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Figure 4.11: Wideband FM demodulator, input and output waveforms.

signal (bottom). A small distortion can be seen at the peak values of the demodulated signal. This is a

result of the IF amplifier bandwidth, combined with the fact that delay decreases at higher frequencies.

The demodulator consumes only 25μW,mainly due to the fact that it operates at baseband. Compared

with the demodulators from [12, 13], that require close to 6mW, this is an improvement by two orders of

magnitude, allowing significant power savings and still providing sufficient linearity to handle multiple

input FM-UWB signals. Additionally, there is no need for inductors and no need for a complex passive

network that provides a precise delay, thus resulting in area savings as well.

4.2.5 LF Amplifier and Output Buffer

For the targeted sensitivity levels, the signal amplitude at the output of the demodulator will be too

low. Before it can be digitized and analyzed, the signal must be amplified and filtered. The two low-

frequency (LF) amplifiers that follow the FM demodulator provide a band-pass characteristic from

1MHz to 2.5MHz and a maximum voltage gain of roughly 20dB while consuming 15μA. As shown in

Fig. 4.12, each stage is implemented as a fully differential amplifier with resistive source degeneration.

Source degeneration provides better linearity, and more precise gain control. The gain of the amplifier

is given by

Av =− Gm1RL

1+Gm1RS/2
≈− RL

RS/2
. (4.11)

The approximation is valid ifGm1RS/2� 1, in which case the gain is solely determined by the ratio of

load and source resistors. Two bit gain control is provided, both RL and RS can be switched between
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Figure 4.12: Schematic of the output buffer.

the two values. Since higher cut-off frequency is determined by RL and the capacitance loading the

amplifier output (gate capacitance of the following stage in series withCac ), decreasing the gain also

extends bandwidth. The lower cut-off frequency is determined by the elements of the ac coupling

network as 1/RbCac .

Source followers Mo1 and Mo2 are placed at the output to provide a low impedance stage that drives the

external circuits. They are design to drive a load of 10pF, which corresponds to the capacitance of the

oscilloscope probes or an external ADC, used to digitize the signal, although if necessary an additional

external buffer can be added. External resistors define the bias current of the source followers, and can

be chosen to have any value between 1kΩ and 10kΩ, while still providing sufficient bandwidth.

4.2.6 Current Reference PTAT Circuit

All the circuits described so far require a reference current that defines the bias point. All the reference

currents are derived from a single current generated by the circuit from Fig. 4.13. The circuit provides a

PTAT (proportional to absolute temperature) reference current and reuses the approach from [14]. It is

a closed loop circuit made up of two current mirrors, a 1:1 current mirror M5-M6 and a 1:K current

mirror M1-M2. Transistors M3 and M4 are used as cascode transistors that define the drain voltage of

M1 and M2. The bias current is defined by the ratio of M1 and M2, and since they are both biased in

weak inversion the generated reference current Iout is be given by

Iout = UT lnK

R
. (4.12)

The output current is proportional to absolute temperature through thermal voltageUT = kT /q . The

generated current is used as a reference current for an array of current DACs that provide a reference

68



4.3. Measurement Results

M1 M2

M3
M4

M5 M6
M7

M8

M9

M10

M11

R

Iout

VDD

Figure 4.13: Schematic of the PTAT current reference.

current for each block of the system. Each of the reference currents can be digitally controlled with a

resolution of 1.25μA, allowing some room for adjustment of the bias current after production.

4.3 Measurement Results

4.3.1 General Receiver Measurements

The proposed receiver was integrated in a standard 65nm bulk CMOS process. The die photograph

is presented in Fig. 4.14. The active area of the receiver is approximately 0.4mm2, including roughly

450pF of decoupling capacitance. The receiver only requires one inductor, with no additional off-chip

components, which results in smaller area than most existing implementations. As already mentioned,

for testing purposes two receivers were implemented on the same die. Rx1 is the main receiver that

uses the ring oscillator described in the previous section to generate the quadrature LO signals. Rx2 is

the test receiver that is identical to the first receiver except that it uses an externally generated LO signal.

Two input pads are used for the differential LO, and the on-chip RC-CR network produces quadrature

signals. The test receiver is integrated to serve as a reference that allows assessment of performance

degradation due to a non-ideal locally generated carrier signal.

Figure 4.14: Die photograph.
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Figure 4.15: Measured S11 parameter for different values of input capacitance.

Figure 4.15 shows the simulated and measured S11 parameter of the receiver for different values of

tuning capacitorCT . A small difference in measured and simulated values is observed. The measure-

ment was done on an FR4 test board with a 10mm long 50Ω coplanar waveguide between the pad and

the connector. This line was not taken into account in the simulations andmight be the cause of the

shift in the resonance frequency. Nevertheless, the reflection coefficient is below -10dB in the band of

interest, providing sufficiently good matching.

The DCO frequency was measured using the on-chip frequency divider. As shown in Fig. 4.16 the

oscillation frequency can be varied from 3.1GHz to 4.7GHz. At the same time the supply current of

the DCO changes from 32μA to 85μA. At 4GHz the DCO consumes around 60μA, while the buffer

consumes an additional 80μA, a consequence of the fact that differential quadrature signals need to be

buffered. Only one die measurement is presented here, however the frequency characteristic will vary

significantly from one die to another as a result of process variation. Nevertheless, all of the measured

dies covered the range from 3.6GHz to 4.4GHz and could be calibrated properly. In all cases the power

consumption remains practically the same for the DCO oscillating at 4GHz. A slightly non-linear

behavior can be observed in the output frequency, which is of no significance in this case since the

only requirement for the calibration loop is monotonicity, which is satisfied.

The proposed receiver consumes 423μW of power from a 1V supply. Power breakdown is shown in

Table 4.1. The highest consumer is the DCO together with buffers, followed by the IF amplifiers and the

LNA. The demodulator, with only 26μWof power consumption consumes two orders of magnitude

less power than the same type of demodulators implemented previously in [12, 13].

4.3.2 Single User Measurements

The test setup used for the bit error rate (BER) measurements is presented in Fig. 4.17. A random bit

sequence is generated by software and mapped to the corresponding quadrature FM-UWB symbols. A

12GS/s, 12-bit arbitrary waveform generator, M8190A was used to generate the baseband quadrature
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Figure 4.16: Measured frequency and current consumption of the DCO

Table 4.1: Power consumption breakdown

Block Current cons. (μA) Relative cons. (%)

LNA &mixer 91 21.5
DCO & buffers 140 33.1
IF amplifier 122 28.8
Demodulator 26 6.1
LF amplifier 15 3.5
Bias 29 6.9

DUT

M8190A – IQ Modulation

PSG - Upconversion

Te
st

-v
ec

to
r g

en
er

at
io

n Variable
Attenuator

Dem
odulated sub-carrier

Digitized data 
for BER test

DUT setup

MSO – Data recording

Figure 4.17: Measurement setup
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(b) Sensitivity vs. carrier frequency offset

Figure 4.18: Measured BER curves for different carrier offset.

FM-UWB signals. These signals are subsequently up-converted to 4GHz by the Keysight PSG signal

generator and used for receiver characterization. The flexibility provided by the M8190A allows to

generate FM-UWB signal with different characteristics. Measurements with different data rates as

well as with different modulation orders are reported in this section. The generator is also capable of

producing different scenarios, that include multiple FM-UWB signals in the same RF band, but using

different sub-carrier frequencies. The waveforms for different scenarios, as well as the test vectors for

the BERmeasurements are generated using a PC. The same PC is then used to compare the original

test vector with the demodulated data recorded by an oscilloscope, and finally produce the BER curves.

The on-chip demodulator performs the first, wideband FM demodulation, and provides the FSK sub-

carrier at the output. The second FSK demodulation is performed by software. The receiver output

signal is first recorded and digitized using the MSO oscilloscope (that acts as a 10 bit 20MS/s ADC).

The recorded vector is then demodulated using software. The FSK demodulator is implemented as a

correlator, which is an optimal maximum-likelihood detector for this case.

As explained previously, two receivers were implemented on the same die in order to compare the

receiver performance with the ideal LO and the integrated ring oscillator. Tests were performed using a

nominal data rate of 100 kb/s, and the sub-carrier modulation index of 1, meaning that the frequency
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Figure 4.19: Measured demodulator output waveform for different carrier frequency offsets

deviation from center frequency isΔ f =50 kHz. This is theminimum frequency deviation that preserves

orthogonality between the two FSK frequencies for the case of non-coherent signaling. The BFSK sub-

carrier signal is not filtered (no pulse shaping is applied), which simplifies the receiver implementation

but causes higher ACLR. For this measurement the sub-carrier signal is centered at 1.55MHz, resulting

in two sub-carrier frequencies at 1.5MHz and 1.6MHz, although different center frequencies could

have been used as well.

In all cases FSK frequencies are selected so as to have a continuous phase FSK signal. This is generally

prefered in order to avoid discontinuities in the signal driving the VCO on the transmitter side, and is

therefore used for testing. Sensitivity is defined as the input power that provides a BER of 10−3. The
result is shown in Fig. 4.18. Measured sensitivity of the receiver with an external LO signal is around

-72dBm. The approximate calculation presented by Gerrits in [1] suggests a sensitivity of -79dBm for

the noise figure of 18dB. The difference is a result of imperfections present in the implemented receiver,

most likely lower gain and increased noise figure of the RF frontend compared to the values obtained by

simulation. The measured sensitivity with the internal ring oscillator is -70dBm, a value approximately

2dB worse than the sensitivity of the receiver with the external LO. This difference is a result of several

factors. Firstly, due to the limited frequency resolution of the internal DCO, it can never be configured

to generate the carrier at exactly 4GHz, meaning that a slight frequency offset will always be present. In

this case the minimum offset that could be achieved was 10MHz. The second factor that deteriorates

the sensitivity is the phase noise of the ring that after demodulation translates into the amplitude noise

of the sub-carrier signal and degrades the SNR. The third factor is the amplitude of the LO signal. In the

case of an external LO it was increased to provide the best achievable performance. The amplitude

was set to 600mV peak-to-peak at the receiver LO inputs, which results in approximately 420mV after

the RC-CR circuit. This value is larger than the simulated 300mV peak-to-peak amplitude, that could

be generated by the internal LO. The resulting difference is a small price to pay in order to reduce the

power of the DCO, although it still remains the most power-hungry block in the receiver.

Additional degradation of sensitivity is expected as the frequency offset increases, as depicted in

Fig. 4.18(b). Each BER curve was measured after incrementing the DCO control word, roughly corre-

sponding to 25MHz increase in frequency offset. As shown in the previous chapter, the demodulator

conversion gain decreases with the increase of the frequency offset. This effect is further emphasized
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Figure 4.20: BER curves for different data rates.

by the finite bandwidth of the IF amplifier that attenuates the signal amplitude at the edges of the

band for a frequency offset above 50MHz. The effect can be observed in the output waveforms, shown

in Fig. 4.19. As the frequency offset increases the demodulated signal further deviates from the sine

wave, thus increasing the power contained in the higher harmonics. The final result is the sensitivity

degradation of about 5dB for the frequency offset of 110MHz. Depending on the maximum sensitivity

degradation that can be allowed, the maximum tolerable frequency offset can be defined, which then

translates into the maximum period between the two calibrations and the power overhead due to

calibration [15].

Although different receiver architectures have been explored, most of them focused only on standard 2-

FSK sub-carrier modulation, targeting data rates of 100 kb/s and below. Transmitters proposing higher

data rates and higher order M-FSKmodulations have been implemented, but the full communication

with one of the existing receivers has never been demonstrated. In principle, any kind of modulation

can be combined with wideband FM modulation to produce the FM-UWB signal. The proposed

receiver can then be used to perform the first FM demodulation, while the subsequent sub-carrier

demodulation is performed digitally, by software. Two cases are of interest here, first is increasing data

rate, and second is increasing the modulation order.

The BER curves for different data rates are shown in Fig. 4.21. In all cases orthogonal, continuous phase

FSKmodulation is used. Modulation index is kept constant at 1, meaning that the frequency deviation

and the sub-carrier bandwidth increase proportionally to data rate. The limit for the implemented

receiver is coming from the bandwidth of the LF amplifier that was intended for operation from 1MHz

to 2.2MHz. It could easily be extended, at an almost negligible increase in power consumption, if higher

data rates are needed. In this case the receiver is tested up to 400kb/s. As expected, the sensitivity

degrades as the data rate increases, but at a slower rate than in the case of narrow-bandmodulations,

where doubling the data rate results in sensitivity shift of 3 dB. This is a consequence of the non-linear

wideband FM demodulator characteristic and is typical for FM-UWB.

Measurements in Fig. 4.21 show symbol error rate (SER) results for different FSKmodulation orders.

The equivalent BER depends on the used coding scheme, and should always be better than the SER.

Assuming the same equivalent data rate, increasing modulation order leads to better performance

in terms of equivalent BER. This comes at a price of increased sub-carrier signal bandwidth, and

demodulator complexity that grows exponentially with the number of bits per symbol. In the reported
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Figure 4.21: BER curves for different modulation order.
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(b) 400 kb/s, BFSK
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(c) 200 kb/s, 4-FSK
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(d) 300 kb/s, 8-FSK

Figure 4.22: Spectrum of the demodulated sub-carrier signal.

measurements, the symbol rate is kept constant at 100 ksym/s, leading to 200kb/s for 4-FSK and

300kb/s for 8-FSK modulation. Figure 4.22 shows the sub-carrier spectrum at the output of the FM

demodulator, shape and bandwidth depend on the modulation order and data-rate. In principle, the

proposed FM-UWB receiver could use different modulations and data rates to conform to channel

conditions (e.g. if path loss is low, higher throughput can be achieved) and available sub-carrier

bandwidth, and optimize network performance.

The FM-UWB modulation scheme inherently provides some robustness against the narrow-band
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Figure 4.23: Sensitivity as a function of in-band interferer power.

interferers. In the process of demodulation the interferer itself is transformed into a dc component that

can be filtered out. The cross product of the interferer and the FM-UWB signal results in a component

that is spread over a large bandwidth and effectively increases the noise floor at the receiver output

[1]. The performance of this receiver in the presence of a narrow-band interferer is shown in Fig. 4.23.

Sensitivity slowly degrades with the increase of interferer power up to -48dBm. After that point, the

interference becomes the dominant factor that causes erroneous reception and sensitivity begins to

degrade linearly with the interference power. The lowest SIR that can be tolerated by this receiver

is -17dB (at -48dBm interferer power) for an interferer frequency offset of 100MHz from the center

frequency.
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Figure 4.24: BER curves for 2 FM-UWB users and varying input level between the two users.
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Figure 4.25: BER curves for different number of FM-UWB users.

4.3.3 Multi-User Measurements

As shown previously, multiple FM-UWB signals transmitted in the same RF band can be demodulated

simultaneously as long as the sub-carrier frequencies are different. At the demodulator output FSK

modulated useful components will be found along with the spread component that is a result of the

cross product between two ormore FM-UWB signals. Unlike the useful components that can be filtered

out in the baseband, the spread component will always be present and will cause the degradation

of sensitivity as the power or number of interfering FM-UWB signals increase. The BER curves in

the case of two FM-UWB users are presented in Fig. 4.24. The measured sub-carrier channel is the

same as in the single user case, centered at 1.55MHz. Same parameters were used for both channels,

100 kb/s data rate and modulation index of 1, corresponding to sub-carrier bandwidth of 200kHz.

The interfering channel is centered at 1.25MHz, which provides 100kHz spacing between the two

sub-carrier channels to avoid excessive ACPR. As expected, sensitivity decreases with the increasing

power of the interfering FM-UWB signal. The quadratic characteristic of the the demodulator will cause

the sensitivity degradation to occur quite rapidly. As an example, a 3dB stronger interferer at the RF

input results in 6dB stronger FSK sub-carrier in the baseband. In order to tolerate significant difference

of power levels, high dynamic range baseband circuitry would be needed together with sharp channel

filtering. In this case, channel filtering is performed in the digital domain, using a band-pass FIR filter.

Since the interfering signals are not filtered before the analog to digital conversion, receiver dynamic

range is limited by the dynamic range of the output buffer. Instead of increasing the dynamic range

of the receiver, which would inevitably result in increased power consumption, the problem could

be approached at the protocol level by regulating the power on the transmitter side. For the case of

HD-WSNs this approach should not carry too much overhead in terms of complexity as the nodes

should not move significantly relatively to each other (in comparison with, for example, CDMA in the

cellular network).

Just like the inter-user interference increases with the increasing power of the second FM-UWB signal,

the increasing number of FM-UWB users will also increase the inter-user interference [16]. Figure 4.25

shows the scenario where the number of users increases from 1 to 4, while the power remains equal

in all the channels. The increasing number of channels leads to degraded sensitivity and, just as in

the previous case, requires larger dynamic range. Limiting factors to the number of channels, are sub-
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(a) Two users, 3 dB power difference
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(b) Two users, 6 dB power difference
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(c) Three users, equal power
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(d) Four users, equal power

Figure 4.26: Spectrum of the demodulated sub-carrier signal, in different multi-user scenarios.

carrier frequencies, ACLR, channel separation, dynamic range, data rate and inter-user interference.

For the given system parameters, 200 kHz wide channels with 100 kHz channel spacing, a maximum of

four channels can be used if the lowest sub-carrier channel is located at 1.25MHz. The demodulator

output spectrum is presented in Fig. 4.26 for different multi-user scenarios. The measured channel

(channel 2, centered at 1.55MHz) is highlighted in green, and the interfering channels are highlighted

in red. A different number of occupied channels can be observed in different figures. As suspected, it

can be seen that the spectrum above 2.3MHz is polluted by the harmonics of the sub-carrier signals

and intermodulation products, thus preventing the placement of additional channels in this band.

The harmonics that can be observed in Fig. 4.26 are a combined result of the IF amplifier bandwidth,

demodulator bandwidth and the non-linearity of the output buffer.

4.3.4 Multi-Channel Transmission Measurements

Themulti-channel (MC) transmission concept was also tested with the implemented receiver. The BER

curves for different number of sub-channels are shown in Fig. 4.27. Compared to the case withmultiple

transmitters, a significant sensitivity loss can be observed. This is a consequence of scaling since the

SNR of a single channel is proportional to 1/M2, where M is the number of sub-channels. Nevertheless,

for short range applications, where distance between nodes does not exceed several meters, such as

BAN, the proposed scheme could still be used and could be of particular interest when a large number

of nodes are present and need to receive different data simultaneously. The transmitted spectrum is

compared in Fig. 4.28 for the cases of a single FM-UWB signal andmultiple sub-carrier FM-UWB signal.

Since the modulating signal is no longer a triangular waveform, spectral flatness is lost.
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Figure 4.27: BER curves for different number of broadcast sub-channels.
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(a) Standard FM-UWB spectrum
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(b) MC FM-UWB spectrum

Figure 4.28: Spectrum of the transmitted signal, for the standard FM-UWB andMC FM-UWB

One important difference between SC-FDMAwithmultiple transmitters and a single transmitter is that,

in the latter, sub-channels are perfectly synchronized. For multiple transmitters, even if the orthogonal

frequencies are used for different sub-channels, the orthogonality is preserved only if symbols are

perfectly synchronized. Since it is practically impossible to synchronize multiple transmitters, sub-

channels must be separated and a channel filter is required. In the case of a single transmitter, the

sub-channels remain perfectly orthogonal, so there is no need for separation, and hencemore channels

can be placed in the same sub-carrier band. As long as the orthogonality is maintained, this separation

will not influence the BER. In that regard, the proposed FDMA scheme is similar to the Orthogonal

Frequency DivisionMultiplexing (OFDM) combined with the FM-UWB spread spectrum technique.

The spectrum of the demodulated sub-carrier signal with and without separation is shown in Fig. 4.29.

Measured BER was not influenced by the channel separation.
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(b) No separation

Figure 4.29: Demodulated signal spectrum, with and without spacing between adjacent
sub-channels

4.4 Summary

The proposed receiver is compared to the State-of-the-Art receivers in Table 4.2. Of all the implemented

FM-UWB receivers it consumes the lowest amount of power while still attaining sufficient sensitivity for

short range communications in a HD-WSN. The delay-line demodulator based receivers from [13, 12]

have an order of magnitude higher power consumption. The receiver in [17] achieves comparable

consumption while providing better sensitivity. The low power consumption is obtained by using a

narrow-band amplifier at the input. Since the demodulation is performed using a high-Q RF filter,

with a very non-linear FM-AM conversion characteristic, it will not be possible to distinguish between

different FM-UWB users. A modification of a regenerative receiver was proposed in [18] that uses

two RF filter paths to achieve better linearity and loosen the Q constraints, but it consumes 3.8mW.

This receiver could potentially be utilized in a multi-user scenario, however this capability was not

demonstrated. The same receiver architecture was used to demodulate a Chirp-UWB signal in [19].

Even though the receiver consumes a peak power of 4mW, the average power is decreased to 0.6mW

by employing duty cycling. The receiver proposed here already consumes lower power in continuous

operation, however, by applying the same duty-cycling technique its power consumption could be

reduced below 200μW, which might be addressed in future research.

Table 4.2: Comparison with the state-of-the-art receivers

Parameter [13] [12] [18] [19] [17] This Work

SC-FDMA Yes Yes - No No Yes
Demodulator DL DL Regen. Regen. Regen. DL
Frequency 7.5GHz 4GHz 3.75GHz 8GHz 4GHz 4GHz
Power Conns. 9.1 mW 10 mW 3.8 mW 0.6 mW 580μW 423μW
Supply 1.8V 2.5V 1V 1V 1V 1V
Max. Data Rate 50 kb/s 62.5 kb/s 100 kb/s 1Mb/s 100 kb/s 400 kb/s
Sensitivity -88dBm -46dBm -78dBm -76dBm -80.5dBm -70dBm
Efficiency 182 nJ/b 160 nJ/b 38 nJ/b 0.6 nJ/b 5.8 nJ/b 1.06 nJ/b

Technology
0.25μm
BiCMOS

0.18μm
BiCMOS

65nm
CMOS

65nm
CMOS

65nm
CMOS

65nm
CMOS

Aside from the low power achieved, the proposed receiver offers the capability for several FM-UWB

users to communicate in the same RF band at the same time. In an environment where a lot of nodes
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need to operate in a small area, SC-FDMA can provide more flexibility for protocol optimization, and

lead to lower latency by allowing multiple nodes to communicate at the same time. The only two

other receiver implementations offering the same capability require an order of magnitude higher

power, thus making the proposed receiver a better solution for the given scenario. In addition, the

implemented receiver could support different data rates and different M-FSK modulations. With a

flexible digital baseband it would be possible to dynamically adjust the number of channels and data

rate per channel, allowing to further optimize network performance.
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5 FM-UWB Transceiver

The previous chapter dealt in details with the implementation of the quadrature approximate zero-IF

receiver. The next step is to integrate a full FM-UWB transceiver. Aside from the quadrature AZ-IF

receiver, that provides the multi-user communication capability, the single-ended receiver is added,

and can be used to reduce the power consumption of the transceiver when lower performance is

acceptable. Furthermore, the integrated transceiver includes a baseband that performs the sub-

carrier FSK demodulation and symbol clock recovery, and provides fully digital outputs that can be

interfaced by an FPGA or a microcontroller. Although there are no major architectural innovation

on the transmitter side, the clever use of circuit techniques provides means for some improvements

compared to the state of the art in terms of power consumption and efficiency. The emphasis is on the

fully integrated output matching network, that allows to use the same RF pad for both reception and

transmission, eliminating the need for an external switch or any other passive components.

First, the top level architecture of the transceiver is described. Then, in the following section, the

details of transmitter circuit implementation are given, followed by the circuit implementation of the

two receivers in section 5.3. The results of transceiver characterization are presented in section 5.4,

demonstrating the capabilities of the proposed approach with emphasis on robustness and low power

consumption. Finally, the chapter is concluded with the summary of performance and comparison

with the state of the art.

5.1 Transceiver Architecture

The implemented FM-UWB transceiver consists of two receivers and a transmitter (Fig. 5.1). Aside

from low power consumption, the emphasis of this work is also on high level of integration and

miniaturization, robustness to narrowband interferers and tolerance to reference frequency offset. A

single RF pad is used as both receiver input and transmitter output, eliminating the need for an off-chip

switch that was needed in all the previous implementations found in the literature. In addition, the

matching network is fully integrated and no passive components need to be added externally.

Wires needed to provide power to sensor nodes in the WiseSkin system pose a reliability issue and
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Figure 5.1: Top-level block diagram of implemented transceiver.

increase the cost and production complexity. The consumption of the FM-UWB is still not low enough

to use some formof energy harvesting, however, a dedicatedwireless powering systemmight be feasible.

Power consumption below 1mW is already good enough, provided that the FM-UWB transceiver can

operate in the presence of a strong interfering signal intended to provide power. The coexistence

of the powering and the communication signal would allow batteryless operation, as the two could

be done simultaneously. Fortunately, the proposed architecture offers very good rejection of out

of band interferers owing to the steep 6th order filtering characteristic of the IF amplifiers. In this

case, a scenario is presented with a 2.4 GHz signal intended for providing power, demonstrating the

capabilities of the proposed architecture.

Large signal bandwidth of the FM-UWB signal means that the transceiver inherently possesses some

robustness against the RF carrier frequency offsets. In the baseband section of the receiver, a rela-

tively small offset (e.g. less than 0.5%) between the transmit and the receive symbol clock can be

compensated using a simple clock recovery scheme. As a result, there is no need for a precise fre-

quency reference in the system and no need for a crystal oscillator. Instead, an RC reference oscillator

can be integrated on-chip and calibrated before use, allowing to completely remove all the external

components.

Just like in the previous section, the LO signal is generated using ring oscillators. Owing to the loose

phase noise constraints and the large signal bandwidth, such an approach is acceptable and is exploited

to reduce the receiver power consumption. Normally, ring oscillators operate in a loop that stabilizes

the oscillation frequency (PLL), however here they are used in a free-running mode so as to reduce the

significant power overhead that would otherwise be present due to continuous operation of frequency
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dividers. Instead, the oscillators are periodically calibrated using a successive approximation register

(SAR) FLL, assuring that the frequency offset remains within the required limits.

The transmitter architecture is similar to other implementations found in literature. The sub-carrier

signal is synthesized digitally, allowing easier control and switching of sub-carrier frequencies, as well

as better precision compared to an analog solution with a capacitor bank. The sub-carrier signal is used

to drive a current DAC that controls the DCO frequency, that finally produces the desired FM-UWB

signal. The resulting signal is then amplified by the preamplifier (PPA) and the power amplifier (PA)

before transmission.

The two implemented receivers are intended for twomodes of operation. The multi-user (MU) receiver

consumes more power and is capable of distinguishing multiple FM-UWB signals and providing SC-

FDMA. Its purpose is to provide multiple channels and speed up communication when network traffic

is high. It is based on the receiver described in the previous section with the addition of the channel

filtering and baseband processing. The low power (LP) receiver provides a low power, low performance

mode, that can be used when the network traffic is low and a single channel is sufficient. Instead of

quadrature demodulation, it only uses a single branch, allowing to simplify the receiver architecture and

save power. However, due to the non-linearity of the frequency-to-amplitude conversion characteristic

of the demodulator, it cannot distinguish multiple channels allowing only a single FM-UWB user.

5.2 Transmitter Implementation

A more detailed block diagram of the transmitter is given in Fig. 5.2. The DCO is in fact driven by

two DACs. The first one, referred to as the static DAC, only determines the highest frequency in the

FM-UWB signal spectrum fH . Its output remains constant during transmission. The second DAC, or

the dynamic DAC, is driven by the digital sub-carrier signal and controls instantaneous frequency of

the DCO, and hence all the modulation characteristics. Two DACs are calibrated prior to transmission

using an on-chip SAR FLL. In the first step the static DAC is calibrated to set fH . In the second step the

dynamic DAC is calibrated to set the FM-UWB signal bandwidth. The third DAC is added for testing

purposes. It is an exact copy of the dynamic DAC that provides the sub-carrier signal at its output,

allowing to verify the correct operation of the SC-DDS and to measure the sub-carrier frequency.

     PA
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Figure 5.2: Block diagram of the implemented transmitter.
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Figure 5.3: Digital sub-carrier synthesizer.

The DCO is separated from the PA and frequency dividers by buffers. These buffers prevent frequency

pulling that might be caused by an outside signal, or by the change in capacitance value in the on and

off state of the frequency divider. The frequency divider is implemented in the same way as in the

receiver described in the previous chapter. It is a chain of ten divide-by-2 circuits from [1] that provide

the signal for calibration. The divider buffer, that is needed to amplify the DCO signal and provide the

rail-to-rail swing at its output, is adjusted here for a single-ended input.

5.2.1 Sub-Carrier Synthesis

The sub-carrier synthesizer is a fully digital block that provides a 6 bit value at its output. This implemen-

tation is following the principles described in [2] The sub-carrier signal is generated in two steps. First,

an accumulator generates a saw-tooth waveform, and then in the second step this saw-tooth waveform

is folded to produce a triangular waveform. The frequency of the sub-carrier is controlled by controlling

the slope of the saw-tooth waveform, or equivalently the increment value of the accumulator (SC1 and

SC2 in Fig. 5.3). The sub-carrier frequency is given by:

fsc = fclk
M

2N
, (5.1)

where fclk is the input clock frequency, N is the number of bits of the accumulator, and M is the

increment. Although only 6 bits are used to control the DAC, 16 bits are used for the accumulator

to provide the needed frequency resolution. Nominal clock frequency is 40MHz, which results in

frequency resolution of approximately 600Hz, which is more than enough to generate a 100 kb/s FSK

signal with a modulation index of 1. No pulse shaping or filtering is used in this implementation.

Compared to fully analog implementations, such as those described in [3, 4], DDS approach requires

slightly more power. However, since the SC synthesizer consumption is typically small compared to

other blocks in the transmitter, this overhead is negligible, and DDS provides better frequency precision

(relative to the reference clock) and easier control, both highly desirable especially in a multi-user

scenario.
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Figure 5.4: Static DCO current DAC.

5.2.2 DCO Digital to Analog Converters

Two current mode digital to analog converters are used to drive the current starved ring oscillator, as

explained previously. The static DAC is used to set the high frequency of the FM-UWB signal fH and

the dynamic DAC is used to generate the FM-UWBmodulation.

Static DAC is shown in Fig. 5.4. Digital control word can be either written manually, using the SPI bus,

or a calibration loop can be used to set the register value. Once set, the control word remains constant

throughout the transmission. Therefore, there are no specific constraints regarding speed or glitches,

and a relatively simple solution can be used. Six bits (b0-b5) control the binary weighted current mirror

that provides the bias current of the ring oscillator. Although linearity is not paramount for the static

DAC, a relatively good characteristic is obtained (as shown in Fig. 5.9). The only requirement of this

DAC is monotonicity of the characteristic, that is needed to assure the proper functionality of the SAR

FLL calibration scheme. Considering that only 6 bits are used, no special matching techniques are

necessary to achieve the desired precision.

The dynamic DAC is shown in Fig. 5.5. This DAC is actually sinking current from the static DAC. As the

value of the digital control word increases, so does the current, effectively reducing the bias current of

the oscillator and consequently its frequency. This approach keeps current of the static source constant

and provides the good linearity needed for FM-UWB signal generation. As opposed to the static DAC,

cascode current mirror is used here, in order to provide better precision of the output current. The

dynamic DAC is controlled by the digital sub-carrier signal, which means that it must operate at the

clock frequency of 40MHz, even though the sub-carrier frequency is below 2.5MHz. For this reason,

the current steering approach is used. In this way the bottom reference transistors M3 and M4 never

switch off, and there is no additional delay coming from the time required for transistors to turn on

(time it takes to charge gate capacitance through the bias transistors Mb1 and Mb2). As a consequence,

this technique produces smaller glitches at the output. A capacitor is placed at the output of the two

DACs to filter the DCO current and avoid sharp pulses in DCO supply current.

Bandwidth of the FM-UWB signal is controlled using the reference current Ib . The sub-carrier DDS
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Figure 5.5: Dynamic DCO current steering DAC.

signal always produces a full scale DAC output (all 6 bits are used), and the reference current determines

the maximum value of the current, and subsequently the lower frequency fL . The reference current is

generated using yet another current DAC (again static during transmission), with a 5 bit resolution. To

calibrate the reference current, bits b0 to b5 are all set to ’1’, resulting in the maximum output current,

and then the SAR FLL sets the control bits of the reference current DAC to provide the desired lower

frequency fL . In this way FM-UWB bandwidth is entirely decoupled from the sub-carrier generation.

As explained above, an exact replica of the dynamic DAC is added for testing. This DAC is driven from

the same SC DDS circuit, and will add additional capacitive load to its output. However, since the

consumption of the SC DDS remains negligible compared to the DCO and the PA, presence of the

testing circuits will not have a significant impact on the overall power consumption. The test DAC

drives a buffer that provides analog sub-carrier signal at its output. Resistor R1 converts the DAC output

current into the input voltage of the buffer. This buffer is shown in Fig. 5.6. Its main purpose is to verify

the sub-carrier frequency. It consists of a resistively degenerated differential pair and a source follower

that provides a low impedance output capable of driving a 10pF capacitive load. Bias current and

bandwidth of the source follower are set by the external resistor Rext .

5.2.3 DCO

The implemented transmitter DCO is shown in Fig. 5.7. Since only a single-ended output is needed,

the simplest topology, that consequently consumes the lowest amount of power for a given frequency

of oscillation, is used. The three inverters of the ring oscillator are scaled progressively, with increasing

transistor width from left to right (for both NMOS and PMOS). This was done to increase the driving

capability of the inverter driving the buffer, without increasing the overall power consumption. A ring
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Figure 5.6: Dynamic DAC test output buffer.
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Figure 5.7: Transmitter DCO with buffers.

oscillator that is not fully symmetric, i.e. with different stages, generally exhibits higher phase noise [5].

However, in this case symmetry is already broken by the presence of the buffer, and phase noise is not

a limiting factor due to the large signal bandwidth, allowing to concentrate on power reduction.

Buffers are placed between the DCO on one side and preamplifier and frequency divider driver on the

other. Since the input capacitance of the driver changes in on and off state, buffer is needed to avoid

frequency shift after calibration. In addition, it provides isolation in order to avoid frequency pulling

if a strong external signal is present. The buffer inverters are current starved, allowing to control the

output amplitude by controlling the supply current. There is also a possibility to bypass the current

source and connect the buffers directly to the supply voltage, providing the maximum amplitude.

Driver of the frequency divider (shown in Fig. 5.8) is needed to amplify the DCO output and provide a

rail-to-rail signal. It is designed to provide a rail-to-rail signal for a minimum input amplitude of 10mV,

at 5.5GHz. It consists of 5 inverter stages, two of which are self biased using a large resistor. Since the

driver will be on only when calibration is needed it will not contribute significantly to the overall power

consumption.
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Figure 5.8: Schematic of the frequency divider buffer.
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Figure 5.9: Simulated DCO frequency, current consumption and output voltage amplitude.

Figure 5.9 shows simulated frequency, current consumption and output amplitude of the designed

DCO, including the two buffer inverters. Resonant load at the preamplifier input is used to boost the

signal amplitude close to 4GHz. The DCO covers the range from 3.5GHz to 5.2GHz, and with the 6 bit

DAC, this results in frequency resolution of roughly 25MHz. At 4GHz, the DCO consumes 150μW, for a

120mV signal amplitude at the output. The linearity of the DCO is sufficient for the generation of the

FM-UWB signal, and does not cause notable distortion in the output spectrum.
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5.2.4 Preamplifier and Power Amplifier

The output stage of the transmitter consumes the largest portion of power and is therefore the most

critical for the overall performance. As any other FMmodulation, the FM-UWB is a constant envelope

modulation, meaning that there is no need for use of special techniques such as outphasing, envelope

elimination and restoration, adaptive biasing etc. However, low constraint in terms of output power

(maximum output power is below -10dBm), combined with large bandwidth of the FM-UWB signal,

result in more complex output matching network, and consequently lower achievable efficiency.

Design of a power amplifier for low output power poses specific challenges, usually different than

those seen in more common applications. Generally, for every power amplifier there is an optimal

load impedance that results in highest efficiency for a given output power. Consider a PA that needs

to provide 20dBm output power. For a 50Ω load this translates into a voltage swing of more than 6V

peak to peak. This becomes difficult to achieve in deep sub-micron technologies with a low supply

voltage, and a matching network is required that will lower the load impedance to the optimal value,

much smaller than 50Ω. For the case of FM-UWB, the maximum output power is limited to -10dBm,

which translates into a 200mV swing over a 50Ω load. In this case the optimal impedance seen from

the PA needs to be higher than the load, and the matching network instead needs to boost the load

impedance to maximize efficiency. This adds different constraints and changes the design approach

compared to the first case. The second important difference between the high and low power PA design

is in the driving circuits. At 20dBm output power, driving circuits will consume only a small portion of

the overall power, and will not affect the efficiency significantly. They becomemuchmore important

when the output power becomes comparable to the consumption of the driving circuit andmay greatly

affect the choice of the PA class of operation.

Inmostmid and high power applications, with a constant envelopemodulation, class E PA is commonly

used as the most efficient solution. To achieve high efficiency, such PA requires a matching network

precisely tuned to a certain frequency. Achieving high efficiency over a wide bandwidth (500MHz

in this case) becomes a difficult task with class E. Additionally, class E and other switching PAs have

very high driving requirements, which pose problems for the driving circuits at low output power

levels. For proper class E operation the switch needs to be driven with a full swing rectangular signal,

with very short transition times, in order to minimize switching losses. In addition, the efficiency of

every switching PA is inversely proportional to the switch on resistance. This condition sets a limit to

the minimum size of the PA transistor and consequently sets its input capacitance. Since the driver

consumption is proportional to f CV 2
DD , at 4GHz and -10dBmoutput power, it will become comparable

to the PA consumption, resulting in significant overall efficiency penalty. For this reason, linear power

amplifiers are a better choice for this application.

For the proper choice of a linear PA, its efficiency must be taken into account together with the needed

input signal amplitude. Going from class A to class C, the conduction angle of the PA decreases, and

the efficiency increases. However, to maintain the same output power, the input signal must increase

its amplitude at lower conduction angles, thus imposing higher driving requirements. Higher input

amplitude means higher preamplifier consumption (proportional to the square of the amplitude). A

good trade-off between driving requirements and PA efficiency is a class AB amplifier and is therefore

used in this design.

As explained previously, for -10dBm output power and 1V supply, optimal impedance seen from the PA

is proportional to V 2
DD/Pout , which is in this case much larger than 50Ω [6, 7]. The matching network

that will implement this ratio is difficult to implement on chip due to the limited quality factor and
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Figure 5.10: Preamplifier and power amplifier schematic.
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Figure 5.11: Simulated S11 parameter at the RF IO.

limited inductance value of the integrated inductors. The problem can be solved by lowering the supply

voltage which consequently lowers the optimal impedance and the transformation ratio. Instead of

using a separate circuit to lower the supply voltage (such as a DC-DC converter) preamplifier and the

PA can be stacked (similarly to the approach from [3]). At the same time this simplifies the matching

network, as the equivalent PA supply is reduced, and saves power since the preamplifier reuses the bias

current of the PA.
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The designed output stage, with the preamplifier and the main PA is shown in Fig. 5.10. CapacitorsCi n1

and Ci n2, together with the inductor LPPA provide the resonant load for the DCO buffer in order to

boost the amplitude around 4GHz. CapacitorCi n2 can be tuned to compensate for process variations.

Bias current of the entire stage is determined by the bias point of the PPA transistor M1. Just like the

main PA, the PPA is also biased in class AB. Output power can be controlled by controlling the bias

point of M1. Filter that consists of the RF choke LPPA and a decoupling capacitorCdec provides a steady

voltage at the source of M2. Depending on the bias current this voltage will vary from 0.3V to 0.4V, and

is determined by the VGS of M2 and M3. The resonance frequency at the PPA output is determined by

the LPPA and the equivalent capacitance seen from the drain of M1, which is mainly determined by the

CPA and the gate capacitances of M2 and M3. The two resonant frequencies at the input and output

of the PPA are offset from 4GHz in opposite directions in order to provide a relatively constant signal

amplitude at the PA input over 500MHz bandwidth. The main PA is a complementary class AB power

amplifier. It is self biased via a 95 kΩ resistor Rb . The PA input amplitude above 250mV in the desired

band is enough to drive the class AB amplifier in saturation and provide a relatively good efficiency.

Output matching network that consists of inductors LM N1,2 , and capacitorsCM N1−3 transforms the

output 50Ω impedance into roughly 700Ω over the entire band of operation, as seen from the PA

output. This is enough to provide an almost rail to rail signal at the PA output (with respect to the PA

supply, meaning from 0.3V to 1V), that minimizes power dissipation in the two output transistors.

The output matching network is designed together with the matching network of the two LNAs. To

simplify the overall design procedure, the LNA is designed to present a capacitive load at the RF IO in

the off state. The total capacitive load at the RF IO is determined by the pad capacitance and the two

LNAs. Since matching requirements are not the same in the receive and transmit mode, the matching

network must be able to adjust to both. This can be achieved by adjusting the capacitance of CM N1

andCM N2. The value ofCM N1 changes from 120 fF to 520 fF in transmit and receive mode. TheCM N2

is actually set to 0 in the transmit mode. Generally the capacitance at this node (RF IO) should be

minimized in order to maximize the efficiency. Inductor LM N2 is placed to partially compensate this

capacitance and to extend the bandwidth. In the receive mode, the value ofCM N2 increases to 600 fF.

In the actual implementation 3 bits are used to control the two capacitors, the first bit switches from

transmit to receive state, and the additional 2 bits allow some frequency tuning, that allows small

modifications of the resonance frequencies once the chip is placed on a PCB. Simulated S11 parameter

at the RF IO port is shown in Fig. 5.11 for the twomodes of operation. It can be seen that in the transmit

mode the reflection coefficient is quite high, around -5dBm in the band of interest, and would not

provide adequate matching to a 50Ω antenna. Once the capacitors are switched, the input reflection

coefficient drops below -10dBm from 3.6GHz to 4.35GHz.

Simulated output power, power consumption and efficiency of the output stage are shown in Fig. 5.12.

The shown characteristic of the PA is static in the sense that the signal frequency is constant. However,

assuming a relatively slowmoving FM-UWB carrier, the simulation should provide a good estimate

of performance during transmission. The PA was designed to provide roughly constant output power

over the desired frequency range of 500MHz. The low equivalent Q factor of the output matching

network results in lower peak efficiency of the amplifier, which is an inherent drawback of wideband

power amplifiers, and the price to be paid for large signal bandwidth. As shown in Fig. 5.12(a) the

simulated output power varies less than 1dB between 3.7GHz and 4.4GHz, with an average output

power around -9.4 dBm. This level is somewhat higher than the allowed power in the UWB band. The

design is intentionally targeting a higher output power since the actual power level is expected to be

lower than the one simulated. In the same band power consumption from a 1V supply varies between

510μW and 460μW, with an average value of 481μW. The PA efficiency including the PPA is above
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Figure 5.12: Simulated power amplifier output power (a), consumption (b) and efficiency (c)
including the preamplifier.

20% in the range of interest, with the average simulated efficiency of 24%. With the reported results,

the proposed transmitter should consume the lowest amount power of all the so far implemented

FM-UWB transmitters.
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5.3 Receiver Implementation

The two implemented receivers, MU and LP receiver will be described in detail here. The MU receiver

is very similar to the receiver described in the previous chapter, only minor modifications are done

at the circuit level. In the baseband, after the wideband FM demodulator, a channel filter and an FSK

demodulator are added, so that the entire processing is now done on-chip. The same FSK demodulator

is used by the LP receiver, however, in this case there is no need for the channel filter as only a single

FM-UWB channel can be used.

5.3.1 RF Frontend

As in the previous case, the LNA and mixer are stacked (active mixer) to conserve power in both LP

andMU receivers. The two schematics of the active mixer for the case of the MU receiver and the LP

receiver are shown in Fig. 5.13 and Fig. 5.14 respectively. Again, a transformer based approach is used

to boost the equivalent transconductance of the input transistor to approximately 2Gm1. As opposed

to the previous version, there is no complementary input transistor, only the NMOS is used, which

simplifies the layout of the LNA and reduces parasitics, however, the output bias point and the LNA

gain are no longer decoupled. Switch, sw1 is placed to disconnect the transformer when transceiver is

in the transmit mode. This is done to avoid the impact of the transformer to the PA output impedance

and efficiency degradation. Resistors RM1−4 are fixed to 15kΩ, no gain switching is present in this
design, althoughGm1 can be varied by slightly tuning the bias current.

The LP RF frontend only has a single differential output, and therefore only needs one LO input. This

allows to simplify the oscillator and save power in the the LO generation. Although a single LO signal

is present, mixing is done using a current steering differential pair MM1-MM2, where gate of MM2 is

M1

Vb
CTUNE

Rbn

C1

C2

L1

RFIN

sw1

LOI+ LOI- LOQ+ LOQ-

I+ I- Q+ Q-

MM1 MM2 MM3 MM4

RM1 RM2 RM3 RM4

VDD

Figure 5.13: MU receiver LNA/mixer schematic.
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Figure 5.14: LP receiver LNA/mixer schematic.

tied to Vbm . Because a single-ended LO signal is used, voltage gain will be lower and noise figure will

be higher compared to a case with a differential driving signal with the same amplitude. Load of the

LPmixer is done using PMOS transistors MM3 and MM4, that provide the output bias point and load

resistors RM1 and RM2 that determine the output impedance, allowing some decoupling between the

two.

Input matching network is implemented in the same way for both frontends. The input reflection

coefficient is given in Fig. 5.11, and is the same for both (although there is a small difference inGm1).

The MU LNA/mixer provides 13dB differential voltage gain, together with a noise figure of around

15dB, while consuming 100μW. The LP LNA/mixer achieves 11dB gain and 19dB noise figure (it should

be noted that a single ended LO signal of a lower amplitude is used) while consuming 70μW. In both

MU and LP implementation the main source of noise is transistor M1. For both active mixers the input

referred 1dB compression point is around P1dB =-16dBm, and the third order intercept point is around

I I P3=-3dBm.

5.3.2 IF Amplifiers

A Cherry-Hooper amplifier described in the previous chapter was reused in this design. First difference

that can be noticed compared to the previous design is that the capacitor C1, used to prevent offset

propagation, is now placed in the source of the first differential pair. Second difference is that resistor

R f is now used to provide gain switching. It was established by simulation that additional parasitics due

to switching circuitry at R f have less impact on the amplifier bandwidth than was the case previously.

A single gain control bit is provided per stage, resulting in 3 control bits for the 3 cascaded IF stages,

that provide gain switching in roughly 5dB steps. As in the previous case, lower gain setting slightly

extends bandwidth.
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Figure 5.15: IFA schematic of MU and LP receiver.

Although, schematics of the two, LP and MU, IF amplifiers are identical, values of different circuit

elements are different in order to conform to slightly different design requirements. Output resistors are

slightly lower in the two last stages of the IF amplifier in order to cope with the higher capacitive load at

this node. The capacitive load is mostly due to the buffers that precede the wideband FM demodulators.

Additional difference exists in the LP IF amplifier and is concerning the capacitorC1. Namely, in the LP

receiver case, the IF amplifier is also part of the FM demodulator, and acts as a frequency discriminator

(performs FM-AM conversion). The high pass frequency characteristic needed for demodulation is

implemented using a small capacitorC1. The zero and pole coming from this capacitor are given by

z ≈− 1

2C1Ro,b
, p ≈−Gm1

2C1
, (5.2)

where Ro,b is the output resistance of the tail current source. The approximation is valid ifGm1Ro,b � 1.

The cut-off frequency of the high-pass filter is determined by the M1 transconductance and the source

capacitor. This small capacitor of 200 fF is placed at the third stage of the IF amplifier. Large capacitors

of 2.5pF used for the first two stages provide cut-off frequency below 5MHz and should not have

a significant impact on demodulation. Finally, the chosen values result in a first order high pass

characteristic with the cut-off frequency above 200MHz.

Simulated characteristics of the implemented amplifiers are shown in Fig. 5.16. The high-pass char-

acteristic of the IF amplifier in the LP receiver provides the FM-AM conversion before the envelope

detector. In the pass band the IF amplifier provides more than 35dB of gain, which together with the RF

frontend results in the conversion gain of around 45dB. The MU receiver IF amplifier provides around

40dB gain, resulting in almost 50dB conversion gain together with the RF frontend. Both amplifiers

provide more than 300MHz bandwidth, that should be enough to compensate for the ±50MHz car-

rier frequency offset. Sharp, 6th order filtering characteristic provides good rejection of out of band

interferers. The total noise figure of all the stages preceding the demodulator is around 22dB for the

LP receiver and around 18dB for the MU receiver. The limited gain of the LNA/mixer stage, results in

increase of the noise figure due to the noise of the IF amplifiers. Higher noise in the LP IF amplifier
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(a) LP Rx frontend gain.
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(b) MU Rx frontend gain.
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(c) Frontend noise figure for MU and LP Rx.

Figure 5.16: Simulated characteristics of the LP andMU Rx frontend.

is coming purely from the RF frontend. Together with the 6dB difference in sensitivity, coming from

the demodulator implementation, the 4dB difference in noise figure should amount to roughly 10dB

difference in sensitivity between the two receivers. In this case this sensitivity loss is a price to pay for

low power consumption. In both cases, a single IF stage consumes around 20μW, amounting to a total

IF power consumption of 60μW in the case of LP, and 120μW in the case of MU receiver.

5.3.3 Receiver DCO

The quadrature DCO described in the previous chapter was reused in the MU receiver without any

significant changes. Since the LP receiver does not require quadrature LO signals, a different DCO

was designed, allowing to save power needed to generate the LO signal. Knowing that the DCO is one

of the biggest consumers in the receiver, such approach allows to further reduce the overall power

consumption of the LP receiver.

The implemented LP DCO is shown in Fig. 5.17. The architecture presented here uses the concept from

[8] to lower the DCO consumption. The ring oscillator itself (transistors M7−11)oscillates at one third of
the desired frequency. The three phases φ1−3 are then combined using an edge combiner (transistors

98



5.3. Receiver Implementation

VDD

1 2 3

1

12

2 3

3M1

M2

M3

M4

M5

M6

M7

M8

M9 M11

M10 M12

L C1

Vout

C2

C3

Figure 5.17: LP receiver DCO schematic.

M1−6) in order to multiply the output frequency by 3. The oscillator and the edge combiner are stacked

on top of each other and reuse the same current. The two stages are separated by an LC filter that

provides a stable voltage for the source of the ring oscillator NMOS transistors on one side, and high

impedance for the combiner output on the other. The stable source voltage sets at approximately

0.35V and doesn’t change significantly with the oscillation frequency. The resonance frequency at the

edge combiner output is set by the values of the inductor L and the capacitor C3, and can be tuned

by switching the capacitor bankC3. The edge combiner acts at the same time as the LO buffer in the

sense that a change of the load capacitance at its output does not affect oscillation frequency (in the

first order approximation). No additional buffers are added before the mixer and frequency divider

input. Oscillation frequency is controlled via the supply current of the ring oscillator. One downside of

the chosen DCO implementation is the fact that output amplitude and oscillation frequency cannot be

set independently. The oscillator bias current, is at the same time bias current of the frequency trippler

and therefore also sets the output amplitude. As a consequence, the output amplitude is lower than

in the case of the MU oscillator resulting in lower mixer conversion gain and hence in a higher noise

figure.

Simulation results of the designed oscillator-trippler are shown in Fig. 5.18. The oscillator covers a range

from 3.5GHz to 5GHz, which for 6 control DCO bits corresponds to a resolution of around 25MHz. At

the same time power consumption varies from 57μW to 88μW. At 4GHz the oscillator is expected to

consume 65μW from a 1V supply. At this power consumption the DCO output amplitude is equal to

85mV. As it can be seen in Fig. 5.18, the amplitude is highly dependent on the resonance frequency of

the output LC network, which was not the case in theMUDCO that provides almost constant amplitude

over the entire frequency range. The tuning capability is added, in order to compensate for process

variations and precisely tune the resonance frequency andmaximize the output amplitude at 4GHz
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Figure 5.18: LP receiver DCO simulated frequency, current consumption and output voltage.

after production.

5.3.4 Demodulator

The demodulator of the MU receiver, shown in Fig. 5.19, is similar to the previously implemented

demodulator. The only difference is the load of the double balanced mixer, that here has a band-pass

characteristic instead of a low-pass characteristic. In principle, this should improve the suppression of

narrowband interferers. After the first FM demodulation the narrowband interferer should be located

at very low frequencies, determined by the signal bandwidth, that should be filtered out. Capacitor

C4(5) attenuates components at frequencies higher than 2.5MHz, and doesn’t play a role below 1MHz.

Disregarding this capacitor the mixer load impedance is given by

Zout = 1

Gm7

1+2sR1C3

1+2sC3/Gm7
. (5.3)

At low frequencies, the mixer output impedance will be low, and equal to 1/Gm7, thus attenuating po-

tential interferers. At frequencies above the high-pass cut-off frequency ωH =Gm7/2C3, the impedance

seen from the mixer increases to R1, providing higher voltage gain.

The LP demodulator consists of the frequency discriminator and the envelope detector. The frequency

discriminator is implemented as a high-pass filter and is a part of the IF amplifier. The envelope

detector is shown in Fig. 5.20. The circuit is essentially a double balanced mixer, where the input

signal is mixed with itself. To provide the two different bias points for the two mixer inputs, two

different source followers were used. Source followers MSF1,3 use native NMOS transistors with a 0

threshold voltage and drive the first mixer input (transistors M3−6). Lower bias for the secondmixer
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Figure 5.19: MU receiver demodulator schematic.
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Figure 5.20: LP receiver demodulator schematic.

input (transistors M1,2) is provided by the low threshold voltage devices MSF2,4. The bias currents are

the same for all the source follower stages. For the load of the mixer, the same approach is used as for

the MU demodulator, with the difference that the pass-band is set from 2MHz to 2.5MHz. This is done

because the LP demodulator doubles the frequency of the sub-carrier signal. Since the transmit SC

channel is centered at 1.05MHz, the received sub-carrier signal is located at 2.1MHz.
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Figure 5.21: LP receiver demodulator input and output waveforms.

Simulated waveforms of the demodulator input and output signal are shown in Fig. 5.21. The effect of

the high-pass characteristic of the IF amplifier can be observed in the input signal as the low frequency

components are highly attenuated. After self mixing, the high frequency components disappear, and

only envelope is left at the output. The output pulses appear at twice the transmitted SC frequency. After

passing through the low-pass filter that follows the demodulator, higher components are attenuated

and signal resembles a sine wave at the comparator input.

5.3.5 N-Path Channel Filter

The output of the first FM demodulator is the FSKmodulated sub-carrier signal. Depending onwhether

one ormany transmitters transmit simultaneously, theremay be one ormore sub-carrier signals present

at the demodulator output. The purpose of the channel filter is to amplify the desired channel and filter

out all the interfering sub-channels. As explained previously, the implemented receiver targets 4 sub-

channels, each 200 kHz wide, with 300 kHz separation between adjacent channels. The implemented

receiver is targeting a maximum of 10dB difference in power levels between the two input FM-UWB

signals. This translates into 20dB difference in power of sub-channels after the first FM demodulator.

To provide sufficient SNIR (signal to noise and interference ratio) before the FSK demodulation, the

filter should attenuate the interfering sub-channels by 40dB, thus providing the desired signal 20dB

stronger than the interferer. This chosen constraint is somewhat more stringent than necessary in

order to provide margin for slight performance degradation compared to simulations. The filter should

therefore provide a 200kHz pass-band, and attenuation of 40dB at 250kHz away from the center

frequency. Furthermore, the filter must be tunable from 1MHz to 2.2MHz in order to cover the entire

sub-carrier range.

N-path filters seem like an excellent candidate for the given specification as they are known for their

wide tuning range and high quality factor. The principle of N-path filters has been known for a long

time [9], but they gained significant popularity in recent years as an alternative solution for high-Q RF

filters that does not require off-chip passive components. Typical N-path filter consists of N parallel

branches, each of them containing a switch and a capacitor in series. By driving the switches with N

non-overlapping clock phases with frequency fck , the structure acts as a band-pass filter with a center

102



5.3. Receiver Implementation

Gm2

Gm2

Gm4

Gm4

IN OUT

Gm1 Gm3

C1 C2 C3 C4

1st Biquad 2nd Biquad

Switch-capacitor array

Figure 5.22: Band-pass N-path filter schematic.

frequency of fck . This can be seen as a low-pass to band-pass transformation of the filter made of

the input resistance and the N aforementioned capacitors. The achievable Q-factor can be very high

and is proportional to the RC constant, the number of phases used and the clock frequency [9, 10, 11].

There are some downsides to N-path filters, that are generally present in all sampling systems. First

one is that the pass-band also appears at the integer multiples of the clock frequency. An improvement

can be obtained by connecting the capacitors differentially, which removes all the even harmonics.

The remaining harmonics still need to be filtered out by another filter following the N-path filter. The

second downside is folding of signal and noise around frequencies that are multiples of N fck (aliasing).

This issue is typically solved by introducing an antialiasing filter that precedes the N-path filter, just

like it is done with any sampling system (e.g. ADC). Fortunately, in this particular application noise is

not an issue as this filter is close to the end of the receiving chain.

N-path filters have been used in many receivers, and have been proven to provide good linearity and

interference rejection [12, 13, 14, 15]. However, in all these implementations N-path filters act as a

high-Q second order filter, with a very narrow pass-band (relative to the center frequency). In this

application, a relatively flat pass-band characteristic is required, along with a linear phase, in order to

avoid distortion of the sub-carrier signal. Ideally, this requires translation of a higher order equivalent

low-pass filter to the desired center frequency. The described design has been demonstrated for RF

frequencies in [16, 17, 18], here it is reused and adapted for low frequency and low power operation.

The implemented N-path filter is presented in Fig. 5.22. It is immediately clear that if the switches

are removed, the shown filter becomes a standard low-pass Gm-C filter. In fact, it was shown in

[18] that by adding switches, and scaling the capacitor values by the number of phases, such that

Cx =CBB x/N , the low-pass characteristic translates into an equivalent band-pass characteristic. This

characteristic will be affected by the non-idealities such as switch resistance and parasitic capacitance.

The parasitic capacitances will result in slight asymmetry around the filter center frequency. It is

possible to compensate for the effect of the parasitic capacitances by adding feed-forward capacitors

[18]. In this case, it is not necessary to add the compensation capacitors as the parasitics are relatively

small compared to the actual filter capacitors due to narrow filter bandwidth and low frequency of

operation. Switch resistance affects the quality factor of the filter and limits the attenuation in the

stop-band. This is an important problem at RF, as the filter is typically driven by a 50Ω source, since
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Figure 5.23: Transconductor of the N-path filter.

the maximum attenuation is limited to

Aat ,max = 2Rsw

Ri n +2Rsw
, (5.4)

where Ri n is the source resistance, and Rsw is the switch resistance, factor 2 is present in differential

implementation, since two switches are used. In order to achieve the desired attenuation, switch

resistance must be sufficiently low (much smaller than 50Ω). This constraint will dictate the size of the

switch and the driving requirements, and consequently power dissipation of the clock network. In this

application, however, the filter is driven by an OTA with a high output resistance, on the order of 20 kΩ,

which enables use of relatively small switches, and low power consumption.

The filter design procedure is done in two steps. First, a low-pass equivalent filter is designed, with

a 100kHz pass-band, and 40dB attenuation at 250 kHz. In the second step switches are added, and

capacitors are scaled in order to obtain the desired 200kHz pass-band characteristic around the

center frequency. In other applications it might also be necessary to add feed-forward capacitors to

compensate for the parasitics. For this design it was determined that a 4th order, type 1 Chebychev

transfer function satisfies the given specifications. Two biquadratic sections are used to implement the

network with 4 poles p1−4. The low-pass equivalent transfer function of each biquadratic section is
given by

H(s)= H0

as2+bs +1 , (5.5)

H0 = Gm1Gm2

G2
m2+Go1Go2

, a = C1C2

G2
m2+Go1Go2

, b = C1Go2+C2Go1

G2
m2+Go1Go2

, (5.6)

whereGo1 is the output conductance at the output ofGm1, andGo2 is the output conductance at the

input ofGm3. The active filter can also provide some voltage gain. Assuming thatGm1Gm2/Go1Go2� 1,
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Figure 5.24: Non-overlapping clock phases used to drive switches and the differential switch-
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Figure 5.25: Non-overlapping clock generator.

gain can be approximated as Av =Gm1/Gm2. Coefficients a and b are determined by the two poles

a = 1

p1p2
, b = p1+p2

p1p2
, (5.7)

for the first biquadratic section, and in the same way, using p3 and p4, for the second biquadratic

section. Once the coefficients a and b are set, parametersGm ,Go andC must be chosen. The transcon-

ductancesGm1,2 are limited by the power consumption constraints that limit the bias current of each

transconductor. Transconductors are implemented using a Krummenacher differential pair [19], as

shown in Fig 5.23, in order to provide better linearity. Transistors of the differential pair are biased

in weak inversion, with β1/β3 = 2, corresponding to the minimum ripple condition. With 4μA per

differential pair, the equivalent transconductance is set to 40μS. Output resistance of each cell (R1 from

Fig. 5.23), and capacitorsC1,2 are then determined to implement the desired transfer function. Finally,

the chosen capacitance values are scaled by factor N , which corresponds to the number of phases.

In this design four phases are used. The driving signals, and the switched-capacitor array are shown in

Fig. 5.24. Differentially connected capacitors cancel out the even harmonics. Using more phases would

allow slightly better performance and less noise folding, but would increase the number of switches,

and power consumption. Furthermore, four non-overlapping phases, can be generated using an input
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Figure 5.26: Transfer function of the N-path filter.

clock at four times the filter center frequency. In this case it is convenient since the same clock can be

used by the FSK demodulator. The circuit that generates different phases φ1−4 is shown in Fig. 5.25.
The three flip-flops divide the input clock by 4 and provide four equally spaced phases with a 50% duty

cycle. The desired waveforms are then produced by the four “and” gates.

Finally, the simulated filter characteristic is shown in Fig. 5.26. In the simulation, 5MHz input clock is

used, resulting in center frequency of 1.25MHz. As explained previously, the differential capacitors

cancel out all the even harmonics, and so the first higher order harmonic appears at 3.75MHz. This is

off-course the idealized case, and the attenuation of second harmonic will be limited by the component

matching. Slight asymmetry around the center frequency can be observed, as expected, but in this case

it does not cause severe distortion of the FSK signal. The filter center frequency can easily be tuned by

adjusting the input clock frequency. Furthermore, bias currents of the transconductors can also be

adjusted to modify the gain, filter bandwidth and attenuation in the stop-band.

5.3.6 LF Amplifier and Comparator

The low frequency (LF) amplifier, placed before the comparator, filters out high frequency noise, and

amplifies the signal to the level needed by the comparator. The same architecture is used in both MU

and LP receivers, with the pass-band adjusted to the desired frequency range. In the MU receiver, this

filter also attenuates the 3rd harmonic of the N-path filter transfer function. A cascade of two fully

differential amplifiers is used. A single amplifier cell is shown in Fig. 5.27, together with the small signal

model of the half circuit. Each amplifier actually implements a 2nd order transfer function. The idea to

use a negative resistance to implement the second order function was found in [20, 21]. This approach

also allows a high quality factor, using a negative resistance that cancels out the real part of the output

impedance, however, one must be careful to maintain the circuit stable and avoid oscillations. The

voltage gain is given by

Av (s)= s 2C1Gm1Gm2R1

(Gm1+ s2C1)(Gm2+ s(2C2+2R1Gm2(C3−C2))+ s24C2C3R1)
. (5.8)
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Figure 5.27: Schematic of the second order cell of the LP filter and half circuit small signal
schematic.

The zero and pole created byC1 provide the high-pass part of the characteristic that filters out flicker

noise together with any low frequency components. The second factor in the denominator provides

the 2nd order low-pass filtering. If the first real pole is sufficiently far from the two complex poles, gain

in the pass band will be given by

Av,pb ≈Gm1R1. (5.9)

For the two poles generated by this factor to be in the left half-plane, the coefficient with s must be

positive. The circuit remains stable as long as 2C2+2R1Gm2(C3−C2)> 0. This will be guaranteed if the

capacitor C3 is larger than the capacitor C2. Otherwise, given the sufficiently high bias current, and

consequently the transconductanceGm2, the circuit might start to oscillate.

The simulated frequency characteristics of the two LF amplifiers are given in Fig. 5.28. The frequency

band is selected based on the expected sub-carrier frequency. Since a larger band is needed for the

MU receiver, in order to accommodate multiple SC channels, gain is slightly lower, around 25dB in

the pass-band, compared to approximately 32dB in the LP receiver path. In this case linearity is not

a concern, since only a single FSK signal is expected at the input (additional FSK signals should be

removed by the preceding channel filter).

Comparator following the LF amplifier acts as a limiter and provides a rail-to-rail output signal that is

needed for the digital FSK demodulator. The schematic of the comparator is shown in Fig. 5.29. It is

designed to provide full swing for an input sine signal with a minimum differential amplitude of 20mV

at up to 5MHz (which is above the needed range). The core of the comparator are transistors M1−6. In
order to provide better performance and avoid glitches due to noise, a small hysteresis is introduced in

the comparator characteristic, on the order of 10mV. This is done using the positive feedback transistors
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Figure 5.28: Simulated frequency characteristic of the MU and LP receiver LFA.
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Figure 5.29: Comparator schematic.

M3 and M4. Assuming the transistors are operating in weak inversion, the difference between the two

threshold voltages is given by

ΔVT H = 2nUT lnk, (5.10)

where factor k is defined as k =β3/β5 =β4/β6. Transistors M7−10 are added to provide a full swing out-
put signal compatible with CMOS logic. The comparator consumes between 5μA and 10μA, depending

on the bias current setting. Since the expected input voltage amplitude is supposed to be larger than

20mV, offset constraints are easily achievable and no calibration is necessary.
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Figure 5.30: Block diagram of the FSK demodulator and clock recovery circuit.

5.3.7 FSK Demodulator and Clock Recovery

The last block in the system is the FSK demodulator, that is implemented together with the clock

recovery circuit. The demodulator implemented here must be able to demodulate an FSK signal with

the modulation index of 1, or equivalently 50 kHz frequency deviation at a data rate of 100 kb/s. The

FSK demodulator reported in [3], is very simple, and consumes a small amount of power, but requires

a large frequency deviation (250 kHz deviation was used). In this case, in order to support multiple

sub-carrier channels, frequency deviation is limited to 50 kHz, and a different approach is needed.

The proposed demodulator, shown in Fig. 5.30 is a digital version of the delay line demodulator. The

input signal is first sampled using a clock whose frequency is four times higher than the FSK signal

center frequency. The same clock is used for the N-path channel filter. By adjusting the reference clock

frequency, the corresponding sub-channel is selected. The sampled signal is then demodulated using a

delay line and a “mixer”. Sampling the signal allows to implement the delay line as a chain of flip-flops

controlled by the same reference clock. Delay can be configured easily by controlling the number of

flip-fops in the signal path, which is simply achieved by configuring the multiplexers. This allows a

more elegant control compared to analog solutions such as RC delay networks. An XOR gate plays the

role equivalent to the mixer in the analog demodulator implementation. Depending on the delay, and

whether the input frequency is higher or lower than the reference clock frequency, the output of the

XOR gate will be ’1’ or ’0’. Simulated signal at the FSK demodulator output is shown in Fig. 5.31(a).

Since the output signal is not perfectly clean (even without the presence of noise), it cannot be simply

sampled, instead it is first filtered using a windowed accumulator. In each clock cycle, the accumulator

output is either incremented or decremented depending on the XOR output. The accumulator output

is then used to make a decision for the output bit and to recover the symbol clock.

Clock recovery circuit is a necessary block in any receiver, and has a particularly important role here.

As previously discussed, one of the good properties of FM-UWB is the inherent robustness to frequency

offsets. Mismatch in carrier frequency of several megahertz, or even tens of megahertz will not cause a

significant performance penalty. However, for the whole receiver chain to work properly, the baseband

must also be able to tolerate a certain frequency offset. This is accomplished via a dedicated circuit that

tracks the transmit symbol clock and adjusts the clock frequency on the receiver side. The amount of
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(a) FSK demodulator output signal.
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(b) Internal signals of the clock recovery circuit.
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(c) Output signals.

Figure 5.31: Simulated signals of the FSK demodulator and clock recovery circuit.
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frequency offset that must be tolerated depends on the implementation of the reference oscillator. One

of the aims of this work is to demonstrate the feasibility of a fully integrated transceiver, which would

include the reference oscillator. This alsomeans removing the external crystal reference andminimizing

the number of off-chip components. Unfortunately, the integrated RC oscillators cannot achieve the

performance of a crystal oscillator, and the precision of the reference frequency will be much worse,

in the order of thousands of ppm instead of tens of ppm. By using the FM-UWB, this relatively large

frequency variation can be allowed, assuming that the clock recovery circuit can compensate the

frequency offset between the transmitter and the receiver. Recent integrated RC oscillators achieve

precision that is in the order of ±2500ppm across the designated temperature range[22, 23, 24, 25],

which is a range that can be easily covered by the clock recovery circuit shown here.

The implemented clock recovery is based on a simple early/late zero crossing detection. The clock

used for this circuit is derived from the reference clock, with the average frequency 8 times higher than

the symbol rate, that is 800 kHz. This clock is then used to generate 8 different phases of the symbol

clock, one of which is used to sample the accumulator output at a correct time instance. The clock

recovery circuit determines which phase is used and works in the following way. First a zero crossing is

detected from the accumulator output. In order to avoid false crossings due to noise, the circuit needs

to detect a sufficient difference in levels between several consecutive samples. The phase comparator

then determines whether the current zero crossing is early or late with respect to the currently selected

clock phase. Depending on the number of clock cycles between the zero crossing and the reference,

the corresponding value will be added to or subtracted from the register value of the LP filter (here the

LP filter is simply implemented as an accumulator). Once the register value increases or decreases

past a defined point, an up or down phase shift occurs. Depending on the frequency offset between

the transmitter and the receiver, phase shifts will occur more or less often. As the phase changes, so

does the average frequency of the receiver symbol clock. As long as the circuit is able to track symbols,

this average frequency should correspond to the transmitter symbol clock frequency. The speed of

the control loop can be controlled through the LP filter coefficient, that directly determines the filter

bandwidth. Increasing the coefficient allows the loop to track larger difference in frequencies, but also

makes it more prone to errors due to noise.

An example of the clock recovery circuit operation is given in Fig. 5.31(b). In this case the transmitter

reference frequency is 2000ppm faster compared to the reference on the receiver side. One can notice

that the phase control signal constantly decreases (until 0 at which point it goes back to 7), which

results in the average frequency of the symbol clock below the reference frequency. An example of the

phase shift is shown in Fig. 5.31(b). In that particular time instance the instantaneous frequency of

the symbol clock frequency drops to 7/8 of the reference frequency during one cycle. The maximum

theoretical frequency offset that can be tracked, assuming a phase shift occurs in every cycle, is ±1/8 of
the reference frequency.

5.3.8 SAR FLL Calibration

Ring oscillators used to generate the LO signal in the receiver and the FM-UWB signal in the transmitter

consume a small amount of power, but are sensitive to process, voltage and temperature variations. For

that reason they need to be calibrated periodically to maintain frequency offset within certain limits. It

was shown in the previous chapter that a relative frequency offset of±50MHz between the receiver and

transmitter causes only a minor performance degradation, and beyond that limit sensitivity decreases

rapidly. Depending on the rate of environmental changes, the oscillators will need to be calibrated
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Figure 5.32: SAR FLL block diagram.
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Figure 5.33: Example measured SAR FLL calibration cycle.

once every few hours, or potentially days.

Calibration is performed using an on-chip SAR FLL, shown in Fig. 5.32. Configuration of each oscillator

is controlled using one of the two registers, one set manually by the SPI, and the other set by the

calibration loop. The number of cycles for calibration is equal to the number of register bits used

to set the DCO frequency. In each cycle one bit is set. Once the bit is set, the oscillator frequency

is measured and compared to a reference value, if it is higher, the bit is set back to ’0’, otherwise it

remains ’1’. The DCO frequency is measured using two counters. The first counter counts the number

of reference clock cycles up to value N f ,r e f that determines the duration of the measurement interval

as Tr e f N f ,r e f . During that interval the second counter counts the number of cycles of the frequency

divider output Ncnt . This value is then compared to the reference value Nr e f in order to determine
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Figure 5.34: Principle of clock generation and distribution.

whether the corresponding bit should be ’0’ or ’1’. Finally, assuming infinite resolution (number of bits

or equivalently cycles), the frequency of the DCO after calibration will be given by

fDCO = Ndi v fdi v = Ndi v
Nr e f

N f ,r e f
fr e f , (5.11)

where Ndi v is the frequency divider ratio (providing values between 128 and 1024) and fdi v is the

frequency at the divider output. In reality, the DCO configuration will produce the highest frequency

that is still below the frequency given by equation 5.11. The frequency resolution of the FLL depends

on the duration of the measurement interval and the division ratio Δ f = fr e f Ndi v/N f ,r e f . The only

requirement here is to maintain the FLL resolution below the DCO resolution, that is in the order of

25MHz.

An example of ameasured calibration cycle is presented in Fig. 5.33. Themeasurement is done using the

frequency divider output signal at the test port. For the shownmeasurement reference clock frequency

is set to 4MHz, and Ndi v = 1024, N f ,r e f = 1024 and Nr e f = 1000. After 6 steps of calibrations, 6 DCO

control bits are set. The resulting output signal of the frequency divider is at 3.89MHz, corresponding

to the DCO frequency of 3.98GHz, which is close enough to the ideal carrier frequency.

5.3.9 Clock Reference

The implemented FM-UWB transceiver does not contain an oscillator that would provide a frequency

reference for other circuits (LO calibration, N-path filter, FSK demodulator etc.). Instead, the clock

signal is generated externally using a signal generator, allowing to adapt to different modes of operation

and test the functionality of the transceiver. Since one of the goals of this work is to show that an

FM-UWB transceiver can be implemented without a precise, off-chip quartz resonator, one solution

for derivation of all the necessary clock signals will be described here.

A simple RC oscillator could be used as a clock reference, similar to one of the solutions found in
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[22, 23, 24, 25]. State of the art precision of 2500ppm across the temperature range of interest is

sufficient for the FM-UWB transceiver developed here. The FSK demodulator and the clock recovery

circuit were designed to compensate the potential frequency offset. At RF this range translates into

±10MHz offset around the carrier frequency of 4GHz, which is well bellow the targeted range of

±50MHz. The RC would simply provide the fixed reference clock signal, different frequencies needed

for different circuits would be generated using a simple FLL or a DLL (delay locked loop). The block

diagram of the conceptual solution with all the related sub-blocks is shown in Fig. 5.34.

For the SC-DDS, a clock frequency of at least 40MHz is needed to provide a relatively good trian-

gular signal. Higher frequencies should provide a better triangular waveform, but would also result

in increased power consumption of this block. At the same time the FLL must be able to provide

frequencies from 4MHz to 8MHz, as a reference for the N-path filter and the FSK demodulator. Luckily,

the same frequency is used by both circuits. For the N-path filter, the clock is divided by 4 in order to

generate the four non-overlapping phases at the sub-carrier center frequency. The symbol clock of

approximately 100 kHz is derived from the input clock using a simple counter, and the clock recovery

circuit assures that it tracks the symbol rate of the received signal. No particular constraints in terms of

input frequency exist for the FLL calibration loop, the two configurable reference values (see Fig. 5.32)

can always be set such that the DCO frequency is properly calibrated. The proposed clocking scheme

can therefore be used to provide a reference to all the circuits in the system, demonstrating one way to

implement a fully integrated FM-UWB transceiver.

5.4 Measurement Results

The proposed transceiver was integrated in a standard 65nm bulk CMOS technology. The SEM die

photograph is shown in Fig. 5.35. The die size is 2.25mm by 2.25mm, and roughly one third of it is the

active area of the transceiver (including the decoupling capacitors). The remaining area is used for test

circuits and decoupling capacitors. The transceiver layout is dominated by the inductors needed to

provide input and output matching. Large inductor area makes routing more difficult and requires

longer paths, that consequently add more parasitics at the transceiver IO. It should be noted here

that standard TSMC inductors were used for the design. These inductors use only a single metal layer

(the low resistance ultra-thick metal), and hence occupy a large area. The layout could be made more

compact using smaller, more area efficient custom inductors, that would exploit additional available

metal layers. The RF IO pad, used by the receivers and the transmitter, is marked in the figure. It is

placed between the two ground pads, that are connected to the coplanar waveguide implemented on

the PCB. Digital input and output pads, used for test and debug signals, clocks and input and output

bits, are located on the side of the chip opposite to the RF IO pad and other sensitive analog signals in

order to minimize coupling between strong digital signals and sensitive analog signals. Gold bumps,

used for flip-chip bonding of the IC to the PCB, can also be seen in the Fig. 5.35.

5.4.1 Transmitter Measurements

The first block of the transmitter is the sub-carrier DDS. The static configuration that controls the two

sub-carrier frequencies is loaded via the SPI, and the dynamic behavior of the circuit is controlled using

the two inputs, the clock and the data input. The SC-DDS controls two current steering DACS, one that

drives the DCO, and the other one that drives the test buffer. The output signal from the test buffer is

presented in Fig. 5.36(a). The shown waveform corresponds to 2.1MHz sub-carrier signal and 500MHz
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Figure 5.35: SEM die photograph of the transceiver.

wide FM-UWB signal. Deviation from the triangular waveform is a result of the limited bandwidth of

the buffer. Sub-carrier waveform can also be obtained by directly measuring instantaneous frequency

of the transmitted signal. The frequency measurement is done using the Keysight VSA application with

the 8GHz, MSO oscilloscope. The resulting waveform is depicted in Fig. 5.36(b). Due to large input

bandwidth the resulting signal is relatively noisy, but still shows some of the properties of the generated

SC signal. In the this case SC frequency is set to 4MHz, which is in fact above the targeted SC frequency

range. It can be seen in the figure that the output waveform deviates from a triangular close to the

peaks. As a result the bandwidth of the output FM-UWB signal will be slightly lower than expected.

This is a result of the low oversampling ratio (ratio between the clock frequency and the sub-carrier

frequency fclk/ fSC ). In the presented example the oversampling ratio is 10, for a 40MHz input clock.

According to [2], a relatively good result is obtained for an oversampling ratio of around 20, which will

be the case for the desired SC band (1.2MHz-2.3MHz).

Measured DCO frequency and power consumption are presented in Fig. 5.37. The DCO frequency can

be varied from 3.5GHz to 5.2GHz and for this range the current consumption varies from 80μA to

113μA. This frequency tuning range is achieved using the static DAC that only sets the upper FM-UWB

frequency. Dynamic modulation DAC then sinks the current from the static DAC to modulate the

carrier frequency. The reported measurement is the consumption of the DCO alone, without the buffer

consumption. For the nominal setting, the buffer consumes an additional 71μA of current. By changing

the buffer bias current, the DCO output amplitude can be adjusted, and the consumption can be

varied from 48μA to 94μA. The input signal amplitude allows to control the output power and current

consumption of the PA and PPA, and optimize the transmitter efficiency.
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Figure 5.36: Measured sub-carrier DAC output (a) andmeasured frequency deviation of the
transmitted signal (b).

Due to the large bandwidth, FM-UWB signal is inherently robust against carrier offsets. The same

property allows it to tolerate relatively high levels of phase noise. It was shown in [3] that phase noise as

high as -80dBc/Hz, at 10MHz away from the carrier, causes no significant performance degradation in

terms of BER. This constraint is quite loose and permits the use of low quality ring oscillators for signal

generation. For comparison, consider the Bluetooth standard that imposes a constraint of -102dBc/Hz

at 2.5MHz [26], and consequently requires higher power consumption for carrier synthesis. The

measured transmit oscillator phase noise, for the oscillation frequency of 4GHz, is shown in Fig. 5.38.

At 10MHz away from the carrier, phase noise level is -98dBc/Hz, which is considerably lower than the

FM-UWB constraint. The phase noise was measured using the signal at the output of the frequency

divider. A factor of 20log1024 was added to the measured phase noise to account for the division ratio

of 1024. Noise coming from the dividers will add to the total phase noise at the output, however due

to the already large phase noise of the ring oscillator it should not have a significant impact on the
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Figure 5.37: Frequency and power consumption of the transmit DCO.
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Figure 5.38: Phase noise of the transmit DCO at 4GHz.

measured values.

The power amplifier and the output matching network were designed to provide good performance

over the entire 500MHz range. The idea is to achieve high average efficiency of the transmitter

during wideband signal transmission, and not at a single frequency, which is usually the approach in

narrowband systems. Static frequency characteristic of the PA and PPA stack is summarized in Fig. 5.39.

The measurement is conducted using the DCO as the input signal source, since an external signal

cannot be used. For this measurement the DCO is configured to produce a carrier signal at a single

frequency. Due to high phase noise and unstable frequency of the ring oscillator, the result is likely

worse than it would have been if a clean carrier signal were used.

The measured output power of the transmitter is shown in Fig. 5.39(a). Compared to simulations,
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Figure 5.39: Measured power amplifier output power (a), consumption (b) and efficiency (c)
including the preamplifier.
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Figure 5.40: Transmitted FM-UWB signal spectrum.

the level is approximately 2dB lower, with a somewhat smaller bandwidth. The discrepancy between

the simulation and measurement is likely caused by the effects that were not taken into account

in the simulation. A simplified model of the output pad and the interface towards the PCB were

used, more accurate results would have been obtained by using a full 3D electromagnetic simulation.

Nevertheless, the error remains within the expected limits of a few decibels. Fortunately, the impedance

of the matching network also affects the power consumption. The fact that it slightly differs from the

simulated values also results in decreased measured power consumption compared to the simulated

one, as shown in Fig. 5.39(b). Lower output power, combined with lower power consumption, finally

result in efficiency around 6% lower than expected in simulations. As shown in Fig. 5.39(c) peak

measured efficiency of the output stage (not including the DCO and the buffers) equals 21.3%. In the

largest part of the band efficiency stays around 20%, and slowly drops close to the edges of the band,

resulting in an average efficiency of around 18%. The measured output power and efficiency of the

implemented power amplifier are in line with the state of the art and exhibit similar performance as

other implementations targeting low output power levels.

The spectrum of the transmitted signal is presented in Fig. 5.40. The shown spectrum is below the limit

defined by the FCC spectral mask. Outdoor spectral mask is shown in this case, the only difference

between the outdoor and the indoor mask being the attenuation outside the defined UWB band, which

is more stringent for the outdoor mask. The transmit signal also satisfies the defined emission level

between 0.96GHz and 1.61GHz, where maximum level set to -75dBm/MHz (not shown in Fig. 5.40).

Figure 5.41 shows different output power levels and average transmitter power consumption, achievable

using different transmitter configurations. Constant efficiency lines are provided to show the achievable

efficiency at a given output power. In this case the whole transmitter is taken into account, including

theDCO, buffers and SC-DDS (not just the PA and PPA). The shown output power levels aremeasured as

integrated power across the transmit band during a single sub-carrier transmission. The output power

level can be varied from -11.3dBm down to -35dBm, in steps that are smaller than 3dB. This is done

via the control of the DCO buffer strength (or equivalently PPA input signal amplitude), the PPA bias

current and the matching network. The control of the output power can then be implemented using a

look-up table in software. The ability to adjust the output power is useful formulti-user communication.

For example if the two transmitting nodes are at different distances from the receiving node, the power
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Figure 5.41: Transmit power vs. transmitter power consumption.
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Figure 5.42: Measured S11 parameter in transmit and receive mode.

levels of the two signals will be different. In order to equalize power levels at the receiver, the closer

transmitter can adjust its output power to avoid desensitizing the receiver.

Measured input S11 parameter is shown in Fig. 5.42. The measurement is done using the die bonded to

the PCB, with a 1 cm long coplanar waveguide between the RF IO pad and the horizontal SMA connector.

The lower values compared to the simulations are likely related to the PCB, since the connector and the

transmission line were not taken into account. On the receiver side, the additional losses coming from

the PCB actually improve the reflection coefficient, that is below -10dB from 3.6GHz to 4.75GHz.

The power consumption breakdown of the transmitter is given in Table 5.1, for the transmitted power

of -11.4dBm. Almost 70% of the power is consumed by the output stage (PPA and PA). In order to

improve the efficiency of the transmitter, this part should be carefully optimized in the future. The SC

DDS consumption is practically negligible compared to other blocks, and so its implementation will

have little impact on the overall performance. The DCO together with the buffers consume slightly

less than 30%, thanks to the fact that there is no continuous time PLL or FLL controlling the output

frequency.
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Table 5.1: Transmitter power consumption breakdown

Block Current cons. (μA) Relative cons. (%)

PA+PPA 402 69.9
DCO 91 15.8
DCO Buffer 71 12.4
SC DDS 11 1.9

Total 575 100
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Figure 5.43: Measured frequency and power consumption of the MU Rx DCO.

5.4.2 Receiver Measurements

The two receivers are mainly characterized in terms of BER and sensitivity under different conditions.

Unfortunately there is no way to access different internal points of the receiver and characterize each

block separately. Addition of buffers that would allow this would result in increased capacitance in

the corresponding nodes, which would consequently increase the receiver power consumption. The

buffers and test outputs are therefore added only at lower frequencies where such capacitive load

causes no significant problems.

The DCOs of the two receivers are the most important blocks in the chain, since without downconver-

sion it will be impossible to perform demodulation. Just like with the transmitter DCO, the frequency

dividers are added to provide information about the DCO frequency and to close the FLL calibration

loop. Unlike the transmitter DCO, linearity of the frequency characteristic is not needed on the receiver

side. What is important is its monotonicity, that ensures proper operation of the SAR FLL loop. The

frequency and power consumption of each DCO are measured using the frequency dividers and a

digital output buffer. The result for the MU receiver is shown in Fig. 5.43. The provided result also

includes the four DCO buffers for quadrature LO signals. The oscillator frequency ranges from 3GHz to

5GHz, while power consumption changes from 166μW to 228μW. The resulting frequency resolution

changes from 35MHz to 20MHz as the oscillation frequency increases. The samemeasurement for

the LP receiver is given in Fig. 5.44. Again, measured power consumption includes the buffer, or in

this case the frequency trippler, since it reuses the current from the oscillator. In this case, the output

frequency takes values from 3.6GHz to 5.25GHz, while it consumes between 51μW and 77μW. Due to
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Figure 5.44: Measured frequency and power consumption of the LP Rx DCO.
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Figure 5.45: N-path filter measured characteristic for center frequency of 1.25MHz.

nonlinear behavior of the oscillator, the frequency step reduces from around 30MHz at the lower end,

to 20MHz at the high end.

Another block that can be measured standalone is the N-path filter. Figure 5.45 shows the voltage

gain characteristic of the filter. Used input clock frequency is 5MHz, which results in the filter center

frequency of 1.25MHz. For the given configuration, the filter provides 200kHz of bandwidth, and

attenuation of 37dB at the frequency of the adjacent sub-carrier, which is 250 kHz away from the

filter center frequency. As expected, the characteristic in the pass-band is not entirely flat. A small

inclination appears as a result of parasitic capacitances in the layout, however, for this particular case

the performance should not be affected. The purpose of the N-path filter is to remove the interfering

sub-carrier channels. As a demonstration, the spectrum before and after the filter is shown in Fig. 5.46.

Signal spectrum after the wideband FM demodulator is shown in top part of the figure. Four FM-UWB

signals of equal power are present at the receiver input. After demodulation, four SC channels can be
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Figure 5.46: Demodulated signal spectrum before and after N-path filter.

Table 5.2: MU receiver power consumption breakdown

Block Current cons. (μA) Relative cons. (%)

LNA/Mixer 153 27.8
DCO 79 14.4
DCO Buffer 115 20.9
IFA 113 20.5
FMDemodulator 13 2.4
Channel filter 43 7.8
LFA 6 1.1
FSK Demodulator 8 1.5
Bias 20 3.6

Total 550 100

distinguished in the spectrum before filtering. After passing through the filter only channel 1 remains

(bottom). Component at 3.75MHz is a consequence of the sampled nature of the system. With the

clock frequency of 1.25MHz and 4 phases, the equivalent sample rate will be 5MHz. Attenuated copy

of the signal spectrum therefore appears at the frequency (N −1) fclk , where n is a number of phases,

which is 3.75MHz. Another visible component is the second harmonic of the SC channel at 2.5MHz.

This component is the combination of the output buffer non-linearity, andmismatch of the N-path

filter. Ideally, second harmonic should be completely suppressed by the differential architecture of the

N-path filter, however, in practice the amount of attenuation will be limited by matching.

Power consumption breakdown for the MU receiver is given in Table 5.2. As expected the highest

amount of power is consumed by the high frequency blocks, the activemixer and theDCO, that together

consume around 60% of the entire receiver consumption. The dominant consumer still remains the

DCO, with buffers included, that consumes 194μW. Among the low frequency blocks, notable amount

of power is used for the N-path filter that provides sharp band-pass filtering. An overhead necessary
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Table 5.3: LP receiver power consumption breakdown

Block Current cons. (μA) Relative cons. (%)

LNA/Mixer 103 38.6
DCO 53 19.9
IFA 46 17.2
FMDemodulator 23 8.6
LFA 11 4.1
FSK Demodulator 14 5.2
Bias 17 6.4

Total 267 100
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Figure 5.47: Test setup used for transceiver characterization.

to provide the multi-user capability. Finally, the total consumption of the MU receiver is 550μW. This

is more than the receiver presented in the previous section, mainly due to the fact that the baseband

processing is now placed on chip.

Power consumption breakdown for the LP receiver is given in Table 5.3. The strategy with power

reduction is to reduce power of some of the main consumers from theMU receiver. Firstly, the DCO,

that is now single-ended, consumes slightly more than one quarter of the MUDCO consumption, that

is 53μW. One downside of the LP oscillator is the lower output amplitude that will affect the sensitivity.

The active mixer, consumes a comparable amount of power, since the architecture is the same, with

the only difference that a single differential signal is used at the output (there are no I and Q branches).

A second significant power saving is coming from the IF amplifier. Since there is no need for two

branches, in the LP receiver the consumption is practically halved compared to the MU receiver case.

The IFA consumes 46μW instead of 113μW in the MU receiver. The total power consumption adds up

to 267μW for the whole LP receiver chain.

The measurement setup used for the BER measurements is shown in Fig. 5.47. The transmit bits
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Figure 5.48: Single user BER of the MU Rx with internal and external demodulator at 100 kb/s.

and input vectors for signal generators are created using Matlab. A configured FPGA then provides

clock and data inputs for the transmitter. The spectrum analyzer is used to verify that the proper

signal is generated by the transmitter and to measure the signal level at the receiver input. Multi-

user measurements are still done using the signal generators. This simplifies the setup and allows to

precisely control the relative power levels of different FM-UWB signals. The M8190A AWG provides the

quadrature baseband signals, which are then up-converted by the PSG. The MSO oscilloscope is used

to capture data at the receiver output.

All the BER curves are measured in two ways, first using the offline data post processing, and then

using the on-chip FSK demodulator. This allows to measure the loss of the on-chip FSK demodulator

compared to the ideal demodulator implemented in software. For the offline BERmeasurement, the

MSO acts as a 20MS/s, 10 bit ADC that captures analog data after the wideband FM demodulator. This

data is then processed using software. First, the desired channel is filtered using an FIR band-pass

filter to remove any undesired adjacent sub-channels. Then it is passed through a correlator, that is

an optimal detector for the orthogonal FSKmodulation used. The output bits are then compared to

the generated test vector. In the secondmeasurement, that uses the on-chip FSK demodulator, digital

outputs are available, logic analyzer is used to sample data on a rising edge of the recovered clock. It

is worth mentioning that the secondmeasurement takes significantly less time (andmemory) since

the number of samples is significantly lower and corresponds to the number of bits. In the first case

200 samples are captured per received bit in order to perform the demodulation in software. This

corresponds to a sampling frequency roughly 10 times higher than the sub-carrier frequency.

The BER curves for the MU receiver and the single user case are presented in Fig. 5.48. The curves for

both external (software) and internal demodulator are shown. In the case of the external demodulator

the sensitivity is -69dBm. The result is similar to the previous receiver implementation, with some

losses due to a more complex input matching network. The internal demodulator adds 1dB loss

compared to the ideal software demodulator, resulting in a receiver sensitivity of -68dBm. Accounting

for approximately 2dB loss due to a non-ideal LO, and 1dB loss due to a non-ideal FSK demodulator,

this is roughly 7dB worse than the theoretical result.

The BER curves for the LP receiver in the single user case are presented in Fig. 5.49. Just like in the above

case, both curves, for the external and internal demodulator, are shown. In the case of the external
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Figure 5.49: Single user BER of the LP Rx with internal and external demodulator at 100 kb/s.

Figure 5.50: Measurement setup and comparison of transmit and received bits.

demodulator the sensitivity is -58dBm. Accounting for the theoretical 6 dB difference in sensitivities

between the two receivers, and higher noise figure of the LP receiver, the 11dB degradation in sensitivity

is expected. Compared to the theoretical sensitivity, same 7dB degradation is observed as in the case

of the MU receiver. This is the price to pay for lower power consumption of the LP receiver. Again,

the simple, low power internal demodulator adds some loss, resulting in -57dBm sensitivity of the LP

receiver. Although sensitivity is relatively low compared to other FM-UWB receivers, it is still enough for

short range communication in a WBAN, and the implemented receiver consumes the lowest amount

of power among all the implementations reported in literature.
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Figure 5.51: Sensitivity degradation due to the presence of an in-band interferer.

A photo of the measurement setup is shown in Fig. 5.50. Two boards can be seen in the figure, one is

used as a transmitter and the other one as a receiver. the signal level on the receiver side is controlled

using a configurable attenuator. Spectrum analyzer, showing the FM-UWB signal spectrum, is used

to verify the proper operation of the transmitter and can be seen in the right part of the figure. In this

case the oscilloscope is used to compare the transmitted and the received bits. The recording from

the screen is shown clearly on the graph. Aside from the input and output data, the graph also shows

the recovered clock used for sampling of the output data. A delay of approximately 20μs can be seen

between the transmit and receive bit stream. In the shown example there are no errors present at the

output.

The sensitivity of the receiver degrades in the presence of interferers. The behavior of the receiver is

evaluated in the presence of a narrowband interferer inside and outside of the used FM-UWB band.

The interferer is generated using a separate signal generator and the outputs are summed together

using a power combiner. For the in-band interferer, a frequency of 4.1GHz was chosen as the worst

case. Placing the interferer close to the signal center frequency would attenuate it due to the high-

pass characteristic of the IF amplifier, and placing it closer to edge of the band would again result in

slightly lower IF gain due to the IFA low-pass behavior. The same frequency was used for both MU

and LP receiver. The sensitivity degradation with the increase of interferer power is shown in Fig. 5.51.

Assuming 3dB sensitivity degradation is acceptable, the MU and LP receiver can tolerate up to -55dBm

and -52dBm strong interferers respectively.

For the out of band interferer case, the frequency of 2.4GHz was chosen. The reason is that the

2.4GHz ISM band (industrial, scientific andmedical) is commonly used by different short range BAN

devices, and that this frequency could potentially be used to power the sensor nodes without contact.

Within the scope of the WiseSkin project, sensor nodes are placed inside a flexible waveguide. This

waveguide enables relatively low losses between different points and could allow efficient power

transfer between the main node and the sensor nodes. Contactless powering would allow cheaper and

easiermanufacturing, and higher reliability of theWiseSkin solution. Details of the waveguide powering

scheme are explained in the following chapter. Here the focus is on the receiver characterization, and

so the aim is to evaluate what power level of the interferer can be tolerated at the receiver input. The

sensitivity degradation in the presence of an out of band interferer is shown in Fig. 5.52. Assuming again
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Figure 5.52: Sensitivity degradation due to the presence of an out of band interferer at 2.4GHz.
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Figure 5.53: BER for a fixed input signal level with varying reference clock frequency.

3 dB sensitivity loss is acceptable, the MU receiver can tolerate 1dBm interferer and the LP receiver can

tolerate a 3dBm interferer at 2.4GHz. This is much higher than any other implementation and is due to

the sharp filtering characteristic of the IF amplifier, that acts as a 6th order low pass filter. In most other

implementations the interferer is only attenuated by the 2nd order LNA input matching network. This

means that the proposed FM-UWB receivers can operate reliably next to any other device using the

ISM band. Furthermore, the tolerable level of 1 dBm could be enough to supply power to the receiver.

Assuming 50% rectifier efficiency and 1dBm power supplying signal, results in 630μW of available

power, which is enough to power the transceiver in continuous mode of operation.

As discussed previously, FM-UWB is inherently robust against frequency offsets thanks to its large

bandwidth. This is clear when it comes to tolerance to LO signal offset, however the property also

applies to other parts of the system. After the wideband FM demodulation the sub-carrier channels are

located between 1.2MHz and 2.3MHz. An offset of 1000ppm translates into a maximum sub-carrier

offset of 2.3 kHz, which would still not prevent correct FSK demodulation. For comparison, assume

the same 1000ppm offset is present in a Bluetooth transmitter that operates in the 2.4GHz band. This
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Figure 5.54: Measured BER curves for multiple FM-UWB users of same power level, demodu-
lated with external (a) and internal (b) demodulator.

would roughly translate into an offset of 2.4MHz, which is larger than a Bluetooth channel bandwidth.

The example illustrates why an FM-UWB system has an advantage compared to typical narrowband

systems. In fact, the FM-UWB receiver can tolerate a frequency offset much larger than 1000ppm.

Figure 5.53 shows the BER of the two receivers as a function of the receiver reference clock offset.

The curves were measured at 1dB below the sensitivity level, that is -67dBm for the MU receiver and

-56dBm for the LP receiver. They show the amount of offset that can be tolerated before the sensitivity

increases by 1dB. Measurement was done with the fixed transmitter frequency reference and variable

reference on the receiver side. Looking at the curves, two parts can be distinguished. The first is

at relatively small offsets, where there is only a minor degradation in terms of BER. Then, it can be

noticed that after offset increases beyond a certain point there is a sharp increase in BER. This is the

region where clock recovery fails, and errors occur in sampling the decoded bits, which results in BER

around 0.5. Interestingly, the LP receiver shows less degradation at higher offsets. The reason is that

the sub-carrier frequency of the demodulated signal doubles after demodulation by the LP receiver.

As a consequence the frequency deviation will be doubled and the FSK demodulator will be able to
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Figure 5.55: Measured BER curves for two FM-UWB users of different power levels, demodu-
lated with external (a) and internal (b) demodulator.

operate more reliably at higher offsets. Both receivers are still able to perform reliable demodulation at

offsets below 8000ppm. This value is above the reported frequency deviation in state of the art on-chip

reference oscillators. Therefore, the presented measurements clearly show that it is feasible to make a

fully integrated FM-UWB transceiver, without external resonators for a reference clock.

The main advantage of the proposed MU receiver is the ability to distinguish multiple FM-UWB signals

at the receiver input, provided that the sub-carrier frequencies are different. In the first scenario,

multiple FM-UWB signals of equal power are present at the input. The measurement with the external

demodulator is shown in Fig. 5.54(a), and the measurement with the internal FSK demodulator is

shown in Fig. 5.54(b). The curves behave in a similar manner in both cases. As the number of users

increases so does the inter-user interference and, as a result, the sensitivity degrades. In the case with 4

users a degradation of roughly 2dB can be observed from the graph. As long as the power levels at the

receiver input remain approximately equal, there will be no significant performance degradation. If

several transmitting nodes are located at different distances from the receiving node, they can adjust
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the their power levels so that the power at the receiver remains the same, and avoid the excessive

sensitivity loss. This is the main reason why a transmitter that can adjust output power is useful for a

HD-WSN.

A scenario with 2 users and a variable difference in power levels is shown in Fig. 5.55. Again, the inter-

user interference increases with the increase in interferer power, and the resulting sensitivity degrades.

With a sufficiently strong interferer at the input, the achievable SNIR after the first FM demodulation

becomes limited by the interference, and the resulting BER curve flattens. The difference between

the external and internal demodulation is clearly visible in Fig. 5.55(a) and Fig. 5.55(b). In both cases

10dB stronger interferer results in a floor for the achievable BER. Since the external demodulator needs

a 1dB lower SNIR for the same performance, the BER curve flattens below 2·10-4. In the case of the
internal demodulator the curve flattens at 2·10-3, and the desired sensitivity level remains unreachable.

With the internal demodulator the receiver is capable of demodulating data if the difference of input

levels is 9 dB or smaller. The limit is due to a combination of interference coming from the leakage of

adjacent FSK sub-channels and cross modulation products between the two users in the process of the

first FM demodulation.

5.5 Summary

A fully-integrated FM-UWB transceiver has been presented in this chapter. A single RF IO port is used,

with an on-chip matching network, which eliminates the need for external passive components or

switches. Two receivers provide two different modes of operation. The low power mode reduces the

power consumption to 267μW, but only allows a single FM-UWB channel. To improve sensitivity and

allow SC-FDMA, aMU receiver is used, that allows up to 4 FM-UWB transmitters to operate at the same

time and in the same RF band. Inherent robustness against narrowband interferers, combined with

sharp IF filtering, result in good in-band and out of band interferer rejection. This capability could

allow to power the transceiver wirelessly using a 2.4GHz narrowband signal. Finally, the transceiver is

robust against reference clock offsets of up to 8000ppm, effectively eliminating the need for an off-chip

reference. Performance summary and comparison with the state of the art is given in Table 5.4.

The architecture of the implemented transmitter is very similar to the one from [3]. The solution

from [3] uses a three stage DCO that generates one third of the carrier frequency. The three phases

are combined using a frequency trippler that generates the FM-UWB signal. The trippler reuses the

current of the power amplifier in order to minimize power consumption. One of the downsides of

that approach is that the signal at one third of the frequency appears at the output together with its

harmonics, which might violate the spectral mask. Second issue is that the trippler output power

cannot be precisely controlled, which is a useful feature when a large number of nodes operate in a

small area. In the proposed implementation this problem is solved by replacing the trippler with a

class AB amplifier that drives the main PA. The output power can be regulated using the amplifier bias

point, that also sets the bias of the main PA. In addition, the configurable buffer current, and matching

network provide additional knobs for output power control, allowing steps smaller than 3dB. The DCO

directly produces the signal at 4GHz, avoiding the problem with the spectral mask violation. The DCO

together with buffers consumes slightly more than the DCO from [3], but this is compensated with a

more efficient PA design, so that the overall transmitter consumption still improves.

The proposed receiver targets short range communication in a HD-WSN. Therefore, sensitivity con-

straint is not very stringent and emphasis is on reducing power and providing means for multi-user
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Table 5.4: Comparison with the state-of-the-art transceivers
This Work

Parameter [27](1)(2) [28] [3] LP MU

Modulation FM-UWB Chirp-UWB FM-UWB FM-UWB
Frequency 7.5GHz 8GHz 4GHz 4GHz
Frequency deviation 25 kHz - 250 kHz 50 kHz
Receiver Cons. 9.1mW 4/0.6mW(3) 580μW 267μW 550μW
Data Rate 50 kb/s 1Mb/s 100 kb/s 100 kb/s
FSK Sub-channels 2 No No No 4
SIR UWB - - - - -9 dB
Matching Network Ext. Ext. Ext. Internal
NB Interferer Power
(in band)

-55dBm - -52dB(4) -52dBm -55dBm

NB Interferer Power
(@ 2.4GHz)

-38dBm@
6GHz

- -38dB(4) 3 dBm 1dBm

Ref. Clock Offset - - - 8000ppm
Sensitivity -88dBm -76dBm -80.5dBm -57dBm -68dBm

Transmitter Cons. -
2.8/0.42mW(3) 630μW 583μW

Output Power - - -12.8 dBm -11.4 dBm

Technology
0.25μm
BiCMOS

65nm 90nm 65nm

(1)Off-chip sub-carrier FSK demodulation (2)Receiver only (3)Without/with duty-cycling (4)-70dBm input signal power

communication. The receiver from [3] achieves very good sensitivity and low power consumption, but

the demodulator characteristic is highly non-linear and it cannot supportmultiple sub-carrier channels.

In addition it uses a frequency deviation of 250 kHz (or equivalently 500 kHz separation between the

two sub-carrier frequencies), which allows for a simpler FSK demodulator implementation. In this work

frequency deviation is reduced to 50 kHz in order to allow for multiple sub-carrier channels. A different

demodulator implementation is necessary in order to demodulate an FSK signal with a modulation

index of 1, which will consume slightly more power. Potential for multi-user communication with FM-

UWB has been demonstrated before, for example, two different sub-carrier channels could be seen at

the demodulator output from [27]. However, this implementation was only providing the first FM-UWB

demodulation. The proposed receiver is the only fully integrated solution that provides support for

multi-user communication. In addition, it also incorporates a clock recovery circuit that demonstrates

the feasibility to integrate the full transceiver with no need for an off-chip crystal reference.

In this case there was no need for higher data rates, although it could be a topic of future research.

Increasing data rate of the FM-UWB receiver would mainly require modifications in baseband, and

so the overhead in terms of power consumption should remain very low. This should lead to a more

efficient implementation, that could achieve even lower energy per bit. Multi-user communication

could be explored further, combining either larger number of lower data rate channels, or fewer

channels that provide higher data rates, depending on the needs of the specific application. Finally,

there could be more room for improvements at the modulation level. The Chirp-UWB concept,

that is positioned somewhere between the IR and FM UWB, provides higher data rates, without a

significant increase in complexity, and symbol level duty cycling of the receiver provides very low power

consumption. Similar modifications could be a topic of future research and could lead to different

performance trade-offs.
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6 Efficient Contactless Waveguide Power
Transfer

Delivering power to WiseSkin sensor nodes requires particular attention. Even though the data is

conveyed wirelessly, wires are still needed to provide power to the nodes. In order to allow for unob-

structed movement of the prosthesis, power lines must be sufficiently thin, flexible and stretchable.

One solution, developed over the course of the WiseSkin project, is to print a metallic grid on the skin

substrate (typically PDMS) using stretchable biphasic thin metal films [1], and then connect sensor

nodes to this grid. However, the rigid metallic connections between the elastic grid and the sensor

nodes have been identified as a reliability issue, as over the extended period of use these wires would

break. Contactless solution could improve the robustness of the WiseSkin sensor network, and is

therefore preferred. In addition, such approach eases production, at the same time reducing cost, and

allows easier replacement of sensor nodes in case of malfunction.

Wireless power transfer (WPT) takes place in any system where electrical energy is transmitted from a

power source to an electrical load without interconnecting wires. With the development of electronics,

short distance wireless power transmission has become popular in consumer and medical electronics

[2]. In parallel, it has been shown that reasonable efficiencymay be obtained at larger distances by using

dedicated, highly directive antennas. Providing power without contact allows to preserve the freedom

of movement and reduces the system price (by removing wires), but the benefits of WPT extend beyond

cost and convenience. Certain conditions, environments, and applications are simply unsuitable for

conventional wired sources of electricity. Our research interest lays in mid- and short-distance WPT

systems, covering distances from a few centimeters to a few meters using guided electromagnetic

waves at RF. Although WiseSkin is the primary targeted application, the use of such systems can be

extended to smart materials, wearable devices and tactile robots.

The chapter begins with an introduction to the general concept of wireless power transfer. Then, the

initial, wired and the proposed WiseSkin powering systems are described, explaining all the benefits of

the WPT approach. Section 6.3 shows the antenna design, followed by the results of measurements

with different waveguide samples and a summary of achieved results.
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6.1 Wireless Power Transfer

The concept of wireless power transfer first appeared close to the end of the 19th century, when Tesla

and Hertz demonstrated its feasibility. Today, WPT is still a topic of research and is used in systems

where wires are impractical and limit the functionality of the device. Different types of WPT systems

can be found in existing products and literature, and can be classified according to the distance and

type of coupling used between the transmitter and the receiver.

Inductive coupling is typically used in short-range wireless power transmission for charging smart-

phones, smartwatches, tablets, or other devices. Two standards for short-range wireless charging have

been adopted by the industry, the Qi and the AirFuel standard (which is a merger of former A4WP and

PMA standards) [3, 4]. These wireless charging systems operate at low frequencies and are capable of

providing high efficiency, but are limited to a few centimeters range and are usually sensitive to mis-

alignment of the transmit and receive coil [5]. The misalignment issue can be solved either by guided

positioning of the charged object (using e.g. a magnet), by moving the transmit coil, or by using an

array of coils that detect the position of the object. Generally, a communication link is also established

between the charger and the object. The two standards use different approaches. The Qi standard uses

the existing inductive link to establish communication through load modulation, meaning that no

additional hardware is needed, but communication might affect the charging efficiency. The AirFuel

takes a different approach and uses a Bluetooth link, that is completely independent and does not

affect WPT, but needs a separate antenna and dedicated hardware.

Dedicated WPT systems targeting large distances have also been implemented, but due to losses

between the transmitter and receiver efficiency is typically much lower. The efficiency in these systems

highly depends on antenna directivity and size, and is once again sensitive tomisalignment [6]. Another

approach thatwas explored in the literaturewas energy harvesting fromavailable, widely spread sources

(such as GSM for example) [7, 8, 9]. In this case, the devices are operating in the far field, and since

much of the power is lost in free space, lower power levels are available at the receiver input. Low

power levels usually result in low signal swing at the rectifier input and therefore lower efficiency. The

main limit to rectenna efficiency at low power levels comes from the threshold voltage of the rectifier

diodes [10], since this threshold is comparable to the input signal amplitude. Various approaches to

improve performance have been proposed in literature, some focusing on the multi-band antenna

design [11, 12] and others focusing on improving the matching network, the rectifier or the power

management circuits [13, 14]. Effort has also beenmade towards integrating the rectifier in standard

CMOS technologies. Different techniques have been proposed in order to compensate the threshold

voltage of the MOS transistor [15, 16, 17] such as body biasing or clever interconnection techniques.

However, the CMOS solutions are still unable to reach the efficiency achieved by using rectifiers with

Schottky diodes [18]. To truly optimize efficiency, a co-design of the rectifier and antenna is needed

[19]. These are usually referred to as the rectenna, and were invented byW.C. Brown in 1964. Due to the

non-linearity of the rectifier circuit, impedance matching becomes a difficult problem. Because of the

time-variant impedance seen from the antenna, the classical complex-conjugate matching approach

cannot be used directly. Finally, low efficiency combined with low available input power result in

systems that can only provide power on the order of microwatts [18].

The solution proposed here does not fit exactly into any of the described categories, but has similarities

with each of them. In the WiseSkin case, the sensor nodes are usually located in the far field of the

transmitting device, and in that sense the approach resembles far field RF energy harvesters. However,

as shown in the following section, the two existing metallic layers constitute a waveguide and prevent
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significant losses. This allows relatively high power levels at the sensor nodes, and consequently

higher efficiency. In that regard the proposed system has more similarities with the short-range

inductively coupled devices. Finally, the expected efficiency should be somewhere between the RF

energy harvesters and the near field chargers.

6.2 System Description

Illustration of the original wired WiseSkin solution is presented in Fig. 6.1(a), showing the inner di-

electric layer, the twometallization layers, the sensor node and the two wired connections to power

and ground. The main source of unreliability is the interface between the stretchable metallic layers

and the rigid sensor node, implemented on a standard FR4 PCB. During initial experiments with the

artificial skin prototype, these wires would often break, thus completely disabling the sensor node.

They are difficult to implement and effectively increase production cost and complexity of the system.

Furthermore, once the wires are placed, the sensor node is fixed and cannot be easily replaced or

moved to another location (ex. in case of malfunction). Assuming lower energy efficiency of the system

can be tolerated, all of the mentioned issues can be solved by WPT.

Metalic layers Dielectric layer

Sensor node powered 
through wires

Wired 
connection

Power

Ground

(a)

External sensor node
powered wirelessly

Power source

Internal sensor node
powered wirelessly

Metalic layers Dielectric layer
(b)

Figure 6.1: General concept of a sensor node powered through wires (a) and a sensor node
powered via RF energy, harvested from amaster or powering node (b). RF energy is distributed
via the flexible waveguide.
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The proposed WPT system [20, 21] is shown in Fig 6.1(b). The system is wireless in the sense that there

is no mechanical connection between the node and the metallic layers. However, the two metallic

layers remain present, and together with the flexible middle layer (dielectric such as silicone, textile

etc.) form a flexible and stretchable parallel plate waveguide. The power is distributed via the RF

electromagnetic (EM) waves. The principle is similar to that of existing energy harvesters [18], with

one important difference. Typically, these harvesters are designed to gather energy from EM waves

already present in the air. Since most of the energy is lost in free space, input power levels are low

and only modest efficiency can be achieved, unless a dedicated highly directive antenna is used. The

proposed system exploits the existing waveguide to confine the transmitted energy and increase the

overall efficiency by guiding the wave from the power source to the sensor node. Since relatively high

input power levels are available (going up to 10dBm), the rectifier converting the RF signal into dc

power can operate in the high efficiency region, thus improving the overall system efficiency.

The general principle can be extended beyond the scope of the WiseSkin solution to different appli-

cations such as wearable electronics, health care or robotics [22]. Additionally, sensor nodes do not

necessarily need to be placed inside the waveguide. They can also be placed on top of the artificial

skin, in which case the slot in the metallic layer acts as an antenna. Depending on the application, a

battery (or other means of storing the energy, such as supercapacitors) can be placed on the sensor

node. This would allow to charge the nodes first, and then turn them on to collect data and transmit.

This approach simplifies hardware since charging and communication occur in different time instants,

but the battery increases size and cost of the node. Since in WisesSkin, the miniaturization of nodes is

paramount, a solution without a battery is preferred. To enable batteryless operation, communication

and powering need to coexist, meaning that the communication device needs to be able to operate in

the presence of a strong interferer. Fortunately, the used FM-UWBmodulation is inherently robust

against narrowband interferers. As shown in the previous chapter, the two receivers can tolerate up to

3dBm input signal at 2.4GHz. Assuming the efficiency of the rectifier and the converter can be kept

above 50%, and with the sub-milliwatt consumption of the radio in mind, such signal could be used

to power the sensor nodes. The described solution follows the approach of AirFuel, with completely

separated powering and communication channel.

The proposed flexible waveguide structure confines and guides the electromagnetic power, enabling

practical means of remote powering and batteryless operation of sensor or actuator nodes. The solution

is contactless and wireless, and conformable to different surfaces as required by the application. The

proposed solution offers the following benefits:

• Batteryless operation - allows smaller node footprint and a lower cost solution, but requires the

communication and powering scheme to coexist.

• Increased robustness - no mechanical contacts or wires are needed for powering nor communi-

cation. Mechanical contacts are difficult to implement and could be the first source of failure. If

power is provided wirelessly, even if the stretchable metallic layer is broken, the system remains

functional and the loss in efficiency can be compensated by increasing the transmitted power,

therefore improving reliability.

• Ease ofmanufacturing and lower cost - removal of themechanical contacts easesmanufacturing,

thus also reducing cost and complexity.

• Configurability - assuming detachable layers can be produced, sensor and actuator devices

may be placed at different locations within the flexible structure as they are not constrained
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by wires or fixed connections. Furthermore this allows easier replacement of sensor nodes for

maintenance, repair etc.

In this work the antenna and the waveguide are optimized for operation in the 2.4GHz ISM band,

although different bands can be used as well. Using higher frequencies leads to smaller antennas and

further miniaturization of the sensor nodes. However, the efficiency of rectifiers, needed to convert the

input RF signal into power, typically decreases at higher frequencies [18], leading to lower overall system

efficiency. Additionally, the optimal frequency also depends on the thickness of the used material,

which is constrained by other system parameters.

6.3 Antenna Design

The proposed antenna, shown in Fig. 6.2, is a compact capacitive loop solution optimized for integration

into the PDMS (polydimethylsiloxane) structure with top and bottommetallization. As most miniature

antenna solutions, the proposed antenna does not provide high bandwidth. However, it can be fairly

easily tuned to the desired frequency, when all parameters are known. For example, by changing the

feed location of the antenna, the resonance frequency will be smoothly shifted toward higher or lower

frequency. Other parameters, like the antenna ground plane (GP) and the slot between the GP and the

antenna element, can shift the antenna resonance frequency, as well as improve the antenna matching.

The 10mm by 10mm antenna prototype is implemented on a 1.2mm thick FR4 substrate.

Themodel for the antenna design and optimization through simulation is shown in Fig. 6.3 and consists

of two elements. First is the PDMS structure represented by a 50mm by 100mm rectangular block with

metallized top and bottom surfaces. These two plates constitute a parallel plate waveguide that guides

RF waves to the sensor node. In the ideal case (infinite width and length) the waveguide properties

are determined by its thickness and the dielectric constant and loss [23]. The second element is the

antenna placed on one side of the PDMS block, close to the edge and in the middle between the top

and bottommetallized layers. Themodel is used to asses the antennamatching in a simplified scenario

that should correspond to the WiseSkin case. In reality the width and the length of the waveguide will

vary and the shape will be more complex, in the particular case of WiseSkin corresponding to a human

(or robotic) hand. In addition, the shape, particularly thickness, may change as the artificial skin moves,

stretches and bends with the prosthetic arm. Finally, the full metal plate is just a representation of

the real case, which should resemble a grid. However, as long as the holes in the grid are significantly

Figure 6.2: 3Dmodel of the designed antenna.
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Figure 6.3: Model used for antenna optimization.
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Figure 6.4: Simulated antenna S11 parameter, antenna is placed between the two metal layers.

smaller than the wavelength, and the thickness of the substrate sufficiently smaller than the other

two dimensions, the presented model should be good enough to estimate the antenna performance.

The simulated reflection coefficient is presented in Fig. 6.4, and shows that the antenna is matched at

roughly 2.45GHz.

6.4 Measurement Results

To asses the performance of the proposed power delivery system, several waveguide samples were

used. A 125mm thick PDMS sheet was used as the dielectric layer in all samples. To emulate the two

metallic layers, conductive tape was placed on both sides of the PDMS, the width of the metallic trace

is 16mm. The used structure is shown in Fig. 6.6. Three samples of different lengths were used in order

to measure performance for different distances between the transmit and the receive antenna: 60mm,

120mm and 275mm. In addition, a second 275mm long sample was used, with the top metallic layer

cut in the middle (Fig 6.6). The cut is done in such a way that there is no electrical contact between the

left and right part, but that the geometry of the waveguide remains preserved. This should correspond

to the case where a fissure appears in the metallic layer of the skin (for example, as a result of a number

of stretching cycles). The test setup is rather simple and consists of a two-port Vector Network Analyzer

(VNA) connected to the measured sample using a miniature coaxial cable (μFL). Ferrites are placed

close to antenna connections to suppress commonmode and radiation from the cables and parasitic

140



6.4. Measurement Results

Figure 6.5: Manufactured antenna with a μFL connector.

Figure 6.6: Examples of the used waveguide samples, 275mm long waveguide (up) and the
same waveguide with a cut in the middle (down).

coupling. The full test setup is shown in Fig. 6.7.

The s-parameters of all the measured samples are shown in Fig. 6.8. The reflection coefficient (S11)

shows good characteristics in all cases and is close to or below -10dB around 2.45GHz. The measured

antenna resonance frequency roughly coincides with the simulated value. The differences compared

to the simulated S11 curve mainly come from the different geometry of the tested samples. Other

non-ideal effects are present as well, for example the thickness of the samples is not ideally constant,

there might be air trapped between the conductive tape and the PDMS, the antenna is not ideally

placed in the vertical sense (not exactly in the middle between the two metallic layers) etc. In addition,

only a single antenna case is evaluated in the simulation. The presence of the second antenna will

influence the reflection coefficient, particularly in the shortest sample, since it is in the near field of

the transmit antenna, but also in other cases (although as the distance increases this effect should

diminish). For the three cases where the waveguide is not damaged, transmission coefficient indicates

relatively small losses, mainly caused by the antenna impedance mismatch. Looking at the small

variation of results for the 120mm and 275mm samples it is expected that increasing the waveguide
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Figure 6.7: Test setup with the VNA and the implemented waveguide prototype.

length beyond this point does not introduce significant additional losses, and that the concept could

be extended to distances of several meters. In this case the test samples are limited by the size of

available PDMS sheets. Additional samples with larger width of the metallic plates (approximately

30mm) were also measured, and they exhibited transmission coefficient lower by 1-2dB. Since in this

case the waveguide is roughly twice as wide as the antenna, this could imply that part of the energy

located in the waveguide is not collected by the receiving antenna resulting in reduced energy available

on the receiver side. The given example highlights the fact that waveguide geometry must be carefully

optimized together with the antenna in order to obtain a good performance.

The transmission coefficient of the sample with a fissure in the metallic layer shows somewhat higher

losses. The discontinuity in the metallic layer is likely causing reflections in the waveguide, resulting in

reduced system efficiency, however, the energy transfer is still possible. If the metal traces were used

to supply dc power to the node, such fissure would break the circuit and completely disconnect the

sensor node. In this case the only consequence is the efficiency degradation, but the system remains

functional, and increased losses can be compensated by increasing the transmitted power. All the

results at 2.45GHz are summarized in Tab. 6.1, together with the available power at the output, as a

percentage of the transmitted power.

To gain insight into the expected overall efficiency of the proposed system (not accounting for the

transmitter efficiency), efficiency of rectifiers and rectennas reported in literature is shown in Fig. 6.9. A

note should be taken regarding the efficiency in the two cases. Rectenna efficiency takes into account

both antenna nad rectifier efficiency, meaning that losses due to antenna mismatch are taken into

account. Rectifier efficiency assumes perfect antenna match, and therefore the overall efficiency

reported for standalone rectifiers will decrease when antenna is added. The rectennas and rectifiers
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Figure 6.8: S-parameters for different antenna distances: (a) S11 and (b) S21.

Table 6.1: Available output power

Distance [mm] S21 [dB] Available power [%]

60 -1.8 66.1
120 -3.2 47.8
275 -3.3 46.8

275 (cut) -7 20.0

reported here are intended for energy harvesting, they were designed for free space, line of sight

scenarios, but can nevertheless be used for rough efficiency estimation. For our application the focus

is mainly on received power in the range from -5dBm to 20dBm. For that range the expected efficiency

varies between 60% and 80%. For the shortest sample, the expected estimated efficiency should be

between 40.7% and 52.9%. For the longest waveguide sample the efficiency should stay between 28%

and 37.4%. Even if the metallic layer is damaged, the minimum expected efficiency should still remain

above 12% and could go up to 16%.
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Figure 6.9: Reported efficiency of implemented rectifiers and rectennas at 2.4GHz [18].

The proposed solution provides means of remote powering via guided propagation through a flexible,

stretchable waveguide structure. The low loss waveguide structure enables efficient powering via

EM energy, and therefore batteryless operation of sensors and actuators, reliable operation, lower

production cost and higher configurability and flexibility. To truly enable batteryless operation, the

radio on the sensor node must be able to work in the presence of a strong signal used for supplying

power to the sensor nodes. In this case a narrowband signal at 2.4GHz would be used to supply power

to the nodes. As shown in the previous section the implemented FM-UWB receivers can still work in

the presence of a 3dBm, 2.4GHz interferer. If power is provided by a 3dBm signal at the receiver input,

then available output power of the rectenna (assuming 60% efficiency) would be 1.2mWwhich is more

than enough to supply the FM-UWB transceiver described in the previous section. The assumption

here is that other components of the sensor node consume significantly less power than the radio.

6.5 Summary

The powering solution presented here is contactless andwireless, in the sense that there are no contacts

required to power the nodes or to connect them. The metallic layers are still needed for the waveguide

structure that enables high efficiency. The focus of the work is on a proof of concept used for powering

a single node. Although a rather simplistic case, it demonstrates the feasibility of the proposed concept.

The targeted system requires a more complex waveguduide shape and consists of several sensor nodes

that all need to be powered. This case remains a topic for future research. The irregularly shaped

waveguide poses many new challenges that would inevitably cause more losses and lower overall

efficiency. It would have to be optimized carefully with the antenna and the rectifier in order to achieve

good performance. Higher frequencies could be considered for the proposed powering solution as well.

Increasing the frequency would allow to decrease the size of antenna and the width of the waveguide,

consequently also allowing to reduce the size of sensor nodes. Problem with increasing the frequency

is that efficiency of the rectifier typically drops, which will result in lower system efficiency. The final

choice of the waveguide geometry, frequency of operation and antenna size will be a trade-off between

different demands and the exact system specification, that may vary with application.
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7 Conclusion

The development and implementation of a low power wireless transceiver for short range communi-

cations is the central topic of this work. Although the motivation comes primarily from the WiseSkin

project, aiming to provide wireless connectivity between sensor nodes in an artificial skin, the imple-

mented FM-UWB radio could find broader use in WBANs, targeting different applications (e.g. health

monitoring). The emphasis is mainly on the reduction of power consumption, seeking to provide a

solution that will not significantly affect the autonomy of the existing battery in the prosthetic arm. To

achieve that, the approach investigated here leverages short distance between the nodes and trades

sensitivity to conserve energy. Although improvements were made, narrowband radios still have the

edge, at least when it comes to power and sensitivity.

The FM-UWB, however, provides some interesting capabilities that may not be apparent at first. Some

of them were implemented and highlighted throughout the preceding chapters, one example being the

multi-user communication. To cope with the increasing number of nodes, and improve scalability, the

implemented radio provides the sub-carrier FDMA capability, allowingmultiple nodes to communicate

simultaneously in the same RF band. Although the concept itself has been suggested previously,

this is the first time a full receiver chain that supports SC-FDMA was characterized. Another good

characteristic of FM-UWBwas confirmed in practice, namely tolerance to reference clock frequency

offset. This capability could eventually result in a radio with zero external components, and is in fact

one of the biggest advantages compared to narrowband radios that still need a quartz resonator. Finally,

the FM-UWB is known to be reliable in frequency selective channels and in the presence of interferers.

Inherent robustness to narrowband interferers demonstrated in this work eliminates the need for sharp

external filters, again providing means for high degree of miniaturization.

Initially, the reduction of power consumptionwas primarily driven by the desire tomaintain a negligible

impact on the autonomy of the prosthetic arm. There is another motivation - removing the power

supply connection, cutting the final wire. Further improvements and reduction of the consumption of

the radio could one day allow to use energy harvested from the environment to power the nodes, but

the implemented radio already achieves a level low enough to enable supplying power via a dedicated

RF narrowband signal, while simultaneously using the FM-UWB signal for communication. Wires,

initially intended for supplying dc power to the sensor nodes, serve as a waveguide and prevent
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electromagnetic energy from escaping, allowing to achieve relatively good efficiency of the wireless

power transfer. Although the principle was validated here, more effort is needed for the realization of

this fully contactless system, which for now remains a potential topic for future research.

7.1 Summary of Achievements

As discussed previously, when it comes to power consumption narrowband receivers inevitably have

the advantage. The FM-UWB receiver simply cannot achieve the same sensitivity for a given power

consumption, but it brings other benefits to the table. The work presented here continues the trend of

lowering the power of FM-UWB transceivers, as indicated in Fig. 7.1. The implemented single-ended

AZ-IF receiver further narrows the gap between the narrowband and wideband receivers, but it does

so at the cost of a lower sensitivity. The second implemented quadrature AZ-IF receiver consumes

slightly more than the first version, the difference coming from the baseband circuits, mainly the sharp

baseband channel filter, needed to remove the adjacent sub-carrier signals. As shown in Chapter 5, the

achieved consumption levels, combined with good interference tolerance, already make it possible to

power the radio without contact, via electromagnetic waves. If the trend continues, the goal of using

other energy harvesting sources might become a reality.
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Figure 7.1: Power consumption evolution of implemented FM-UWB transmitters and re-
ceivers.

The trade-off between sensitivity and power consumption, for different implementations of FM-

UWB receivers is shown in Fig. 7.2. The RF delay line demodulator consumes the most, but still

provides the best sensitivity performance, and in addition it should be able to support multi-user

communication [1]. The super regenerative architecture [2, 3], achieves considerable power savings,

and relatively good sensitivity, but looses the capability to distinguishmultiple FM-UWB signals. Finally,

the two architectures proposed here are targeting short range communications, and can therefore

withstand lower sensitivity in order to further reduce the power requirements and provide the multi-

user capability.

The core of the work focuses on the implementation of an ultra low power FM-UWB transceiver. The
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Figure 7.2: Power consumption vs. sensitivity of implemented FM-UWB receivers.

design process started with the exploration of options and capabilities of the FM-UWBmodulation.

The second step was the study of transmitter and receiver architectures that would yield the best

performance for the given application. In the last step, abstract block diagrams were transformed into

electronic circuits that implemented the desired functions. The journey, from the concept on a piece

of paper to the real “live” silicon chip, brought many challenges but also resulted in some interesting

inventions and ideas. The most important ones are summarized here:

• The FM-UWBmodulation, originally proposed byGerrits is a combination of the lowmodulation

index BFSK (at baseband) and the large modulation index frequency modulation (at RF). The

concept was first extended to include other basebandmodulation types such as MFSK, BPSK

andMPSK. Here a multi-channel transmission is proposed, using a sum of several orthogonal

sub-carrier signals to modulate the carrier. The concept allows simultaneous transmission in

the same frequency band to multiple receivers and is demonstrated through experiments in

Chapter 4.

• The approximate zero-IF architecture is introduced as a modification of the uncertain IF nar-

rowband receiver. The quadrature approximate zero-IF receiver allows to save power while

preserving enough linearity to allow simultaneous demodulation of multiple input FM-UWB

signals. The single-ended version of the receiver further simplifies its architecture reaching

the record low power consumption, but loses sensitivity and loses the capability to distinguish

multiple FM-UWB users.

• Aside from power consumption the implemented transceiver is the first full FM-UWB transceiver

that provides the multi-user capability. In this case four channels with a 100 kb/s data rate are

available for simultaneous communication. High tolerance to large reference frequency offsets is

demonstrated, allowing to integrate the full transceiver without the need for an external high-Q

resonator, or any other off-chip components. High resilience to out of band interferers enables

reliable communication and provides means of powering the transceiver wirelessly using a

narrowband signal at 2.4GHz (although other frequencies could also be used).

• Electronic circuits have been a topic of research for a long time, making it rather difficult to

innovate and discover truly new topologies. Most of the used circuits are adaptations and minor

modifications of already existing solutions. The two more notable blocks that brought some
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innovation in this work are the baseband N-path channel filter and the low power DCO. The

use of an N-path filter in the baseband allows to easily implement a tunable, high-Q bandpass

filter, with relatively low power consumption and simple control. Although N-path filters have

been out there for some time, they have never been used in a low power and low frequency

application such as this one. Implementing theDCOas a stack of a ring oscillator and a frequency

multiplier allowed to run the oscillator at one third of the actual frequency, allowing it to reduce

consumption. This was one of the key innovations that led to such low overall consumption of

the single-ended approximate zero-IF receiver.

• The use of the existing flexible and stretchable waveguide structure to supply power to the

sensor nodes is proposed. Metallic layers at the top and bottom of the PDMS layer conserve the

electromagnetic energywithin thewaveguide, enabling relatively good achievable efficiency. The

proposed powering scheme improves reliability and eases manufacturing, therefore lowering

the production cost and complexity.

7.2 Future Work

Throughout the research conducted here opportunities to take different paths have appeared. Unfor-

tunately, as it is usually the case, time and resources are limited, and onemust limit the scope of the

work, making it impossible to look into all of them. A short list of possible future research directions is

given here, also pointing out somemissing pieces that would better round up the work described in

the dissertation:

• The implemented FM-UWB receivers had a rather poor noise performance, the reason being

that the first block of the receiver is an active mixer with quite a high noise figure. This approach

was chosen simply because it doesn’t require a full LO swing, allowing to save some power on

the oscillator side. The oscillator together with the active mixer, however dominates the receiver

consumption, and instead of investing that power for the active mixer perhaps it would have

been better spent on increasing the oscillator output swing. This approach could be combined

with a passive mixer that consumes no power, and was proven to achieve lower noise figure. The

overall performance could potentially be improved in this way.

• Four SC-FDMA channels, with a maximum data rate of 100 kb/s, were used for this transceiver,

somewhat limiting its scope of use. The future implementations could address increased data

rates (1 Mb/s already demonstrated) and higher number of channels, and might use higher

sub-carrier frequencies to achieve that.

• The concept of multi-channel transmission was proven to work, but it was only implemented

using the available test equipment. The concept could be transferred to silicon, with the idea to

implement a low power transmitter capable of transmitting data to multiple receivers at once.

Other modifications of the original FM-UWBmodulationsmight be possible as well, Chirp-UWB

being one of them [4], and could address different applications.

• The FM-UWB transmitter presented here achieves only a slight improvement in terms of con-

sumption and efficiency compared to the state of the art. The architecture itself is quite similar

to the one from [5], and the said improvement is simply a result of circuit optimization. The

question remains whether there is a way to make the whole design more efficient. The effort

should mainly be put into optimizing the power amplifier together with the preamplifier, as the

two are currently the bottleneck.
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• Although a full transceiver has been implemented a number of blocks are needed to provide a

complete, fully functional radio that could be integrated into a bigger system. The first block

missing is the received signal strength indicator (RSSI), that could provide information about

the level of the received signal (usually needed at the protocol level) or be used as a part of the

automatic gain control loop. Another feature, usually required by the protocol, is the link quality

indicator (LQI), that provides the information about the modulation accuracy. The two are

used at the protocol level to assess the channel condition and assure reliable communication,

and are present in most commercially available narrowband radios. Digital baseband circuits

that would provide the interface for the microcontroller and handle data packets should also

be implemented to provide a fully functional transceiver that can easily be interfaced by a

microcontroller.

• The concept of wireless powering through a waveguide was barely touched upon. Although the

feasibility of such approach is demonstrated, there is a long way to go before this system could

become a reality. Design and optimization of a rectenna that would convert the RF energy into

dc, and a power management unit that would provide supply for the node remain to be done

as a part of future research. Other parameters of the system should be investigated as well. In

this work 2.4GHz frequency was used (antenna was designed for the available 2.4GHz radio

used for the prototype), but switching to higher frequencies could provide means to reduce the

antenna size. At the same time higher frequencies make the rectifier design more challenging,

and the question of optimal frequency remains. Finally, in this work radio and powering are

completely separated, but seeing the small amount of losses present in the channel, perhaps a

different approach for communication would yield better results. The same channel could be

used to provide both data and power, and backscattering technique, widely used in RFID tags,

could replace a transmitter on the sensor nodes, allowing to further reduce power consumption.
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