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Abstract
Gravity currents are density-driven flows that are able to transport high amounts of sediment

and are responsible of great geomorphic changes. Moreover they can have severe repercus-

sions on the environment since they are conveyors of substances, e.g. pollutants, for long

distances depending on their flow dynamics. The latter are determined by the release condi-

tions and by the exchange at the upper and lower boundaries. The aim of this research study

is to characterize the turbulent structure of gravity currents, as a consequence of the initial

release conditions, to relate with their transport capacity.

For this purpose, saline gravity currents are experimentally created in a laboratory channel

through the lock-exchange technique. Different initial conditions, representing different

configurations that can be found in reality, are considered during the experiments. The tested

parameters are: initial buoyancy of the current in the lock, initial volume of release (i.e. lock-

length), lock slope and grain sizes of the sediment that form an erodible bed over which the

current flows.

High-resolution velocity measurements, performed with an Acoustic Doppler Velocity Profiler

(ADVP), allowed to describe both horizontal and vertical structures of the gravity currents. A

universal criterion is established to isolate head and body of the current which are character-

ized by different dynamics and their extensions vary in relation with the conditions of release.

A new parametrization, based on the computed temporal evolution of shear stress, allows to

quantify water entrainment from the upper interface and sediment erosion capacity at the

bottom.

The effect of the increment of gravitational forces on its erosion capacity is tested by introduc-

ing a slope in the lock reach. The range of considered slopes goes from horizontal to S=16%.

This latter is identified as a transient case in which two mechanisms compete i.e. on one side,

the current entrains more water from the upper interface due to the increment of friction, the

current expands, dilutes and therefore slows down; on the other side, the head is fed by the

faster rear steady current thus inducing an acceleration.

At the bottom, high shear stress associated with intense ejection and burst events influence

erosion and bed load transport. The coupling of hydrodynamic mechanisms and processes of

erosion, transport and deposition of sediment are investigated. It is shown that the upward

motion, caused by mean and turbulent velocity components, promote vertical mixing of

sediment from the channel bed. The feedback between the hydrodynamics of a gravity current

and the geomorphic changes of a mobile bed are analysed. The shape of the front changes due

to sediment entrainment and the deposition of sediment downstream creates characteristic
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Abstract

patterns whose geometry reflect the coherent turbulent structure of the current.

The scientific contributions elaborated in this research project allow to ameliorate the mod-

elling of these flows, describing their inherent complex mechanisms under various initiation

conditions and the interaction with suspended material. This helps to formulate adapted

mitigation measures for the retention of these phenomena which frequently have a negative

effect and e.g. induce reservoir sedimentation, subaqueous structure damages and scour

processes in the vicinity of submerged pipelines or exacerbate pollutants dispersion.

KEY WORDS: gravity current, current shape, lock-length, lock-slope, transport capacity, mixing

processes, ambient fluid entrainment, sediment entrainment, bed shear stress, instantaneous

velocities, deposition patterns.
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Résumé
Les courants de gravité sont des écoulements induits par la poussée hydrostatique entre deux

fluides qui est causée par une différence de densité. Quand ces courants se reproduisent

sur un lit mobile, ils peuvent transporter de grandes quantités de sédiments en créant des

changements géomorphologiques importants. Ils peuvent aussi avoir des conséquences sur

l’environnement vu que des substances, comme les polluants, pourraient être transportées

avec le fluide qui compose le courant, en suivant donc leur dynamique. Cette dernière est

déterminée par les conditions initiales de rejet et par l’échange qui se produit à l’interface

supérieure, en contact avec le fluide ambiant, et au fond, avec les sédiments. L’objectif de

cette recherche est de caractériser la structure turbulente des courants de gravité et de lier

cela avec la capacité de transport des courants.

Des courants salins ont été reproduits expérimentalement dans un canal à section rectan-

gulaire, grâce à la technique ‘lock exchange’. Plusieurs conditions initiales, qui représentent

différentes situations réelles, ont été reproduites lors des essais. Les paramètres testés sont : la

poussée hydrostatique et le volume initiaux dans la première partie du canal (qui est nommée

‘lock’), l’inclinaison du lock et la dimension des sédiments qui composent le lit mobile.

Des mesures de vitesses instantanées à haute résolution dans les trois directions ont été

mesuré avec l’ADVP (Acoustic Doppler Velocity Profiler). Celles-ci ont permis de décrire

entièrement l’hydrodynamique des courants le long de la verticale et aussi longitudinalement.

Un critère universel a été établi pour identifier les deux régions qui composent le courant,

la tête et le corps, qui sont caractérisés par des dynamiques propres et dont les extensions

varient en raison des conditions initiales. Une nouvelle paramétrisation, qui se base sur les

mesures dans le temps des forces de cisaillement, a permis l’estimation de l’entrainement

d’eau depuis l’interface supérieure et de l’érosion de sédiments du fond.

L’effet des forces gravitationnelles sur la capacité d’érosion des courants a été testé avec un

faux-fond qui crée une pente dans le lock. Les pentes testées vont de l’horizontale jusqu’à

S=16%. Ce dernier identifie un cas de transition, où deux phénomènes se reproduisent : d’un

coté le courant entraine plus d’eau depuis l’interface supérieure à cause de l’augmentation du

frottement, induisant son expansion, sa dilution et, en conséquence, son ralentissement ; de

l’autre coté le fluide composant le corps, plus rapide, s’accumule dans la tête du courant en

causant son accélération.

Au fond, le cisaillement élevé combiné à des mouvements turbulents typiques du phénomène

"bursting" influence l’érosion, le transport et la déposition de sédiments. Il a été démontré

que les mouvements verticaux, en termes de vitesses moyennes et fluctuations turbulentes,
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Résumé

favorisent le déplacement vertical des sédiments du lit mobile. L’interaction entre l’hydrody-

namique des courants de gravité et les changements morphologiques a été analysée : la forme

du courant change à cause de l’entrainement de sédiments et les sédiments se déposent à

l’aval en créant des géométries qui sont induites par les structures turbulentes du courant.

Pour avoir une modélisation de ces courants, capable de décrire les mécanismes internes

complexes du fluide et l’interaction avec les sédiments, une étude systématique a été faite.

Cette dernière est à la base de la formulation de mesures de protection contre les phénomènes

induits par les courants qui créent fréquemment des problèmes, notamment la sédimentation

des réservoirs, des dégâts suite à l’impact avec des structures ou encore des problèmes de

stabilité due à l’érosion qu’ils provoquent à proximité des conduites situées au fond des

océans.

MOTS CLEFS : courants de gravité, forme du courant, longueur du lock, pente du lock, capa-

cité de transport, processus de mélange, entrainement de fluide ambient, entrainement des

sédiments, cisaillement au fond, vitesses instantanées, géométries de déposition.
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Kurzfassung
Dichteströmungen sind Strömungen die bei einem Dichteunterschied zwischen zwei Flüssig-

keiten auftreten. Sie können grosse Mengen an Sediment transportieren und sind verantwort-

lich für bedeutende geomorphologische Veränderungen. Zudem können sie schwerwiegende

Auswirkungen auf die Umwelt haben, da sie Substanzen, wie beispielsweise Schadstoffe über

grosse Distanzen befördern können. Geomorphologische Veränderungen werden durch die

Freisetzungsbedingungen und durch den Austausch an den oberen und unter Phasengren-

zen bestimmt. Ziel dieses Forschungsprojektes ist es, die Turbulenzstruktur von Dichteströ-

mungen infolge initialer Freisetzungsbedingungen zu charakterisieren und diese mit der

Sedimenttransportkapazität solcher Strömungen zu verbinden.

Zu diesem Zweck wurden salzhaltige Dichteströmungen in einem Laborkanal mit der “lock-

exchange” Methode ausgelöst. Verschiedene Anfangsbedingungen, welche diverse reale Be-

dingungen darstellen, wurden während der Versuchsreihe untersucht. Dabei wurden folgende

Parameter studiert: initiale Dichte der Flüssigkeit hinter dem Kanalverschluss (“lock”), frei-

gesetztes Volumen, Neigung der Kanalsohle hinter dem Verschluss sowie die Korngrösse der

Sedimente, welche zur Nachbildung einer erodierbaren Kanalsohle verwendet wurden.

Hochauflösende Fliessgeschwindigkeitsmessungen, durchgeführt mit einem “Acoustic Dopp-

ler Velocity Profiler” (ADVP), erlaublen die horizontalen und vertikalen Strukturen der Dich-

teströmung zu untersuchen. Ein allgemein gültiges Kriterium konnte definiert werden, mit

welchem die Front und der hintere Teil der Dichteströmung voneinander getrennt werden

können. Dieser Trennbereich ist durch grosse Dynamik gekennzeichnet und zudem ist er stark

von den Freisetzungsbedingungen abhängig. Eine neue Parametrisierung, basierend auf der

zeitlichen Entwicklung der aus den Geschwindigkeitsmessungen berechneten Scherspannun-

gen, ermöglichte es den Wassereintrag an der oberen Phasengrenze und die Erosionskapazität

des Kanalbetts zu quantifizieren.

Der Effekt der potentiellen Energie auf die Erosionskapazität wird mittels einer Sohlenneigung

des Bereichs hinter dem Kanalverschluss untersucht. Die betrachteten Neigungen reichen von

horizontal bis hin zu einer Neigung von 16% für welche sich ein Übergangszustand einstellt.

Zwei gegensätzliche Phänomene treten gleichzeitig auf: Einerseits trägt der Dichtestrom durch

die erhöhte Scherspannung mehr Wasser von der oberen Phasengrenze ein, was zu einer Aus-

dehnung und einer geringeren Dichte und somit zu einer Verlangsamung führt. Andererseits

wird die Front des Dichtestromes durch den schnelleren hinteren Teil beschleunigt.

An der Unterseite des Dichtestromes beeinflussen hohe Scherspannungen die Turbulenz-

strukturen, welche typisch für die Wirbelablösungen (auch "Burst"genannt), die Erosion und
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Kurzfassung

den Sedimenttransport sind. Dabei wird die Kopplung der hydrodynamischen Mechanismen

mit Erosion, Transport und Deposition untersucht. Es wird aufgezeigt, dass die Aufwärtsbe-

wegung durch die zeitlich gemittelte Geschwindigkeit und die Turbulenzkomponenten eine

vertikale Vermengung der Sedimente vom Kanalbett fördert. Die Rückkopplung zwischen der

Hydrodynamik von Dichteströmungen und der geomorphologischen Veränderungen eines

mobilen Bettes werden analysiert. Die Ausprägung der Front verändert sich durch den Sedi-

menteintrag und die Absetzung stromabwärts führt zu charakteristischen Ablagerungsmuster

deren Geometrie die kohärente Struktur der Strömung wiederspiegeln.

Die wissenschaftlichen Beiträge, welche in diesem Forschungsprojekt erarbeitet wurden, er-

möglichen eine verbesserte Nachbildung von Dichteströmungen durch die Beschreibung

deren inhärenter komplexer Mechanismen unter verschiedenen Anfangsbedingungen und

der Interaktion der Strömungen mit freischwebender Materie. Dies hilft geeignete vorbeu-

gende Massnahmen zu treffen um negative Auswirkungen von Dichteströmungen, wie zum

Beispiel Stauseeverlandung, Beschädigung von Unterwasserbauten oder Kolkbildung nahe

von Unterwasserleitungen, zu verhindern.

SCHLÜSSELWÖRTER: Dichtestrom, Stromausprägung, “Lock”-Länge (Freisetzungslänge),

“Lock”-Neigung, Sedimenttransportkapazität, Vermengungsprozess, Wassereintrag, Sedimen-

teintrag, Scherspannung, momentane Strömungsgeschwindigkeit, Sedimentablagerungsmu-

ster.
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Riassunto
Le correnti di densità (o di gravità) possono trasportare ingenti quantità di sedimenti e sono

dunque responsabili di alterazioni geomorfologiche importanti. Possono inoltre avere gravi

conseguenze sull’ambiente dato che sono in grado di trasportare sostanze, come per esempio

inquinanti, per chilometri, a seconda delle condizioni idrodinamiche della corrente stessa.

Quest’ultime sono dettate dalle condizioni di rilascio e dall’interazione all’interfaccia superiore

con il fluido ambiente e all’inferiore con il fondo. Lo scopo di questa ricerca è caratterizzare la

struttura turbolenta delle correnti di gravità che si crea in seguito a determinate condizioni di

rilascio, per poter trovare una relazione tra l’idrodinamica delle correnti e la loro capacità di

trasporto.

In questo progetto di ricerca, le correnti di gravità saline sono state ricreate sperimentalmente,

in un canale a sezione rettangolare, attraverso la tecnica del ’lock-exchange’. Sono state si-

mulate molteplici condizioni iniziali, riproducendo in questo modo diverse configurazioni

reali. I parametri testati sono : la forza idrostatica iniziale e il volume iniziale del fluido più

denso, l’inclinazione della prima parte del canale a monte e la granulometria dei sedimenti

che compongono il letto mobile.

L’ADVP (Acoustic Doppler Velocity Profiler) è lo strumento utilizzato per misurare le velocità

istantanee nelle tre direzioni, permettendo una descrizione completa del flusso lungo la verti-

cale e longitudinalmente. È stato stabilito un criterio generale per identificare in modo univoco

la testa e il corpo della corrente. Queste due zone sono charatterizzate da una idrodinamica

peculiare e la loro estensione varia con le condizioni di rilascio. Una nuova parametrizzazione,

basata sulla stima dello stress di taglio, ha permesso di quantificare l’ammontare d’acqua

inglobata nella corrente all’interfaccia superiore e la quantità di sedimenti erosi dal fondo.

L’effetto dell’aumento delle forze gravitazionali nella capacità di erosione della corrente è

stato testato introducendo un doppio-fondo inclinato nella prima parte del canale a monte

(chiamato ’lock’). Le pendenze testate sono comprese tra l’orizzontale e S=16%. A questa

pendenza si verifica un comportamento transitorio : da un lato, la corrente ingloba più acqua

dall’interfaccia superiore a seguito dell’aumento dell’attrito, espande ed è diluita, causandone

il rallentamento ; dall’altro lato, nella testa si accumula il fluido che compone il corpo che è

più veloce, e la corrente subisce dunque un’accelerazione.

Al fondo, alti valori di sforzi di taglio sono associati a intensi e rapidi eventi di espulsione,

oscillazioni improvvise e rotture del fluido (secondo un processo chiamato ’burst’ di parete

o scoppio), che influenzano l’erosione e il trasporto di fondo. Si è studiata l’interazione tra

idrodinamica della corrente e processi di erosione, trasporto e deposizione dei sedimenti. Si
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è dimostrato che la componente verticale del moto, flusso medio e turbolento, promuove il

sollevamento verticale dei sedimenti dal letto mobile. È stata inoltre analizzata la relazione

tra idrodinamica e variazioni morfologiche : il fronte della corrente cambia forma dopo

aver incorporato i sedimenti e, a valle, i sedimenti depositano seguendo una geometria che

rispecchia le stutture turbolente della corrente.

Per poter modellare accuratamente queste correnti, capire la complessa fluidodinamica che

li caratterizza e il ruolo che svolgono nel trasportare massa, energia e quantità di moto, è

stato condotto uno studio sistematico che analizza lo sviluppo delle correnti in seguito a varie

condizioni iniziali e in presenza di sedimenti. Questo studio costituisce una prima fase neces-

saria per poter in futuro formulare misure di protezione adeguate contro i fenomeni indotti

dal passaggio delle correnti come ad esempio l’interrimento degli invasi, danni su strutture

marittime in seguito all’impatto o all’erosione in prossimità di condotte o la dispersione degli

inquinanti.

PAROLE CHIAVE : corrente di gravità, forma della corrente, lunghezza del lock, inclinazione

del lock, capacità di trasporto, processi di mescolamento, incorporazione del fluido ambiente,

erosione dei sedimenti, sforzo di taglio al fondo, velocità istantanee, geometrie di deposizione.
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Chapter 1. Introduction

1.1 General overview and motivation

1.1.1 Nature of gravity currents

Gravity or density currents are buoyancy-driven flows that occur naturally or as a consequence

of human activities (Simpson, 1997). Difference in hydrostatic pressure at the surface of

contact between two fluids of different densities causes the formation of a flow where the

denser fluid travels along the lower boundary while the lighter fluid flows above, in the opposite

direction (Hacker et al. (1996) and Shin et al. (2004)). The density difference can be generated

in two ways: (i) by a property of the fluid (e.g. temperature or salinity) causing compositional

gravity currents (Ooi et al., 2009) or (ii) by the presence of particles in suspension, which

increase the bulk density of the surrounding fluid, and in this case we refer to turbidity

currents (Parker et al. (1986), Meiburg and Kneller (2010)). Gravity currents are first of all a

geophysical flow, but these currents are also of importance in engineering applications, such

as industrial flows (e.g. the sheet glass production in Figure 1.1, Lyn et al. (1992), Zhou et al.

(1994)), and for environmental security (Huppert and Woods (1995), Fernández-Torquemada

et al. (2009), Al-Majed et al. (2012)), because they play a fundamental role in the dispersion of

the pollutants.

1.1.2 Occurrence of compositional gravity currents

In the atmosphere, examples of natural compositional gravity currents driven by differences

in temperature include katabatic winds: flows developing downslope originated by radiational

cooling of air on the top of a mountain. The side effect of this type of wind is that they lead to

thermal inversion which can reduce the vertical mixing. Their relation with the accumulation

of pollutants in some highly industrialized cities is a prevailing research topic (Ainslie and

Jackson (2009), Ramšak et al. (2013)).

Examples of anthropogenic compositional gravity currents caused by dissolved substances

are the release of pollutants into rivers, oil spillage in the ocean (Figure 1.1) and desalination

plant outflows. The release of pollutants into rivers has severe negative environmental im-

pacts mainly in relation to the ability of the waste fluid containing contaminants to disperse

and propagate, even for long distances, flowing as a gravity current (Huppert and Woods,

1995). Oil spillage events are numerous and each year, there is an average of 5 millions tons of

petroleum transported across the seas (Al-Majed et al., 2012). The heavier seawater carrying

the lighter oil travels underwater horizontally as a gravity current, and it spreads making more

difficult the cleaning up process due to the high dispersion of contaminant. In the case of

the desalination plants, if on one side they produce new water resources, on the other side

they increase the pressure on the marine environment (Fernández-Torquemada et al., 2009):

hypersaline outflows disperse moving as a dense brine and can causes hypoxia of the aquatic

fauna and issues for freshwater human consumption, when these releases are in the vicinity

of an estuary and arrive to affect the groundwater table (Valle-Levinson, 2010). At the estuary
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1.1. General overview and motivation

an alteration of the equilibrium is due to the so-called "inverse estuary": typically in subtropi-

cal and Mediterranean climates, when evaporative fluxes exceed freshwater inputs, salinity

increases beyond oceanic values (Hodges et al., 2010). Water density is thus higher close to

the surface inducing the denser water to spread in both the seaward and landward direction

with consequent problems related to water quality (Valle-Levinson, 2010) and desalination

plants may exacerbate these problems.

Recently, the hydrodynamic of dense plumes have been considered inversely as an advantage

and their possible exploitation for carbon sequestration is under evaluation. Oceans are sinks

for CO2: the carbon accumulation in oceans is a natural ongoing process. The possibility of

direct injecting dense plumes containing high concentration of CO2 in deep seas, forming a

sinking bottom gravity current, has been investigated by Herzog et al. (2001) as a solution for

reducing the atmospheric CO2.

1.1.3 Occurrence of turbidity currents

Lava flows, dust storm, snow avalanches, volcano eruptions, turbidity currents (Figure 1.1)

are some examples of flows where suspended particles drive the density gradient. Sediment

transport induced by gravity currents is of significant implications for aquatic ecosystems,

since they are determinant to habitats for benthic organisms and they carry nutrients needed

to the ecosystem, as well as for sustainable engineering applications (e.g. the erosion localized

at hydraulic structures or beach nourishment) (Salim et al., 2017). Recently, turbidity currents

originated by the presence of sediments in suspension, are becoming a subject of discussion

due to their relation with reservoir sedimentation (Schleiss et al., 2016). When sediment-laden

water enters an impoundment, plunges beneath the clear water (Knoblauch, 1999), and travels

downstream along the submerged thalweg, it can, when strong enough, erode and transport

considerable sediment volumes within the reservoir itself (Parker et al. (1986), De Cesare

and Schleiss (1998)). Travelling downstream, it deposits the coarser part of sediments along

the bottom, and if it reaches the dam, it accumulates to form a submerged muddy lake,

causing the loss of storage capacity, a potential risk of blockage of intake structures and the

eventual accumulation of polluting materials. The sustainable management of dams is thus

a widely treated field of research in literature due to the important ecological and economic

consequences (Palmieri et al., 2001) and the variety of techniques that are under study for

sediment evacuation (Chamoun et al. (2016a), Chamoun et al. (2017b).

1.1.4 Knowledge gaps

The occurrence of density-driven flows in nature is well documented in literature but in few

cases in situ measurements of these events were possible due to their destructive nature

(Paull et al. (2002) and Xu et al. (2004), among others). Density-driven flows have implications

on the environment since they are conveyors of particles or substances depending on their

flow dynamics, which is affected by the release conditions and by the exchange at the upper
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Chapter 1. Introduction

Figure 1.1: Examples of natural and anthropogenic gravity currents. a) Lava flows in Hawaii.
Photo Credit: Stéphanie Demuth; b) Eruption at Eyjafjallajökull vulcano April 17, 2010. Photo
Credit: Árni Friðriksson, Eyjafjallajokull-April-17, CC BY-SA 3.0; c) Sediment transported down
the Rhone River into Lake Geneva. Photo Credit: Rama (https://commons.wikimedia.org/
wiki/File:Leman_img_0571.jpg); d) Oil spilled after the Deepwater Horizon/BP well blowout in
the Gulf of Mexico in April 2010. Photo Credit: NOAA; e) Dust storm called a Haboob, moving
across the Llano Estacado toward Yellow House Canyon near the residential community of
Ransom Canyon, Texas. Photo Credit: Leaflet (https://commons.wikimedia.org/wiki/File:
Haboob_Ransom_Canyon_Texas_2009.jpg); f) Sheet glass production (http://www.miralglass.
com).

and lower boundaries. Therefore, gravity currents have been an important research topic for

numerous disciplines and they have been reproduced both numerically by Ooi et al. (2009),

Tokyay et al. (2011), Lombardi et al. (2015), Ottolenghi et al. (2016b) and experimentally by

Britter and Linden (1980), Huppert and Simpson (1980), Altinakar et al. (1990), García and
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Figure 1.2: Sketch of a bottom gravity current with density ρc intruding in the less dense
ambient fluid with uniform density ρa (Franca, 2017). The gravity current can flow on an
inclined of slope α with a certain front velocity u f . Mainly in the quasi steady body, it develops
a streamwise velocity profile (u) and a density profile (ρc ). Ambient fluid is entrained at the
upper interface (e), in presence of a mobile bed, exchange takes place, with erosion (E) and
deposition (D) of material.

Parker (1993), Shin et al. (2004), Nogueira et al. (2013), Theiler and Franca (2016) among others

(see also Adduce and Franca (2018) for several examples of research on buoyancy driven flows).

Authors agree on describing the shape of the gravity current as composed by an arising highly

turbulent front, called head, followed by the body and in some cases a tail is present. A vertical

structure can be distinguished as well. A current composed of dense fluid presents two main

surfaces: at the bottom, since it generally flows on a solid boundary, and at the top, at the

interface with the lighter fluid (see Figure 1.2). These are active boundaries indeed mass and

momentum exchanges are promoted at the bed and at the upper interface (Ancey, 2012).

Ambient fluid is entrained due to shear and buoyancy instabilities at the upper interface (Can-

tero et al., 2008) resulting in the dilution of the underlying current and modifying the density

profile which characterizes a gravity current under stable density stratification (Turner, 1973a).

Bulk quantities can be used to estimate the mixing rate and the entrainment parametrization

so far widely used comes from the work of Ellison and Turner (1959), however, the evaluation

of mixing and entrainment in unsteady gravity currents is still an open issue (Ottolenghi et al.,

2016a). The detail of circulation inside the current have still to be further explored in fact, even

if estimating the rate of entrainment is useful, this does not indicate the extent of the mixing

within the current (Hacker et al., 1996). Knowing how the heat, salt or pollution distribute in a

gravity current, as a consequence of its turbulent structure and of the interaction at the top

free surface and the bottom boundary, is fundamental as mixing affect the evolution of the
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flow (Hacker et al., 1996).

When the gravity current travels above an erodible bed, entrainment of material from the

bottom can take place, which is conveyed with the current and deposited even at large dis-

tances from their original position. Gravity currents can transport sediments or substances,

e.g. pollutants, in dependence with their structure and dynamics. High shear stress associated

with intense ejection and burst events influence erosion and bed load transport (Niño and

Garcia (1996), Cantero et al. (2008), Salim et al. (2017)). Thus, it is of fundamental importance

to understand what the hydrodynamic structure of gravity currents tell about their transport

capacity.

In order to properly model these flows, describing their inherent complex mechanisms under

various initial conditions and accounting for their interaction with suspended material, a

comprehensive understanding is needed. This will help to formulate adapted mitigation

measures to handle these phenomena which frequently result in catastrophic effects.

1.2 Research questions

In nature, the majority of gravity currents occur on complex topographies and flow over

various bed compositions. The erosion, transport and deposition processes depend on the

particle characteristics and on the flow hydrodynamics. The literature on gravity currents is

rich, however, the hydrodynamics of density-driven flows, namely, the internal flow structure,

are still not completely understood. Moreover, the coupling of hydrodynamic mechanisms

and sediment transport processes have so far seldom been investigated.

Based on previous knowledge, it is hypothesized that the processes of sediment erosion,

transport and deposition are governed by hydrodynamic variables such as bed shear stress,

Reynolds shear stresses and the vertical component of the flow velocity (mean and fluctuating

field). In this research the goal is to go further and to determine to which extent these hydro-

dynamic quantities of gravity currents are correlated with the sediment dynamics, which is

still unknown. Furthermore, the current hydrodynamics are determined by the triggering

initial conditions such as buoyancy, initial released volume and slope of the release. Their

influence is tested through a parametric analysis: two groups of tests are performed aiming

at systematically varying these parameters. Moreover, this has allowed to determine the best

configuration for testing gravity currents flowing on a mobile bed and to identify a proper

parametrization for estimating the potential entrainment.

More specifically, this research intends to answer the following questions, that are here divided

into three main categories which correspond to the main chapters of the report.
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Chapter 4 - Horizontal and vertical structure of gravity currents produced by varying ini-

tial volume of release

Q1 How can the head and body regions of a gravity current generated by lock-exchange

method be defined and which are their characteristic features?

Q2 Which is a common structure of the inherent vortical movements of lock-released gravity

currents and how does this affect the mass and momentum exchange?

Q3 Which parametrization can be adopted to quantify entrainment from the upper and

lower layers that takes into account the spatio-temporal variability of the gravity cur-

rents?

Chapter 5 - Influence of incremental gravitational forces on the gravity current hydrody-

namics

Q4 How does gravitational force, increased by the presence of a slope in the lock, affect

ambient water entrainment and potential erosion capacity? How is the current shape

modified?

Chapter 6 - Gravity currents flowing over mobile bed

Q5 Which are the mechanisms governing the entrainment, transport and deposition of

sediment and how the hydrodynamic of the gravity currents act to induce geomorphic

changes on a mobile bed? Which is the feedback process on the gravity current generated

by the incorporation of entrained sediment?

Q6 How is the downstream deposition of sediment affected by the turbulent structure of

the gravity current?

1.3 Thesis structure

This report is organized in seven chapters and four appendices. Even if the main chapters are

written as scientific journal papers, the document is organized to avoid repetitions of content

between sections of different chapters. The document structure is illustrated in Figure 1.3 and

detailed in the following.

In this Chapter 1, the framework of this research is presented. An introduction and the main

motivation have been presented. The gaps of knowledge in this topic are put in evidence by

the research questions that are addressed by this project.
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INTRODUCTION AND METHODS

SCIENTIFIC DEVELOPMENT RESEARCH QUESTIONS

CONCLUSIONS AND APPENDIX

Introduction

(Chapter 1)

State of the art and
theoretical background

(Chapter 2)

Experimental methods
(Chapter 3)

GRAVITY CURRENT STRUCTURE

INITIAL CONDITIONS

TRANSPORT CAPACITY

Initial volume of relaease
(Chapter 4)

Lock-slope
(Chapter 5)

Mobile bed
(Chapter 6)

Head and body re-
gions definition

(Q1)

Vortical structure
(Q2)

Parametrization of am-
bien water entrainment

and bottom erosion
(Q3)

Effect of incremental
gravitational energy

in shape and entrain-
ment parametrization

(Q4)

Sediment entrainment,
transport and deposition

(Q5)

Deposition patterns
(Q6)

Conclusions and future research
(Chapter 7)

Appendix
Log-law method

ADVP
Sediments

Raw measurements

Figure 1.3: Schema of the document structure and research methodology. At the core, the
subdivision of chapters by set-up configuration is highlighted using keywords of the initial
conditions tested. Chapters are linked to the research questions addressed which are focussing
on two topics namely the structure of the gravity current and its transport capacity.
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Chapter 2 is dedicated to the state-of-the art, in which the main contributions to date on

the topic are presented. This literature review focuses on the gravity currents forming by

lock-exchange technique, with variable bed slope, and on mobile bed since those are the

parameters tested in this research. Theoretical background and the scaling issues are also

discussed.

Chapter 3 is devoted to the experimental details: the laboratory set-up, measuring equipment

and experimental procedure are presented for the three groups of measurements performed.

The experimental variables and parameters are summarized in this chapter.

In Chapter 4, the tests performed under variable lock-lengths and the corresponding results

are presented. A criterion to determine the shape of the gravity current is established and

the complex internal vortical structure characterized. A new method based on the shear

stress time evolution that account for the entrainment capacity at the two, upper and bottom,

boundaries of the gravity currents is presented.

Chapter 5 presents the group of tests performed with an inclined lock. The shape of the

current is altered due to the enhanced entrainment of ambient water and mainly the body of

the current results affected. How the increment of gravitational energy, due to the introduction

of the slope, influences the hydrodynamics of the gravity currents, and consequently its

potential transport capacity, is discussed.

In Chapter 6, tests of gravity currents flowing on a mobile bed are discussed and analysed.

The mechanisms governing sediment entrainment, transport and deposition are described.

The feedback between the hydrodynamics of a gravity current and the geomorphic changes

of a mobile bed is investigated as well as the effects on the gravity currents induced by the

incorporation of entrained sediment that may change its momentum by introducing extra

internal stresses. The deposition patterns induced by the turbulent structure of the currents is

examined and related to the flow initial buoyancy and to the size of the mobile bed sediment.

Finally, in Chapter 7, the main conclusions are drawn with suggestions and recommendations

for future research.

Four appendices are included at the end of the report. The first, Appendix A, presents the

logarithmic velocity profile method for shear velocity estimations computed at the bottom

and upper boundaries of the currents. The second, Appendix B, presents the details of the

Acoustic Doppler Velocity Profiler, the main instrument of measurements. The operational

functioning, the improved geometric configuration and the set of equations solved for the

velocity components, that are implemented on the Matlab code here created to read the

Doppler frequencies, are reported. The third, Appendix C, presents the characteristics of the

sediments used in the third group of tests (Chapter 6). Finally in Appendix D the instanta-

neous streamwise and vertical velocity time evolution at selected heights along the vertical

are reported for tests presented in Chapter 6. The decomposition in mean and fluctuating

components is also shown.
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1.4 Context and framework of the research

The effects of floods, storm surges and other inundation hazards are greatly amplified by

undesired morphological changes in rivers, estuaries and coastal areas. Also, morphological

changes in reservoirs and in the vicinity of man-made structures, inland and offshore, may

hinder their functions, disrupt water supply and energy production and considerably increase

the risk of failure of structures. Substantial economic losses, human fatalities, disruption of

the social fabric and destruction of ecosystems may thus occur as a result of unmitigated

morphological changes. To understand and predict the evolution of river, estuarine or coastal

morphology, a deep knowledge of sediment transport mechanisms and its relation with flow

hydrodynamics is of paramount importance. Furthermore, the frequency and magnitude of

disasters associated or caused by excessive morphological dynamism are likely to increase due

to climate changes. Hence, the research investment is on fundamental sediment transport

processes. Phenomenological insights must then be included into morphology predicting

tools that, then, can be applied in the engineering realm by well-trained practitioners (http:

//www.seditrans.civil.upatras.gr).

Thus, it is very important to advance knowledge and train future engineers in this field. This

research is part of the European project SEDITRANS (funded by Marie Curie Actions FP7-

PEOPLE-2013-ITN-607394, Multi partner - Initial Training Networks), a network formed to

train researchers in all application areas of sediment transport. The network consists of six

academic (University of Patras, Université Catholique de Louvain, University of Cyprus, Uni-

versità degli Studi di Trieste, Instituto Superiore Tecnico and Ecole Polytechnique Fédérale

de Lausanne) and four industrial partners (Fugro GeoConsulting, Idrostudi Srl, Stucky Ltd

and Laboratório Nacional de Engenharia Civil de Lisboa) and provides an elaborate and

interdisciplinary training-through-research program to 12 early stage and 4 experienced re-

searchers. It includes a comprehensive academic program, secondment at industrial partners,

workshops, winter and summer schools, thematic conferences, production of guidelines and

complementary activities.

The role of this research project, within the framework of SEDITRANS, is to bring knowledge

on sediment transport caused by gravity currents. These flows, characterized by complex

hydrodynamics, are capable of transporting high amount of sediments and are authors of

great geomorphic changes. Once their turbulent structure, that is consequence of the release

conditions, is described, the coupling between the evolution of the gravity current and that of

the underlying substrate is explored.

In the frame of this project, a collaboration with a PhD from Università degli Studi di Trieste

took place in order to reproduce numerically, through a 3D LES model (Roman et al., 2010), the

experimental tests of the third group presented in this research (details in Section 3.2.2). The

results of this collaboration are reported in a peer-reviewed journal (Kyrousi et al., 2017b) and

in some conference contributions (Kyrousi et al. (2017c) and Kyrousi et al. (2017a)). Another

collaboration was established with the company Stucky SA (Renens, Switzerland) with the
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aim of testing the software BASEMENT (Vetsch et al., 2015) for a comparative analysis of

2D shallow water softwares. In this benchmark, selected softwares, including commercial

and academic ones, were run by a group of researchers from SEDITRANS project in order to

perform simulations of several test cases focusing on sediment transport modelling.
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2.1 The governing parameters and equations

Gravity currents are created when two fluids of different densities get into contact under

the action of the gravitational force. Hydrostatic pressure conditions are present in the two

contacting fluids of different densities: ∂p/∂z =−ρi g (with g the gravitational acceleration

acting in the vertical direction, −z, and ρ the density of the fluids with the index i that can

take values i = a, c, where a stands for ambient fluid and c for gravity current). When there

is a difference in ρ between the fluids, it produces a pressure excess in the denser fluid,

∝ (ρc −ρa)g h. At the interface, variations in the height of the current h along the streamwise-

direction (x) give rise to pressure differences in this direction so that the longitudinal pressure

gradient in the current can be written as:

∂p

∂x
∝ (ρc −ρa)g

∂h

∂x
(2.1)

This is particularly important since it is linked to the main internal driving force of the current.

The fluid is pushed into the streamwise-direction by the so-called pressure (buoyancy) force

and this effect is independent of z. This behaviour of the pressure field supports the basic

feature of the gravity current which is a dominant horizontal propagation accompanied by

slow variations of thickness (Ungarish, 2012).

The typical velocity of propagation of the gravity current could be estimated in the lock-

exchange configuration from the energy conversion as it was formulated by Von Kármán

(1940) and explained in the following. The dense fluid is stored in a lock of height h0 and so

the mean potential energy of a particle in the lock is (1/2)g ′h0 per unit mass. Here, the gravity

effect associated with the density difference is referred to as the reduced gravity:

g ′ = g

(
ρc −ρa

ρa

)
= g

(
Δρ

ρa

)
(2.2)

Converting the potential energy into kinetic energy (1/2)u2
0, the velocity scale is defined as:

u0 = (g ′h0)1/2 (2.3)

that is the initial buoyancy velocity by considering negligible the viscous friction.

The governing equations for conservative gravity currents can be derived directly from the

basic principles of mass and momentum conservation of the current presented below in

tensorial notation, where i and j take values 1, 2 and 3, corresponding to the directions x, y

and z, respectively, leading to (x1; x2; x3) ≡ (x; y ; z) and (u1; u2; u3) ≡ (u; v ; w):

∂ρc

∂t
+ ∂ρc ui

∂xi
= 0 (2.4)
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∂ρc ui

∂t
+ ∂ρc ui u j

∂x j
=− ∂p

∂xi
+ ∂

∂xi

(
μc

∂ui

∂x j

)
+ρc gi (2.5)

where p is the pressure, μc the dynamic viscosity of the saline mixture and gi the component

of acceleration due to gravity in the i th direction.

Assuming that the density differences between current and ambient fluid are relatively small

(ρc −ρa)/ρa << 0.1 (Graf et al., 1998), the Boussinesq approximation can be applied and the

density differences can be neglected in the inertia terms, appearing only in the term associated

with gravity since this is the flow driving force.

The instantaneous quantities in the equations above can be separated into their mean and

fluctuating components by application of the Reynolds decomposition:

a(x, y, z) = a(x, y, z)+a′(x, y, z) (2.6)

where a is a certain quantity whose a(x, y, z) represents its time averaged and a′(x, y, z) is the

correspondent turbulent fluctuation, being a′ = 0. The Reynolds decomposition is applied to

velocity, ui = ui +u′
i , and pressure, pi = pi +p ′

i , terms in equations 2.4 and 2.5. Time-averaging

over a time-period small enough that the unsteady character of the flow is still described (Baas

et al., 2005) (see Appendix B), the mean conservation equations for mass and momentum are

obtained:

∂ui

∂xi
= 0 (2.7)

∂ui

∂t
+ ∂ui u j

∂x j
=− 1

ρa

∂p

∂xi
+ ∂

∂xi

(
ν
∂ui

∂x j
−u′

i u′
j

)
+ ρc

ρa
gi (2.8)

Equation 2.7 is the continuity equation for an incompressible fluid and states that the diver-

gence of the velocity field is zero. In Equation 2.8, terms on left side represent the rate of

change of momentum per unit volume of the mixture, and the first and second terms are the

local and advective flow accelerations, respectively. On the right side are the forces responsible

for fluid acceleration: the first two terms correspond to the contact forces due to local pressure

and viscosity, the last term representing the forces of mass, induced by the action of gravity.

By time-averaging the Reynolds decomposed Navier-Stokes equations, a new term appears in

Equation 2.8: the Reynolds stresses −ρau′
i u′

j , which represents the transport of fluctuating

momentum by the velocity fluctuations in the mean flow.

The nondimensionalization of the governing equations gives rise to a dimensionless parameter,

the Reynolds number, that takes into account if the flow is inertial (inviscid) or viscous and it
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is given by:

Re = u0h0

ν
= (g ′h0)1/2 h0

ν
(2.9)

where ν is the kinematic viscosity coefficient.

2.2 The structure of a gravity current

Gravity currents’ shape is widely recognised to be composed of a highly turbulent frontal

region, the head, and a shallower following flow, the tail (e.g. Hacker et al. (1996)). Frontogene-

nesis is the name of the process that leads to the development of a region of strong density

gradient which is called front (Simpson and Linden, 1989). This is effectively a discontinuity

in which the isopycnals, the lines connecting points of equal density, become squeezed to-

gether at the location of the change in density gradient, as described by Hacker and Linden

(2002). It is in this region where the main transfer of momentum (between the current and the

ambient fluid) takes place. The furthermost point of the current, is known as the nose and

is elevated from the bottom (Hacker and Linden, 2002). The current head is characterized

by a three-dimensional unsteady flow, being related to two dominant modes of instability:

Kelvin-Helmholtz billows and lobe-and-cleft structures. The first are mainly due to the shear

at the upper and rear part of the elevated head (Simpson, 1972). The second originate close to

the bed, in correspondence with the advancing front which is subjected to no-slip condition at

the surface and result in a complex three-dimensional structure. They have been interpreted

as the consequence of the gravitational instability of the less dense fluid over-run by the gravity

current head (Simpson and Britter, 1979).

A quasi-steady region, called body, can form between head and tail, for a sufficient volume

of heavy fluid released. Considering this steady part of a gravity current, a general shape of

the mean velocity profile is identified that is similar to the case of a turbulent plane wall jet

(Kneller and Buckee, 2000). It is composed by an inner and an outer region separated by the

velocity maximum u = Umax , that is situated at a height, hmax . The height of the velocity

maximum is controlled by the ratio of the drag forces at the upper and lower boundaries

(Kneller and Buckee, 2000) and it was experimentally found to occur at about 0.2 of the

height of the current (Altinakar et al., 1996). For a smooth boundary , the flow column can

be considered as composed by two overlapping regions (Turner (1973b) and Dey (2014)): (1)

the inner (wall) region for z < hmax , here turbulence is created by the bottom shear where

sediment entrainment and detrainment take place; (2) the outer region, z > hmax , where

turbulence is created in the mixing layer between the current and ambient fluid, and water

entrainment takes place (Altinakar et al., 1996).

The surfaces of contact of a gravity current, at the bottom and at the interface with the ambient

fluid, highly influence the dynamic of the current. High mixing occurs in these regions that

enhance transport processes into the current. It is well known that the current exchanges
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at the upper surface: mixing and entrainment, resulting from the competition of shear and

buoyancy, take place. The competition between the stabilizing effect of buoyancy and the

destabilizing shear is captured in a dimensionless parameter, the gradient Richardson number.

The gradient Richardson number is used to determine the growth or damping of turbulence

by stable vertical stratification, and is widely used in oceanic and atmospheric fluid dynamics.

For a continuously stratified flow, a more global form of Ri which characterises the stability

over the whole depth rather than at specific positions is the bulk Richardson number, Rib :

Rib = g ′hcosα

u2
c

(2.10)

where g ′, h and uc are the reduced gravity, vertical length scale and characteristic velocity of

the current, respectively, and α is the slope angle and it is related to the densimetric Froude

number by:

F rD = Ri−0.5
b (2.11)

For small Ri, shear dominates buoyancy, and the flow is unstable to Kelvin-Helmoltz instability.

A critical value for the local Ri number has been found after theoretical studies of small

disturbances on laminar stratified shearing flows conducted by Turner (1973b) corresponding

to 0.25.

Due to the high exchange with the ambient water at the upper interface, this is not a sharp

boundary. Instead a layer forms, which is hard to classify as gravity current or as counter-flow

and whose parametrization is awaited. The contribution of Ellison and Turner (1959) laid the

groundwork since they defined the height and velocity of the current considering the velocity

distribution through the depth by using the integral scales:

Uh =
∫∞

0
ud z (2.12a)

U 2h =
∫∞

0
u2d z (2.12b)

where h is the flow layer thickness and U the layer-averaged flow velocity. In these equations,

the upper limit ∞ can be replaced by the distance from the bed to the zero velocity interface

between the current and the ambient water above, as in Sequeiros et al. (2010a). The height h,

as defined by Ellison and Turner (1959) (here identified by the notation E&T ), corresponds to

the point where the density is the average of the ambient water and the initial density of the

gravity current.

2.3 Lock-exchange gravity currents

Field studies have provided quantitative information on the nature of turbidity currents in

lakes and reservoirs (Chikita (1990), Chikita et al. (1996), De Cesare et al. (1998), De Cesare
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and Schleiss (1998)), but direct measurements are difficult to perform given the difficulties in

handling the instrumentation: gravity currents have a destructive force that often makes it

impossible to keep any type of installation (Parker et al., 1987). Thus, the utility of controlled

laboratory experiments becomes evident (Parker et al., 1987). Advances in experimental

technology have increased our understanding from broad description of the gravity current

morphology to the inner structure of turbulence in these currents (Kneller and Buckee, 2000).

Gravity currents experiments have traditionally been simulated through the lock-exchange

configuration that consists of the release of a volume of dense fluid into the lighter one, with

the two fluids that are at the beginning at rest and separated by a gate. The earliest laboratory

experiments of gravity currents made use of the lock release method and were carried out by

Keulegan (1957). Performed over a range of initial densities, it was found that, after the gate

was removed the currents propagate and evolve experiencing three distinct phases as firstly

described by Huppert and Simpson (1980) and Simpson (1997). In the first stage, the slumping

phase, the front advances at constant velocity and maintains nearly constant depth. In the

second stage, the similarity phase, the current decelerates, as t 1/3 and decreases in depth.

If the Reynolds number of the gravity current decreases sufficiently, a third phase occurs in

which viscous forces are important (Hacker et al., 1996).

More recent simulations of gravity currents through lock-exchange technique were performed

by Adduce et al. (2011), Nogueira et al. (2014a) and Theiler and Franca (2016), among many

others. The aspect ratio of the denser volume is generally of the order of one (R = h0/Li ≈
O(1), h0 the water column depth and Li the lock length). Although partially idealized, such

conditions provide a functional initial configuration for both theoretical considerations and

numerical simulations (Hogg, 2006) and a closer affinity to real conditions. Continuous

release of dense mixture is a second type of experiments that have been developed to produce

currents that, by running much longer time periods than lock-exchange currents, develop

a stationary body. This brings the advantage of using averaging procedures to characterize

the current (Tokyay et al., 2011). Recently, in order to overcome the restrictions imposed by

both set-up, gravity currents have been more frequently produced by lock-exchange with

a lower aspect ratio: the initial volume of heavier fluid is comparable to the volume of the

lighter one in the second part of the channel (Shin et al., 2004). This configuration allows the

formation of an extended slumping phase in which the front velocity is almost constant. In

these conditions, a quasi-steady regime is formed, similar to the steady state observed for

constant feed gravity currents. Once the flow becomes steady, one can use methods developed

to analyse constant-density channel flow for the study of the turbulence structure (Tokyay

et al., 2011).

2.4 Gravity currents down a slope

A gravity current in nature generally occurs on variable topographies and most of the time

travels along inclined slopes. Examples are powder snow avalanches, river discharge of
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heavier fluid in a lake, leaks from liquefied natural gas reservoirs or gravity currents flowing on

submarine continental shelf, which contribute highly to geomorphological evolution (Huppert,

2006). Ross et al. (2002) showed that only after some time the effect of the slope influences

the gravity current and that initially the current behaves like a current on a horizontal surface.

Beghin et al. (1981) were among the first to investigate the role of the slope on the physic of

a gravity current. They proposed a bulk parametrization of the motion of the current head

which propagates down the channel with a fixed amount of buoyancy. In their model, the

head entrains ambient fluid and develops with a self-similar form throughout its motion. He

showed that for very small slopes, typically less than 5◦, a front velocity first goes through

an acceleration phase followed by a deceleration phase. This is because of the fact that

although the gravitational force increases as the slope becomes steeper there is also increased

entrainment, both into the head itself and into the flow behind. This produces an increased

retarding force on the current as momentum is imparted to the entrained fluid.

Some more recent contributions (Maxworthy and Nokes (2007), Maxworthy (2010)) propose

a modified version of the theory of Beghin et al. (1981), accounting for buoyancy variation

instead of the original assumption of constant buoyancy. They found that the head is con-

tinuously fed by the tail current from initiation until the maximum front velocity is reached.

After the flux of negatively buoyant fluid into the current head ceased, it could be assumed

that the current would then propagate as a current with constant buoyancy, i.e. with a velocity

that eventually decreases. It has in fact been shown that, while with currents flowing along

a horizontal boundary, the head is the controlling feature (Britter and Linden, 1980), down

a slope, the body becomes more determinant in the gravity current evolution since it is up

to 30-40% faster than the head velocity, in dependence on the slope, being able therefore to

move faster material into the head.

Britter and Linden (1980) indicate that a critical angle exists over which buoyancy force is large

enough to counteract the bottom friction and produce a steady flow, and this was found to

be of around one degree. At this point two mechanisms affect the evolution of the current:

the current entrains water from the upper surface due to the increment of friction and the

head is fed by the rear steady current. Dai (2013) found that for high slopes angles, the edge

of the head experiences a large upheaval and enrolment by ambient fluid towards the end

of the deceleration phase, while for low slopes, the gravity current head maintains a more

streamlined shape without violent mixing with ambient of the deceleration phase. He also

confirmed that in the deceleration phase, the patterns for gravity currents on a very low slope

(in his case of 2◦) are similar to those on a horizontal bottom. In fact, the mixing at the front

increases dramatically with slope and the effect of entrainment is seen in the measurements

in the growth of the height of the head with distance down the slope (Britter and Linden, 1980).

Ambient fluid entrainment implies that dilution of the fluid in the current is considerably

greater when it flows down a gradient rather than along the flat and the head begins to lose

buoyancy-containing fluid from its rear by the detachment of large, weakly vortical structures.

At the same time it is still entraining fluid over the majority of its surface so that its mean

density is reduced (Maxworthy, 2010). A good estimate of the amount of buoyant fluid that
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enters the head during its motion becomes thus the crucial point (Maxworthy, 2010). Ellison

and Turner (1959) showed that the rate of turbulent entrainment into a steady constant flow-

rate inclined plume is a function of the overall Richardson number. An unsteady extension

of this work is advisable. Moreover, the case of gravity currents driven by particles or moving

on a mobile bed so that bottom entrainment can take place has also to be considered. In

this case, particle deposition to and erosion from an underlying bed will also be available to

change the head buoyancy (Rastello and Hopfinger, 2004). There will still be buoyancy gain by

a following flow and loss by shedding into a wake, but this other contribution should be taken

into account.

2.5 Gravity currents flowing on mobile bed

2.5.1 Sediment entrainment

In reality, most of the gravity currents not only happen on complex topographies but they

also flow on varied bed compositions. When a gravity current is set into motion over an

erodible bed, particles can be eroded, transported within the current and deposited much

further downstream (Figure 2.1) and this process depends on the particle characteristics and

on the flow hydrodynamics (García and Parker, 1993). Moreover entrained sediments can

passively be advected by the current or they can have an influence on the current dynamics

since they can fuel a self-accelerating current (Parker (1982), Parker et al. (1986), Eames et al.

(2001)): entrainment of sediment can increases the buoyancy of the current itself (Akiyama

and Stefan, 1985). These currents are called self-sustaining and they must comply with the

auto-suspension criteria given by Bagnold (1962). This extra-buoyancy component has an

influence in the current dynamic and it causes the current to increase its velocity. Conversely,

settling of particles reduces current density and consequently the gravitational forces which

maintain the flow, causing the current propagation velocity to decrease (Gladstone et al.,

1998). Lower velocity means less turbulent energy and less sediment-carrying capacity, which

induces additional settling and further reduces the gravitational driving force and velocity

(García and Parker, 1993). This process of sediment loss and velocity reduction continues until

motion stops. Clearly, erosion and deposition processes and consequent topography changes

are dependent (Parker, 1982).

In the early studies of Ellison and Turner (1959), Parker et al. (1987), García and Parker (1993)

sediment entrainment was investigated experimentally and expressed through empirical

functions that depend (i) on the absolute density difference and on "some parameter in the

form of a Richardson number specifying the stability of the layer" in presence of high enough

Reynolds numbers (Ellison and Turner, 1959) or (ii) on particle characteristics through the

particle Reynolds number (Repar t ) and the settling velocity (vs) and on the friction velocity

(u∗). More recent contributions (Baas et al., 2005) discussed the coupling between the flow and

sediment behaviour that is found to be controlled by the relative importance of gravitational

settling and upward directed components of turbulent velocity. Salim et al. (2017) studied the
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Figure 2.1: Sketch of a bottom gravity current flowing on an erodible bed. Entrainment of
material from the bottom takes place which is transported within the gravity current and
deposited downstream.

role of turbulent bursting events in sediment resuspension, claiming that turbulent effects

have to be incorporated in order to improve the existing models based on the definition of

threshold values (mean velocity or shear stress) for a better prediction of sediment transport.

The equilibrium of bed sediment depends on gravitational forces and interlocking between

the bed particles, as resisting actions, and of forces that destabilize, such as (i) bed shear, (ii)

impact (momentum transfer) and (iii) lift (buoyancy, vertical velocity-gradient pressure and

upward turbulence) (Hickin, 1995). In a highly turbulent flow, as in the case of many gravity

currents, the mean flow is often associated with velocity fluctuations that may play a critical

role in dislodging grains from the bed (Hickin, 1995). But bed shear is accepted as the most

important of the impelling forces, and since it is correlated with all the other involved forces,

it provides a "surrogate measure" of them (Hickin, 1995). The magnitude of the shear stress at

the lower boundary layer determines the sediment transport capacity of saline currents and

whether erosion or deposition processes dominate the regime at the bottom boundary (Cossu

and Wells, 2012).

2.5.2 Bed shear stress

Bed shear stress τb is not measured directly but inferred from estimates of the friction velocity

u∗. Due to the quadratic relationship between τb and u∗, high-quality estimates of u∗ are

required in order to obtain reliable bed shear stress estimations (Bagherimiyab and Lemmin,

2013). A number of methods are available for estimating friction velocity: logarithmic mean

velocity profile, turbulent kinetic energy (TKE) profile, wall similarity and spectral methods

among others. Unfortunately, the near boundary region is the most difficult layer from which

to obtain reliable velocity measurements since it is where the higher velocity gradients are

located (Yang et al., 2012).

For a smooth boundary, the flow column can be considered as composed by two overlapping
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regions: the inner and the outer layers (Dey (2014), among many others). The passage of the

density current does not correspond to a steady process. However, it is possible to identify

time intervals where the flow properties remain quasi invariant and consider a zone-averaged

flow (Franca and Brocchini, 2015). Under the assumptions of flow gradually varied in the

longitudinal direction, essentially two dimensional in vertical plane, and with high relative

submersion, the streamwise velocity in the overlapping layer can be fitted to the logarithmic

law of the wall (Ferreira et al., 2012). A friction velocity can so be calculated, and from this the

bed shear stress. The von Kármán-Prandtl law of the wall is:

u(z)

u∗
= 1

k
ln

z

z0
(2.13)

where u(z) is generally averaged over a sufficiently long time scale, u∗ is the friction velocity,

which is the velocity scale corresponding to the bed shear stress (Chassaing, 2010), k is the

von Kármán constant, z is the vertical coordinate and z0 is the zero-velocity level. If the flow

boundary is assumed to be smooth, the classic value of the von Kármán constant of k = 0.405

is adopted but more discussions on the estimation of k can be found in Ferreira (2015).

The total bed shear stress related to the friction velocity u∗ is written as:

τb = ρc u2
∗ (2.14)

being ρc the density of the current at a point close to the bed, here taken as the initial density

of the gravity currents ρ0.

2.6 Scaling

Geometric similarity, distorted scale modelling, unscaled analogues, Froude number simi-

larities are among the options that we can find in literature (Kneller and Buckee, 2000). The

range of slopes here proposed for the second group of tests (see Section 3.2.2) is of the order

of magnitude of the canyons incised into continental margins (Sequeiros et al., 2010a) and

they are thus in agreement with a geometric similarity. Because gravity effects are important

in these types of flows, dynamic similarity is maintained by preserving the Froude number

(Imran et al., 2017), which is the ratio of inertial to gravitational (buoyancy) forces acting on a

fluid flow. Assuming the same viscosity at laboratory and field scale, i.e. that of water, it is not

possible to satisfy Reynolds similarity and Froude similarity simultaneously thus Reynolds

number is often relaxed. However, the range of Reynolds numbers for all flows considered

here are high enough so that the flow can be considered fully turbulent and the assumption

that the effects of viscosity are negligible is valid. To impose densimetric Froude similitude,

the equality of the densimetric Froude number, F rD , in nature (prototype) and laboratory

(model) is required:

(
U√
g ′H

)
p

=
(

U√
g ′H

)
m

(2.15)
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where subscript ’p’ and ’m’ denote prototype and model, respectively. In a flow dominated

by suspension, grain size should be scaled using fall velocity, vs , rather than using the same

scaling as for the main flow. Thus, (i) considering the relation of bed resistance valid in the

case of open-channel flows, formulated in terms of a dimensionless Chezy number C z:

C z = U

u∗
(2.16)

where U is the depth-averaged flow velocity and u∗ the bed shear velocity, and (ii) the threshold

of suspension with the condition:

u∗
vs

= 1 (2.17)

where vs denotes the fall velocity of the sediment, the link between shear velocity and mean

velocity is found. Combining (i) and (ii), being the same C z number in laboratory and in the

field and assuming a similar fractional density excess, the following relation for the velocity

scale ratio λvs is valid:

λvs =
vsp

vsm

=
√

Hp

Hm
= Up

Um
(2.18)

The flow thickness at field scale is expected to be at least two orders of magnitude larger

than at laboratory scale, resulting in fall velocities at field scale being one order of magnitude

larger than at laboratory scale (Sequeiros et al., 2010a). This way, sediment particle size D

is not directly scaled down: to model a sand with a settling velocity of 5 cm/s, a silt should

be used (Middleton, 1993). But such fine sediments may exhibit cohesion. We know that

settling velocity in a fluid at rest mainly depends on size, density, shape and roundness of

the particles (Dietrich, 1982). Under the assumption of spherical particles, it follows that the

settling velocity is only function of the specific gravity of the sediment (i.e. the particle’s density

ρs) and its diameter (D) (Jiménez and Madsen, 2003). Therefore, to overcome the problems

related to the use of very fine material, many authors have used sediment with a reduced

density and greater size to keep the scale between the settling velocity of the prototype and

model. This is the solution adopted in this research as well.

2.7 Conclusions influencing the present research project

2.7.1 Experimental set-up

Previous researches have demonstrated that lock-exchange technique is a convenient configu-

ration for studying gravity currents through theoretical, numerical or experimental studies and

it is the technique that is therefore chosen for the present research. The choice is supported

by the fact that natural gravity currents are created by the movement of a given volume of

denser fluid (snow avalanches, turbidity currents, oil leakages among many other examples),
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as is the case for lock-exchange reproduced in laboratory. While designing the experimental

set-up, a main concern was to allow the visualisation of the flow since video records were

planned. Glass walls were therefore adopted for building the channel. The reflexion of the

gravity current at the final section of the channel is usually a limitation for having longer

records of the current body and this problem is here solved by placing a dumping system

which is a final big tank that allows the currents to plunge and dissolve in it (as presented in

the following Chapter 3).

2.7.2 Initial conditions

Head and body of the current are known to have different hydrodynamics and consequently

different roles in sediment entrainment and transport of mass and momentum. The influence

of the initial volume of release in the development of these two regions has been systematically

tested as was never attempted before. The outcome of these preliminary tests have confirmed

the importance of the body in the mixing process and that an extended quasi-steady body

region is suitable for analysing the interaction between the hydrodynamics of a gravity current

and the geomorphic changes of a mobile bed, which is one of the main focusses of this research.

Changing initial conditions produces variations in the structure of the gravity currents and

affect therefore the inherent mixing processes of these highly turbulent flows. The variation in

the evolution of the gravity currents produced by methodically varying initial density of the

denser fluid, initial volume of dense release and inclination of the bottom is here investigated.

The range of slopes tested was intended to explore the behaviour of the gravity current for

the critical angle that has been identified by Britter and Linden (1980), which intervenes for

relatively small bed inclinations. The bed slopes up to 5◦ received relatively little attention in

previous studies of gravity current down an inclined. By testing the inclinations up to a limit

case in which two mechanisms take place (the current entrains water from the upper surface

due to the increment of friction and the head is fed by the rear steady current) the transition

from a friction governed flow to a flow in which gravitational forces become more and more

important is here investigated.

2.7.3 Sediment transport

Understanding the physical processes governing sediment entrainment, transport and de-

position within a gravity current has significant implications in nature (sediments play an

important role in the natural cycle of the aquatic environment or as a sink for substances

or pollutants) and for engineering applications (e.g. reservoir sedimentation or stability of

hydraulic structures among others) but have so far seldom been investigated. In order to study

the coupling mechanism between the evolution of the gravity current and sediment transport,

the lock-exchange technique, but with a volume of release that is comparable to the volume

of ambient water in which the current forms, is therefore used, for the first time to the best

of our knowledge. Moreover scaling effects are taken into account by carefully choosing the

sediment used to reproduce the mobile bed.
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3 Experimental methods

Chapter 3 is based on the scientific articles "Measurement of the deposition of fine sediments in a channel bed"
by S. Chamoun, J. Zordan, G. De Cesare and M.J. Franca published in Flow Measurement and Instrumentation and
"Image processing and laser measurements for the determination of gravity current erosion and deposition" by J.
Zordan, C. Juez, A.J. Schleiss and M.J. Franca submitted to Measurement Science and Technology. The experimental
work and the analysis presented hereafter is original and was performed by the author.
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3.1 Introduction

Gravity current experiments have been performed in laboratory through many different tech-

niques. The lock release was chosen in the present study. The experiments were performed in a

set up specifically designed for the purpose at the Laboratoire de Constructions Hydrauliques

(LCH) of EPFL.

Three configurations of the channel were tested: (1) horizontal bottom with variable lock-

length; (2) lock with variable slope with constant water depth and consequently lock-volume

reduction; (3) horizontal bottom with the longest lock-length and with mobile bed.

Five lock volumes are created by shortening the upstream wall of the channel so reducing the

length (Li ) of the portion of the channel where the heavier fluid is situated.

The slope was created by introducing an inclined bottom in this upstream part of the channel

(the lock). With this set-up, the head velocity is not affected since the relative submergence of

the current, i.e. hc /H , didn’t vary (Altinakar et al., 1990): the flume depth at the section where

measurements were collected is constant among tests.

The mobile bed consisted of a reach of 1 cm depth depression with a flat bed, where the

erodible material is placed. The erodible bed is situated at a distance from the gate which

ensures the complete formation of the gravity current flowing on it and to leave a downstream

reach along the channel where deposition can take place.

3.2 Experimental set-up

3.2.1 Flume set-up and procedure of tests

The rectangular flume shown in Figure 3.1 is 7.5 m long and 0.275 m wide and it is divided

into two sections of comparable volumes by a vertical sliding gate. The bed of the downstream

part of the channel is horizontal and smooth. An upstream reach of the channel (the lock)

serves as head tank for the dense mixture and is filled with salty water. The downstream reach

is filled with fresh water reaching the same height as the upstream one and it is here where the

current propagates and where the main measurements are made.

When the gate is removed through a system of pulleys, with a falling weight to produce an

instantaneous full-depth release, differences in the hydrostatic pressure cause the denser fluid

to flow downstream near the bed of the channel, while the lighter fluid flows in the opposite

direction at the top, as described in Shin et al. (2004). The current is dissipated flowing down

into a final large tank that was conceived to avoid the reflexion of the current at the final

section. The final tank is 4 m long, 1.8 m wide, 1.5 m height (Figure 3.1). The channel in which

the current is produced is connected to the tank at a height of 1 m from the floor in order to let

the current plunge into the reservoir.
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3.2. Experimental set-up

The experiments are prepared by firstly filling the channel with clear water reaching a water

depth of h0=0.2 m. The water depth is the same in the lock and in the main channel (Figure

3.1). In the lock an amount of sodium chloride is added, stirred and completely dissolved,

in order to reach the predefined density of the fluid. A mechanical mixer positioned inside

ensured that no density stratification occurred. Density and temperature were checked by

means of a densimeter and a thermometer before each test. The two fluids (ambient water

and the denser salty water) are initially at rest, then the gate is released and the current forms.

In Figure 3.2, the experimental installation with (a) the upstream tank, (b) the downstream

reservoir, (c) the gate and (d) the Acoustic Doppler Velocity Profiler instrument for velocity

measurements, is shown.

3.2.2 Experimental parameters

Three group of tests were conducted. Three buoyancy differences are tested in combination

with:

• five lock-lengths;

• five slopes of the head tank;

• three grain sizes of the material composing the erodible bed.

First group

Five lock volumes are created by shortening the upstream wall of the channel so reducing the

length (Li ) of the portion of the channel where the denser fluid is situated (see Chapter 4).

Second group

Five inclinations of the bottom of the lock are created by introducing a slope on the channel

lock-reach. In this way, the volume of denser fluid is reduced. The slopes ranges from 0 to 16%

(which correspond to an inclination of the lock-bed from 0◦ to 9.09◦) and the volume-reduction

corresponds to the ones tested in the first group of tests (see Chapter 5).

Third group

In the third configuration the channel presents at the bed, that is kept horizontal and smooth,

an erodible bed reach, 2.5 m downstream from the gate. A depression on the flat bed of 1 cm

of depth, is filled with Polyurethane artificial fine sediments. This erodible section has the

same width as the channel and a longitudinal extent of 0.6 m. Three grain size distributions of

the material composing the erodible bed were tested (see Chapter 6).

The main parameters are presented in the non-dimensional form by adopting the following

dimensionally independent scales: hb as the vertical length scale, here considered as one

third of the total water depth h0, which is 0.2 m, (hb = h0/3). The length scale is chosen since

preliminary tests have revealed that the height of the body of the current is, on average, one
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Chapter 3. Experimental methods

Figure 3.1: Side view, cross section and top view of the experimental set-up.

Figure 3.2: Experimental set-up at the Laboratoire de Constructions Hydrauliques (LCH) of
EPFL with the upstream tank (a), the downstream reservoir (b), the gate (c) and the Acoustic
Doppler Velocity Profiler (d) instrument for velocity measurements.
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third of the total water column. The time scale is therefore defined as:

t∗ = hb

ub
(3.1)

with ub the buoyancy velocity which is the velocity scale and it is defined as:

ub =
√

g ′hb (3.2)

3.3 Measurements

3.3.1 Types of instrumentation

The measurements conducted are based on four different instruments: the Acoustic Doppler

Velocity Profiler collects instantaneous 3D velocity measurements, a high speed camera takes

video from the transparent side wall, a laser technique combined with photogrammetry are

finally used to measure the sediment morphology of the bottom.

While for the first and second groups of tests the ADVP only was used, for the third group

the whole set of instruments was synchronously operated. Figure 3.3 shows a general view of

the complex of measurements collected at the passage of the gravity current during the third

group.

Figure 3.3: Sketch of a bottom gravity current and details of the instrumentation used: the 3D
velocity profiler (ADVP) placed just upstream the mobile reach, the high speed camera takes
video from the transparent side wall covering the zone in correspondence of the erodible bed,
a laser technique combined with photogrammetry measure the sediment morphology of the
bottom.
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3.3.2 Acoustic Doppler Velocity Profiler

The 3D Acoustic Doppler Velocity Profiler (ADVP) (Lemmin and Rolland (1997), Hurther and

Lemmin (2001), Franca and Lemmin (2006)) is a non-intrusive sonar instrument that measures

the instantaneous velocity profiles using the Doppler effect without the need of calibration.

It is placed 2.5 m downstream from the gate, immediately upstream from the mobile bed

(see details in Section 6.2, Figure 6.1). This distance was large enough to assure the gravity

current formation and also that its characteristics are not affected by the release conditions.

It measures simultaneously 3D instantaneous velocity components during the passage of

the density current, over an entire vertical profile, including the upper counter-flow. The

minimum number of pulse-pairs is here fixed at 32 which corresponds to a frequency of

acquisition of 31.25 Hz (Lemmin and Rolland, 1997). The instrument consists of a central

emitter surrounded by four receivers (for details see Appendix B). The geometric configuration

is the result of an optimization of the instrument that allows noise reduction by creating

redundancy information for the velocity components by using four receivers (Blanckaert and

Lemmin, 2006). Additionally, the signal despiking procedure proposed by Goring and Nikora

(2002) was used, and results in a considerable reduction of the noise level. The instantaneous

velocity components are measured in time along a vertical profile that is divided into volumes,

called "gates", that are consecutively scattered by the sound waves (Hurther and Lemmin,

2000). Figure 3.4 displays a dataset of the instantaneous component of the streamwise velocity

for one test (R1.fine, see Table 6.1 for test definition). On the x-axis of Figure 3.4 is the time

and on the y-axis the gate numbers, numbered from the surface to the bottom of the flume. A

total of 44 gates in the vertical are measured which means that the total fluid height of 200

mm is divided in gates of about 5 mm each.

The zero of the vertical coordinate system is fixed at the bed, with the axis directed towards

the water surface, while the reference for time x-axis is at the moment when a first positive

streamwise velocity is detected, i.e. when the ADVP detects the arrival of the front of the gravity

current (see Figure 3.4).

By touching the water surface, the ADVP housing perturbs the flow in a region of less than 2

cm near the water surface (Blanckaert, 2010). This region is, for this reason, masked in the

velocity field representation of the following chapters.

3.3.3 ADVP data post-processing

By means of the analysis of the power spectra of the raw data collected with the ADVP, noisy

frequencies were mainly detected above 8 Hz (Figure 3.6). The instantaneous measurements

were thus low-pass filtered with 8 Hz as cut-off frequency.

To determine the time-series of the mean velocities (u, w , respectively for streamwise and

vertical directions), for the unsteady gravity current, the analysis proposed by Baas et al. (2005)

(similar to a zone-average as defined in Franca and Brocchini (2015)) is here adopted. A
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Figure 3.4: Instantaneous streamwise velocity for test R1.fine. The vertical is divided in 44
gates, of about 5 mm each. The magnitude of the velocity is indicated by the coloured bar.

time-window of 0.32 s is chosen to apply for a moving average since the analysis of the power

spectra confirms that with this window the harmonics of all the meaningful frequencies are

still recognisable while, increasing the time window, the harmonics of progressively smaller

frequency gradually lose power and they become impossible to distinguish from white noise.

This procedure is made to both streamwise and vertical components. This moving average

defined the mean streamwise and vertical velocities u and w which, following the Reynolds

decomposition, are related with the instantaneous velocities (u, w) and the turbulent fluctua-

tions (u′, w ′) as defined in Equation 2.6.

The vertical profiles of u are shown in Figure 3.5 for one exemplar test (R1.fine, see Table 6.1

for test definition) at several instants, in a composite image with on the back the time evolving

mean streamwise velocity field.

The cleaning procedure of the signals and corresponding spectra is shown in Figure 3.6.

Because the turbulent motions associated with the eddies are approximately random, we can

characterize them using statistical concepts. The scales of turbulence velocity are defined as

the root-mean square (RMS) of the streamwise and of the vertical fluctuating components

(second order moment of the velocity distribution) as defined by Kneller et al. (1997):

u′
r ms =

[
1

m

m∑
i=1

(ui −u)2

]0.5

(3.3)

w ′
r ms =

[
1

m

m∑
i=1

(wi −w)2

]0.5

(3.4)

where m is the number of observations and i refers to the observation.
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Figure 3.5: Composite representation of the vertical profiles of mean streamwise velocity (in
orange) and instantaneous streamwise velocity map. The regions of the currents are also
identified.
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Figure 3.6: Raw velocity data (black) and despiked data (red) obtained with the procedure
proposed by Goring and Nikora (2002). Then, through the analysis of the velocity spectra
(figure at the bottom), the cut-off frequency of 8 Hz has been identified in order to low pass
filter the noisy frequencies (yellow line).
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3.3.4 Pulsed red laser diode

A Baumer OADM13 laser is used to measure the topography of the mobile bed reach and of

the downstream channel bed, before and after the passage of the current. It is a photoelectric

distance-measuring compact sensor composed of a laser emitter that produces a light source

and a photodiode line working as receiver. The measuring range of this pulsed red laser diode

is of 50-350 mm and it has an accuracy of 0.01-0.4 mm. It is typically used in production

processes (e.g., for flaw detection in industrial application) but recently applied in a wider

range of applications (Chamoun et al., 2016b).

In Figure 3.7 the dimensions and a sketch of the triangulation working principle, which allows

to measure the distance from an object, are reported: the laser beam strikes an object and

the receiver reads the angle of incidence of the backscattered light. The angle of incidence

changes according to the distance (in Figure 3.7, two points placed at a distance A or A+B

produce a backscatter light that has a difference of inclination α). The receiver converts the

backscattered light into a current and an integrated microcontroller detects the position of

this point. The controller calculates the angle from the light distribution on the photodiode

line and then deduces the distance to the object (Baumer, 2015).

The measuring range can be adjusted by the user within the maximum measuring range of

50-350 mm (imposed by the factory setting). The analog output has its full span within this

range that is also called “Teach-in” range. Changing the measuring range causes a variation in

the resolution and a linearity error (deviation between calculated value and measured value

due to technical reasons). In other words, the closer the furthest point of the measuring range

is to the sensor, the better the resolution and the same goes for having a lower linearity error.

The Teach-in feature is designed to choose a smaller range within the nominal measuring

range for optimizing the resolution and linearity. Two positions must be taught: the first

Teach-in position aligns with 0 V (or 4 mA), the second position aligns with 10 V (or 20 mA),

therefore the current or voltage output adapts to the new range. A voltage converter translates

the current into a voltage signal which is finally sent to the PC. The evolution of the signal in

time is shown by a graphical interface which acquires, displays and stores the data.

The calibration equation needed in order to link the output voltage to the distance of the

laser light source from the top of the sediment deposit and so to derive the topography of the

bottom, is obtained in experimental operating conditions using gauges of different known

thickness. The characteristic derivation of the calibration line of the laser is presented in

(Chamoun et al., 2016b) and, in the operation conditions of this set-up, is given by:

e =−0.1746V +7.2613 (3.5)

where e (mm) is the thickness of the deposit at the bottom and V (Volts) the output of the laser.

The values were highly correlated with R2 ≈ 0.99. Equation 3.5 is implemented in the software,

and the output measurements are therefore directly provided as thickness of the deposits.
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Figure 3.7: Laser Baumer OADM13 dimensions (Baumer, 2015) and sketch representing the
triangulation principle of the laser beam.

Figure 3.8: The laser waterproof box (a) and the laser Baumer OADM13 used for the tests (b).
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The measurements were collected with the channel still filled with water to avoid flushing

away the fine sediment while emptying it. Thus, for operation, the instrument is placed in a

water-proof box (Figure 3.8), at an arbitrary height from the reference bottom (here 100 mm).

A sliding system allows the instrument to be pulled steadily letting the laser light cross the

transparent bottom of the box to streak the bed of the channel along established paths. The

structure is moved at a constant velocity and the instrument collects data at a fixed frequency

of 20 Hz.

The laser recorded point measurements of distance to the first solid surface encountered. The

instrument is placed at a known distance from the bottom so, whether a deposition layer is

present, the information in distance can be converted, by difference, into thickness of deposit,

by composing the surveys made after and before the reference condition.

The laser collects data on the mobile bed reach and for a length of 500 mm downstream, as

shown in Figure 3.9:

• the laser is slid along eight longitudinal profiles (ZBED,i ) of the mobile bed reach (which

total surface is AER );

• the laser is slid over eight equally spaced cross-sections, from x=700 mm to x=1100 mm.

Figure 3.10 displays the result of the linear interpolation of the data collected with the laser.

The passage through the original sampled points is forced for the interpolation. The current

flowed from left to right.
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Figure 3.9: Sketch of the sections surveyed by the laser on the mobile bed reach and on
the downstream reach of deposition. The mobile bed reach is subdivided in nine areas
AER,i = AER /(n +1), with AER =0.275 x 0.6 m2 the total surface of the mobile bed and n = 8
the number of equidistant longitudinal sections recorded (ZBED,i ). The downstream zone
of deposition is surveyed by 8 equidistant cross-sections (Ci ) covering the bed surface from
100 mm after the mobile bed for a length of 400 mm. AD,i are the areas adjacent to the
correspondent Ci which subdivide the downstream reach. The pictures are taken in order to
cover the whole downstream reach.
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Figure 3.10: Result of the linear interpolation of the data collected with the laser with indication
of the eight cross sections recorded.
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3.3.5 High speed camera

The passage of the density current over the erodible bed was recorded laterally by a SMX-160

camera. The acquisition frequency was 25 Hz and the area of interest, with dimensions of 0.245

x 0.18 m2 as indicated in Figure 3.11, had a spatial resolution of 0.5 mm/px. This resolution

was bigger than the size of the sediments but accurate enough for distinguishing suspended

sediments/gravity current and gravity current/ambient water interfaces. The captured frames

were converted into gray scale matrices (256 gray levels) for their subsequent data treatment.

Two halogen spots of 1000 W were placed at the opposite side of the camera. Between the

spots and the transparent wall of the channel a filter screen was inserted for achieving an

homogeneous illuminated area. This system provided back lighting, which allows one to

distinguish easily the movement of the current, and decreased the required exposure time,

preventing blurred images. The reference time for the initialization of the experiments was

chosen as the first moment where the current is entering in the visual field of the camera. In

the collection of images taken during the experiments, four characteristic flow regions were

identified: (i) a layer of clear water, (ii) a density current layer with the brine, (iii) a mixture

layer with brine and few sediments and (iv) a dense layer of sediments. These flow regions

were recognized by a semi-automatic threshold based procedure resulting in the definition

of the relevant interfaces. The result of the data treatment is illustrated in Figure 3.11 where

the original and the post-processed images are shown. The interface between the water and

the density current was identified by the subtraction between the current frame and a frame

without the current. The pixels corresponding to the sediments were isolated and the value

annotated. A threshold value was identified and it was used for filtering the surface of the

image covered by the cloud of sediment. Furthermore, the pixels whose value was above

that threshold and below an average value of the pixels belonging to the density current layer

they were labelled as a mixture layer. Thanks to the aforementioned protocol it was possible

to measure the evolution of the current and of the cloud of suspended sediment within the

interrogation window.

3.3.6 Reflex camera

The deposition patterns were captured through pictures that are taken from the top (Figure

3.9) in order to cover the whole width (y=0-275 mm) and a sufficient longitudinal reach (x=600-

1100 mm). The camera used for this work, a Nikon D60, has a sensor resolution of 10.2

megapixels (sensor size is 23.6 mm x 15.8 mm), and offers ISO sensitivity ranging from 100 to

1600. It has a lens 18-55 mm, f/3.5-5.6.

The image processing comprised three steps: (1) image acquisition, (2) image analysis (treating

the image and measuring objects) and (3) data processing (filtering the data) (Pennekamp and

Schtickzelle, 2013). The most crucial step for automatic image analysis is to create a sharp

contrast between the objects of interest (foreground) and their environment (background),

so they can be accurately distinguished. This process is called segmentation (Gonzalez and
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Woods, 2007) and is described later in this section. Ideally, the foreground will contain only

the objects which have to be measured. However, some misidentified objects can also be

comprised in the foreground, which need to be removed.

Images are usually represented as arrays, where the height and width in pixel give the row

and column dimensions of the 2-D array (a matrix). The numerical values correspond to the

intensity (i.e. a value between 0 and 255 for grayscale images). In fact, based on hardware

considerations the number of intensity levels usually is an integer power of two, with the most

common number being 8-bits. This is the case of the images used for this study which thus

have a range of 28.

The choice of the material was aiming at improving the distinction between fore- and back-

ground: dark plastic was used for the bottom of the channel and white material for the

sediment. Illumination was optimized to provide a homogeneous background and strong

contrast. A lighting system permits a homogeneous repartition of the luminosity to distinguish

the target objects independently of their position in the recorded frame. Illumination intensity

needs to be high enough to allow for short exposure time and hence avoid blurring images

(Pennekamp and Schtickzelle, 2013).

Images from the top of the deposition reach were taken from above the water surface. The

recorded area was (500x275) mm with a resolution of (1818x1000) pixels. Images were con-

verted from a truecolor image, RGB, to a grayscale image. Subsequently, a histogram equaliza-

tion was used for enhancing the appearance of images. In order to produce a more uniformly

distributed histogram, the gray levels need to be "stretched out" to produce an image that

becomes much clearer (Maini and Aggarwal, 2010). For an 8-bit grayscale image there are 256

different possible intensities, and so the histogram graphically displays 256 numbers showing

the distribution of pixels amongst those grayscale values. An example in Figure 3.12 shows the

histograms for one test of raw image and of the image after histogram equalization. In Figure

3.13 the image treatment procedure is presented: from the equalized image, segmentation is

performed and then it is converted into a binary image. The description of the procedure is

also reported in Figure 3.13.
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3.3. Measurements

Figure 3.11: Detection of relevant flow interfaces. Original image (top) and post-processed
image (bottom) with the interfaces between the clear water and the current (red line) and the
current and the cloud of suspended sediments (green line).
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4 Horizontal and vertical structure of
gravity currents produced by varying
initial volume of release

Chapter 4 is based on the scientific articles "Structure of dense release produced by varying initial conditions"
by J. Zordan, A.J. Schleiss and M.J. Franca under revision in Environmental Fluid Mechanics and "Influence of
the initial volume of lock exchange gravity currents on sediment entrainment capacity" by J. Zordan published in
Book of abstracts of IAHR 2017 conference, Kuala-Lumpur, Malaysia. The experimental work and the analysis
presented hereafter is original and was performed by the author.
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Chapter 4. Horizontal and vertical structure of gravity currents produced by varying
initial volume of release

4.1 Introduction

Gravity currents are originated by the release of a certain amount of heavy fluid into another

one of different density. Lock-exchange technique has been adopted by many authors (see

Chapter 2.3) to reproduce these phenomena in laboratory. This has many advantages since it

provides a functional initial configuration for both theoretical considerations and numerical

simulations and moreover it recreates many gravity currents as they are generated in reality.

Gravity currents at geophysical scale are in fact typically initiated by a given volume of dense

fluid. Figure 1.1 showed some examples. Turbidity currents in ocean basins are often caused by

slumps of sediment from the upper continental slopes (Heezen et al. (1954), Piper et al. (1985),

Hallworth et al. (1993)). Avalanches of airborne snow are originated due to the detachment of

a mass of snow from the main compacted snowpack (Bates et al., 2014). Considering extreme

flooding storms in wetlands, these flows carry particles into suspension and a gravity current

develops. Different flooding event intensities can be reproduced in laboratory by different

volumes of dense mixture by changing the lock-length of the channel (Serra et al., 2017). Man-

made gravity currents such as oil slicks depends on the amount of contaminant dispersed. In

industry, examples are numerous as well: sheet glass production consists of a certain supply

of molten glass across a horizontal surface (Huppert, 2006).

When the current forms, a well defined shape is recognised: a highly turbulent frontal region,

the head, and a shallower following flow, the tail (Hacker et al., 1996). A quasi-steady region

called body can form between head and tail and its extent vary in relation to the initial

conditions e.g. the amount of heavy fluid released. A sketch of a gravity current is shown in

Figure 4.1 where the characteristic variables are reported. Once a criterion for the identification

of the lengths of head (Lh) and body (Lb) is established, their characteristic heights can be

measured as well (δh and δb).

In terms of dynamic properties of the flow, gravity flows differ significantly from open-channel

flows (e.g. rivers) regarding their velocity profile (Manica (2012) and many prior references).

In the case of gravity flows, the shear at the upper interface (τm) has a main role and causes

the creation of a mixing zone characterized by an high exchange between gravity current and

ambient water. At the bottom, as a result of the no-slip condition, the resistance with the

surface creates high shear (τb) and a inner layer with a higher density is formed. The vertical

extent of these two layers are respectively indicated as hm and hi in Figure 4.1.

The objective is therefore to determine the shape of the gravity current produced by lock

exchange, to establish a universal rule to allow the distinction of head, tail and the possible

body. These regions have different dynamics and extent that vary in relation with the condition

of release. These latter are parametrized by the length of the lock, i.e the initial volume of

dense fluid released, and the initial buoyancy of the mixture in the lock. Secondly, the relative

importance of the boundary layers, which are the upper mixing zone between gravity current

and ambient fluid and the inner layer at the bottom, is analysed and determined.

The first challenge consists in identifying the zones composing the gravity current which are
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4.1. Introduction

Figure 4.1: Schematic of a gravity current (description of all terms is provided in the text).

characterized by distinctive turbulent dynamics. Due to friction, substantial mixing occurs,

mainly in the early stages of the evolution of lock-release gravity currents, and this mixing

leads to the formation of a complex internal density structure (Hacker et al., 1996). Inner and

upper layers, even if affected by different vortical movements, are mutually interacting. For

this reason, simplified models, such as two-layer shallow water models need a suitable en-

trainment parametrization to correctly simulate the dynamics of a lock-release gravity current

(Fragoso et al. (2013), Ottolenghi et al. (2016a)). This brings to the last point, that concerns the

entrainment parametrization. It is proposed to estimate the entrainment capacity on the base

of the shear stress time evolution. Assuming a logarithmic velocity distribution in the vicinity

of the bed, the friction velocity and consequently the bed shear stress can be estimated. Bed

shear stress measurements for each instantaneous averaged profile are determined and so the

impact on the flow transport capacity may be assessed for the different regions of the current

(head and body).

Finally, it is shown that the variation of the initial conditions have consequences on (i) the

configuration of the currents and on (ii) the hydrodynamics of the currents, including mass

and momentum exchanges, which are in addition mutually dependent.
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4.2 Methods

This is the first group of tests, as explained in Section 3.2.2. The configuration of the flume

is shown in Figure 4.2. For this set-up, the bottom of the channel is horizontal and smooth.

Five lock volumes are created by shortening the upstream wall of the channel so reducing the

length (Li ) of the portion of the channel where the denser fluid is situated. The rest of the

set-up is unchanged. Three initial densities in the lock are tested, combined with five sizes of

the upstream reach of the channel. The experimental parameters are reported in Table 5.1.

The Acoustic Doppler Velocity Profiler (ADVP) is used to record instantaneous 3D velocities

along a vertical, 2.5 m downstream from the gate (Figure 4.2). A despiking procedure (Goring

and Nikora, 2002) and a low-pass filter applied to the noisy frequencies, after analysis of the

power spectra of the raw data, allowed considerable reduction of the noise, as explained in

Chapter 3.3.3.

4.3 Results

4.3.1 Flow description

The mean streamwise velocity field is shown in Figure 4.3 by a color map which contains

on the top the 2D vector field corresponding to the streamwise and vertical components.

Normalization is made using the time scale t∗ = hb/ub , where hb is the vertical length scale

and ub =√
g ′hb the buoyancy velocity (c.f. Chapter 3.2.2).

In Figure 4.3, we can notice that shorter currents are formed by increasingly shorter lock

lengths, beginning with an initial length of the lock of 2.5 m. Increasing initial current densities

results in larger streamwise velocities. For all the tests, a well defined arising head is identified.

This is the region where the higher values of streamwise velocity are detected, at around

one third of the current height, as was also observed in literature (Kneller and Buckee, 2000).

On the rear part of the head, at around t/t∗ = 15, the interface is characterized by a zone

of instabilities with the formation of billows. The vector field allows the visualization of the

Kelvin-Helmholtz type of instabilities caused by the shear between the head and the ambient

fluid, that moves fluid clockwise enhancing mixing and ambient water entrainment.

The general shape of the gravity currents is composed of an arising head followed by a body,

with stable condition, then a tail where flow velocities and flow depth decay. The extent of

the body is seen to increase for longer lock lengths. Corresponding to the dense flow that

moves at the bottom in the positive streamwise direction, an opposite movement of ambient

water forms on the top. This counter-current does not have a defined front but shows a jet-like

configuration that is more defined for higher gravity current velocities.
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Figure 4.2: Side view of the experimental set-up.

Li ρ0 Li Vi /V0 Ri g ′
0 u0 Re0 ΔT

Exp. (kg /m3) (m) (−) (−) (m/s2) (m/s) (−) (◦C )

R1.L0 1028 2.500 1.000 0.080 0.29 0.24 48166
R1.L1 1028 1.875 0.750 0.107 0.29 0.24 48166
R1.L2 1028 1.563 0.625 0.128 0.29 0.24 48166 ≤ 1
R1.L3 1028 1.250 0.500 0.160 0.29 0.24 48166
R1.L4 1028 0.625 0.250 0.320 0.29 0.24 48166

R2.L0 1038 2.500 1.00 0.080 0.39 0.28 55857
R2.L1 1038 1.875 0.750 0.107 0.39 0.28 55857
R2.L2 1038 1.563 0.625 0.128 0.39 0.28 55857 ≤ 1
R2.L3 1038 1.250 0.500 0.160 0.39 0.28 55857
R2.L4 1038 0.625 0.250 0.320 0.39 0.28 55857

R3.L0 1048 2.500 1.000 0.080 0.49 0.31 62610
R3.L1 1048 1.875 0.750 0.107 0.49 0.31 62610
R3.L2 1048 1.563 0.625 0.128 0.49 0.31 62610 ≤ 1
R3.L3 1048 1.250 0.500 0.160 0.49 0.31 62610
R3.L4 1048 0.625 0.250 0.320 0.49 0.31 62610

Table 4.1: Experimental parameters. ρ0 is the initial density of the mixture in the upstream tank
(measured with a densimeter), Li is the length of the upstream reach, Vi /V0 the proportion of
volume of the upstream reach with respect to the configuration L0, Ri = h0/Li is the aspect
ratio of the lock with h0 = 0.2 m the total height of the water column, g ′ is the reduced gravity
corresponding to ρ0, Re0 = u0h0/νc is the Reynolds number based on initial quantities with
u0 = √

g ′h0 the initial buoyancy velocity and νc the kinematic viscosity of the denser fluid
and ΔT is the difference in temperature between the temperature of the mixture, T0, and the
temperature of the ambient water, Ta (measured with a thermometer before each experiment).
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4.3.2 Anatomy of lock-released gravity currents

Head and body are known to have different hydrodynamics and consequently different roles

in sediment entrainment and transport of mass and momentum.

The head is the region of the current where most of the mixing processes take place and it is

characterized by a three-dimensional behaviour (Allen (1971), Britter and Simpson (1978),

Nogueira et al. (2014a)). Billows due to Kelvin-Helmholtz instability are detected in the shear

zone at the upper and rear part of the elevated head (Simpson, 1972). The elevation of the

head can reach twice the height of the following steady flow, as confirmed by the literature

(Simpson (1972), Nogueira et al. (2014b)). The lower boundary has been confirmed to play an

essential role in the structure of the head by Simpson (1972), so when analysing the feedback

between the density current and the bed it is important to identify the head.

To characterize and isolate the head, the kinematic function (H) is used. The downstream

limit of the head is identified by the first meaningful local minimum of the function H , that is

defined as:

H(t ) = ud (t )h(t ) (4.1)

being ud (t ) the instantaneous depth averaged streamwise velocity computed as:

ud (t ) = 1

h

∫h

0
u(z, t )d z (4.2)

and h(t ) the current height that is here identified by the position where the streamwise velocity

is equal to zero. This is in fact considered the upper limit of the gravity current: it corresponds

to the point of inversion of the streamwise velocity profile and a fluid moving with negative

streamwise velocity is recognised as not belonging to the current. Moreover we can notice that

by dimensional analysis the function H corresponds to a discharge per unit width.

The downstream limit of the head is identified by the first meaningful local minimum of

the function H starting from the front. In Nogueira et al. (2014a) a similar procedure was

adopted where the head was identified by considering the product of the depth averaged

streamwise velocity by the depth averaged density of the current. The algorithm used herein

to detect the limit of the head evaluates how much the minimum of H is separated from the

other maximum values. A low isolated trough can be more prominent than one that is higher

but is surrounded by many peaks. In Figure 4.4 the variables composing the function H are

presented for one representative test.

Figure 4.5 shows the computed function H for all the tests of this first group. The square

symbols identify the first meaningful local minimum of H and the vertical black lines represent

the averaged positions of the head limit in time (Lh), considering the tests grouped by the

same lock-length.
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h

Lh

ud

T ime

H

first prominent min of H

Figure 4.4: Definition of the gravity current head from the identification of the first prominent
minimum of the function H . This point identifies the head length (Lh). To determine the
function H (i) the contour of the current, h(t), is identified, (ii) the instantaneous depth
averaged velocity is calculated and (iii), by multiplying the two previous variables, H(t) is
found.

The observation of the temporal series of the instantaneous streamwise velocity field of the

current (Figure 4.3), revealed that after the head passed, there is a period of fairly constant

streamwise velocity which is longer lasting with the increase of the lock length. This is also

observed in the time-series of H in Figure 4.5, where a nearly flat region can be noticed after

the head limit. In order to identify the extent of the body, the cumulative sum of H (
∑

H) is

used (an example is shown in Figure 4.6 for tests with lock-length L2). In Figure 4.6 the head

extension (Lh) is marked by the vertical lines. Variable
∑

H has a linear evolution which is

fitted by a linear regression with least squares method for progressively longer portions of

the accumulated summed data (red lines). The R2 value was analysed in order to find the

optimum extension of the linear portion which corresponds to the temporal extent of the

body region (Lb).

The extensions of the head (Lh) and body (Lb) so determined are compared in Figure 4.7a, for

tests with different initial buoyancies and varying lock-length (Li ). A proper parametrization

for the x-axis was found after dimensional analysis as in Hallworth et al. (1993) and it is here
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Figure 4.5: Definition of the gravity current head from the identification of the first prominent
minimum of the function H . This point identifies the head length (Lh). The extension of the
body, as identified by the cumulative sum of H , is also traced with the red vertical lines.
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Figure 4.6: Time evolution of the cumulative sum of the function H , defined as in Equation
4.1. Vertical black lines delimit the head extension (Lh) and red line are the linear regression of
the function from Lh to the limit of the body (Lb).

adopted. Consider Vi the initial volume of release contained in the lock, which density is

ρ0. As suggested in Hallworth et al. (1993), the variation on the shape of the current, mainly

consequence of water entrainment, depends on: Vi , of dimension [L3], the initial reduced

gravity g ′
0, of dimension [L/T 2], and the distance from the release point, Lp , [L]. If we define

the variation of the volume of the gravity current as Vi /(Vi +Va) where Va is the volume

of entrained ambient water, it follows that, since this latter is dimensionless, it must be

independent of g ′
0 that is the only one containing the temporal scale [T ]. The dependence

is therefore just on: initial volume and distance from the release of the point of observation

(here measurements are collected at a distance Lp from the gate). In order to take into account

both, the normalization proposed is Vi /Vp , where Vi is the initial volume of release and Vp

the volume available for the propagation of the release until the observation position, which

divided by the constant cross section of the channel, results equivalent to Li /Lp .

In Figure 4.7b, the thicknesses of these regions (δh and δb) are also compared by considering

(i) for the head, the maximum value of the contour of the current along the extent Lh ; (ii) for

the body, the average value of the contour of the current along the extension Lb . Here it is

shown that the maximum height of the head and the average height of the body generally

increase with longer lock-lengths. The influence of the initial buoyancy appears not to be

relevant. The length of the body, as expected, increases for longer lock-length. Instead, the

head length is kept fairly constant and independent from the initial density in the lock and

from the volume of release.
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Figure 4.7: a) Length in normalized time (t/t∗) of the head (Lh) and of the body (Lb) for gravity
currents formed by changing lock-lengths (Li /Lp ). b) Comparison of normalized maximum
height of the gravity currents head (δh/hb) and average height of the body (δb/hb). Empty
symbols refers to the head and filled are for the body.

4.3.3 Vorticity field

The analysis of the turbulent dynamics can be attempted by computing the vorticity field.

Figure 4.8 shows the current spanwise vorticity computed as:

ηy = ∂w

∂x
− ∂u

∂z
(4.3)

with the following algorithm as proposed by Sveen (2004) and Raffel et al. (2013):

∂w

∂x

∣∣∣∣
i , j

= 2wi+2, j +wi+1, j −wi−1, j −2wi−2, j

10Δx
(4.4)

53



Chapter 4. Horizontal and vertical structure of gravity currents produced by varying
initial volume of release

∂w

∂z

∣∣∣∣
i , j

= 2ui , j+2 +ui , j+1 −ui , j−1 −2ui , j−2

10Δz
(4.5)

where i and j are the streamwise, x, and vertical, z, coordinates of the measuring point,

respectively, Δx and Δz being the distances in both directions between adjacent points. For

the vertical direction the distance between two subsequent gates is considered (Δz) while for

the streamwise (Δx), the conversion from time to length scale is made using Taylor frozen

hypothesis considering the current front velocity as advection velocity. This is allowed if we

consider that the turbulent eddies are not deformed by the transport imposed by mean and

turbulent velocity fields and so the link between the two dimensions can be made (Franca and

Brocchini, 2015).

The spanwise vorticity field in Figure 4.8 shows a region of high negative vorticity, indicating

the presence of clockwise movements of vortical structures. It is here where the higher rate of

exchange between the two fluids takes place mainly as entrainment of ambient water into the

gravity current. Two lines are also marked in Figure 4.8. The green line corresponds to the zero

velocity contour (u = 0). The blue contour is identified using the integral time scales of Ellison

and Turner (1959) (E&T ) as reported in Equations 2.12a, b. The mean streamwise velocity

time series is used for the calculation of the integral scales and the result is a time dependent

depth-averaged current thickness. In Equations 2.12a, b, the upper limit ∞ is replaced by

the distance from the bed to the zero velocity interface between the current and the ambient

water above, as was done by Sequeiros et al. (2010a).

The region of intense vorticity appears to be delimited by those two previously defined con-

tours (the green and blue lines in Figure 4.8): even if clear boundaries cannot be defined,

the zero-velocity contour and the Turner’s height prove here to be a valid indicator of the

approximate limits of the mixing zone and they will be used hereafter. A verification was

also performed by checking the position of du(t)/d z = max. At this point the shear stress

is maximum and so is the momentum transfer (Lofquist, 1960). This height can be used

to differentiate an inner region and outer region of the flow with opposite velocity gradient

(Kneller et al., 1999). It is here therefore verified that this (du(t )/d z = max) is located between

the two previously identified contours.

The thickness of the mixing zone is compared among tests and shown in Figure 4.9. A clear

tendency with the initial reduced gravity is not distinguished. Instead there is a weak depen-

dency on the lock-length with the exclusion of tests in configuration L0. The linear trend line

has been traced in Figure 4.9, by omitting points R1.L0 and R3.L0 and it suggests that the

extension of the mixing zone increases with the volume of release.

In Figure 4.8, the bodies of the gravity currents present a zone of intense negative vorticity in

correspondence with the mixing zone, which fades downward toward the bottom. Residual

negative values of vorticity with lower intensity occur along the body.
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Positive vorticity, with counter-clockwise movement of vortical structures, is mainly present

in the core of the head and in the vicinity of the bottom. This region is more evident in tests

originated by shorter lock-lengths and by greater initial buoyancy.

In order to summarise the general structure of the vorticity field that is typically recognised in

the tests here performed, a sketch is shown in Figure 4.10. Three main zones are identified

and indicated with the dashed contours. In red there is the upper layer of the gravity current

that strongly interacts with the ambient fluid. The flow in this mixing zone is dominated

by movements which go inversely with respect to the direction of the main flow and this is

evidence of the presence of Kelvin-Helmholtz vortices that are shear layer instabilities whose

strength decreases with time, becoming almost absent in the tail of the current. In green there

is the region which is highly influenced by the vortical structure in the mixing zone. Residual

negative vorticity expands from the upper layer towards the bottom, showing progressively

lower intensity. The interaction between the upper layer and the bottom was already pointed

out by the numerical investigation of Cantero et al. (2008) and here confirmed by experimental

evidence. In blue is the intense positive vorticity at the core of the head which confirms the

presence of an inner movement rotating in the direction of the principal motion.
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Figure 4.9: Thickness of the normalized mixing zone (hm/hb) compared for gravity currents
formed by changing lock-lengths (Li /Lp ).

Figure 4.10: Sketch of the general structure of the spanwise vorticity field with the three main
zones highlighted by the dashed contours.
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4.3.4 Bed and interfacial shear stresses

The time evolution of the shear stress, at the bottom and at the interface with the ambient wa-

ter, is here calculated. The fitting of the logarithmic law of the wall is used in order to estimate

a friction velocity (as described in Appendix A). The fitting procedure of the logarithmic layer

is adopted for each instantaneous mean profile collected with the ADVP instrumentation thus

an estimation of the bottom (τb) and interfacial shear stress (τm) is made for each measuring

instant.

(1) For the bed layer the presence of the logarithmic layer can be inferred by assuming a flow

that is essentially two dimensional in the vertical plane and with high relative submergence.

The bed shear stress is therefore computed as explained in Chapter 2.5.2.

(2) For the upper boundary of the gravity current, studies on turbulent flow near a density

interface confirmed that under certain conditions, the turbulent boundary layer theory can

be applied (Lofquist (1960), Csanady (1978)). In particular, the velocity distribution shows a

viscous sublayer and a buffer layer (Csanady, 1978). Even if some key parameters change with

respect to the conditions along a solid wall, the "law of the wall" is still suitable. The classic

value of the von Kármán constant of k = 0.405 can here be adopted, as confirmed by Csanady

(1978). Instead the effective viscosity and the hydrodynamic roughness are found to vary with

respect to the smooth boundary layer condition. The effective viscosity increases due to the

presence of viscous wavelets and the roughness is affected by the instability of the interface

(Csanady, 1978). If the computation is done under the assumption of hydraulically smooth

flow and considering a constant mean value of water viscosity, there will be a deviation in

the estimation of the actual absolute value of interface shear stress. Since the purpose is to

have an indication of the temporal development of shear at the interface, to the detriment of

the quantification, a qualitative estimation is attempted. In this case the fitting procedure of

the logarithmic layer is determined by considering the mixing layer as defined in Chapter 4.

This layer is delimited at the top by the zero streamwise velocity contour and at the bottom by

the height of the current as defined by the Turner’s integral scales (Ellison and Turner, 1959).

Within this layer the at-least-three consecutive measurement points along the velocity profile

which were giving the highest R2 were considered for fitting.

The evolution of the shear stresses is shown in Figure 4.11. The shear stresses generally show

greater values in the frontal region of the current. Values are greater for currents of larger initial

density and in the case of shorter lock-length. The body presents large peaks of interfacial

shear stress, for a length that is proportional to the extension of the body itself, followed

by a steep diminution. The evolution of the bed shear stresses within the body is instead

characterized by progressively lower values.

58



4.3. Results

0
20

40
60

80
10

0
12

0
048

τb[Pa]
R
1
.L
0

02550

τm[Pa]

0
20

40
60

80
10

0
12

0
048

τb[Pa]

R
1
.L
1

02550

τm[Pa]

0
20

40
60

80
10

0
12

0
048

τb[Pa]

R
1
.L
2

02550

τm[Pa]

0
20

40
60

80
10

0
12

0
048

τb[Pa]

R
1
.L
3

02550

τm[Pa]

0
20

40
60

80
10

0
12

0

t/
t∗

048

τb[Pa]

R
1
.L
4

02550

τm[Pa]

0
20

40
60

80
10

0
12

0
048

τb[Pa]

R
2
.L
0

02550

τm[Pa]

τ
b

τ
m

0
20

40
60

80
10

0
12

0
048

τb[Pa]

R
2
.L
1

02550

τm[Pa]

0
20

40
60

80
10

0
12

0
048

τb[Pa]

R
2
.L
2

02550

τm[Pa]

0
20

40
60

80
10

0
12

0
048

τb[Pa]

R
2
.L
3

02550

τm[Pa]

0
20

40
60

80
10

0
12

0

t/
t∗

048

τb[Pa]

R
2
.L
4

02550

τm[Pa]

0
20

4
0

6
0

8
0

1
0
0

1
2
0

048

τb[Pa]

R
3
.L
0

02
5

5
0

τm[Pa]

0
20

4
0

6
0

8
0

1
0
0

1
2
0

048

τb[Pa]

R
3
.L
1

02
5

5
0

τm[Pa]

0
20

4
0

6
0

8
0

1
0
0

1
2
0

048

τb[Pa]

R
3
.L
2

02
5

5
0

τm[Pa]

0
20

4
0

6
0

8
0

1
0
0

1
2
0

048

τb[Pa]

R
3
.L
3

02
5

5
0

τm[Pa]

0
20

4
0

6
0

8
0

1
0
0

1
2
0

t/
t∗

048

τb[Pa]

R
3
.L
4

02
5

5
0

τm[Pa]

F
ig

u
re

4.
11

:T
em

p
o

ra
le

vo
lu

ti
o

n
o

fb
ed

an
d

in
te

rf
ac

ia
ls

h
ea

r
st

re
ss

es
ca

lc
u

la
te

d
b

y
fi

to
ft

h
e

lo
g

la
w

.

59
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4.3.5 Ambient entrainment and bottom erosion

A new quantity is defined which accounts for the potential water entrainment capacity of the

gravity current on the basis of the computed time evolution of the interfacial shear stress (τm).

It is computed as the non-dimensional time integral of the shear stress which represents, after

dimensional analysis, the work done over a determined duration, per unit surface for a given

advection velocity, being the initial buoyancy velocity, u0, a proxy of this latter. This quantity

Φm is calculated as:

Φm =
∫T2

T1

τm(t )d t/t∗ (4.6)

Similarly to the interfacial water entrainment capacity, the sediment potential entrainment

capacity, is here computed as:

Φb =
∫T4

T3

τb(t )d t/t∗ (4.7)

The limits of integration Ti are in this case chosen to be T1 = 0 and T2 = Lb since the relevant

water entrainment takes place along the whole upper interface and and T3 = Lh , T4 = Lb , in

order to focus on the bottom entrainment capacity of the body, the region that has been found

to be most affected by the variation of the initial conditions.

Figure 4.12 shows that the entrainment capacity from both bottom and upper layers is increas-

ing for tests with longer lock-lengths.

4.4 Discussion on the entrainment parametrization

When the density difference of a gravity current is originated by a dissolved substance that has

a low diffusivity, its horizontal propagation is generally much larger than its vertical extent

(Huppert, 2006). Thus standard shallow water theory can be applied since, for high enough

Reynolds numbers, the equilibrium is established mainly between inertial and buoyancy

forces (Whitham and Fowler, 1975). These models are robust and accurately describe the

front speed and height of the flow, but they cannot resolve the spatio-temporal entrainment

of ambient fluid for which they thus need a parametrization.

Entrainment from the upper and bottom layers into the gravity current modify the structure

of the flow and its dynamics. At the upper boundary, if the turbulence is not damped by the

buoyancy effect, instability occurs due to shear at the surface of contact with the ambient

water. The competition between the stabilizing effect of buoyancy and the destabilizing shear

is captured in a dimensionless parameter, the gradient Richardson number. For a continuously

stratified flow, a more global form of Ri , which characterises the stability over the whole depth
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Figure 4.12: Respectively potential bottom and upper entrainment, Φb and Φm , compared
for gravity currents formed by changing lock-lengths (Li /Lp ). The lines help to visualize the
general trend.
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rather than at specific positions, is the bulk Richardson number, Rib :

Rib = 1/F r 2
D = g ′hb

U
(4.8)

where F rD is the densimetric Froude number and U is the layer-averaged velocity, a charac-

teristic velocity of the current. For high enough Reynolds numbers (Re > 104), the mixing

transition is passed, thus 3D turbulent inertial range develops and the mixing completely

homogenises the fluid captured by the Kelvin-Helmholtz instability (Wirth, 2015).

The relation between water entrainment and bulk Richardson number is well known in

literature and numerous empirical fits to the experimental data have been proposed since

Ellison and Turner (1959) (Parker et al. (1987), Johnson and Hogg (2013)). The upper resistance

of the flow is certainly linked with the water entrainment and is here proved by comparing the

time integral of the shear stresses as Φm with the Richardson number Rib (Figure 4.13). The

data, similarly to the work of Parker et al. (1987) and as sustained by Johnson and Hogg (2013),

show that entrainment decays approximately as Φm ∼ Ri−1
b , that applies for high Richardson

numbers. This supports the validity of the new here defined Φm as an indicator for water

entrainment.

In Figure 4.14, Φm is plotted against the mean thickness of the mixing zone (hm). The relation

between the extent of the mixing layer with the interfacial shear stress, and in particular with

the potential water entrainment i.e. Φm , is here demonstrated. Larger mixing layers were

found to be responsible for a greater entrainment discharge of ambient water from the upper

surface into the gravity current (Theiler and Franca, 2016). On the other hand a higher rate of

water entrainment is responsible for the dilution of the mixing zone which is likely to thicken.

Moreover water entrainment is shown to be independent of the initial density in the lock,

as confirmed in Hallworth et al. (1993) and Hallworth et al. (1996) through the dimensional

analysis as reported in Section 4.3.2.

At the bottom, in order to evaluate the potential contribution for erosion by the body of the

current on the total bottom erosion capacity of the current, the ratio Φb bod y /Φb is computed.

In Figure 4.15 it is shown that for the shortest lock-length tests the body plays a minor role.

Indeed in this case the body of the current is so reduced that the potential entrainment

of sediment from the bottom is governed by the highly turbulent head. For the rest of the

experiments with longer locks it is instead the body that drives the erosion capacity.

62



4.4. Discussion on the entrainment parametrization

100 101 102

Rib

102

103

104

Φ
m

Φm ∼ Ri−1
b

R1.L0
R1.L1
R1.L2
R1.L3
R1.L4
R2.L0
R2.L1
R2.L2
R2.L3
R2.L4
R3.L0
R3.L1
R3.L2
R3.L3
R3.L4

Figure 4.13: Gravity current entrainment capacity Φm related with bulk Richardson number
Rib . The continuous black line indicates the fit of the data (excluding one outlier, test R1.L2).
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Figure 4.14: Relation between mean thickness of the normalized mixing zone (hm/hb) and
time integral of the interfacial shear stress Φm . The data are exponential fitted by the relation
reported on the plot. The R2 coefficient of determination is also reported.
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Figure 4.15: Rate of potential contribution for bottom erosion due to the body of the gravity
current on the total bottom erosion capacity (Φb bod y /Φb) for gravity currents formed by
several lock-lengths (Li /Lp ). A fitting is reported in order to give evidence of the general trend.
The R2 coefficient of determination is also reported.
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4.5 Conclusions

In this Chapter the horizontal and vertical structure of gravity currents produced by varying

lock-released initial volumes is investigated. A method to distinguish the head and body

regions is established. The flow field of a gravity current has been characterized paying

particular attention at the bottom and interface layers. It is shown how the lock-length

influences the horizontal extent of the body of the gravity current while the head is not

affected by the initial volume of the release.

Vertical transport through the gravity current is influenced at the bottom by the solid wall over

which the current flows, and at the upper interface by the contact with the ambient water.

The characterization of the shear stress is of importance since it competes with the buoyancy

determining mixing and entrainment. Therefore the time evolution of shear stress at both the

interface and bottom are calculated. With a proper normalization that take into account the

dependence of the gravity current evolution on both initial volume of release and point of

observation, a relation between the resistance at the bottom and at the upper interface with

the initial lock-length has been found, while their independence from the initial density in the

lock confirmed.

The turbulent flow enhances redistribution of contaminants or sediments from the bottom,

and entrainment of water at the upper interface. At the interface, the mixing zone thickness,

characterized by the presence of Kelvin-Helmholtz instabilities, increases exponentially with

the time integral of the shear stress as a consequence of the dilution due to water entrainment.

At the bottom, inner vortical structures rotating in the direction of the principal motion are

detected. Those are stronger in tests with shorter locks and greater initial reduced gravity. The

contribution of the body in the potential sediment entrainment capacity from the bottom is

generally more significant than the one of the head for all the tests except the shortest lock

where the current is composed of head and tail only.
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5 Influence of incremental gravitational
energy on gravity current hydrody-
namics

Chapter 5 is based on the scientific article "Geomorphic implications of gravity currents created by changing
initial conditions" by J. Zordan, A.J. Schleiss and M.J. Franca under revision in Earth Surface Dynamics. The
experimental work and the analysis presented hereafter is original and was performed by the author.
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Chapter 5. Influence of incremental gravitational energy on gravity current
hydrodynamics

5.1 Introduction

In most practical situations gravity currents are flowing on an inclined bed. This introduce

extra gravitational energy which is affecting its hydrodynamic. Snow avalanches down the

slopes of the mountain or turbidity currents which follow the inclined thalweg of a reservoir

until reaching the dam are common examples. In the shallow shelf region of the lake it is

observed that cold water, relatively denser than that in open waters, starts to descend down

the slope as a cold gravity current (Fer et al., 2002). The plume is able to transport suspended

sediment together with their dissolved components, oxygen, and pollutants into deeper water.

Frequently, the slope is not continuous and, as it is along the continental slope or in the lakes,

a shelf-slope break is present. Therefore an extra potential energy is imparted to the plumes

which are initiated along the inclined, due to the raised position of the center of mass with

respect to the following horizontal bottom.

While for gravity currents travelling on a horizontal bed, pressure gradient and buoyancy

forces are the driving factors, the dynamics of flows on slope are controlled by the balance

between the gravitational acceleration and dissipation forces. The main purpose is here to

investigate how the increment of gravitational energy, due to the introduction of a slope in the

lock, affect the hydrodynamics of gravity currents and consequently their transport capacity. A

range of lock-slopes is tested, going from horizontal to a limit case in which two mechanisms

compete, i.e. the current entrainment of water from the upper surface due to the increment of

friction and the head feeding by the rear steady current.

5.2 Methods

This is the second group of test, as explained in Section 3.2.2. The configuration of the flume

is shown in Figure 5.1. Three buoyancy differences are tested in combination with five lock-

slopes, ranging from S = 0% (horizontal bed) to S = 16% (which corresponds to tests S0 to S4

as it is shown in Figure 5.1). By introducing a slope on the channel lock reach, the volume of

denser fluid is reduced. The lock-contraction that follows the introduction of the lock-slope

(since the water level is unvaried) corresponds to the volumes that are tested during the first

phase, as presented in Chapter 4. The experimental parameters of this group of tests are

reported in Table 5.1.

The Acoustic Doppler Velocity Profiler (ADVP) is used to record instantaneous 3D velocities

along a vertical, 2.5 m downstream the gate (Figure 5.1). A despiking procedure (Goring and

Nikora, 2002) and a low-pass filter applied to the noisy frequencies, after analysis of the power

spectra of the raw data, allowed considerable reduction the noise, as explained in Chapter

3.3.3.
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5.2. Methods

Figure 5.1: Longitudinal view of the experimental set-up showing tested slope configurations
S0 to S4 of lock volumes Vi corresponding to tests presented in Chapter 4 with variation of
lock-length.

Si ρ0 g ′
0 u0 Re0 S α Vi /V0 ΔT

Exp. (kg /m3) (m2/s) (m/s) (−) (%) (◦) (−) (◦C )

R1.S0 1028 0.29 0.24 48166 0 0.00 1.000
R1.S1 1028 0.29 0.24 48166 4 2.29 0.750
R1.S2 1028 0.29 0.24 48166 6 3.43 0.625 ≤ 1
R1.S3 1028 0.29 0.24 48166 8 4.57 0.500
R1.S4 1028 0.29 0.24 48166 16 9.09 0.250

R2.S0 1038 0.39 0.28 55857 0 0.00 1.000
R2.S1 1038 0.39 0.28 55857 4 2.29 0.750
R2.S2 1038 0.39 0.28 55857 6 3.43 0.625 ≤ 1
R2.S3 1038 0.39 0.28 55857 8 4.57 0.500
R2.S4 1038 0.39 0.28 55857 16 9.09 0.250

R3.S0 1048 0.49 0.31 62610 0 0.00 1.000
R3.S1 1048 0.49 0.31 62610 4 2.29 0.750
R3.S2 1048 0.49 0.31 62610 6 3.43 0.625 ≤ 1
R3.S3 1048 0.49 0.31 62610 8 4.57 0.500
R3.S4 1048 0.49 0.31 62610 16 9.09 0.250

Table 5.1: Experimental parameters. ρ0 is the initial density of the mixture in the upstream tank
(measured with a densimeter), g ′ is the reduced gravity corresponding to ρ0, u0 =

√
g ′h0 is the

initial buoyancy velocity with h0 = 0.2 m the total height of the water column, Re0 = u0h0/νc

is the Reynolds number based on initial quantities where νc is the kinematic viscosity of
the denser fluid, S is the lock-slope expressed in percentage (hSi /L0, with hSi the height as
in Figure 5.1) and α is the correspondent angle of inclination of the bottom in the lock, Li

is the length of the upstream lock-reach, Vi /V0 the percentage of volume of the upstream
lock-reach with respect to the configuration L0, ΔT is the difference in temperature between
the temperature of the mixture, T0, and the temperature of the ambient water, Ta (measured
with a thermometer before each experiment).
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5.3 Results

5.3.1 The shape of the current

The criterion established in Chapter 4.3.2 is used to identify the two main regions of a gravity

current: the head and the body and to analyse the current shape changes due to the presence

of the slope in the lock. The kinematic function H , defined in Chapter 4.3.2 as the product

of the instantaneous depth averaged streamwise velocity, ud (t ) and the current height, h(t )

(H(t ) = ud (t )h(t )) is computed in order to identify the extension of the head region. The body

length is also analysed by using the cumulative sum of the function H as defined in Chapter

4.3.2. In Figure 5.2 the development of the function H is shown for the tests with the lock-slope.

The first prominent minimum of the function allowed the determination of the head region

while the body is identified by the extent of the linear portion of the cumulative sum of the

function (details in Chapter 4.3.2).

In Figure 5.3 the contours of each test with the lock-slope, identified by the zero streamwise ve-

locity contour, are compared with the correspondent reference test with lock-length variation,

as it was analysed in the previous Chapter 4. The results are grouped by the initial density in

the lock (columns in the figure), and by pairs of tests with the same volume of the lock but for

different slopes. The extension of head and body as identified by the previous methods are also

reported with the vertical lines. Dashed lines refers to tests Si (gravity currents produced by

different initial density with the presence of a lock-slope) while continuous lines correspond

to Li tests (with varying initial density and lock-length).

In Figure 5.3 we can see that the head of the current does not show any relevant change.

Instead the extension of the body is affected: it reduces with increasing inclination of the bed

and the same goes for tests produced by reduced lock volume. A dependency on the initial

density is noticed and in three out of the total five slopes lead to the formation of longer body

with greater initial buoyancy. This can be verified in Figure 4.5 where extensions of the bodies

are traced with the vertical orange lines. R1, R2 and R3 produces progressively longer bodies

for tests S0, S1 and S4.

The largest deviation between the two contours of corresponding tests Li - Si is noticed for

the configuration Ri .L4/Ri .S4, with L4 tests showing a shorter body and a more defined tail

while for the correspondent tests with the inclined lock (S4), the body is more extended.

5.3.2 Mean velocity field

In Figure 5.4, the mean streamwise velocity field on the background and velocity vectors of the

components (u, w) are shown for all the tests performed, with the zero streamwise velocity

contours marked by the black lines. We can notice that the structures of the currents are quite

similar in all configurations. An elevated head is followed by a zone of high mixing,
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Figure 5.2: Determination of the gravity current head extension from the first prominent mini-
mum of the function H (Lh). The extension of the body (Lb), as identified by the cumulative
sum of the depth-averaged streamwise velocity, is also traced with the red vertical lines.
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characterized by the presence of billows (due to Kelvin-Helmholtz type of instabilities (Simp-

son, 1972)) that are due to shear at the rear part of the elevated head. Body and tail are not

always well defined regions, mainly for the class of tests down an incline, and therefore the

contour is not drawn. Tests Si show slightly lower values of streamwise velocities with respect

to correspondent Li tests (Figure 4.3). Configuration S4 is the exception and an inversion of

this tendency is noticed.

The fact that in general mean streamwise velocity is decreased for tests with a lock-slope

can appear to some extent contradictory but this behaviour has already been mentioned in

literature, in the study of Beghin et al. (1981). They were among of the first to investigate

the role of the slope on the physics of a gravity current and showed that tests with flows on

small slopes experience firstly an acceleration phase, followed by a deceleration phase. This is

because of the fact that, although the gravitational energy increases as the lock-slope becomes

more vertical, there is also increased entrainment, both into the head itself and into the flow

behind. This produces an extra dilution of the current with a decrease in buoyancy.

5.3.3 Bed and interfacial shear stresses

Bed shear stress evolution is affected by the changing initial conditions of the current and this

may explain how the entrainment capacity of a current is altered. Bed shear stress temporal

evolution is therefore calculated by following the procedure in Appendix A. Thus, the fitting of

the logarithmic law of the wall is used to calculate the friction velocity and bed shear stress is

afterwards computed as τb = ρc u2∗ by considering a constant initial density that is here equal

to the initial density in the lock (ρc ). The bed shear stress time-evolution of gravity currents

with lock-slope (τb,S) are compared to the analogous results for tests with decreasing lock

(τb,L) in Figure 5.5. Tests performed on an inclined bottom show in general lower values of bed

shear stress with the only exception of tests S4, which is the steepest slope condition, where,

from normalized time t/t∗ � 20, i.e. in the body region, bed shear stress is slightly higher than

in the correspondent Li tests.

At the upper boundary of the gravity currents, i.e. the interface with the ambient water, using

the same fitting procedure, as explained in Chapter 4.3.4, the estimation of an interface shear

stress (τm) is made. The time evolution of interface shear stress is therefore computed and

shown in Figure 5.6, following the same procedure as for the bottom shear stress. Again the

main differences between tests with reduced lock and respective tests with lock-slope are for

the fourth configuration: the steepest slopes present higher values of interface shear stress in

the body region with respect to the correspondent tests with the same initial volume of release

but flowing on a horizontal bed.
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5.4 Discussion

5.4.1 Shape variation of gravity current with the lock-slope

The extent of the body of correspondent tests performed with the lock-slope or on horizontal

bed with varying lock-lengths are compared in Figure 5.7. For lower slopes the body extension

is similar to the currents produced with the same lock-volume but with horizontal bottom.

However, for slopes higher than 6%, the body region for tests Si are longer than correspondent

tests Li . This behaviour agrees with the study of Britter and Linden (1980) and Dai (2013)

where they indicated that a critical angle exists over which buoyancy force is large enough

to counteract the bottom friction and produce a steady flow. At this point two mechanisms

affect the evolution of the current: the current entrains water from the upper surface due to

the increment of friction and the head is fed by the rear steady current. The flow of tests S4

show these characteristics: (i) an extended body is the result of water entrainment at the upper

surface of the current that creates dilution and expansion of the fluid in the current; (ii) the

fluid in the body become faster as a result of the gravitational energy as in Britter and Linden

(1980) (Figure 5.4). Britter and Linden (1980) showed that, while with currents flowing along

a horizontal boundary, the head is the controlling feature down a slope, the body becoming

more determinant in the gravity current evolution since it is up to 30-40% faster than the head

velocity, depending on the slope, being able therefore to move faster material into the head. In

this study, this is verified only for lock-slopes of 16% (tests S4).
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Figure 5.7: Comparison of the length of the body (Lb) between tests with progressively reduced
lock-length and with lock-slope. The dashed line is the identity line.
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5.4.2 Ambient entrainment and bottom erosion capacity

The validity of the use of Φm (as defined in Chapter 4.3.5) as an indicator of the entrainment

capacity is supported by the analysis of its relation with the Richardson number Ri as shown

in Chapter 4.4. The relation between water entrainment and bulk Richardson number is well

known in literature and numerous empirical fits to the experimental data have been proposed

since the early work of Parker et al. (1987) and supported by more recent contributions

(Stagnaro and Pittaluga, 2014). Therefore, it is here proposed to use this quantity as a surrogate

for water entrainment capacity since it benefits from the instantaneous measurements of

shear stress and therefore account for the unsteady behaviour of the gravity currents. In

Figure 5.8, the potential water entrainments for gravity currents performed on an inclined

and correspondent tests with reduced initial volume of release are compared. The tests S4L4

deviate from the identity line, thus a greater water entrainment is expected for the case with

the inclined bed with respect to the horizontal bottom.

The bottom erosion capacity is compared for gravity currents performed with the lock-slope

and correspondent tests on a horizontal bottom and this is shown in Figure 5.9. Generally

Li tests show a higher erosion capacity with respect to their analogous Si . The presence of

extra gravitational energy is proved not to play a role in enhancing bottom erosion which is

contrarily reduced. This is probably a consequence of the decrease in streamwise velocity

which results from the dilution of the gravity current. But, on the other hand, ambient water

entrainment causes the expansion of the body region. Longer bodies keep eroding material

longer and the erosion potential attributed to this part is therefore increasing.

The potential bottom erosion, i.e. the quantity Φb in Figure 5.10, decreases with increasing

slope. The potential energy ascribed to the gravity currents has been computed as

Ep = ρi Vi g hb (5.1)

and it is shown in Figure 5.11. It confirms that tests with increasing lock-slope have a reduced

potential energy as a consequence of the volume reduction and this latter is the driving

element. The initial density has in fact a smaller influence as shown in Figure 5.10, right side.

The role of the body in the total erosion capacity is computed as the ratio Φb−bod y /Φb (Figure

5.10) whose limits of integration of Φb−bod y are T1 = Lh and T2 = Lb . The contribution that

is ascribed to the body has a similar development as the total erosion capacity. This enforce

the hypothesis that the body is determinant in the entrainment capacity of a gravity current.

Figure 5.10 highlights that the importance of the body in the total erosion capacity becomes

proportionally higher for tests S4 (the trend lines in Figure 5.10 deviates more in this configu-

ration). Higher water entrainment was proved in Section 5.4.2 for this latter case, which was

therefore subjected to an expansion of the body region. An influence of the upper surface on

the dynamics of the lower bottom boundary is therefore hypothesized. The interaction be-

tween the upper layer and the bottom was already pointed out by the numerical investigation

of Cantero et al. (2008) and experimental evidences are reported in Chapter 4.3.3 where the
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Figure 5.8: Comparison of Φm , a surrogate for the entrainment capacity of the mixing region,
between tests with lock-slope (Si ) and correspondent tests on horizontal bottom (Li ). The
dashed line is the identity line.
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vorticity is analysed showing that residual negative vorticity expands from the upper layer

through the bottom with progressively lower intensity.

5.5 Conclusions

In this Chapter the effect of incremental gravitational energy is tested by reproducing exper-

imentally gravity currents of different initial densities with the presence of inclined locks.

Corresponding tests with a horizontal bottom and reduced volumes are performed as well

and it allows to have the reference cases showing the only effect of the volume constriction.

The range of lock-slopes tested varies from horizontal bed to S = 16%. Gravitational energy,

which is an extra potential energy imparted to the fluid due to the raised position of the center

of mass, is the main driving and directly depends on the slope (Khavasi et al., 2012). This

competes with the entrainment that takes place due to the higher shear stress at the upper

interface and tend to dilute the current. Thus if on one hand extra potential energy drives for

a faster gravity current, on the other hand water entrainment at the upper interface dilute the

fluid of the current which is consequently slowed down and it expands due to incorporation

of the ambient fluid.

The configurations S4-L4, corresponding to the steepest lock-slope and the shortest lock-

length, respectively, exhibit the highest deviations between tests with lock-slopes with respect

to correspondent tests on the horizontal bed. S4 tests showed a longer body, owing to en-

trainment of the ambient fluid. The body is fast, likely accelerated due to gravitational effects.

Bottom erosion capacity generally results reduced by the presence of extra gravitational energy

most probably due to lower streamwise velocities which followed gravity currents dilution.
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6 Gravity currents flowing over mobile
bed

Chapter 6 is based on the scientific articles "Entrainment, transport and deposition of sediment by saline
gravity currents" by J. Zordan, C. Juez, A.J. Schleiss and M.J. Franca submitted in Advances in Water Resources and
"Experimental results on sediment entrainment by gravity currents" by J. Zordan, C. Juez, A.J. Schleiss and M.J.
Franca published in Book of abstracts of IAHR 2017 conference, Kuala-Lumpur, Malaysia. The experimental work
and the analysis presented hereafter is original and was performed by the author.
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6.1 Introduction

The highly turbulent dynamics of density-driven flows are still not completely understood and

their mechanism coupled with the presence of a mobile bed little investigated.

Therefore, in this group of tests different particle sizes and initial densities are tested, using the

lock exchange experiments with a large volume of release. We focus on the description of the

role of turbulent gravity flows on processes of sediment erosion, transport and deposition. The

main goal is to characterize the major forces acting on the particles at the bed and to isolate

and assess their role in the entrainment of sediments due to the passage of these currents.

Instantaneous velocities collected over a vertical profile, video analysis and topography surveys

are used for this purpose.

The objective is to determine the forces responsible for the picking up of sediments, i.e the

mechanism responsible for the sediment removal from the mobile bed and displacement

within the current flow. Then we consider the capacity of the current to move downstream the

sediment entrained, i.e. the distal transport of the grains. The cross-analysis of the velocity

data, video analysis and topography survey allow analysis of the influence of grain size and

of the near-boundary mean flow-velocity distribution on the force acting for sediment distal

transport. Furthermore, erosion and deposition patterns are analysed through the topography

and photo surveys.

6.2 Methods

On the main channel as described in Section 3.2.1, at the bed, that is kept horizontal and

smooth, an erodible bed reach is added 2.5 m downstream from the gate. A schematic

representation of the installation is in Figure 6.1. A 1 cm deep depression on the flat bed, is

filled with the polyurethane artificial fine sediments (details in Appendix C). This erodible

section has the same width as the channel and a longitudinal extent of 0.6 m. The gravity

current, while passing above the erodible reach, erodes and entrains the sediments that are

then deposited downstream as it is shown in the sketch of Figure 6.3.

In Figure 6.1 the measurement instrumentation is also shown. The Acoustic Doppler Velocity

Profiler (ADVP, see Appendix B) is placed directly upstream of the erodible bed and it records

3D instantaneous velocity profiles during the passage of the gravity current. The high-speed

camera (see Chapter 3.3.5) records the evolution of the gravity current over the erodible bed

laterally through the glass walls of the channel. The point laser (see Chapter 3.3.4) is used to

measure the topography, after the passage of the gravity current, over the mobile bed reach

and at the downstream part of channel, recording eight longitudinal sections, covering the

mobile bed reach, and eight cross-sections in the downstream zone. Finally, pictures of the

downstream reach, where deposition occurs, are taken from the top, after the passage of the

gravity currents.
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Three initial densities in the lock were tested combined with three sizes of sediment composing

the erodible bed. The experiments were prepared by firstly filling the channel with ambient

water reaching a water depth of h0=0.2 m. The surface with the erodible bed was isolated up

and downstream with two planks. The sediments were wetted and injected, the mixture was

stirred. Once the fluid came to rest, the sediments settled into an homogeneous flat bed of

one centimetre depth (Figure 6.2).

The material composing the erodible bed was chosen in order to have a settling velocity that

follows the similarity criteria as described in Chapter 2.6. Field-scale gravity currents generally

have velocities in the range of 1-10 m/s (Kneller and Buckee, 2000), whereas laboratory flows

have velocities which are two order of magnitude smaller than in the field. The settling velocity

should thus be reduced in the model by a factor of 10 to 100. Due to scale effects as discussed

in Chapter 2.6, to maintain a velocity scale ratio of approximately 10 between the prototype

and the model and to avoid sediment that is too fine, a reduced density for the sediments

used in the model is required. Therefore, plastic sediments have been chosen. The material

is a high-performance thermoplastic polyurethane (TPU) with a density of 1160 kg/m3 (an

application with this same material can be found in Chamoun et al. (2016b)). Three different

grain sizes were used, and the D50 and D90 are shown in Table 6.1. The mean diameter of the

particles is chosen to be within the range of non-cohesive fine sediment, 62-500 μm, according

to Van Rijn (2007). The artificial nature of these sediments was preferred to natural clay–silty

material to avoid algae and biofilm growth. More details on the material are given in Appendix

C.

The main parameters of the conducted tests are summarized in Table 6.1.
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Chapter 6. Gravity currents flowing over mobile bed

Figure 6.1: Side view and cross section of the experimental set-up.

Exp. ρ0 g ′ u f Re0 ReD F rD D50 D90 ΔT

(kg /m3) (m2/s) (m/s) (−) (−) (−) (μm) (μm) (◦C )

R1.fine 1028 0.29 0.101 48152 6727 0.726 81 145
R1.medium 1028 0.29 0.106 48152 7080 0.764 145 217 ≤ 1
R1.coarse 1028 0.29 0.126 48152 8420 0.909 191 268

R2.fine 1038 0.39 0.117 55719 7820 0.729 81 145
R2.medium 1038 0.39 0.134 55719 8907 0.831 145 217 ≤ 1
R2.coarse 1038 0.39 0.127 55719 8480 0.791 191 268

R3.fine 1048 0.49 0.131 62374 8747 0.729 81 145
R3.medium 1048 0.49 0.142 62374 9433 0.786 145 217 ≤ 1
R3.coarse 1048 0.49 0.155 62374 10347 0.862 191 268

Table 6.1: Experimental parameters. ρ0 is the initial density of the mixture in the upstream tank
(measured with a densimeter), g ′ is the reduced gravity corresponding to ρ0, u f is the velocity
of propagation of the front of the current calculated from video analysis, Re0 = u0h0/νc

is the Reynolds number based on initial quantities with u0 = √
g ′h0 the initial buoyancy

velocity, h0 the total height of the water column and νc the kinematic viscosity of the denser
fluid, ReD = u f hb/νc is the densimetric Reynolds number based on bulk quantities with
hb is the bulk height of the current, here considered as one third of the total water depth,
F rD = u f /

√
g ′hb is the densimetric Froude number, D50 and D90 are the characteristic grain

sizes of the mobile bed and ΔT is the difference in temperature between the temperature of
the mixture, T0, and the temperature of the ambient water, Ta (measured with a thermometer
before each experiment).
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6.2. Methods

Figure 6.2: Mobile bed deposition.

Figure 6.3: Sketch of a bottom gravity current flowing on the erodible reach. Entrainment
of material from the bottom takes place. This is transported within the gravity current and
deposited downstream (Franca, 2017).
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6.3 Flow description

6.3.1 Head region

The kinematic function H , as defined in Chapter 4.3.2, is computed and shown in Figure

6.4. The square symbols identify the first meaningful local minimum of H , and the vertical

lines represent the average positions of the head amplitude in time (Lh) considering the tests

grouped by same initial density in the lock. As pointed out in Chapter 4.3.2, in Figure 6.4 it is

confirmed that the initial density of the current does not have an influence on the length of

the head Lh .

6.3.2 Mean flow

Time series of the mean streamwise velocity profiles are shown in Figure 6.5a, where the

contour of the currents is marked with the black line. The maximum velocity in the head

region is observed at one third of the current height, as was also observed in the literature for

a smooth bed (Sequeiros et al., 2010b). From Figure 6.5, we observe the following: the head is

a well-defined region, and it is characterized by a core of high streamwise velocity; the head is

higher than the following body; a billow extends on the upper part of the head, at the interface

with the ambient water, in a zone of high mixing; the length of the body is limited, and it fades

into a final zone, the tail of the current, in which a weak streamwise velocity persists near the

lower boundary. As expected, increasing the initial gravity current density results in larger

streamwise velocities.

The highest streamwise velocity is at the core of the current in the head, not near the front

but rather under the region of intense vortex generation. While the current advances, a

return flow forms on the upper ambient fluid layer. This counter-current shows a jet-like

configuration that is more defined for higher gravity current velocities. There is a time scale

for the complete formation of the return flow which is dependent on the initial density in the

lock and on the inertia of the physical system composed by the experimental channel and

the large downstream reservoir. In fact, the counter current forms due to the displacement of

mass caused by the density current whose front is travelling faster for higher initial densities

and forces the ambient water, to move in the opposite direction.

Results for the mean vertical velocity are shown in Figure 6.5b. An upward flow at the front of

the advancing current is present. This flow is then incorporated by the counter current flowing

above the heavier current. From the bottom of the current to the water surface, the vertical

velocity presents oscillations of positive and negative values.
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Figure 6.4: Evolution of kinematic function H(t) = ud (t)h(t) for the nine experiments per-
formed grouped by same initial density in the lock (R1=1028 kg /m3; R2=1038 kg /m3; R3=1048
kg /m3). The square symbols identify the first prominent minimum for each test. The vertical
line is the average head length (Lh) considering the tests grouped by the same initial den-
sity. The results correspond to the tests with mobile bed made of fine, medium and coarse
sediments, as identified in the legend.
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6.3. Flow description

Figure 6.6: Spanwise vorticity field ηy (s−1) on the background and velocity vectors of the
components (u,w). The head of the current is delimited by the vertical dashed line. The
contour of the current is indicated in black.

Figure 6.6 displays the spanwise vorticity field (computed using Equations 4.3, 4.4 and 4.5) as

well as the velocity vectors. The outline of the currents and the head extent are also highlighted.

The vorticity field in Figure 6.6 follows the same structure that was defined in Chapter 4.3.3. A

region of negative vorticity at the interface between current and ambient fluid, which is the

result of the shear between the current and the counter-current, is present. Negative values

of vorticity indicate clockwise rotation of the vortical structures that are also present in the

mean flow as confirmed by looking at the recirculation cells reproduced by the velocity vectors

in Figure 6.6. Vortical movements of eddies, identified as Kelvin-Helmholtz instabilities, are

present at the interface between the dense and light fluids, and they are eventually dissipated

towards the tail of the current. Furthermore, positive vorticity of comparable magnitude are

observed near the bed as the result of the shear between gravity current flow and the bed.

The normalized time series of the streamwise and vertical depth-averaged velocities (wd ,

computed in the same way as ud , Equation 4.2) are shown in Figure 6.7. A normalization is

performed dividing wd by the buoyancy velocity (ub). In this figure, the grey lines are the

instantaneous depth-averaged velocities per each test performed for fine, medium and coarse

material. The instantaneous depth-averaged velocities (<ud > and <wd >), which are averaged

among tests grouped by the same initial density are shown with the orange line. Tests that
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Chapter 6. Gravity currents flowing over mobile bed

present the same initial densities generally group well, and they exhibit a similar evolution.

The depth-averaged streamwise velocities show a peak in the head region, which is delimited

by the dashed vertical black line. Moreover, a first local minimum of depth-averaged velocity

is visible, indicating a zone behind the head, where the streamwise velocity is particularly low.

The body is characterized by a plateau, indicating the quasi-steady behaviour of this region,

which is observed immediately after the head, followed by the tail with a decrease in the

streamwise depth-averaged velocity.

The arrival of the head causes an upward surge of the ambient fluid, which is visible in the

vertical velocity signal. Thereafter, smaller amplitude oscillations are observed.

The temporal series of the normalized mean streamwise and vertical velocities, corresponding

to test R2.medium, are shown in Figure 6.8 for five vertical positions between z=8 and 106

mm. At z=106 mm, the streamwise velocity is negative because at this position, the counter

current is dominant. The vertical velocity is higher at the front: the fluid in this region mainly

moves upward, as previously observed in Figure 6.7. At z=72 mm, the streamwise and vertical

velocities oscillated between negative and positive values. This location is roughly the interface

between the gravity current and the ambient fluid, where most of the mixing processes occur

and the exchange between current and ambient fluid is maximum.

The highest streamwise velocities are found near the channel bed, at z=20 and 8 mm. At these

heights, the streamwise velocity is positive since the advancing gravity current is detected.

During the first instants of the experiments, at z=20 mm and z=44 mm, it is observed how

the ambient fluid flows backward over the head of the current. While travelling, the current

displaces ambient fluid upward at the front; thus, in Figure 6.8, the first instants show a peak

in positive vertical velocity. Then, the vertical velocity becomes negative, and further in the

body, coherent peaks along the entire vertical of the current are presented, and these upward

and backward displacements of fluid continue.

Time series of mean vertical velocities are shown in Figure 6.9 for three different positions along

the vertical for all tests in order to highlight his oscillating nature. These vertical oscillations

are linked with coherent motions along the vertical of the flow, which may enhance vertical

mixing. The presence of negative vertical velocities is also observed and alternatively. The two

movements - upwards and downwards - result in a well-defined periodic sequence of events.

The fluctuations are consistent along the entire vertical profile of the current.

6.3.3 Turbulent quantities and bed shear stress

Turbulent velocity scales are calculated as the root mean square of the fluctuating component

of the velocities with respect to the mean velocity as explained in Chapter 3.3.3. In Figure

6.10, the temporal evolutions of u, u′
RMS and w ′

RMS are shown for test R1.fine at z=16 mm
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Figure 6.7: Time series of depth averaged streamwise and vertical velocities for tests grouped
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Figure 6.9: Time series of the mean vertical velocity measured at three different positions z =
12 mm, z = 32 mm and z = 40 mm. Orange circles indicate local maxima that corresponds to
upward flow.

in the vicinity of the bed. The shaded areas draw attention to some of the troughs of the

mean streamwise velocity and the corresponding peaks in RMS quantities. Periods of high

turbulence, which correspond to events with clear enhancement of both streamwise and

vertical fluctuations, correlate with relatively slow downstream velocities, which is a typical

feature of the ejections, one of the most important phases in the so-called burst cycle (Kim

et al. (1971), Baas et al. (2005)).

Bed shear stress can be calculated from instantaneous profiles of velocity using numerous

techniques (Bagherimiyab and Lemmin, 2013). Here, bed shear stresses were computed using

two methods: (1) applying the logarithmic law to the mean streamwise velocity distribution

and (2) using the Reynolds shear stress measured close to the bed.

The ADVP instrument allows measurements of the fluctuations of the velocity in three direc-

tions and consequently Reynolds shear stresses can be estimated. In a fully turbulent flow, the

total bed shear stress can be obtained as follows:

τb =
[
μ(

∂U

∂z
+ ∂W

∂x
)−ρu′w ′

]∣∣∣∣
z=z0

(6.1)

where the term ∂W /∂x can be neglected (Cossu and Wells, 2012) and ∂U /∂z and Reynolds

stresses −ρu′w ′ are estimated using the velocity measurements at the recorded gate the closest
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to the bed.

By using the instantaneous velocity profiles, and through the fitting procedure presented in

Appendix A, the time evolution of bed shear stresses calculated by the fit of the log law (τLOG )

can also be calculated. For a representative test (R1.fine), τLOG and τDEF are compared and

shown in Figure 6.11. The two signals seem related and of the same order of magnitude. In

particular, the peaks of bed shear stress are well depicted by both methods.

Bed shear stress is normalized as the Shields parameter (Shields, 1936b) that is computed as:

τ∗b = τb

(ρs −ρi )g D50
(6.2)

Many widely used bed load sediment-transport models are based on the concept that sediment

transport begins or it is scaled by, the constant critical Shields stress (Lamb et al., 2008), which

is why this non dimensional shear stress value is chosen here. Furthermore, it was possible to

veriify that the tests performed in this work fall in the suspended load transport area of the

Shields diagram for density and turbidity currents provided in Sequeiros et al. (2010b).

The computed normalised bed shear stress is reported in Figure 6.19 where we can notice that

higher values are localised in the frontal region of the current and at the core of the current,

in correspondence of the zone of higher streamwise velocity which was previously identified.

The body and tail of the current exhibit residual lower values of Shields parameter.

6.4 Sediment dynamics

6.4.1 Sediment entrainment

Video analysis allows tracking of the sediment entrainment from the mobile bed (Figure 3.11).

The time evolution of the area occupied by the sediment was determined by identifying the

pixels occupied by the sediments in each video frame. In Figure 6.12 the temporal evolution of

the area of the image occupied by the current (orange) and the area occupied by the sediments

(black), for the first ten seconds where the main sediment mobilization is observed, are shown.

As expected, it is observed that for the currents with lower density flowing over coarser grains,

the particles tend to settle faster, which means that the area of sediments drops to zero in a

shorter time frame. On the other hand, the tests with a larger initial density and with finer

material correspond to larger areas occupied by the sediments, where the sediment is kept in

suspension longer reaching higher levels within the current body. Finer sediment and larger

initial densities in the lock imply that particles are brought into suspension faster and taken

up far away from the bed as shown by the faster increment of the area of sediments curve

(Figure 6.12) that is growing from R1 to R3 and decreases from fine to coarse).

In summary, two coherent tendencies can be highlighted: (i) the finer sediment composing

the erodible bed is more prone to be mobilized by the current, it remains in suspension longer,
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6.4. Sediment dynamics

Figure 6.10: Time series of streamwise mean velocity (u), streamwise and vertical RMS veloci-
ties (u′

RMS and w ′
RMS respectively) at z=16 mm for test R1.fine. Shaded columns highlight the

troughs of u and the associated peaks in RMS quantities.
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Figure 6.11: Temporal evolution of bed shear stresses calculated by fit of the log law (τLOG )
and from the definition (τDEF , Eq. 6.1) for one exemplar test (R1.fine).

97



Chapter 6. Gravity currents flowing over mobile bed

0 5 10 15

Time (s)

0
0.5
1

1.5
2

2.5
3

A
re
a
(m
m

2
)

×104 R1.fine

Θ

Ac

0 5 10 15

Time (s)

0
0.5
1

1.5
2

2.5
3

A
re
a
(m
m

2
)

×104R1.medium

0 5 10 15

Time (s)

0
0.5
1

1.5
2

2.5
3

A
re
a
(m
m

2
)

×104 R1.coarse

0 5 10 15

Time (s)

0
0.5
1

1.5
2

2.5
3

A
re
a
(m
m

2
)

×104 R2.fine

0 5 10 15

Time (s)

0
0.5
1

1.5
2

2.5
3

A
re
a
(m
m

2
)

×104R2.medium

0 5 10 15

Time (s)

0
0.5
1

1.5
2

2.5
3

A
re
a
(m
m

2
)

×104 R2.coarse

0 5 10 15

Time (s)

0
0.5
1

1.5
2

2.5
3

A
re
a
(m
m

2
)

×104 R3.fine

0 5 10 15

Time (s)

0
0.5
1

1.5
2

2.5
3

A
re
a
(m
m

2
)

×104R3.medium

0 5 10 15

Time (s)

0
0.5
1

1.5
2

2.5
3

A
re
a
(m
m

2
)

×104 R3.coarse

Figure 6.12: Temporal evolution of the portion of the image occupied by the current (gray) and
the portion occupied by the sediment (black), for the first seconds, when the main sediment
mobilization is observed. The angle formed by the line representing the evolution of the
current with the horizontal (θ), and the area of the current (Ac ) calculated as described in
Section 6.5.3 are also reported. The height of the gravity current (hc ) is directly proportional to
area of the current Ac by a factor of 0.245 m (see Figure 3.11).
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and it goes higher, and (ii) the increase in excess density between the fresh water and the

current enhances the erosion.

6.4.2 Morphology changes

The average (among the eight profiles collected), minimum and maximum longitudinal

bed elevations in the mobile bed reach, measured after the passage of the gravity current

as described in Section 3.3.4, are shown in Figure 6.13. The average has been calculated

among the eight longitudinal profiles collected across this bed region as shown in Figure

3.9. Minimum and maximum values along the longitudinal are also shown in Figure 6.13.

The maximum erosion is exhibited by test R3.fine, which is expected since it is the test with

the finest grain and the largest excess of density. This tendency is also confirmed by the

measurements performed with the video analysis (Section 6.4.1). The 1 cm deep erodible

reach is never completely uncovered since the maximum measured erosion is 0.8 cm.

The eroded volume of sediment is calculated by integrating the difference among the to-

pographies recorded before and after the erosion process caused by the passage of the cur-

rent. Each difference in height (ZBED,be f or e (x)−ZBED,a f ter (x)) is integrated along the mobile

bed that has a total length l=0.6 m, and then multiplied by the respective area of influence

(AER,i = AER /(n +1), with AER =0.275 x 0.6 m2 as the total surface of the mobile bed and n=8,

the number of longitudinal sections recorded, see Figure 3.9).

Ver oded =
n∑

i=1
AER,i ∗

∫l

0
(ZBED,be f or e (x)−ZBED,a f ter (x))d x (6.3)

In Figure 6.15 the values of the calculated eroded volumes are shown grouped by the sediment

size and by the initial density in the lock. As expected, the eroded volumes of sediment

decrease with the sediment size and increase with the initial density of fluid in the lock.

Similar to Figure 6.13, the average, minimum and maximum longitudinal bed elevations are

shown in Figure 6.14 for the surveyed downstream area of deposition. It can be observed

that higher deposition occurs in the vicinity of the erodible reach. Further downstream, the

thickness of the deposited sediment layer decreases. Tests with a lower initial density show

the maximum height of deposition, but no clear tendencies with respect to the grain size

are detectable. Gravity currents with higher buoyancy have higher velocities and turbulence

production which can keep in suspension material for longer distances. In these cases, the

deposition rate is lower and the sediments are transported further downstream, outside the

present area of investigation.
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Figure 6.13: Longitudinal bed elevations in the erodible bed after: black the average longitudi-
nal profile; dashed gray lines correspond to the minimum and maximum values across the
section.
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Figure 6.14: Longitudinal bed elevations in the downstream zone of deposition: black the
average longitudinal profile; dashed gray lines correspond to the minimum and maximum
values across the section.
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6.4.3 Deposition patterns

In Figure 6.16 the processed images (see Chapter 3.3.6) of the deposition area taken with the

camera are shown. The deposited material follows a typical pattern: longitudinal streaks are

observed, as already noticed in some previous studies (Grass (1971), Colombini and Parker

(1995)). These longitudinal streaks were explained by these authors as being the result of

the rise of light ambient fluid trapped at the bed of the overrun front of the gravity current

through the denser fluid into the gravity current (some references: Eames et al. (2001), who

studied gravity currents experimentally, and Ooi et al. (2009), who studied them numerically).

This movement of fluid creates streamwise-oriented vortices aligned with the primary flow,

which are responsible for the imprinting of elongated streaks of deposited sediment (Weill

et al. (1985), Cantero et al. (2008)).
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Chapter 6. Gravity currents flowing over mobile bed

The cross sections recorded with the laser in the downstream reach can provide a measure

of number of streaks (N .str eaks), their maximum amplitude of deposition (ΔzM AX ) and

average thickness of the streaks (Δy AV E ). These measurement have been analyzed for the cross

sections (as shown in Figure 6.17) for all the tests performed. Section C4 was considered (0.27

m downstream of the mobile bed), since, taking advantage of the pictures, it is observed that

at this distance from the erodible bed, the streaks are well developed for all the experiments.

The information in Figure 6.17 suggests that generally the number of streaks decreases with

increasing initial density and with coarser material and that the thickness of the streaks

(Δy AV E ) is greater for higher initial density and it increases with coarser material. Instead no

clear tendencies are detected for the maximum amplitudes of deposition ΔzM AX .

To determine the geometry of the streaks, a shape factor (Podczeck, 1997) is computed as:

fel ong = 2∗ΔzM AX +Δy AV E

ΔzM AX
(6.4)

fel ong measures how elongated is the section of the streak. Figure 6.18 shows the relation

between gravity currents initial density, grain size composing the erodible bed, number of

streaks and streak section shape. It is here proven that greater initial excess density and the

presence of coarser material generate less streaks whose section is less elongated.
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Figure 6.18: Relation between gravity currents initial density (here presented as the excess
density Δρ), grain size composing the erodible bed (D50), number of streaks (N .str eaks) and
streak section shape ( fel ong ).
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6.5 Discussion

6.5.1 Mechanisms governing sediment entrainment and distal transport

The relationship between sediment entrainment and bed shear stress in a gravity current is

widely acknowledged in literature (Hirano et al. (1985), Parker et al. (1986), García and Parker

(1993), Sequeiros et al. (2010a)). When the bed shear stress caused by the gravity current

passing over the mobile bed exceeds a critical threshold of particle motion, erosion may occur.

However, bed shear stress is not the only force acting at the bed boundary of a gravity current,

and because this flow is highly turbulent, other forces play a role in sediment entrainment.

In particular, vertical velocity is expected to enhance vertical mixing, and its contribution in

the incipient motion of sediments was addressed here. The normalised bed shear stress τ∗b
calculated from the log law (as in Section 6.3.3)(1), the depth-averaged (over the height of

gravity currents) vertical mean velocity wd (2), the corresponding depth-averaged fluctuation

w ′
d (3), and the depth-averaged Reynolds stresses u′w ′

d (4) are subsequently compared to the

area of entrained sediments. All these quantities are plotted together in Figure 6.19 with the

same time reference.

Before sediment entrainment begins, a peak in the mean vertical depth-averaged velocity is

observed, and alternating positive and negative oscillations follow. w ′
d has the same evolution

and contributes to intensifying the fluctuating behaviour of vertical flow movements inside the

current. A decrease in vertical velocity is detected, corresponding to the initiation of sediment

entrainment. Bed shear stress also has a minimum during the period in which sediment

entrainment is important, which is during the passage of the head of the current (delimited

with the vertical dashed line in Figure 6.19). The body is characterized by almost no sediments

in suspension and important values of bed shear stress.

To understand the underlying mechanisms of sediment entrainment, the cross-correlation

between the time-varying area of entrainment, displayed in Figure 6.12, and the other time-

varying hydrodynamic variables, presented in Figure 6.19, is calculated and presented in

Figure 6.20, together with the 0.05 statistical significance level.

Figure 6.20 shows that the mean and fluctuating components of the depth-averaged vertical

velocity are highly correlated with the entrained area in the first instants of the passage of

the current, and subsequently, this correlation rapidly decreases. Conversely, the bed shear

stress and depth-averaged Reynolds shear stresses correlate with the entrainment area for a

longer period. Mean and fluctuating components of depth-averaged vertical velocity are then

indicated as major factors for sediment lifting, as their correlation with the area of sediments is

at the maximum at the moment in which sediment entrainment initiates. The high correlation

of the cloud of suspended sediments and bed shear stress indicates the importance of the

latter in the distal transport of sediment. Once the sediment becomes mobile because it is

dislocated from the bed, excess bed shear stress causes its downstream movement.

105



Chapter 6. Gravity currents flowing over mobile bed

0
20

40
60

t/
t*

-0
.0
20

0.
02

0.
04

w(m/s)

051015

τ
∗

b

050
00

10
00
0

15
00
0

20
00
0

Area(mm
2
)

R
1.
fi
n
e

0
20

40
60

t/
t*

-0
.0
20

0.
02

0.
04

w(m/s)

051015

τ
∗

b

045
00

90
00

13
50
0

18
00
0

Area(mm
2
)

R
1.
m
ed
iu
m

0
20

40
60

t/
t*

-0
.0
20

0.
02

0.
04

w(m/s)

051015

τ
∗

b

020
00

40
00

60
00

80
00

Area(mm
2
)

R
1.
co
ar
se

0
20

40
60

t/
t*

-0
.0
20

0.
02

0.
04

w(m/s)

051015

τ
∗

b

050
00

10
00
0

15
00
0

20
00
0

Area(mm
2
)

R
2.
fi
n
e

0
20

40
60

t/
t*

-0
.0
20

0.
02

0.
04

w(m/s)

051015

τ
∗

b

045
00

90
00

13
50
0

18
00
0

Area(mm
2
)

R
2.
m
ed
iu
m

0
20

40
60

t/
t*

-0
.0
20

0.
02

0.
04

w(m/s)

051015

τ
∗

b

020
00

40
00

60
00

80
00

Area(mm
2
)

R
2.
co
ar
se

0
20

40
60

t/
t*

-0
.0
20

0.
02

0.
04

w(m/s)

051015

τ
∗

b

050
00

10
00
0

15
00
0

20
00
0

Area(mm
2
)

R
3.
fi
n
e

0
20

40
60

t/
t*

-0
.0
20

0.
02

0.
04

w(m/s)

051015

τ
∗

b

045
00

90
00

13
50
0

18
00
0

Area(mm
2
)

R
3.
m
ed
iu
m

0
20

40
60

t/
t*

-0
.0
20

0.
02

0.
04

w(m/s)

051015

τ
∗

b

020
00

40
00

60
00

80
00

Area(mm
2
)

R
3.
co
ar
se

F
ig

u
re

6.
19

:T
em

p
o

ra
le

vo
lu

ti
o

n
o

fn
o

rm
al

iz
ed

b
ed

sh
ea

r
st

re
ss

τ
∗ b

,d
ep

th
av

er
ag

ed
ve

rt
ic

al
m

ea
n

ve
lo

ci
ty

w
d

(b
la

ck
li

n
e)

,d
ep

th
-a

ve
ra

ge
d

ve
rt

ic
al

ve
lo

ci
ti

es
fl

u
ct

u
at

io
n

w
′ d

(g
ra

y
li

n
e)

an
d

ar
ea

o
fs

ed
im

en
t

en
tr

ai
n

ed
(d

o
tt

ed
li

n
e,

se
e

F
ig

u
re

6.
12

).
T

h
e

ve
rt

ic
al

li
n

e
is

th
e

li
m

it
o

ft
h

e
h

ea
d

L
h

as
ca

lc
u

la
te

d
p

re
vi

o
u

sl
y.

106



6.5. Discussion

-15 -10 -5 0 5 10 15
-1.0

-0.5

0.0

0.5

1.0

-15 -10 -5 0 5 10 15
-1.0

-0.5

0.0

0.5

1.0

confidence wd τ
∗

b w′

d u′w′

d

-15 -10 -5 0 5 10 15
-1.0

-0.5

0.0

0.5

1.0

-18 -9 0 9 18
-1.0

-0.5

0.0

0.5

1.0

C
or
re
la
ti
on

-18 -9 0 9 18
-1.0

-0.5

0.0

0.5

1.0

-18 -9 0 9 18
-1.0

-0.5

0.0

0.5

1.0

-24 -12 0 12 24
-1.0

-0.5

0.0

0.5

1.0

-24 -12 0 12 24

Lag (t/t*)

-1.0

-0.5

0.0

0.5

1.0

-24 -12 0 12 24
-1.0

-0.5

0.0

0.5

1.0

Figure 6.20: Cross-correlation between the entrainment area (as in Figure 6.12) and: (1) depth
averaged vertical mean velocity; (2) bed shear-stress; (3) depth-averaged vertical velocity
fluctuations and (4) depth averaged Reynolds-stresses. The two horizontal lines represent the
statistical significance level of 0.05.
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6.5.2 Dynamics of sediment transport and deposition

Gravity currents are turbulent flows which experience the presence of near wall turbulent

coherent structures (Grass (1971), Kneller et al. (1999)) as those are common features of

boundary layer turbulence (Defina, 1996). Turbulent bursting events characterize these type

of flows which consist of the movement of low-speed fluid ejected away from the wall (Salim

et al., 2017). Streamwise-oriented vortexes, called horseshoe vortexes (Salim et al., 2017),

aligned with the primary flow, are formed and they are responsible for the imprinting of

elongated streaks of deposited sediment. The development of a horseshoe vortex showing the

lifts, stretches, ejection, and sweep associated with velocity profiles is shown in Figure 6.21.

Figure 6.21: Schematic diagram of the typical sequence of turbulent bursting phenomena
presented by Salim et al. (2017) (and modified from Allen (1984)) where the flow is directed
from left to right and the arrow length represents the relative velocity in the velocity profiles.

Many studies have been conducted on the streaky structure in the wall region of many types of

turbulent boundary layer flows (Grass (1971), Defina (1996), and Allen (1985), among others).

The signature of these patterns in the deposition have been observed in the present tests
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(see Section 6.4.2). Figure 6.16 shows the formation of elongated accumulation of sediment

bands on the streamwise direction. Since the only forces acting on the sediment originate in

the flowing fluid, the fact that they are arranged in streamwise oriented bands can only be

due to a transverse component of fluid force (Allen, 1985). The fluid motion of the gravity

current has been thoroughly analysed, and Figure 6.10 provides evidence of the simultaneous

presence of mean streamwise velocity troughs with peaks of RMS velocities. Periods of high

turbulence that correlate with slow mean streamwise velocity are typical for coherent flow-

turbulent structures such as ejections (Kline et al. (1967), Baas et al. (2005)). In the ejection

phase, low-speed fluid is ejected upward, and simultaneously, a local and adjacent convection

streamwise recirculation cell will quickly form.

The formation of longitudinal streaks in the bed is the result of the convergence of downwelling

flow associated with these flow streamwise cells. The size and shape of streaks are flow

dependent, and the average streak spanwise spacing was confirmed to be influenced by the

initial density (Figure 6.17). Kaftori et al. (1995) shows that with an increment in the bottom

shear stress, for a given fluid-particle combination, more particles are entrained and the

streaks begin to shrink in size. This tendency is continuing until a point in which there are not

enough particles at the wall and the streaks disappear. Here we found that gravity currents

generated by higher excess densities produce more spaced streaks. This can therefore be

linked to the presence of more energetic counter-rotating streamwise vortices (Niño and

Garcia, 1996).

For what concern the influence of the grain size, previous literature reports that particle sorting

along low-speed streaks occurs only if the particles are of sizes about equal or smaller than the

thickness of the viscous sublayer (Kaftori et al., 1995). Moreover, larger particles have more

inertia than smaller ones and therefore they are less responsive to flow velocity fluctuations,

as it was already pointed out by Niño and Garcia (1996). Here, the influence of the grain size of

sediments composing the erodible reach is translated into a tendency to have streaks sections

which are less elongated with coarser grains, as confirmed by Figure 6.18. Coarser particles

are more easily settled out from the flow and they are pushed aside to form streaks which are

characterized by higher average thickness. This indicates that a feedback exists between the

turbulence-caused coherent motion which is at the origin of the flow streaks and the mobile

bed which conditions the spacing scale of these.

6.5.3 Quantitative analysis of sediment erosion

The sedimentological impact of a gravity current is the result of the complex hydrodynamics

of this flow. Sediment entrainment is a complex mechanism mainly due to the difficulty

in defining the fluctuating nature of turbulent flow (Salim et al., 2017). Bed shear stress, is

considered a "surrogate" measure of the entrainment capacity of the gravity current (Hickin,

1995).

Thus, to characterize the relation between sediment entrainment and bed shear stress caused
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by the passage of a gravity current, the quantities defined in Chapter 4.3.5 have been used.

Here an adimensional version is adopted in order to consider the normalized bed shear stress.

Shields normalization allows to compare the driving forces that induce particle motion (the

bed shear stress, τb) to the resisting forces that depend on the sediment characteristics (ρs

and D50). Therefore the quantity Φ is rewritten in non dimensional form and it is defined as:

Φ=
∫T

0
τ∗b (t )d t/t∗ (6.5)

where the limit T defines the end of sediment entrainment, obtained by the area of sediment

entrained in Figs.6.12 and 6.19. A specific dimensionless eroded volume has been defined as:

V ∗
er oded = Ver oded

D50 ∗ Atot
(6.6)

where Ver oded is calculated as in Chapter 6.4.2 and is the volume of eroded sediment, Atot as

indicated in Figure 3.9. In Figure 6.22a the quantities calculated per each test are presented

one against the other and they show a coherent tendency: an increase in the non-dimensional

work is related to an increase in the erosion. The relationship between the eroded volume and

a variable which takes into considerations the initial density of the gravity current (surrogate of

the erosion force) and the grain size (surrogate of the resistance to erosion) is shown in Figure

6.22b. The eroded volumes decrease with increasing D50ρaΔρ
−1h−1

b (adimensional parameter

that accounts for the grain size and excess buoyancy), confirming that in the case of low initial

density and with coarser sediments, the material on the erodible reach is less mobile and the

erosion is consequently weaker. The particle Reynolds number, which takes into account both

the sediment representative diameter and the density by means of the reduced gravity, was

computed as follows (García and Parker, 1993):

Repar t =
√

g ′D50D50

ν
(6.7)

Figure 6.23a shows Φ as a function of Repar t . According to the well known Shields diagram

(Shields, 1936a), and the modified version as in Sequeiros et al. (2010a), low particle Reynolds

numbers correspond to sediment that may be transported as suspended material. Figure

6.23a is the adapted left hand side of the Shields diagram, which fall in the suspended load

area. Video observations confirmed the presence of suspended particles all over the flow even

close to the bottom surface.

In Figure 6.23b, the dependence of the dimensionless specific eroded volume (Ver oded ) on the

particle Reynolds number (Repar t ) is shown. Particles characterized by a lower Repar t exhibit

an easiness to be entrained, and consequently, the measured eroded volume is greater.

111



Chapter 6. Gravity currents flowing over mobile bed

0 0.04 0.08 0.12

D50ρaΔρ
−1h−1

b

50

75

100

h
c
(m

m
)

0.3

0.55

0.8

θ
(r
a
d
)

R1.fine
R1.medium
R1.coarse
R2.fine
R2.medium
R2.coarse
R3.fine
R3.medium
R3.coarse
R1.fine
R1.medium
R1.coarse
R2.fine
R2.medium
R2.coarse
R3.fine
R3.medium
R3.coarse

Figure 6.24: The angle (θ, (rad) and the height of the current (hc , (mm)) calculated from video
analysis (empty symbols are for right side y-axis θ, filled are hc , y-axis on the left side).

6.5.4 Effect of sediment entrainment on the gravity current

As hypothesized earlier, the hydrodynamics of the current are influenced by the incorporation

of the sediment present at the bed, and this interaction is conditioned by the sediment diame-

ter. Changes in the geometry of the front that are related to the flow resistance are observed in

the time evolution of the area of the current, as reported in Figure 6.12. From Figure 6.12, two

quantities have been calculated: θ, the angle formed by the line representing the evolution of

the current (in gray) with the horizontal (by means of merely geometrical considerations using

the lines as presented in Figure 6.12), and hc , calculated as the average area of the portion of

the image occupied by the current, divided by the horizontal dimension of the frame captured

with the high speed camera. These two have been compared to D50ρaΔρ
−1h−1

b (Figure 6.24).

Figure 6.24 shows that the current height hc increases at a higher rate (θ) in presence of

finer sediments. This is an evidence of how the incorporation of sediment changes the

hydrodynamics of the current: the tests where larger quantity of sediment is incorporated (cf.

Figure 6.12) are the ones where the angle θ is higher. The results suggest that the incorporation

of sediment within the current induces internal energy losses which induce the higher velocity

of increase of hc . However, the influence of the incorporation of sediment in the current

geometry is not so evident when regarding the current depth. In fact, only for the case of the

lower initial densities in the lock the incorporation seems to produce an effect.
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6.6 Conclusions

Erosion, transport and deposition of fine sediment caused by the passage of a saline gravity

current were investigated experimentally. For this purpose the cross-analysis of data from

several measuring techniques was done: instantaneous velocity profiles measured with an

acoustic Doppler velocity profiler, video analysis, laser based topography and pictures of

deposition patterns compose the available data-set. The tests, carried out with a lock-exchange

channel with high volume of release flowing over a mobile-bed reach, included three initial

densities of the fluid on the lock and three different sizes of sediment composing the mobile

bed reach. Mean flow and fluctuating quantities were estimated and discussed taking into

account the different triggering densities in the lock. Different size classes of suspended

sediment react differently to the changes in flow dynamics determined by the initial density in

the lock.

Among the computed hydrodynamic quantities such as turbulent and mean upward velocity,

bed shear stress and turbulent stresses, we show that bed shear stress and Reynolds stresses

are correlated with sediment entrainment for longer periods, thus it can be inferred they are

associated with the distal transport of sediment. The main factor responsible for sediment

dislodging is found to be the vertical component of the fluid movement, which presents a

high peak of vertical mean velocity at the front of the currents. Upward motion, characterized

by the mean vertical velocity and aided by the vertical component of turbulence, promotes

vertical mixing of the sediment from the channel bed, whereas in the periods between these

flow structures the particles have sufficient settling velocities to deposit, with the coarser

particles depositing sooner than finer ones.

The combined analysis of the hydrodynamics and the geomorphic imprint of the passage

of the gravity current on the mobile bed, shows a clear relationship between erosion and

current shape. Furthermore, our results indicate that the deposition downstream of the

mobile bed presents the signature of counter rotating vortices aligned with the primary flow

in the streamwise direction. Therefore, the presence of feedback mechanisms is assumed,

with the hydrodynamics of the current imprinting the streaks, and entrainment of sediment

modifying the current hydrodynamics, thus resulting in different streak geometries.
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7.1 Conclusions

To meet the aims of the present research study, three groups of tests were performed by

changing initial conditions and set-up configurations reproducing gravity currents that are

commonly observed in nature.

The first set of experiments allowed testing of the influence of the initial released volume of

dense fluid and the initial excess density on the anatomy of the gravity current. Making use

of instantaneous velocity measurements along the whole vertical section, the hydrodynamic

properties of the highly turbulent flow could be determined. It was possible to characterize

both horizontal and vertical structures of the gravity currents which were found to vary with

the amount of released saline water.

The second group of tests allowed determination of the effect of extra gravitational forces

here produced by introducing a slope on the lock reach of the channel. The behaviour of

the current was analysed, focusing on the water entrainment at the upper interface and the

potential erosion capacity at the bottom. This analysis revealed that the presence of extra

gravitational force, for the range of small slopes analysed herein (S=0-16%), do not play a role

in enhancing bottom erosion.

Finally, the third set of tests were performed with the presence of a mobile bed reach. A

complex set of instruments was used in order to record the sediment transport process

operated by the passage of a gravity current. The forces responsible for the picking up of

sediment are identified. The interaction between gravity current and entrained material has

been discussed. It could be highlighted that the shape of the front changes due to sediment

entrainment and that the deposition of sediment downstream creates characteristic patterns

whose geometry reflects the coherent turbulent structure of the current.

The main scientific findings are summarized in the following by answering the research

questions initially raised:

Q1 How can the head and body regions of a gravity current generated by lock-exchange

method be defined and which are their characteristic features?

In order to systematically define the extension of head and body regions, a kinematic function

has been defined as the product of depth averaged streamwise velocity and current height

(which is identified by the zero-streamwise velocity contour). This is particularly important

since a universal criterion was not established yet, even if the distinction of these two regions

is widely accepted in literature. Head and body are known to have different hydrodynamic

behaviours and consequently a different role in sediment entrainment and transport of mass

and momentum. It was therefore of paramount concern to circumscribe those zones. The
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function H(t) = hd (t)h(t) was used. The head was identified by the first meaningful local

minimum and the body by the extension of the linear portion of the cumulative sum of the

function H .

The variation in the shape of the current is mainly consequence of the entrainment of water at

the upper interface. The current evolves along its path, depending on the initial volume of

dense fluid released and on the volume available for the propagation of the release until the

observation point. These are taken into account by the normalization Li /Lp used here which

makes it possible to observe that the initial excess density does not influence the shape of the

gravity current.

Q2 Which is a common structure of the inherent vortical movements of lock-released

gravity currents and how does this affect the mass and momentum exchange?

It could be shown in this research project that a structure composed of three main zones

characterizes the vorticity field of gravity currents. The first zone is located at the core of

the head and in vicinity of the bottom (the inner layer), where positive vorticity with inner

movements rotating in the direction of the principal motion take place.

A second zone is at the rear part of the heightened head and along the upper interface of the

flow. The flow in this mixing zone is characterized by movements which go inversely with

respect to the direction of the main flow (Kelvin-Helmholtz vortices are here present). Their

strength decreases with time (and thus along the flow) and becomes negligible in the tail of

the current. At the mixing layer, ambient water is entrained into the gravity current and due to

its character it cannot be delimited by clear boundaries. It could be shown that the Ellison

and Turner (1959) height and the zero-streamwise velocity contour provide a valid indicator

of the approximate limits of this second zone of high vorticity.

Finally, the third zone is located between the two previously defined. Residual negative

vorticity expands from the upper layer towards the bottom, showing progressively lower

intensity.

The elaborated definition of the vertical structure is of special interest when a numerical

simulation of these flows is attempted. In fact, the most commonly used theoretical models

are based on depth averaged quantities assuming that there are no significant variations of

the properties of the current along the vertical. The use of depth-averaged models is adapted

for modelling the evolution of the current. Nevertheless, when the description of the vertical

structure is attempted, a proper parametrization should be used. The analysis provided here

gives the base for the formulation of a model that can relate the shape of the current with its

hydrodynamics, including mass and momentum exchange, without the need of resolving the

vertical current properties.

117



Chapter 7. Conclusions and future research

Q3 Which parametrization can be adopted to quantify entrainment from the upper and

lower layers that takes into account the spatio-temporal variability of the gravity

currents?

New quantities to account for the upper water entrainment (Φm =∫T2
T1

τm(t)d t/t∗) and the

bottom erosion capacity (Φb =∫T4
T3

τb(t )d t/t∗) could be defined. These quantities are calcu-

lated as the time integral of the shear stress. By dimensional analysis, they represent the work

done by the gravity current, for a certain advection velocity, per unit surface. The relation

between the upper resistance of the flow so computed and the Richardson number could be

verified, giving strength to this new definition. At the bottom, the erosion capacity is proved

to be related with the volume of sediment entrained. Both quantities are highly dependent

on the initial release conditions. On horizontal bed conditions, it has been demonstrated by

the experimental tests that the extent of the body region, that changes in relation to the initial

volume of release, has a prior role in the bottom entrainment capacity. At the interface, the

mixing zone thickness increases exponentially with the time integral of the shear stress as a

consequence of the dilution due to water entrainment and this is enhanced with bigger initial

released volumes.

Q4 How does gravitational force, increased by the presence of a slope in the lock, affect

ambient water entrainment and potential erosion capacity? How is the current shape

modified?

Gravity currents reproduced with increased gravitational forces are subjected to two main

mechanisms: (i) the increment of shear stress at the upper interfaces which causes a higher

water entrainment and (ii) the acceleration of the fluid, mainly at the rear steady part of the

current, which therefore feeds the forerun head. The range of tested slopes allowed identifi-

cation of the transient conditions where the mentioned mechanisms become relevant. For

S<16%, the dilution caused by the enhanced water entrainment reduces the mean streamwise

velocity. At S=16% an inversion of this tendency is noticed, most probably due to the effect of

the extra gravitational forces that accelerate the fluid. Under this configuration an extended

body formed as the result of water entrainment at the upper surface of the current that creates

dilution and the expansion of its body. Thus, the resulting bottom erosion capacity is reduced

by the presence of the extra gravitational forces due to lower streamwise velocities which

followed gravity currents dilution.
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Q5 Which are the mechanisms governing the entrainment, transport and deposition of

sediment and how the hydrodynamic of the gravity currents act to induce geomorphic

changes on a mobile bed? Which is the feedback process on the gravity current

generated by the incorporation of entrained sediment?

Gravity currents flowing on a mobile bed entrain sediment following its hydrodynamics and

the characteristics of the material present at the bottom. Both mean and turbulent vertical

flow field revealed the presence of peak values on the foremost part of the current followed by

alternating positive and negative oscillations. Their primary role in sediment dislodging is

proved by a correlation analysis. Moreover, it could be demonstrated that bed shear stress is

mainly linked to the distal transport of sediment.

To estimate the entrainment capacity of a gravity current, ideally all impelling forces should be

taken into account. However, the fluctuating nature of the turbulent flow makes impossible a

formulation based on all these complex hydrodynamics. Bed shear stress is recognised as the

most important of the impelling forces. Since it is correlated with all the other involved forces,

it provides a "surrogate measure" of them. In this research project, it could be shown that the

bed shear stress gives a good estimation of the entrainment capacity.

The entrainment of sediment in the current may change its momentum by introducing extra

internal stresses, thus resulting in a feedback process. The geometry of the front of the gravity

current changes with the entrainment of the sediment. This indicates that, with the presence

of sediment, extra energy losses occur in the front of the current.

Q6 How is the downstream deposition of sediment affected by the turbulent structure of

the gravity current?

The presence of near wall turbulent coherent structures inherent to the turbulent flow of the

gravity currents imprints the formation of particular deposition patterns. Longitudinal streaks

form as the result of the convergence of downwelling flow associated to horseshoe vortexes

which consist of a sequence of lifts, stretches, ejection and sweep of fluid. These are charac-

teristic movements of the so-called turbulent bursting events that consists of movements of

low-speed fluid ejected away from the wall. The number of streaks and the shape of the streak

is related to the type of sediments and the gravity current excess density. It was here proven

that greater initial excess density and the presence of coarser material generate less streaks

whose section is less elongated indicating that a feedback mechanisms between the coherent
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structures generation and the morphology changes of the channel bed may exist.

7.2 Consequences for practical applications

Sediments are brought in huge quantities into the reservoirs by means of turbidity currents.

Reservoir sedimentation is therefore intensified, affecting the sustainability of reservoirs by

decreasing their storage capacity. Moreover the dam blocks the flux of sediments leading to

downstream sediment impoverishment. Thus, proper sediment management techniques

have to be adopted in order to find a way for sediment evacuation. This research project has

demonstrated that gravity currents are modified by the interaction with sediment composing

the bed. The feedback process issues of the interaction with a mobile bed has therefore to be

considered for a precise determination of the evolution of the current. Knowing the timing of

approach of the turbidity current is fundamental since the flow charged in sediment can be

evacuate through the opening of the bottom outlet of the dam (Figure 7.1a) and the lowest

possible loss of clear water is suitable.

Figure 7.1: a) Venting of turbidity current at Beni Haroun reservoir (Algeria) (Remini and
Touimi, 2017); b) Side-scan Sonar Image of a Lateral Buckle (Bruton et al., 2006).

The present research studied the erosion capacity of gravity currents focusing on the forces

associated with sediment entrainment. Scour processes, i.e. the removal of sediment operated

by the flow, may occur in the vicinity of structures, such as the submarine pipelines situated

on the bottom of oceans, and this represents a threat to their stability. Shedding light in the

mechanisms which involve sediment erosion operated by gravity currents is therefore of great

interest in predicting potential hazard of failure.

Gravity currents can also impact on pipelines. This research has shown that the dynamics

of the gravity current are highly dependent on the initial conditions of release which have

therefore to be considered when we analyse the effect that an obstacle has on the flow, a
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subject that few studies have addressed (Rottman et al. (1985), Oehy and Schleiss (2007),

Tokyay et al. (2012), Yaghoubi et al. (2016)).

7.3 Perspectives on future work

Several research challenges could be addressed in forthcoming studies.

First the estimation of bed shear stress could be attempted through detailed velocity mea-

surements in the vicinity of the bed. The experiences made during this research project

showed however that these measurements are still a concern even for the most sophisticated

instruments. The higher the resolution of the velocity measurements in the logarithmic layer

is, the better are the results of the fit of the "law of the wall". High precision of the shear

velocity estimation will improve the quantitative estimation of the shear stress and this could

be reached by advancements on the technologies for velocity measurement.

The numerical simulation of gravity currents in presence of a mobile bed has been frequently

performed by using scalar transport equations. The increased computational power makes

nowadays feasible the use of Direct Numerical Simulations (Nasr-Azadani et al., 2016). The

use of Lagrangian markers to track the motion of the particles could better reproduce the

interaction between gravity current hydrodynamic and sediment, whose mutual feedback has

been proved in this research project.

More geometries could be taken into account in the future, such as a wider range of slopes (that

were here limited to S≤16%, due to set-up constrains). The steepest slope here reproduced

is the transient case for which the effect of extra gravitational forces become evident i.e. the

acceleration of the fluid composing the body of the current. The exploration of steeper slopes

would confirm the development and enhancement of the mechanisms induced beyond this

critical slope.

The investigation of the interaction between gravity currents and subaqueous structures

has motivated several recent experimental (Ermanyuk and Gavrilov, 2005) and numerical

(Gonzalez-Juez and Meiburg, 2009) investigations. The collision of gravity currents on struc-

tures may cause damages. The impacting force is related to the flow hydrodynamics which

could possibly be measured experimentally by using a dynamometer force plate. This instru-

ment has the advantage of directly estimate the forces generated due to the impact instead of

deriving them from the hydrodynamic measures, as was done in this research.

Venting of turbidity currents is a very efficient mitigation measure against reservoir sedimen-

tation that consists of opening bottom or low-level outlets as soon as the turbidity current

reaches the dam in order to pass it downstream (Figure 7.1a). The key factor for this technique

is to time correctly the operations of opening and closing the outlet (Chamoun et al., 2017a).

Future research on this domain should take into account that the turbidity current, while

travelling along the thalweg of the reservoir, interacts with sediments at the bottom. This
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research project has shown that the evolution of the gravity currents is modified by the inter-

action with the sediment composing the bed. Thus future simulations of these phenomena

and evaluation of the mitigation measures efficiency should be assessed also in presence of a

mobile bed.
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A Logarithmic velocity profile method
for shear velocity estimation

Newton found by experiment that for a laminar flow, a tangential force (i.e. the force in the

direction of the flow) per unit area acting at an arbitrary level within a fluid contained between

two rigid horizontal plates, one of which is motionless and the other which is in steady motion,

is proportional to the shear of the fluid motion at that level. Mathematically, the law is given

by

τxz =μ
∂u

∂z
(A.1)

where τxz is the tangential force per unit area, usually called the shear stress; μ a constant of

proportionality called the dynamic viscosity; and ∂u/∂z the shear of the fluid flow normal to

the resting plate.

For a turbulent flow, mixing between adjacent layers in the flow involves transfer of momentum

via large scale eddies, which impart an extra "eddy viscosity" term that can be considered

analogous to momentum transfer by conventional viscosity:

τ= ρ(ν+K )
∂u(z)

∂z
≈ ρK

∂u(z)

∂z
(A.2)

where u(z) is the mean velocity at elevation z and K is the eddy viscosity which typically is

K >> ν.

From Prandtl’s mixing length theory:

K = l 2
∣∣∣∣∂u(z)

∂z

∣∣∣∣ (A.3)

where l is a mixing length scaled against elevation by the von Kármán constant: l = kz.

Appendix A is based on the scientific article "Bed shear stress estimation for gravity currents performed in
laboratory" by J. Zordan, A.J. Schleiss and M.J. Franca published in Proc. of River Flow 2016, St. Louis, USA. The
experimental work and the analysis presented hereafter is original and was performed by the author.
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Prandtl introduced the concept of "friction velocity" (u∗), which has the dimension of a

velocity and it is assumed to be constant near the bed:

u∗ =
√

τb/ρ (A.4)

with τb is the shear stress in the vicinity of the bed.

By combining equations A.2, A.3 and A.4, the shear velocity results:

u∗ = kz
∂u(z)

∂z
(A.5)

Considering the only changing variable z, partial derivative can be substituted by the total

one and rearranging Eq.A.5 yields:

du = u∗
k

d z

z
(A.6)

Integrating an rearranging terms yields:

u(z) = u∗
k

lnz +C (A.7)

with the boundary condition that u(z0) = 0 then the constant resulting from integration is:

C =−u∗
k

ln(z0) (A.8)

Hence Eq.A.7 becomes:

u(z) = u∗
k

ln(z)− u∗
k

ln(z0) = u∗
k

ln
z

z0
(A.9)

This is the "Law of the Wall" that predicts a logarithmic velocity profile at a roughness length

scale that defines the height above the bed of z0. It has the advantage that no independent

estimate of z0 is needed, because u∗ only depends on the slope of the profile, not the intercept.

The friction velocity u∗ is calculated with the following procedure: (i) the equation of the law

of the wall is rewritten as:

u(z) = A ln(z)−B (A.10)

where the two coefficients, A and B , are:

A = u∗
k

B = u∗
k

ln z0 (A.11)

(ii) the coefficients A and B are determined through a fitting procedure to obtain an estimation

of u∗. The identification and fitting procedure for the logarithmic layer was determined

stepwise, extending a linear least square fitting range (in a semi-logarithmic scale) from the

lowest measured point until the vertical position corresponding to the maximum velocity. The
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Figure A.1: Logarithmic profile method for some velocity profiles. Data are plotted in a semi-
logarithmic graph, u(m/s) streamwise velocity in the x-axis and z(m) on the y-axis. The red
dashed line linearly fits the velocity measurements within the determined logarithmic layer.
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Figure A.2: Collapsed near-bed profiles for one representative test showing the consistency of
linear interpolation with slope 1/k=2.5.

layer providing the best regression coefficient was chosen and considered for the estimation

of u∗, corresponding to the extent of the logarithmic layer.

In Figure A.1 the fitting procedure for some velocity profiles is illustrated. The fitting pro-

cedure is adopted for each instantaneous profile collected with the ADVP instrumentation

zone-averaged over a window long enough to correspond to a quasi-steady region. Thus, an

estimation of the bed shear stress is made for each measuring instant.

Figure A.2 shows all the mean velocities as a function of the flow depth within the overlapping

layer for the profiles for one representative test. The data collapse linearly when plotting

the distance from the bed in the logarithmic scale and it indicates the consistency of the

application of the method to the measurements (Sequeiros et al., 2010b).

Some assumptions for the fitting of the logarithmic law of the wall require to be validated

after the estimation of the friction velocity. The assumptions checked are: (i) the smooth-

wall assumption and (ii) the thickness admitted for the overlapping (logarithmic) layer. The
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Appendix A. Appendix - Logarithmic velocity profile method for shear velocity estimation

assumption (i) is verified if the shear Reynolds number (or skin roughness, ks , normalized by

the viscous layer) is in the limit:

ksu∗
ν

� 5 (A.12)

with a considered skin roughness of the channel bottom of ks=0.2 mm, which corresponds to

PVC. The upper limit of the overlapping layer (zu), within which the data lie on the logarithmic

fit, is limit by (Chassaing, 2000):

zuu∗
ν

� 500 (A.13)

so to verify statement (ii).

The value of the von Kármán constant, it’s universal nature, Re-independent but wall-dependent

or, in general, flow dependent, has been subjected to considerable investigation (Ferreira,

2015). Under clear-water turbulent flow conditions the universal value of 0.405 (Nezu and

Rodi, 1986) is accepted being k different in flows with either low submergence or with bed and

suspended load transport (Castro-Orgaz et al., 2012) which is not our case as verified in the

previous assumptions.
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B Acoustic Doppler Velocity Profiler

The 3D Acoustic Doppler Velocity Profiler (ADVP) (Lemmin and Rolland (1997), Franca and

Lemmin (2006)) is a non-intrusive sonar instrument that measures the instantaneous velocity

profiles using the Doppler effect without the need of calibration. It collects 3D instantaneous

velocity measurements during the passage of the density current over a vertical, including the

upper counter flow. The instrument consists of a central emitter surrounded by four receivers

(Figure B.1). The geometric configuration is the result of an optimization of the instrument

that allows noise reduction by creating redundancy information for the velocity components

(Blanckaert and Lemmin, 2006). This, together with the despiking procedure proposed by

Goring and Nikora (2002), leads to a considerable reduction in the noise level of the data set.

To avoid any interference of the transducer with the flow, measurements are carried out with

the transducers mounted above the channel bed in a separate chamber and looking down

into the flow. A plastic box was conceived in order to install the instrument immersed in water

(in order to avoid a discontinuum on the mean where the sound waves travel). The bottom of

the box is sealed with a Mylar film transparent to acoustic waves (Figure B.2). Due to wavelet

formation on the water surface, there remains a thin layer near the water surface where no

reliable measurements can be taken.

If we consider a simpler ADV configurations with one vertically pointing emitter and receivers

inclined at an angle α with respect to the vertical, positioned in a vertical plane placed at an

angle β with respect to the (x, z)-plane the following consideration can be done:

• The emitter generates an acoustic wave of frequency fe and wavelength λe = c/ fe , with

c the speed of sound, that propagates through the fluid.

• The wave is scattered by acoustic targets (particles that follow the fluid motion with

negligible inertial lag and thus their velocity is assumed to be identical to the fluid

velocity) moving with the fluid velocity v , and finally is detected by the receiver. Due to

the target velocity v , the wavelength λr and the corresponding frequency fr = c/λr of

the scattered acoustic wave differ from those of the emitted one.
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Appendix B. Appendix - Acoustic Doppler Velocity Profiler

Figure B.1: Schema of the optimized four-receivers symmetrical configuration developed at
EPF Lausanne (image by Blanckaert and Lemmin (2006)).

• The Doppler frequency is defined as the frequency shift of the acoustic wave, induced

by the moving target, i.e. fD = fr − fe . Considering the projections of the target velocity

v along the emitter and receiver axes:

fD = fe

c

[
vx cosβsinα+ vy sinβsinα+ vz (cosα+1)

[
(B.1)

where v = (vx , vy , vz ) is the target velocity along the axis. This system measures one

quasi-instantaneous velocity component, (c/ fe ) fD , which is oriented along the bisector

of the emitted and the backscattered wavepaths.

For the optimized configuration, as shown in Figure B.2, where β= 45◦ and α depends on the

position along the vertical, the system to solve in order to have the estimation of the three
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Figure B.2: The ADVP installed in the channel into the transparent plastic box which bottom
side in contact with the water surface is covered by Mylar membrane.

components of the velocity is:
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where fDi is the Doppler frequency for the i − th emitter. The solution of the system for the

velocities v = (vx , vy , vz ) gives therefore three redundancies velocity estimations (Blanckaert

and Lemmin, 2006).

A complete profile of the velocity distribution can be obtained by gating the received signals to

correspond to the pulse’s time of flight to a certain depth. In fact the signal received contains

contributions from all density interfaces scattered along the acoustic beam (Figure B.1) that is

composed of small sampling volumes, the "gates," which are sampled in sequence forming

a profile that is almost instantaneous. The time interval between the emitted pulse and

the sample gate increases in proportion to the depth range for which velocity information

is sought. To prevent ambiguous range information the echo from the maximum depth of
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interest must be allowed to return before the next pulse is emitted.

For studies of turbulent flow, a high sampling frequency is desirable but due to the fact that the

maximum measurable Doppler frequency is limited by the pulse repetition frequency at which

sound pulses are emitted (Lemmin and Rolland, 1997), a compromise has to be found. Thus

the minimum number of pulse-pairs was here fixed at 32, in reason of our working conditions,

which corresponds to a frequency of acquisition of 31.25 Hz (Lemmin and Rolland, 1997)

being the ADVP operating frequency 1MHz.
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C Sediments characterization

The choice of the material is determined in function of many parameters such as the settlement

velocity, the total duration of a test, the phenomenon to detect and moreover the availability.

The sediment particles chosen fulfil the following requisites: (i) particles small enough to

follow the movements of the flow; (ii) particles size compatible with the wavelenght of the

emitted ultrasonic waves of the ADVP. The Stokes number is a dimensionless parameter that

describes a particle flow in a particular fluid. It is defined as the ratio of the particle response

time to the characteristic fluid time scale and is calculated as:

Sk = ρsD2U

18Hν
(C.1)

where ρs is the particle density, D is the particle diameter, U the characteristic velocity of

the flow, H the characteristic height of the flow and ν the cinematic viscosity of the fluid. In

order to assure that particles follow fluid streamlines closely and to have a measure of the

interplay between the particles and the fluid, a low value of Stokes number is expected so that

the motion of particles and fluid is strongly linked and the suspension behaves as a single

phase. In this case it’s found to be of the order of 10−4, in agreement with values proposed in

Fernando (2012).

The material is a high performance thermoplastic polyurethane (TPU) with a density of

ρs = 1160kg /m3.

The first samples received in order to test the suitability of the material was analyzed in

collaboration with the Laboratoire de technologie des poudres (LTP) of the EPFL. The laser

diffractometer and the optical microscope were used in order to obtain the characteristic

granulometric curve of the sample and a view of the particles shape. Two tests with water as

mixing liquid and two with isobutanol were made with a Malvern Master sizer laser diffraction

particle size analyser (Figure C.1) and the resulted curves are shown in Figure C.2. The

distribution widths of the three granulometric curves ((D90−D10)/D50) were checked, and it is

< 1.4 for all the grain sizes used, indicating a narrow particle size distribution. The observation

of sediment particles under an optical microscope has shown that the grains are irregular
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Figure C.1: The Malvern Master sizer laser diffraction particle size analyser at Laboratoire de
technologie des poudres (LTP) of the EPF Lausanne.

flakes with squared sides (Figure C.3).

The settling velocity of the particles have been calculated using the Stokes law:

vs =
g D2

50(ρs −ρa)

18ν
(C.2)

giving the following results:

D50 81 μm 145 μm 191 μm
vs 0.56 mm/s 1.85 mm/s 3.21 mm/s

Table C.1: Settling velocity of the three types of sediments used calculated with Stokes law.
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Figure C.2: Granulometric curves of the sediments used to form the erodible reach of the
channel bed.

Figure C.3: Photo of the sediments grains taken with an optical microscope.
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D Instantaneous velocity measurements

This Appendix contains the instantaneous velocity measurements recorded with the ADVP at

some points along the vertical. Both streamwise and vertical components of the velocity are

reported for the third group of tests performed (see Chapter 3.2.2 and Table D.1 for details).

The measurements here reported are recorded in time at a certain distance from the bottom

as defined in Table D.1.

Exp. ρ0 g ′

(kg /m3) (m2/s)

R1.fine 1028 0.29
R1.medium 1028 0.29
R1.coarse 1028 0.29

R2.fine 1038 0.39
R2.medium 1038 0.39
R2.coarse 1038 0.39

R3.fine 1048 0.49
R3.medium 1048 0.49
R3.coarse 1048 0.49

z (m)

0.110
0.101
0.093
0.085
0.076
0.068
0.060
0.052
0.044
0.036
0.028
0.020
0.012
0.004

Table D.1: Experimental parameters of the tests whose raw data are reported in this Appendix
(ρ0 is the initial density of the mixture in the upstream tank (measured with a densimeter) and
g ′ is the reduced gravity corresponding to ρ0) and distance from the bottom of the records.
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One example is presented hereafter for test R1.fine, records at a distance z = 0.110 m from the

bottom.
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The records for all tests are available on-line (DOI: 10.5075/epfl-thesis-8322) on:

https://infoscience.epfl.ch/
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