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We are like the OCEAN:

pretty enough on the surface,

but DIVE down into its depths,

and you’ll find beauty most people never see.

—Ellen Hopkins





Abstract
Dam failures, impulse waves, tsunamis and storm surges are natural disasters that challenge

humanity, often leading to massive casualties and important economic losses. These events

generate highly unsteady flow conditions in the form of surges or turbulent bores, associated

with extreme loading on infrastructure. In the past, the impact on these flows on buildings was

considered too rare and wave induced forces were neglected in the design process. However,

recent events showed that some measures can guarantee human safety and reduce recon-

struction costs. As such, vertical shelters able to withstand extreme loading are fundamental

and an estimation of induced forces is necessary. Field studies showed that buildings with

openings perform better during wave impact. The objective of this research is to evaluate and

analyse damage potential of resilient buildings hit by both surges and bores. In particular,

the influence of openings as a mitigation measure on the loading process is addressed and

quantified.

The research is based on an experimental approach. Wave formation is achieved through the

vertical release of a water volume from an upper reservoir, generating dry bed surges or wet

bed bores in the downstream horizontal channel. A variation of the released discharge results

into waves with different hydrodynamic properties. A detailed methodology to hydraulically

characterize the generatedwaves in terms of their water depths and flow velocities is presented

and good agreement with the classical dam-break case for both dry bed surges and wet bed

bores is demonstrated. Particular attention is given to wave front celerity and velocity profiles

measured behind the wave front, showing some features typical of open channel flows.

Free-standing buildings were reproduced using aluminium structures installed on a force

plate, providing a detailed time history of impact forces and moments. The impact was

characterised by high splashes, followed by a quasi-steady flow around the building. For

the impervious buildings (without openings), dry bed surges resulted into horizontal forces

proportional to the momentum flux. For wet bed bores, an attenuation of the peak force was

constantly observed and the introduction of a reduction coefficient was necessary to achieve

a realistic force estimation.

In this study the effect of openings and overflowwere tested. First, four building configurations

with seven opening values ranging from 0 (impervious) to 84% were investigated using 12

standard waves. The flow through the structure reduced the upstreamwater depths, providing

safer vertical shelters. In terms of loading, the openings produced a linear reduction of the

maximum horizontal force, if compared to the impervious case. The configuration with an
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Abstract

impervious back wall showed similar results to the impervious building. Openings on the

side walls had no influence on the resulting maximum load. Analysis in terms of peak time,

wave height at maximum force and impulse pointed out some key differences on the loading

process between surges and bores. The time occurrence of the maximum tilting moment

corresponded to the maximum horizontal force and the resulting cantilever arm was constant

for all opening configurations. Second, in case of overflow, milder loading conditions were

constantly measured.

Finally, a combination of theoretical approachwith empiric adjustments, lead to new formulae

to estimate the hydrodynamic load are introduced, taking into account the effect of openings

within an adapted resistance coefficient, providing relevant information for the design of safer

infrastructures.

Key words: dam-break waves, impulse waves, tsunamis, wave impact, hydrodynamic loading,

vertical shelters, openings, overflow.
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Résumé

Les ruptures de barrages, les vagues d’impulsion, les tsunamis et les inondations dues aux oura-

gans, représentent des calamités naturelles qui menacent l’humanité, provoquant souvent de

nombreuses victimes et d’importantes pertes économiques. Ces évènements induisent des

écoulements transitoires sous forme de vagues, menant à des sollicitations extrêmes contre

les infrastructures. Dans le passé, l’impact de ces écoulements contre les bâtiments était

considéré comme trop rare et les forces provoquées par les vagues étaient négligées en phase

de projet. Cependant, des évènements récents ont montré que des mesures constructives

peuvent garantir la sécurité des personnes et réduire les couts de reconstruction. Par con-

séquent, des refuges verticaux capables de résister à des charges extrêmes sont fondamentaux

et une estimation des forces induites nécessaire. De plus, des observations sur le terrain ont

montré que les bâtiments avec ouvertures résistent mieux à l’impact des vagues et l’objectif

de cette recherche est d’évaluer et d’analyser le dommage potentiel des bâtiments frappés

par des vagues. En particulier, cette recherche vise à considérer et quantifier l’influence des

ouvertures commemesure d’atténuation dans le processus de charge.

Cette recherche est basée sur une approche expérimentale. La formation des vagues est

obtenue à travers un lâché vertical d’un volume d’eau depuis un réservoir supérieur, pro-

duisant des vagues dans le canal à l’aval. La variation du débit relâché produit des vagues avec

des propriétés hydrodynamiques différentes. Cette recherche présente une méthodologie

détaillée pour la caractérisation hydrodynamique des vagues en termes de hauteur d’eau et

de vitesse d’écoulement, en démontrant un bon accord avec la théorie classique de rupture de

barrage sur fond sec et sur fond mouillé. Une attention particulière est donnée à la vitesse du

front et aux profils de vitesse mesurés derrière le front, montrant des caractéristiques typiques

des écoulements à surface libre.

Les bâtiments ont été reproduits avec des structures en aluminium, installées sur une plaque

dynamométrique, qui fournit le développement temporel des forces et desmoments. L’impact

était caractérisé par des hautes éclaboussures, suivies pas un écoulement quasi-uniforme

autour du bâtiment. Pour les structures imperméables (sans ouvertures), les vagues sur fond

sec ont généré des forces proportionnelles au flux de quantité de mouvement. Les vagues sur

fondmouillé ont constamment montré une atténuation du pic de la force et l’introduction

d’un coefficient de réduction était alors nécessaire pour obtenir une estimation fiable de la

force.
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Résumé

Plus précisément, cette étude se focalise sur l’effet des ouvertures et de la submersion. Quatre

configurations avec sept ouvertures entre 0 (imperméable) et 84% ont été testées avec douze

vagues standards. L’écoulement à travers la structure a mené à une diminution de la hauteur

d’eau à l’amont, générant des refuges verticaux plus sûrs. En termes de charges, les ouvertures

ont produit une réduction linéaire de la force maximale horizontale par rapport à la structure

imperméable. La configuration avec la façade arrière imperméable a montré un comporte-

ment similaire à celui du bâtiment entièrement imperméable. Les ouvertures sur les côtés

ont démontré de ne pas avoir une influence sur la force maximale résultante. Une analyse en

termes de temps de pic, de hauteur d’eau pendant la force maximale et d’impulsion a montré

des différences clés entre les forces provoquées par les vagues sur fond sec et celles sur fond

mouillé. L’occurrence dumoment maximal correspondait au pic de la force horizontal et le

bras de levier était constant pout toutes configurations. En cas de submersion du bâtiment,

des conditions de charge plus légères ont été à chaque fois mesurées.

En conclusion, cette étude introduit des formules pour prédire la charge hydrodynamique sur

un bâtiment, en tenant en compte l’effet des ouvertures à travers un coefficient de résistance

adapté. Ces résultats fournissent des informations importantes pour le dimensionnement

d’infrastructures plus sures.

Mots clés: Vague de rupture de barrage, vague impulsive, tsunami, impact hydrodynamique,

refuge vertical, ouverture, submersion.
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Sintesi
Il collasso di una diga, la formazione di onde impulsive, gli tsunami e le inondazioni post-

uragani rappresentano calamità naturali che mettono a dura prova l’umanità, spesso provo-

cando numerose vittime ed ingenti perdite economiche. Questi eventi generanomoti tran-

sitori sotto forma di onde, con conseguenti sollecitazioni estreme sulle infrastrutture. In

passato, l’impatto di queste onde contro gli edifici era considerato un evento particolarmente

raro e, di conseguenza, le forze indotte da tali flussi venivano trascurate in fase di progetto.

Tuttavia, alcuni recenti studi hanno dimostrato che particolari misure architettoniche possono

sia garantire incolumità delle persone, sia ridurre i costi di ricostruzione. Per tali ragioni, la

stima delle forze indotte dall’impatto di onde impulsive sugli edifici interessati risulta nec-

essaria per la corretta progettazione di rifugi verticali capaci di sopportare carichi estremi.

Osservazioni sul campo hanno mostrato che gli edifici con aperture resistono in modo più

efficace all’impatto di un’onda rispetto ad edifici senza aperture. Lo scopo di questo progetto

è quello di stimare ed analizzare i potenziali danni agli edifici strategici. In particolare, questa

ricerca si pone l’obiettivo di considerare e quantificare l’effetto delle aperture comemisura di

attenuazione sul processo di carico.

Questo progetto di ricerca si basa su un approccio sperimentale con prove su modello fisico.

La formazione delle onde è riprodotta tramite il rilascio verticale di un certo volume d’acqua

da un serbatoio superiore, generando onde nel canale inferiore. La variazione della portata

rilasciata produce onde con proprietà idrodinamiche diverse. In particolare, questa ricerca è

caratterizzata da unametodologia fortemente dettagliata per analizzare il comportamento

idraulico delle onde di piena prodotte, in termini di altezza idrica e velocità, dimostrando

compatibilità con la classica teoria sulla rottura istantanea di dighe su fondo secco e su fondo

bagnato. E’ stata data particolare attenzione alla celerità del fronte d’onda ed ai profili di

velocità misurati dietro il fonte, mostrando alcune caratteristiche tipiche delle correnti a pelo

libero.

Gli edifici sono stati riprodotti tramite strutture in alluminio, installate su una placca di-

namometrica che fornisce lo sviluppo temporale delle forze e dei momenti. L’impatto è

caratterizzato da alti schizzi, seguiti da un moto quasi-uniforme attorno all’edificio. Per le

strutture impermeabili (senza aperture), le onde su fondo secco hanno generato forze pro-

porzionali al flusso della quantità di moto. Le onde su fondo bagnato hanno costantemente

mostrato un’attenuazione del picco della forza e l’introduzione di un coefficiente di riduzione

é stata necessaria per ottenere una stima realistica della forza stessa.
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Sintesi

Questo studio si focalizza sull’effetto delle aperture e della sommersione. Quattro configu-

razioni con sette gradi di apertura compresi tra 0 (impermeabile) e 84% sono state testate

con dodici onde standard. Il flusso attraverso la struttura ha portato ad una diminuzione

dell’altezza idrica amonte, generando rifugi verticali più sicuri. In termini dicarico, le aperture

hanno prodotto una riduzione lineare della massima forza orizzontale rispetto a quella che

sollecita la struttura impermeabile. La configurazione con la facciata posteriore impermeabile

ha mostrato un comportamento simile a quello dell’edificio interamente impermeabile. Le

aperture sulle facciate laterali hanno dimostrato di non avere alcuna influenza sulla risultante

forza di picco. Un’analisi in termini di tempo di picco, altezza idrica durante la sollecitazione

massima ed impulso hanno dimostrato alcune differenze chiave tra le forze provocate da onde

su fondo secco e quelle su fondo bagnato. L’occorrenza del massimo momento ribaltante

è risultata corrispondere al picco della forza orizzontale ed il conseguente braccio di leva è

risultato costante per tutte le configurazioni. In caso di sommersione dell’edificio, condizioni

di carico più tenue sono state costantemente misurate.

In conclusione, questo studio introduce delle formule per predire il carico idrodinamico su

un edificio, tenendo conto dell’effetto delle aperture. Tale effetto è stato inglobato in un

coefficiente di resistenza adattato. Questi risultati forniscono informazioni importanti per la

progettazione di infrastrutture più sicure.

Parole chiave: Collasso di diga, onde di piena, onde impulsive, tsunami, impatto idrodinamico,

rifugi verticali, aperture, sommersione.
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Zusammenfassung
Dammbrüche, Impulswellen, Tsunamis und Sturmfluten sind Naturkatastrophen, welche die

Menschheit herausfordern. Oftmals führen sie zu zahlreichen Opfern und bewirken bedeu-

tendewirtschaftliche Verluste. Diese Ereignisse erzeugen instationäre Strömungsbedingungen

in Form von Schwall- oder Flutwellen, die mit einer extremen Belastung der Infrastruktur ver-

bunden sind. In der Vergangenheit wurden solche Belastungen bei Gebäudeauslegungen un-

genügend berücksichtigt. Die jüngsten Ereignisse haben jedoch gezeigt, dass diesbezügliche

Massnahmen die Sicherheit derMenschen gewährleisten und dieWiederaufbaukosten senken

können. Daher sind vertikale Refugien, die extremen Belastungen standhalten können, von

grosser Bedeutung und eine Abschätzung der induzierten Kräfte notwendig. Erfahrungen

haben gezeigt, dass Gebäudemit vielen Öffnungen wie Fenster in der Fassade beimWellenauf-

prall besser widerstehen. Ziel der vorliegenden Forschungsarbeit ist es, das Schadenspoten-

zial von Gebäuden, die durch Schwall- oder Flutwellen betroffen sind, zu bewerten und zu

analysieren. Insbesondere wird der Einfluss von Öffnungen als Abschwächungsmassnahme

auf den Belastungsprozess untersucht und quantifiziert.

Im Rahmen einer systematischen experimentellen Studie wird die Schwallwelle durch die

vertikale Freisetzung eines Wasservolumens aus einem oberen Reservoir ausgelöst, wodurch

Wellen auf trockener oder benetzter Unterlage im horizontalen Kanal erzeugt werden. Eine

Variation des freigesetzten Abflusses führt zu Wellen mit unterschiedlichen hydrodynamis-

chen Eigenschaften. Eine detaillierte Methodik zur hydraulischen Charakterisierung der

erzeugten Wellen in Bezug auf deren Wassertiefen und Strömungsgeschwindigkeiten wird

vorgestellt. Es konnte eine gute Übereinstimmungmit den klassischen Theorien des Talsper-

renversagens sowohl auf trockener als auch auf benetzter Sohle nachgewiesen werden. Beson-

dere Aufmerksamkeit wird den Fliessgeschwindigkeiten der Wellenfront und den dahinter

gemessen Wellengeschwindigkeitsprofilen gewidmet.

FreistehendeGebäudewurdenmit Aluminiumstrukturen reproduziert und auf einer Kraftmess-

platte installiert, welche eine detaillierte zeitliche Aufzeichnung der Stosskräfte und -momente

erlaubte. Der Aufprall war durch hoch aufsteigende Wassermassen gekennzeichnet, gefolgt

von einer quasi-gleichförmiger Strömung um das Gebäude herum. Für die undurchlässi-

gen Strukturen (ohne Öffnungen) ergaben sich horizontale Kräfte proportional zum Impuls-

fluss auf trockener Sohle. Bei benetzter Sohle wurde eine anhaltende Abschwächung der

Maximalbelastung beobachtet. Die Einführung eines Reduktionskoeffizienten war für eine

realitätsgetreue Belastungsabschätzung notwendig.
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Zusammenfassung

Der Einfluss von Gebäudeöffnungen und einer Überströmung wurde systematisch untersucht.

Vier Gebäudekonfigurationen mit sieben Durchlässigkeiten von 0 (undurchlässig) bis 84%

wurdenmit 12 Standardwellen untersucht. Der Durchfluss durch die Struktur reduzierte die

Wassertiefen oberstrom und sorgte für sichereren vertikalen Schutz. Hinsichtlich der Belas-

tung erzeugten die Öffnungen eine lineare Verringerung der maximalen horizontalen Kraft auf

das Gebäude im Vergleich zum undurchlässigen Fall. Für die Konfigurationmit einer undurch-

lässigen Rückwand ergaben sich ähnliche Ergebnisse wie für das undurchlässige Gebäude.

Öffnungen an den Seitenwänden hatten keinen Einfluss auf die resultierende maximale Be-

lastung. Die Analyse bezüglich des Zeitpunkts der höchsten Belastung, der Wellenhöhe bei

maximaler Kraft und des Impulses, zeigte Unterschiede des Belastungsprozesses zwischen

Schwall- und Flutwellen. Das maximale Kippmoment trat zur gleichen Zeit wie die maxi-

male Horizontalkraft auf. Der resultierende Hebelarm war für alle Öffnungskonfigurationen

konstant. Im Falle einer Überströmung des Gebäudes wurden konstant geringere Belastungs-

bedingungen gemessen.

Schließlich werden neue Formeln zur Abschätzung der hydrodynamischen Belastung von

Gebäuden erarbeitet, welche die Auswirkungen von Öffnungen mittels eines angepassten

Widerstandskoeffizienten berücksichtigen. Diese können relevante Informationen für die

Gestaltung sicherer Infrastrukturen liefern.

Schlüsselwörter: Talsperrenversagen, Impulswellen, Tsunamis, Wellenschlag, hydrodynamis-

che Belastung, vertikale Schutzvorrichtungen, Öffnungen in Gebäuden, Überströmung.
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1 Introduction

1.1 Motivation/Overview

In the context of global climate change, in the last few years the world was hit by an increasing

number of catastrophic events such as tsunamis, impulse waves, hurricanes, storm surges or

extreme floods responsible for the collapse of dams. These events showed severe devastation,

damages to the build environment and important human losses. Furthermore, post-event

field observations and surveys showed that most infrastructures, including critical buildings

hit by such hydrodynamic events, were destroyed or highly damaged. Nevertheless, because

of the rarity of these events, most building codes or guidelines do not include design criteria

for such hydrodynamic forces and these phenomena remain neglected in the design phase.

In nature the sudden release of a large amount of water can be found in the following events:

1. Dam break waves - produced by the collapse of a man-made dam or natural reservoir

2. Impulse waves - generated by a landslide falling inside a water reservoir

3. Tidal bores - take place after a sudden increase in water depth due to tidal activity

4. Tsunamis - provoked by an underwater earthquake

5. Storm surges - generated by tropical cyclones with strong winds and high water levels

1.1.1 Dam-break waves

Dam breaks are rare but catastrophic events. Independently from its causes, such a failure

results into a sudden release of an important amount of water that propagates downstream,

creating an hydrodynamic wave responsible for flooding, devastation and serious damages.

The propagating wave has a high level of energy capable of severe destruction. A similar

process can be observed in case of failure of a river weir, a dyke, accumulation dams or natural

lakes (moraines and glacial lakes), also called with the Icelandic word jökulhlaup.

In the world there are approximatively 58 000 large dams according to ICOLD registry, but in

history only few structures collapsed, among which it is worth recalling: (1) Sweetwater Dam
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Chapter 1. Introduction

(USA), 30 January 1916; (2) Gleno (Italy) 1923; (3) Malpasset (France) 2 September 1959 and (4)

Taum Sauk Dam (USA), 14 December 2005. Pictures of the remaining structures are presented

in Figure 1.1. In Switzerland it is well known the collapse of the glacial dam of Giétro (glacier

lake break out), in Valais, near Mauvoisin, that provoked the death of 44 people in 1818. A

summary of some of the major catastrophes in history is presented in Table 1.1.

(a) (b)

(c) © Eolefr / WikiCommons (d) USGS - USA

Figure 1.1 – Collapsed dams in history : (a) Sweetwater, USA (1916) ; (b) Gleno, Italy (1923) ; (c)
Malpasset, France (1959); (d) Taum Sauk Dam, USA (2005) [source: WikiCommons]

Date Location Dam type Height Fatalities

16 June 1818 Giétro (Switzerland) Natural glacial lake ∼60 m 44

30 January 1916 Sweetwater Dam (USA) Masonry arch 27.4 m -

1 December 1923 Gleno Dam (Italy) Multi-arch concrete 43 m 356

12 March 1928 St. Francis Dam (USA) Concrete gravity 56 m 600

13 August 1935 Molare (Italy) Concrete gravity 35 m 111

2 September 1959 Malpasset (France) Concrete arch 60 m 423

8 August 1975 Banqiao Dam (China) Embankment (clay) 24.5 m 171 000

11 August 1979 Machchhu dam (India) Embankment 31 m 5 000

14 December 2005 Taum Sauk Dam (USA) Rockfill 27.4 m -

Table 1.1 – Examples of dam-break events in history
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1.1.2 Impulse waves

Impulse waves are caused by a landslide, a rockfall or an avalanche falling inside a water

reservoir, producing a wave in the opposite direction. These events are characterised by three

main phases, i.e. wave formation, propagation and run-up (Figure 1.2). Because of the extreme

height that these waves can reach, they are also calledMega-tsunamis. The generation and

propagation of such waves were the object of different research projects at VAW, ETH, Zürich,

including Fritz (2002), Heller (2007) and Fuchs (2013).

Figure 1.2 – The three phases of an impulse wave (Heller, 2007)

Well known is the event that took place in Lituya Bay (USA), where on July 9th 1958 a wave of

524 m overpassed the opposite mountains, as shown in Figure 1.3c. The Vajont dam (Italy),

on 9 October 1963, experienced a 70-meter-wave that completely destroyed the village of

Longarone, killing about 2 000 people during the night, leaving the dam almost undamaged

(Figure 1.3b). In Switzerland impulse waves were observed in 563 a.d. on Lake Geneva

(tsunami du lac Léman, Figure 1.3d), with inundation depths of 13 m in Lausanne and 8 m in

Geneva. Furthermore, in 1806 in the Lauerz Lake (Goldau) a landslide produced the death of

450 people and in 2007 on the shores of Lake Lucerne, waves of ≈ 6 m were observed. In 2009,
close to Grindelwald (BE), Switzerland, more than 300 000 m3 of rock entered a glacial lake

generating an impulse wave that reached 70 m (Figure 1.3a). A list of major impulse waves

observed in the past is summarized in Table 1.2.

Date Location Volume Run-up height

563 a.d. Léman Lake (Switzerland) 25 · 106 m3 3-13 m
9 July 1958 Lituya Bay (USA) 30 · 106 m3 524 m
9 October 1963 Vajont (Italy) 250 · 106 m3 ≈200 m
18May 1980 Spirit Lake (USA) 56 · 106 m3 ≈60 m
20 July 2007 Lake Lucerne (Switzerland) 8 · 103 m3 ≈6 m
4 December 2007 Lake Chehalis (Canada) 3 · 106 m3 38 m
22May 2009 Grindelwald Glacier (Switzerland) 8 · 103 m3 ≈10 m
September 2011 Nagatono (Japan) 3 · 106 m3 ≈50 m

Table 1.2 – Examples of impulse waves in history
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(a) H-R.Burgener (b) D. Wüthrich

(c) Fritz (2002)

(d) Kremer et al. (2012)

Figure 1.3 – Examples of impulse waves: (a) Lake Grindelwaldgletscher, Switzerland; (b) Vajont,
Italy; (c) Lituya Bay, USA and (d) Tsunami du Lac Léman, Geneva Lake, Switzerland.
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1.1.3 Tidal bore

A tidal bore is a wave that propagates in the river mouth as the tide coming from the sea

increases. These are particularly intense during spring tides, when the tidal range exceeds 4 to

6 m and the rising tidewater is confined to the narrow funnelled estuary (Chanson, 2012). This

phenomenon can be observed in all continents (besides Antarctica) and it is estimated that

more than 400 river estuaries are effected by tidal bores. For this, there exist different names to

identify the same phenomenon such as Aegir (Trent River, UK), Eagre (UK),Mascaret (France),

Pororoca (Amazon River) and Silver dragon on the Qiantang River in China.

Visually, a tidal bore appears as a series of waves propagating upstream, as shown in Figure 1.4

for theMascaret on the Garonne River in France. Depending on the Froude number, a tidal

bore can appear as undular waves or broken, fully aerated, bores (Chanson, 2012). During its

propagation, these tidal bores hit multiple bridge piers and there have been cases of human

losses due to arrival of these waves.

(a) (b)

(c) (d)

Figure 1.4 – Examples of tidal bores on the Garonne River (France): (a) Arcins, 28 October 2015
16h23; (b) Boisson, 28 October 2015 17h45; (c) Port de Saint Pardon, 29 October 2015 17h38;
(d) Boisson, 29 October 2015 18h35. [pictures: Davide Wüthrich]
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1.1.4 Tsunami

Tsunami is a Japanese word that literally means "harbour wave" and it is defined as a pressure,

or shock, wave travelling at high speed in the ocean, caused by an undersea earthquake,

subsidence, coastal landslide, volcanic activity or other disturbance (Source: IATE). The wave

amplitude is relatively small in the middle of the ocean (0.5 to 1 m), which makes them

difficult to detect. Tsunamis travel extremely fast, with common velocities of 200 m/s; they are

characterized by very long wave-lengths and periods (λ ≈ 1 – 100 km) and the wave-length to
water-depth ratio (λ/h < 1) classifies them as shallow water waves (Section 2.1). The extremely

long wave-length of these waves reduces the energy dissipation during the propagation phase

and tsunamis can cause damages and destruction far away from their place of origin. When

the wave approaches the shore the velocity decreases following the square root of the water

depth. Even near the coastline the period of the wave is relatively long compared to wind-

generated waves, whose typical values vary between 5 and 20 seconds. This implies that a

draw-down of the water surface level is followed, after a relative long time, by a massive wave;

furthermore tsunamis may take minutes before they reach full height. The increase of wave

height near the shore is due to the conservation of energy, which is dependent on both its

wave speed and wave height. Since the wave only provokes a translation of water mass, the

variation in amplitude cannot be due to the conservation of mass. (Margaritondo, 2005).

The interest in tsunami research was regained after some recent catastrophic events, including

the Indian Ocean tsunami in 2004 and the 2011 Tohoku earthquake in Japan, sadly known for

the damages caused to the nuclear power plant of Fukushima. Some of the most devastating

tsunamis in history are presented in Table 1.3. Closely followed by media, the last events

deeply touched the public opinion all over the world. Pictures of these events are shown in

Figures 1.6, where Figure 1.6a shows a tsunami reaching the coast-line, and Figure 1.6b the

interaction with buildings located near the coast. Figure 1.5 shows some of the signs used in

Thailand and in South America to convey people to designated tsunami-safe zones.

Date Location Deaths Damages (CHF)

20 September 1498 Enshunada Sea, Japan 31 000
27 January 1703 Boso Peninsula, Japan 100 000
1 November 1755 Lisboa, Portugal 60 000
13 August 1868 Arica, Chile 25 000 300 million
27 August 1883 Krakatoa, Indonesia 36 000
26 December 2004 Sumatra (Indian Ocean) 280 000 11 billion
27 February 2010 Valparaiso, Chile 525 30 billion
11 March 2011 Tohoku, Japan 15 889 226 billion

Table 1.3 – Most devastating tsunamis experienced in the past (Chanson, 2005b) andWorld
Bank
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Figure 1.5 – Tsunami protection signs in Antofagasta (Chile), Ko Phi Phi (Thailand) and Lima
(Peru) [pictures: Davide Wüthrich]

Visual observations and field surveys showed that, during the Indian Ocean tsunami in Decem-

ber 2004, coastal inundation heights reached 4 to 7 m in the southern part of Khao Lak (Dias

et al., 2006; Matsutomi et al., 2006) and wave front velocities were estimated between 3 to 4

m/s in Kumala Beach and 6 to 8 m/s in Khao Lak, Thailand (Rossetto et al., 2007). From debris

watermarks and eyewitness Fritz and Okal (2008) concluded that along the shores of Socotra

Island, Indonesia, run-up heights reached up to 6.1 m. During the 2011 Tohoku Tsunami event

in Japan, onshore inundation velocities up to 8 m/s were recorded in Sendai (Hayashi and

Koshimura, 2013) while values of 10 to 13 m/s were observed near the Sendai Airport (Jaffe

et al., 2012). The Japanese Port and Airport Research Institute (PARI) reported inundation

heights of up to 15 m in the City of Onagawa, with an average of 8 to 9 m along certain coastal

areas. Fritz et al. (2012) estimated from video post-processing flow depths of 9 m and flow

velocities up to 11 m/s were recorded in Kesennuma Bay, with an average increase in the water

level rate of 1m/min and a Froude number of approximately 1. They also pointed out that the

return (outflow) current velocity diminished from 3m/s to 11 m/s in little over 2 minutes. A

comprehensive study of tsunami front velocities during the Tohoku event was presented by

Chock et al. (2012), based on aerial video analysis, showing average values of 3 to 9 m/s.

(a) D. Rydevik / WikiCommons (b) courtesy of J.M. Thomson

Figure 1.6 – Examples of tsunami waves during the Indian Ocean 2004 event: (a) wave arrival
in Ao Nang (Thailand); (b) wave propagating in Khao Lak (Thailand).
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1.1.5 Storm surge

A storm surge (or storm tide) is a coastal flood with rising water levels associated with low

pressure weather such as cyclones (Indian Ocean), typhoons (Pacific Ocean) and hurricanes

(Atlantic Ocean). These events are characterised by a long strong fetch of winds spiralling in-

ward and a low-pressure-induced dome of water drawn up under the storm’s centre. The surge

amplifies to a considerable extent as it approaches the shore (Figure 1.7), causing disastrous

floods along the coast (Murty et al., 1986). During cyclones, typhoons and hurricanes most

casualties occur as a result of the rising storm surges and themajority of damages are observed

on structures located along the coast. Similarities between tsunami-likes waves and storm

surges were discussed by Roeber and Bricker (2015). Some examples of major catastrophes

observed in the recent past are presented in Table 1.4. Areas particularly affected by these

phenomena are the bay of Bengal in the Indian Ocean, the gulf of Mexico, Japan and the

archipelago of the Philippines. Although only 1% of all tropical cyclones that form each year

strike Bangladesh, that nation has suffered 53% of all world fatalities due to tropical cyclones

(Ali, 1999). The highest surge ever recorded was produced by Cyclone Mahina in Bathurst Bay

in Australia, where according to Whittingham (1958), depths of 13-14.6 m were produced.

Figure 1.7 – Storm surge propagating inland

Type Year Location Surge height Deaths

Cyclone (Mahina) March 1899 Bathurst Bay, Australia 14.6 m 307

Typhoon (Ida) September 1958 China, Japan 1.1 m 1 269

Hurricane (Carla) September 1961 Port Lavaca (TX), USA 6.9 m 43

Cyclone (Bhola) November 1970 Chittagong, Bangladesh 10.6 m 300 000

Hurricane (Andrew) August 1992 Miami (FL), USA 5.2 m 65

Cyclone (Sidr) November 2007 Barguna, Bangladesh 6.0 m 3 500

Hurricane (Katrina) September 2005 Mobile (AL), USA 7.5 m 1 836

Typhoon (Yolanda) November 2013 Philippines 7.5 m 11 801

Hurricane (Irma) September 2017 Charleston (SC), USA 3.0 m 134

Table 1.4 – Selected examples of storm surges in recent history
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1.2 Resilient structures and buildings

Coastal communities have experienced natural calamities for centuries and it is well known

that a specific design can reduce the hydrodynamic load on the structure, allowing it to resist

to strong floods (Kreibich et al., 2005). This not only reduces reconstructions costs, but it

also guarantees safety and protection to human beings through the construction of specific

shelters. It is the case for amphibious, hurricane-resistant, structures in the Gulf of Mexico

(English et al., 2017), where stilt houses are built on columns, avoiding any contact between

the living space and the ground, as shown in Figure 1.8a. Similarly, in Bangladesh, some

cyclone shelters with higher openings on the lower portion of the structure were conceived to

guarantee safety to the people in the upper levels (Figure 1.8b). There exist some perforated

houses in the west coast of the Philippines, where the higher porosity concentrated in the

lower part of structure allows the passage of the storm surge, combined with a inclined roof for

wind protection. This design is particularly suitable in case of typhoons, which are associated

with a storm surge and strong winds (Figure 1.8c).

Practical surveys showed that for inundation depths lower than 2 m, almost no damages

were observed, however, for heights larger than 4-5 m, almost all buildings were destroyed

(Koshimura et al., 2009). Nevertheless, events that took place along the western and northern

coasts of Sumatra Island (Indonesia, 2004), central coast of Chile (2010) and in Tohoku, Japan

(2011), showed that, even for tsunamis, specific design features of infrastructures can help

saving lives. For example, some 500 people successfully sought refuge at three specifically-

designed buildings in Ishinomaki, Japan (2011), proving thus that vertical shelters are essen-

tial in tsunami-prone coastal areas, where access to higher elevation is limited or distant. An

example of a similar vertical shelter can be observed in Figure 1.8d, representing a dormitory

also designated as a tsunami refuge centre in Minamisanriku (Japan).

Furthermore, post-tsunami forensic engineering surveys showed that some structures behave

better than others; moreover, buildings with openings seem to resist better under hydrody-

namic impact (Chock et al., 2012). Currently, buildings located on the shoreline are seldom

impervious cubes, but most often characterized by openings such as windows and doors,

similar to the one presented in Figure 1.8e. If correctly designed, these can also act as vertical

shelter during tsunami events. The effectiveness of openings on the stability of the structure

was proved by the Banda AcehMosque and some other surrounding structures (Figure 1.8f).

The role of engineers and researchers is therefore to develop and design infrastructures able

to withstand natural disasters and protect human lives. In this context, the understanding of

the effect of openings as a mitigation measure on coastal structures is essential.
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(a) Davide Wüthrich (b) Karim andMimura (2008)

(c) Davide Wüthrich (d) courtesy of Prof. Ioan Nistor

(e) Davide Wüthrich (f) M.L. Bak / WikiCommons

Figure 1.8 – Examples of resilient buildings specifically designed to withstand natural catastro-
phes: (a) amphibious, hurricane-resistant house in Florida (USA); (b) cyclone shelter in the
west coast of Bangladesh; (c) typhoon resistant house in the Philippines; (d) coastal structure
designed as vertical shelter in Minamisanriku (Japan) after the 2011 Tohoku event; (e) build-
ings on the coast of Viña del Mar (Chile) and (f) building in Bandah Aceh (Indonesia) after the
2004 Indian Ocean tsunami.
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1.3 Objectives

The construction of resilient structures and buildings capable to withstand natural calamities

is essential. For this, the evaluation of resulting forces and moments is fundamental for a

specific design. Although some specific research was carried out in the last 10 years, the

phenomenon of wave impact against a building is poorly understood and the estimation of

wave-induced forces is rough and subject to high uncertainties. In addition most construction

codes do not include design guidelines for waves-induced forces. Improvement is therefore

needed.

When looking at damaged buildings, one has the impression that some structures are more

resistant than others. In particular, buildings with openings let the wave pass without col-

lapsing under hydrodynamic impact. Some recent studies on tsunami-proof houses showed

that architectural features are a key parameter in reducing impact forces (Thusyanthan and

Madabhushi, 2008), however no systematic study was carried out and Wilson et al. (2009)

concluded their study with the remark that very little research in this area exists. In this

context, the purpose of this research project is to deepen the knowledge in the domain of

wave-structure interaction, mainly focusing on the interaction between the impacting waves

and buildings with openings. Also, some practical guidelines for a better estimation of wave

induced forces are provided.

The main objectives of this research project can be summarized as follows:

1. To characterise the wet bed bores and dry bed surges produced with the vertical release

technique in terms of their hydrodynamic behaviour, namely depth profiles and flow

velocities.

2. To identify the magnitude and application point of the horizontal force exerted by the

incoming bores and surges on the reference impervious free-standing building without

overflow.

3. To estimate the consequences of building overflow on the loading process.

4. To investigate the effect of building openings on the resulting hydrodynamic loading for

different configurations.

These objectives are derived from a gap in knowledge that emerged from the State of the Art

presented in Chapter 2 and summarized in Section 2.6.
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1.4 Structure of the report

This report is divided into 8 chapters. The first presents a broad overview of the main natural

events considered in the present study, outlining the motivation behind the research project.

Techniques used in the past to reduce the impact of these events on the local communities

are also presented. In Chapter 2 a comprehensive literature review of both the physics of

shallow water waves and major studies carried out in the past to estimated the resulting

horizontal forces on both impervious and porous structures is presented. The experimental

set-up, the instruments used and the experimental methodology are detailed in Chapter 3.

Chapter 4 focuses on the hydrodynamic properties of the generated waves with the vertical

release technique. The resulting forces produced on an impervious free-standing structure

are presented and discussed in Chapter 5. The effect of building overflow on the impervious

structures is presented in Chapter 6. The influence of openings for multiple configurations

is fully addressed in Chapter 7. Finally Chapter 8 summarize the key findings and presents

an outline for the future work. More detailed studies and additional, exploratory, research

is presented in the Appendix section of this report. Note that Chapters 4, 5, 6 and 7 were

conceived and prepared as journal papers.
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2 State of the Art

2.1 Wave theory

AWave is a disturbance produced in a body of water that propagates at a certain speed. Such

disturbance is the result of all forces acting on the surrounding volume. Waves often have

an oscillating nature and they are characterized by a positive and a negative peak, called

respectively ridge (or crest) and trough. The wave length can vary from less than a centimetre

to kilometres, as it is the case for tides, the longest known water ways (Dean and Dalrymple,

1991). The main parameters that are used to define a wave are length (λ), height or amplitude,

(A) and the water depth below the wave (h). All other quantities can be obtained from these

parameters. The definition of all parameters is presented in Figure 2.1.

Figure 2.1 – Definition sketch of the main wave parameters

Waves are a complex and non-linear phenomenon, however, under certain circumstances, a

linear approximation is acceptable. The most common theory used to describe the behaviour

of gravity wave is the the Airy wave model, with the following assumptions:

∂ρ

∂t
= 0 ∇× u (2.1)

These imply, respectively, an incompressible and irrotational flow. In addition, the bed under-

neath the flow is considered impermeable.
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Through the definition of a velocity potentialΦ(x,z) such that:

∂Φ

∂x
= ux

∂Φ

∂z
= uz (2.2)

From the governing equation (Laplace equation) ∇2Φ= 0, the equation of surface waves can
be obtained:

∂2Φ

∂t2
+ g

∂Φ

∂z
= 0 (2.3)

A linear and sinusoidal solution can be mathematically described by the equation:

η(x, t )= A

2
sin(kwx −ωt +φ) (2.4)

where A is the wave amplitude, kw the wave-number, defined as kw = 2π/λ, ω the angular
frequency, defined as ω= 2π/T and φ the phase constant. η(x,t) is the function that describes
both in time and space the elevation of the wave. More complex phenomena are usually

represented using a superposition of multiple sinusoids.

The celerity (U ) can be approximated by:

U =
√

gλ

2π
tanh

(
2πh

λ

)
(2.5)

Twomain classes of waves can be recognised according to their behaviour:

Shallow-water waves Deep-water waves

Waves with length longer than 20 wa-

ter depths

Waves having a length shorter that two

time the water depth. L < 2h
h
λ > 1

20
h
λ > 1

2

U = limλ/h→∞U = √
g h U =

√
gλ
2π with tanh

(
2πh
λ

)
→ 1

Waves between these two categories are called Intermediate depth waves.

TheUrsell number (Ur) is commonly used to distinguish waves for which linear approxima-

tion can be used. It is defined as the product between the relative wave height (ε= A/h) and

the square of the relative wave length (γ=λ/h):

Ur= ε
1

γ2
= A

h

(
λ

h

)2
= Aλ2

h3
(2.6)

For long waves (λ >> h) with small values of Ur, typically Ur < 100, a linear approximation
such as the Airy Model can be used (Ursell, 1953) and shallow water waves belong to this
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category. The latter is of interest since it includes tsunamis and bores. These waves can be

described by a single sinusoid and the celerity depends only on water depth (h), and it is no

longer a function of the period and the wavelength (λ). For shallow-water waves the energy

between two sections is conserved and a relationship between the change in water depth and

water height can be determined using Green’s law (Green, 1837), whereW1 andW1 are some

typical width at the two sections:

A2
A1

=
√

W1
W2

4

√
h1
h2

(2.7)

This formula allows the prediction of the wave height when approaching the shore. When the

wave height becomes too high, the wave breaks over itself, orginating a broken bore. Through

this process, called shoaling, some of the energy is dissipated (Li and Raichlen, 2003).

2.2 Long-wave generation techniques

As presented in Chapter 1, in nature there exist a wide range of physical phenomena resulting

into flows with similar hazardous consequences on the built environment. This diversity and

heterogeneity is reflected in the several generation techniques currently used to reproduce

these flows in a laboratory environment, including:

• Piston-type generators

• Landslide-generators

• Pump-driven generators

• Gate closure

• Vertical releases

• Dam-break gates

The main driving principles of these techniques are schematized in Figure 2.2 and briefly

described in the following sections. A comprehensive literature review of these techniques was

presented by Liu (2008). A non-exhaustive list of major techniques used in selected previous

studies, along with the resulting wave heights and channel dimensions is presented in Table

2.1.

2.2.1 Piston-type generators

In coastal engineering the use of piston-type, automatic, wave generators is widely used to

generate solitary waves. This technique transfers energy to the water by horizontally moving a

wave paddle (Dean and Dalrymple, 1991), as shown in Figure 2.2a. Solitary waves of different

amplitude are generated by varying the speed and the extension of the wave paddle. The

transition between solitary waves and overland flow was addressed by Fuchs and Hager (2015).

In the past solitary waves produced with wave paddles were used to tsunamis-like flows,
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(a) Piston-type generator (b) Landslide generator

(c) Vertical release (d) Dam-break gate

(e) Pump-driven generator (f) Gate closure

Figure 2.2 – Wave generation techniques

including Ramsden (1993), Van de Lindt et al. (2009), Wilson et al. (2009), Chen et al. (2012)

and Fuchs (2013) among others. Nevertheless, Madsen et al. (2008) criticized this approach

because of the short wave length and period when compared with real tsunami waves. This

is known in literature as the solitary wave paradigm and the use of solitary wave leads to

some errors in the order of a magnitude in both temporal and spatial duration. Therefore, for

tsunami-like flows, waves with longer durations are necessary.

2.2.2 Landslide generators

Landslide-generated waves are reproduced through the sudden drop of a solid, granular, or

liquid body into the water, producing a wave travelling in the opposite direction, as shown in

Figure 2.2b. This technique is particularly suitable to reproduce impulse waves, generated in

nature by a landslide falling inside a lake or a reservoir. A landslide generator can function
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either manually, by dropping a solid, rectangular block (100 kg) inside the water (Thusyanthan

and Madabhushi, 2008), or using a more sophisticated mechanism such as a pneumatic

landslide generator (Fritz, 2002; Fuchs et al., 2010). The drop of a granular body inside the

reservoir was previously used by Huber (1980), Fritz (2002) and Evers and Hager (2015) among

others. Hinwood andMackenzie (2011) used a inclined piston-type generator, pointing out

some similarities between landslide and piston-type generators.

2.2.3 Pump-driven generators

Goseberg et al. (2013) introduced the concept of pump-driven long waves generation tech-

nique. This represents an alternative approach to generate single sinusoidal, prolonged

solitary and N-waves characterised by long wave periods. A schematic representation of

this technique is presented in Figure 2.2e. Pump-driven generators operate on the basis of

accelerated and decelerated water volumes in both positive and negative directions, in a

closed-circuit wave flume. This technique is particularly suitable to reproduce tsunami-like

flows with longer wave periods.

2.2.4 Gate closure

A propagating surge or bore can also be generated by the sudden closure of a downstream

gate (Koch and Chanson, 2009; Leng and Chanson, 2015, 2017a,b), as shown in Figure 2.2f.

By obstructing the initial steady-state flow, the gate produces a positive surge/bore which

propagates in the upstream direction. This technique is particularly appropriate to reproduce

positive surges and bores in rivers and man-made channels, as well as tidal bores.

2.2.5 Vertical release

A different approach was introduced by Chanson et al. (1999, 2002, 2003). Both surges and

bores were generated by the sudden vertical drop of a known amount of water through

a rectangular, sharp-crested orifice into a lower channel (Figure 2.3a). High splashes were

observed and great velocities found in the first part of the channel. After an initial development,

time velocities were similar to the ones given by the formula for rough surfaces presented by

Whitham (1955). Further studies were carried out with an improved facility using a funnel-like

structure to avoid air entrainment and splashes (Figure 2.3b).

An improvement of this set-up was used by Meile (2007) and Meile et al. (2011, 2013) to

simulate unsteady-flows in rivers subject to hydro-peaking. The use of a combination of

multiple pipes with various diameters allowed the reproduction of a wider spectrum of waves

with different properties. In the coastal engineering domain, a sudden release of water through

a controlled gate was used by Lukkunaprasit et al. (2009a,b) to simulate tsunami flows similar

to those observed in Kamala (Phuket, Thailand) during the 2004 Indian ocean event. In

addition, Rossetto et al. (2011) used an upward pneumatic wave generator to produce a
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vertical displacement of water through a low pressure head pump. The stored volume was

then released into the channel, generating waves with long periods, led either by a crest or

a trough, as shown in Figure 2.4. Nowadays, some of the newest large-scale facilities apply

similar concepts to reproduce tsunami-like waves with controlled long-period waves using

pneumatic Tsunami Simulators (Allsop et al., 2014; Chandler et al., 2016; Foster et al., 2017).

(a)

(b)

Figure 2.3 – Experimental set up used by Chanson et al. (2002) without (a) and with funnel (b)
to reproduce waves with a vertical release technique

Figure 2.4 – Basic principals of the Tsunami Pneumatic Generator through a vertical release
technique (Chandler et al., 2016)

18



2.2. Long-wave generation techniques

Author Technique Wave [cm] Channel
size [m]

Cross (1967) Dam break (lift gate) d0 = 36 L = 6.8
h = 6.70 W = 0.15

Ramsden and Raichlen Tilting wave tank (solitary waves) 4.7 < h < 20.2 L = 40.0
(1990) W = 1.1
Ramsden (1993, 1996) Tilting wave tank (solitary waves) hmax =17.86 L = 36.6

Pneumatic gate (dry bed surges) 15.28 < d0 < 50.92 W = 0.4
Pneumatic gate (ondular bores) 22.88 < d0 < 64.64

13.45 < h < 14.28
Pneumatic gate (wet bed bores) 25.99 < d0 < 48.01

0.28 < h < 12.69
Lauber and Hager (1998) Dam-break (lift gate) 15 < d0 < 60 L = 14.0

W = 0.5
Chanson et al. (1999, 2002,
2003)

Vertical release HR = 207 L = 12.8,
W = 0.8

Fritz (2002) Pneumatic landslide generator (45°) h < 68 L = 11.0
Fritz et al. (2004) W = 0.5
Meile (2007) Vertical release HR = 207 L = 38.3
Meile et al. (2011) h = 10 W = 0.5
Thusyanthan and Drop of a rectangular block (110kg) h = 10 L = 4.5
Madabhushi (2008) W = 1.0
Van de Lindt et al. (2009) Tsunami wave basin h = 10 - 60 L = 32.5
Wilson et al. (2009) (Oregon State University)
Lukkunaprasit et al. Vertical release h = 4, 6 and 8 L = 40.0
(2009a,b) W = 1.0
Fujima et al. (2009) Piston-type generator h = 10, 15 and 20 L = 11.0

W = 5.9
Arnason et al. (2009) Dam break (lift gate) 10 < d0 < 30 L = 16.6

5 < h < 10 W = 0.6
Fuchs et al. (2010) Pneumatic landslide generator hmax =11.6, 16.8 L = 6.5

and 18.5 W = 0.5
Nouri et al. (2010) Dam break (swing gate) d0 = 50, 75, 85 L = 10.6
Al-Faesly et al. (2012) 85 and 100 W = 2.7
Hinwood and Inclined piston-type h < 60 L = 40.0
Mackenzie (2011) W = 1.0
Kisacik et al. (2012) Wave paddle 3.5 < h < 18.5 L = 22.5
Rossetto et al. (2011) Pneumatic vertical release generator 2.7 < h < 12.0 L = 28.9

W = 1.2
Chen et al. (2012) Piston-type generator h = 6 L = 32

W = 0.7
Goseberg et al. (2013) Pump-driven generator 3.1 < h < 10 L = 19.0

W = 1.0
Shafiei et al. (2016) Dam break (lift gate) 40 < d0 < 60 L = 14.0

14 < h < 21 W = 1.2
Chandler et al. (2016) Pneumatic vertical release generator 3.6 < h < 7.5 L = 100.0
Foster et al. (2017) W = 1.8
Goseberg et al. (2017) Dam break (swing gate) 20 < d0 < 40 L = 8.4

W = 1.5
Present study Vertical release 40 < d0 < 82 L = 15.5

13 < h < 25 W = 1.4

Table 2.1 – Wave production techniques for selected studies in literature
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2.2.6 Dam-break gates

Dry bed surges and wet bed bores are commonly reproduced using dam-break gates. The

sudden opening of a vertical gate, and the subsequent release of an impounded volume,

results into an unsteady flow propagating in the downstream channel. This approach is based

on the theory of Ritter (1892) and further explanations are given in Section 2.3. A schematic

representation of the process is presented in Figure 2.2d. This technique was used by several

authors, including Cross (1967); Yeh et al. (1989); Lauber and Hager (1998); Arnason et al.

(2009); Nistor et al. (2009); O’Donoghue et al. (2010); Al-Faesly et al. (2012); Duricic et al.

(2013); Shafiei et al. (2016); Goseberg et al. (2017). Currently, the use of dam-break waves is

considered a more appropriate method to reproduce inundations generated by tsunamis and

impulse waves (Chanson, 2005b, 2006).

The sudden opening of the gate can be achieved through vertical lift gates (Lauber and Hager,

1998) or swing gates (Goseberg et al., 2017). The minimal opening velocity of a vertically-

moving gate, was proposed by Lauber and Hager (1998) :

t

√
g

d0
= 

2 (2.8)

Goseberg et al. (2017) pointed out that the construction of vertical lifts becomes less economi-

cal for flumes with larger widths. For these, rapidly-swinging gate mechanisms were found to

memore appropriate to initiate the dam break wave.

2.3 Physics of dam-break waves

The dam-break is a unsteady phenomenon that was widely studied by many authors, includ-

ing Ritter (1892), Whitham (1955), Stoker (1957) Hunt (1982), Lauber and Hager (1998) and

Chanson (2005a). The latter also described tsunamis as very similar to dam-break waves. The

propagation of a wave generated from the sudden removal of a vertical gate is an unsteady

phenomenon described by the equations presented by St. Venant (1871). For this, the system

can be described at any point and any time using two main variables: velocity (v) and flow

depth (h).

∂v

∂t
+ u

∂v

∂x
= −g

∂h

∂x
(2.9a)

∂h

∂t
+ ∂vh

∂x
= 0 (2.9b)

These equations, known as the St.Venant equations, are non-linear and thus can not be solved

analytically. A mathematical technique such as the method of characteristics must therefore

be used to solve them.

The main hydrodynamic properties of the propagating wave are affected by the dry or wet
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bed conditions of the channel. The difference in behaviour between dry and wet surfaces was

shown experimentally by Ramsden (1993), Lauber and Hager (1998) and Nouri et al. (2010),

among others. A wave propagating on dry bed is commonly called a surge, whereas, due to

its turbulent and aerated appearance, a wave on wet bed is termed a bore. An example in

nature of such difference can be observed in Figure 1.4b, which illustrates the case of a tidal

bore propagating upstream the Garonne River in France on both dry (left) and wet (right) bed

conditions.

For this reason, a distinction between the dam-break wave propagating on dry and wet bed

has to be made:

1. wave propagating on dry bed→ Dry bed surge

2. wave propagating on wet bed→ Wet bed bore

Thus the scenario on dry bed is presented in Section 2.3.1 and the one on wet bed in Section

2.3.2

2.3.1 Dry bed surges

A solution of the St. Venant equations (Eq. 2.9) in one direction, for the dry bed condition was

presented by Ritter (1892) using the method of characteristics. This theory is based on the

following assumptions:

1. Infinite upstream reservoir

2. Ideal fluid

3. Wave is propagating on horizontal, frictionless channel.

The sudden removal of the vertical gate produces a dam break wave in the downstream

direction (positive characteristic) and a negative wave propagating in the upstream direction

(negative characteristic). For a given reservoir depth d0, expressions for water depth h and

flow velocity v at location x and time t were found:

h = 1

9g

[
2
√

g d0− x

t

]2
(2.10a)

v = 2
3

[√
g d0+ x

t

]
(2.10b)

A schematic representation of the propagating waves is presented in Figure 2.5.

For x = 0 a constant water height h and dischargeQ0 are found, as shown in Eqs. 2.11

h(x = 0)= 4
9

d0 (2.11a)

Q0(x = 0)= 8
27

√
g d30 (2.11b)
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Figure 2.5 – Dam-break wave theory on dry bed [based on Ritter (1892) andWhitham (1955)]

The theory developed by Ritter (1892) (ideal fluid flow, horizontal channel and semi-infinite

reservoir) is quite restrictive and hardly applicable to reality. Therefore, there exist other

theories removing some of the key assumptions, including: Dressler (1952) andWhitham

(1955) (real fluid on a horizontal plane with semi-infinite reservoir) and Hunt (1982) (real

fluid on a slope).

The analytical solution proposed byWhitham (1955) added friction to the propagating channel.

According to this theory, in the dam break wave two main parts can be distinguished: (1) a

main body and (2) a wave tip/edge region. In the main body, the Ritter theory can be applied

and the water behaves like an ideal fluid, whereas the wave tip region is dominated by friction

with negligible inertia terms, resulting into a rounded shape with lower velocities. Whitham

(1955) developed an analytical solution based upon the Pohlhausen technique and the integral

treatment of the boundary layer (Chanson, 2005a). This solution made the assumption that

in the wave tip/edge region the velocity distribution was constant. The resulting equation is

presented in Eq. 2.12.

x − xs

h0
= − f

8
· U2

g · h0
·
( g

∂U/∂t

)2
·
[
ln

(
1+ 8

f
· h/h0

U2/g h0
· ∂U/∂t

g

)
− 8

f
· h/h0

U2/g h0
· ∂U/∂t

g

]
(2.12)

where xs is the position of the front, d0 is the initial reservoir depth, f is the friction factor,U

is the tip/edge celerity and while ∂U/∂t is the deceleration of the wave along the channel.

According to Freeman and LéMehauté (1964) the dynamic wave equation in the wave tip

region is reduced into:

∂h

∂x
+ f

8
· U2

g d0
= 0 (2.13)
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and its integration leads to an analytical expression for the shape front (Chanson, 2006, 2009)

h

d0
=

√√√√ f

4
·
(

U√
g d0

)2
·
(

x − xs
d0

)
(2.14)

leading to the following set of equations to characterize the free surface profile for a dam break

wave propagating on an horizontal channel with bed friction f :

h

d0
= 1
9

·
(
2− x

t ·√g d0

)2
−

√
g

d0
· t ≤ x

d0
≤

(
3

2
· U√

g d0
−1

)
·
√

g

d0
· t (2.15a)

h

d0
=

√√√√ f

4
·
(

U√
g d0

)2
·
(

x − xs
d0

)(
3

2
· U√

g d0
−1

)
≤ x

d0
≤ xs

d0
(2.15b)

Chanson (2006) also compared the validity of Eqs. 2.15 with field observation in Banda Aceh

during the Indian ocean tsunami (26 December 2004). The good agreement observed in

Figure 2.6, indicated that Eq. 2.15 is suitable to represent the front shape of tsunamis flows

propagating inland.

Figure 2.6 – Comparison between Eq. 2.15 and the field data obtained from the 2004 Indian
Ocean tsunami in Banda Aceh [adapted from Chanson (2006)].
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2.3.2 Wet bed bores

A dam-break wave propagating on a wet channel with an initial still water depth h0 has a

different behaviour if compared to the dry bed scenario presented in Section 2.3.1. Their

properties are best described by the theory presented by Stoker (1957) for an infinite reservoir

and water initially at rest (v = 0) on both sides of the dam. This phenomenon is characterised
by the propagation of a negative surge in the upstream direction and an aerated bore in the

downstream direction, as shown in Figure 2.7. The temporal evolution of a dam-break bore

propagating over a wet bed can be divided into 5 main regions (downstream to up-stream):

(0) the initial still water depth h0; (1) the turbulent bore front; (2) a “plateau”, i.e. a region

with almost constant water height h2; (3) a far-back region where the Ritter (1892) theory for a

surge propagating on dry bed can be applied, and (4) the upstream reservoir where h = d0.

Stoker (1957) showed that for values of h0/d0 < 0.1384, the water depth h, the velocity v and

the discharge Q0 were independent of the initial still water depth h0. Therefore, Eqs. 2.11

derived for the Ritter (1892) theory at x = 0 can be applied to zone (3). For values of h0/d0 >

0.1384, all main parameters become a function of h0.

Zone (2) is characterized by a constant water depth (h2) called plateau height. The exact value

of h2, observed in Figure 2.7, can be obtained graphically from Stoker (1957) or numerically

with the numerical approximation proposed by Chanson et al. (2000) in Eq. 2.16 as a function

of h0/d0.

h2
d0

= 0.932
(

h0
d0

)0.371
(2.16)

Figure 2.7 – Dam-break wave theory on wet bed [based on Ritter (1892) and Stoker (1957)]

24



2.3. Physics of dam-break waves

Both Continuity andMomentum equations can be applied to the propagating wave, resulting

into the following expressions:

h0 ·U = h2 · (U −V2) (2.17a)

h2 · (U −V2)
2− h0 ·U2 = 1

2
g h20− 1

2
g h22 (2.17b)

The front region in zone (1) visually appears as an aerated and recirculating roller, similar to a

translating hydraulic jump (Figure 4.7). According to Yeh andMok (1990) the roller was formed

by the flow separation initiated at the front toe resulting from the streamline divergence

caused by the sudden raise in water depth. In the roller, a “generation-advection cycle” was

observed, suggesting that eddies formed inside the roller were later advected in the flow, where

a turbulence stretching in the slanting vertical direction was detected. Air is entrained behind

the bore front for a length of Lr, whereas further behind mainly clear water can be observed.

For wet bed bores the shape of the front can be predicted using the following equation:

h − h0
h2− h0

=
(

x − xs
Lr

)N

(2.18)

where xs is the position of the wave front and Lr the length of the roller. Chanson (2011)

proposed an exponent value N = 0.441 and Wang and Chanson (2015) N = 0.540 for hydraulic

jumps.

2.3.3 Front celerity

In wave hydrodynamics, the computation of the front celerityU is fundamental to estimate

the forces induced by the wave on the buildings. Nevertheless, Nistor et al. (2009) showed that

the highest uncertainty in the computation of the hydrodynamic force (drag) derives from the

estimation of the wave celerity, as there is no agreement in literature on one single value for

the velocity of a tsunami approaching the shore. For this reason, the next sections focus on

the most common techniques used to estimate the front celerity for both dry bed surges and

wet bed bores.

Dry bed surge

The St. Venant equations (Eq. 2.9) can be solved using the theory of Ritter (1892) presented in

Section 2.3.1. This predicts a front celerity ofU = 2√g d0 for a horizontal frictionless channel.

This theoretical upper limit also coincides with the value suggested by the Federal Emergency

Management Agency (FEMA) 55. Lauber and Hager (1998) showed that, for small times, the

maximum wave velocity is located at the positive wave front and that a linear deceleration

until the negative wave front. Furthermore, the location of maximum velocity and maximum

flow depth do not coincide. The front celerity of a surge propagating on dry bed is commonly
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Study Formula Note

CCH (2000) U = h Lower limit
FEMA55 (2000) U = 2√g h Upper limit (α= 2)
Iizuka andMatsutomi (2000) U = 1.1√g h α= 1.1
Kirkoz (1983) U = √

2g h α= 

2

Fukui et al. (1963) U = 1.83√g h α= 1.83
Bryant (2001) U = 1.67h0.7
Matsutomi and Okamoto (2010) U = 0.66√g h α= 0.66
Shafiei et al. (2016) U = 1.7√g h α= 1.7

Table 2.2 – Celerity coefficient α in Eq.2.19 for dry bed surges.

presented in the form

U =α ·
√

g d0 (2.19)

where α is a velocity coefficient whose value is coved by high incertitudes. The most common

values found in literature are summarised in Table 2.2. Nevertheless the coefficient α is

a function of the friction factor f , as shown by both Dressler (1952) and Whitham (1955).

More information concerning the influence of bed roughness on the propagating surge are

presented in Apprendix B.4.

Wet bed bores

For wet bed bores the front celerity can be numerically obtained as a function of h0/d0 from

the momentum equation in Eq. 2.20 presented by Stoker (1957):

U

g d0
=

√
1

8
·
[(
2

h2
h0

+1
)2

−1
]

(2.20)

and with the approximation of Montes (1998), presented by Chanson (2004) in Eq. 2.21:

U√
g d0

=
0.63545+0.3286

(
h0
d0

)0.65167
0.00251+

(
h0
d0

)0.65167 (2.21)

where d0 is the impoundment depth, h0 is the initial still water depth and h2 is the plateau

height obtained from Eq. 2.16. Behind the bore front, in the plateau region h2 (zone 2), a

velocity V2 < U is observed. This value can be obtained through a rearrangement of the

Continuity equation (Eq. 2.17):

V2 = U ·
(

h2− h0
h2

)
(2.22)
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2.3.4 Velocity profiles

In the analytical solution that led to Eq. 2.12, Whitham (1955) made the assumption that in the

wave tip/edge region the velocity distribution was constant over the entire wave depth. Lauber

and Hager (1998) performed some Particle Image Velocimetry (PIV) tests on dam-break waves

on horizontal bed, showing the existence of a thin boundary layer.

Arnason (2005) measured the velocity field of a dam-break wave impacting against a vertical

obstacle in a horizontal two-dimensional plane using a Digital Particle Image Velocimeter

(DPIV). In addition, Laser Doppler Velocimeter (LDV) were used to acquire velocity profiles in

bores of different sizes. This showed a deceleration of the average velocity behind the wave

front for large bores.

The quasi-instantaneous velocity profile for passing bore fronts was obtained byMeile et al.

(2008) through some Acoustic Doppler Velocimeters (ADV) measurements. (Figure 2.8). Note

that 2.8 showed that before and after the passage of the wave, the flow had a logarithmic

profile, thus indicating a quasi-uniform flow distribution. During this time, the flow showed

a “two-layer-type” velocity profile, in which the lower layer accelerated to comply with the

differentmean velocities before and after the wave front (Figure 2.8, profile 3). It was estimated

that it took less than 0.2 s for the quasi-uniform flow to be re-established.

Figure 2.8 – Quasi-instantaneous velocity profiles measured before (1), during (3) and after (2)
passage of the bore front (adapted fromMeile et al. (2008))

Most recently, Leng and Chanson (2017a,b) performed studies on the velocity profiles on

turbulent bores and positive surges comparing three measurement techniques: Vectrino II

Profiler, Nortek™ acoustic Doppler velocimeter (ADV) Vectrino+ and Prandtl Pitot tubes.

Results showed close agreement between all instruments, with instantaneous velocity fluctu-

ations of the same order of magnitude were recorded. All velocity measurements showed a

strong deceleration during the passage of the bore front, as well as large velocity fluctuations

for the three velocity components at all elevations.
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2.4 Frontal impact on impervious buildings

The hydrodynamic impact of a wave against a structure is a complex phenomenon and the

resulting force is difficult to evaluate. Inundation depth, flow velocity and direction are key

parameters in the estimation process and they are all covered by a high level of incertitude. In

literature no common agreement is found on this subject (Dean and Dalrymple, 1991) and

several empirical formulae were proposed. A summary of major previous studies focusing on

impact forces is presented in Table 2.3 and presented hereafter in chronological order. Despite

the work performed to date, the number of empirical or semi-empirical formulas available

and their significant scattering suggest that the behaviour of structures under such extreme

loading remains challenging to describe and difficult to properly quantify.

Reference Wave type Wave
height

Wave
celerity

Building
geometry

Block
ratio

Force
frequency

[m] [m/s] [m] β [kHz]

Ramsden (1996) Solitary wave 0.05-0.2 0.7-1.3 WallW =1.1 1.00 1.0
Dam-break HB=0.6

Arnason et al. (2009) Dam-break 0.05-0.1 0.9-1.8 B=0.12 5.00 0.3
HB=0.45

Lukkunaprasit Vertical 0.04-0.08 1.4-2.5 B=0.15 6.67 0.5
et al. (2009) release HB=0.45
Nouri et al. (2010) Dam-break 0.5-0.85 2.6-4.6 B=0.20 6.50 1.0

HB=0.60
Santo and Robertson Solitary wave 0.12-1.28 2.6-6.8 WallW =2.1 1.00 1.0
(2010) B=0.05 42.6

B=0.15 14.2
B=0.30 7.10
HB=0.61

Al-Faesly et al. (2012) Dam-break 0.25-0.45 2.6-5.1 B=0.30 4.33 1.0
HB=1.40

Linton et al. (2012) Solitary wave 0.1-1.04 2.3-4.9 WallW =3.7 1.00 1.0
HB=4.57

Robertson et al. (2013) Solitary wave 0.23-1.28 2.6-6.8 WallW =3.7 1.00 1.0
HB=1.83

Rahman et al. (2014) Dam-break 0.01-0.03 - WallW =0.6 1.00 -
HB=0.04,0.08

Shafiei et al. (2016) Dam-break 0.14-0.21 2.0-2.4 B=0.30 4.00 1.0
HB=0.6

Foster et al. (2017) Pneumatic 0.03-0.1 1.5-4.6 B=0.18 10.0 Not
generator B=1.08 1.67 specified

B=1.44 1.25
HB=0.2

Present study Vertical 0.13-0.25 1.9-3.7 B=0.30 4.67 1.0
release HB=0.6

Table 2.3 – Main parameters of selected studies involving wave/dam-break-induced loading
on impervious structures with side B and height HB, installed in a channel with widthW .
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2.4. Frontal impact on impervious buildings

The most generic case is represented by Eq. 2.23, proposed by Morison et al. (1950). This

equation includes both inertia and drag forces:

F = FI+ FD = ρCm∀dv

dt
+ 1
2
ρCDBhv2 (2.23)

where: FI is the inertia force and FD the hydrodynamic (drag) force; ρ the water density,Cm
the inertia coefficient, ∀ the volume, dv/dt the flow acceleration,CD the drag coefficient, B

the width of the obstacle, h the water depth and v the velocity of the flow.

Since tsunamis and dam-break waves have really long wave-periods, the inertia term is

considered important only at the tip of the bore when impacting against a structure; this

component is usually called surge force (FS) (Yeh, 2007).

2.4.1 Hydrodynamic force

The hydrodynamic force (or drag force) is the resistance force that any obstacle, including

buildings, imposes to a moving fluid. This force is conventionally described using a drag

coefficient (CD). The hydrodynamic force (FD) can be calculated assuming independence

fromMach number (Ma<<1, and therefore v << vsound) :

FD = 1
2

CDρBhv2 (2.24)

The drag force resulting from the impact of moving fluid against a solid obstacle is described

by Blevins (1984) for steady flow conditions. The drag coefficient depends on the shape of

the obstacle, the blockage ratio (i.e. B/W , where B is the building side andW the channel

width), the ratio between flow depth and obstacle side (i.e. h/B) and the Froude number of the

impinging flow (Qi et al., 2014) . The dependence ofCD on the Reynolds number is commonly

assumed to be weak because of the turbulent nature of most open-channel flows, both in the

laboratory and in the field. The drag coefficient is typically defined for low Froude numbers

(sub-critical regimes) with similar upstream and downstream flow depths. Furthermore, most

values of the drag coefficient were derived from the loss of momentum flux through flow

depths measurements (Henderson, 1966). More information on the drag coefficient can be

found in Appendix C.

For squared obstacles, values ofCD ≈ 2 are commonly found in literature and design codes.

2.4.2 Impact force

While investigating wave-pile interaction, Snodgrass et al. (1951) pointed out that the force

produced by a broken wave (bore) was higher compared to that produced by unbroken waves

(surge). Ever since, many authors have given their contribution to the domain and research

mostly focused on tsunamis, the most catastrophic and common of all hydrodynamic bores.
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Some of the first authors to investigate tsunamis were Fukui et al. (1963) who found that

the most influential factor on impulsive pressures is velocity; they suggested that maximum

pressure is proportional to the velocity to the power 4.

pmax = 1
2

γv4

g 2h
(2.25)

Although with some scattering, they proved that for vertical walls, the pressure distribution

was linear from the base of the wall to 1.5 times the wave height.

Cross (1967) verified the reliability of the force predicted by the momentum equation for a

uniform and steady flow. The result is a simple theory to estimate the force exerted by a surge

travelling on a dry bed impinging on a vertical wall.

F = FHS+ FD = 1
2
ρg Bh2+ρbhv2 (2.26)

Ramsden (1996) analysed the forces produced by a translatory turbulent bore against a vertical

wall. The force computed from the maximummeasured run-up height on the wall, assum-

ing hydrostatic condition, exceeded the maximum measured force. Ramsden (1996) also

compared the behaviour of of a turbulent bore over wet bed (offshore structure or second

wave) and a dry bed surge (inshore, first wave) with similar celerity. Results showed that

the turbulent bore was constantly associated with a higher water depth and with a steeper

front, thus resulting into larger run-up heights, higher pressures and forces (Figure 2.9). The

propagation velocity of the turbulent bore was similar to the celerity of moving hydraulic jump

in still water (Stoker, 1957):

v2

g h
= 1
8

[(
2

A

h
+3

)2
−1

]
(2.27)

where h is the effective water depth and A the maximumwave amplitude. For all scenarios

a hydrostatic condition was found after the bore. The following formulas were presented by

Ramsden (1993)

F

F1
= 1.325+0.347

(
A

h

)
+ 1

58.5

(
A

h

)2
+ 1

7160

(
A

h

)3
(2.28a)

M

M1
= 1.923+0.454

(
A

h

)
+ 1

8.21

(
A

h

)2
+ 1

808

(
A

h

)3
(2.28b)

where F1 is the force obtained assuming a linear pressure distribution due to a run-up that is

twice the wave amplitude (A):

F1 = 1
2
ρg B(2A + h)2 (2.29)

Results showed that the results of Cross (1967) and Ramsden (1993) both overestimated the

force by, respectively, 20-50% and 30-40%.
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2.4. Frontal impact on impervious buildings

Figure 2.9 – comparison of dry bes surge and wet turbulent bore (a) wave height (η), (b) run-up
height (H), (c) pressure (p) and (d) force (F ) (Ramsden, 1993)

Asakura et al. (2000) proposed the following formula to estimate the pressure (p) against the

structure, where hmax represents the maximum inundation depth.

p = ρg B(3hmax− z) (2.30)

Its integration gives the formula used by the City and Council of Honolulu (CCH 2000) to

quantify the surge force:

FS =
∫3hmax
0

ρg B(3hmax− z)d z = 1
2
ρg B (3hmax)

2 = 4.5ρg Bh2max (2.31)

Okada et al. (2005) proposed amethod to evaluate tsunami load (surge force) against structures,

making a difference between broken and unbroken waves:
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• Unbroken waves : the force is given by an hydrostatic pressure with three times the

wave height h. The resulting force is therefore 9 times the hydrostatic pressure of the

wave.

FS = 9 ·
(
1

2
ρg h2

)
(2.32)

• Broken waves : an additional pressure is added over a height that is equal to 0.8h. This

pressure has a value of 2.4ρg h at the base. The resulting force is therefore 11 times the

hydrostatic pressure of the wave.

FS = 11 ·
(
1

2
ρg h2

)
(2.33)

For both cases if the building is not high enough, the pressure distribution is considered until

the end of the structure. This is in agreement with the findings of Nakano (2008) presented in

Section 2.4.4

Arnason (2005) tested some free-standing buildings with different geometries and orientation.

This study showed that an initial overshot was only observed for rectangular shaped buildings

impacted by waves with relatively small height. For cylindrical, rhomboidal structures and

large waves, no overshot was observed.

(a) (b)

Figure 2.10 – Forces measured for rectangular structures (Arnason, 2005)

As previously discussed, during the impact phase, various components of the total force

can be identified, including an initial surge force, hydrodynamic (or drag) and hydrostatic

components. Since the process is highly unsteady and rapidly varied, these components are

difficult to isolate and estimate. Thus, similarly to Gupta and Goyal (1975), Arnason (2005) and

Arnason et al. (2009) used a resistance coefficientCR, taking into account the surge, hydrostatic

and hydrodynamic components. This coefficient is defined as:

CR = 2 · Fx

ρBhv2
(2.34)

Eq. 2.34 is similar to the drag coefficientCD in Eq. 2.24 for the computation of the hydrostatic

component. However,CR is a function of time rather than a constant value.
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Dias andMallikarachchi (2006) consider 3 components of the total force: hydrostatic, hydro-

dynamic and impact load:

Hydrostatic Hydrodynamic Impact Load

FS = 1
2ρg Bh2 FD = 1

2CDρBhv2 FL = 1
2CTρBhv2

Finally, the total force can reach a maximum upper bound of 18 times the static pressure.

Yeh et al. (2005), on behalf of theWashington State Department of Natural Resources published

some guidelines for structures that serve as tsunami vertical evacuation sites. Two years

later Prof. H. Yeh published a paper giving specific guidelines on evaluating tsunami forces.

Yeh (2007) states that both hydrostatic and buoyant forces can be easily identified once the

inundation depth is known, whereas hydrodynamic forces are complicated to determine due

to the incertitude linked to the velocities. Yeh (2007) proposed the following method:

• Hydrodynamic force FD = 1
2CDρB(hv2)max, where h and v are respectively the max-

imum inundation depth and the maximum inundation velocity, that might not take

place at the same time. He also suggested the following formula to evaluate hv2 based

on a constant and uniform run-up slope:

(hv2)max
g R2

= 0.125−0.325 z

R
+0.11

( z

R

)2
(2.35)

where R is the ground elevation at the maximum tsunami penetration, measured from

the initial shoreline, z is the ground elevation of the location of interest.

• Surge Force The author questioned the validity of equation 2.31 proposed by CCH,

Okada et al. (2005) and Asakura et al. (2000) to evaluate the surge force produced by

a tsunami. This formula was derived by adding the hydrostatic force and the change

in linear momentum in the impact zone between a surge and a vertical wall, with a

steady flow velocity of 2
√

g h. In addition the maximum inundation height is hard to

define. Since an important overshot is not observed for dry bed surges (Ramsden, 1996;

Arnason, 2005), Yeh (2007) suggested to include the surge force inside the hydrodynamic

force by using a drag coefficientCD = 3, 1.5 times higher than the usual value.

Koshimura et al. (2009) statistically analysed tsunami damages and showed that for inundation

depths h < 2 m, 90% of the structures resisted. For h > 4 m, 90% of the buildings collapsed.

Fujima et al. (2009) experimentally tested different buildings located at multiple distances

from the coastline. They proposed to use the theory suggested by Yeh (2007) with an expression

of the drag coefficient as a function of h/D , whereD is the distance from the coastline:

CD = 2.0+5.4
(

h

D

)
(2.36)
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The increase ofCD near the coast linemight indicate that the inertia term inMorison Equation

(Eq. 2.23) is no longer negligible. They conclude that for structures that are located far from

the coastline (h/D small), the hydrodynamic formulas should be used. For buildings that are

close to the shoreline (h/D large) hydrostatic formulas, such as Eq. 2.31 are more appropriate.

Similarly Duricic et al. (2013) used statistical techniques to estimated the mean normalised

force produced by an impacting bore against various structures through the definition of a

drag coefficient taking into account the shape and the geometry of the obstacle. In addition,

for bores, Fujima et al. (2009) also proposed an expression similar to Asakura et al. (2000), but

based on the maximum inundation depth:

Fx,D = 1.3ρB(h2− h0)U
2 (2.37)

Overseas Coastal Area Development Institute OCADI (2009) of the Ports and Harbours Bureau

of Japan, proposed a triangular pressure distribution above the still water level with height 3h

and base pressure given by 2.2ρg h. This base pressure is maintained constant throughout the

depth of the still water h0. The resulting force on the wall is given by :

Fx,D = 3.3ρg B(h2− h0)
2+2.2ρg B(h2− h0) · h0 (2.38)

Nouri et al. (2010) carried out similar investigations on free standing buildings, testing both

circular and rectangular shapes. They also tested the effect of constrictions on flow character-

istics. The buildings were equipped with both a force plate and pressure sensors distributed

along the height of the structure. Results showed the presence of a surge force; the latter was

greater than the hydrodynamic force only for higher waves. The induced force was assumed to

be a function of the bore front steepness and the pressure sensors showed a non hydrostatic

distribution. Similarly, Al-Faesly et al. (2012) experimentally found that larger flow depths

induced higher forces compared to shallower ones. Furthermore, they showed that the initial

bed condition (wet or dry) influenced the magnitude of the impulsive force during the initial

impact with the structural model, while the post-peak quasi-steady flow was similar for both

bed conditions. Lastly, comparison of experimental values with existing codes such as FEMA

P646 and SMBTR (Section 2.4.5), showed an overestimation of the predicted forces up to 136%.

At Oregon State University, Robertson et al. (2013) experimentally tested the impact of an

”offshore” solitary wave against a vertical wall installed on the whole width of the channel. As a

result a design formula in Eq. 2.39 was derived and successfully validated with the field survey

of Chock et al. (2012). This expression is also included in the ASCE7-06 (2016).

Fx,D = ρB

{
1

2
g h22+ (h2− h0)U

2+ g 1/3 · [(h2− h0)U ]
4/3

}
(2.39)

Shafiei et al. (2016) also tested experimentally the impact of bores produced with a dam-

break technique on free-standing rectangular structures. This study pointed out that the

hydrodynamic pressure is dominant and that the pressure distributions tended to have a

slope similar to that of the hydrostatic pressure. In addition, some oriented structures ranging
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from 0 to 135° were also tested, showing that increasing the structure orientation to the flow

decreased the total pressure.

Most recently Foster et al. (2017) tested the impact of tsunami-like waves produced through

the newly developed pneumatic-type tsunami generator against free-standing structures.

In this study, it was concluded that for waves with long periods, no impulsive component

was observed and an hydrostatic pressure distribution was observed. The quasi-steady flow

conditions presented by Qi et al. (2014), discussed in Appendix C, can be applied to tsunami-

like flows, resulting into the following set of equations as a function of the upstream Froude

number Fr1 and the blockage ratio B/W .

FD =
⎧⎨
⎩
1
2CDρBhv2, if Fr2 < 1 (subcritical)

λFρB g 1/3v4/3h4/3, if Fr2 > 1 (choked)
(2.40)

where λF is a function of the blockage ratio B/W and the upstream Froude number (Eq. C.6).

Foster et al. (2017) proposed an approximation of λF based on their experimental results:

λF = 1.37−1.35
(

B

W

)
+1.37

(
B

W

)2
(2.41)

2.4.3 Effect of bore aeration

As shown in the previous sections, bores propagating on wet bed are characterized by the

presence of a recirculating roller with intense aeration. In broken waves the air can be either

entrapped or entrained (Bullock et al., 2001). The compressibility of the air inside the flow

affects the dynamic of the impact, reducing the maximum pressure because of a cushioning

effect. However, the presence of a compressiblemixture also redistributes the impact pressures

more widely, leading to similar overall forces (Peregrine et al., 2005). Furthermore, Bullock

et al. (2007) showed that a high level of aeration does not always reduce the peak pressure, but

it tends to increase both the rise times and the duration.

Bullock et al. (2001) also performed some tests with both freshwater and salt water. Fresh

water is known to have less air entrainment than seawater, resulting into larger bubble size,

coalescing more easily. This implies that it is easier for air to escape in freshwater than in

seawater. Finally, the same authors concluded that freshwater resulted into higher peak forces,

with a lower rise times.

2.4.4 Effect of building overflow

In the past, the effect of overflow on the loading process was poorly addressed as it represented

an undesirable scenario, to be avoided. Nevertheless, the increasing number of low-rise

residential houses built on the coastline, suggested that this issue should be addressed. In

literature the case of building overflow was addressed by Nakano (2008), based on the results
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of the experimental work of Asakura et al. (2000). For structures without submergence (Case

1), the Japanese design guideline (SMBTR) suggested Eq. 2.31, leading to a value equal to 9

times the hydrostatic pressure. For structure with submergence, the same pressure is assumed

at the bottom of the structure, however it is only applied to the actual height of the structure,

leading to Eq. 2.42. Their findings are summarized in Figure 2.11.

Fx,D = 1
2
ρg B (6hmax− HB) · HB (2.42)

Most recently, Esteban et al. (2017) investigated the effect of tsunami overtop on concrete

coastal structures, focusing on inundation depths behind the structures.

Figure 2.11 – Forces with and without overflow (Asakura et al. (2000) and Nakano (2008))

2.4.5 Design codes

Buildings are designed to resist to an extraordinary lateral load induced by seismic action or

strong winds. Onshore structures are rarely designed to withstand hydrostatic or hydrody-

namic loads. The purpose of current tsunami-related studies is to quantify the horizontal

loading due to wave-induced impacts on buildings located near the shoreline and combine it

with the already existing seismic design guidelines. Nevertheless, some basic differences in

building failure modes due to seismic loads, associated with high-frequency dynamic effects

and tsunami loads have been identified and discussed (Nistor et al., 2009). Tsunami waves

and associated inland inundation have long-periods and are highly transitory. As such, they

generate sustained forces whose magnitudes depend on the inundation depth and the flow

velocity (ASCE, 2016).

The large amount of formulae available in literature presented in Section 2.4.2 clearly showed

a lack of knowledge in the bore-structure interaction process (Nistor et al., 2009). The exact

magnitude of the forces applied is unknown and values have to be derived based on vague

empirical formulas. Most design codes across the world are based on the sum of various

components: (1) hydrostatic force (FHS), (2) buoyant force (FB ), (3) hydrodynamic force (FD )

36



2.4. Frontal impact on impervious buildings

(4) and surge force (FS). The greatest incertitudes concern the surge force and the flow velocity

in the computation of the hydrodynamic force (Nistor et al., 2009). At present time, the major

design guidelines and codes dealing with hydrodynamic impact against structures are:

1. CCH - City and County of Honolulu Building Code, Chapter 16, Article 11. (2000).

The code was developed by the Department of Planning and Permitting of Honolulu,

Hawaii based on the results of Dames andMoore (1980). The sum of hydrostatic (FHS),

hydrodynamic (FD) and surge (FS) forces is recommended. The surge force is evaluated

using Equation 2.31 and the velocity in the computation of the hydrodynamic force is

equal to the height (v = h)

2. FEMA 55 – Federal Emergency Management Agency, USA (2011). These guidelines

neglect the surge component (FS), however the the hydrodynamic force is computed

using Equation 2.24 with a velocity that is twice the theoretical value (v = 2√g h).

3. SMBTR – Structural Design Method of Buildings for Tsunami Resistance. This method is

recommended by the Building Centre of Japan and it is based on the results of Asakura

et al. (2000), Okada et al. (2005) and Nakano (2008). Similarly to CCH the surge force is

evaluated using Eq. 2.31 and Eq. 2.42 for buildings with and without overflow.

4. Development of Guidelines for Structures that serve as Tsunami Vertical Evacuation

Sites, developed by Yeh et al. (2005) for the Washington State Department of Natural

Resources.

5. Most recently, the 2016 edition of the ASCE-7 standard entitled “Minimum design

loads for buildings and other structures” introduced a specific Chapter 6, “Tsunami

loads and effects” (ASCE7-06, 2016; Chock, 2016; Robertson, 2016). The latter identifies

tsunami building categories depending on their importance. The present study mostly

focuses on buildings belonging to Tsunami Risk Category II, i.e. structures acting as

vertical shelters with an elevation higher than 19.8 m at prototype level. The maximum

hydrodynamic loads are assumed to occur for the Load Case 2, when h = 2/3hmax,

assuming a conservative Froude number of


2:

Fx,D = 1.5 · 1
2

kρρItsuCDB(hv2)max→ Fx,D = kρρItsuBh2max (2.43)

where kρ is fluid density factor taking into account the effect of soil and debris (typically

kρ= 1.1), ρ is flow density, (ρ = 1000 kg/m3), Itsu is the importance factor, herein assumed

Itsu =1 andCD is the drag coefficient, hereinCD = 2 . According to ASCE 7 Chapter 6, the

wave velocity is computed using:

v = 

2 ·

√
g · 2
3

hmax (2.44)

If a more conservative approach is used, then Eq. 2.43 becomes:

Fx,D = 1.6 · kρρg ItsuBh2max (2.45)

ASCE 7 Chapter 6 also suggests to use the Eq. 2.39 derived by Robertson et al. (2013).
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2.5 Impact on porous buildings

As detailed in Section 2.4, many research projects were carried out on impervious structures.

On the contrary, little importance was given to the effect of building openings on the resulting

forces, shown by the limited amount of studies available in literature. A selection of the main

studies involving buildings with openings is presented in Table 2.4.

Reference Wave type Wave
height

Wave
celerity

Building
geometry

Porosity Block
ratio

[m] [m/s] [m] [%] β

Thusyanthan and
Madabhushi (2008)

Impulse wave
(block drop)

0.08-0.11 1.0-2.2 B=0.2m
HB=0.15m

Tsunami
resistant
house

3.33

Van de Lindt et al.
(2009)

Solitary wave 0.1-0.6 - B=2.4m
B=1.2m
HB=1.2m

Windows
& doors

-

Lukkunaprasit Vertical 0.04-0.08 1.4-2.6 B=0.15m 0, 25, 50 6.67
et al.(2009) release HB=0.15m
Santo and Solitary wave 0.12-1.28 2.6-6.8 WallW =2.3m 100 1.00
Robertson (2010) Perforated wall

- 3× B = 0.05m 93 14.22
- 3× B = 0.15m 79 4.74
- 3× B = 0.30m 58 2.37

Triatmadja and Dam-break 0.15-0.19 2.6-3.5 B=0.20m 0, 7.5, 20 7.25
Nurhasanah (2012) HB=0.20m 40, 60, 81
Hartana and Dam-break 0.11 2.7 B=0.20m 40, 50, 60 2
Murakami (2015) HB=0.26m
Present study Vertical 0.13-0.25 1.93.6 B=0.30m 0, 17, 31, 4.67

release HB=0.3m 34, 42, 60
B=0.9m 1.56
HB=0.3m

Table 2.4 – Literature review of selected studies involving force measurements on buildings
with openings

Santo and Robertson (2010) performed some tests on perforated walls with multiple columns

of the same size, located side-by-side across the width of the entire channel. The purpose of

this study was to simulate some typical ground floor configurations of tsunami-inundated

buildings. These columns had dimensions of 0.05, 0.15 and 0.30m, leading to blockage ratios

of 14.22, 4.74 and 2.37 (Table 2.4). The results in terms of horizontal forces were not always

consistent and firm conclusions difficult to draw. Nevertheless, Santo and Robertson (2010)

recommended that the effect of multiple columns be considered to increase the peak force by

25% for the case with closure percentage greater than 40%.

Thusyanthan and Madabhushi (2008) tested a ”tsunami-resistant house” designed by the

Harvard Design School in collaboration with MIT and compared it with a typical house in

Sri Lanka (scale 1:25). The timber buildings had a porous structure with openings facing
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the ocean and corner walls made of reinforced concrete (Figure 2.12a). As the wave could

flow through the building, less splashes were observed andmeasurements showed reduced

pressure values. This proved that a specific design can reduce the impact force and that the

allowance of such flow through the building resulted into an overall better performance of the

structure.

Lukkunaprasit et al. (2009a) and Chinnarasri et al. (2013) were the first to investigated the effect

of openings on the resulting hydrodynamic force. They tested one-store buildings located on

a 5 % sloped beach at a scale of 1:100 with porosities of 25 and 50% (Figure 2.12c). Results

showed that the influence of openings on the peak pressure is negligible, however the force

was reduced by 15 to 30 %. The pressure peaks occurred not simultaneously and the design

using the spectrum would lead to an overestimation of the force. Both studies concluded that

the reduction in the resulting force clearly demonstrates the benefits of openings in mitigating

the effect of tsunamis on such buildings.

(a) Thusyanthan andMadabhushi (2008) (b) Wilson et al. (2009)

(c) Lukkunaprasit et al. (2009a) and Chinnarasri et al. (2013)

Figure 2.12 – Porous configurations previously investigated

Wilson et al. (2009) and Van de Lindt et al. (2009) tested 1/6th scaled wooden residential

houses in the USA with both windows open and closed (Figure 2.12b). Results showed that the

configuration with windows closed had values 2.5 times higher, which meant that by simply

opening the windows the charge was reduced by 60 %. They also showed that for structures

with openings, the uplift (buoyancy) became important.
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Nistor et al. (2009) also provided an example of force calculation for a 3D structure in the

case of breakaway walls and non-breakaway walls using the different design codes. The

results showed that the first case (breakaway structure) is more convenient. The force is also

proportional to the length of the structure, therefore it is recommended to orient the building

such that the shorter side faces the possible tsunami.

(a)

(b)

Figure 2.13 – Details of the experiments carried out by Triatmadja and Nurhasanah (2012):
(a) experimental set-up and configuration studied; (b) results in terms of forces obtained for
buildings with openings.

Triatmadja and Nurhasanah (2012) tested some, symmetrical and concentric openings of

variable sizes as shown in Figure 2.13a. Porosities values ranged from 0 to 81 % and both

configurations with and without internal partitions were systematically tested under hydrody-

namic load conditions. For such structures, a non-linear relationship between porosity P and

the resulting horizontal force was found. Porosity was defined as the ratio between the area of

the openings and the front area of the structure. This relationship is graphically presented in

Figure 2.13b.
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Fx,D = 1− [
0.6 · (P )2+0.4 · P

]
(2.46)

Lastly, Hartana and Murakami (2015) compared some experimental tests to OpenFOAM

numerical simulations for porosity values of 40, 50 and 60 % (Figure 2.14). This study showed

that the flow through the structure changed the dynamics of the impact, with larger opening

ratios resulting into lower inundation depths. In addition, some initial uplift forces were

observed both experimentally and numerically. These were provoked by the change in flow

direction because of the vertical elements in the front side, generating a jet-like flow in the

vertical direction.

Figure 2.14 – Configurations of buildings with openings tested by Hartana and Murakami
(2015)

2.6 Need of research

This State of the Art focused on the work previously conducted in the domain of wave gener-

ation and their impact on buildings with and without openings. Although some important

contributions were provided by previous studies, this Chapter also pointed out some gaps in

knowledge and thus an important need for further research.

1. The diversity of wave transformation and subsequent inland propagation has led re-

searchers to develop several techniques to generate these tsunami-like flows in labora-

tories, such as dam-break waves, piston-types generators or vertical releases, among

others. The use of a vertical release technique was rarely addressed in the past and a

characterization of the generated wet bed bores and dry bed surges in terms of their

hydrodynamic behaviour is thus necessary. Furthermore, uncertainties still exist on

the velocity profiles behind the wave front for surges and bores generated with this

technique.

2. Similar unsteady flows were used to investigate both vertical walls and free standing

structures, leading to an excessive amount of formulae and theories to evaluate the

resulting hydrodynamic impact force. Nevertheless, no agreement still exists in litera-
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ture and the prediction of impact forces remains covered by high uncertainties. More

specificity, a direct relationship between the measured forces and the hydrodynamic

properties of the generated bores and surges is missing.

3. Previous studies dedicated little attention to the influence of building overflow on the

loading process, as this did not represent a critical scenario. Nevertheless, the large

amount of low-rise residential houses built on the coastline pointed out that this issue

should no longer be neglected.

4. Literature review also revealed the lack of a comprehensive experimental study on the

effect of openings on the resulting hydrodynamic force. As a consequence, its estimation

remains difficult to assess and far from practical application.

Thus, this literature review highlighted a clear lack of knowledge and the need formore specific

investigations, leading to the identification of the research objectives previously presented in

Section 1.3.
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All experiments were conducted at the Laboratory of Hydraulic Constructions (LCH) at Ecole

Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, where a vertical release technique

was used to produce surges and bores. The experimental facility represents a modification of

the set-up previously used byMeile (2007) andMeile et al. (2008, 2011). Compared to these

previous studies, a higher release discharge was needed to better reproduce tsunami-like

inland flows. Subsequently, a new downstream channel was build. In order to conceive the

optimal experimental facility, a focused literature review on the wave heigh h commonly used

in literature is presented and discussed. This is followed by a discussion on the main param-

eters involved in the physical phenomenon, leading to the conception of the experimental

set-up presented in the second part of the chapter. This showed that the generated waves

were similar to tsunami-like flows.

3.1 Introduction

Through a detailed literature study presented in the previous chapter, the magnitude of the

wave height was investigated. As presented in Chapter 1 and 2, wave heights up to 10-12 m

were commonly observed during major events. Considering a downscaling Froude factor

of Λ ≈ 30, these values corresponded to wave heights h ≈ 0.3 m, which are consistent with
previous research, as shown in figure 3.1. These results were used to determine the wave height

for the present study and to design the experimental set-up. A height of 9 m corresponds to

buildings with 3 floors, that are commonly found on coastal areas where major events might

occur.

3.1.1 Dimensional analysis

The main parameters involved in the process were identified: force (F ), water density (ρ),

wave velocity (v), wave height (h), building side (B), surface of the openings (Ao), gravitational

acceleration (g ) and dynamic viscosity (μ) . Since it is a 3-dimensional system (time, mass,
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Figure 3.1 – Wave heights in previous research projects

length) according to the Buckingham theorem, there exist 8 - 3 = 5 dimensionless numbers to

describe the system:

F,ρ,v,h,B ,A,g ,μ= f

(
Fr= v√

g h
,Re= vh

ν
,CD = 2F

ρv2h2
,

Ao
B2
,

h

B

)
(3.1)

One can recognise some of the main π groups obtained through the application of the Buck-

ingham theorem, including the Froude number (Fr) representing the ratio between inertial

and gravitational forces, the Raynolds number (Re) representing the ratio between inertial

and viscous forces and the drag coefficient (CD) . The opening of the buildings and its main

geometric features are shown to be some relevant parameters in the loading process.

3.2 Experimental facility

3.2.1 Vertical-release generation technique

The experimental set-up for the generation of surges and bores through the vertical release

technique is presented in Figure 3.2. A 2.1×3.0×1m upper reservoir with a storage volume of∀
= 7.08 m3 was linked to a water-filled lower reservoir through three, newly installed, identical

and independent PVC pipes with an internal diameter of 315 mm. These were symmetrical to

the central axis of the channel, with a transversal distance of 0.45 m between adjacent pipes

(Figure 3.3a). Each pipe was independently fitted with a PVC valve designed at LCH (Figure

3.4).

The sudden water release was obtained through a system of pulleys and Vectran-fibres ropes

with a diameter of 0.01 m and an extension less than 1%. All ropes were linked to the same

handle, ensuring the synchronised opening of all gates (Figure 3.3b). Pictures of the release

mechanism are presented in Figure 3.3. The total difference in head between the upstream

and the downstream reservoir was HR= 2.1 m.
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Figure 3.2 – Experimental set-up used in the present study to generate bores and surges
through a vertical release technique.

(a) Upper reservoir (b) Release mechanism (c) Propagating channel

Figure 3.3 – Details of the release mechanism used to produce surges and bores.

When the systemwas activated, i .e. the ropes released, a difference in head between the upper

and lower reservoir was established, resulting into a gravitational flow through the pipes.

Being the lower basin completely filled with water, the incoming discharge resulted into an

upward flow at channel inlet, with consequent, free surface overflow in the downstream flume.

A schematic visualization of release mechanism and the resulting flow in the lower reservoir is

presented in Figure 3.5.
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Figure 3.4 – Details of the release mechanism in Autodesk Inventor®.

Figure 3.5 – Schematical representation of the release mechanism and its evolution in time.
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Amathematical model similar to that developed by Meile (2007) was used during the design

phase to simulate the wave formation process and to predict the main characteristics of the

bore. The conception of the experimental set-up was carried out using a 3-dimensional pro-

gram, Autodesk Inventor, allowing a better interpretation of volumes and existing constraints.

A picture of the model is presented in Figure 3.6

Figure 3.6 – Experimental set-up designed in Autodesk Inventor (building in green)

3.2.2 Propagating channel

Once the wave is generated, its propagation takes place in the Canal Vevey. The latter is

an existing channel with a total length of 40 m and a width of 2 m. A secondary horizontal

channel with a wooden floor and a length of 15.5 m and a width of 1.40 m was installed inside

the existing facility (Figure 3.3c). For the generation of wet bed bores, an initial still water

depth (h0) on the flume (“wet bed” condition) was ensured using a vertical sill located at

the downstream end of the channel. The water was evacuated at the downstream end of the

flume, avoiding thus any backwater effect. A drainage pipe was installed below the channel to

evacuate water before each test, preventing the channel from getting wet during test on dry

bed.

On average, the Darcy-Weisbach friction factor of the channel was measured to be fDW =

0.021 using steady-state experiments under various flow conditions. This corresponded to an

average roughness ks = 0.66 mm, which is consistent with the values suggested by Henderson

(1966).
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3.3 Instrumentations

The following instruments were used:

• Ultrasonic distance Sensors (US) - used to measure water depths

• Ultrasonic Velocity Profilers (UVP) - used to measure the velocity profiles

• Force Plate - used to measure forces andmoments in all 3 main directions

• Flow-meter - to measure the inlet discharge (Steady-state tests only, Appendix C)

3.3.1 Ultrasonic distance Sensors (US)

The flow depth of the propagating waves were measured using seven ultrasonic distance

sensors (US), type Baumer, UNAM 30I6103, shown in Figure 3.7a. These had a measuring

range of the water level between 100 to 1000 mm. The US sensors were located along the

channel at x = 2, 10.10, 12.10, 13.10, 13.35, 13.60 and 13.85 m from the flume inlet, i .e. the

end of the lower basin, as shown in Figure 3.2. This also represented the origin of the system

of coordinates. The location of the US sensors was chosen in order to carefully follow the

evolution of the propagating surges and bores in time at multiple locations. The US sensors

were sampled at an acquisition frequency of 12.5 Hz, with an accuracy of 0.5 mm and a

response time of less than 80 ms. For all scenarios, the minimal required distance between

two adjacent sensors to avoid any interference was conservatively respected.

An additional sensor (US0) with an extended measuring range (UNAM 50, 250-4000 mm,

Figure 3.7b) was installed in the upper reservoir to ensure the accurate recording of the

opening time of the system (t = 0 s). For all tests, the opening time was set when a decrease of

0.01 m was observed in the upper reservoir. A shifted time based on the surge/bore arrival

time was defined as T = t–t0. The specifics of each US sensors are presented in Table 3.1

(a) (b)

Figure 3.7 – Ultrasonic distance Sensors (US) used in the present study: (a) UNAM 30I6103
100-1000 mm; (b) UNAM 50 250-4000 mm
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The calibration of all US sensors was achieved by measuring the output voltage signal for

a minimum of 4 known depths within the foreseen measuring range. From these values a

regression line was extrapolated, in the form h = a′ ·V + b′. The calibration coefficients for all
sensors are presented in Table 3.1 and the regression lines in Figure 3.8.

Type Range [mm] Location a′ b′ R2

US 0 UNAM 50 250-4000 Upper reservoir -0.266 1.667 0.999
US 1 UNAM 30I6103 100-1000 x = 1.00 m -0.072 0.691 0.999
US 2 UNAM 30I6103 100-1000 x = 10.10 m -0.073 0.636 0.999
US 3 UNAM 30I6103 100-1000 x = 12.10 m -0.065 0.593 0.999
US 4 UNAM 30I6103 100-1000 x = 13.10 m -0.116 0.570 0.999
US 5 UNAM 30I6103 100-1000 x = 13.35 m -0.090 0.504 0.999
US 6 UNAM 30I6103 100-1000 x = 13.60 m -0.092 0.510 0.999
US 7 UNAM 30I6103 100-1000 x = 13.85 m -0.111 0.548 0.999

Table 3.1 – Technical specifications of the US sensors used in the present study

Figure 3.8 – Regression lines obtained during the calibration of the US sensors

3.3.2 Ultrasonic Velocity Profiler (UVP)

Flow velocity was investigated using an Ultrasonic Velocity Profile (UVP), typeDUO-MX SN

produced by theMet-Flow (Switzerland). This instrument provided instantaneous velocity pro-

files along the transducer axis by detecting the Doppler shift frequency of echoed ultrasound

as a function of time. Both an emitter and a transducer are installed inside the ultrasonic

sensor, allowing measurements of the projection of the velocity vector. For the present study,

an emitting frequency of 2 MHz was chosen (Figure 3.10a). The transducer had a diameter of

8 mm and it was located 5 mm below the channel bottom with an angle of 20° in the upstream
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direction. The empty space between the probe and the channel was filled with gel and sealed

with plastic tape to assure the transmission of the emitting signal. A section of the installed

UVP can be seen in Figure 3.9. The transducer was located at a distance of x = 13.85 m from

the channel inlet, where the bore had reached a fully developed condition. One UVP per cross

section was used and measurements were taken in the transducer axis direction, then pro-

jected in the main flow direction (x-axis). Velocity components in the vertical and transversal

directions were not considered.

Figure 3.9 – Sketch of the UVP installed in the channel bottom

No calibration was needed for this instrument. A sensitivity analysis of the main parameters

involved in UVP acquisition system was performed andmore information are presented in

Appendix A of this report. As a result, a number of 128 repetition per profile (within the

samemeasure) was selected, leading to acquisition frequencies ranging from 12.5 to 55 Hz,

corresponding to measurements durations of 80 to 18 ms, and an accuracy of ±10 mm/s.

The acoustic scattering was increased using hydrogen bubbles produced through electrolysis

induced in the flow, similarly to Blanckaert and Lemmin (2006) andMeile et al. (2008). For this,

an anode and a cathode are installed in the upstream part of the channel, at x = 1.5 m from

the channel inlet (Figure 3.2). This allowed sufficient mixing time for the hydrogen bubbles

and guaranteed a uniform distribution in the vertical direction at measurement location. The

spacing of the stems was 0.05 m in the longitudinal direction and 0.45 m in the transversal

direction. These had a diameter of 0.008 m and a thin stainless steel wire (Ø = 0.0001 m) was

wrapped around with a spacing of 0.05 m. The vertical bars were covered with waterproof

paint to avoid their participation in the reaction. A potential difference of 30 V was applied

between the two bars, producing hydrogen bubbles with diameter proportional to Ø.

3.3.3 Force Plate

An AMTI MC6-1000 force plate is used to measure forces and moments in the three main

directions. The force plate is squared (150 mm) with a thickness of 79.2 mm and it is presented

in Figure 3.11. The force plate was installed on the channel at a distance x = 14 m from the

channel inlet. It was assembled on a rigid holding structure composed or two C-shaped beams
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(a) UVP transducer (2 MHz) (b) Installation for production of hydrogen bubbles

Figure 3.10 – Details of the UVP set-up used to measure velocity profiles

welded to channel bottom, as shown in Figure 3.11b. A 30 mm aluminium plate was installed

between the force plate and the holding structure to rise the upper surface to the same channel

level. The Force Plate was covered with an aluminium structure (Cover Plate) preventing any

direct contact with water. The complete installation set-up for the force plate is presented in

Figure 3.11b. The buildings are then screwed on top of the Cover plate. The water infiltrating

below the channel was evacuated using a dedicated drain.

The Force Plate was connected to an Amplifier (AMTI, Gen 5) which directly provided the

signal exported to the LabView® code, synchronised with the other instruments. The main

specifications for theMC6-1000 force plate are presented in Table 3.2. The force plate used

metal foil strain gages to measure forces andmoments in all directions. The measurement is

carried out by placing the gauges in wheatstone bridges; the excitation is applied at the input

of the bridge and the voltage measurement is carried out at the output. The output of the

gauges is low and the signal needs to be amplified; the amplifier gains can range from 500 to

4000. The basic output of the gages is represented by the sensitivity terms (s) whose values are

presented in Table 3.2.

x-axis y-axis z-axis

Capacity (Force) [N] 2250 2250 4500
Capacity (Moment) [Nm] 340 340 170
Sensitivity s (Force) [μ V/(V·N)] 0.66626 0.65868 0.17201
Sensitivity s (Moment) [μ V/(V·Nm)] 6.18593 6.16098 16.32809
Stiffness [N/m] 2.1·107 2.1·107 14·107
Resonant frequency [Hz] 550 550 620

Table 3.2 – Technical specifications of the AMTI force plate MC6-1000. [Data provided by
Prophysics SA for AMTI]
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(a) Force Plate AMTI MC6-1000 (b) Set-up of the Force Plate in Inventor

Figure 3.11 – AMTI force plateMC6-1000 and installation in the channel

The governing equations for acquisition of forces andmoments through the Gen5 Amplifier

are the following:

F = V

Vexc · s ·G ·10−6 M = V

Vexc · s ·G ·10−6 (3.2)

where F is measured force (N),M the measured moment (Nm), V is the measured, amplified

signal (V), Vexc is the excitation voltage (typically V = 10 V), s is the sensitivity term provided

by the furnisher (Table 3.2) andG is the amplifier gain (500, 1000, 2000 or 4000).

3.3.4 Flow-meter

For the tests carried out under steady state conditions (Appendix C), an electromagnetic

flow-meter (type ABB FXE4000) installed in the laboratory circuit was used to register the

discharge in the channel. A validation of the calibration of the flow-meter was carried out,

showing an error less than 1.5% for all tested discharges. For the verification a certain volume

of water was diverted on a balance and weighted after a certain time. The same procedure was

repeated for a wide range of discharges, as shown in Figure 3.12.

Figure 3.12 – Error obtained for the tested discharges during the calibration of the Flow-meter
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3.3.5 Acquisition system and post-processing

Data was acquired by means of a LabView® data acquisition system developed at LCH. All 8

US sensors and the six channels of the Force Plate were directly connected to aMainmaster

program, as shown in Figure 3.13. The synchronisation with the UVP-DUO unit was achieved

through a Transistor-Transistor Logic (TTL)-Level (+5V, min) trigger signal, sent when the

measure was launched from theMain panel. This synchronisation time was estimated to be

less than 3ms, which is small compared to themeasurement duration of both instruments.This

method allowed to initially set the same time reference for all instruments, ensuring that every

velocity profile was associated to the corresponding flow depth and load condition.

Figure 3.13 – Sketch of the used acquisition system

3.4 Building model

The tested buildings were located at a distance x = 14.00 m from the channel inlet to ensure

the full development of the bores/surges. The building used in the present study is shown in

Figure 3.14, with a side length of B = 0.3 m, resulting in a blockage ratio β= W /B = 4.67; this
value was sufficiently large to limit side wall effects and was consistent with previous studies

(Table 2.3). The impermeable building had a cubic shape and it wasmade of aluminium plates

with a uniform thickness of 0.01m. This was designed to be completely rigid, ensuring that the

structure’s dynamic response could be neglected. These buildings corresponded to prototype

structures of 9 m if a geometrical scale of 1:30 is assumed. Such dimensions would be typical

of residential buildings commonly observed in coastal zones exposed to tsunami hazard. The

building height HB = 0.6 m (Figure 6.1) was representative of a vertical shelter belonging to

the Tsunami Risk Category II, as defined by the ASCE-7 Chapter 6 (Section 2.4.5).
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(a) (b)

Figure 3.14 – Impervious structure (Ptot = 0%, HB = 0.3m) tested in the present study

As shown in Figure 3.11, the buildings were installed on a force plate (AMTI MC6-1000)

which recorded the time histories of the forces and moments in all three dimensions. The

coordinate system is shown in Figure 3.2 and Figure 3.15. The following sign convention is

used throughout the research project:

• Fx is positive in the flow direction (frontal impact)

• Fy is positive to the left if surfing the wave downstream the flume

• Fz is positive in upward direction

Figure 3.15 – Axis orientation and reference system used to define forces andmoments

Building surface porosities

Different buildings with various opening values are tested in order to investigate the effect

of surface porosity on the resulting impact load. Building surface porosity was defined as

P = Ao/B2, where Ao is the surface of the openings and B the building side. A total of six

porosity configurations were chosen and their geometry is shown in Figure 3.16. All structures

are realistic and accurately represent possible three-storey buildings commonly observed in

coastal areas subject to tsunami hazard.
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3.4. Building model

(a) Ptot = 17 % (b) Ptot = 34 % (c) Ptot = 60 %

(d) Ptot = 31.34 % (e) Ptot = 42.24 % (f) Ptot = 84 %

Figure 3.16 – Investigated building structures and porosities Ptot

All configurations have different values of total porosity, ranging from Ptot = 0 (impervious,

reference) to 84%. Configuration (a) and (b) simulate single and double windows with proto-

type size 1×1.5 m and 2×1.5 m, respectively. Configuration (c) represents the bare structure
of the building with pillars of 0.75 m. Configurations (d) and (e) simulate bottom openings

due to the presence of shops; the upper part is equal to to (a) and (b). Lastly, configuration

(f) represents a fully opened building. All structures are constructed assembling aluminium

plates with a thickness of 10 mm. The total porosity of the structure (Ptot) is constant, whereas

the equivalent porosity Ph,max is defined as the cumulative porosity at h = hmax and thus

depends on the maximumwave height. The building front porosity is presented in Figure 3.17

as a function of height. At h = HB = 0.3 m, than Ph,max = Ptot.

Configurations tested

Four main configurations were tested in the research project. These are presented in Figure

3.18 and summarized in Table 3.3.

1. All porous sides (0) - openings on all four sides

2. Impervious lateral walls (F) - openings on front and back, impervious lateral sides

3. Impervious back (B) - openings on the front and on both sides, impervious back

4. With building sides (S) - openings on the front and on the back, impervious on the sides

(same as config. F). Additional sides were added next to the building, increasing the

blockage ratio and simulating the effect of next-door buildings. These were independent

and not connected to the central building.

55



Chapter 3. Experimental Set-up

Figure 3.17 – Vertical distribution of building porosity

(a) All porous sides (0) (b) Impervious sides (F)

(c) Impervious back (B) (d) With sides (S)

Figure 3.18 – Tested building configurations

All buildings had a squared section and were made of aluminium plates with a thickness of

10 mm. These were designed to be completely rigid, ensuring that the structures’ dynamic

response could be neglected. All pieces were assembled using M4 screws with a length of
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3.4. Building model

Figure 3.19 – Sketch of the tested configurations

14mm. The base was fixed to the cover plate using 8 ×M8 screws with a length of 16 mm. The
mass of the structures was calculated piece by piece using a high resolution analytical balance

(Mettler Toledo) with a ±1 g precision. The volume was calculated analytically. Numerical
values for both mass and volume are presented in Table 3.3 and Figure 3.20. For these calcula-

tions, the weight and volume of the screws are neglected. The relationship between mass and

volume was linear (homogeneous material), with a density of ρ = 2700 kg/m3, corresponding

to aluminium.

Porosity
[%]

Configuration Front Sides Back Volume
[m3]

Mass
[kg]

0 0 Porous Porous Porous 6.70 · 10−3 18.00
17 0 Porous Porous Porous 6.09 · 10−3 16.35
31.34 0 Porous Porous Porous 5.57 · 10−3 14.98
34 0 Porous Porous Porous 5.50 · 10−3 14.77
42.24 0 Porous Porous Porous 5.18 · 10−3 13.91
60 0 Porous Porous Porous 4.54 · 10−3 12.18
17 F Porous Impervious Porous 6.39 · 10−3 17.18
31.34 F Porous Impervious Porous 6.13 · 10−3 16.48
34 F Porous Impervious Porous 6.10 · 10−3 16.38
42.24 F Porous Impervious Porous 5.94 · 10−3 15.95
60 F Porous Impervious Porous 5.62 · 10−3 15.09
84 F Porous Impervious Porous 4.91 · 10−3 12.36
17 B Porous Porous Impervious 6.24 · 10−3 16.77
34 B Porous Porous Impervious 5.80 · 10−3 15.58
42.24 B Porous Porous Impervious 5.56 · 10−3 14.40
60 B Porous Porous Impervious 5.08 · 10−3 13.64

Table 3.3 – Main properties of the tested buildings (model scale)
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Figure 3.20 – Graphical representation of the main building properties

Eigen-frequency

In order to avoid any resonance between the tested buildings and the flow, the determination

of the Eigen-frequency values for all tested configurations was necessary. All values were

obtained through specific tests. For these, each configurations was hit with a hammer at a

height z = HB and the Eigen-frequency obtained through a Fourier Fast Transform (FFT) of the

resulting force measured in both x and y directions under dry bed condition. For consistency,

this process was repeated at least twice in both negative and positive directions. An example of

themeasured signal in the x direction for Ptot = 0 % is presented in Figure 3.21a. The frequency

distribution obtained from the FFT is presented in Figure 3.21b for the same configuration

in both x and y directions. The results obtained for all configurations are presented in Table

3.4 and Figure 3.22. The magnitude of the results obtained is in agreement with the values

obtained by Arnason et al. (2009) and Nouri et al. (2010) for similar buildings.

Finally, it is important to point out that the Eigen-frequencies of the impervious buildings

were sufficiently high to avoid any interference with the flow frequency estimated to f = 1.5Hz

for a Strouhal number St = f · B/U = 0.13.

Stiffness

In addition to the Eigen-frequencies, the stiffness k of the tested buildings is an important

parameter that should be provided to practical engineers. To do so, some Finite Elements

Methods (FEM) numerical simulations of push-over tests were performed using the software

Autodesk Inventor Professional 2015 (Figure 3.23). Four forces with various intensity (100, 500,

700 and 1000 N) were applied and the deflection δ recorded. The stiffness was then obtained
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3.4. Building model

(a) (b)

Figure 3.21 – Example of results obtained for the computation of the Eigen-frequency of the
tested building configurations: (a) Measured force signal in the x direction (Fx); (b) FFT of the
force measured in the x direction (Fx).

(a) x-direction (b) y-direction

Figure 3.22 – Eigen-frequencies obtained for all tested configurations

as the ratio between the applied force and the maximum deflection:

k = F

δ
δ≈ F · H3B

E Iy
k ≈ E Iy

HB3
(3.3)
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where E is the elastic modulus and Iy the inertia moment. Values around 2·107 N/mwere ob-
tained for all buildings, as detailed in Table 3.4. These values, at model scale, were sufficiently

high such that the building’s dynamic response could be neglected.

Figure 3.23 – Model and typical results of FEM numerical simulations used to obtain the
stiffness values.

Porosity Configuration Eigen-frequency Eigen-frequency Stiffness
Ptot [%] x-direction [Hz] y-direction [Hz] x-direction [N/m]

0 0 41.52 44.92 1.69 · 107
0 H 30.60 33.85 5.27 · 106
17 0 41.89 46.45 1.61 · 107
31.34 0 41.80 44.33 1.28 · 107
34 0 43.45 49.21 1.33 · 107
42.24 0 42.28 47.34 1.15 · 107
60 0 44.55 49.71 6.34 · 106
17 F 41.99 45.65 1.69 · 107
31.34 F 42.24 45.56 1.62 · 107
34 F 42.81 46.91 1.64 · 107
42.24 F 42.89 46.71 1.60 · 107
60 F 43.85 46.39 1.55 · 107
84 F 45.93 40.05 1.42 · 107
17 B 41.75 45.91 1.63 · 107
34 B 42.46 47.43 1.36 · 107
42.24 B 42.14 48.10 1.18 · 107
60 B 42.61 48.91 6.68 · 106

Table 3.4 – Eigen-frequency and stiffness k values obtained for the tested configurations.
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3.5 Scale effects

For all experimental studies, similarity between themodel and prototype has to be guaranteed.

In free-surface, gravitational-driven flows a Froude similitude is commonly used. This is based

on the Froude number Fr, that for a rectangular sections is defined as

Fr= v√
g h

(3.4)

where v is a characteristic velocity and h a reference length, in this case, assumed equal to the

flow depth. A conservation of the Froude number between prototype andmodel scales, leads

to an unaltered ratio between gravitational and inertial forces.

If the same fluid (i.e. water) is used, in the downscaling process not all ratios can be kept

constant, namely Froude and Reynolds numbers. The Reynolds number Re represents the

ratio between inertial and viscous forces and it is defined as

Re= v · h

ν
(3.5)

where v is a characteristic velocity and h a reference length, commonly assumed equal to the

the hydraulic diameterDH for open channel flows (Chanson, 2004). During wave impact, the

building is subject to both skin friction and wave drag. The first depends on the Reynolds

number, whereas the second (wave drag) depends on the flow velocity and therefore on the

Froude number. The skin-friction is considered to be negligible compared to the wave drag,

implying that a Froude similitude is therefore reasonable (Thusyanthan and Madabhushi,

2008).

For fully aerated, compressible and pressure-dominated flows, a similitude based on the

Cauchy number could be used.

Ca= ρv2

K
(3.6)

where K is a modulus representing the elasticity of the fluid. Such a similitude implies a

conservation of the ratio between inertial and elastic forces between model and prototype.

However, Bullock et al. (2001) showed that during a wave impact, the variation of the pressure

can lead to an underestimation of maximum pressures and to an the overestimation of rise

times. The same authors concluded that a Cauchy law scaling is therefore not recommended

and that the use of Froude similitude did not lead to an overestimation of impact pressures

compared to fieldmeasurements. Thus, if a geometrical scaleΛ is assumed, themost common

relationships betweenmodel and prototype are presented in Table 3.5.

Nevertheless, to minimize scale effects, the Reynolds number must be sufficiently large to

guarantee a sufficient level of turbulence in the flow. For the present study Reynolds numbers

between 105 to 106 were obtained for both surges and bores. These values were sufficiently

61



Chapter 3. Experimental Set-up

Physical parameter Scaling factor

Length [m] (h)p/(h)m =Λ

Velocity [m/s] (v)p/(v)m =Λ1/2

Time [s] (t )p/(t )m =Λ1/2

Discharge [m3/s] (Q)p/(Q)m =Λ5/2

Force [N] (F )p/(F )m =Λ3

Frequency [Hz] ( f )p/( f )m =Λ−1/2

Stiffness [N/m] (k)p/(k)m =Λ2

Table 3.5 – Scaling factors for a Froude similitude with geometrical ratioΛ

high to produce an adequate representation of the physical phenomenon in both aerated and

non-aerated regions (Heller, 2011; Pfister and Chanson, 2012; Fuchs, 2013).

The effect of surface tension is relevant only for shallow flows and for broken bores, where air

entrainment occurs. These effects are taken into account in the Weber number We, defined as

the ratio between inertial forces and surface tension:

We= v2ρh

σT
(3.7)

where σT is the surface tension (herein σT = 0.07 kg/s2). For the generated waves, values of

We ≈ 30 were computed, which is consistent with similar studies (Fuchs, 2013) and higher
than the critical value We = 10 defined by Schüttrumpf and Oumeraci (2005) to avoid scale

effects in case of wave overtopping and wave run-up.

3.6 Model effects

Tests carried out in experimental facilities are also subject to model effects. Some of these

effects were identified during the design process and are briefly discussed hereafter along with

the solutions to limit them.

• Wave development - For waves generated with the vertical release technique, some

additional surface oscillations were observed in the upstream section of the channel.

This was a result of the gravitational flow from the upper to the lower reservoir. A

sufficient length was left between the generation tank and the measurement location (x

= 14 m) in order for the wave to fully develop (Chanson et al., 2003; Meile, 2007).

• Blockage ratio - Buildings with sides B = 0.3 m, installed in a channel widthW = 1.4

m, resulted into a blockage ratio β= W /B = 4.67 (Section 3.4). Side effects are thus not

expected as the channel width is more than 4 times the building side. Furthermore, as

shown in Table 2.3, this value is consistent with similar previous studies.
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• Sea-water properties - Fresh water was used in the present study. This represents a

conservative approach, since salt-water (more representative of tsunami events) leads

to lower impact pressures (Bullock et al., 2001), as discussed in Section 2.4.3.

• Building stiffness - From a structural points of view, a similarity between the tested

buildings and those observed on coastal areas must also be guaranteed. As shown in

Table 3.5 the scaling factor for the stiffness k (defined as ratio between force Fx and

deflectionδ) isΛ2. If we assumeΛ= 30, this leads to values of (k)p ≈ 1.8·1011 N/m,which
is high for existing, concrete structures. This confirmed that the structure’s dynamic

response can be neglected, leading to a conservative approach in the measurement of

the resulting force.

3.7 Model validation

Once the construction of the experimental set-up was completed, preliminary tests were

conducted to validate the facility and the applicability of the results to reality. The following

issues were assessed:

• Profile repeatability for both dry bed surges and wet bed bores

• Bi-dimensionality in the lateral direction for both dry bed surges and wet bed bores

• Validation of the measurements carried out with the Force Plate

• Repeatability of force measurements

3.7.1 Wave profile repeatability

Preliminary tests were conducted to validate the results of the experimental model. Repeata-

bility for both the dry bed surges and the wet bed bores, along with a verification of the

uniformity of the wave profile in the transversal direction of the flume were investigated. As

such, representative results of the wave height are presented in Figure 3.24 for dry bed surge

(8 repetitions) and in Figure 3.25 for wet bed bore (5 repetitions). Details of the generated

waves are presented in Table 4.1. For both scenarios, the wave height was measured at US

7, which was located 13.85 m from the channel inlet. Wave profiles were normalised using

the impoundment depth (d0) and the dimensionless time (g/d0)0.5. Results showed similar

profiles for all tests with values of normalised standard deviation (σ/d0) of less than 5 % for

wet bed bores and less than 3 % for dry bed surges (Figure 3.26). These results are similar to

those of Shafiei et al. (2016) for bores. Some differences were observed in terms of surface

turbulence, however oscillations remained within the same range and the spectral distribution

of oscillating frequency was similar for all tests (Appendix B).
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Figure 3.24 – Repeatability of a dry bed surge (d0 = 0.82m) measured at US7 (x = 13.85 m)

Figure 3.25 – Repeatability of a wet bed bore (h0 = 0.05 m, d0 = 0.82, test 4.11) measured at US7
(x = 13.85 m)

3.7.2 Wave longitudinal uniformity

The bi-dimensionality, or longitudinal uniformity, of the wave was verified by measuring the

wave profiles at two locations in the transversal direction of the channel, i.e. at y/B = 0.5

and 0.25; both sensors were located at a distance of x = 13.35 m from the channel inlet. The

comparison between the two sensors is presented in 3.27, where a good agreement between

both profiles can be observed. An identical arrival time indicated that the front celerity of the

dry bed surge was uniform in the transversal direction. Similarly to Figure 3.24 and 3.25, some

minor differences were observed in terms of surface turbulence. Visually, the uniformity of

both the dry bed surged and the wet bed bore is shown in Figures 4.3 and 4.7, respectively.

64



3.7. Model validation

Figure 3.26 – Standard deviation σ obtained for multiple waves on both dry (8 tests) and wet
bed (5 tests) with identical releasing conditions

Figure 3.27 – Lateral uniformity for dry bed surges (d0 = 0.82 m, dry, x = 13.35 m)

3.7.3 Opening time

The time origin was set as the opening time of the pipes, identified when a reduction in water

elevation in the upper reservoir was measured. The wave arrival time at a specific location

was set when a local wave height h > 0.01 m was recorded.

3.7.4 Force measurements

Although no calibration was needed for the AMTI MC6-1000 Force Plate, the recorded values

were compared to some known forces in order to validate the measurements. In both x- and
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y- directions, force measurements were successfully compared to those provided by a HCB

Hanging Scale Device (KERN, Germany) with a precision of ±0.1 N.

Vertical forces Fz

Some preliminary tests were carried out for a wave without the building. The measured

vertical forces are presented in Figure 3.28 and Figure 3.29, for a dry bed surge and a wet bed

bore, respectively. The vertical forces Fz along the z-axis were later compared to the weight of

the water depth with the corresponding wave height, calculated using Eq. 3.8.

Fz = h · B2 · g ·ρ (3.8)

Good agreement was observed for both the dry bed surge (Figure 3.28) and the wet bed bore

(Figure 3.29). The latter presented some differences in the wave front, attributed to the highly

aerated flow in this region. These differences can be observed in Figure 3.29, where the value

predicted by the formula using the measured height overestimated the real value.

Figure 3.28 – Validation of force measurements Fz in the vertical direction for a dry bed surge
(d0 = 0.82 m, test 4.1)

Force repeatability

The repeatability of the force measurements in the horizontal direction was also tested. For

this, the horizontal forces Fx were recorded during the impact of the same wave on both an

impervious structure and a porous structure. The results obtained for a dry bed surge (d0 = 0.82

m) on a porous structure (Ptot = 42.24 %) are presented in Figure 3.30, and those for a wet bed

bore (d0 = 0.82m, h0 = 0.03m) on an impervious structure in Figure 3.31. Good repeatability of
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Figure 3.29 – Validation of force measurements Fz in the vertical direction for a wet bed bore
(d0 = 0.82 m, h0 = 0.03 m, test 4.11)

the force measurements was observed for both scenarios, with standard deviation (σ) values

around 13% for both surges and bores.

Figure 3.30 – Repeatability and standard deviation values (σ) of force measurements Fx for 7
dry bed surges (d0 = 0.82 m) impacting against a porous structure (Ptot = 42.24 %)
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Figure 3.31 – Repeatability and standard deviation values (σ) of force measurements Fx for 5
wet bed bores (d0 = 0.82 m, h0 = 0.03 m, test 5.5) impacting against an impervious structure
(Ptot = 0 %)

3.8 Parameters and test procedure

To obtain a full understanding of the processes the main parameters identified were varied,

namely:

• Channel configuration (dry bed surges vs. wet bed bores)

• Wave hydrodynamic properties (h,U )

• Building height (HB)

• Building surface porosity (P )

• Blockage ratio (β= W /B)

These parameters are summarized in Table 3.6 with the corresponding tested values and

sections of the report where the findings are presented and discussed.

Parameter Tested values Section

Initial still water depth h0 [m] 0 (dry), 0.01, 0.03, 0.05 (wet) Chapter 4 & 5
Building height HB [m] 0.3, 0.6 Chapter 6
Building porosity Ptot [%] 0, 17, 31.34, 34, 42.24, 60, 84 Chapter 7
Blockage ratio β [-] 4.67, 1.56 Chapter 7

Table 3.6 – Range of the tested parameters
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3.8. Parameters and test procedure

For each test the following procedure was strictly followed:

1. Release gates are securely locked.

2. The upstream tank is filled.

3. The water level in the lower reservoir is controlled through the drainage pipe to evacuate

potential leaks coming from the upper reservoir. For tests over wet bed, the initial still

water depth h0 is imposed through the regulation of the downstream sill.

4. The settings of the Force Plate are verified and adjusted to the expectedmeasuring range,

if necessary.

5. The good performance of the US sensors is verified.

6. The UVP settings are set and the measure is launched (system starts acquiring data, but

not registering).

7. Difference in potential between the wires is imposed in the hydrogen bubble generator.

8. Video recording devices are activated.

9. Force Plate signal is set to zero.

10. Measurements is launched; the trigger signal (5V) automatically activates the UVP

recording.

11. Wave is generated manually.

For the tests focusing on wave hydrodynamics (Chapter 4), the same procedure was followed,

without the force measurements. After the test, measurements are stopped and the facility

prepared for the following test. In case of dry bed scenarios, water is evacuated and the

channel is left drying.
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4 Wave hydrodynamics

4.1 Overview

This chapter investigates and validates a new generation system for dry bed surges andwet bed

bores. There exist multiple techniques to experimentally generate such waves and the present

study focuses on the generation of tsunami-like inundation conditions through the vertical

release of a water volume. A detailed methodology to hydraulically characterize the generated

waves in terms of their wave heights and flow velocities is presented and good agreement with

the classical dam-break case for both dry surges and wet bed bores is demonstrated. Due to

the importance of estimating the impact forces induced by such waves, particular attention

is given to the wave front celerity and the velocity profiles measured behind the wave front.

These were found in agreement with Prandtl’s power law for open channel flows and in-depth

measurements allowed to define an expression to estimate flow deceleration behind the wave

front. Along with considerations on the Froude number andmomentum, this chapter provides

relevant information on the wave hydrodynamic properties to assist engineers to design safer

infrastructures in areas prone to such extreme loading.

The main objectives of this chapter are the following:

1. To present and discuss the hydraulic behaviour of dry bed surges and wet bed bores

generated using the vertical release technique.

2. To compare the generated surges and bores with existing theories developed for classical

dam-break waves.

3. To provide an insights of the hydrodynamic behaviour of surges and bores in terms of

front celerity, velocity profiles and deceleration behind the wave front.

4. To present and discuss the temporal behaviour of the Froude number and the momen-

tum flux per unit width for both surges and bores.

This Chapter is based on the scientific article "Experimental study of tsunami-like waves on dry ad wet bed
generated with a vertical release technique" by D. Wüthrich, M. Pfister, I. Nistor and A.J. Schleiss accepted for
publication in Journal of Waterways, Port, Coastal and Ocean Engineering. The experimental work and the analysis
presented hereafter is original and was performed by the author.
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Initial water
depth, h0

Number
of pipes

Impoundment
depth d0

h0/d0 Repetitions

Dry 0.000 3 0.82 - 8 test 4.1
2 0.63 - 2 test 4.2
1 0.40 - 2 test 4.3

Wet 0.001 3 0.82 0.0012 1 test 4.4
0.010 3 0.82 0.0122 3 test 4.5

2 0.63 0.0159 2 test 4.6
1 0.40 0.0250 2 test 4.7

0.030 3 0.82 0.0366 4 test 4.8
2 0.63 0.0476 2 test 4.9
1 0.40 0.0750 2 test 4.10

0.050 3 0.82 0.0610 5 test 4.11
2 0.63 0.0794 2 test 4.12
1 0.40 0.1250 2 test 4.13

0.100 3 0.82 0.1219 1 test 4.14
Max 0.100 3 0.82 0.1219 8 -
Min 0.000 1 0.40 0.0012 1 -

Table 4.1 – Experimental program for the characterization of wave properties

For this, 38 tests were conducted, as detailed in Table 4.1. For the bores, all tests were per-

formed for h0/d0 < 0.13, for which the influence of the initial still water depth h0 was minimal.

4.2 Analogy with dam-break theory

Preliminary tests showed the key-role of the initial dischargeQ0 released into the channel for

the definition of the main hydrodynamic properties of the produced wave. The use of 1, 2 or 3

pipes for the sudden release of the water allowed to control the initial dischargeQ0, producing

surges and bores with different wave height h and front celerityU . A comparison with the

theoretical solution proposed by Ritter (1892) for dam-break waves was conducted. Similarly

to what was discussed by Chanson et al. (2002), through the initial dischargeQ0, an equivalent

impoundment depth d0 was obtained as:

d0 = 9
4

(
Q02

g B2

) 1
3

(4.1)

where g is the gravity constant, B is the channel width andQ0 is the initial discharge released

into the channel. This was calculated as the outflow discharge from the upper reservoir,

obtained as a function of dHR/dt , where HR is the water depth measured by the US0 (Figure

3.2). The graphs obtained for all 3 scenarios (1, 2 and 3 pipes) are shown in Figure 4.1 and the

computed values ofQ0 presented in Table 4.2. Given the non-linear behaviour of the reservoir

emptying process, the chosen values showed good agreement during the initial time, leading

to some error in the latest phases of the test. T ∗ was defined as the dimensionless time after
which the hypothesis of a constant released discharge was no longer satisfied (HR/HR,0 = 0.2).
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Figure 4.1 – Measurements of the water depth in the upper reservoir for the opening of 1, 2
and 3 pipes (d0 = 0.40, 0.63 and 0.82 m respectively).

These initial discharges were also successfully compared with the theoretical values using the

continuity equation:

Q0 = AP ·VP (4.2)

where AP is the pipe surface and VP is the velocity through the pipes, calculated as:

VP =
√
2g (ΔHR−ξΔHR) (4.3)

The head loss at the inlet of the pipes was assumed to be ξ = 0.5. If the friction losses through

the PVCpipes and those in the trajectory between the pipes and the channel inlet are neglected,

then the initial discharge can be obtained as

Q0 = AP ·√2gΔHR (4.4)

and the computed values are presented in Table 4.2.

N. of
pipes

Pipe surface
AP [m2]

Head
[m]

Initial discharge
Q0 [m3/s]

Equivalent impoundment
depth d0 [m]

T ∗

1 0.073 2.1 0.34 0.40 97.1
2 0.146 2.1 0.68 0.63 41.8
3 0.219 2.1 1.03 0.82 27.8

Table 4.2 – Equivalent impoundment depths obtained for the vertical release technique
through the progressive use of 1, 2 and 3 pipes
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For a constant volume in the upper reservoir, a smaller released discharge allowed a longer

time before the sudden reduction took place, resulting into waves with a longer duration.

Higher discharges were associated with shorter durations, and the generated waves were

characterised by an impulse behaviour.

Measurements of the water depth at the channel inlet (x = 0m) were conducted to validate

the comparison with the theory of Ritter (1892). The use of an additional US sensor at x = 0 m

allowed to capture an oscillating behaviour of the flow around h/d0 = 4/9, as shown in Figure

4.2, for the scenarios with 1, 2 and 3 pipes. These water depths are similar to those predicted

by Ritter (1892) at the inlet of an infinite reservoir, thus implying close similarity between

surges/bores produced with the classical dam-break and the vertical release techniques.

Figure 4.2 shows that, after a certain time, the measured flow depth in the channel suddenly

decreased as a consequence of the emptying of the upstream reservoir (Figure 4.1).

Figure 4.2 – Measurements of the water depth h at the channel inlet (x = 0 m) for three dry bed
surges generated with the vertical release technique using 1, 2 and 3 pipes. The values of the
released discharges are presented in Table 4.2.

4.3 Water surface profiles

The main characteristics of dry bed surges and wet bed bores produced with the vertical

release technique are discussed herein. The difference in behaviour between dry bed surges

and wet bed bores was previously presented in Section 2.3. For both types, water surface

profiles were measured using seven US sensors located along the longitudinal axis of the

channel (Figure 3.2). The synchronisation of the acquisition system allowed to combine all

data and obtain a spatio-temporal evolution of the depth profile. In the following sections, the

surges and the bore produced herein are also compared to the dam-break wave propagating

on dry and wed bed, in the light of some relevant literature in the domain.
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4.3.1 Dry bed surges

The propagation of the surge on the dry smooth channel visually appeared as a thin water layer

followed by a constant rise in water depth until a maximum value was reached. Subsequently,

the water level started to decrease. The surge front propagated uniformly and, visually, little to

no aeration was observed, as shown in Figure 4.3.

Figure 4.3 – Dry bed surge resulting from an impoundment depth d0 = 0.82 m

The temporal development of the height of a specific surge (d0 = 0.82, test 4.1) propagating

over a dry bed with a flat smooth surface is presented in non-dimensional form in Figure

4.4. Each curve corresponds to a measurement location, with US 7 being located furthest

downstream. A decrease of the maximum depth was observed as the surge propagated along

the channel. This was attributed to the viscous and diffusive behaviour of the flow. The

similarity of the profiles further downstream the channel (x > 10m) indicated that the surge

was fully developed and that a quasi-uniform condition was reached. The observed surface

fluctuations were secondary waves attributed to the turbulence of the flow. More informations

concerning the surface fluctuating behaviour can be found in Appendix B.3. Some oscillations

of the free surface due to the releasing mechanism were observed in the upstream section of

the channel at 0 < x < 2m. However, they disappeared after the wave travelled a fewmeters

further downstream from the channel inlet.

The longitudinal water surface profiles observed when the surge reached locations x = 13.60

m (US6) and x = 13.85 m (US7) were obtained for multiple dry bed surges with identical initial

release conditions. The seven (7) water depth measurement locations along the channel

(Figure 3.2) allowed to obtain multiple data sets that were compared with the theoretical

parabolic profile of Ritter (1892) in Eq. 4.5. The experimental points are presented in Figure

4.5 using the non-dimensional stream-wise displacement defined as x/[t · (g d0)0.5].

h

d0
= 1
9

·
(
2− x

t ·√g d0

)2
(4.5)

Although some minor scattering was found in the upstream part of the surge due to water
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Figure 4.4 – Evolution of a dry bed surge with impoundment depth d0 = 0.82 m (test 4.1).

surface fluctuations, good agreement between all tests was observed. A marginal variation

occurred in the tip region for scenarios with different d0 which is due to different propagating

velocities.

Figure 4.5 – Longitudinal dimensionless water surface profiles when the wave reached two
measurement locations (US6: x = 13.60 m and US7: x = 13.85 m). Comparison of all generated
surges (d0 = 0.82 m, 0.63 m and 0.40 m) with the theoretical solution of Ritter (1892).

Figure 4.6 focuses on the wave tip region, where the higher density of US sensors allowed

for a more precise investigation of its shape. The experimental points obtained for multiple

surges with different impoundment depths (d0) measured at various channel locations were

comparedwith the theoretical solutions ofWhitham (1955) presented in Eq. 2.12with a friction
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factor f = 0.021, a front celerity ofU = 3.56m/s, for d0 = 0.82m and a deceleration ∂U/∂t = 0.15

m/s2. The latter was calculated from the linear interpolation of the average velocity profiles

obtained from the UVPmeasurements. Good agreement was also found with the theoretical

solution of Chanson (2009) in Eq. 2.14 for the same friction factor. The results are presented in

Figure 4.6, where good agreement between all data and curves can be observed, indicating

consistency with literature. Furthermore, the experimental points were also compared to

prototype points derived from a propagating tsunami-induced inundation advancing inland

during the 2004 Indian Ocean Tsunami (Chanson, 2006). The good agreement observed in

Figure 4.6 indicates that the dry bed surges generated with the vertical release technique are

therefore representative of real tsunamis overland flow observed during such actual events.

Figure 4.6 – Comparison of the measured longitudinal wave profiles with the theoretical
solution of Ritter (1892), Whitham (1955), Chanson (2009) and prototype data Chanson (2006)
in the wave tip region (US7: x = 13.85 m, US6: x = 13.60 m).

4.3.2 Wet bed bores

The difference between the dry bed surges and wet bed bores was pointed out in Figure 1.4b.

Visually, the propagating bore was similar to a turbulent and highly aerated hydraulic jump

(Figure 4.7) with periodic surface fluctuations in the form of lumps being ejected and with

significant air entrainment observed in the front region. Similar observations were presented

by Leng and Chanson (2015) for positive surges and tidal bores. According to Yeh and Mok

(1990), the front roller is formed by the flow separation initiated at the front toe resulting from

the streamline divergence caused by the sudden raise in water depth. Furthermore, the same

authors observed a “generation-advection cycle”, suggesting that eddies formed inside the

roller were later advected in the flow, where a turbulence stretching in the slanting vertical

direction was detected (Yeh and Mok, 1990). Air was entrained behind the bore front for a

length Lr , where air bubbles could be observed, whereas further behindmainly clear water

appeared.
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Figure 4.7 – Wet bed bore with d0 = 0.82 m and initial still water depth h0 = 0.03 m (test 4.8)

The development of a wet bed bore propagating over a still water depth (h0) was investigated

at different locations along the longitudinal axis of the channel and its surface-time history is

presented in Figure 4.8 for a specific case (d0 = 0.82 m, h0 = 0.05 m, test 4.11). A substantial

difference in behaviour when compared with the dry bed surges was observed as bores were

characterized by a sudden rise in water height at the front. For all wet bed bores, a temporal

conservation of maximum depth was observed during the propagation along the channel.

This resulted in a uniform translation of the bore shape.

Figure 4.8 – Time evolution of a bore on wet bed (d0 = 0.82m, h0 = 0.05m, test 4.11) at different
locations along the longitudinal axis of the channel.

The influence of the initial still water depth h0 on the propagating borewas investigated by test-

ing different values ranging from h0 = 0.001 to 0.1 m, where the lower value represented a bore

propagating over a thin water layer remaining from a previous test. Multiple impoundment
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depths d0 were tested, resulting into ratios of 0.0012 < h0/d0 < 0.1219 (Table 4.1). Similarly to

Chanson et al. (2003) and Nouri et al. (2010), results showed that, even for a thin still water

layer, the properties of the propagating bore were different from those propagating over a dry

bed surge. For still water depths larger than 0.03 m, similar profiles were measured, suggesting

that beyond this value h0 had a lesser influence. For decreasing initial still water depths (h0 <

0.03 m), a transitional bore, whose behaviour becamemore similar to that of a dry bed surge

with milder front steepness, was observed (Figure 4.9 ). The shift in arrival time revealed

different bore front celerity magnitudes, depending on the initial still water depths h0.

Figure 4.9 – Bore profiles for waves with different initial still water depths at x = 13.85 m (US7)
for d0 = 0.82 m, all profiles brought down to h − h0 (test 4.1, 4.4, 4.5, 4.8, 4.11 and 4.14).

As previously discussed by Stoker (1957) the temporal evolution of a dam-break bore prop-

agating over a wet bed can be divided into 5 main regions (downstream to up-stream): (0)

the initial still water depth h0; (1) the turbulent bore front; (2) a “plateau”, i.e. a region with

almost constant water height h2; (3) a far-back region where the Ritter (1892) theory for a surge

propagating on dry bed can be applied, and (4) the upstream reservoir where h = d0. Figure

4.10 provides, for all experimental tests, the longitudinal profiles of the water surface (arrival

time is defined when a threshold of h = h0 + 0.01mwas registered at US7, x = 13.85). These are

also successfully compared with Ritter (1892) in the far-back region and with Stoker (1957) for

dam-break waves propagating over wet bed with zero initial velocities in both the upstream

and downstream reservoirs. The good agreement observed in Figure 4.10 proves that, similarly

to what was previously shown for surges, the vertical release technique produces bores which

are comparable to the classical dam-break scenario. The height of the plateau region (h2,

horizontal lines in Figure 4.10) was predicted using the numerical approximation deduced

from the continuity and momentum equations by Chanson et al. (2000) presented in Eq. 2.16

and compared to the experimental points in Figure 4.11. From the same figure, one can notice

that, for all performed tests the ratio h0/d0 was lower than the critical value h0/d0 = 0.138,

implying that the initial dischargeQ0 was in-dependent of the initial water depth, h0.

79



Chapter 4. Wave hydrodynamics

Figure 4.10 – Longitudinal free surface profile for bores with different values of h0 and d0; com-
parison with Ritter (1892) and h2 obtained with Eq. [5] (Chanson et al., 2000); measurements
at US 7 and US 6: (top) d0 = 0.82 m, (middle) d0 = 0.63 m, (bottom) d0 = 0.40 m
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Figure 4.11 – Comparison of the experimental points of the plateau height (h2) with the
approximation proposed by Chanson et al. (2000) in Eq. 2.16.

In Figure 4.12 , for all tests performed on wet bed and for all values of h0 and d0, the shape of

the bore front was normalised using h2 and the roller length Lr and good agreement between

all curves was observed. Given the differences in front celerity and flow depth, the length

of the roller Lr was identified for every profile, using the time taken by the bore to reach the

plateau height h2. The roller length Lr was then derived using the bore celerity as Lr = U · t .

The experimental results were successfully compared to formulae found in literature and the

longitudinal free-surface elevations showed a self-similar profile in the form of Eq. 2.18. For

the present study the best fit was found with an exponent N = 0.482, which is located between

the valueN = 0.441 proposed by Chanson (2011) for hydraulic jumps, andN = 0.540, suggested

by Wang and Chanson (2015).

Figure 4.12 – Normalised bore front profiles for various values of d0 and h0. Comparison
between experimental data for the proposed vertical release technique and the empirical
formulas from Eq. 2.18 by Chanson (2011) andWang and Chanson (2015) for hydraulic jumps.
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4.4 Velocities

Two velocities were analysed in the present study:

1. The surge/bore front celerityU derived from the spatio-temporal advancement of the

wave front as detected by the Ultrasonic distance Sensors (US) in Section 4.4.1

2. The velocity profiles within the wave, measured using the Ultrasonic Velocity Profilers

(UVP) in Section 4.4.2

4.4.1 Front celerity

The average front celerity of the propagating wave was estimated using the measurements of

the depth profiles over time:

U = Δx

Δt
(4.6)

where Δx is the distance between two US sensors and Δt is the difference in the wave front

arrival time. The measurement locations corresponded to the location of the US sensors

shown in Figure 3.2. The average front celerity is considered for each sensor (US2 to US7)

relative to US1, which is located at x = 2 m from the channel inlet. The average front celerities

obtained for dry bed surgeswere compared to formulae commonly used in design codes and

practice (Figure 4.13). These formulae were mostly derived from physical models at laboratory

scale and are presented in the form of Eq. 2.19, where α is a coefficient, whose values are

presented in Table 2.2. This comparison proved that the waves generated with the proposed

vertical release technique had celerity values consistent with other generation mechanisms

described in literature. Their range is confined by values obtained from FEMA55 (2000) (upper

bound) and CCH (2000) (lower bound). The experimental results obtained for the present

study showed the best agreement with α = 1.25.

Figure 4.13 – Comparison of the measured average front celerityU with formulae from litera-
ture for dry bed surges (all values at model scale).
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For the same release conditions,wet bed bores propagated with a slower front celerity when

compared to that of the dry bed surges. This difference in behaviour can clearly be observed

in Figure 1.4b for the case of a tidal bore, where the portion of the wave on dry bed propagated

faster than the portion propagating over wet bed. The front celerityU of a bore moving over

wet bed was a function of the initial still water depth (h0) and small values of h0 corresponded

to velocities close to those observed for the dry bed condition, which represented its upper

limit. The experimental wave front celerityU obtained for the wet bed bores with various

values of h0 and d0 was compared with a theoretical solution derived from the momentum

equation in Eq. 2.20 presented by Stoker (1957) and with the empirical approximation of

Montes (1998), presented by Chanson (2004) in Eq.2.21 as a function of the initial equivalent

impoundment depth d0, the initial still water depth h0 and the plateau height h2 obtained

from Eq. 2.16. Very good agreement between all formulae can be observed in Figure 4.14.

Contrary to dry bed surges, this implies that, for wet bed bores, a precise prediction of the

front celerity can be achieved through Eq. 2.20 and 2.21.

Figure 4.14 – Average bore front celerity (U ) as a function of the initial still water depth
(h0). Experimental results are compared to the momentum equation (Eq. 2.20) and the
approximation by Chanson (2004) in Eq. 2.21 for impoundment depths d0 = 0.82 m (tests 4.4,
4.5, 4.8, 4.11 and 4.14), d0 = 0.63 m (tests 6, 9 and 12), d0 = 0.40 m (tests 4.7, 4.10 and 4.13).

4.4.2 Velocity profiles

Beside the recent contribution of Leng and Chanson (2017b,a), only few studies of the in-wave

velocity profiles are available. For this reason a constant vertical velocity profile is commonly

assumed (Whitham, 1955). Similarly to Meile et al. (2008, 2011), a UVP probe installed in

the channel bottommeasured the internal instantaneous velocity profile of the propagating

surge/bore. Some representative velocity profiles are shown in Figure 4.15, indicating typical

profiles associated with turbulent open channel flows.
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Figure 4.15 – Wave height (h), depth-averaged velocity (Vm) and velocity profiles at specific
times for: (top) test 4.1: dry bed surge d0 = 0.82 m and (bottom) test 4.11: wet bed bore d0 =
0.82 m, h0 = 0.050 m, both measured at US7, x = 13.85 m from channel inlet.
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A well-defined boundary layer, followed by an upper sector where almost constant velocities

were observed are also included. These results confirmed that surges travelled faster than

bores.

For all profiles, the depth-averaged velocity (Vm) was computed as:

Vm = 1
h

∫h

0
vdh (4.7)

where v is the local velocity at depth h. The time-history of Vm in Figure 4.15 is compared

to the wave front celerityU measured with the US sensors. Looking at the depth-averaged

velocity profiles, one can notice that the largest velocities occurred at the wave front, which is

consistent with other reports in literature (Lauber and Hager, 1998). A constant deceleration

occurred behind the wave front for all configurations, until a quasi-steady state was reached:

this was previously reported by Al-Faesly et al. (2012) and Goseberg et al. (2013). Although

the observed deceleration behind the wave front is predicted by continuity equation given

the increase in water depth, the last part of the curve was influenced by the reduction of the

water volume and, implicitly, of the hydraulic head in the upper basin. For this reason, all

data for T > T ∗ were not considered. The lower velocities observed after the passing of the
wave front is in agreement with the findings of Lauber and Hager (1998) and those of Leng

and Chanson (2017b,a). In Figure 4.15, for bores, the experimental data was also compared

with the velocity V2 behind the bore front predicted by the momentum equation presented in

Eq. 2.22 as a function of h0 and h2 (Henderson, 1966; Chanson, 2004).

All individual velocity profiles were normalized using the measured depth-averaged velocity

(Vm) and the wave height of every profile (hi ). Although the profiles show some scattering,

probably attributed to random air bubbles or impurities occurring in the flow, good agreement

between all measured profiles for a dry bed surge and a bet bed bore can be observed in

Figure 4.16. The velocity profiles were successfully compared to Prandtl’s power law with N =

8, obtained with a flow resistance value of f = 0.02 (Chanson, 2004).

h

hi
=

(
v

Vm

)N

(4.8)

Although a logarithmic profile, which takes into account that the velocity reduction close

to the bottom due to the presence of the boundary layer is theoretically more appropriate,

Figure 4.16 suggests that the assumption of a uniform constant velocity profile is a priori

feasible for both dry bed surges and wet bed bores. This can be explained by the significant

vertical exchange of momentum across the wave depth due to turbulence. The estimation

of the average velocity works well in the fully developed region, where the height of the flow

is sufficient to neglect the effect of the boundary layer. In the tip region, the thickness of

the boundary layer is important and Vm is hence slightly under-estimated. The existence

of a thin boundary layer was previously observed by Lauber and Hager (1998) through PIV

tests, however this was small given the range of Reynolds numbers (Re ≈ 105−106). The same
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findings were confirmed by Leng and Chanson (2017b) for surges and bores in both steady

and unsteady flows. Some scattering in velocity measurements is visible in the upper part of

the profiles (Figure 4.16) probably probably attributed to the fluctuations observed on the

flow surface (Wüthrich et al., 2016b). To gain a better insight of the turbulent behaviour of

the surges and bores, the fluctuations were separated from the mean value and analysed per

horizontal flow layer. This resulted in a turbulence intensity value Tu per layer, defined as:

Tu =
√
(v − v)2

x
(4.9)

The derived Tu distribution is also presented in Figure 4.16, showing a constant behaviour

with values Tu < 0.11 for dry bed surges and Tu < 0.13 for wet bed bores. Similar results were

obtained for other surges and bores with different impoundment depths (d0) and initial still

water depths (h0), presented in Appendix D.

Figure 4.16 – Normalised velocity profiles for T · (g/d0)0.5 < 42: (a) dry bed surge (160 profiles,
test 4.1) and (b) wet bed bore, d0 = 0.82 m, h0 = 0.05 m (104 profiles, test 4.11).

The depth-averaged velocities (Vm) for 12 dry bed surges and 19 wet bed bores at twomeasure-

ments locations along the channel (x = 10.20 m and 13.85 m) are presented in dimensionless

form in Figures 4.17 and 4.18, where T = t–t0 is the shifted time, such that T = 0 coincides

with the wave arrival time. The profile plotting was stopped at T = T ∗, when the assumption
of a constant water dischargeQ0 was no longer valid (Figure 4.1). Despite some scattering,

good superposition was observed for all experimental points, for both dry bed surges and wet

bed bores. For dry bed surges, the match between the front celerity and depth-averaged veloc-

ities was good, whereas for bores on wet bed, an under-estimation of the velocity magnitude

was consistently observed in the wave front region [T · (g/d0)0.5 < 15, in Figure 4.18]. In this
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region, Vm was equal to the velocity V2, derived from the momentum equation (Eq. 2.22) as

a function of h0/d0. For both surges and bores the decrease in Vm behind the front was best

approximated by Eq. 4.10, imposing the boundary condition Vm = U at T · (g/d0)0.5 = 0.

Vm
U

= 1− c · tanh
[

b · T

√
g

d0

]
(4.10)

where Vm is the depth-average profile velocity,U is the wave front celerity, T is the shifted

time (T = t–t0), g the gravity constant and d0 is the initial impoundment depth.

Figure 4.17 – Dimensionless depth-averaged velocities (Vm/U ) for 12 dry bed surges with
different impoundment depths at two different locations: US7 (x = 13.85 m) and US2 (x =
10.20 m);

Parameters b and c were derived empirically. For large values of T · (g/d0)0.5, an asymptotic
behaviour toward uniform flow conditions was observed. While the value of c = 0.6 was

constant for both bores and surges (empirical best fit), b was influenced by the equivalent

impoundment depth d0, and the wave height h, as shown in Figure 4.19.

b = 0.0124 ·
(

d0
hmax

−1
)

(4.11a)

b = 0.0124 ·
(

d0
h2− h0

−1
)

(4.11b)

The considered height hmax is the maximumwave height for a dry bed surge (Eq. 4.11a) and

the plateau height h2 for wet bed bores (Eq. 4.11b). For the latter, the value of b is implicitly

influenced by the initial still water depth h0 through the plateau height h2, which is a function

of the ratio h0/d0 (Eq. 2.16, Figure 4.11). However, Figure 4.19 does not reflect that this

dependence is minimal, meaning that the main parameter controlling b is the impoundment
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Figure 4.18 – Dimensionless depth-averaged velocities (Vm/U ) for 19 wet bed bores with
different impoundment depths and initial still water depths at a fixed location (x = 13.85 m)

depth d0 (horizontal trend in Figure 4.19a). These findings showed that, within the tested

range, themain influence of the initial still water depth depth h0 was observed in the reduction

of the wave front celerityU (Section 4.4.1), compared to a dry bed surge with the same release

conditions.

The derivative of Eq. 4.10 with respect to the dimensionless time T · (g/d0)0.5 represents the
evolution of the velocity gradient (V̇ ) over time. The latter is also the expression of the tangent

line to Eq. 4.10 at a specific dimensionless time. As such, it can be expressed analytically as:

V̇ =
d

(
Vm
U

)
d

(
T

√
g

d0

) = −c · b ·
[
1− tanh2

(
b · T

√
g

d0

)]
(4.12)

The behaviour of the velocity gradient V̇ is shown in Figure 4.20 for different impoundment

depths d0, using the average values of b presented in Figure 4.19. One can notice that its

variation is not constant in time and that a greater deceleration is observed in the vicinity

of the wave front, whereas milder values are found in the far-field zone. This implied that

the reduction of Vm is more significant right behind the wave front. The value V̇ computed

at a certain time T , represents the local deceleration of the flow behind the wave front. Its

graphic representation is shown in Figure 4.20, and mathematically it is the tangent to the

continuous line defined by Eq. 4.10 in Figures 4.17 and 4.18. The steeper the tangent the higher

the deceleration of the flow. If one compare Eq. 4.10 to the cinematic expression Vm = U–a · t

in dimensional form, one can derive Eq. 4.13, which allows to calculate the deceleration value
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(a) (b)
Figure 4.19 –Definition of parameter b in Eqs. 4.11: (a) as a function ofh0/d0 and (b) d0/(h−h0)
where h = hmax for surges and h = h2 for bores. Same legend applies to both figures.

Figure 4.20 – Time-variation of the velocity gradient V̇ for three impoundment depths. Average
values of b are used in the computation.

a for a specific wave, knowing its wave front celerityU and the impoundment depth d0

V̇ = a

U

√
d0
g

(4.13)
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4.5 Froude number

The time-development of the Froude number for both dry bed surges and wet bed bores was

calculated using Eq. 4.14:

Fr= Vm,i√
g hi

(4.14)

where Vm is the individual depth-averaged profile velocity, g is the gravity constant and hi is

the wave height of every profile. The values obtained are presented in Figure 4.21, where a

clear difference between bores and surges is shown. The dry bed surge was highly supercritical

in the first part of the propagating wave, followed by an asymptotic decrease toward Fr ≈ 1.
For wet bed bores, a more constant flow-pattern was observed at all times. This difference was

more important as h0 increased. The behaviour of wet bed bores with smaller initial still water

depths h0 became similar to that of the dry bed surges, proving, once again, the transition

pattern between dry and wet bed. These findings are consistent with the video analysis of

Fritz et al. (2012) who estimated Froude number values close to 1 in Kesennuma, during the

2011 Japan Tohoku Tsunami.

(a) Dry bed surge (b) Wet bed bore

Figure 4.21 – Flow Froude number (Fr) computed for: (a) dry bed surges and (b) wet bed bores.
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4.6 Momentum

The momentum associated with the moving wave is an important parameter, as it directly

controls loading produced during the impact against a free-standing structure. The momen-

tum (M) per unit width was calculated as the product of water density (ρ), unit discharge (q)

and the average profile velocity (Vm), resulting into:

M = ρ · q ·Vm = ρ · h ·Vm
2 (4.15)

The results obtained from all tests are shown in Figure 4.22, where a similar pattern between

surges and bores can be observed, including an initial section characterised by an increase

in momentum, followed by a subsequent decrease. Although some scattering is present,

results showed a peak for all configurations around T · (g/d0)0.5 ≈ 10, for which values of
M/ρg d0

2 ≈ 0.20 to 0.25 were obtained. It is important to notice that, herein, the maximum of
the momentum per unit width does not occur either when the velocity is maximal, nor when

the wave height is maximal, as previously indicated by Yeh (2007) and Chock et al. (2012). For

all tested scenarios, the maximummomentum was reached before the maximum flow depth

was observed.

(a) Dry bed surge (b) Wet bed bore

Figure 4.22 – Momentum (M = ρ · h ·Vm2) computed for: (a) dry bed surges and (b) wet bed
bores for various impoundment depths d0 and initial still water depths h0.
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A variable hM is introduced as the ratio between the height at which themaximummomentum

occurs, h(Mmax), and the maximumwave height hmax

hM = h(Mmax)

hmax
(4.16)

The results for both surges and bores are shown in Figure 4.23 . These are compared to Chock

(2015), who showed that the maximummomentum occurs when the water level has reached

67 % of the maximumwave height recorded on the rising limb of the inundating wave. This

approach is, on average, supported by the results for dry bed surges (h0/d0 = 0). However,

discrepancies are observed for the case of wet bed bores. For these, given the sudden water

raise of the water depth, the maximum momentum is observed when the water depth is

approximately 90 % of the maximumwave height. Thus, the chosen value of 67 %may not

be conservative for some cases, as the maximummomentummight occur for higher water

depths.

Figure 4.23 – Dimensionless surge and bore heights whenmaximummomentum occurs and
with comparison with existing guidelines (Chock, 2015)

.
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4.7 Discussion

The present study introduces a novel technique to generate dry bed surges and wet bed bores

in a laboratory environment. If a 1:30 Froude scaling ratio is assumed, surge/bore depths

ranged from 3.9 to 7.8 m (prototype scale), with front celerities between 10.59 and 19.5 m/s.

These values were consistent with field data obtained through post-tsunami field surveys

and observations, in which flow depths of 4 to 7 m were measured in the southern part of

Khao Lak, Thailand, during the 2004 Indian Ocean Tsunami (Dias et al., 2006) and velocities

of up to 10 to 13 m/s near the Sendai Airport during the 2011 Japan Tohoku Tsunami (Jaffe

et al., 2012). The generated surges and bores were similar to those produced with the classical

dam-break technique (Ritter, 1892; Whitham, 1955; Stoker, 1957), a method which is widely

used at present to reproduce inland tsunami flows. Similarities between experimental and

prototype data were also pointed out in the terms of shape at the surge front tip. Furthermore,

similar Froude numbers between prototype and real tsunami events were presented. Thus,

the authors conclude that the vertical released technique generates surges and bores which

are consistent with other methods presented in literature and that this mechanism is well

suited to simulate tsunami-like waves in laboratories.

4.8 Summary

The diversity of wave transformation and subsequent inland propagation has led researchers

to develop several techniques to generate such tsunami-like flows in laboratories. This Chapter

focused on the generation of long-waves (surges and bores) through the vertical release of

a stored water volume. Both surges and bores produced with this vertical release technique

were then analysed in terms of their hydrodynamic behaviour and characteristics, drawing

the following conclusions:

1. A comparison with existing literature for the classical dam-break generation mecha-

nisms showed good agreement between the dry bed surges generated by this vertical

release method and the analytical solution of Ritter (1892) and Whitham (1955). For wet

bed bores, the generated water surface profiles agreed well with the theory of Stoker

(1957).

2. The values of the wave front celerity were successfully compared to those found in the

existing literature and the current design guidelines and codes. To compute surge front

celerity, a coefficient α = 1.25 was suggested, leading to

U = 1.25 ·
√

g d0 (4.17)

For wet bed bores, very good agreement was found with the momentum equation (Eq.

2.20) and the numerical approximation of Chanson (2004). The influence of the initial

impoundment depth h0 was mostly observed in the wave front celerityU , whereas for

bores propagating over smaller initial still water depths, h0 had a behaviour similar to

dry bed surges.
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3. The use of UVP probes allowed to measure velocity profiles of the propagating wave

behind the wave front, showing velocity profiles close to those observed in open channel

flows. Although the normalised profiles indicated good agreement with Prandtl’s expo-

nential law, experimental results proved that the common assumption of a constant

velocity profile over depth is acceptable. Flow deceleration was observed behind the

front for all scenarios and an expression to predict the depth-averaged velocity at a

certain time behind the front was proposed in Eq. 4.10. The latter did not directly

depend on the initial still water depth h0, but rather on the equivalent impoundment

depth d0.

4. Dry bed surges exhibited higher Froude numbers in thewave tip region, followed by their

rapid decrease, whereas wet bed bores showed more constant Froude numbers over

time. All tests had a similar shape for the momentum profiles with maxima occurring

around T · (g/d0)0.5 ≈ 10, which did not correspond to the maximum wave height,
nor to the maximum flow velocity. The maximummomentum occurred at 65-70% of

the maximum wave height for dry bed surges and 90% for wet bed bores, something

consistent with the latest standard recommendations (Chock, 2015).
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5.1 Overview

Tsunamis, landslide-generated waves and floods due to dam failures are rare, but highly

destructive phenomena, associated with extreme loading on infrastructure. Recent events

showed that specific measures must be taken to guarantee safety of both people and the

built environment. This chapter focuses on the forces and moments exerted on free-standing

building-like structures which are induced by both surges and bores. The hydrodynamic

impact was characterised by high splashes for both surges and bores, subsequently followed

by a quasi-steady flow around the structure. For dry bed surges, the time-history of the

horizontal force was shown to be proportional to the momentum flux per unit width. For

wet bed bores, an attenuation of the peak force due to the presence of an aerated front was

consistently observed and the introduction of a force reduction coefficient was necessary

to achieve a realistic force estimation. Additional force analysis in terms of peak time, wave

height at maximum force and impulse also pointed out some key differences between forces

exerted by dry bed surges and wet bed bores. The occurrence of the maximum tilting moment

on the building was shown to coincide with the maximum horizontal force and an evaluation

of the cantilever arm was therefore possible.

The main objectives of this chapter are the following:

1. To apply the results presented inChapter 4, characterizingwave velocity andmomentum

to determine the load conditions.

2. To provide a set of equations to define the magnitude of the horizontal force induced by

the wave on the building.

3. To determine the tilting moment generated by the force and its application point.

4. To present a detailed analysis for horizontal forces, including the impulse transferred

from the wave to the building and the wave height at which the peak force occurs.

This Chapter is based on the scientific article "Experimental study on the hydrodynamic impact of tsunami-like
waves against impervious free-standing buildings" by D. Wüthrich, M. Pfister, I. Nistor and A.J. Schleiss under
revision in Coastal Engineering Journal. The experimental work and the analysis presented hereafter is original
and was performed by the author.
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For this, 45 tests were carried out considering multiple waves with different hydrodynamic

properties (Chapter 4). The experimental program is presented in Table 5.1. The maximum

recorded wave height hmax was 0.181 m for the dry bed surge and 0.259 m for the wet bed

bore, with a front celerityU ranging from 1.93 to 3.55 m/s. All parameters concerning the

wave without the presence of the buildings were obtained as average values of minimum 3

tests (Appendix D). For a scaling of 1:30, these values corresponded to a prototype wave height

of 5.5 to 8 m and a prototype celerity of 10.7 to 19.4 m/s, values which are consistent with

reported field observations (Chock et al., 2012; Fritz et al., 2012; Jaffe et al., 2012).

Impoundment
depth d0 [m]

Initial water
depth h0 [m]

Celerity
U [m/s]

hmax
[m]

h0/hmax Rep.

Dry 0.82 0.00 3.556 0.181 0 4 test 5.1
0.63 0.00 3.114 0.162 0 3 test 5.2
0.40 0.00 2.347 0.132 0 4 test 5.3

Wet 0.82 0.01 3.074 0.191 0.052 4 test 5.4
0.03 2.810 0.231 0.129 4 test 5.5
0.05 2.755 0.259 0.193 4 test 5.6

0.63 0.01 2.702 0.167 0.058 3 test 5.7
0.03 2.518 0.201 0.146 3 test 5.8
0.05 2.437 0.224 0.223 3 test 5.9

0.40 0.01 2.104 0.135 0.072 5 test 5.10
0.03 1.971 0.159 0.185 4 test 5.11
0.05 1.933 0.177 0.280 4 test 5.12

Max 0.100 0.05 3.556 0.259 0.280 5 -
Min 0.000 0.01 1.933 0.132 0 3 -

Table 5.1 – Experimental program summarizing the hydrodynamic properties of the standard
waves used in this chapter.

5.2 Visual observations

Visual observations proved that the difference between surges and bores discussed in Section

4.3 resulted into different behaviours during thewave impact with an impervious free-standing

building. Nevertheless, for both cases, two main phases were observed:

1. an initial impact of the wave front, followed by

2. a quasi-steady hydrodynamic phase, during which the main body of the wave flowed

around the building.
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Figure 5.1 – Wave impact against an impervious buildings without overflow for a dry bed surge
(d0 = 0.82 m, test 5.1) and a wet bed bore (d0 = 0.82 m, h0 = 0.05 m, test 5.6)

These two phases are shown in Figure 5.1, where the time evolution of the impact is presented

through pictures taken at T · (g/d0)0.5 ≈ 0 s (impact phase, with highest run-up) and T ·
(g/d0)0.5 ≈ 14 and 28 (post-impact hydrodynamic phase) for both surges and bores. Similar
qualitative results were previously presented byWüthrich et al. (2016c) for the case of buildings

toppled by overflow.
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During the initial impact phase, the wave front hit the building’s upstream side and a vertical

run-up heightH was observed. As shown in Figure 5.1a-d, for both the case of bores and surges,

the impact phase was characterized by significant splashes and turbulent air entrainment

at the upstream side of the building. Due to the presence of the building, the run-up and

splashes fell onto the incoming wave, producing a quasi-steady roller on the upstream side.

This roller is characterized by high turbulence and substantial air entrainment. The formation

of a roller in the upstream side is shown in Figure 5.1e-f and it marked the transition between

the impact phase and the quasi-steady hydrodynamic one. As shown in Figure 5.1e-g and f-h,

a visual assessment indicated that dry bed surges presented higher air entrainment compared

to wet bed bores. Dry bed surges were also characterized by a pulsating flow behaviour

which is attributed to the interaction between the high speed incoming wave and the return

motion of the vertical run-up. For all test cases, no overflow of the building was seen. For

all configurations, intense Von Kármán vortices in the downstream side of the building were

observed (Figure 5.1).

The Ultrasonic Sensor US7, located 0.15 m upstream of the building (Figure 3.2), measured

the time history of the vertical run up heights H , providing a more quantitative description

of the previously discussed visual observations. The results are shown in Figure 5.2 for both

a dry bed surge and a wet bed bore. These are compared with the wave profile h measured

without the building. Results showed similar maximum values Hmax corresponding to ap-

proximately 4 times the maximum wave height without the building hmax. If compared to

bores, the measurements for the dry bed surge showed amore fluctuating behaviour and a

constant decrease. On the contrary, wet bed bores showed a sudden reduction in water depth

immediately following the run-up splash provoked by the initial impact.

(a) Dry bed surge (b) Wet bed bore

Figure 5.2 – Vertical run-up heights H (measured at US 7) for: (a) dry bed surge, d0 = 0.82 m,
hmax = 0.181 m, test 5.1; (b) wet bed bore, d0 = 0.82 m, h0 = 0.03 m, hmax = 0.232 m, test 5.5.
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5.3 Impact forces

The buildings were simulated using 0.30×0.30 m aluminium plates, assembled on the force
plate to record all forces and moments induced by the propagating wave along the three axis

of coordinates. The time histories of forces andmoments were sampled with an acquisition

frequency of 1 kHz. An example of the raw data recorded for forces and moments induced by

a dry bed surge as well as a wet bed bore are presented in Figure 5.3, pointing out some key

differences between the two waves. Similar behaviour was previously observed by Ramsden

(1996) and Nouri et al. (2010).

(a) Dry bed surge (b) Wet bed bore

Figure 5.3 – Time histories of forces andmoments measured with the Force Plate, for: (a) dry
bed surge (d0 = 0.63 m, test 5.2) and (b) wet bed bore (d0 = 0.63 m, h0 = 0.03 m, test 5.8).
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In the present study, for the same release conditions (d0 = 0.63 m), similar force maxima were

observed for both the dry bed surge and the wet bed bore. Bores were characterized by a

sudden rise in horizontal force Fx and momentMy, whereas surges were associated with a

more gradual rise in time. These findings are in agreement with those of Arnason et al. (2009)

and Nouri et al. (2010). The magnitude of the forces andmoments in the transversal (Fy,Mx)

and vertical direction (Fz,Mz) was negligible compared to those recorded in the flow direction

(Fx, My), proving the bi-dimensionality of the phenomenon. For this reason, the values of

Fy, Fz, Mx and Mz are hereafter neglected and therefore not discussed herein. Given the

differences between the force time-history, the two waves are hereafter considered separately:

the dry bed surge is described in Section 5.3.1 while the wet bed bore is described in Section

5.3.2.

5.3.1 Dry bed surges

The estimation of the horizontal force produced by a flow moving against an obstacle can

be calculated using the approach proposed by Morison et al. (1950). These equations take

into account the hydrodynamic (or drag) force component and the inertia component. For

tsunamis, due to their long periods, the inertia component becomes important only at the

leading edge of the incoming wave, when the wave impacts the building: this is often termed

surge force. The quasi-steady hydrodynamic component in the x-direction, Fx,D can be

computed as:

Fx,D = 1
2
ρCDB · (hv2

) = 1
2
ρCDB · M (5.1)

where ρ is the water density (ρ = 1000 kg/m3), B is the building width, h is the flow depth

and v is the flow velocity. M is the wave momentum flux per unit width which is obtained

through a combination of wave height and flow velocity (M = hv2). The drag coefficientCD

depends on the obstacle geometry and on the flow conditions. More details regarding the drag

coefficient can be found in Blevins (1984).

During these experimental tests, in agreement with what was visually observed after the initial

impact, the flow became quasi-steady due to the surge’s long period. Therefore, the estimation

of the force could be obtained through Eq. 5.1. It is important to point out that the maximum

force Fx,max does not occur when both h and v are maximum, but when the momentum flux

per unit width (M = hv2) is maximum, i.e. Mmax = (hv2)max �= hmaxv2max (Yeh et al., 1996; Yeh,

2007).

Some diagrams for the dry bed surge are presented in Figure 5.3 and Figure 5.4, in which one

can notice a constant increase of the force until a quasi-constant value is reached, correspond-

ing to the quasi-steady hydrodynamic phase. Such behaviour is consistent with previous

studies, including, among others, Ramsden (1996), Arnason et al. (2009), Lukkunaprasit et al.

(2009b) and Nouri et al. (2010). In the present case, no force overshot due to surge component

was observed during the initial impact, as discussed by Yeh (2007), Arnason et al. (2009) and
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Foster et al. (2017). This is probably due to the mild slope of the incoming surge. It is therefore

reasonable to conclude that, for a dry bed surge, the inertia component (surge force) can be

neglected.

A combination of hydrostatic and hydrodynamic components was suggested by Cross (1967) to

compute the total force resulting from wave impact (Section 5.3.4). Thus, this study confirms

that the actual measured force Fx was less than the one computed using the run-up height

H , assuming hydrostatic conditions (Fx < Fx,H), something which is in agreement findings

by Ramsden (1996), Arnason et al. (2009) and Nouri et al. (2010). Furthermore, as shown in

Figure 5.4, the measured values were also higher than the values computed using the wave

height h in the absence of the building model (Fx > Fx,h).

In addition, for such rapidly varied flows, the hydrostatic and hydrodynamic components

cannot be independently identified and any assumption of hydrostatic pressure repartition

remains dubious. For these reasons, similarly to Arnason et al. (2009), a resistance coefficient

CR was used, instead of a “classical” drag coefficient, CD. This approach allows to take into

account the hydrostatic pressure difference between the back and the front sides of the

building, which may contribute a portion of the measured impact force. As recommended by

most design guidelines or by the new ASCE 7 Chapter 6, a value ofCR = 2 is initially chosen;

however, more considerations are presented in Section 5.3.5 and in Appendix C.

Figure 5.4 – Comparison of tests with hydrostatic and hydrodynamic approach for a dry bed
surge with impoundment depth d0 = 0.63 m (test 5.2). Fx is the measured horizontal force,
Fx,H is the hydrostatic force computed using the run-up height H (with the building), Fx,h is
the hydrostatic force computed using the measured wave height h(t) without the building,
and Fx,D is the hydrodynamic force computed using Eq. 5.2.
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The presence of the building reduced the wave velocity in the upstream reach of the channel,

producing a backwater effect. Thus, the use of the wave front celerityU in the computation

of wave momentumM , was not representative and such approachmight lead to an overes-

timation of the resulting load. For this reason, Shafiei et al. (2016) suggested a reduction of

the wave front velocityU , using the Bernoulli equation. Alternatively, the results presented in

Chapter 4 allowed to quantify the decelerating behaviour of the wave velocity behind the wave

front (Vm) and a more precise estimation ofM in time was thus obtained. As such, a modified

version of Eq. 5.1 is:

Fx,D = 1
2
ρCRB · M = 1

2
ρCRB · (hV 2m

)
(5.2)

where h is the wave height measured without the building, B the building width and Vm the

depth-averaged wave velocity, calculated using Eq. 4.10. The good agreement (Figure 5.4)

proved that the horizontal force Fx was proportional to the momentum flux per unit width

(M = hV 2m). Eq. 5.2 was tested for three dry bed surges with three different impoundment

depths d0, as shown in Figure 5.5.

Excellent agreement is observed for the configurations with shorter wave periods (impulsive

type), whereas for waves with longer periods, a minor underestimation of the force is observed

for larger times. This underestimation of the measured force Fx was particularly observed in

the post-peak force region for T · (g/d0)0.5 > 40 (Figure 5.5). This is because all parameters in
Eq. 4.10 refer to the wave properties measured without the building, whose flow conditions

were associated with a shorter flow duration, given the absence of the building in the flume.

(a) d0 = 0.40 m (test 5.3) (b) d0 = 0.63 m (test 5.2) (c) d0 = 0.82 m (test 5.1)

Figure 5.5 – Comparison of the measured force (Fx, black) with the values obtained using the
momentum equation (Eq. 5.2) for three dry bed surges (Fx,D, red), (a) to (c). All forces are
normalised using the hydrostatic force Fx,h,max corresponding to the maximumwave height
hmax without the building
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5.3.2 Wet bed bores

A dam-break wave propagating on an initial still water depth h0 is commonly called a bore. As

discussed in Section 4.3, its hydrodynamic properties are different to those of surges. A bore

has a steep turbulent aerated front, similar to a translating hydraulic jump (Figure 4.7). The

general behaviour of the forces induced by wet bed bores is shown in Figure 5.3 and some key

differences with the dry bed surges were pointed out at the beginning of Section 5.3. In the

present research, an initial force overshot was not constantly recorded and, typical of wet bed

bores, the increase in horizontal force Fx was proportional to the increase in water depth. This

is in agreement with the observations made by Shafiei et al. (2016).

For the estimation of the force acting on the building, the procedure presented in Section

5.3.1 for the dry bed surge is here applied to wet bed bores. Nevertheless, it was noted that the

estimation of the horizontal force Fx, through Eq. 5.2 constantly overestimated the measured

value by some 20 to 50%, as shown in Figure 5.6b and Figure 5.8. Probably, this behaviour can

be attributed to the complexity of the turbulent bore front and its aerated profile. Section 4.4.2

pointed out a discontinuity between the front celerityU and the depth-averaged velocities

values Vm behind the wave front computed with Eq. 4.10 (Figure 5.6a). The authors initially

attributed this to performances of the UVP probes in aerated flows. However, more recent

developments have shown that such discontinuity in velocity values may be a consequence of

the presence of the recirculating roller, associated with high energy losses. In addition, the

presence of an aerated roller with pulsating and compressible behaviour might be partially

responsible for the attenuation of the impact forces.

(a) (b)

Figure 5.6 – Wet bed bore with impoundment depth d0 = 0.82 m and initial still water depth
h0 = 0.05 m (test 5.6): (a) model suggested to take into account the wet bed reduction; (b)
example of force estimation with and without the wet bed bore reduction coefficient χ.
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For all these reasons, a wet bed force reduction coefficient χwas introduced (Figure 5.6) and a

maximumvalue ofVm/U =χwas imposed, in agreementwith the experimentalmeasurements

in Section 4.4.2. The values of the coefficient χwere extracted from experimental data for all

bores at T = τmax and presented in Figure 5.7. Two approaches are herein proposed:

1. In Figure 5.7a the values of χ are obtained as the best experimental fit, described by the

empirical relationship in Eq. 5.3 with the coefficients 0.3 and 4.7 (R2 = 0.95)

χ= 1−0.3 · tanh
(
4.7 · h0

hmax

)
(5.3)

2. In Figure 5.7b, the values of χ are obtained through the velocity V2 behind the bore front

predicted by the momentum equation presented in Eq. 2.22 as a function of h0 and h2

χ= V2
U

= 1− h0
h2

= 1−1.073
(

h0
d0

)0.629
(5.4)

Regardless of the approach chosen, similar values of the reduction coefficient χ are obtained.

(a) (b)

Figure 5.7 – Wet bed bore coefficient χ for all tested scenarios: (a) experimental approach, (b)
semi-theoretical approach

Thus, the modified momentum flux per unit width,M∗, taking into account force reduction
coefficient, was computed using:

M∗(t )= h(t ) ·{min[
χU ;Vm(t )

]}2 (5.5)

where h(t ) is the time-development of the wave profile without the building, χ the reduction

coefficient, U the bore front celerity and Vm the depth-averaged profile velocity, defined

through the expression presented in Eq. 4.10. For dry bed surges a coefficient χ = 1 can be

assumed.
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In the computation of the total horizontal force if the wet bed force reduction coefficient χ

and the modified momentumM∗ are introduced, then Eq. 5.2 leads to:

Fx,D = 1
2
ρCRB · M∗ = 1

2
ρCRBh ·{min[

χU ;Vm(t )
]}2 (5.6)

and the prediction of the horizontal force Fx,D using Eq. 5.6 is presented in Figure 5.8 for three

bores with different initial still water depth.

(a) h0 = 0.01 m (test 5.4) (b) h0 = 0.03 m (test 5.5) (c) h0 = 0.05 m (test 5.6)

Figure 5.8 – Comparison of the measured horizontal force with the values obtained from
the momentum equation for three wet bed bores with impoundment depth d0 = 0.82m and
various initial still water depths h0. (black: measured value; red: predicted with Eq. 5.6; dotted:
predicted with χ = 1, Eq. 5.2)

5.3.3 Maximum forces

For all considered configurations (bores + surges), the experimental force maxima Fx,max were

extracted and compared to the values predicted using Eq. 5.6, Fx,D,max. These were shown to

be proportional to the maximummomentum flux per unit widthM∗
max, resulting in Eq. 5.7.

Results showed a good agreement for all scenarios. Accordingly, for the present case, Eq. 5.6

and Eq. 5.7 provide a good estimation of the maximum impact load for both surges and bores

on impervious buildings.

Fx,D,max = 1
2
ρCRB · M∗

max (5.7)
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Figure 5.9 – Comparison of maximummeasured forces (Fx,max) and predicted values (Fx,D,max)
obtained with 5.7 (R2 = 0.953).

5.3.4 Comparison with previous studies

The experimental values obtained in the present study were also compared with formulae and

methodologies found in literature (Table 2.3). Results are plotted in Figure 5.10.

1. Cross (1967) suggests that the horizontal force is the sum of both hydrostatic and

hydrodynamic components, as shown in Eq. 2.26.

2. The Japanese design guideline (SMBTR), based on the work of Asakura et al. (2000) and

Okada et al. (2005) suggests to use 2.31, resulting into a force magnitude equal to nine

times the hydrostatic force magnitude. Yeh et al. (2005) commented on the validity of

this equation, indicating that this leads “excessively overestimated values”.

3. Fujima et al. (2009) propose an expression similar to Asakura et al. (2000), but based on

the maximum inundation depth, leading to Eq. 2.37.

4. OCADI (2009) of the Ports and Harbors Bureau of Japan, proposes a triangular pressure

distribution above the still water level with height 3h and base pressure given by 2.2ρg h.

This base pressure is maintained constant throughout the depth of still water h0. The

resulting force on the wall is given by Eq. 2.38.

5. ASCE 7 Chapter 6 (Hydrodynamic formula 6.10-1) represents a conservative alternative

to more detailed tsunami loading analysis. The maximum hydrodynamic loads are

assumed to occur for the Load Case 2, when h = 2/3hmax (Section 5.4.2), assuming a

conservative Froude number of


2. The suggested equations were previously presented

in Eqs. 2.43 and 2.45

6. ASCE 7 Chapter 6 suggests to use the expression by Robertson et al. (2013) in Eq. 2.39,

whose validity was proved during the 2011 Japan tsunami by Chock et al. (2012).

7. Foster et al. (2017) suggested to use Eq. 2.40 to predict the force, as a function of a

parameter λF, defined in Eq. 2.41, taking into account the effect the blockage ratio.
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All results are plotted in Figure 5.10a for dry bed surges and in Figure 5.10b for wet bed bores.

One can observe that most existing formulae over-predict the herein measured forces. For dry

bed surges, relatively good agreement was found using Eq. 2.38 (OCADI, 2009) and Foster et al.

(2017), whereas for wet bed bores, the best agreement is provided by ASCE 7 (C6.10.1.4).

It is important to point out that most studies, including Ramsden (1996), Santo and Robertson

(2010) and Robertson et al. (2013), were carried out for walls with blockage ratios β =W /B

= 1. The difference in resulting forces shown in Figure 5.10 suggests that in reality this is a

3D phenomenon and that blockage ratio plays an important role in the computation of the

total force. Nevertheless, neglecting the effect of the blockage ratio in the computation of the

horizontal load is a conservative approach in the design process.

(a) Dry bed surges (b) Wet bed bores

Figure 5.10 – Comparison of measured experimental horizontal force values (Fx) with those
calculated using existing formulas in literature (Fx,D).

5.3.5 Resistance coefficient

As discussed in Section 5.3, during the impact phase, various components of the total force

can be identified, including an initial surge force, hydrodynamic (or drag) and hydrostatic

components. Since the process is highly unsteady and rapidly varied, these components are

difficult to isolate and estimate. Thus, similarly to Gupta and Goyal (1975) and Arnason et al.

(2009), a resistance coefficient parameterCR, taking into account the surge, hydrostatic and

hydrodynamic components was used. It is defined as:

CR = 2 · Fx
ρBhV 2m

= 2 · Fx
ρB M∗ (5.8)

107



Chapter 5. Impact on impervious buildings

where ρ is the fluid density (herein ρ = 1000 kg/m3), B is the building width, Fx is themeasured

horizontal force and h and Vm are the wave height and depth-averaged flow velocity, respec-

tively, measured for the free flow condition without the presence of the building. Asmentioned

in Section 5.3.1, the definition presented in Eq. 5.8 is similar to the drag coefficient CD for

the computation of the hydrostatic component; however, the resistance coefficient CR is a

function of time rather than a constant value. CR represents the value that would be required

to obtain the exact measured value Fx, given the height h and velocity Vm of the wave without

the presence of the building. IfCR > 2, then the force is underestimated, whereas forCR < 2 the

force is overestimated. For longer times, an increase in the value ofCR is observed especially

for dry bed surges, suggesting an underestimation of the horizontal force in the quasi-steady

hydrodynamic phase when using the conventional value ofCR = 2 (Figure 5.5a). This is due to

the different wave periods between the wave without the building and the loading process. In

Figure 5.11 the chosen normalisation T /τmax allows to express the value ofCR at the moment

of the force peak (T /τmax = 1). Good agreement is observed for all scenarios and a constant

value ofCR = 2, suggested by numerous design codes including FEMA55 (2000), CCH (2000)

and ASCE7-Chapter 6, seems appropriate. These findings are confirmed in Figure 5.12, where

values ofCR at T /τmax = 1 are presented for various surges and bores tested. For wet bed bores,

the independence of the resistance coefficient from the initial still water depth h0 is shown.

Figure 5.11 – Time history of the resistance coefficientCR during the wave impact (T = τmax)
for dry bed surges and wet bed bores
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Figure 5.12 – Resistance coefficientCR determined at τmax for both bores and surges

5.4 Horizontal force analysis

An in-depth analysis of the measured horizontal force in the x-direction was conducted. The

main parameters discussed are: (Figure 5.13)

• Time to peak, τmax, corresponding to the time from wave arrival (t0) to the force peak.

• Wave height atmaximum force, hM, at which themaximumhorizontal force ismeasured

• Impulse, I , transferred from the wave to the building.

Figure 5.13 – Definition sketch of parameters used in the force analysis
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5.4.1 Time to peak

The “time to peak”, τmax, represents the time interval between the initial impact (T = t − t0 = 0)
and the maximum horizontal force Fx,max measured by the Force Plate. The values of τmax
obtained for all tests are presented in Figure 5.14 as a function of h0/hmax, where h0/hmax
= 0 represents the dry bed surges and h0/hmax > 0 the wet bed bores. Results showed larger

normalised values of τmax for dry bed surges (h0/hmax), ranging from 5 < τmax · (g/d0)0.5 < 35,
whereas for wet bed bores (h0/hmax > 0), almost all maxima occurred instantaneously for 0 <

τmax < 5. These observations clearly confirmed a substantial difference between surges and

bores, proving thus that maximum force on wet bed values occur before those recorded in

the dry bed scenario. This therefore resulted into steeper average gradients dF/dt and into a

more severe loading condition.

Figure 5.14 – Experimental values of the time to peak (τmax) for both dry bed surges (h0/hmax
= 0) and wet bed bores (h0/hmax > 0) with various impoundment depths and initial still water
depths.

5.4.2 Wave height at maximum force

An important parameter in the design of resilient buildings is the wave height h at which the

maximum force Fx,max occurs (T = τmax), normalised with the maximum wave height hmax
without the building.

hM = h(T = τmax)

hmax
(5.9)
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The results obtained from the tests are presented in Figure 5.15. These are also compared to the

design guidelines of the ASCE 7 Chapter 6, according to which the maximum hydrodynamic

load occurs at the moment when the 2/3 of the maximum inundation depth is reached, i.e.

when h = hM = 2/3hmax.

Results showed relatively good agreement with ASCE 7 guidelines for dry bed surges (h0/hmax
= 0) with an average value of hM = 0.71 m. However, for wet bed bores with increasing values

of h0/hmax, the maximum forces occurs at a higher depth, due to the steeper front profiles

previously shown in Section 4.3.2. Thus, for bores, the choice of hM = 2/3 becomes less

conservative. Since the maximum force is proportional to the maximum momentum, as

shown in Eq. 5.1, these results are consistent with the findings presented in Section 4.6 for the

maximummomentum flux per unit widthM .

Figure 5.15 – Wave height at maximum force hM at which the maximum force Fx,max occurs.
Experimental data and comparison with design guidelines of the ASCE7 - Chapter 6.

5.4.3 Impulse

The product of force F and time t is known as Impulse I . For the present case, the total impulse

Itot is the integral of the force Fx over time, until the upper limit T = 100 · (d0/g )0.5 is reached.
This value was chosen by the author as it represented the minimum time that allowed to

include all loading processes for all waves. This is expressed as:

Itot =
∫100√ d0

g

0
Fx(T )dT (5.10)
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This quantity also represents the area of the surface below the curve, as shown in Figure

5.13. Given Newton’s 2nd Law (F = m · a = m ·ΔV /Δt), the impulse can be expressed as

I = F ·Δt = m ·ΔV , corresponding to the change in momentum. The impulse experienced by

the building Itot equals therefore the exchange in momentum with the incoming wave. To

better define the amount of impulse that is transferred to the building before the peak force

occurs, similarly to Bullock et al. (2007), a parameter, Ipeak , is defined as the integral between

0< T < τmax. The latter represents the area of the surface below the curve up to the moment

when Fx,max is recorded (Figure 5.13).

Ipeak =
∫τmax

0
Fx(T )dT (5.11)

(a) (b)

Figure 5.16 – Values of: (a) total and peak impuse; (b) I ∗ = Ipeak/Itot computed for dry bed
surges (h0/hmax) and wet bed bores.

Both the total impulse and the peak impulse calculated for the tests are shown in Figure 5.16a.

These results suggest that the Impulse transferred to the building before the occurrence of

the force peak, is only a small portion of the total impulse. A parameter I ∗ is defined as the
ratio between the peak impulse Ipeak and the total impulse Itot, corresponding the portion of

impulse that is transferred to the building before the maximum force occurs.

I ∗ = Ipeak
Itot

(5.12)

Its values for the current experimental tests are presented in Figure 5.16b. A different behaviour

can be observed between surges (h0/hmax = 0) and bores (h0/hmax > 0). In fact, for bores, less
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than 10-15 % of the total impulse is transferred to the building before the peak. In contrast, for

surges this can reach 30-35 %. This difference is also a consequence of the time to peak force

values which were previously discussed in Section 5.4.1 and it is in agreement with Bullock

et al. (2007), for whom Ipeak < 0.3 Itot.

An estimation of the total impulse for all tested scenarios, employing Eq. 5.6, can be obtained

through the following expression:

Itot,D =
∫100√ d0

g

0
Fx,D(T )dT = 1

2
ρCRB ·

∫100√ d0
g

0
M∗dT (5.13)

where ρ is the water density,CR is the resistance coefficient assumed constant in time (CR = 2),

B is the building width andM∗ is the modifiedmomentum flux (Eq. 5.5). The results obtained
are shown in Figure 5.17 , where a good agreement betweenmeasured and predicted values

can be observed (R2 = 0.86). This is in agreement with the findings of Bullock et al. (2007),

according to which a linear relationship between total momentum flux and impulse were

found.

Figure 5.17 – Total impulse values measured (Itot) and predicted values (Itot,D) with Eq. 5.13.

5.5 Moment and cantilever arm

Any force applied outside of the centroid of an area produces a moment that is directly

proportional to its application distance, called cantilever arm Lz. In this research, as pointed

out in Section 5.3, only moments in the transversal direction (My) were considered. Since their

magnitude was too low to be considered relevant,Mx andMz were neglected, as previously
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shown in Figure 5.3. The temporal evolution of the cantilever arm can be computed as:

Lz(t )=
My(t )

Fx(t )
(5.14)

Despite some small scattering, results showed that overall the maximummomentMy,max oc-

curred at the same time as themaximumhorizontal force Fx,max, as shown in Figure 5.18a. The

cantilever arm corresponds to the application point of the horizontal force, whose magnitude

was identified in Section 5.3. As shown in Figure 3.2, the origin of the coordinates (Lz = 0)

coincided with the channel bottom. Given the simultaneous occurrence of Fx,max andMy,max ,

as shown in Figure 5.18a, the value of Lz at T = τmax can be obtained using Eq. 5.15. The values

are normalised with the maximumwave height without the building hmax. The cantilever arm

of all experimental points at T = τmax, for both dry bed surges and wet bed bore, is presented

in Figure 5.18b.

(Lz)τmax = My,max
Fx,max

(5.15)

These results showed that, for all tested scenarios, the cantilever arm had a fairly constant

magnitude, ranging between 0.90 and 1.35 hmax, with an average value of 1.15 hmax, where

hmax is the wave height for the case without building.

(a) Time to peak for forces and moments (b) Cantilever arm

Figure 5.18 – (a) Time of occurrence of maximum horizontal force Fx and maximummoment
My; (b) Cantilever arm Lz computed for both dry bed surges and wet bed bores for T = τmax
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It could therefore be assumed that the maximum horizontal force defined in Section 5.3,

was applied at a height that corresponded to 1.15 of the maximumwave height without the

presence of the building, something which leads to Eq. 5.16:

My,D,max = Fx,D,max · 1.15hmax (5.16)

The prediction of the maximummomentMy,D,max through Eq. 5.16 is compared to the exper-

imental data in Figure 5.19 : good agreement for all scenarios can be observed (R2 = 0.870),

thus proving its validity.

Figure 5.19 – Comparison of experimental momentsMy,max with the valuesMy,D,max predicted
through Eq. 5.16.

5.6 Summary

Post-tsunami forensic engineering field surveys have shown that specific building design can

limit damages to vital infrastructures. In particular, the construction of vertical evacuation

shelters can rescue numerous people. For this, an inner knowledge of the loading process is

necessary and some experimental studies and few design guidelines are available to engineers.

However, some disagreement with measured data and an overestimation of the forces still

exists, especially for free-standing building-like structures.

This Chapter focuses on the impact loading process of bores and surges generated through

the vertical release technique, on free-standing structures. For all scenarios, this impact was

characterized by high splashes and significant turbulent air entrainment on the upstream

side of the building. Following the initial impact, quasi-steady hydrodynamic flow conditions
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around the building were observed. During the hydrodynamic loading process, only the forces

and moments in the stream-wise direction (Fx,My) were considered, because the forces and

moments in transversal and vertical directions were found to be too small to be relevant. The

following conclusions can be drawn:

1. For dry bed surges, the horizontal force Fx was proportional to the momentum flux per

unit widthM = hV 2m, where h and Vm are the height and velocity of the wave without

the building. Eq. 5.2 describes well the horizontal forces for dry bed surges.

2. For wet bed bores, if Eq. 5.2 was applied, an overestimation of the maximum load

was constantly observed. The aerated roller, similar to a translating hydraulic jump,

suggested the presence of internal energy dissipation, responsible for a reduction in the

subsequent flow velocities. For this, a wet bed force reduction coefficient χ (Eq. 5.3 and

5.4) was introduced and a modified momentum fluxM∗ defined. This approach gave a
better agreement for all experiments (Eq. 5.6).

3. Since the wave impact process is highly unsteady and rapidly varied, the hydrostatic,

hydrodynamic (or drag) and surge components were difficult to isolate and further

estimate. For this reason, the drag coefficient,CD , was herein replaced with a resistance

coefficientCR. The latter was a function of time and an average valueCR = 2 was shown

to be appropriate at the occurrence of the maximum horizontal force, Fx,max.

4. Themaximumhorizontal force was shown to be proportional to themaximummodified

momentum flux per unit widthM∗
max. A good estimation for both surges and bores is

represented by Eq. 5.7.

5. A comparison of the current experiments with previous studies and design guidelines

showed a constant over prediction of the estimated horizontal force values. This pointed

out the importance of the blockage ratio and the 3-dimensionality of the loading process.

6. Additional parameters were also introduced and discussed. The time to peak τmax,

defined as the time lap between the arrival of the wave t0 and Fx,max, showed that the

maximum force occurred before for wet bed bores than for dry bed surges. Especially for

bores, the maximum force Fx,max also occurred at a relative height hM that was higher

than the 2/3 value suggested by the ASCE 7-06. The impulse (I = F · t ) represented the

exchange in momentum transferred from the wave to the building. Similar values were

observed for surges and bores with the same initial conditions, however for bores only

10-15% of the total impulse were transferred to the building before the occurrence of

the maximum horizontal force.

7. The maximum force Fx,max andmaximummomentMy,max were shown to occur at the

same time.

8. The application point of the force (cantilever arm) was defined as Lz = My,max/Fx,max
and, for all scenarios an average value of 1.15 hmax was found. This allowed to predict

the momentMy using Eq. 5.16.
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6 Impact on impervious buildings with
overflow

6.1 Overview

As discussed in Chapter 1, some key buildings located in coastal areas are conceived as vertical

shelters and therefore designed to withstand impact forces to guarantee safety to people. For

such structures, the main loading features were discussed in Chapter 5. On the other hand,

some of the non critical infrastructures, typically residential houses with lower elevation,

are not conceived as vertical shelters and a submergence (or overflow) of the structure is

therefore acceptable in case of natural disasters. An example of these structures were provided

in Figures 1.6b and 1.8f. Most previous studies focused on free-standing structures that might

act as possible vertical shelters and little interest was given to the loading process on smaller

residential houses. As a result of the overflow, this experimental study pointed out flow depths

that were lower on the upstream side of the building and higher on the downstream. This

resulted into milder load conditions and, compared to a vertical shelter, a modified approach

is therefore necessary to estimate the force and the moment.

The main objectives of this chapter are the following:

1. To provide an insight of the physical process for the overflow of a free-standing building.

2. To characterize the loading process for building with overflow in terms of horizontal

forces, moments and impulse.

3. To conclude whether the results presented and discussed in Chapter 5 can also be

applied to structures with overflow.

For this a 0.3×0.3×0.3 m aluminium cube representing the building was installed in the
channel. Pictures of the configuration with and without submergence are presented in Figure

6.1. More information concerning the geometry and the structural properties of the buildings

can be found in Section 3.4. The reference tests performed on the structure without overflow

were presented and discussed in Chapter 5. The tests performed are presented in Table 6.1.

This Chapter is based on the article "Experimental study on effect of building overflow on the resulting
hydrodynamic load" by D. Wüthrich, M. Pfister, I. Nistor and A.J. Schleiss under revision in Journal of Hydraulic
Research. The experimental work and the analysis presented hereafter is original and performed by the author.
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(a) HB = 0.6m (b) HB = 0.3m

Figure 6.1 – Building heights HB used in the present study, focusing on building overflow

HB Bed d0 [m] h0 [m] U [m/s] hmax [m] h0/hmax Rep.

0.3 m dry 0.82 - 3.556 0.181 0 2 test 6.1
0.63 - 3.114 0.162 0 2 test 6.2
0.40 - 2.347 0.132 0 2 test 6.3

wet 0.82 0.010 3.074 0.193 0.052 5 test 6.4
0.030 2.810 0.232 0.129 4 test 6.5
0.050 2.755 0.260 0.193 2 test 6.6

0.63 0.010 2.702 0.172 0.058 2 test 6.7
0.030 2.518 0.206 0.146 3 test 6.8
0.050 2.437 0.224 0.223 2 test 6.9

0.40 0.010 2.104 0.142 0.072 4 test 6.10
0.030 1.971 0.162 0.185 2 test 6.11
0.050 1.933 0.178 0.280 2 test 6.12

Table 6.1 – Experimental program of the tests performed with overflow (HB = 0.3m).

6.2 Visual observations

As shown in Figure 6.1 two configurations with different building heights (HB = 0.3 m and HB =

0.6 m) were tested for both dry bed surges and wet bed bores. Similarly to what was observed

in Section 5.2, for both cases with and without overflow, two main phases were recognised:

(1) an initial impact of the wave front, followed by (2) a quasi-steady hydrodynamic phase

during which the main body of the wave flowed around the structure. These two phases are

visually presented in Figure 6.2, where the time evolution of the impact is presented through

pictures taken at T · (g/d0)0.5 ≈ 0 s (impact with highest run-up height) and T · (g/d0)0.5 ≈
14 and 28 (post-impact hydrodynamic phase) for both surges and bores with and without

overflow. Similar results were previously presented by Wüthrich et al. (2016c), pointing out

some key differences between the impact of surges and bores.
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Figure 6.2 – Time evolution of the wave impact against an impervious building for a dry bed
surge (hmax = 0.187m, d0 = 0.82m, test 5.1 and 6.1) and a wet bed bore (hmax = 0.269m, d0 =
0.82m, h0 = 0.05m, test 5.6 and 6.6) with (c, d, g, h, m, n) and without (a, b, e, f, i, l) overflow.

During the initial impact phase no major differences were observed for the case with and

without overflow, i.e. HB = 0.3 m and HB = 0.6 m, respectively. When the wave front hit

the building upstream side, some vertical run-up heights H were observed. These were

measured to be some 4 times the maximumwave height without the structure hmax (Figure

6.3). For both bores and surges the impact phase presented high splashes and some turbulent

air entrainment in the upstream side of the building, as shown in Figure 6.2a-d. Due to

the presence of the building, the run-up splashes fell on the incoming wave, producing a

stationary roller on the upstream side of the building, associated with high level of turbulence

and air entrainment. The formation of a roller in the upstream side is shown in Figure 6.2e-f

and it marked the transition between the impact and the hydrodynamic phase. Overall dry bed

surges presented higher air entrainment compared to wet bed bores, as shown in Figure 6.2e-g

and f-h. This is probably due to the higher velocities and Froude numbers associated with the

incoming surge (Section 4.5). Dry bed surges were also characterized by a pulsating behaviour,

attributed to the interaction between the high speed incoming wave and the reflection of the

vertical run-up. For the higher buildings (HB = 0.6 m), no overflow was observed and the water

flowed completely around the obstacle. For the lower buildings (HB = 0.3 m) an overflow was
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observed for the largest waves (d0 = 0.63 and 0.82 m). The higher flow velocities associated

with the dry bed surge produced an aerated jet overpassing the building (Figure 6.2g), whereas

for the bore a non-aerated flow submerging the structure was observed (Figure 6.2h). Visually,

the overflow seemedmore important for bores, due to the higher constant wave height of the

incoming wave (h2). For all scenarios the presence of the building provoked a constriction,

with a decrease in flow velocity and an increase in water level. The combination of these effects

lead to a change in flow regime and to the propagation of a bore in the upstream direction.

For all configurations intense vortices in the downstream side of the structure for both the

surge and the bore were observed (Figure 6.2).

The Ultrasonic Sensor (US7) located 0.15 m upstream the building side (Figure 3.2) allowed to

measure the vertical run up heights H providing a more quantitative description of the visual

observations previously discussed. The results are shown in Figure 6.3 for both a dry bed

surge and a wet bed bore, with and without overflow. These are also compared with the wave

profile hmeasured without the structure. The shift in arrival time confirmed that the surge

propagating on dry bed had higher propagating velocities than the bore on wet bed (Section

4.4). A difference in flow behaviour can be noticed and these measurements confirmed the

visual observations that the surge had a more fluctuating behaviour with higher aeration. For

the surge similar upstream level were observed, regardless of the building height HB, whereas

for bores, the higher discharge over the structure resulted into a reduction of the sustained

water depth on the upstream side of the building.

(a) Dry bed surge (b) Wet bed bore

Figure 6.3 – Wave profiles (H) at US 7 for two building heights (HB), normalised with the
maximum wave height without the building (hmax): (a) dry bed surge (d0 = 0.82m, hmax =
0.162m, test 5.1, 6.1); (b) wet bed bore (d0 = 0.82m, h0 = 0.03m, hmax = 0.162m, test 5.5, 6.5)
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6.3 Horizontal forces

Both buildings were installed on a force place, allowing a detailed measurement of the forces

andmoments in all three directions during the wave impact. As discussed in Section 5.3 the

magnitude of the forces andmoments in the transversal (Fy ,Mx) and vertical direction (Fz ,

Mz) was negligible compared to those observed in the flow direction (Fx,My). For this reason

the values of Fy, Fz,Mx andMz will be hereafter neglected. It was shown in Figure 5.3 that for

the same release conditions, similar maximum values are obtained for both the dry bed surge

and the wet bed bore. Thus, bores are characterized by a sudden rise in horizontal force Fx
and momentMy, whereas surges are associated with milder loading conditions (Section 5.3).

As presented in Table 6.1, two scenarios were herein compared: buildings with a height of HB
= 0.6 m, where no overflow was observed for any tested wave, and building with a height of HB
= 0.3 m, where some overflow was observed for larger waves (d0 ≥ 0.63 m). For the smaller
waves (d0 = 0.40 m), for both configurations no submergence was observed, showing good

results with the findings presented in Chapter 5. Some minor overflow was noted for d0 =

0.63m (2 pipes, medium wave) and major overflow for d0 = 0.82 m (3 pipes, larges wave).

In this study, force measurements showed that for both dry bed surges and wet bed bores,

the values recorded for a submerged structure were lower compared to the non-submerged

scenario. Figure 6.4a shows the loading behaviour of two structures (HB = 0.6 and 0.3m) under

the impact of the same incoming dry bed surge (hmax = 0.181 m,U = 3.556 m/s, test 5.1 and

6.1). One can notice a similar behaviour for both buildings during the first seconds of the

impact. Some differences in magnitude can be observed in the hydrodynamic phase of the

impact, being the overflowed building less stressed. Analogous results are obtained for other

dry bed surges (not shown). A similar case for a wet bed bore with an initial still water depth h0
= 0.03 m (hmax = 0.254 m,U = 2.810 m/s, test 5.5 and 6.5) is presented in 6.4b. Also for the wet

bed bore, the magnitude of the recorded forces was lower than the scenario without overflow

and compared to the dry bed surge in Figure 6.4, the difference between the two scenarios is

more important for bores.

Figure 6.4 also shows the behaviour of the force Fz in the vertical direction for both a dry bed

surge and a wet bed bore. This force represents the gravitational weight of the water over-

flowing the building. One can observe that higher values of Fz were measured for the wet bed

bore, confirming the visual observations suggesting a more important overflowing discharge

(Figure 6.2h). For a dry bed surge, visual observations in Figure 6.2g showed an aerated jet

overpassing the structure, which might be responsible for the lower values of Fz measured by

the force plate. Additionally, higher water levels were observed on the downstream side of the

building for the scenarios with overflow (Figure 6.2m,n), contributing to a lower hydrostatic

component in the total horizontal force. This was also identified by Esteban et al. (2017).

The reduction in Fx,max can clearly be observed in Figure 6.5 where the use of Eq. 5.2 and 5.6

presented in Chapter 5 overestimated the forces predicted for the scenarios with overflow

(red/orange symbols). The experimental points are also compared to those obtained for
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(a) Dry bed surge

(b) Wet bed bore

Figure 6.4 – Horizontal (Fx) and vertical (Fz) forces measured for: (a) dry bed surge (hmax =
0.187 m,U = 3.556 m/s, test 5.1 and 6.1) and (b) wet bed bore (hmax = 0.232 m, h0 = 0.03 m,U
= 2.81 m/s, test 5.5 and 6.5) impacting against an impervious building with (HB = 0.3 m) and
without (HB = 0.6 m) overflow.

the building without overflow, previously presented in Chapter 5. Results also showed that

for minor overflow (d0 = 0.63m) the difference was negligible, however this became more

important for higher impoundment depths (d0 = 0.82 m).

Thus, a combination of the reduced upstream run-up height (Figure 6.3) and an increased

downstream water level are responsible for a lower horizontal force. In the computation, this

translated into a reduced resistance coefficientCR, as shown in Figure 6.6. Experimental data

showed that, for the scenarios with overflow, a valueCR,S = 1.5 was more appropriate, rather

than the valueCR = 2.0 for buildings without overflow.
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Figure 6.5 – Comparison of computed forces Fx,D,max using Eq. 5.2 and 5.6 with measured
maximum horizontal forces Fx,max for both configurations with (HB, red/orange symbols) and
without overflow (HB, black/gray symbols).

(a) (b)

Figure 6.6 – Resistance coefficientCR for buildings with (HB = 0.3m) and without (HB = 0.6m)
overflow for both dry bed surges and wet bed bores: (a) time development before and after the
occurrence of the maximum force (T /τmax = 1) for waves with d0 = 0.82m; (b) values ofCR at
T /τmax = 1, presented as a function of h0/hmax.
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6.4 Force analysis

Similarly to Section 5.4, a deeper analysis of the horizontal forces is carried out in this section.

The main parameters discussed are presented hereafter and visually described in Figure 5.13:

• Time from the wave arrival until the occurrence of the force peak, τmax (Section 6.4.1)

• Wave height hM at which the maximum horizontal force is measured (Section 6.4.2)

• Impulse I transferred from the wave to the building (Section 6.4.3)

6.4.1 Time to peak

The “time to peak” τmax represents the time interval between the impact (T = 0) and the

maximum measured horizontal force Fx,max (Figure 5.13). The values of τmax obtained for

all tests are presented in dimensionless form in Figure 6.7 as a function of h0/hmax, where

h0/hmax = 0 represents the dry bed surges and h0/hmax > 0 the wet bed bores. In agreement

with the findings presented in Section 5.4.1, these results showed larger values of τmax up to

τmax(g/d0)0.5 = 40, for dry bed surges (h0/hmax = 0), whereas for bores (h0/hmax > 0) almost
all maximum forces occurred for τmax < 5 · (d0/g )0.5. The results presented in Figure 6.7
also showed that the force maximum took place a little earlier for buildings with overflow,

compared to the previous scenario (Chapter 5) in Figure 5.14.

Figure 6.7 – Values of the time to peak (τmax) for both dry bed surges (h0/hmax = 0) and wet
bed bores for scenarios with (HB = 0.3m) and without (HB = 0.6m) overflow.
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6.4.2 Wave height at maximum force

An important parameter in the design of resiliant buildings is the wave height h at which the

maximum force Fx,max occurs. This relative height hM is defined in Eq. 5.9 as the ratio between

the wave height at which the maximum force occurs h(T = τmax) and the maximum wave

height hmax. The results obtained from the experimental tests are presented in Figure 6.8 for

both scenarios with and without overflow, where no major differences in behaviour are noted

between the two cases.

Figure 6.8 – Relative wave height hM at which the maximum horizontal force Fx,max occurs,
and comparison with design standards presented in ASCE7 - Chapter 6 (hM = 2/3).

Similairly to Figure 5.15 these experimental points are also compared to the newest design

guidelines of the ASCE 7 Chapter 6, according to which the maximum hydrodynamic load

should occur at 2/3 of themaximum inundation depth, i.e. when h = 2/3hmax. Results showed,
on average, relatively good agreement for dry bed surges (h0/hmax = 0), however for increasing

values of h0/hmax, the maximum force occurs for higher water levels. For this cases, similarly

to the findings presented in Chapter 5, the choice of hM = 2/3 becomes less conservative.

Being the maximum force proportional to the maximummomentum in Eq. 5.7, these results

are consistent with the findings showed in Chapter 4 for the maximummomentum flux per

unit widthM .

6.4.3 Impulse

As previously discussed in Section 5.4.3, in physics the product of a force F and time t is

commonly known as Impulse I . In our specific case, the total impulse Itot can be identified as

the integral of the force Fx over time, until T = 100·(d0/g )0.5 is reached (Eq. 5.10). This quantity
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also represents the surface below the curve, as shown in Figure 5.13 and it corresponds to

the exchange in momentum between the incoming wave and the free standing building. The

values of the total impulse Itot were computed for all experimental tests and the results are

presented in Figure 6.9. These findings show that for the building subject to overflow (HB =

0.3 m, d0 > 0.63 m), lesser impulse will be transferred to the structure. This is a consequence

of the smaller force magnitude discussed in Section 6.3 and observed in Figure 6.4b. From

Figure 6.9, one can also notice that Itot appears to stabilise around a constant value and no

difference is observed between the two largest impoundment depths d0 = 0.63m and 0.82m.

To better define the amount of impulse that is transferred to the structure before the peak

occurs, a new parameter Ipeak is defined as the integral between 0< T < τmax. This parameters

represents the surface below the curve until Fx,max is reached (Eq. 5.11). The computed values

are also presented in Figure 6.9 for both scenarios with and without overflow (HB = 0.3 and

0.6m, respectively). Results showed some similar results with values below Ipeak = 500 Ns for

both configurations.

A parameter I ∗ can therefore be defined as the ratio between the peak impulse Ipeak and the

total impulse Itot. This corresponds to the percentage of total impulse that is registered before

the maximum force occurs. I ∗ was defined in Eq. 5.12 and sketched in Figure 5.13. The values
obtained from the experimental tests are presented in Figure 6.9b, where the difference in

behaviour between surges and bores is once again shown. For wet bed bores only 10 % of the

impulse is transferred before the peak, whereas for dry bed surges, this percentage can reach

up to 30%. These results are in agreement with what was previously observed in Chapter 5

and nomajor differences are observed with the impervious buildings without overflow.

(a) (b)

Figure 6.9 – (a) Total (Itot) and peak impulse (Ipeak); (b) I ∗ = Ipeak/Itot for both dry bed surges
(h0/hmax = 0) and wet bed bores (h0/hmax > 0), with (HB = 0.3 m) and without overflow
(HB = 0.6 m).
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6.5 Moment and cantilever arm

Any force applied outside of its reference point produces amoment that is directly proportional

to the application distance, called cantilever arm Lz. These moments are important in the

design of structures, because they can be responsible for its overturn, if the foundation is

not designed accordingly. In this study only moments in the transversal direction (My) were

considered. Since their magnitude was too low to be relevant,Mx andMz were neglected, as

shown in Figure 5.3. Despite some scattering, results showed that even for buildings with

overflow, the maximum horizontal force Fx and the maximummomentMy occurred at the

same time, as shown in Figure 6.10.

Figure 6.10 – Temporal occurrence (τmax) of maximum horizontal force Fx,max and maximum
momentMy,max, presented in normalised form.

Similarly to what was observed in Section 5.5, buildings with overflow constantly showed

moments that were lower than the configuration without overflow. Once the maximum

horizontal force is known (Section 6.3), the moment can be obtained through the cantilever

arm (Lz). Experimentally, the behaviour of the cantilever arm (Lz) over time in the z direction

can be calculated as the ratio between moment and force, as presented in Eq. 5.14. If both

maximum force and moment occur at the same time, than the cantilever arm at T = τmax

can be obtained through Eq. 5.15. The values obtained from the experimental points are

presented in Figure 6.11 as a function of h0/hmax for dry bed surges and wet bed bores. These

are also compared with the values previously obtained for the impervious structure without

overflow (HB = 0.6m). All values are normalised using the wave height hmax measured without

the building.
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Figure 6.11 – Values of the lever arm Lz for both dry bed surges (h0/hmax = 0) and wet bed
bores (h0/hmax > 0), normalised with the maximumwave height without the building hmax.

The results in Figure 6.11 show that for all tested scenarios, the cantilever arm had a fairly

constant behaviour ranging around an average value of 1.00 hmax. It could therefore be

assumed that, on average, the total horizontal force defined in Section 6.3, was applied at a

height that corresponded to the maximumwave height hmax measured without the presence

of the building. This allowed to obtain an expression to compute the maximum moment

My,D,max as a function of the hydrodynamic properties of the wave without the building:

My,D,max = Fx,D,max · 1.00hmax = 1
2
ρCR,SB M∗

max · hmax (6.1)

where Fx,D,max is the maximum horizontal force computed using Eq. 5.7 with a resistance coef-

ficientCR,S = 1.5 defined in Section 6.3 for the scenarios with overflow. The values predicted
using Eq. 6.1 are compared to the experimental values in Figure 6.12.

6.6 Discussion

The previous sections showed that when the building is overflowed, then a reduction in force,

impulse and moment occurs. From a structural points of view, a building that is overflowed, is

therefore subject to milder load conditions. The comparison with the results obtained in the

previous section showed that a modification of the resistance coefficientCR and the cantilever

arm Lz was necessary to obtain a better approximation of the forces and moments starting

from the basic hydrodynamic properties of the wave measured without the building.
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Figure 6.12 – Comparison of maximum measured values My,max with My,D,max computed
through Eq. 6.1 (R2 = 0.764).

Hereafter the reduction in total impulse ΔItot due to the overflow of the structure is addressed.

For this a submergence coefficient S is defined in Eq. 6.2 as the ratio between the equivalent

overflow depth Heq and the building height HB. The equivalent overflow depth Heq was

derived through Eq. 3.8 for the maximum vertical force Fz acting on the force plate. This

option was chosen because the USmeasurement were affected by air entrainment and run-up

splashes. A value of Heq = 0 implies that no water passed over the building, whereas for Heq >

0 the building was overflowed. Similarity, if S > 0, then some overflow is observed, otherwise if

S = 0 no overflow is registered.

S = Heq
HB

= Fz
B2gρ · HB

(6.2)

Results obtained are presented in Figure 6.13a, where an increasing behaviour of ΔItot/Itot
can clearly be observed for all configurations. This proved that the reduction of impulse

was a function of the submerge coefficient S ad therefore of the amount of water that is

overflowed. Similarity, also the cantilever arm Lz is shown to be proportional to the sub-

mergence coefficient in Figure 6.13b. Higher values of S corresponded to lower horizontal

forces, cantilever arms and therefore reduced moments. Nevertheless, the submergence of a

structure is, generally, not known by practical engineers and it cannot be deduced from the

basic hydrodynamic properties of the wave. For this reason, loading conditions computed

using a resistance coefficientCR,S = 1.5 and cantilever arm Lz = hmax were shown to represent

a good first approach.
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(a) Total impulse

(b) Cantilever arm

Figure 6.13 – Dependence of: (a) relative variation of total impulse ΔI/Itot and (b) normalised
cantilever arm Lz/hmax on the degree of overflow of the building, here described through the
submergence coefficient S, defined in Eq. 6.2.
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6.7 Summary

Some critical buildings in coastal areas are designed to become vertical shelters, whereas

for others overflowing is accepted. This experimental work mainly focused on buildings

potentially overflowed in case of extraordinary events. This issue was rarely addressed in the

past. The results obtained for these lower buildings were then compared with the impervious

free-standing buildings discussed in Chapter 5. The following conclusions can be drawn:

1. In case of overflow, visual observations showed lower water depths with less aeration

on the upstream side of the building. As a result of the flow over the structure, higher

water levels were observed on the downstream side of the building, compared to the

configuration without overflow.

2. In terms of hydrodynamic loading, structures with overflow constantly presented lower

horizontal forces and impulse values compared to the buildings that were not over-

flowed. This is probably a consequence of the lower difference in water depth between

the upstream and downstream sides, resulting into a reduced hydrostatic component.

Results also showed that, mostly for wet bed bores, the maximum force occurred slightly

earlier for the structures with overflow. This modified dynamic of the buildings with

overflow also resulted into reduced cantilever arms, and therefore lower tiltingmoments.

3. The results presented and discussed in Section 5 can conservatively be applied to

structures potentially overflowed, however these overestimate the actual values. If a

more precise estimation is desired, then amodified approachwith a reduced submerged

coefficientCR,S = 1.5 can be used. In addition, the resulting force should be applied at a

height equal to the maximumwave height hmax measured without the building.

4. Nevertheless, this reduction in terms of horizontal forces andmoments remained lim-

ited for buildings subject to minor overflow (d0 = 0.63m), whereas for major overflow

(d0 = 0.82m), these differences becamemore important. This showed a dependence of

these values on the water depth over the structure, however this parameter is difficult

to derive from the basic hydrodynamic properties of the wave. The methodology pre-

viously described therefore represents a good first approach in the design process of

coastal buildings subject to potential overflow.
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7.1 Overview

Previous studies and field surveys showed that a specific design can decrease the load on

free-standing buildings along the coast, providing safer vertical shelters. This experimen-

tal study investigates the effect of openings in buildings (windows, doors and foyers) on

horizontal forces and tilting moments induced by both dry bed surges and wet bed bores.

Four configurations were systematically tested with openings ranging from 0 (impervious)

to 84% (highly permeable). Due to the presence of openings, the flow through the buildings

reduced the upstream water depths. Openings were shown to produce a linear reduction

of the maximum horizontal force, if compared to the corresponding impervious building.

The configuration with an impervious back showed similar results to those measured for the

impervious buildings. The occurrence of the maximum tilting moment was shown to coincide

with the maximum horizontal force and an estimation of the cantilever arm was therefore

possible. The latter was constant for all configurations, independently from the geometry

of the openings. Finally, two equations to predict the maximum horizontal force and the

tiltingmoment were proposed, taking into account the effect of openings within the resistance

coefficient. These had a good agreement with experimental points and previous studies.

The main objectives of this chapter are the following:

1. To systematically investigate the effect of building openings, equally distributed on all

four sides.

2. To detect potential influences of the impervious lateral and/or back walls.

3. To qualitatively investigate the effect of additional, adjacent side buildings.

4. To provide an estimation of horizontal forces, its application point and the resulting

tilting moment.

5. To present preliminary results on the vertical forces acting on the building during

inundation.

This Chapter is based on the article "Experimental study on forces exerted on buildings with openings due to
extreme hydrodynamic events" by D. Wüthrich, M. Pfister, I. Nistor and A.J. Schleiss, under revision in Coastal
Engineering. The experimental work and the analysis presented hereafter is original and performed by the author.

133



Chapter 7. Impact on buildings with openings

For this, 280 experimental tests were carried out for 12 standard waves (Chapter 4). The main

hydrodynamic properties of the waves (without buildings) are detailed in Appendix D and

the key features summarized in Table 7.1. These waves were used to investigate 6 building

porosities and 4 configurations (Figure 3.16 and 3.18), as detailed in Table 7.2. The complete

list of performed tests is presented in Appendix E.

Wave d0 h0 hmax h0/hmax U (hV 2m)max Fr =U/(g hmax)0.5 Rep.
name [m] [m] [m] [-] [m/s] [m3/s2] [-]

WD1 0.40 0.00 0.132 0 2.347 0.294 2.06 3
WD2 0.63 0.00 0.162 0 3.114 0.711 2.47 3
WD3 0.82 0.00 0.181 0 3.556 1.218 2.67 6
WW1 - 1P 0.40 0.01 0.139 0.070 2.104 0.375 1.80 3
WW1 - 2P 0.63 0.01 0.172 0.059 2.702 0.681 2.08 3
WW1 - 3P 0.82 0.01 0.193 0.046 3.074 1.130 2.24 4
WW3 - 1P 0.40 0.03 0.162 0.184 1.971 0.332 1.56 3
WW3 - 2P 0.63 0.03 0.206 0.141 2.518 0.731 1.77 3
WW3 - 3P 0.82 0.03 0.232 0.118 2.810 1.227 1.86 5
WW5 - 1P 0.40 0.05 0.178 0.270 1.933 0.333 1.46 3
WW5 - 2P 0.63 0.05 0.224 0.216 2.437 0.682 1.64 3
WW5 - 3P 0.82 0.05 0.260 0.186 2.755 1.073 1.73 7

Table 7.1 – Hydrodynamic properties of the tested waves (without the structure).

Configuration Total porosity [%] Waves Rep.

All porous sides (0) 17, 34, 60, 31.34, 42.24 WD1, WD2, WD3 64
WW1-1P, WW1-2P, WW1-3P
WW3-1P, WW3-2P, WW3-3P
WW5-1P, WW5-2P, WW5-3P

Impervious lateral 17, 34, 60, 31.34, 42.24, 84 WD1, WD2, WD3 114
walls (F) WW1-1P, WW1-2P, WW1-3P

WW3-1P, WW3-2P, WW3-3P
WW5-1P, WW5-2P, WW5-3P

Impervious back (B) 17, 34, 60, 42.24 WD1, WD2, WD3 48
WW1-1P, WW1-2P, WW1-3P
WW3-1P, WW3-2P, WW3-3P

With building 17, 34, 60, 31.34, 42.24 WD1, WD2, WD3 54
sides (S) WW1-1P, WW1-2P, WW1-3P

WW3-1P, WW3-2P, WW3-3P

Table 7.2 – Experimental program for the investigation of buildings with openings.
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7.2 Visual observations

The impact of surges and bores on impervious free-standing buildings was visualized in

Section 5.2. The effects of building overflow were addressed in Section 6.2. For the impervious

scenario, after an initial impact characterised by high splashes and run-up heights of some 4

times the wave height measured without the structure, a quasi-steady hydrodynamic phase

was observed. During this phase, the main body of the incoming surge/bore flowed around

the structure and an aerated rolled on the upstream side of the building was observed. Finally,

the level decreased as the wave passed by.

For structures with openings, the water was able to partially flow through the building, result-

ing into an interaction between the incoming surge/bore and the building. An example of the

impact of a dry bed surge for all tested configurations is presented in Figure 7.1 at different

times. Initially the water flowing through the building only affected the ground floor, however

with the increase of the upstream water depth, also the first and second floors were eventually

inundated (Figure 3.17). For all configurations, a fluctuating behaviour of the water surface

was observed on the upstream side of the building, attributed to the presence of an aerated

recirculating roller. The latter was less intense for the buildings with openings compared to

corresponding impervious case. As a consequence of the openings, the discharge seeping

through the reduced the upstream water depths, ensuring safer vertical shelters.

For the configuration with openings on all four directions (Configuration 0, Figure 3.18a), a

portion of the water entering from the front went out through the lateral openings, resulting

into an interaction with the flow around the structure (Figure 7.1b). On the contrary, for

the configuration with impervious lateral walls (Configuration F, Figure 3.18b), this was not

observed, resulting into a more linear flow, as shown in Figure 7.1c. For the configuration

B (Figure 3.18c), when the wave front hit the impervious back, two lateral jets ejecting the

water outside the building were clearly observed (Figure 7.1d). After this initial impact, the

hydrodynamic phase was similar to that observed for the impervious structure. Lastly, for the

configuration S (3.18d), with the additional lateral buildings, higher upstream water levels

were constantly observed (Figure 7.1e).

Measurements carried out withUS probes at different locations allowed tomeasure the run-up

heights during the impact; these are presented in Figure 7.2 for US5 (x = 13.35 m) and US7

(x = 13.85 m). At US7 (Figure 7.2a), one can notice similar run-up heights Hmax during the

impact for all tests, nevertheless on the upstream side, lower water levels were recorded for

larger porosity values. For all scenarios a fluctuating behaviour was observed, attributed to

the presence of a recirculating roller. Figure 7.2b shows the water levels on the upstream side

of the building, where the measurements are not affected by the recirculating roller. These

values showed the effectiveness of the openings in reducing the water levels, thus generating

safer vertical shelters. Some similar results in terms of visual observations of experimental

tests and comparison with numerical simulations were carried out by Hartana andMurakami

(2015) for structures with openings and internal slabs.
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Figure 7.1 – Visual observation of wave impact for different configurations at various dimen-
sionless times (dry bed surge WD2, d0 = 0.63m, hmax = 0.162 m,U = 3.11 m/s).
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(a) US7 (x = 13.85 m)

(b) US5 (x = 13.35 m)

Figure 7.2 – Ultrasonic distance sensors (US) measurements of run-up heights H for vari-
ous porosity values (dry bed surge WD2, d0 = 0.63m, hmax = 0.162 m,U = 3.11 m/s) at two
measurement locations: (a) US7 (x = 13.85 m) and (b) US5 (x = 13.35 m).

7.3 Effect of building openings

The effect of openings was shown to be beneficial for the building, reducing the forces exerted

by the incoming surge/bore. Four configurations are herein considered, as presented in Figure

3.18 and Figure 3.19. Results are presented and discussed hereafter.

• All porous sides (Configuration 0) - Section 7.3.1

• Impervious lateral walls (Configuration F) - Section 7.3.2

• Impervious back (Configuration B) - Section 7.3.3

• With additional building sides (Configuration S) - Section 7.3.5
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7.3.1 All porous sides (Configuration 0)

Initially, the openings were equally distributed on all four building sides, with total porosity

values ranging from Ptot = 0 to 60 %, (Figure 3.16 and Figure 3.18a). The time-histories of the

horizontal forces Fx induced by the samedry bed surge andwet bed bore on four buildingswith

different opening values are plotted in Figure 7.3. One can notice that the overall behaviour

was similar for all scenarios: after an initial increase of the force, the load stabilized around a

constant value before decreasing once the bore/surge has passed. The observed behaviour

is consistent with results presented in Section 5.3 and previous studies (Arnason et al., 2009;

Nouri et al., 2010). However, major differences were observed in terms of the magnitude of the

measured forces, with large porosities leading to lower values. This reduction is attributed to

the presence of openings on the structure, partially reducing the inundation depth in front

of the building, as previously observed by Hartana andMurakami (2015). Moreover, for dry

bed surges, porous buildings had a less steep force increase resulting into a more gradual and

milder loading condition. For wet bed bores, this difference was less pronounced.

(a) Dry bed surge (b) Wet bed bore

Figure 7.3 – Time-history of the horizontal force Fx for: (a) dry bed surge and (b) wet bed bore
with h0 = 0.03 m for the same initial release conditions (d0 = 0.63 m).

For all tests, the maximummeasured force Fx,max was plotted as a function of the porosity

Ph,max defined in the interval 0 < z < hmax and normalized using the maximum horizontal

force computed for the reference impervious building (Fx,D,max)Ptot=0. Results are presented
in Figure 7.4 for both surges and bores with different approach conditions in terms of water

height h and front celerityU . One can notice that an overall linear force decrease appears for

increasing porosities. It is hypothesized that the horizontal force Fx is zero in the absence of

the structure (Ptot = 100 %).

Fx,max = (
Fx,max

)
P=0 · (1− Ph,max

)
(7.1)
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This suggests that the reduction of the horizontal load is proportional to the surface that is

exposed to the incoming wave. The preliminary conclusions drawn by Lukkunaprasit et al.

(2009a), who suggested to use a linear approximation in lack of experimental tests, are thus

supported. Nevertheless, further comparison with previous studies is carried out in Section

7.3.4. Good linear agreement was also found for the impulse i.e. the integration of the force

over time (Section 7.4.3), as shown in Figure 7.13.

Figure 7.4 – Maximum horizontal force Fx,max as a function of surface porosity at hmax (Ph,max)
for both dry bed surges and wet bed bores with various initial release conditions.

7.3.2 Impervious lateral walls (Configuration F)

In this section, the configuration (F) with impervious lateral walls (Figure 3.18b) is discussed.

Similarly to the previous case, six porosity valueswere tested for surges and boreswith different

wave properties. Results showed a similar behaviour to that shown in Figure 7.3, however

slightly lower values were observed for the configuration with impervious lateral walls (F), as

shown in Figure 7.5. This phenomenon is probably attributed to straight flow through the

structure and the lack of interaction with the main flow across the lateral walls. Nevertheless

this reduction remains small during the impact and its negligence represents a conservative

approach during the design phase. In the quasi-steady hydrodynamic phase (10 < T · (g/d0)0.5
< 30) the difference in behaviour between the building with porous (0) and impervious (F) sides

becomes more important, in agreement with the steady-state tests presented in Appendix

C.5.2. For these, reductions up to 30% of total value of the force were found (Figure C.5).

The maximum horizontal force Fx,max measured for all tests for Configuration F is compared

in Figure 7.6 with the corresponding values obtained for the configuration 0 with all porous

sides. Results show a good agreement between the two configurations, suggesting that the

influence of the lateral walls had a negligible effect in the estimation of the maximum horizon-
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Figure 7.5 – Comparison of the measured forces (Fx/Fx,D,max) for the impervious structure
(Ptot = 0%) and the building with Ptot = 60 % for the configuration 0 (with all porous sides,
Figure 3.18a), configuration F (with impervious lateral walls, Figure 3.18b) and configuration
B (with impervious back, Figure 3.18c, discussed in Section 7.3.3).

tal force Fx,D,max. This implies that the linear relationship in Eq. 7.1 can be extended to the

configuration F with impervious lateral walls, as shown in Figure 7.7.

Figure 7.6 – Comparison of forces (Fx) for the configurations with all porous sides (Figure
3.18a) and with impervious lateral walls (Figure 3.18b).
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7.3.3 Impervious back (Configuration B)

A configuration with openings on the front and lateral walls, but impervious back was tested

(Figure 3.18c). As shown in Figure 7.5 the temporal development of the horizontal force for

the configuration B without openings on the back side, was similar to that observed for the

fully impervious building (Ptot = 0%). This indicated that simply closing one of the sides
orientated perpendicularly to the flow, has the same effect of bringing the whole building

back to the impervious configuration. The experimental results in terms of the maximum

measured horizontal force Fx,max plotted in Figure 7.7 confirmed this, showing forces equal to

those predicted for the impervious buildings for all porosities values.

7.3.4 Comparison with previous studies and design codes

Previous studies were carried out by Triatmadja and Nurhasanah (2012), who found a non-

linear behaviour for structures with symmetrical and concentric openings of variable sizes

without internal partitions. Their approach is presented in Eq. 2.46 and compared to the

experimental results in Figure 7.7. These values obtained with Eq. 2.46 slightly overestimated

the measured force, thus providing a conservative design. Nevertheless, its applicability

remains limited due to the particular choice of opening geometries to represent residential

buildings. To account for openings and failure/breakage of walls/windows, Fukuyama et al.

(2011) introduced a de-amplifying coefficient, whose value should always be greater than

0.7 because of the existence of the interior walls. ASCE 7 (2016) – Chapter 6, embraces this

approach, suggesting to use a minimum closure ratio of 70% of the pressure-exposed surface

area of the exterior enclosure (Figure 7.7).

7.3.5 Discussion: force estimation

In the previous sections, the force was shown to be linearly proportional to the porosity of the

building due to presence of openings. The ratio presented in Figure 7.7 between the measured

force Fx,max and the value Fx,D,max (computed using Eq. 5.7 for impervious buildings ptot = 0%)
for the same incoming wave, can be seen as the ratio between the resistance coefficients,

with and without openings. For this reason we assume a linear reduction of the resistance

coefficientCR compared to the corresponding value computed for the impervious structure

CR,0. Therefore, for the computation of the resulting hydrodynamic force, the following model

taking into account the presence of openings is proposed:

CR = CR,0 ·Π (7.2)

whereCR,0 = 2.0 is the resistance coefficient defined for impervious structures (Section 5.3.5)

andΠ is the porosity coefficient, obtained as a combination of openings on both the front and
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Figure 7.7 – Comparison of the configuration with all porous sides (configuration 0), with
impervious lateral sides (configuration F) and with the impervious back (configuration B) in
terms of maximum horizontal force. The experimental points are also compared with Eq. 7.1
and previous studies in literature.

back sides. Openings on side walls were neglected, as shown in Section 7.3.2.

Π= 1−min[(
Ph,max

)
front ;

(
Ph,max

)
back

]
(7.3)

where (Ph,max)front is the porosity values in the front side of the building and (Ph,max)back is the

porosity values in the back side of the building. For impervious structures this model leads to

Π = 1 andCR = 2.0, which is consistent with literature. The definition of a porosity coefficientΠ

is related to the concept of “projected surface” previously discussed by Fukuyama et al. (2011).

Note that, in the present study, internal vertical walls and partition were not considered.

The predicted force Fx,D can therefore be obtained as:

Fx,D = 1
2
ρ

(
CR,0 ·Π) · B · M∗ (7.4)

and the predicted maximum horizontal force Fx,D,max becomes:

Fx,D,max = 1
2
ρ

(
CR,0 ·Π) · B · M∗

max (7.5)

The excellent agreement Eq. 7.5 with the experimental data is presented in Figure 7.8, with

global coefficient of determination R2 = 0.968 for all configurations.
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Figure 7.8 – Comparison of the measured forces (Fx,max) with those predicted using Eq. 7.5
(Fx,D,max).

Effect of additional side buildings (Configuration S)

On the base of configuration F (impervious lateral walls, Figure 3.18b), additional sides were

installed next to existing building to simulate the effect of neighbouring building on the

resulting total forces (Configuration S, Figure 3.18d). These additional sides were independent

from the central structure and their forces therefore not recorded by the force plate. This

configuration had a higher blockage ratio β =W /3B = 1.56 compared to the value β = 4.57

for the ”isolated” building (configurations 0, F and B). Consequently, these tests allowed to

qualitatively identify the influence of the blockage ratio on the resulting hydrodynamic force.

Data presented in Figure 7.9 showed that, on average, the presence of side buildings provoked

an increase in total force of about 20 %. This pointed out the importance of the blockage

ratio in the computation of the resulting hydrodynamic load. These findings are in agreement

Nouri et al. (2010) and ASCE 7 (2016) – Chapter 6.

7.4 Force analysis

As previously performed in Sections 5.4 and 6.4 for impervious buildings, some additional

parameters are considered in the analysis. These are presented hereafter and visually described

in Figure 5.13:

• Time to peak τmax, corresponding to the time from wave arrival (t0) to the force peak.

• Wave height at maximum horizontal force, hM.

• Impulse I , transferred from the wave to the building.
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Figure 7.9 – Comparison of forces (Fx) for the configurations with impervious sides (Config. F,
Figure 3.18b) and with additional sides to increase the blockage ratio (Config. S, Figure 3.18d).

7.4.1 Time to peak

The “time to peak”, τmax, represents the time interval between the initial impact (T = t − t0 = 0)
and the occurrence of the maximum horizontal force Fx,max. The values of τmax obtained

for all tests (all porosities and configurations) are presented in Figure 7.10 as a function

of h0/hmax, where h0/hmax = 0 represents the dry bed surges and h0/hmax > 0 the wet bed

bores. The results for porous structures showed a similar trend to that observed in Sections

5.4.1 and 6.4.1 for impervious structures with and without overflow. For bores, almost all

maxima occurred instantaneously for 0 <τmax · √g/d0 < 5-10, whereas for dry bed surges,

these occurred mostly for τmax ·√g/d0 > 10. These observations clearly confirmed a well-

known substantial difference between surges and bores in terms of their respective behaviour,

proving that maximum force values for surges occur after those recorded for wet bed bores.

Consequently, this resulted into steeper average gradients dF/dt for wet bed bores.

7.4.2 Wave height at maximum force

The parameter hM is defined as the wave height at which the maximum force Fx,max occurs

(T = τmax), normalised with the maximum wave height hmax without the building (Eq. 5.9).

The experimental data are shown in Figure 7.11 and compared to the design guidelines of

the ASCE 7 (2016) - Chapter 6, according to which the maximum hydrodynamic load occurs

when h = hM = 2/3 · hmax. The present data, in agreement with Sections 5.4.2 and 6.4.2 for

impervious buildings with and without overflow, showed that although the choice of hM = 2/3

is, on average, acceptable for surges. However, this is not conservative for bores as it would

result into lower water depths in the design phase, for which 2/3< hM < 1.
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7.4. Force analysis

Figure 7.10 – Time to peak (τmax): comparison between bores and surges for all 280 tests,
where h0/hmax = 0 represents dry bed surges and h0/hmax > 0 the wet bed bores.

Figure 7.11 – Wave height at maximum force hM for both wet bed bores and dry bed surges
(280 tests). Results presented as a function of h0/hmax, where h0/hmax = 0 represents the dry
bed surges and h0/hmax > 0 the wet bed bores.
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7.4.3 Impulse

The product of force F and time t is known as Impulse I . For the present case, the total impulse

Itot is the integral of the force Fx over time, until an upper limit T = 100 · (g d0)0.5 is reached

(Eq. 5.10). The impulse also represents the area of the surface below the time development

of the horizontal force. Impulse has the advantage of being less variable if compared to peak

forces (Bullock et al., 2007). Given Newton’s 2nd Law (F = m · a = m ·ΔV /Δt), the impulse

can be expressed as I = F ·Δt = m ·ΔV , corresponding to the change in momentum. The

impulse Itot experienced by the building therefore equals the exchange inmomentumwith the

incoming wave. Overall, the results in term of total impulse confirmed the previous findings

obtained from the horizontal forces. Thus, Figure 7.12 shows that the total impulse computed

for the configuration with impervious sides (F) is slightly lower than corresponding value for

the configuration with all porous sides (0). This confirmed the previous statement that the

presence of openings on the side walls had an influencemostly visible on the post-peak, quasi-

steady hydrodynamic portion (Appendix C.5.2). Similarly the results for the configuration

(S) with additional sides showed some impulse values 20% higher, as previously shown for

the forces in Section 7.3.5.The values obtained for all experimental points are presented in

Figure 7.13 as a function of Ph,max. These results confirm the previous findings obtained for

horizontal force Fx, showing that a linear reduction is also applicable to the total impulse.

Furthermore, as previously indicated, for the configuration with the impervious back (B), the

total momentum equals that computed for fully impervious building.

(a) Configuration F (b) Configuration S

Figure 7.12 – Comparison of Total impulse Itot for: (a) the configuration with impervious side
walls (F) and (b) the configuration with additional building sides (S).
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7.5. Moment and cantilever arm

(a) Total impluse Itot (b) I ∗ = Ipeak/Itot

Figure 7.13 – Reduction of total impulse (Itot) as a function of porosity Ph,max and (b) values of
I ∗ = Ipeak/Itot computed for dry bed surges and wet bed bores (280 tests). Results presented
as a function of h0/hmax, where h0/hmax = 0 represents the dry bed surges and h0/hmax > 0 the
wet bed bores.

To better quantify the impulse transferred to the building before the peak force occurs, similarly

to Sections 5.4.3, 6.4.3 and Bullock et al. (2007), a parameter, Ipeak, is defined as the integral

between 0 < T < τmax in Eq. 5.11. The portion of total impulse that is transferred to the building

before the maximum force occurs I ∗ is defined as the ratio between Ipeak and Itot (Eq. 5.12).

The experimental results are presented in Figure 7.13b, where smaller values are found for wet

bed bores with I ∗ < 0.20. These findings for buildings with openings are in agreement with
those previously obtained for impervious buildings with and without overflow.

7.5 Moment and cantilever arm

All forces applied outside of the gravity centre of the building produce a moment. Conse-

quently, horizontal forces produce a moment around the y-axis that might destabilise the

structure and lead to the building tilting. The force-plate installed below the buildings also

captured the behaviour of the momentMy in time. A maximummoment valueMy,max was

identified for every test, along with its time of occurrence τmax,M. The results are compared to

those obtained for the maximum horizontal force in Figure 7.14. The relatively good agree-

ment between the two data sets validate for buildings with openings the approach presented

in Section 5.5, implying that force andmoment maxima occurred simultaneously.

147



Chapter 7. Impact on buildings with openings

Figure 7.14 – Temporal occurrence (τmax) of maximum horizontal force Fx,max andmoment
My,max, presented in normalised form (280 tests).

For design purposes, once the magnitude of Fx,max is defined through Eq. 7.5, the elevation at

which this force acts and the resulting tilting moment are necessary. Given the simultaneous

occurrence of Fx,max andMy,max (Figure 7.14), the cantilever arm Lz arm at T = τmax can be

obtained through Eq. 5.15.

The values obtained from the experimental points are plotted in Figure 7.15a and normalized

using the maximum wave height measured without the building (hmax). According to the

results, the openings of the structure do not significantly influence the application point of

the force Fx, which can be assumed constant for all configurations (Figure 7.15a). Although

some scattering can be observed, the average value Lz = 1.15 · hmax introduced for impervious

buildings in Section 5.5, can be extended to buildings with openings, independently of the

geometry of the openings.

Consequently, similar to Eq. 5.16, the tilting moment results into:

My,D,max = Fx,D,max ·1.15hmax = 1
2
ρ

(
CR,0 ·Π) · B · M∗

max ·1.15hmax (7.6)

The comparisons of Eq. 7.6 with all experimental points is shown in Figure 7.15b, with good

agreement for all configurations.
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(a) (b)

Figure 7.15 – Cantilever arm, Lz computed as the ratioMy,max/Fx,max for all porosity values
and (b) comparison of measuredmaximummomentumMy,max with the value predicted using
Eq. 7.6,My,D,max.

7.6 Vertical forces

In addition to horizontal forces, vertical forces Fz also act on the building. These can be

distinguished into two main components: buoyancy (Fz,B) and the gravitational weight of

water (Fz,g). In the chosen reference system, the Fz,B has to be considered positive, and Fz,g
negative (Figure 3.15), being the total force at the foundation :

Fz = Fz,B+ Fz,g (7.7)

Being the process highly unsteady and the upstream water level continuously varied, the

isolation of each component is hard to compute. The total force measured by the instrument

is presented in Figure 7.16 for buildings with various porosities, along with the weight of water

without the structure (Ptot = 100%), corresponding to the weight of the propagating wave. For

the impervious buildings, the absence of overflow above the structure resulted in vertical

forces Fz close to zero, however for porous buildings the weight of the water flowing through

the openings became predominant. One can notice that for porosities between Ptot = 17 and

34 %, similar behaviours were observed, reaching up to twice the gravitational weight of the

wave, measured without the structure. For larger porosity values (Ptot = 60%), smaller vertical

forces were recorded (Figure 7.17). This is probably attributed to the “accumulation” of water

upstream and inside the structure: in fact larger openings can facilitate the flow through the

building and reduce the vertical load. The upper limit was represented by the scenario without

building (Ptot = 100 %) showing lesser values if compared to the scenarios with the obstruction.
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An initial uplift of the building was observed for Ptot = 17 and 34 %, attributed to the initial step

encountered by the incoming wave, forcing the flow to deviate in the vertical direction and

pushing the building upward (Figure 7.18). The uplift did not occur for Ptot = 60 % since the

building bottom was located at the same level as the channel. Similar results were previously

discussed by Hartana andMurakami (2015).

Figure 7.16 – Time history of the total vertical forces Fz, measured for various porosity configu-
rations, for a dry bed surge (WD2, d0 = 0.63 m).

Figure 7.17 – Normalised vertical forces Fz as a function of building porosity Ph,max.
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7.7. Summary

Figure 7.18 – Sketch of the positive vertical forces produced during the initial impact of the
wave against the building.

7.7 Summary

Field surveys and visual observations showed that buildings with openings seem to perform

better under hydrodynamic loading. This technique could therefore be used to design safer

vertical shelters, thus reducing casualties and reconstruction costs. However, up to now, very

few studies have addressed this issue and this research presents a comprehensive experimental

study on the effect of openings on the resulting hydrodynamic force.

For this, four configurations with six openings ranging from 0 (impervious, reference) to 84%

were experimentally tested for 12 standard waves with different approach conditions. The

research lead to the following findings:

1. Visual observations pointed-out an interaction between the incoming wave and the

buildings, resulting into a flow through the openings. This generated lower upstream

inundation depths compared to impervious buildings, leading to safer vertical shelters.

2. The presence of openings produced a linear reduction of the maximum horizontal force,

if compared to the corresponding impervious building. Configurations with andwithout

openings on the lateral walls had a similar behaviour in terms of maximum horizontal

force. The configuration with impervious back showed similar results to thosemeasured

151



Chapter 7. Impact on buildings with openings

for the fully impervious case. The total impulse, computed as the integral of the force

over time, had a behaviour similar to the force, confirming the linear relationship.

3. Also for buildings with openings, the occurrence of the maximum horizontal force

was shown to take place earlier for wet bed bores than for dry bed surges. Similarly

to the impervious case, the maximum force Fx,max occurred at a wave height that was

higher than 2/3 of the maximumwave height measured without the building (hmax), as

suggested by the ASCE 7-06.

4. Experimental data suggested that the presence of additional side buildings, equal to a

higher blockage ratio, increased the forces on the main structure by 20%, with higher

upstream inundation depths.

5. Both maximum horizontal force andmoment occurred simultaneously. The application

point of the total horizontal force (cantilever arm) was constant for all configurations

and for all porosities. In agreement with previous studies on impervious structures, this

could be assumed equal to 1.15·hmax.
6. New equations (Eq. 7.5 and 7.6) are proposed to predict the horizontal force Fx and

the tilting momentMy, taking into account the effect of building openings within the

resistance coefficientCR. These had a good agreement with experimental points and

previous studies.

7. Because of the flow through the openings, vertical forces showed downward values up

to twice the wave-weight, measured without the building. Highest values were found

for middle porosities (17-34 %), as a consequence of the upstream accumulation.
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8 Conclusions

The generation of dry bed surges and wet bed bores was experimentally investigated through

a vertical release technique. Subsequently, their impact on typical buildings, with and without

openings, located on coastal areas subject to tsunami hazard, was assessed. The main results

and limitations of this research are summarized herein, as well as some key points for future

work.

8.1 Main results

8.1.1 Wave hydrodynamics

In the last decades the world suffered somemajor catastrophic events, characterized by sig-

nificant damages and devastation. Dam-break waves, impulse waves, tsunamis, tidal bores

and storm surges are very different physical phenomena, but all characterized by a sudden

increase in water depth, often leading to flows with extreme hydrodynamic conditions. The

rarity and diversity of these events make a comparison with visual observations difficult to

assess, resulting into multiple generation technique used to reproduce such waves in labo-

ratory environments. The vertical release of a known water volume from an upper reservoir

into a downstream channel was used to generate tsunami-like waves. The variation of the

released discharge allowed to generate waves with different hydrodynamic properties in terms

of velocity and water depths. Visual observations confirmed a significant difference in be-

haviour between dry bed surges, characterised by a faster, non-aerated front followed by a

constant increase in water depth, and wet bed bores, characterised by higher water levels

with a turbulent aerated roller, similar to a translating hydraulic jump. All generated waves

were compared to field data, existing guidelines and previous studies available in literature,

thus proving that the vertical release technique can be used to generate tsunami-like flows

propagating inland. Because of their key role in the estimation of hydrodynamic forces, im-

portance was given to the velocities of the generated waves. This led to the definition of a

new expression to predict the front propagating celerity of surges propagating on dry bed as a
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function of the impoundment depth (d0):

U = 1.25 ·
√

g d0 (4.17)

For wet bed bores, excellent agreement was observed with existing literature. The velocity

profiles of the propagating surges and bores behind the front were also analysed, showing

some profiles typical of open channel flows. These were successfully compared to Prandtl’s

exponential law, thus proving that the common assumption of a constant velocity profile

throughout the water depth is acceptable. An expression to estimate the deceleration of the

average velocities behind the wave front as a function of the impoundment depth d0 was

provided:

Vm
U

= 1− c · tanh
[

b · T

√
g

d0

]
(4.10)

In addition, this equation allowed to obtain the time developments of the Froude number and

the momentum flux per unit width.

8.1.2 Impervious buildings

The tragic nature of tsunamis, impulse waves and dam-breakwaves also showed thatmeasures

had to be taken to reduce reconstruction costs and limit casualties. For this, the design of

resilient structures acting as vertical shelters is necessary, especially in areas where access

to high elevation refugees is difficult or too far. The large amount of studies and formulae

available in literature showed that disagreement still exists on the computation of hydrody-

namic forces for such unsteady impacts. Thus, through an extensive experimental program,

twelve standard waves were released against an impervious free-standing building. This was

assembled on a force plate, providing the time-histories of the forces andmoments in all three

directions. Visually, all impacts presented high splashes for all configurations, followed by a

quasi-steady hydrodynamic flow around the building. Forces were shown to be proportional to

the hydrodynamic properties of the wave, measured without the building. In the computation

of the force a resistance coefficientCR was preferred to the classical drag coefficient, taking

into account both hydrostatic and hydrodynamic components (herein CR,0 = 2.0). For dry

bed surges a good agreement was directly found with the momentum flux per unit width (M),

obtained as the product of water depth h and the decelerating velocity values Vm:

Fx,D = 1
2
ρCRB · M = 1

2
ρCRB · (hV 2m

)
(5.2)

For wet bed bores, because of the presence of a discontinuity in the form of an aerated roller,

an overestimation of the force was constantly observed. For this, the introduction of a wet bed

bore reduction coefficient χwas necessary, resulting into a modified momentum flux (M∗):

Fx,D = 1
2
ρCRB · M∗ = 1

2
ρCRBh ·{min[

χU ;Vm(t )
]}2 (5.6)
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Some structures located on the shore are not designed as vertical shelters and for these over-

flow is accepted. Specific experimental tests showed that once the structure is submerged,

higher water levels are observed in the downstream side, thus reducing the hydrostatic com-

ponent of the total force. As a consequence, milder loading conditions were systematically

registered, resulting into reduced values of the resistance coefficient (CR,S ≈ 1.5). This implied
that from a structural point of view, the overflow does not represent a critical scenario.

8.1.3 Effect of building openings

Field surveys showed that structures with openings performed better under hydrodynamic

load, however no systematic study of the effect of openings was available in literature. Ex-

perimental tests for six opening values arranged in four configurations indicated that a flow

through the building could act as a mitigation measure, thus reducing the total load on the

structure. Visually, the presence of openings resulted in a different impact dynamic, with

lower upstream inundation depths and therefore safer vertical shelters.

A newmodel to predict the maximum force, taking into account the effect of building open-

ings was proposed through the introduction of a porosity parameterΠwithin the resistance

coefficient:

Fx,D,max = 1
2
ρ

(
CR,0 ·Π) · B · M∗

max (7.5)

The presence of openings on both the front and the back sides of the building were taken into

account. Openings on the side walls were shown to be non-influential in the computation of

the maximum impact force. However, these became non-negligible in the quasi-steady post-

peak hydrodynamic phase, where the absence of flow through the side walls was responsible

for forces some 30% lower (Appendix C). The relationship between the maximum hydrody-

namic force and the building openings was shown to be linear. In addition, for both buildings

with and without opening, all experimental tests showed that the maximum horizontal force

(Fx) and moment (My) occurred at the same time. This allowed to compute an expression

of that cantilever arm equal to 1.15 times the maximumwave height measured without the

structure (hmax). As a consequence, an estimation of the tilting moment was possible through

the following equation:

My,D,max = Fx,D,max ·1.15hmax = 1
2
ρ

(
CR,0 ·Π) · B · M∗

max ·1.15hmax (7.6)

and this model showed a good agreement with all experimental points and previous studies

available literature.

In addition, these studies pointed out some key differences between the impact of dry bed

surges and wet bed bores, for both buildings with and without openings. From the experimen-

tal tests, it emerged that the maximum force occurred before for wet bed bores and that it was

associated with higher water depths, compared to dry bed surges. All results derived in terms
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of forces were also confirmed for the impulse (i.e. the integral of the force over time), known

for being a less variable parameter compared to peak forces. It is also important to point out

that only 5 to 30 % of the total impulse was transferred to the structure before the occurrence

of the maximum force, showing that the quasi-steady post-peak hydrodynamic phase should

not be neglected.

This research was fully experimental and the current results could be used to validate or

calibrate existing numerical models. Furthermore, the above findings will assist practical

engineers and contribute to a safer and better design of resilient buildings.

8.2 Limitations

The results of this research have the following limitations:

1. The results obtained were derived from dry bed surges and bores propagating on a

smooth horizontal bed. The beneficial effect of beach slopes in dissipating wave mo-

mentum are herein not considered, resulting into a more conservative approach. In

addition, results are valid for waves within same Reynolds and Froude numbers as the

tested scenarios (Fr ≈ 1-5, Re ≈ 105).
2. The findings are only applicable to elastic structures, for which no plastic deformations

are observed.

3. Results showed that the blockage ratio (channel width/ building width) influenced the

magnitude of the measured force. Thus, these findings have to be applied to scenarios

with similar blockage ratios.

4. The results only apply to flows in the absence of debris and transported material. In

case of debris, openings are most likely to be blocked (debris damming effect) and the

beneficial effect of openings may be reduced.

5. For this experimental set-up, buoyant forces were only partially recorded. Thus, solid

conclusions on the vertical forces acting on the structure cannot be drawn.

8.3 Outlook

The present study provides a relevant contribution in the domain of wave impact against

buildings with openings. Nevertheless the behaviour of fluid-structure interaction during

highly unsteady hydrodynamic impacts is still not fully understood. In this context, the

following points may require further investigations to expand the knowledge in both wave

hydrodynamics and wave impact on buildings:

Wave hydrodynamics

• A specific and comprehensive study on the turbulent behaviour of the generated waves

is recommended, including a larger number of repeats to isolate the fluctuations from
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the ensemble-average. This would provide some relevant additional information in

terms of Reynolds stresses and Turbulent intensity for tsunami-like flows propagating

inland.

• Wet bed bores showed that presence of an aerated roller, which was shown to have

an influence on the resulting loading process. For this, an empirical coefficient χwas

introduced. Nevertheless the effect of air entrainment on the impact forces should be

investigated through specific tests in terms of air-water flow properties.

Wave impact on buildings

• The exploitative studies revealed that the resulting load on free-standing structures was

influenced by the blockage ratio. Tests varying the building width could be performed

to isolate and quantify such effect.

• Focused experimental investigations on the effect of openings on the resulting drag

coefficientCD under choked, subcritical, steady-state flows are also recommended.

• Previous studies showed that the orientation of impervious free-standing structures

along the coastline had a beneficial effect on the resulting forces. The combined effect

of building orientation and openings would also be of interest.

• In coastal areas subject to tsunami hazard, water often carries a high amount of debris,

including poles, logs, containers and vehicles. These result into a blockage of the

building openings, generating the so-called "Debris-damming" phenomenon and thus

limiting the beneficial effects of porous structures. Although some studies are already

being carried out on perforated walls, it would be of interest to combine the effect of

openings and debris motion for a better evaluation of the resulting forces.

• This research focused on the hydraulic aspects of the impact. An implementation of

these results from a structural prospective, providing practical application guidelines is

necessary. A combination of the wave-induced loads with the seismic and wind design

could be implemented.
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A UVP Sensitivity Analysis

Ultrasonic Velocity Profilers (UVP) typeDUO-MX SN (produced by theMet-Flow - Switzerland)

were used to detect the quasi-instantaneous velocity profiles of the moving waves. For this, a 2

MHz transducer was installed in the channel bottomwith an inclination of 20° in the upstream

direction. OneUVPper cross sectionwas used andmeasurementswere taken in the transducer

axis direction, then projected in the main flow direction (x-axis). Velocity components in the

vertical and transversal directions were not considered. A complete description of the UVP

used herein can be found in Section 3.3.2.

Bores are a highly unsteady phenomenon, meaning that its properties rapidly change in

space and time, requiring a high frequency for all measurements. For most instruments the

quality and the reliability of the measured data is proportional to the number of repetitions

used, implying a longer duration and therefore a lower acquisition frequency. A compromise

between high frequency and quality of the results was therefore necessary and a sensitivity

analysis was carried out on three wet bed surges with initial still water depth h0 = 0.05 m to

investigate the influence of the main acquisition parameters. These are presented in Table A.1.

Number of
repetitions

Acquisition duration
[ms]

Acquisition frequency
[Hz]

Bore 1 32 18 55.6
Bore 2 64 38 26.3
Bore 3 128 74 13.5

Table A.1 – Variation of the acquisition parameters in the sensitivity analysis

This Appendix is based on the extended abstract "Velocity profilemeasurements in bore waves" by D.Wüthrich,
M. Pfister, G. De Cesare and A.J. Schleiss, published in the proceedings of the 10th International Symposium on
Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering (ISUD 10) in Tokyo, Japan (28-30 September
2016). The experimental work and the analysis presented hereafter is original and was performed by the author.
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Appendix A. UVP Sensitivity Analysis

(a) Bore 1 (32 repetitions) (b) Bore 1 (32 repetitions)

(c) Bore 2 (64 repetitions) (d) Bore 2 (64 repetitions)

(e) Bore 3 (128 repetitions) (f) Bore 3 (128 repetitions)

Figure A.1 – Sensitivity analysis for the use of UVPs: (left) time evolution of the Average Profile
Velocity Vm and (right) examples of profiles obtained for t = 6.5 s, after the turbulent bore
front.
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As shown in Chapter 4, a depth-average profile velocity (Vm) was calculated for every profile

obtained using Eq. A.1, in which i varied from 0 (channel bottom) to n (hmax).

Vm = 1
n

i=n∑
i=0

vi (A.1)

The results obtained for all three bores are presented in Figure A.1 as a function of time, where

a similar behaviour is observed for all tested bores. One can notice that a higher frequency

(Figure A.1a, 32 repetitions) corresponded to a greater number of points, but lower precision

and higher scattering were found. With lower frequencies, the number of measurements

was reduced, the overall profile behaviour remaining unchanged. It is important to point

out that being the first part of the wave highly aerated and turbulent, the transmission of

the echo was obstructed by the presence of air bubbles. This resulted into velocity profile

measurements characterised by high scattering and low physical meaning. Results also

showed some interesting logarithmic profiles typically associated with open channel flows for

all scenarios. As an examples the profiles obtained at t = 6.5, behind the aerated bore front,

are also presented in Figure A.1 . Similarly to the previous case, for higher acquisition times a

smoother profile was observed, whereas for higher frequencies more scattering was found.

For these reasons in the present study a resolution of 128 repetitions was chosen and applied

to all tests (Wüthrich et al., 2016a).
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B Bed roughness and water surface
fluctuations

Secondary waves with various frequencies were observed behind the front for both surges

and bores. For unbroken waves these phenomena might be classified as Favre secondary

waves (Favre, 1935; Henderson, 1966). The behaviour of secondary oscillations was previously

investigated for dam-break waves (Marche et al., 1995) and for open channel flows (Meile

et al., 2013; Terrier et al., 2013). Their appearance is probably due to the non-hydrostatic

pressure distribution around the wave front (Soares-Frazão and Zech, 2002). A theory implying

the superposition of wavelets with different velocities was developed by Chow (1959). Some

specific studies focusing on turbulence in bores were carried out by Yeh andMok (1990) who

compared their behaviour to hydraulic jumps. A “generation-advection cycle” was observed, in

which eddies were formed in the roller and then advected behind the front. For large Froude

numbers, the whole bore was saturated with turbulence.

The purpose of this appendix is to further investigate the fluctuating behaviour of wet bed

bores and dry bed surges behind the front. Both smooth and rough beds were considered and

data were analysed in frequency and time domains. The results yielded a characterisation of

the free-surface oscillations according to the time evolution of the bore. Significant differences

between the structure of the oscillations in the near-front region and in the region situated

away from the front were observed. These differences were analysed in terms of their spectral

energy distribution.

This Chapter is based on the papers "Surface Turbulence on Bores and Surges propagating on Smooth and
Rough Beds" byD.Wüthrich, M. Pfister, P.Manso, G. Constantinescu and A.J. Schleiss, published in the proceedings
of the 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and
Science (Coastlab16) in Ottawa, Canada (7-9 May 2016) and "Estimation of wave propagation velocity on a channel
with smooth and rough bed" by D. Wüthrich, M. Pfister, I. Nistor and A.J. Schleiss, published in the proceedings of
the 37th IAHR World Congress in Kuala Lumpur, Malaysia (13-18 August 2017). The experimental work and the
analysis presented hereafter is original and was performed by the author.
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Appendix B. Bed roughness and water surface fluctuations

B.1 Experimental set-up

The experimental set-up is described in details in Chapter 3. The tests with a smooth bed

took place on painted wooden panels with a Darcy-Weisbach friction factor measured to

fDW ≈ 0.021 (Figure 3.3c). To increase the roughness of the channel bed, an artificial green
carpet was added (Figure B.1); the latter had a thickness of 7 mm and some detailed steady

state experiments were carried out to measure the Darcy-Weisbach friction factor fDW ≈ 0.04,
corresponding to an equivalent roughness ks = 2.8 mm. This value is consistent with the

findings of Choufi et al. (2014) for a similar material. The bore was characterised in terms of

velocity and height using 7 Ultrasonic distance Sensors (US) installed along the channel (at x =

2, 10.1, 12.1, 13.1, 13.35, 13.6 and 13.85 m). These had a sampling frequency of 12.5 Hz and the

analysis was carried out using a 6 Hz cut-off frequency, in accordance with Nyquist-Shannon

theorem.

Figure B.1 – Rough configuration installed on the smooth channel.

B.2 Effect of bed roughness

Four tests were selected on both smooth and rough, dry and wet bed conditions. Details

concerning the experiments can be found in Table B.1. As discussed in Chapter 4, dry bed

surges and wet bed bores showed a different behaviour: dry bed surges presented a thin front

followed by a constant increase in water depth following the front and no major aeration was

observed, whereas wet bed bores presented a highly turbulent, recirculating roller propagating

over an irrotational, initially still, water level. Wet bed bores showed a sudden increase in water

height, followed by a relatively long and constant water height. For both wet bed bores and

dry bed surges, less aeration was observed behind the front and some secondary waves with

multiple time periods were recognised. The surface oscillation presented a 3-dimensional

pattern and somemovements were also observed in the transversal direction. Pictures of the

propagating bores and surges are presented in Figure B.2.
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Bed surface Bed condition d0
[m]

U
[m/s]

hmax
[m]

Re Fr FrB

Surge Smooth ( fDW ≈0.21) dry 0.82 3.55 0.185 2.52·107 2.63 -
Rough ( fDW ≈0.40) dry 0.82 2.86 0.220 2.10·107 1.94 -

Bore Smooth ( fDW ≈0.21) wet (h0=0.05m) 0.82 2.74 0.269 2.12·107 1.68 3.91
Rough ( fDW ≈0.40) wet (h0=0.05m) 0.82 2.74 0.279 2.15·107 1.66 3.92

Table B.1 – Experimental program of tests carried out for the present study

(a) Dry bed surge - smooth bed (b) Wet bed bore - smooth bed

(c) Dry bed surge - rough bed (d) Wet bed bore - rough bed

Figure B.2 – Propagating of dry bed surges and wet bed bores on both smooth ( fDW ≈ 0.02)
and rough ( fDW ≈ 0.04) bed

The time evolutions of the wave profiles measured at US7 (x = 13.85 m) for both surges and

bores are presented in Figure B.3. Results showed that the surge propagating on the rough

bed had lower velocities than the surge propagating on the smooth bed. Furthermore the

dry bed surge on rough bed had a more aerated front (Figure B.2c). Both measurements and

visual observations showed that bores over a wet bed presented similar behaviours regardless

of the bed roughness. The findings suggested that the still water level had more influence

than the bed roughness. The profiles obtained for the dry bed surges showed a constantly

increasing behaviour directly followed by the decreasing limb, whereas bores over wet bed

presented a sudden raise followed by a relatively constant water level (plateau height, h2)

before decreasing. These behaviours are in agreement with the theory of Ritter (1892) and

Stoker (1957) for dam break waves on dry and wet bed respectively (Chapter 4).
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(a) Dry bed surge (b) Wet bed bore

Figure B.3 – Comparison of wave profile h/d0 on smooth and rough beds for: (a) dry bed
surges, d0 = 0.82 m; (b) wet bed bores, d0 = 0.82 m and h0 = 0.05 m.

For the smooth configuration, the longitudinal water depth profiles obtainedwhen the dry bed

surge reached x = 13.85 m and 13.60 (location of US 7 and US6, respectively) were compared

to the theoretical solutions of Ritter (1892) and Chanson (2009) in Section 4.3.1. The influence

of bed friction was implemented by Dressler (1952, 1954) andWhitham (1955). The profiles

obtained for the experiments over rough bed are compared to these theoretical solutions in

Figure B.4, where a goodmatch can be observed with existing literature (Ritter, 1892; Chanson,

2009). For wet bed bores, no differences are observed between the smooth and the rough

conditions in terms of wave profiles (herein not shown), showing that both scenarios were

well described by the theory of Stoker (1957). These findings suggested that for the tested

roughness values, the initial still water depth h0 had a greater influence on the resulting wave

than friction.

Knowing the spatial repartitions (Δx) of the US sensors, an estimation of the wave propagation

celerityU was obtained through the ratio Δx/Δt . Based on these values, both the Reynolds

(Re) and Froude (Fr) numbers of the flow were calculated using Eq. B.1:

Re= U · DH
ν

Fr= U√
g · hmax

FrB = U√
g · h0

(B.1)

where DH is the hydraulic diameter (DH = 4RH), ν is the kinematic viscosity of water, g the

gravity constant and h the wave height. For the wet bed bore a bore Froude number (FrB) was

also calculated. Results showed similar values of the Reynolds number for all configurations,

with Re ≈ 2 ·107 during the wave peak. The relatively high values of the Reynolds number,
computed using the front celerity U and the maximum wave height hmax (that might not

occur at the same time) represented an upper value indicating a high level of turbulence

inside the wave. The higher velocities of the dry-bed surges were compensated by the higher
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Figure B.4 – Comparison of longitudinal wave profiles for smooth and rough beds with theo-
retical solutions of Ritter (1892) and Chanson (2009).

water elevation for the wet bed bores, explaining the similarity of the resulting values for all

scenarios. Similarly to some previous studies, a bore Froude number was calculated based on

the initial still water depth (h0) (Yeh and Mok, 1990; Leng and Chanson, 2015), with values FrB
> 2. This implied that the flow behind the bore front was saturated with advected eddies Yeh

andMok (1990).

The US sensors also captured secondary wave patterns behind the front and all tests presented

multiple fluctuations of the water surface with frequencies varying from large to small scale.

Some substantial differences were observed between the increasing and decreasing limbs of

the wave, as the first seemed to have a higher density of secondary waves with greater ampli-

tude and shorter periods. According to Yeh andMok (1990) the fluctuations and the turbulent

formations immediately behind the front are related to the behaviour of the propagating roller.

Furthermore, a “generation-advection cycle” was observed, suggesting that the eddies formed

inside the roller and were then advected in the flow, where a vertical stretch was detected. The

secondary turbulence patches were related to the intermittent nature of the flow, as discussed

by Longuet-Higgins and Turner (1974). A difference in water elevation between the smooth

and the rough configurations was observed in the steady flow following the wave. The bores

propagating over a rough bed were characterised by a lower level of surface turbulence with

fewer fluctuations than those observed for the smooth bed cases. This might be attributed

to the larger turbulence intensities of the flow generated over a rough bed, resulting in a

more efficient dissipation of the eddies than on smooth bed, without interaction with the

air-water interface. For the smooth-bed cases, the less efficient energy dissipation inside the

flow would then result into enhanced surface turbulence with a repeating pattern to dissipate

the remaining energy.
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B.3 Water surface fluctuations

To get an insight in the surface fluctuations of the waves, an exploratory spectral analysis

was carried out using the transient water level data presented in Figure B.3. First a Fourier

Fast Transform (FFT) was applied to all raw height signals to identify the density of the

frequencies observed on the water surface. The Fourier transform decomposes a signal into

its frequency components. Results are presented in Figure B.5 for all tests. As expected,

a predominance of the low frequencies was observed for all profiles. Furthermore, some

typical turbulent profiles associated with open channel flows were observed for both bores

and surges. The high-frequency part of the spectrum followed the −5/3 decay law predicted

(a) Dry bed surge (b) Wet bed bore

Figure B.5 – Spectral density functions for wave profile raw signals and comparison with
Kolmogoroff decay law: (a) dry bed surges, d0 = 0.82 m; (b) wet bed bores, d0 = 0.82 m and h0 =
0.05 m. (acquisition frequency 12.5 Hz, duration of the raw signal around 30s each, Figure B.3)

by the Kolmogoroff (1931) turbulent cascade theory, implying energy transfer from larger

scales to lower scales all the way to viscous sub-layer. Although it is not supported by a solid

theoretical explanation for bores and limited to the extent of the observed transient signals,

is the author’s impression that the oscillation of the wave surface can give an insight of the

eddy size distribution inside the wave, and therefore on the energy content of the secondary

waves. A second analysis was carried out to characterise the surface turbulence, where the

oscillations of the secondary waves were isolated using a “Reynolds-like” decomposition, in

which a time-dependent moving average was subtracted from the original signal:

h′(t )= h(t )− hm,av(t ) (B.2)

where h′(t ) is the fluctuation, h(t ) themeasured profile and hm.av(t ) themoving average over a

period of 3 seconds. This value was selected as it represented the shortest period that allowed

to isolate the surface oscillations from the profile while keeping the fluctuating behaviour. The
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B.3. Water surface fluctuations

decomposition and the obtained signals are presented in Figure B.6 for all scenarios. Given

their substantial difference, the signal was then divided into two main parts: theHead and

the Tail of the main wave, each portion lasting around 10 seconds. The front was visually

characterised by the presence of higher frequencies with a greater amplitude, whereas the tail

part was characterised by lower amplitude oscillations with better regularity. Visually, this

difference in signal is clearly presented in Figure B.6. To improve the precision of the spectral

analysis, several data sets from identical tests were summed up in order to obtain a longer

signal for the FFT, hereafter called “ensemble signal”. All the considered sub-sets had similar

values in terms of their average and variance.

(a) Dry bed surge - smooth bed (b) Wet bed bore - smooth bed

(c) Dry bed surge - rough bed (d) Wet bed bore - rough bed

Figure B.6 – “Reynolds-like” decomposition of the original profile (h, black line) in moving
average (hm.av, red line) and fluctuations (h′) for a single data-set: in green the values obtained
for the head, in blue those for the tail.
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A Fourier Fast Transform (FFT) was applied to the ensemble signals (head and tail, smooth

and rough); the results are presented in Figure B.7 for all configurations. As observed for the

raw signal (Figure B.5), the spectra for the ensemble signals for all scenarios and for each

part of the wave presented a typical profile similar to the previous ones, including the −5/3
slope for the Kolmogorov inertial sub-range (not shown). For this analysis the remaining

lower frequencies were not considered, as they represented a residual of the moving average

decomposition. For both dry bed surges and wet bed bores the highest density of frequencies

were observed for 0.5 < F < 2Hz, corresponding to wave periods of 0.5 to 2 seconds. The energy

content of frequencies above 2 Hz was small compared to that of the lower frequencies. For all

configurations a lower density was observed in the tail part of the signal and overall higher

peaks were recorded for waves propagating over smooth bed. For the tail part a dominant

frequency is clearly observed for f = 0.6 Hz in the rough bed cases, corresponding to a wave

period of 1.4 s. If an average velocity of 2.5 m/s is assumed a wavelength of 3.5 m is obtained,

which is consistent with visual observations.

Overall, the spectra confirmed the visual observations that the tail part of the signal contained

waves with longer periods compared to the head part. Especially in the tail, less smaller-

scale turbulence was observed for the rough bed cases. For the head part, a single dominant

frequency could not be recognised, however the signal was composed of multiple repeating

ones, proving the high level of turbulence in the approaching wave.

Dry, smooth Wet, smooth Dry, rough Wet, rough

σ2 [0.5-6 Hz] - Head 0.0031 0.0031 0.0030 0.0045
σ2 [0.5-6 Hz] - Tail 0.0012 0.0022 0.0010 0.0015

Table B.2 – Variance values for 0.5 < f < 6 Hz for all tested configurations

The integral of the spectral density (σ) with frequencies between 0.5 and 6 Hz was computed

for all configurations; the upper limit was chosen based on the Shannon-Nyquist Theorem.

The integral corresponds to a fraction of the signal’s variance or, in other words, to the energy

associatedwith thementioned frequency range; results are presented in Table B.2. It was noted

that for all configurations the head part of the wave had a higher energy content associated

with frequencies in the interval 0.5< f <6 Hz. For the tail signal, a higher energy content was

obtained for the wet configurations, confirming the visual observation of a higher turbulent

intensity inside the bore wake for such configurations.

B.4 Front celerity

For engineers designing structures resistant to hydrodynamic loads, it is fundamental to

determine the celerityU of the incoming wave. For wet bed bores velocities can be precisely

predicted using the theory of Stoker (1957), as discussed in Section 2.3.3. On the contrary,

incertitude still exists in the evaluation of the front celerity for dry bed surges (Nistor et al.,

170



B.4. Front celerity

(a) Dry bed surge - smooth bed (b) Wet bed bore - smooth bed

(c) Dry bed surge - rough bed (d) Wet bed bore - rough bed

Figure B.7 – Spectra obtained for the ensemble signals of the wave height fluctuations for both
parts of the wave (head and tail) for all configurations.

2009) as shown in Chapter 2. For these, it is commonly assumed that:

U =α ·
√

g d0 (B.3)

whereU is the wave front celerity, d0 the impoundment depth if a dam-break wave is con-

sidered, and α is a velocity coefficient whose value is covered by high uncertainties. Various

values of α can be found in literature and the most relevant ones were presented in Table 2.2.

As shown, for the the present study on the smooth channel, the best approximation was found

with a coefficient α = 1.25 (Figure 4.13). These were also compared to the experimental tests

on rough bed. For these, a significant influence of roughness was observed and lower celerity

values measured over rough bed, leading to an overestimation of the celerity values up to 25 %

for a coefficient α = 1.25.
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Figure B.8 – Comparison of experimental data with previous existing formulae

These findings clearly indicated a dependence of α on the friction factor fDW that should be

taken into account in the prediction ofU . For wet bed bores the roughness was shown to have

a less significant influence and the same celerity values were recorded for both smooth and

rough scenarios. Both behaviours are presented in Figure B.9, in which the values of αwere

plotted as a function of the friction factor fDW. The decreasing behaviour of α for larger values

of fDW confirms its dependence on the bed roughness for dry bed surges.

(a) Dry bed surge (b) Wet bed bore (h0 = 0.05 m)

Figure B.9 – Velocity coefficient α as a function of friction factor fDW for both dry bed surges
and wet bed bores
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B.5. Summary

The experimental points were also compared to some existing theories found in literature,

mainly in Dressler (1952, 1954) andWhitham (1955). Dressler (1952) solved the Saint-Venant

equations using a perturbation method assuming a constant friction factor, leading to the Eq.

B.4 (readapted by Chanson (2004)).

U√
g d0

= 2
3

(
1+ x

t ·√g d0

)
+ F1 · fDW

8

√
g

d0
· t (B.4)

where F1 is a first order correction factor for the flow resistance, whose value is expressed in

Eq.B.5.

F1 = − 108

7

(
2− x

t ·



g d0

)2 + 12

2− x
t ·



g d0

− 8
3

+ 8


3

189
·
(
2− x

t ·√g d0

) 3
2

(B.5)

An analogous solution was proposed by Whitham (1955) solving the Saint-Venant equations

using an adaptation of the PolhausenMethod (Chanson, 2004), leading to Eq.B.6.

U√
g d0

= 2

1+2.90724
[(

fDW
8

)√
g t2

d0

]0.4255 (B.6)

For both theories, on a completely smooth surface ( fDW = 0), a celerity value equal to the

propagation of the forward characteristic in the Ritter (1892) theory can be assumed, implying

α = 2. An asymptotic behaviour toward this value can be observed in Figure B.9a for fDW→ 0
leading to a vertical tangent. For large roughness values ( fDW→ ∞) zero velocity should be
expected, implying α = 0, even if this scenario is physically impossible. This represents a

limitation for both theories of Whitham (1955) and Dressler (1952, 1954) that are no longer

valid for large tip regions, i.e. for large roughness values (Chanson, 2004). Figure B.9 showed a

relative goodmatch for low friction factors with both theories, however differences become

more important for rougher surfaces andWhitham (1955) theory represented the experimental

tests better.

B.5 Summary

A better understating of the effect of bed roughness and secondary waves observed behind

wet bed bores and dry bed surges was obtained. The investigation of the surface oscillations

allowed an insight of the internal turbulent behaviour and the eddy size distribution close to

the top of the wave.

As expected, the surge propagating on a rough bed had lower velocities, whereas similar

height profiles and velocities were observed for the bores propagating over an initial still

water depth, suggesting that the bed roughness had less or almost no influence. All test cases

were conducted with a high Reynolds number (Re ≈ 107), implying a highly turbulent flow.
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The regular and less oscillating pattern observed for the rough configurations suggested a

higher level of internal smaller-scale turbulence, which was able to more efficiently dissipate

larger eddies, whereas in the smooth configuration the residual energy was dissipated with

repetitive surface fluctuations. A frequency domain analysis was carried out and through FFT

power spectra of the wave height profiles were obtained for all configurations. A Reynolds-like

decomposition was applied to the wave height signal, allowing to isolate the fluctuations of

the surface turbulence. A difference in the shape of the spectra was observed between the

increasing (head) and the decreasing (tail) parts of the wave from the wave profile. The head

was characterised by higher frequencies compared to the tail, with larger amplitude. The

computation of the integral of the spectrum showed higher energy associated to the tail for

frequencies between 0.5 and 6 Hz.

The wave profiles were shown to be in agreement with existing theories in the domain of

dam-break waves for both smooth and rough horizontal beds. While no influence of bed

roughness was observed for wet bed bores, results clearly showed a dependence of the wave

celerity on the friction factor for dry bed surges. For the two tested roughness values, lower

celerity were observed for higher roughness, suggesting that friction should be considered

when estimating the approaching velocity of a tsunami inland. The experimental points

showed good agreement with previous theoretical solutions found in literature.
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C Steady-state experiments

C.1 Introduction

Highly unsteady flowmotions are potentially harmful for the inundated structures. Past exam-

ples showed that, while most buildings collapsed during initial impacts of incoming waves,

major damages were also observed during the quasi-steady flow around the buildings. In both

Chapters 5 and 7 it was shown that the portion of the total horizontal force observed before the

peak is minimal and that the impulse transferred to the structure before the occurrence of the

peak force corresponds to 30% for surges and 15% for bores. This means that the impact phase

is followed by an important quasi-steady flowmotion characterised by longer duration and

responsible for more than 60% of the impulse transferred to the structure. For this reason an

understanding of the quasi-steady flow condition is important and a more precise estimation

of the drag coefficient for both impervious and porous structures is necessary.

The influence of obstacles in an open channel flow is well established and, among others, is

worth mentioning the contributions of Nagler (1918), Yarnell (1934), Benjamin (1956) and

Raju et al. (1983). According to Qi et al. (2014), the drag coefficient depends on the shape of

the obstacle, the blockage ratio (i.e. B/W , where B is the building side andW the channel

width), the ratio between flow depth and obstacle side (i.e. h/B) and the Froude number of

the impinging flow (Fr, Eq. C.1). The dependence ofCD on the Reynolds number is commonly

assumed to be weak because of the turbulent nature of most open-channel flows, both in the

laboratory and in the field. The drag coefficient is typically defined for low Froude numbers

(subcritical regimes) with similar upstream and downstream flow depth. Furthermore, most

values of the drag coefficient were derived from the loss of momentum flux through flow

depths measurements (Henderson, 1966). Qi et al. (2014) conclude that this technique is not

suitable for 3-dimensional bodies because of the unsteady behaviour of the wave field.

As mentioned before, for highly subcritical flows, the same flow depths are observed on both

the upstream and downstream sides of the obstacle. For increasing Froude numbers, the flow

becomes choked and a difference in water depth is observed between the two sides, resulting

into a non negligible hydrostatic component. In addition, for the choked flow a hydraulic
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jump is observed downstream of the structure (Figure C.2a). Field studies have shown Froude

numbers Fr ≈ 1 for tsunami flows propagating inland (Fritz et al., 2012). For this reason, in the
present study, only the chocked case is considered, with Froude numbers included between

0.81 and 0.87 (Table C.1).

The computation of the drag component under subcritical steady conditions was widely

investigated in the past and agreement on a common value ofCD = 2.0 for squared structures

is found Blevins (1984). For wave impacts, the laboratory experiments by Arnason (2005)

indicated aCD = 2.0 for a square prism with orientation θ = 0°. This value is also adopted by

FEMA (2012). Yeh (2006) noted that mostCD values were appropriate for steady flows condi-

tions, but did not directly applied to tsunamis flows. If a long tsunami period is considered,

then the assumption of a quasi-steady conditions can be made and the classical drag force

equation (Eq. C.2) applied, provided that an appropriate CD is chosen. Shafiei et al. (2016)

isolated the hydrodynamic force component by subtracting the hydrostatic force component

from the total force, leading to a values ofCD = 1.65. Section 5.3.5 suggested to combine both

hydrostatic and hydrodynamic component into a Resistance coefficient, whose valuesCR =

2.0 was shown to be applicable to unsteady wave impacts for porous structures.

This sections presents preliminary results on the computation of the drag coefficient for

buildings with and without openings under laboratory controlled steady-state conditions.

C.2 Experimental set-up and methodology

The same facility described in Chapter 3 is used herein. The key features of the experimental

set-up used for the steady-state experiments, as well as the main parameters involved in the

process are presented in Figure C.1. All building configurations and porosities presented in

Figure C.1 – Experimental set-up used for the steady-state experiments, showing the position
of the US sensors, the installation of the force plate and the definition of the key parameters
involved in the study.
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Figures 3.18 and 3.16 were also tested under steady-state conditions. The flowwas investigated

in terms of flow depths, horizontal forces and moments using US sensors and a dynamo-

metric Force Plate, as detailed in Section 3.3. The discharged was imposed through the pumps

installed in closed-circuit of the laboratory. The flow-meter was verified prior to the tests and

its error was below 1%, as shown in Section 3.3.4. Both water depth and forces acting on the

structures were acquired with a Labview controlled acquisition system with a frequency of

1 kHz for the force plate and 12.5 Hz for the US sensors. A minimum of 10 discharges for all

measurements were performed over a duration of Δt = 60 seconds, as detailed in Table C.1.

Configuration Porosity [%] Discharge
[l/s]

Fr1 Re

All porous sides (0) 0, 17, 31.34, 34, 42.24, 60 23.1 - 170 ≈ 0.44-0.65 1.0-4.2·105
Impervious sides (F) 0, 17, 31.34, 34, 42.24, 60 23.1 - 170 ≈ 0.44-0.65 1.0-4.2·105
Impervious back (B) 0, 17, 34, 42.24, 60 23.1 - 170 ≈ 0.44-0.65 1.0-4.2·105

Table C.1 – Experimental program of tests carried out for the steady-state condition

The Froude number is herein defined as

Fr1 = V1√
g h1

= Q

h1W ·√g h1
(C.1)

Some preliminary tests showed that for the smooth, horizontal channel, for all tested dis-

charges, the flow was subcritical (Fr < 1). The presence of the building therefore had an

influence on the upstream flow, resulting into modified water depth. Similar conclusions were

obtained by Qi et al. (2014).

C.3 Theoretical model

Drag (or hydrodynamic) force is given by the sum of two components: a form drag and a

hydrostatic force:

FD = 1
2

CDρBhV 2+ 1
2

CHρg B(h21− h2d) (C.2)

whereCD andCH are empirical constants. For low Froude numbers (Fr1 ≈ Fr2), the difference
in flow depth between the upstream and downstream section is negligible and the hydrostatic

component irrelevant. The drag coefficient CD is defined for low Froude numbers (Fr→ 0)
and it is a function of the blockage ratio. IfCD0 is the drag coefficient for an unbounded flow

(B/W → 0),CD can be defined as:

CD = CD0

(
1+ CD0B

2W

)2
(C.3)
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For higher Froude numbers the flow becomes choked and the difference in water depth

becomes non negligible (h1 >> hd) and the drag force can be computed as

FD = 1
2

CKρB g (h21− h22) (C.4)

whereCK is an empirical coefficientCK ≈ 1. Qi et al. (2014) introduced a consistent model to
describe the traditional behaviour by using a semi-empirical form of the drag force taking into

account both form and hydrostatic component:

FD =λF ·ρB g 1/3V 4/31 h4/31 (C.5)

where λF is a function of the blockage ratio B/W and the upstream Froude number Fr1.

λF = 1
2

CDFr
2/3
1 + 1

2
CH

(
1

Fr4/31
− 1

Fr4/3d

)
(C.6)

Qi et al. (2014) concluded that, even in choked regime, the majority of the drag is originated

from form drag, whose intensity is weakly affected by the blockage ration B/W . The hydro-

static component becomes important only for high blockage ratios.

C.4 Visual observations

Previous experimental studies showed that a for highly subcritical flows, the upstream and

downstream Froude numbers were similar (Fr1 ≈ Fr2). When the upstream Froude number Fr1
approaches a critical value Fr1c, then the downstream Froude numbers increases drastically

(Qi et al., 2014). The water depth around the sides of the building decreases and a hydraulic

jump is generated just downstream, as shown in Figure C.2a. This sets the beginning of a

choked regime.

The effect of the presence of the impervious structure on the flow can clearly be observed

Figure C.2a. Some disturbances in the form of small surface oscillations are observed on the

upstream side of the building, following the streamline around the structure. The water depth

drastically reduced along the impervious lateral sides of the structure as the flow accelerates,

resulting into the formation of a V-shaped hydraulic jump. On the downstream side, some low

water depths are observed and the formation of the typical Von Kármán vortexes is somehow

disturbed by the presence of the hydraulic jump.

The presence of openings establishes a seepage flow through the building, resulting into a

modification of the flow dynamic around the structure, as shown in Figure C.2d. Similarly

to the impervious scenario, some disturbances are observed on the upstream side, resulting

into circular streamlines. Major differences attributed to the openings can be observed in the

downstream side, where higher water levels are constantly observed. Because of the interac-

tion between the discharge coming out of the building and the flow around the structure, a
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(a) Fr1 ≈ 0.44, Ptot = 0 % (b) Fr1 ≈ 0.48, Ptot = 17 %

(c) All porous sides (Ptot = 17 %) (d) Impervious side walls (Ptot = 17 %)

Figure C.2 – Visual observations for the steady-state flow around: (a) impervious, reference,
building; (b) configurations with openings. The influence of the openings on the sides is
shown in (c) for an all impervious structure and in (d) for the configuration with impervious
side walls.

high level of turbulence with intense surface fluctuations are observed on the downstream side

(Figure C.2d). Because of this interaction, a fully developed hydraulic jump is not observed

and the formation of Von Kármán vortexes is disturbed.

The presence of openings on the side walls was shown to have an influence on the dynamics

around the structure, as shown in Figures C.2c and C.2d. For the configuration with openings

on the front and back sides and impervious side walls (configuration F), the water level on

both lateral sides of the building decreases drastically, installing a flow behaving similarly to

the fully impervious, reference structure (Figure C.2a) also observed by Qi et al. (2014). On the

contrary, for the buildings with openings on all four sides (configuration 0) the continuous

water exchange through the walls resulted into higher water levels and into a visually more

intense turbulent flow.
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C.5 Results

The average values of the horizontal force Fx and momentMy were computed using Eq. C.7

Fx = 1

Δt

∫Δt

0
Fxdt My = 1

Δt

∫Δt

0
Mydt (C.7)

For the experimental set-up presented in Section C.2, a blockage ratio B/W = 0.2 is considered,

implying that the contribution of the hydrostatic fraction in the total drag force is less relevant

compared to the drag form. For this, its contribution is included in a Resistance Coefficient

CR, defined in Eq. C.8. A similar approach was previously presented by Arnason et al. (2009),

Wüthrich (2017) andWüthrich et al. (2018a).

CR = 2Fx
ρBh1V 21

(C.8)

where Fx is the average horizontal force (Eq. C.7), B the channel width, h1 the flow depth

and V1 the flow velocity upstream of the structure. The velocity V was computed through the

continuity equation as V = Q/(hW ).

C.5.1 Impervious buildings

The experimental points of the resistance coefficient CR obtained from the present study

are presented as a function of the upstream Froude number Fr1 in Figure C.3. For similar

blockage ratios (B/W ≈ 0.2), a good agreement was observed with the experimental points
of Qi et al. (2014). Values ofCR ≈ 5 were observed herein for all tested discharges. Although
these values are higher than those suggested by most the design codes and Blevins (1984)

for highly subcritical flows, these are in agreement with those obtained by Qi et al. (2014) for

similar obstacles subject to choked flow (Figure C.3). These values obtained for the impervious

building are then used as a reference in the comparison with the buildings with openings

(Wüthrich et al. (2018c)).

The AMTI Force Plate on which the buildings were installed provided measurements of both

forces and moments in time. Thus an estimation of the application point of the resulting

horizontal force Fx, i.e. the cantilever arm Lz can be obtained as:

Lz = Fx

My
(C.9)

The experimental points showed an excellent agreement at Lz = 0.5 · h1, confirming the

hypothesis of a rectangular repartition of the pressures on the upstream side of the building.
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C.5. Results

Figure C.3 – Values of the resistance coefficient CR as a function of the upstream Froude
number Fr1 for buildings with and without openings. These were also compared with the
experimental points of Qi et al. (2014).

Figure C.4 – Values of the cantilever arm Lz compared to upstream flow depth h1

C.5.2 Buildings with openings

For buildings with openings the seepage discharge through the building changed the dynamic

of the flow, reducing the difference in water depth between the upstream and the downstream

sides. This limited the importance of the hydrostatic component in Eq. C.2. Furthermore,
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Appendix C. Steady-state experiments

because of the turbulent nature of the flowdownstreamof the structure, a precise identification

of the water level hd is not possible and the definition of a global resistance coefficient CR,

including both drag and hydrostatic components, seems an appropriate approach.

Figure C.3 shows higher values of the critical Froude number (Fr1c) for the configurations

with openings. This is probably a consequence of the lower blockage ratio B/W resulting

from the openings inside the building. In addition, the same figure also shows a reduction

of the resistance coefficientCR as a result of the openings on the building. This reduction is

quantified a function of porosity in Figure C.5. For this, similarly to Section 7.3.1, the porosity

value Ph,max was identified at a building height h = h1.

Figure C.5 – Values of the Resitance coefficientCR as a function of porosity for the configuration
0 (all porous sides), configuration F (Impervious lateral walls) and configuration B (Impervious
back side)

For the unsteady, initially supercritical, impact of bores and surges against porous structures,

the resistance coefficient was shown to have a linear behaviour as a function of porosity. The

same approach is presented in Figure C.5, where an overestimation of the measured values

can be observed for all tested configurations. This suggested that the linear approximation

is acceptable for unsteady, supercritical flows, however its applicability to the steady-state

condition remains questionable.

Some configurations with openings on the front and back sides and impervious sides walls

were also tested (Figure 3.18b). Visual observations presented in Section C.4 showed lesser

interaction between the incoming flow and the seepage discharge, resulting into a more linear
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C.6. Conclusions

behaviour (Wüthrich et al., 2018b). As a result, lower forces were constantly recorded for all

tested discharges and porosity values, as shown in Figure C.5. In addition, the absence of

openings on the side walls, and therefore surfaces on which the hydrodynamic force might be

applied to, is partially responsible for this reduction in total force. The influence of openings

on the side walls was shown not to have an influence on the resulting maximum force under

unsteady flow conditions (Section 7.3.2). Nevertheless, this influence becomes non-negligible

in the steady-state condition, where the reduction represents some 30% of total value.

Similarly to the results obtained for the unsteady flows in Section 7.3.3, tests under steady-state

conditions revealed in Figure C.5 that the absence of openings on the back side of buildings

reproduces the same loading conditions as the reference, impervious configuration.

C.6 Conclusions

Past tsunami events showed that most infrastructure collapsed during the impact phase of the

incoming wave. Nevertheless, major damages were also observed during the post-peak quasi-

steady flow conditions. This portion was shown in the previous sections to be responsible

for more than 50-60% of the total impulse transferred to the structure (Section 5.4.3 and

7.4.3). In this section the effect of building openings on the resulting hydrodynamic force is

experimentally addressed. For this, the same installation described in Chapter 3 was used and

flow investigated in terms of flow depths, forces and moments acting on the buildings. Given

the nature of tsunami waves propagating inland only choked subcritical flows (Fr > 0.45) were

investigated herein. For impervious structures, this resulted into an important difference in

flow depth between the upstream and the downstream sides. The experimental values of the

drag coefficient (CD ≈ 5.0) obtained herein were in agreement with previous studies for similar
geometries. It was also shown that the total horizontal force was applied at a height equal to

50% of the flow depth, confirming the hypothesis of a rectangular repartition of the pressures

on the upstream side of the building. In case of openings, as a result of the seepage flow

through the building, this difference in water level, and therefore the hydrostatic component,

became negligible. Given the difficulty in isolating the hydrostatic and the drag forces, for

the present study a global resistance coefficient CR taking into account both components

was chosen, in agreement with similar previous studies for unsteady flow conditions. Results

showed a reduction of the resistance coefficient as a function of building porosity, however

this was not linear, as previously shown for unsteady flows. Furthermore, the configuration

with impervious sides (F) showed lower forces by some 30% due to the lack of water exchange

through these walls, whereas the building with impervious back had similar load conditions

to the impervious, reference scenario.
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D Testsheets: wave hydrodynamics

This research characterised in terms of their hydrodynamic behaviour, dry beds surges and

wet bed bores produced with the vertical release technique. A number of standard waves on

both dry and wet bed was identified, whose the technical details are presented in Table D.1.

The testsheets for all these tests are presented in the following pages.

Note:

• h2 is the plateau height, obtained with Eq. 2.16 for wet bed bores.

• χ is the wet be bore coefficient, obtained with Eq. 5.4.

• M is the momentum flux per unit width, defined asM = h ·V 2m.

• Fr is the Froude number, defined as Fr = Vm/
√

g h.

Test Name h0 [m] N. Pipes d0 [m] Repetitions Ref.

1 WD1 0 1 0.40 3 page 186
2 WD2 0 2 0.63 4 page 187
3 WD3 0 3 0.82 11 page 188
4 WDH 0.001 3 0.82 1 page 189
5 WW1-1P 0.01 1 0.40 3 page 190
6 WW1-2P 0.01 2 0.63 3 page 191
7 WW1-3P 0.01 3 0.82 5 page 192
8 WW3-1P 0.03 1 0.40 3 page 193
9 WW3-2P 0.03 2 0.63 3 page 194
10 WW3-3P 0.03 3 0.82 5 page 195
11 WW5-1P 0.05 1 0.40 3 page 196
12 WW5-2P 0.05 2 0.63 3 page 197
13 WW5-3P 0.05 3 0.82 7 page 198
14 WW10-3P 0.10 3 0.82 1 page 199

Table D.1 – Experimental program for the tests conducted on the waves without the buildings
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WD1 

WAVE PARAMETERS 

Wave type  Dry bed surge  

          

Name  WD1  
Repetitions  3  
Impoundment depth d0 0.40 [m] 
Initial still water depth h0 - [m] 
Maximum wave height hmax 0.132 [m] 
Plateau height h2 - [m] 
Front celerity U 2.347 [m/s] 
Maximum momentum flux Mmax 0.294 [m3/s2]  
  1 [-] 
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WD2 

WAVE PARAMETERS 

Wave type  Dry bed surge  

             

Name  WD2  
Repetitions  4  
Impoundment depth d0 0.63 [m] 
Initial still water depth h0 - [m] 
Maximum wave height hmax 0.162 [m] 
Plateau height h2 - [m] 
Front celerity U 3.114 [m/s] 
Maximum momentum flux Mmax 0.708 [m3/s2]  
  1 [-] 
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WD3 

WAVE PARAMETERS 

Wave type  Dry bed surge  

          

Name  WD3  
Repetitions  11  
Impoundment depth d0 0.82 [m] 
Initial still water depth h0 - [m] 
Maximum wave height hmax 0.181 [m] 
Plateau height h2 - [m] 
Front celerity U 3.556 [m/s] 
Maximum momentum flux Mmax 1.218 [m3/s2] 
  1 [-] 
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WDH 

WAVE PARAMETERS 

Wave type  Dry bed surge  

          

Name  WDH  
Repetitions  1  
Impoundment depth d0 0.82 [m] 
Initial still water depth h0 ~ 0.001 [m] 
Maximum wave height hmax 0.184 [m] 
Plateau height h2 - [m] 
Front celerity U 3.417 [m/s] 
Maximum momentum flux Mmax 1.172 [m3/s2]  
  1 [-] 
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WW1_1P 

WAVE PARAMETERS 

Wave type  Wet Bed Bore  

         

Name  WW1_1P  
Repetitions  3  
Impoundment depth d0 0.400 [m] 
Initial still water depth h0 0.010 [m] 
Maximum wave height hmax 0.135 [m] 
Plateau height h2 0.094 [m] 
Front celerity U 2.104 [m/s] 
Maximum momentum flux Mmax 0.366 [m3/s2]  
  0.895 [-] 
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WW1_2P 

WAVE PARAMETERS 

Wave type  Wet Bed Bore  

             

Name  WW1_2P  
Repetitions  3  
Impoundment depth d0 0.630 [m] 
Initial still water depth h0 0.010 [m] 
Maximum wave height hmax 0.167 [m] 
Plateau height h2 0.125 [m] 
Front celerity U 2.702 [m/s] 
Maximum momentum flux Mmax 0.774 [m3/s2]  
  0.918 [-] 

 

Time  T  [s]

W
av

e 
he

ig
ht

  h
  [

m
]

-5 0 5 10 15 20
0

0.1

0.2

0.3

Time  T  [s]

V
el

oc
ity

  [
m

/s
]

-5 0 5 10 15 20
0

1

2

3

4
Vm
Eq.4.10

U
U

Time  T  [s]

M
om

en
tu

m
 fl

ux
  M

  [
m

3 /s
2 ]

-5 0 5 10 15 20
0

0.3

0.6

0.9

1.2

1.5
Eq. 4.15

Time  T  [s]

Fr

-5 0 5 10 15 20
0

1

2

3

4

5
Eq. 4.14

191



 
WW1_3P 

WAVE PARAMETERS 

Wave type  Wet Bed Bore  

        

Name  WW1_3P  
Repetitions  5  
Impoundment depth d0 0.820 [m] 
Initial still water depth h0 0.010 [m] 
Maximum wave height hmax 0.190 [m] 
Plateau height h2 0.149 [m] 
Front celerity U 3.074 [m/s] 
Maximum momentum flux Mmax 1.175 [m3/s2]  
  0.933 [-] 
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WW3_1P 

WAVE PARAMETERS 

Wave type  Wet Bed Bore  

             

Name  WW3_1P  
Repetitions  3  
Impoundment depth d0 0.400 [m] 
Initial still water depth h0 0.030 [m] 
Maximum wave height hmax 0.158 [m] 
Plateau height h2 0.212 [m] 
Front celerity U 1.971 [m/s] 
Maximum momentum flux Mmax 0.351 [m3/s2]  
  0.790 [-] 
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WW3_2P 

WAVE PARAMETERS 

Wave type  Wet Bed Bore  

           

Name  WW3_2P  
Repetitions  4  
Impoundment depth d0 0.630 [m] 
Initial still water depth h0 0.030 [m] 
Maximum wave height hmax 0.200 [m] 
Plateau height h2 0.189 [m] 
Front celerity U 2.518 [m/s] 
Maximum momentum flux Mmax 0.834 [m3/s2]  
  0.842 [-] 
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WW3_3P 

WAVE PARAMETERS 

Wave type  Wet Bed Bore  

        

Name  WW3_3P  
Repetitions  6  
Impoundment depth d0 0.820 [m] 
Initial still water depth h0 0.030 [m] 
Maximum wave height hmax 0.231 [m] 
Plateau height h2 0.222 [m] 
Front celerity U 2.810 [m/s] 
Maximum momentum flux Mmax 1.312 [m3/s2]  
  0.866 [-] 
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WW5_1P 

WAVE PARAMETERS 

Wave type  Wet Bed Bore  

             

Name  WW5_1P  
Repetitions  3  
Impoundment depth d0 0.400 [m] 
Initial still water depth h0 0.050 [m] 
Maximum wave height hmax 0.177 [m] 
Plateau height h2 0.172 [m] 
Front celerity U 1.933 [m/s] 
Maximum momentum flux Mmax 0.332 [m3/s2]  
  0.710 [-] 
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WW5_2P 

WAVE PARAMETERS 

Wave type  Wet Bed Bore  

        

Name  WW5_2P  
Repetitions  3  
Impoundment depth d0 0.630 [m] 
Initial still water depth h0 0.050 [m] 
Maximum wave height hmax 0.224 [m] 
Plateau height h2 0.230 [m] 
Front celerity U 2.437 [m/s] 
Maximum momentum flux Mmax 0.810 [m3/s2]  
  0.782 [-] 
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WW5_3P 

WAVE PARAMETERS 

Wave type  Wet Bed Bore  

        

Name  WW5_3P  
Repetitions  3  
Impoundment depth d0 0.820 [m] 
Initial still water depth h0 0.050 [m] 
Maximum wave height hmax 0.259 [m] 
Plateau height h2 0.271 [m] 
Front celerity U 2.755 [m/s] 
Maximum momentum flux Mmax 1.295 [m3/s2]  
  0.815 [-] 
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WW10_3P 

WAVE PARAMETERS 

Wave type  Wet Bed Bore  

        

Name  WW10_3P  
Repetitions  1  
Impoundment depth d0 0.820 [m] 
Initial still water depth h0 0.100 [m] 
Maximum wave height hmax 0.349 [m] 
Plateau height h2 0.350 [m] 
Front celerity U 2.661 [m/s] 
Maximum momentum flux Mmax 1.241 [m3/s2]  
  0.751 [-] 
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E Testsheets: impact on buildings

This Appendix contains the results of the tests performed during this research, on the impact

of surges and bores on buildings with and without openings. The main parameters used in

the present study are defined in Figures E.1 and E.2.

Selected examples of testsheets summarizing themain results are presented in this report. The

complete collection of testsheets for all configurations is available on-line (DOI: 10.5075/epfl-

thesis-8116) on:

https://infoscience.epfl.ch/

Note:

• Ph,max is the surface porosity defined between 0< z < hmax.

• Ptot is the surface porosity defined between 0< z < HB.

• hmax is the maximumwave height, measured without the building (Table D.1).

• Hmax is the maximum run-up height, measured with the building.

• Fx,D,max is the maximum horizontal force, computed using Eq. 7.5.

• The computed force Fx,D is obtained with Eq. 7.4.

• CR is the resistance coefficient at T = τmax, obtained experimentally.

• Lz is the cantilever arm, defined as Lz = My/Fx.
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Appendix E. Testsheets: impact on buildings

Figure E.1 – Definition sketch of the main parameters during the wave impact

Figure E.2 – Definition sketch of the main force parameters
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Test name Configuration Porosity Wave type Page

B0_H_WD1 Reference (HB = 0.6m) 0 WD1 online

B0_H_WD2 Reference (HB = 0.6m) 0 WD2 page 208

B0_H_WD3 Reference (HB = 0.6m) 0 WD3 online

B0_H_WW1_1P Reference (HB = 0.6m) 0 WW1_1P online

B0_H_WW1_2P Reference (HB = 0.6m) 0 WW1_2P online

B0_H_WW1_3P Reference (HB = 0.6m) 0 WW1_3P online

B0_H_WW3_1P Reference (HB = 0.6m) 0 WW3_1P online

B0_H_WW3_2P Reference (HB = 0.6m) 0 WW3_2P online

B0_H_WW3_3P Reference (HB = 0.6m) 0 WW3_3P online

B0_H_WW5_1P Reference (HB = 0.6m) 0 WW5_1P online

B0_H_WW5_2P Reference (HB = 0.6m) 0 WW5_2P online

B0_H_WW5_3P Reference (HB = 0.6m) 0 WW5_3P online

B0_0_WD1 Reference (HB = 0.3m) 0 WD1 online

B0_0_WD2 Reference (HB = 0.3m) 0 WD2 page 210

B0_0_WD3 Reference (HB = 0.3m) 0 WD3 online

B0_0_WW1_1P Reference (HB = 0.3m) 0 WW1_1P online

B0_0_WW1_2P Reference (HB = 0.3m) 0 WW1_2P online

B0_0_WW1_3P Reference (HB = 0.3m) 0 WW1_3P online

B0_0_WW3_1P Reference (HB = 0.3m) 0 WW3_1P online

B0_0_WW3_2P Reference (HB = 0.3m) 0 WW3_2P online

B0_0_WW3_3P Reference (HB = 0.3m) 0 WW3_3P online

B0_0_WW5_1P Reference (HB = 0.3m) 0 WW5_1P online

B0_0_WW5_2P Reference (HB = 0.3m) 0 WW5_2P online

B0_0_WW5_3P Reference (HB = 0.3m) 0 WW5_3P online

B17_0_WD1 All porous (0) 17 WD1 online

B17_0_WD2 All porous (0) 17 WD2 page 212

B17_0_WD3 All porous (0) 17 WD3 online

B17_0_WW1_1P All porous (0) 17 WW1_1P online

B17_0_WW1_2P All porous (0) 17 WW1_2P online

B17_0_WW3_1P All porous (0) 17 WW3_1P online

B17_0_WW3_2P All porous (0) 17 WW3_2P online

B17_0_WW5_1P All porous (0) 17 WW5_1P online

B17_0_WW5_2P All porous (0) 17 WW5_2P online

B17_F_WD1 Impervious sides (F) 17 WD1 online

B17_F_WD2 Impervious sides (F) 17 WD2 online

B17_F_WD3 Impervious sides (F) 17 WD3 online

B17_F_WW1_1P Impervious sides (F) 17 WW1_1P online

B17_F_WW1_2P Impervious sides (F) 17 WW1_2P online

B17_F_WW3_1P Impervious sides (F) 17 WW3_1P online

B17_F_WW3_2P Impervious sides (F) 17 WW3_2P online
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Appendix E. Testsheets: impact on buildings

B17_F_WW5_1P Impervious sides (F) 17 WW5_1P online

B17_F_WW5_2P Impervious sides (F) 17 WW5_2P online

B17_B_WD1 Impervious back (B) 17 WD1 online

B17_B_WD2 Impervious back (B) 17 WD2 online

B17_B_WD3 Impervious back (B) 17 WD3 online

B17_B_WW1_1P Impervious back (B) 17 WW1_1P online

B17_B_WW1_2P Impervious back (B) 17 WW1_2P online

B17_B_WW3_1P Impervious back (B) 17 WW3_1P online

B17_B_WW3_2P Impervious back (B) 17 WW3_2P online

B17_S_WD1 With side buildings (S) 17 WD1 online

B17_S_WD2 With side buildings (S) 17 WD2 online

B17_S_WD3 With side buildings (S) 17 WD3 online

B17_S_WW1_1P With side buildings (S) 17 WW1_1P online

B17_S_WW1_2P With side buildings (S) 17 WW1_2P online

B17_S_WW3_1P With side buildings (S) 17 WW3_1P online

B17_S_WW3_2P With side buildings (S) 17 WW3_2P online

B31.34_0_WD1 All porous (0) 31.34 WD1 online

B31.34_0_WD2 All porous (0) 31.34 WD2 page 214

B31.34_0_WD3 All porous (0) 31.34 WD3 online

B31.34_0_WW1_1P All porous (0) 31.34 WW1_1P online

B31.34_0_WW1_2P All porous (0) 31.34 WW1_2P online

B31.34_0_WW3_1P All porous (0) 31.34 WW3_1P online

B31.34_0_WW3_2P All porous (0) 31.34 WW3_2P online

B31.34_0_WW5_1P All porous (0) 31.34 WW5_1P online

B31.34_0_WW5_2P All porous (0) 31.34 WW5_2P online

B31.34_F_WD1 Impervious sides (F) 31.34 WD1 online

B31.34_F_WD2 Impervious sides (F) 31.34 WD2 online

B31.34_F_WD3 Impervious sides (F) 31.34 WD3 online

B31.34_F_WW1_1P Impervious sides (F) 31.34 WW1_1P online

B31.34_F_WW1_2P Impervious sides (F) 31.34 WW1_2P online

B31.34_F_WW3_1P Impervious sides (F) 31.34 WW3_1P online

B31.34_F_WW3_2P Impervious sides (F) 31.34 WW3_2P online

B31.34_F_WW5_1P Impervious sides (F) 31.34 WW5_1P online

B31.34_F_WW5_2P Impervious sides (F) 31.34 WW5_2P online

B31.34_S_WD1 With side buildings (S) 31.34 WD1 online

B31.34_S_WD2 With side buildings (S) 31.34 WD2 online

B31.34_S_WD3 With side buildings (S) 31.34 WD3 online

B31.34_S_WW1_1P With side buildings (S) 31.34 WW1_1P online

B31.34_S_WW1_2P With side buildings (S) 31.34 WW1_2P online

B31.34_S_WW3_1P With side buildings (S) 31.34 WW3_1P online

B31.34_S_WW3_2P With side buildings (S) 31.34 WW3_2P online

B34_0_WD1 All porous (0) 34 WD1 online
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B34_0_WD2 All porous (0) 34 WD2 page 216

B34_0_WD3 All porous (0) 34 WD3 online

B34_0_WW1_1P All porous (0) 34 WW1_1P online

B34_0_WW1_2P All porous (0) 34 WW1_2P online

B34_0_WW3_1P All porous (0) 34 WW3_1P online

B34_0_WW3_2P All porous (0) 34 WW3_2P online

B34_0_WW5_1P All porous (0) 34 WW5_1P online

B34_0_WW5_2P All porous (0) 34 WW5_2P online

B34_F_WD1 Impervious sides (F) 34 WD1 online

B34_F_WD2 Impervious sides (F) 34 WD2 online

B34_F_WD3 Impervious sides (F) 34 WD3 online

B34_F_WW1_1P Impervious sides (F) 34 WW1_1P online

B34_F_WW1_2P Impervious sides (F) 34 WW1_2P online

B34_F_WW3_1P Impervious sides (F) 34 WW3_1P online

B34_F_WW3_2P Impervious sides (F) 34 WW3_2P online

B34_F_WW5_1P Impervious sides (F) 34 WW5_1P online

B34_F_WW5_2P Impervious sides (F) 34 WW5_2P online

B34_B_WD1 Impervious back (B) 34 WD1 online

B34_B_WD2 Impervious back (B) 34 WD2 online

B34_B_WD3 Impervious back (B) 34 WD3 online

B34_B_WW1_1P Impervious back (B) 34 WW1_1P online

B34_B_WW1_2P Impervious back (B) 34 WW1_2P online

B34_B_WW3_1P Impervious back (B) 34 WW3_1P online

B34_B_WW3_2P Impervious back (B) 34 WW3_2P online

B34_S_WD1 With side buildings (S) 34 WD1 online

B34_S_WD2 With side buildings (S) 34 WD2 online

B34_S_WD3 With side buildings (S) 34 WD3 online

B34_S_WW1_1P With side buildings (S) 34 WW1_1P online

B34_S_WW1_2P With side buildings (S) 34 WW1_2P online

B34_S_WW3_1P With side buildings (S) 34 WW3_1P online

B34_S_WW3_2P With side buildings (S) 34 WW3_2P online

B42.24_0_WD1 All porous (0) 42.24 WD1 online

B42.24_0_WD2 All porous (0) 42.24 WD2 page 218

B42.24_0_WD3 All porous (0) 42.24 WD3 online

B42.24_0_WW1_1P All porous (0) 42.24 WW1_1P online

B42.24_0_WW1_2P All porous (0) 42.24 WW1_2P online

B42.24_0_WW3_1P All porous (0) 42.24 WW3_1P online

B42.24_0_WW3_2P All porous (0) 42.24 WW3_2P online

B42.24_0_WW5_1P All porous (0) 42.24 WW5_1P online

B42.24_0_WW5_2P All porous (0) 42.24 WW5_2P online

B42.24_F_WD1 Impervious sides (F) 42.24 WD1 online

B42.24_F_WD2 Impervious sides (F) 42.24 WD2 online
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B42.24_F_WD3 Impervious sides (F) 42.24 WD3 online

B42.24_F_WW1_1P Impervious sides (F) 42.24 WW1_1P online

B42.24_F_WW1_2P Impervious sides (F) 42.24 WW1_2P online

B42.24_F_WW3_1P Impervious sides (F) 42.24 WW3_1P online

B42.24_F_WW3_2P Impervious sides (F) 42.24 WW3_2P online

B42.24_F_WW5_1P Impervious sides (F) 42.24 WW5_1P online

B42.24_F_WW5_2P Impervious sides (F) 42.24 WW5_2P online

B42.24_B_WD1 Impervious back (B) 42.24 WD1 online

B42.24_B_WD2 Impervious back (B) 42.24 WD2 online

B42.24_B_WD3 Impervious back (B) 42.24 WD3 online

B42.24_B_WW1_1P Impervious back (B) 42.24 WW1_1P online

B42.24_B_WW1_2P Impervious back (B) 42.24 WW1_2P online

B42.24_B_WW3_1P Impervious back (B) 42.24 WW3_1P online

B42.24_B_WW3_2P Impervious back (B) 42.24 WW3_2P online

B42.24_S_WD1 With side buildings (S) 42.24 WD1 online

B42.24_S_WD2 With side buildings (S) 42.24 WD2 online

B42.24_S_WD3 With side buildings (S) 42.24 WD3 online

B42.24_S_WW1_1P With side buildings (S) 42.24 WW1_1P online

B42.24_S_WW1_2P With side buildings (S) 42.24 WW1_2P online

B42.24_S_WW3_1P With side buildings (S) 42.24 WW3_1P online

B42.24_S_WW3_2P With side buildings (S) 42.24 WW3_2P online

B60_0_WD1 All porous (0) 60 WD1 online

B60_0_WD2 All porous (0) 60 WD2 page 220

B60_0_WD3 All porous (0) 60 WD3 online

B60_0_WW1_1P All porous (0) 60 WW1_1P online

B60_0_WW1_2P All porous (0) 60 WW1_2P online

B60_0_WW3_1P All porous (0) 60 WW3_1P online

B60_0_WW3_2P All porous (0) 60 WW3_2P online

B60_0_WW5_1P All porous (0) 60 WW5_1P online

B60_0_WW5_2P All porous (0) 60 WW5_2P online

B60_F_WD1 Impervious sides (F) 60 WD1 online

B60_F_WD2 Impervious sides (F) 60 WD2 page 222

B60_F_WD3 Impervious sides (F) 60 WD3 online

B60_F_WW1_1P Impervious sides (F) 60 WW1_1P online

B60_F_WW1_2P Impervious sides (F) 60 WW1_2P online

B60_F_WW3_1P Impervious sides (F) 60 WW3_1P online

B60_F_WW3_2P Impervious sides (F) 60 WW3_2P online

B60_F_WW5_1P Impervious sides (F) 60 WW5_1P online

B60_F_WW5_2P Impervious sides (F) 60 WW5_2P online

B60_B_WD1 Impervious back (B) 60 WD1 online

B60_B_WD2 Impervious back (B) 60 WD2 page 224

B60_B_WD3 Impervious back (B) 60 WD3 online
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B60_B_WW1_1P Impervious back (B) 60 WW1_1P online

B60_B_WW1_2P Impervious back (B) 60 WW1_2P online

B60_B_WW3_1P Impervious back (B) 60 WW3_1P online

B60_B_WW3_2P Impervious back (B) 60 WW3_2P online

B60_S_WD1 With side buildings (S) 60 WD1 online

B60_S_WD2 With side buildings (S) 60 WD2 page 226

B60_S_WD3 With side buildings (S) 60 WD3 online

B60_S_WW1_1P With side buildings (S) 60 WW1_1P online

B60_S_WW1_2P With side buildings (S) 60 WW1_2P online

B60_S_WW3_1P With side buildings (S) 60 WW3_1P online

B60_S_WW3_2P With side buildings (S) 60 WW3_2P online

B84_F_WD1 Impervious sides (F) 84 WD1 online

B84_F_WD2 Impervious sides (F) 84 WD2 online

B84_F_WD3 Impervious sides (F) 84 WD3 online

B84_F_WW1_1P Impervious sides (F) 84 WW1_1P online

B84_F_WW1_2P Impervious sides (F) 84 WW1_2P online

B84_F_WW3_1P Impervious sides (F) 84 WW3_1P online

B84_F_WW3_2P Impervious sides (F) 84 WW3_2P online

B84_F_WW5_1P Impervious sides (F) 84 WW5_1P online

B84_F_WW5_2P Impervious sides (F) 84 WW5_2P online

Table E.1 – Experimental program of all the tests conducted in the present research
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B0_H_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
 

 

TEST PARAMETERS 

Name  B0_H_WD2_2  FRONT VIEW 
 
 

 
 

 

TOP VIEW 
 

 
 

 

Repetitions  3  
Configuration  Reference  
Total porosity Ptot 0 [%] 
Porosity at hmax Ph,max 0 [%] 
Building height HB 0.6 [m] 
    
Wave type  Surge (WD2)  
Impoundment depth d0 0.630 [m] 
Initial still water depth h0 0.000 [m] 
Front celerity U 3.070 [m/s] 
Maximum wave height hmax 0.162 [m] 
Maximum run-up height Hmax 0.519 [m] 

IMPACT PARAMETERS 
 Min Max Unity 
Fx -6.153 204.381 [N] 
Fy -22.457 16.698 [N] 
Fz -13.339 8.215 [N] 
Mx -3.821 4.966 [Nm] 
My -2.139 41.691 [Nm] 
Mz -1.872 1.698 [Nm] 
    
Predicted Force Fx,D,max 212.377 [N] 
Initial time t0 4.956 [s] 
Time to peak max 3.321 [s] 
Total impulse  Itot  2134.957 [Ns] 
Peak Impulse Ipeak 464.765 [Ns] 
Relative impulse I* 0.230 [-] 
Wave height at Fx,max hM 0.718 [-] 
Resistance coefficient CR 1.933 [-] 

 

 

Wave 
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B0_H_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
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B0_0_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
 

 

TEST PARAMETERS 

Name  B0_0_WD2_2  FRONT VIEW 
 
 

 
 

 

TOP VIEW 
 

 
 

 

Repetitions  2  
Configuration  Reference  
Total porosity Ptot 0 [%] 
Porosity at hmax Ph,max 0 [%] 
Building height HB 0.3 [m] 
    
Wave type  Surge (WD2)  
Impoundment depth d0 0.63 [m] 
Initial still water depth h0 0.00 [m] 
Front celerity U 3.07 [m/s] 
Maximum wave height hmax 0.16 [m] 
Maximum run-up height Hmax 0.63 [m] 

IMPACT PARAMETERS 
 Min Max Unity 
Fx -5.690 196.062 [N] 
Fy -19.109 28.294 [N] 
Fz -41.249 2.608 [N] 
Mx -4.832 4.171 [Nm] 
My -1.582 36.674 [Nm] 
Mz -1.834 2.404 [Nm] 
    
Predicted Force Fx,D,max 212.377 [N] 
Initial time t0 5.012 [s] 
Time to peak max 3.110 [s] 
Total impulse  Itot  2031.836 [Ns] 
Peak Impulse Ipeak 419.846 [Ns] 
Relative impulse I* 0.218 [-] 
Wave height at Fx,max hM 0.730 [-] 
Resistance coefficient CR 1.833 [-] 

 

 

Wave 
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B0_0_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
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B17_0_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
 

 

TEST PARAMETERS 

Name  B17_0_WD2_ 1 FRONT VIEW 
 
 

 
 

 

TOP VIEW 
 

 
 

 

Repetitions  1  
Configuration  All Porous (0)  
Total porosity Ptot 17 [%] 
Porosity at hmax Ph,max 16.68 [%] 
Building height HB 0.3 [m] 
    
Wave type  Surge (WD2)  
Impoundment depth d0 0.630 [m] 
Initial still water depth h0 0.000 [m] 
Front celerity U 3.087 [m/s] 
Maximum wave height hmax 0.162 [m] 
Maximum run-up height Hmax 0.543 [m] 

IMPACT PARAMETERS 
 Min Max Unity 
Fx -2.714 166.884 [N] 
Fy -9.907 21.711 [N] 
Fz -236.075 16.103 [N] 
Mx -4.157 2.986 [Nm] 
My -0.892 33.458 [Nm] 
Mz -2.076 0.974 [Nm] 
    
Predicted Force Fx,D,max 176.948 [N] 
Initial time t0 5.002 [s] 
Time to peak max 2.867 [s] 
Total impulse  Itot  1601.965 [Ns] 
Peak Impulse Ipeak 324.536 [Ns] 
Relative impulse I* 0.212 [-] 
Wave height at Fx,max hM 0.641 [-] 
Resistance coefficient CR 1.568 [-] 

 

 

Wave 
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B17_0_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
 

 

 

 

213



 
B31.34_0_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
 

 

TEST PARAMETERS 

Name  B31.34_0_WD2_1 FRONT VIEW 
 
 

 
 

 

TOP VIEW 
 

 
 

 

Repetitions  1  
Configuration  All Porous (0)  
Total porosity Ptot 31.34 [%] 
Porosity at hmax Ph,max 44.08 [%] 
Building height HB 0.3 [m] 
    
Wave type  Surge (WD2)  
Impoundment depth d0 0.630 [m] 
Initial still water depth h0 0.000 [m] 
Front celerity U 3.059 [m/s] 
Maximum wave height hmax 0.162 [m] 
Maximum run-up height Hmax 0.466 [m] 

IMPACT PARAMETERS 
 Min Max Unity 
Fx -2.641 134.513 [N] 
Fy -13.823 11.947 [N] 
Fz -241.229 2.327 [N] 
Mx -2.004 3.218 [Nm] 
My -1.198 26.849 [Nm] 
Mz -2.051 0.106 [Nm] 
    
Predicted Force Fx,D,max 118.765 [N] 
Initial time t0 4.936 [s] 
Time to peak max 3.224 [s] 
Total impulse  Itot  1222.613 [Ns] 
Peak Impulse Ipeak 235.797 [Ns] 
Relative impulse I* 0.200 [-] 
Wave height at Fx,max hM 0.737 [-] 
Resistance coefficient CR 1.239 [-] 

 

 

Wave 
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B31.34_0_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
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B34_0_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
 

 

TEST PARAMETERS 

Name  B34_0_WD2_1 FRONT VIEW 
 
 

 
 

 

TOP VIEW 
 

 
 

 

Repetitions  2  
Configuration  All Porous (0) 
Total porosity Ptot 34 [%] 
Porosity at hmax Ph,max 33.36 [%] 
Building height HB 0.3 [m] 
    
Wave type  Surge (WD2)  
Impoundment depth d0 0.630 [m] 
Initial still water depth h0 0.000 [m] 
Front celerity U 3.058 [m/s] 
Maximum wave height hmax 0.162 [m] 
Maximum run-up height Hmax 0.464 [m] 

IMPACT PARAMETERS 
 Min Max Unity 
Fx -2.133 140.755 [N] 
Fy -5.820 11.604 [N] 
Fz -235.044 28.472 [N] 
Mx -1.725 2.188 [Nm] 
My -0.680 27.163 [Nm] 
Mz -1.098 0.913 [Nm] 
    
Predicted Force Fx,D,max 141.527 [N] 
Initial time t0 4.979 [s] 
Time to peak max 2.572 [s] 
Total impulse  Itot  1348.108 [Ns] 
Peak Impulse Ipeak 246.057 [Ns] 
Relative impulse I* 0.190 [-] 
Wave height at Fx,max hM 0.670 [-] 
Resistance coefficient CR 1.291 [-] 

 

 

Wave 
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B34_0_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
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B42.24_0_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
 

 

TEST PARAMETERS 

Name  B42.24_0_WD2_1 FRONT VIEW 
 
 

 
 

 

TOP VIEW 
 

 
 

 

Repetitions  2  
Configuration  All Porous (0)  
Total porosity Ptot 42.24 [%] 
Porosity at hmax Ph,max 49.71 [%] 
Building height HB 0.3 [m] 
    
Wave type  Surge (WD2)  
Impoundment depth d0 0.630 [m] 
Initial still water depth h0 0.000 [m] 
Front celerity U 3.069 [m/s] 
Maximum wave height hmax 0.162 [m] 
Maximum run-up height Hmax 0.440 [m] 

IMPACT PARAMETERS 
 Min Max Unity 
Fx -3.149 115.255 [N] 
Fy -13.798 8.741 [N] 
Fz -231.296 0.921 [N] 
Mx -1.819 2.608 [Nm] 
My -1.295 24.442 [Nm] 
Mz -1.306 0.936 [Nm] 
    
Predicted Force Fx,D,max 106.796 [N] 
Initial time t0 4.928 [s] 
Time to peak max 3.463 [s] 
Total impulse  Itot  957.653 [Ns] 
Peak Impulse Ipeak 239.385 [Ns] 
Relative impulse I* 0.253 [-] 
Wave height at Fx,max hM 0.736 [-] 
Resistance coefficient CR 1.094 [-] 

 

 

Wave 
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B42.24_0_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
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B60_0_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
 

 

TEST PARAMETERS 

Name  B60_0_WD2_ 1 FRONT VIEW 
 
 

 
 

 

TOP VIEW 
 

 
 

 

Repetitions  1  
Configuration  All Porous (0)  
Total porosity Ptot 60 [%] 
Porosity at hmax Ph,max 62.17 [%] 
Building height HB 0.3 [m] 
    
Wave type  Surge (WD2)  
Impoundment depth d0 0.630 [m] 
Initial still water depth h0 0.000 [m] 
Front celerity U 3.080 [m/s] 
Maximum wave height hmax 0.162 [m] 
Maximum run-up height Hmax 0.507 [m] 

IMPACT PARAMETERS 
 Min Max Unity 
Fx -4.359 84.359 [N] 
Fy -7.068 13.733 [N] 
Fz -190.625 6.263 [N] 
Mx -1.866 1.566 [Nm] 
My -1.614 17.527 [Nm] 
Mz -0.526 0.954 [Nm] 
    
Predicted Force Fx,D,max 80.338 [N] 
Initial time t0 4.986 [s] 
Time to peak max 5.952 [s] 
Total impulse  Itot  796.182 [Ns] 
Peak Impulse Ipeak 388.098 [Ns] 
Relative impulse I* 0.501 [-] 
Wave height at Fx,max hM 0.904 [-] 
Resistance coefficient CR 0.965 [-] 
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B60_0_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
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B60_F_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
 

 

TEST PARAMETERS 

Name  B60_F_WD2_ 2 FRONT VIEW 
 
 

 
 

 

TOP VIEW 
 

 
 

 

Repetitions  2  
Configuration  Impervious sides (F) 
Total porosity Ptot 60 [%] 
Porosity at hmax Ph,max 62.17 [%] 
Building height HB 0.3 [m] 
    
Wave type  Surge (WD2)  
Impoundment depth d0 0.630 [m] 
Initial still water depth h0 0.000 [m] 
Front celerity U 3.062 [m/s] 
Maximum wave height hmax 0.162 [m] 
Maximum run-up height Hmax 0.471 [m] 

IMPACT PARAMETERS 
 Min Max Unity 
Fx -5.593 70.932 [N] 
Fy -18.693 24.207 [N] 
Fz -218.176 0.000 [N] 
Mx -4.634 4.270 [Nm] 
My -1.444 16.489 [Nm] 
Mz -0.344 1.628 [Nm] 
    
Predicted Force Fx,D,max 80.338 [N] 
Initial time t0 5.127 [s] 
Time to peak max 3.343 [s] 
Total impulse  Itot  638.838 [Ns] 
Peak Impulse Ipeak 173.718 [Ns] 
Relative impulse I* 0.275 [-] 
Wave height at Fx,max hM 0.729 [-] 
Resistance coefficient CR 0.665 [-] 
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B60_F_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
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B60_B_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
 

 

TEST PARAMETERS 

Name  B60_B_WD2_4 FRONT VIEW 
 
 

 
 

 

TOP VIEW 
 

 
 

 

Repetitions  5  
Configuration  Impervious back (B) 
Total porosity Ptot 60 [%] 
Porosity at hmax Ph,max 62.17 [%] 
Building height HB 0.3 [m] 
    
Wave type  Surge (WD2)  
Impoundment depth d0 0.630 [m] 
Initial still water depth h0 0.000 [m] 
Front celerity U 3.044 [m/s] 
Maximum wave height hmax 0.162 [m] 
Maximum run-up height Hmax 0.481 [m] 

IMPACT PARAMETERS 
 Min Max Unity 
Fx -6.077 188.369 [N] 
Fy -11.400 11.628 [N] 
Fz -260.159 0.000 [N] 
Mx -1.900 2.147 [Nm] 
My -1.520 34.900 [Nm] 
Mz -2.085 0.951 [Nm] 
    
Predicted Force Fx,D,max 212.377 [N] 
Initial time t0 5.139 [s] 
Time to peak max 2.643 [s] 
Total impulse  Itot  2034.984 [Ns] 
Peak Impulse Ipeak 333.434 [Ns] 
Relative impulse I* 0.174 [-] 
Wave height at Fx,max hM 0.649 [-] 
Resistance coefficient CR 1.861 [-] 
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B60_B_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
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B60_S_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
 

 

TEST PARAMETERS 

Name  B60_S_WD2_ 1 FRONT VIEW 
 
 

 
 

 

TOP VIEW 

                  

Repetitions  1  
Configuration  With side building (S) 
Total porosity Ptot 60 [%] 
Porosity at hmax Ph,max 62.17 [%] 
Building height HB 0.3 [m] 
    
Wave type  Surge (WD2)  
Impoundment depth d0 0.630 [m] 
Initial still water depth h0 0.000 [m] 
Front celerity U 3.088 [m/s] 
Maximum wave height hmax 0.162 [m] 
Maximum run-up height Hmax 0.501 [m] 

IMPACT PARAMETERS 
 Min Max Unity 
Fx -4.504 94.497 [N] 
Fy -21.140 32.846 [N] 
Fz -252.756 0.734 [N] 
Mx -5.314 5.089 [Nm] 
My -1.334 18.794 [Nm] 
Mz -1.607 0.969 [Nm] 
    
Predicted Force Fx,D,max 96.002 [N] 
Initial time t0 5.029 [s] 
Time to peak max 2.123 [s] 
Total impulse  Itot  817.431 [Ns] 
Peak Impulse Ipeak 123.056 [Ns] 
Relative impulse I* 0.156 [-] 
Wave height at Fx,max hM 0.596 [-] 
Resistance coefficient CR 0.875 [-] 
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B60_S_WD2 

* All parameters are presented and defined at the beginning of the Appendix 
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