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Abstract

We consider the problem of sampling from constrained distributions, which has posed
significant challenges to both non-asymptotic analysis and algorithmic design. We propose
a unified framework, which is inspired by the classical mirror descent, to derive novel first-
order sampling schemes. We prove that, for a general target distribution with strongly convex
potential, our framework implies the existence of a first-order algorithm achieving Õ(ε−2d)
convergence, suggesting that the state-of-the-art Õ(ε−6d5) can be vastly improved. With the
important Latent Dirichlet Allocation (LDA) application in mind, we specialize our algorithm
to sample from Dirichlet posteriors, and derive the first non-asymptotic Õ(ε−2d2) rate for
first-order sampling. We further extend our framework to the mini-batch setting and prove
convergence rates when only stochastic gradients are available. Finally, we report promising
experimental results for LDA on real datasets.

1 Introduction

Many modern learning tasks involve sampling from a high-dimensional and large-scale distribution,
which calls for algorithms that are scalable with respect to both the dimension and the data size.
One approach [41] that has found wide success is to discretize the Langevin Dynamics:

dXt = −∇V (Xt)dt+
√

2dBt, (1.1)

where e−V (x)dx presents a target distribution and Bt is a d-dimensional Brownian motion. Such a
framework has inspired numerous first-order sampling algorithms [1, 12, 19, 21, 26, 27, 35, 38], and
the convergence rates are by now well-understood for unconstrained and log-concave distributions
[13, 17, 20].

However, applying (1.1) to sampling from constrained distributions (i.e., when V has a bounded
convex domain) remains a difficult challenge. From the theoretical perspective, there are only two
existing algorithms [6, 7] that possess non-asymptotic guarantees, and theif rates are significantly
worse than the unconstrained scenaria under the same assumtions; cf., Table 1. Furthermore, many
important constrained distributions are inherently non-log-concave. A prominent instance is the
Dirichlet posterior, which, in spite of the presence of several tailor-made first-order algorithms
[26, 35], is still lacking a non-asymptotic guarantee.

In this paper, we aim to bridge these two gaps at the same time. For general constrained
distributions with a strongly convex potential V , we prove the existence of a first-order algorithm
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that achieves the same convergence rates as if there is no constraint at all, suggesting the state-of-the-
art Õ(ε−6d5) can be brought down to Õ(ε−2d). When specialized to the important case of simplex
constraint, we provide the first non-asymptotic guarantee for Dirichlet posteriors, Õ(ε−2d2R0) for
deterministic and Õ

(
ε−2(Nd+ σ2)R0

)
for the stochastic version of our algorithms; cf., Example 1

and 2 for the involved parameters.
Our framework combines ideas from the Mirror Descent [2, 33] algorithm for optimization and

the theory of Optimal Transport [40]. Concretely, for constrained sampling problems, we propose
to use the mirror map to transform the target into an unconstrained distribution, whereby many
existing methods apply. Optimal Transport theory then comes in handy to relate the convergence
rates between the original and transformed problems. For simplex constraints, we use the entropic
mirror map to design practical first-order algorithms that possess rigorous guarantees, and are
amenable to mini-batch extensions.

The rest of the paper is organized as follows. We briefly review the notion of push-forward
measures in Section 2. In Section 3, we propose the Mirrored Langevin Dynamics and prove its
convergence rates for constrained sampling problems. Mini-batch extensions are derived in Section 4.
Finally, in Section 5, we provide synthetic and real-world experiments to demonstrate the empirical
efficiency of our algorithms.

1.1 Related Work

First-Order Sampling Schemes with Langevin Dynamics: There exists a bulk of literature
on (stochastic) first-order sampling schemes derived from Langevin Dynamics or its variants [1, 6,
7, 11, 13, 14, 17, 20, 22, 28, 35, 41]. However, to our knowledge, this work is the first to consider
mirror descent extensions of the Langevin Dynamics.

The authors in [29] proposed a formalism that can, in principle, incorporate any variant of
Langevin Dynamics for a given distribution e−V (x)dx. The Mirrored Langevin Dynamics, however,
is targeting the push-forward measure e−W (y)dy (see Section 3.1), and hence our framework is not
covered in [29].

For Dirichlet posteriors, there is a similar variable transformation as our entropic mirror map
in [35] (see the “reduced-natural parametrization” therein). The dynamics in [35] is nonetheless
drastically different from ours, as there is a position-dependent matrix multiplying the Brownian
motion, whereas our dynamics has no such feature; see (3.2).
Mirror Descent-Type Dynamics for Stochastic Optimization: Although there are some
existing work on mirror descent-type dynamics for stochastic optimization [25, 32, 36, 42], we are
unaware of any prior result on sampling.
Convergence Rates for Sampling from Dirichlet Posteriors: The work [15] proposed a zeroth

order method that achieves Õ
(
T−1/2

)
convergence in relative entropy for Dirichlet posteriors, which

requires O(dT 2) computation per iteration. Our method achieves the same rate with O(d)-complexity
per iteration.

2 Preliminaries

2.1 Notation

In this paper, all Lipschitzness and strong convexity are with respect to the Euclidean norm ‖ · ‖. We
use Ck to denote k-times differentiable functions with continuous kth derivative. The Fenchel dual
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[37] of a function h is denoted by h?. Given two mappings T, F of proper dimensions, we denote
their composite map by T ◦ F . For a probability measure µ, we write X ∼ µ to mean that “X is a
random variable whose probability law is µ”.

2.2 Push-Forward and Optimal Transport

Let dµ = e−V (x)dx be a probability measure with support X := dom(V ) = {x ∈ Rd | V (x) < +∞},
and h be a convex function on X . Throughout the paper we assume:

Assumption 1. h is closed, proper, h ∈ C2, and ∇2h � 0 on X ⊂ Rd.

Assumption 2. All measures have finite second moments.

Assumption 3. All measures vanish on sets with Hausdorff dimension [30] at most d− 1.
The gradient map ∇h induces a new probability measure dν := e−W (y)dy through ν(E) =

µ
(
∇h−1(E)

)
for every Borel set E on Rd. We say that ν is the push-forward measure of µ under

∇h, and we denote it by ∇h#µ = ν. If X ∼ µ and Y ∼ ν, we will sometimes abuse the notation by
writing ∇h#X = Y to mean ∇h#µ = ν.

If ∇h#µ = ν, the triplet (µ, ν, h) must satisfy the Monge-Ampère equation:

e−V = e−W◦∇h det∇2h. (2.1)

Using (∇h)−1 = ∇h? and ∇2h ◦ ∇h? = ∇2h?−1, we see that (2.1) is equivalent to

e−W = e−V ◦∇h
?

det∇2h? (2.2)

which implies ∇h?#ν = µ.
The 2-Wasserstein distance between µ1 and µ2 is defined by1

W2
2 (µ1, µ2) := inf

T :T#µ1=µ2

∫
‖x− T (x)‖2dµ1(x). (2.3)

3 Mirrored Langevin Dynamics

This section demonstrates a framework for transforming constrained sampling problems into uncon-
strained ones. We then focus on applications to sampling from strongly log-concave distributions
and simplex-constrained distributions, even though the framework is more general and future-proof.

3.1 Motivation and Algorithm

We begin by briefly recalling the mirror descent (MD) algorithm for optimization. In order to
minimize a function over a bounded domain, say minx∈X f(x), MD uses a mirror map h to transform
the primal variable x into the dual space y := ∇h(x), and then performs gradient updates in the
dual: y+ = y − β∇f(x) for some step-size β. The mirror map h is chosen to adapt to the geometry
of the constraint X , which can often lead to faster convergence [33] or, more pivotal to this work, an
unconstrained optimization problem [2].

Inspired by the MD framework, we would like to use the mirror map idea to remove the constraint
for sampling problems. Toward this end, we first establish a simple fact [39]:

1In general, (2.3) is ill-defined; see [39]. The validity of (2.3) is guaranteed by McCann’s theorem [31] under
Assumption 2 and 3.
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Theorem 1. Let h satisfy Assumption 1. Suppose that X ∼ µ and Y = ∇h(X). Then Y ∼ ν :=
∇h#µ and ∇h?(Y) ∼ µ.

Proof. For any Borel set E, we have ν(E) = P (Y ∈ E) = P
(
X ∈ ∇h−1(E)

)
= µ

(
∇h−1(E)

)
. Since

∇h is one-to-one, Y = ∇h(X) if and only if X = ∇h−1(Y) = ∇h?(Y).

In the context of sampling, Theorem 1 suggests the following simple procedure: For any target
distribution e−V (x)dx with support X , we choose a mirror map h on X satisfying Assumption 1,
and we consider the dual distribution associated with e−V (x)dx and h:

e−W (y)dy := ∇h#e−V (x)dx. (3.1)

Theorem 1 dictates that if we are able to draw a sample Y from e−W (y)dy, then ∇h?(Y)
immediately gives a sample for the desired distribution e−V (x)dx. Furthermore, suppose for the
moment that dom(h?) = Rd, so that e−W (y)dy is unconstrained. Then we can simply exploit the
classical Langevin Dynamics (1.1) to efficiently take samples from e−W (y)dy.

The above reasoning leads us to set up the Mirrored Langevin Dynamics (MLD):

MLD ≡
{

dYt = −(∇W ◦ ∇h)(Xt)dt+
√

2dBt

Xt = ∇h?(Yt)
. (3.2)

Notice that the stationary distribution of Yt in MLD is e−W (y)dy, since dYt is nothing but the
Langevin Dynamics (1.1) with ∇V ← ∇W . As a result, we have Xt → X∞ ∼ e−V (x)dx.

Using (2.1), we can equivalently write the dYt term in (3.2) as

dYt = −∇2h(Xt)
−1
(
∇V (Xt) +∇ log det∇2h(Xt)

)
dt+

√
2dBt.

In order to arrive at a practical algorithm, we then discretize the MLD, giving rise to the following
equivalent iterations:

yt+1 − yt =

{
−βt∇W (yt) +

√
2βtξt

−βt∇2h(xt)−1
(
∇V (xt) +∇ log det∇2h(xt)

)
+
√

2βtξt
(3.3)

where in both cases xt+1 = ∇h?(yt+1), ξt’s are i.i.d. standard Gaussian, and βt’s are step-sizes.
The first formulation in (3.3) is useful when ∇W has a tractable form, while the second one can be
computed using solely the information of V and h.

Next, we turn to the convergence of discretized MLD. Since dYt in (3.2) is the classical Langevin
Dynamics, and since we have assumed that W is unconstrained, it is typically not difficult to prove
the convergence of yt to Y∞ ∼ e−W (y)dy. However, what we ultimately care about is the guarantee
on the primal distribution e−V (x)dx. The purpose of the next theorem is to fill the gap between
primal and dual convergence.

We consider three most common metrics in evaluating approximate sampling schemes, namely
the 2-Wasserstein distance W2, the total variation dTV, and the relative entropy D(·‖·).
Theorem 2 (Convergence in yt implies convergence in xt). For any h satisfying Assumption 1,
we have dTV(∇h#µ1,∇h#µ2) = dTV(µ1, µ2) and D(∇h#µ1‖∇h#µ2) = D(µ1‖µ2). In particular,
we have dTV(yt,Y∞) = dTV(xt,X∞) and D(yt‖Y∞) = D(xt‖X∞) in (3.3).

If, furthermore, h is ρ-strongly convex: ∇2h � ρI. Then W2(xt,X∞) ≤ 1
ρW2(yt,Y∞).

Proof. See Appendix A.
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Assumption D(·‖·) W2 dTV Algorithm

LI � ∇2V � mI unknown unknown Õ
(
ε−6d5

)
MYULA [6]

LI � ∇2V � 0 unknown unknown Õ
(
ε−12d12

)
PLMC [7]

∇2V � mI Õ
(
ε−1d

)
Õ
(
ε−2d

)
Õ
(
ε−2d

)
MLD; this work

LI � ∇2V � mI,

V unconstrained
Õ
(
ε−1d

)
Õ
(
ε−2d

)
Õ
(
ε−2d

)
Langevin Dynamics [13, 16, 20]

Table 1: Convergence rates for sampling from e−V (x)dx with dom(V ) bounded

3.2 Applications to Sampling from Constrained Distributions

We now consider applications of MLD. For strongly log-concave distributions with general constraint,
we prove matching rates to that of unconstrained ones; see Section 3.2.1. In Section 3.2.2, we
consider the important case where the constraint is a probability simplex.

3.2.1 Sampling from a strongly log-concave distribution with constraint

As alluded to in the introduction, the existing convergence rates for constrained distributions are
significantly worse than their unconstrained counterparts; see Table 1 for a comparison. The main
result of this subsection is the existence of a “good” mirror map for arbitrary constraint, with which
the dual distribution e−W (y)dy becomes unconstrained:

Theorem 3 (Existence of a good mirror map for MLD). Let dµ(x) = e−V (x)dx be a probability
measure with bounded convex support such that V ∈ C2, ∇2V � mI � 0, and V is bounded away
from +∞ in the interior of the support. Then there exists a mirror map h ∈ C2 such that the
discretized MLD (3.3) yields

D
(
xT ‖X∞

)
= Õ

(
d

T

)
, W2

(
xT ,X∞

)
= Õ

(√
d

T

)
, dTV

(
xT ,X∞

)
= Õ

(√
d

T

)
.

Proof. See Appendix B.

Remark 1. We remark that Theorem 3 is only an existential result, not an actual algorithm.
Practical algorithms are considered in the next subsection.

3.2.2 Sampling Algorithms on Simplex

We apply the discretized MLD (3.3) to the task of sampling from distributions on the probability

simplex ∆d := {x ∈ Rd |
∑d
i=1 xi ≤ 1, xi ≥ 0}, which is instrumental in many fields of machine

learning and statistics.
On a simplex, the most natural choice of h is the entropic mirror map [2], which is well-known

to be 1-strongly convex:

h(x) =

d∑
`=1

xi log x` +

(
1−

d∑
`=1

x`

)
log

(
1−

d∑
`=1

x`

)
, where 0 log 0 := 0. (3.4)

In this case, the associated dual distribution can be computed explicitly.
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Lemma 1 (Sampling on a simplex with entropic mirror map). Let e−V (x)dx be the target distribution
on ∆d, h be the entropic mirror map (3.4), and e−W (y)dy := ∇h#e−V (x)dx. Then the potential W
of the push-forward measure admits the expression

W (y) = V ◦ ∇h?(y)−
d∑
`=1

y` + (d+ 1)h?(y) (3.5)

where h?(y) = log
(

1 +
∑d
`=1 e

y`
)

is the Fenchel dual of h, which is strictly convex and 1-Lipschitz

gradient.

Proof. See Appendix C.

Crucially, we have dom(h?) = Rd, so that the Langevin Dynamics for e−W (y)dy is uncon-
strained.

Based on Lemma 1, we now present the surprising case of the non-log-concave Dirichlet
posteriors, a distribution of central importance in topic modeling [3], for which the dual distribution
e−W (y)dy becomes strictly log-concave.

Example 1 (Dirichlet Posteriors). Given parameters α1, α2, ..., αd+1 > 0 and observations n1, n2, ..., nd+1

where n` is the number of appearance of category `, the probability density function of the Dirichlet
posterior is

p(x) =
1

C

d+1∏
`=1

xn`+α`−1
` , x ∈ int (∆d) (3.6)

where C is a normalizing constant and xd+1 := 1−
∑d
`=1 x`. The corresponding V is

V (x) = − log p(x) = logC −
d+1∑
`=1

(n` + α` − 1) log x`, x ∈ int (∆d) .

The interesting regime of the Dirichlet posterior is when it is sparse, meaning the majority of the
n`’s are zero and a few nk’s are large, say of order O(d). It is also common to set α` < 1 for all ` in
practice. Evidently, V is neither convex nor concave in this case, and no existing non-asymptotic
rate can be applied. However, plugging V into (3.5) gives

W (y) = logC −
d∑
`=1

(n` + α`)y` +

(
d+1∑
`=1

(n` + α`)

)
h?(y) (3.7)

which, magically, becomes strictly convex and O(d)-Lipschitz gradient no matter what the
observations and parameters are! In view of Theorem 2 and Corollary 7 of [20], one can then
apply (3.3) to obtain an Õ

(
ε−2d2R0

)
convergence in relative entropy, where R0 :=W2

2 (y0, e−W (y)dy)
is the initial Wasserstein distance to the target.

4 Stochastic Mirrored Langevin Dynamics

We have thus far only considered deterministic methods based on exact gradients. In practice,
however, evaluating gradients typically involves one pass over the full data, which can be time-
consuming in large-scale applications. In this section, we turn attention to the mini-batch setting,
where one can use a small subset of data to form stochastic gradients.
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Algorithm 1 Stochastic Mirrored Langevin Dynamics (SMLD)

Require: Target distribution e−V (x)dx where V =
∑N
i=1 Vi, step-sizes βt, batch-size b

1: Find Wi such that e−NWi ∝ ∇h#e−NVi for all i.
2: for t← 0, 1, · · · , T − 1 do
3: Pick a mini-batch B of size b uniformly at random.

4: Update yt+1 = yt − βtN
b

∑
i∈B ∇Wi(y

t) +
√

2βtξt

5: xt+1 = ∇h?(yt+1) . Update only when necessary.
6: end for

return xT

Toward this end, we assume:

Assumption 4 (Primal Decomposibility). The target distribution e−V (x)dx admits a decomposable

structure V =
∑N
i=1 Vi for some functions Vi.

The above assumption is often met in machine learning applications, where each Vi represents
one data. If there is an additional prior term (that is, V =

∑N
i=1 Vi + U for some U), then one can

redefine V ′i := Vi + 1
NU so that Assumption 4 still holds.

Consider the following common scheme in obtaining stochastic gradients. Given a batch-size b,
we randomly pick a mini-batch B from {1, 2, . . . , N} with |B| = b, and form an unbiased estimate of
∇V by computing

∇̃V :=
N

b

∑
i∈B
∇Vi. (4.1)

The following lemma asserts that exactly the same procedure can be carried out in the dual.

Lemma 2. Assume that h is 1-strongly convex. For i = 1, 2, ..., N, let Wi be such that

e−NWi = ∇h#
e−NVi∫
e−NVi

. (4.2)

Define W :=
∑N
i=1Wi and ∇̃W := N

b

∑
i∈B ∇Wi, where B is chosen as in (4.1). Then:

1. Primal decomposibility implies dual decomposability: There is a constant C such that e−(W+C) =
∇h#e−V .

2. For each i, the gradient ∇Wi depends only on ∇Vi and the mirror map h.

3. The gradient estimate is unbiased: E∇̃W = ∇W .

4. The dual stochastic gradient is more accurate: E‖∇̃W −∇W‖2 ≤ E‖∇̃V −∇V ‖2.

Proof. See Appendix D.

Lemma 2 furnishes a template for the mini-batch extension of MLD. The pseudocode is detailed
in Algorithm 1, whose convergence rate is given by the next theorem.

Theorem 4. Let e−V (x)dx be a distribution satisfying Assumption 4, and h a 1-strongly convex
mirror map. Let σ2 := E‖∇̃V − ∇V ‖2 be the variance of the stochastic gradient of V in (4.1).
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Suppose that the corresponding dual distribution e−W (y)dy = ∇h#e−V (x)dx satisfies LI � ∇2W � 0.
Then, applying SMLD with constant step-size βt = β yields2:

D
(
xT ‖e−V (x)dx

)
≤

√
2W2

2

(
y0, e−W (y)dy

)
(Ld+ σ2)

T
= O

(√
Ld+ σ2

T

)
, (4.3)

provided that β ≤ min
{[

2TW2
2

(
y0, e−W (y)dy

) (
Ld+ σ2

)]− 1
2 , 1

L

}
.

Proof. See Appendix E.

Example 2 (SMLD for Dirichlet Posteriors). For the case of Dirichlet posteriors, we have seen in

(3.7) that the corresponding dual distribution satisfies (N + Γ)I � ∇2W � 0, where N :=
∑d+1
`=1 n`

and Γ :=
∑d+1
`=1 α`. Furthermore, it is easy to see that the stochastic gradient ∇̃W can be efficiently

computed (see Appendix F):

∇̃W (y)` :=
N

b

∑
i∈B
∇Wi(y)` = −

(
Nm`

b
+ α`

)
+ (N + Γ)

ey`

1 +
∑d
k=1 e

yk
, (4.4)

where m` is the number of observations of category ` in the mini-batch B. As a result, Theorem 4
states that SMLD achieves

D
(
xT ‖e−V (x)dx

)
≤

√√√√2W2
2

(
y0, e−W (y)dy

) (
(N + Γ)(d+ 1) + σ2

)
T

= O

(√
(N + Γ)d+ σ2

T

)

with a constant step-size. �

5 Experiments

We conduct experiments with a two-fold purpose. First, we use a low-dimensional synthetic data,
where we can evaluate the total variation error by comparing histograms, to verify the convergence
rates in our theory. Second, We demonstrate that the SMLD, modulo a necessary modification for
resolving numerical issues, outperforms state-of-the-art first-order methods on the Latent Dirichlet
Allocation (LDA) application with Wikipedia corpus.

5.1 Synthetic Experiment for Dirichlet Posterior

We implement the deterministic MLD for sampling from an 11-dimensional Dirichlet posterior (3.6)
with n1 = 10,000, n2 = n3 = 10, and n4 = n5 = · · · = n11 = 0, which aims to capture the sparse
nature of real observations in topic modeling. We set α` = 0.1 for all `.

As a baseline comparison, we include the Stochastic Gradient Riemannian Langevin Dynamics
(SGRLD) [35] with the expanded-mean parametrization. SGRLD is a tailor-made first-order scheme

2Our guarantee is given on a randomly chosen iterate from {x1,x2, ...,xT }, instead of the final iterate xT . In
practice, we observe that the final iterate always gives the best performance, and we will ignore this minor difference
in the theorem statement.
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for simplex constraints, and it remains one of the state-of-the-art algorithms for LDA. For fair
comparison, we use deterministic gradients for SGRLD.

We perform a grid search over the constant step-size for both algorithms, and we keep the best
three for MLD and the best five for SGRLD. For each iteration, we build an empirical distribution
by running 2,000,000 independent trials, and we compute its total variation with respect to the
histogram generated by the true distribution.

Figure 1(a) reports the total variation error along the first dimension, where we can see that MLD
outperforms SGRLD by a substantial margin. As dictated by our theory, all the MLD curves decay
at the O(T−1/2) rate until they saturate at the dicretization error level. In contrast, SGRLD lacks
non-asymptotic guarantees, and there is no clear convergence rate we can infer from Figure 1(a).

5.2 Latent Dirichlet Allocation with Wikipedia Corpus

An influential framework for topic modeling is the Latent Dirichlet Allocation (LDA) [3], which,
given a text collection, requires to infer the posterior word distributions without knowing the exact
topic for each word. The full model description is standard but somewhat convoluted; we refer to
the classic [3] for details.

Each topic k in LDA determines a word distribution πk, and suppose there are in total K topics
and W + 1 words. The variable of interest is therefore π := (π1,π2, ...,πK) ∈ ∆W ×∆W × · · ·∆W .

Since this domain is a Cartesian product of simplices, we propose to use h̃(π) :=
∑K
k=1 h(πk), where

h is the entropic mirror map (3.4), for SMLD. It is easy to see that all of our computations for
Dirichlet posteriors generalize to this setting.

5.2.1 Experimental Setup

We implement the SMLD for LDA on the Wikipedia corpus with 100,000 documents, and we compare
the performance against the SGRLD [35]. In order to keep the comparison fair, we adopt exactly
the same setting as in [35], including the model parameters, the batch-size, the Gibbs sampler steps,
etc. See Section 4 and 5 in [35] for omitted details.

Another state-of-the-art first-order algorithm for LDA is the SGRHMC in [29], for which we skip
the implementation, due to not knowing how the B̂t was chosen in [29]. Instead, we will repeat the
same experimental setting as [29] and directly compare our results versus the ones reported in [29].
See Appendix G for comparison against SGRHMC.

5.2.2 A Numerical Trick and the SMLD-approximate Algorithm

A major drawback of the SMLD in practice is that the stochastic gradients (4.4) involve exponential
functions, which are unstable for large-scale problems. For instance, in python, np.exp(800) =

inf, whereas the relevant variable regime in this experiment extends to 1600. To resolve such
numerical issues, we appeal to the linear approximation3 exp(y) ' max{0, 1 + y}. Admittedly, our
theory no longer holds under such numerical tricks, and we shall not claim that our algorithm is
provably convergent for LDA. Instead, the contribution of MLD here is to identify the dual dynamics
associated with (3.7), which would have been otherwise difficult to perceive. We name the resulting
algorithm “SMLD-approximate” to indicate its heuristic nature.

3One can also use a higher-order Taylor approximation for exp(y), or add a small threshold exp(y) ' max{ε, 1+y}
to prevent the iterates from going to the boundary. In practice, we observe that these variants do not make a huge
impact on the performance.
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(a) Synthetic data. (b) LDA on Wikipedia corpus.

5.2.3 Results

Figure 1(b) reports the perplexity on the test data up to 100,000 documents, with the five best
step-sizes we found via grid search for SMLD-approximate. For SGRLD, we use the best step-sizes
reported in [35].

From the figure, we can see a clear improvement, both in terms of convergence speed and
the saturation level, of the SMLD-approximate over SGRLD. One plausible explanation for such
phenomenon is that our MLD, as a simple unconstrained Langevin Dynamics, is less sensitive to
discretization. On the other hand, the underlying dynamics for SGRLD is a more sophisticated
Riemannian diffusion, which requires finer discretization than MLD to achieve the same level of
approximation to the original continuous-time dynamics, and this is true even in the presence of
noisy gradients and our numerical heuristics
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A Proof of Theorem 2

We first focus on the convergence for total variation and relative entropy, since they are in fact quite
trivial. The proof for the 2-Wasserstein distance requires a bit more work.

A.1 Total Variation and Relative Entropy

Since h is strictly convex, ∇h is one-to-one, and hence

dTV(∇h#µ1,∇h#µ2) =
1

2
sup
E
|∇h#µ1(E)−∇h#µ2(E)|

=
1

2
sup
E

∣∣µ1

(
∇h−1(E)

)
− µ2

(
∇h−1(E)

)∣∣
= dTV(µ1, µ2).

On the other hand, it is well-known that applying a one-to-one mapping to distributions leaves
the relative entropy intact. Alternatively, we may also simply write (letting νi = ∇h#µi):

D(ν1‖ν2) =

∫
log

dν1
dν2

dν1

=

∫
log

(
dν1
dν2
◦ ∇h

)
dµ1 by (A.5) below

=

∫
log

dµ1

dµ2

dµ1 by (2.1)

= D(µ1‖µ2)

The “in particular” part follows from noticing that yt ∼ ∇h#xt and Y∞ ∼ ∇h#X∞.
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A.2 2-Wasserstein Distance

Now, let h be ρ-strongly convex. The most important ingredient of the proof is Lemma 3 below,
which is conceptually clean. Unfortunately, for the sake of rigor, we must deal with certain intricate
regularity issues in the Optimal Transport theory. If the reader wishes, she/he can simply assume
that the quantities (A.1) and (A.2) below are well-defined, which is always satisfied by any practical
mirror map, and skip all the technical part about the well-definedness proof.

For the moment, assume h ∈ C5; the general case is given at the end. Every convex h generates
a Bregman divergence via Bh(x,x′) := h(x)− h(x′)− 〈∇h(x′),x− x′〉. The following key lemma
allows us to relate guarantees in W2 between xt’s and yt’s. It can be seen as a generalization of the
classical duality relation (A.4) in the space of probability measures.

Lemma 3 (Duality of Wasserstein Distances). Let µ1, µ2 be probability measures satisfying Assump-
tions 2 and 3. If h is ρ-strongly convex and C5, then the (A.1) and (A.2) below are well-defined:

WBh
(µ1, µ2) := inf

T :T#µ1=µ2

∫
Bh (x, T (x)) dµ1(x) (A.1)

and (notice the exchange of inputs on the right-hand side)

WBh? (ν1, ν2) := inf
T :T#ν1=ν2

∫
Bh? (T (y),y) dν1(y). (A.2)

Furthermore, we have
WBh

(µ1, µ2) =WBh? (∇h#µ1,∇h#µ2). (A.3)

Before proving the lemma, let us see that the relation in W2 is a simple corollary of Lemma 3.
Since h is ρ-strongly convex, it is classical that, for any x and x′,

ρ

2
‖x− x′‖2 ≤ Bh(x,x′) = Bh?(∇h(x′),∇h(x)) ≤ 1

2ρ
‖∇h(x)−∇h(x′)‖2. (A.4)

Using Lemma 3 and the fact that yt ∼ ∇h#xt and Y∞ ∼ ∇h#X∞, we conclude W2(xt,X∞) ≤
1
ρW2(yt,X∞). It hence remains to prove Lemma 3 when h ∈ C5.

A.2.1 Proof of Lemma 3 When h ∈ C5

We first prove that (A.2) is well-defined by verifying the sufficient conditions in Theorem 3.6 of
[18]. Specifically, we will verify (C0)-(C2) in p.554 of [18] when the transport cost is Bh? .

Since h is ρ-strongly convex, ∇h is injective, and hence ∇h? = (∇h)−1 is also injective, which
implies that h? is strictly convex. On the other hand, the strong convexity of h implies ∇2h? � 1

ρI,
and hence Bh? is globally upper bounded by a quadratic function.

We now show that the conditions (C0)-(C2) are satisfied. Since we have assumed h ∈ C5, we
have Bh? ∈ C4. Since Bh? is upper bounded by a quadratic function, the condition (C0) is trivially
satisfied. On the other hand, since h? is strictly convex, simple calculation reveals that, for any
y′, the mapping y→∇y′Bh?(y,y′) is injective, which is (C1). Similarly, for any y, the mapping
y′ → ∇yBh?(y,y′) is also injective, which is (C2). By Theorem 3.6 in [18], (A.2) is well-defined.
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We now turn to (A.3), which will automatically establish the well-definedness of (A.1). We first
need the following equivalent characterization of ∇h#µ = ν [40]:∫

fdν =

∫
f ◦ ∇hdµ (A.5)

for all measurable f . Using (A.5) in the definition of WBh? , we get

WBh? (∇h#µ1,∇h#µ2) = inf
T

∫
Bh? (T (y),y) d∇h#µ1(y)

= inf
T

∫
Bh?

(
(T ◦ ∇h)(x),∇h(x)

)
dµ1(x),

where the infimum is over all T such that T#(∇h#µ1) = ∇h#µ2. Using the classical duality
Bh(x,x′) = Bh?(∇h(x′),∇h(x)) and ∇h ◦ ∇h?(x) = x, we may further write

WBh? (∇h#µ1,∇h#µ2) = inf
T

∫
Bh

(
x, (∇h? ◦ T ◦ ∇h)(x)

)
dµ1(x) (A.6)

where the infimum is again over all T such that T#(∇h#µ1) = ∇h#µ2. In view of (A.6), the proof
would be complete if we can show that T#(∇h#µ1) = ∇h#µ2 if and only if (∇h? ◦T ◦∇h)#µ1 = µ2.

For any two maps T1 and T2, we claim that

(T1 ◦ T2)#µ = T1# (T2#µ) . (A.7)

Indeed, for any Borel set E, we have, by definition of the push-forward,

(T1 ◦ T2)#µ(E) = µ
(
(T1 ◦ T2)−1(E)

)
= µ

(
(T−12 ◦ T−11 )(E)

)
.

On the other hand, recursively applying the definition of push-forward to T1# (T2#µ) gives

T1# (T2#µ) (E) = T2#µ
(
T−1(E)

)
= µ

(
(T−12 ◦ T−11 )(E)

)
which establishes (A.7).

Assume that T#(∇h#µ1) = ∇h#µ2. Then we have

(∇h? ◦ T ◦ ∇h)#µ1 = ∇h?#(T#(∇h#µ1)) by (A.7)

= ∇h?#(∇h#µ2) since T#(∇h#µ1) = ∇h#µ2

= (∇h? ◦ ∇h)#µ2 by (A.7) again

= µ2.

On the other hand, if (∇h? ◦ T ◦ ∇h)#µ1 = µ2, then composing both sides by ∇h and using (A.7)
yields T#(∇h#µ1) = ∇h#µ2, which finishes the proof.
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A.2.2 When h is only C2

When h is only C2, we will directly resort to (A.4). Let T be any map such that T#(∇h#µ1) =
∇h#µ2, and consider the optimal transportation problem infT

∫
‖y − T (y)‖2d∇h#µ1(y). By (A.4)

and (A.5), we have

inf
T

∫
‖y − T (y)‖2d∇h#µ1(y) = inf

T

∫
‖∇h(x)− (T ◦ ∇h)(x))‖2dµ1(x)

≥ ρ2 inf
T

∫
‖x− (∇h? ◦ T ◦ ∇h)(x))‖2dµ1(x)

where the infimum is over all T such that T#(∇h#µ1) = ∇h#µ2. But as proven in Appendix
A.2.1, this is equivalent to (∇h? ◦ T ◦ ∇h)#µ1 = µ2. The proof is finished by noting yt ∼ ∇h#xt

and Y∞ ∼ ∇h#X∞.

B Proof of Thereom 3

In previous sections, we are given a target distribution e−V and a mirror map h, and we derive the
induced distribution e−W through the Monge-Ampère equation (2.1). The high-level idea of this
proof is to reverse the direction: We start with two good distributions e−V and e−W , and we invoke
deep results in Optimal Transport to deduce the existence of a good mirror map h.

First, notice that if V has bounded domain, then the strong convexity of V implies V > −∞.
Along with the assumption that V is bounded away from +∞ in the interior, we see that e−V is
bounded away from 0 and +∞ in the interior of support.

Let dν(x) ∝ e−
‖x‖2

2 dx be the standard d-dimensional Gaussian measure. By Brenier’s polarization
theorem [4, 5] and Assumption 2, 3, there exists a convex function h? whose gradient solves the

W2

(
e−

‖x‖2
2 dx, µ

)
optimal transportation problem. Caffarelli’s regularity theorem [8, 9, 10] then

implies that the Brenier’s map h? is in C2. Finally, a slightly stronger form of Caffarelli’s contraction
theorem [24] asserts:

∇2h? � 1

m
I, (B.1)

which implies h = (h?)? is m-strongly convex.
Let us consider the discretized MLD (3.3) corresponding to the mirror map h. The SDE governing

Yt is simply the Ornstein-Uhlenbeck Process [34]:

dYt = −Ytdt+
√

2dBt. (B.2)

Invoking Theorem 3 of [13], for each iteration yT from (3.3) applied to (B.2), we have D(yT ‖Y∞) =

Õ
(
d
T

)
, which in turn implies W2(yT ,Y∞) = Õ

(√
d
T

)
and dTV(yT ,Y∞) = Õ

(√
d
T

)
. Theorem

2 then completes the proof.
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C Proof of Lemma 1

Straightforward calculations in convex analysis shows

∂h

∂xi
= log

xi
xd+1

,
∂2h

∂xi∂xj
= δijx

−1
i + x−1d+1,

h?(y) = log

(
1 +

d∑
i=1

eyi

)
,

∂h?

∂yi
=

eyi

1 +
∑d
i=1 e

yi
, (C.1)

which proves that h is 1-strongly convex.
Let µ = e−V (x)dx be the target distribution and define ν = e−W (y)dy := ∇h#µ. By (2.1), we

have

W ◦ ∇h = V + log det∇2h. (C.2)

Since ∇2h(x) = diag[x−1i ] +x−1d+111
> where 1 is the all 1 vector, the well-known matrix determinant

lemma “det(A+ uv>) = (1 + v>A−1u) detA” gives

log det∇2h(x) = log

(
1 + x−1d+1

d∑
i=1

xi

)
·
d∏
i=1

x−1i

= −
d+1∑
i=1

log xi = −
d∑
i=1

log xi − log

(
1−

d∑
i=1

xi

)
. (C.3)

Composing both sides of (C.2) with ∇h? and using (C.1), (C.3), we then finish the proof by
computing

W (y) = V ◦ ∇h?(y)−
d∑
i=1

yi + (d+ 1) log

(
1 +

d∑
i=1

eyi

)

= V ◦ ∇h?(y)−
d∑
i=1

yi + (d+ 1)h?(y).

D Proof of Lemma 2

The proof relies on rather straightforward computations.

1. In order to show e−(W+C) = ∇h#e−V for some constant C, we will verify the Monge-Ampère
equation:

e−V = e−(W◦∇h+C)det∇2h (D.1)

for V =
∑N
i=1 Vi and W =

∑N
i=1Wi, where Wi is defined via (4.2). By (4.2), it holds that

1

Ci
e−NVi = e−NWi◦∇h det∇2h, Ci :=

1∫
e−NVi

. (D.2)
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Multiplying (D.2) for i = 1, 2, ..., N , we get

N∏
i=1

1

Ci
e−NV = e−NW◦∇h

(
det∇2h

)N
. (D.3)

The first claim follows by taking the N th root of (D.3).

2. The second claim directly follows by (D.2).

3. Trivial.

4. By (D.1) and (D.2) and using ∇h? ◦ ∇h(x) = x, we get

Wi = Vi ◦ ∇h? +
1

N
log det∇2h(∇h?)− logCi, (D.4)

W = V ◦ ∇h? + log det∇2h(∇h?)− C, (D.5)

which implies N∇Wi −∇W = ∇2h? (N∇Vi ◦ ∇h? −∇V ◦ ∇h?). Since h is 1-strongly convex,
h? is 1-Lipschitz gradient, and therefore the spectral norm of ∇2h? is upper bounded by 1. In
the case of b = 1, the final claim follows by noticing

E‖∇̃W −∇W‖2 =
1

N

N∑
i=1

‖N∇Wi −∇W‖2 (D.6)

=
1

N

N∑
i=1

‖∇2h? (N∇Vi ◦ ∇h? −∇V ◦ ∇h?) ‖2 (D.7)

≤
‖∇2h?‖2spec

N

N∑
i=1

‖N∇Vi ◦ ∇h? −∇V ◦ ∇h?‖2 (D.8)

≤ E‖∇̃V −∇V ‖2. (D.9)

The proof for general batch-size b is exactly the same, albeit with more cumbersome notation.

E Proof of Theorem 4

The proof is a simple combination of the existing result in [20] and our theory in Section 3.
By Theorem 2, we only need to prove that the inequality (4.3) holds for D(ỹT ‖e−W (y)dy),

where ỹT is to be defined below. By assumption, W is unconstrained and satisfies LI � ∇2W � 0.
By Lemma 2, the stochastic gradient ∇̃W is unbiased and satisfies

E‖∇̃W −∇W‖2 ≤ E‖∇̃V −∇V ‖2 = σ2.

Pick a random index4 t ∈ {1, 2, ..., T} and set ỹT := yt. Then Corollary 18 of [20] with D2 = σ2

and M2 = 0 implies D(ỹT ‖e−W (y)dy) ≤ ε, provided

β ≤ min

{
ε

2 (Ld+ σ2)
,

1

L

}
, T ≥ W

2
2 (y0, e−W (y)dy)

βε
. (E.1)

Solving for T in terms of ε establishes the theorem.

4The analysis in [20] provides guarantees on the probability measure νT := 1
N

∑T
t=1 νt where yt ∼ νt. The ỹT

defined here has law νT .
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F Stochastic Gradients for Dirichlet Posteriors

In order to apply SMLD, one must have, for each term Vi, the corresponding dual Wi defined via
(4.2). In this appendix, we derive a closed-form expression in the case of the Dirichlet posterior
(3.6).

Recall that the Dirichlet posterior (3.6) consists of a Dirichlet prior and categorical data

observations [23]. Let N :=
∑d+1
`=1 n`, where n` is the number of observations for category `, and

suppose that the parameters α`’s are given. If the ith data is in category ci ∈ {1, 2, ..., d+ 1}, then

we can define Vi(x) := −
∑d+1
`=1 I{`=ci} log x` − 1

N

∑d+1
`=1 (α` − 1) log x` so that Assumption 4 holds.

In view of Lemma 1, The corresponding dual Wi is, up to a constant, given by

Wi(y) = −
d∑
`=1

I{`=ci}y` −
d∑
`=1

α`
N
y` + h? +

(
d+1∑
`=1

α`
N

)
h?(y). (F.1)

Similarly, if we take a mini-batch B of the data with |B| = b, then

N

b
W̃ (y) :=

N

b

∑
i∈B

Wi(y) = −
d∑
`=1

(
Nm`

b
+ α`

)
y` +

(
N +

d+1∑
`=1

α`

)
h?(y), (F.2)

where m` is the number of observations of category ` in the set B. Apparently, the gradient of (F.2)
is (4.4).

G Comparison against SGRHMC for Latent Dirichlet Allo-
cation

The only difference between the experimental setting of [29] and the main text is the number of topics
(50 vs. 100). In this appendix, we run SMLD-approximate under the setting of [29] and directly
compare against the results reported in [29]. We have also included the SGRLD as a baseline.

Figure 1 reports the perplexity on the test data. According to [29], the best perplexity achieved
by SGRHMC up to 10,000 documents is approximately 1400, which is worse than the 1323 by
SMLD-approximate. Moreover, from Figure 3 of [29], we see that the SGRHMC yields comparable
performance as SGRLD for 2 out 3 independent runs, especially in the beginning phase, whereas the
SMLD-approximate has sizeable lead over SGRLD at any stage of the experiment. The potential
reason for this improvement is, similar to SGRLD, that the SGRHMC exploits the Riemannian
Hamiltonian dynamics, which is more complicated than MLD and hence more sensitive to the
discretization error.
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Figure 1: LDA for Wikipedia, 50 topics.
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