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Abstract— We propose a way to estimate the value function
of a convex proximal minimization problem. The scheme
constructs a convex set within which the optimizer resides and
iteratively refines the set every time that the value function
is sampled, namely every time that the proximal minimization
problem is solved exactly. The motivation stems from multi-
agent distributed optimization problems, where each agent is
described by a proximal minimization problem unknown to
the global coordinator. We prove convergence results related to
the solution of such distributed optimization problems in the
special case where the projected gradient method is used and
demonstrate that the developed scheme significantly reduces
communication requirements when applied to a microgrid
setting.

I. INTRODUCTION

The presence of a population of independent agents with
a global coordinator, along with the fact that certain data is
supposed to remain private to the agents, call for distributed
optimization schemes. Methods like the Proximal Gradient
Method (PGM), the Alternating Direction Method of Mul-
tipliers (ADMM) and several others are suitable for these
problems (see [1] and the references therein).

In the majority of these schemes, the local subproblems
that need to be solved are cast as proximal minimization
problems, a term used to describe optimization problems
that are regularized by the addition of a properly scaled
quadratic term in their objective [2]. In the course of the
execution, the agents need to communicate the solutions to
the proximal minimization subproblems to the coordinator,
who will, in turn, manipulate the agents’ objectives by
broadcasting incentives that skew their local policies toward
the global target.

In such multi-agent frameworks, extensive communication
might be undesirable for a variety of reasons. One such rea-
son might be the existence of delays due to a weak network.
Another reason might be that the agents run on energy-
limited resources which are drained rapidly with frequent
activations. Furthermore, it is often the case that an agent’s
update might be insignificant relative to the global objective’s
value decrease, hence rendering it more beneficial to skip the
update in the first place. This is a pronounced issue in (very)
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large scale optimization with multiple processes per machine,
where the machine can only be executing one optimization at
a time. It would, therefore, be useful if the coordinator could
‘guess’ the optimizers of its agents and base the selection of
the agent to update on the satisfaction of some criterion.

We propose a reduced communication framework for
distributed optimization problems by estimating a convex set
containing the solution of a proximal minimization problem.
Construction of the set is achieved using the theory of
the Moreau envelope function and its important connections
with the proximal operator. The structural properties of the
Moreau envelope, allows the coordinator to restrict the area
of all possible optimizers within a convex set, explicitly
described as the intersection of ellipsoids and iteratively
refined every time that a communication round occurs.
Subsequently, the coordinator can make a guess regarding
the solution of the agent’s optimizer by choosing a value
from the constructed set and spare a communication round
provided that the guess is adequately good. The proposed
scheme is a coordinator-driven communication reduction
scheme, i.e., the agents cannot decide when to communicate.

Our analysis focuses on a distributed optimization algo-
rithm instance, namely on the projected gradient method.
In this context we propose a certification test for deciding
whether communication should occur or not. In addition,
we model the effect incurred by the lack of communication
as an error in the solution of the optimization problem. By
analyzing this result in the context of fixed-point iterations
with errors, we prove convergence of the sequence to either
the optimizer, or to a ball centered at the optimizer, based
on the convergence rate of the error sequence.

The manuscript is organized as follows: Section II explains
the notation that we use throughout this work. In the begin-
ning of Section III we set the groundwork for the upcoming
results, i.e., we introduce the Moreau envelope function and
its connection to the proximal operator. We then show how
we can explicitly construct a set that contains an optimizer,
and we propose a scheme that decides when the approxi-
mation should be updated, namely when a communication
round should be triggered. At the close of the section we
derive the results related to convergence. In Section IV we
provide evidence about the performance of the proposed
scheme by solving a load sharing problem for microgrids
using the projected gradient method with block coordinate
updates.



II. NOTATION

The subdifferential of an (extended-real-valued) closed
proper convex function f : Rn 7→ R ∪ {+∞} at a point
x is denoted by ∂f(x). The proximal operator prox γf :
Rn 7→ Rn evaluated at z is denoted as prox γf (z) =

argmin
x∈Rn

{
f(x) + 1

2γ ‖x− z‖
2
}

, γ > 0. The indicator func-

tion of a closed convex set Z is denoted as

δ(z | Z) =
{

0 z ∈ Z
∞ otherwise.

When f = δZ , prox γf (z) = PZ(z), where PZ denotes the
projection of z onto the set Z .

Given some x ∈ Rn and n =
∑M
i=1 ni, we denote the

ith component of the gradient of some h : Rn 7→ R by
∇ih(x) ∈ Rni .

Finally, the expected value of a random variable X is
denoted by E[X], the conditional expectation of X given Y
by E[X | Y ], while the probability that Y = y by P[Y = y].

III. ESTIMATING THE SOLUTION TO A PROXIMAL
MINIMIZATION PROBLEM

Consider the proximal minimization problem

prox γfi(zi) = argmin
x∈Rn

{
fi(x) +

1

2γ
‖x− zi‖2

}
, (1)

associated to some agent i ∈ {1, . . . , N}. In a distributed
optimization setting, a global coordinator generates a se-
quence of points {zki } for each agent, at which the proximal
operator (1) is evaluated. The agents subsequently transmit
their optimizers prox γfi(zi) to the coordinator.

Our purpose is to estimate, to the best possible accuracy,
the optimizer of (1) for a given (arbitrary) sequence {zki },
without having to solve the optimization. In other words, we
want to learn an approximation of the value function of (1),
also known as the Moreau envelope function of f , a notion
instrumental to our upcoming analysis.

A. The Moreau envelope

The Moreau envelope of f is defined as

φγ(z) = min
x∈Rn

{
f(x) +

1

2γ
‖x− z‖2

}
. (2)

When f is a closed proper convex function, the Moreau en-
velope is convex and differentiable, with Lipschitz continuous
gradient with constant 1/γ. Moreover, the set of minimizers
of f and of φγ coincide. A discussion about the envelope
and its properties can be found in [3, Section 5.1]. It is also
shown in [3, Proposition 5.1.7] that the unique solution to the
proximal minimization xγ(z) = proxγf (z) can be written
as

xγ(z) = z − γ∇φγ(z) , (3)

i.e., it is the point at which the gradient descent iteration of
φγ , evaluated at z, lands.

The Moreau envelope of a scalar linear function is depicted
in Figure 1. An outer polyhedral approximation of φγ can be
constructed by generating a cut every time that problem (2)

is solved centered at some point zj . The cut is a hyperplane
tangent to the epigraph of φγ at zj and is described by the
equation

φγ(zj) + 〈∇φγ(zj), z − zj〉 . (4)

We are going to refer to points at which the Moreau envelope
is evaluated (i.e., points at which (2) is solved), as query
points, the name stemming from the fact that communication
has to occur between the coordinator and the agent in order
to have the exact solution.

��(x)

f (x)

Fig. 1: The Moreau envelope of a linear function constrained
in [-3,1]. The proximal evaluations at several randomly
generated points gradually form the envelope. Note that the
minimum values coincide.

It is evident from (3) that, given an arbitrary point v, the
gradient ∇φγ(v) is all that is needed in order to reconstruct
the optimizer of (1). However, the outer polyhedral approx-
imation of the envelope given by a collection of cuts (4)
for several query points j, can only provide us with a
rough estimate of the gradient. This estimate is derived by
identifying the hyperplane that is closest to φγ at v, namely
by finding the index

j∗ = argmax
j
{φγ(zj) + 〈∇φγ(zj), v − zj〉}j . (5)

The quality of the approximated gradient deteriorates with
the distance of zj∗ to v, as well as with the rate of change
of the slope of φγ . In what follows, we will get a better
characterization of the possible gradients of φγ at v by
making use of some fundamental properties of the gradient
of a convex function, applied to the Moreau envelope (2).

B. Characterization of the gradient set

We saw in the previous section that the active hyperplane
can be a poor approximation of the gradient at a point v.
What we opt for is rather a set of possible gradients and
a way to evaluate the worst case gradient (how far away
one can be from the actual gradient) contained in the set.
The Lipschitz continuity property of the gradient of φγ ,
along with its convexity, imply the existence of numerous
conditions that can be used in order to construct a set
for the possible gradients, see, e.g., [3, Section 6.1]. One



such necessary condition for convexity is based on the co-
coercivity property of the gradient and reads as follows:

〈∇φγ(v)−∇φγ(z), v − z〉 ≥ γ‖∇φγ(v)−∇φγ(z)‖22,
∀z, v ∈ Rn .

Consequently, a set of possible gradients of φγ at v,
denoted by g, can be described by

G(v) :=
⋂M
j=1

{
g | γ‖g −∇φγ(zj)‖22 − 〈g −∇φγ(zj), v − zj〉 ≤ 0

}
.

(6)
The set is an intersection of a finite number (M ) of 2-

norm balls, and hence it is closed. The closedness of the set
is important for finding the worst case gradient, as described
in the next section.

Remark 1: Several conditions can be used instead of the
2-norm ball in (6), see, e.g., [4, Theorem 2.1.5]. Some
of them might perform better than others in terms of the
computational description of the set when it is used for
optimization purposes, and they are, in principle, equivalent
(see also [3, Exercise 6.1]).

C. When should we communicate?

We will now capitalize on the knowledge that we acquired
regarding the location of the actual gradient in the set (6) in
order to reduce communication in a distributed optimization
framework. Let us consider a problem of the form

minimize h(z) +

N∑
i=1

fi(zi) , (7)

where fi : Rni 7→ R ∪ {+∞}, i = 1, . . . , N are convex
functions private to the corresponding agents and h : Rn 7→
R ∪ {+∞}, n =

∑N
i=1 ni, is the convex objective of the

coordinator.
We are going to focus our attention on a special case

of problems, namely when fi(zi) = δ(zi | Zi), and
Zi, i = 1, . . . , N are compact sets, h is differentiable with
L-Lipschitz continuous gradient and strongly convex with
modulus µ, and a relaxed version of the Projected Gradient
Method is used in order to solve (7), namely the iteration
becomes

zk+1
i = (1− ηk)zki + ηkPZi

(zki − c∇ih(zk)) , (8)

with a stepsize c ∈ (0, 2/L). The (possibly varying) relax-
ation parameter ηk ∈ [0, 1] is widely used in fixed point
iterations like (8) (see, e.g., [3, Proposition A.4.2]) and can
be particularly useful in cases where the iteration is inexact
due to accumulated errors [5], or when asynchronicity is
present in the updates [6].

The projected gradient method is a special case of a
proximal minimization problem. The coordinator is agnostic
to the sets Zi, and routinely needs to communicate the
gradient ∇h(zk) and subsequently wait to receive zk+1

i .
It is customary in many distributed optimization applica-

tions to let the agents update only one at a time, in contrast
to waiting for all of them to become available. Under this
assumption, and without restricting the applicability of the

scheme we are about to propose, only one agent updates
at each iteration, thus we operate in a (block) coordinate
descent fashion. Adopting the framework for distributed
asynchronous optimization proposed in [6], a probability of
update pi, i = 1, . . . , N is assigned to each agent. At every
algorithmic iteration, agent ik is selected to update according
to its probability. The relaxation parameter ηk can be set to
ηk = ρ

Npik
, for some ρ > 0.

Given (6), we can now devise a reduced communication
scheme to solve the problem. We have from (3) that

PZi(v
k
i ) = vki − γ∇φ

γ
i (v

k
i ) ,

where vki = zki − c∇ih(zk). The coordinator can, thus,
keep in its memory a set Gi for every agent i, that is
updated whenever a communication round occurs. With
every query point, Gi is augmented by one more inequality
according to (6). Observe that Gi acts indeed as a subd-
ifferential set, namely it contains gradients gi that might
not result in an objective value decrease for h (see [3,
Section 3.2]). Say, e.g., that at time k a point gki is picked
from Gi and gki 6= ∇φγi (vki ). Then the estimated opti-
mizer becomes ẑk+1

i = (1 − ηk)zki + ηk(vki − γgki ), and
zk+1 = (. . . , zk+1

i−1 , ẑ
k+1
i , zk+1

i+1 , . . .). This choice of zk+1

might result in 〈∇h(zk), zk+1 − zk〉 > 0 due to the fact
that 〈∇ih(zk), ẑk+1

i − zki 〉 > −
∑
j 6=i〈∇jh(zk), z

k+1
j − zkj 〉.

Based on the discussion above, the coordinator can always
look for the worst case point in Gi relative to the decrease
of h. If the resulting estimated optimizer ẑk+1

i preserves the
property of a descent direction, then there is no need to query
agent i. In the opposite case, communication is preferable.

The worst case optimizer can be found be solving
the following Quadratically Constrained Quadratic Program
(QCQP):

maximize 〈


...

∇ih(zk)
...

 ,


...
ηk(vki − zki )− γgi

...

〉 =: Hi(v
k
i )

subject to gi ∈ Gi(vki ) ,
(9)

with variable gi ∈ Rni . The sequence of steps taken to solve
problem (7) is presented below as Algorithm 1.

Looking at the 5th step of Algorithm 1, the gradient
vector gi can be chosen in an arbitrary manner. When gi
is chosen to be the solution of (9), the algorithm tends to
behave conservatively since that would correspond to having
agents that are adversarial to the global coordinator. In a
more realistic setting, however, the actual gradient ∇φγi (v)
of some agent i would probably lie somewhere in the set Gi,
rather than on its worst case boundary point.

Consequently, we propose an alternative approach, where
zk+1
i of Algorithm 1 is updated based on the gki that resides

in the Chebyshev center of the set Gi, i.e., gki is the center
of the largest ball inscribed in the set Gi. The center can
be computed by solving an additional Semidefinite Program
(SDP) [7, Section 8.5.1].

Remark 2: Although the QCQPs and the SDPs that need
to be solved from the coordinator at every algorithmic



Algorithm 1 Projected Gradient Method with Estimated
Proximal Operator

Require: zi,0 ∈ Rni , Gi = ∅, c ∈ (0, 2/L), γ = c, dis-
crete probability distribution (p1, . . . , pN ),

∑N
i=1 pi =

1, pi > 0. Iteration counter is set to k = 0, kstop > 0.
1: while k < kstop, choose agent ik with probability pik :=

P[ik = i] = pi, do
2: Compute vki = zki − c∇ih(zk) . Coordinator
3: Solve (9) . Coordinator
4: if Hi(v

k
i ) < 0 then

5: Choose any gi ∈ Gi, set gki = gi . Coordinator
6: Compute zk+1

i = (1− ηk)zki + ηk(vki − γgki )
7: . Coordinator
8: else
9: Transmit vki to Agent i . Coordinator

10: Solve (8) . Agent i
11: Transmit zk+1

i to the Coordinator . Agent i
12: Update set Gi with zk+1

i . Coordinator
13: k ← k + 1

iteration grow with the number of query points, both the
ellipsoidal and SDP constraints that are added with every
new query point are independent of the existing ones. This
suggests that the optimization problems are separable and
can be solved in a parallel fashion by employing as many
processors as the number of the generated query points.

D. Convergence

The convex program (9) is a communication test drawing
on the validity of the gradient estimate gki , for some agent
i ∈ {1, . . . , N}, gki 6= ∇φ

γ
i (v

k
i ). For as long as the test

is passed, the scheme will keep iterating toward the right
direction with respect to the cost decrease, but with some
error in the local optimizers. These errors accumulate as
Algorithm 1 progresses. It is, therefore, essential for the
coordinator to take corrective action in the form of feedback
from the agents, so as to avoid drifting toward a non-solution
of (7).

Let us assume that every K > 0 iterations a full correction
takes place, namely all the agents communicate their actual
optimizers to the coordinator, and that K is bounded. In this
case, the following theorem holds:

Theorem 1: Let N agents update with probabilities pi and
pmin = mini pi. Let ν = 1−

√
(1− 2γµ+ µγ2L), where L

is the Lipschitz constant of ∇h and µ the strong convexity
constant of h, while γ < 2/L. If z∗ is the unique optimizer
of (7), for any time instant k > K, the sequence {zk}
generated by Algorithm 1 satisfies

E[‖zk+K − z∗‖2] ≤
(
1− ρ(ν−ε)

N

)k
E[‖zK − z∗‖2]

+ ρ
N

(
1
ε +

ρ(1+δ)
Npminδ

)∑k
j=1

(
1− ρ(ν−ε)

N

)k−j
E[‖eK−1+j‖2] ,

(10)

for ρ ∈ (0, Npmin/(2(1 + δ))), δ > 0, ν > ε > 0 and
ek = (ek1 , . . . , e

k
N ) ∈ RNn the vector that is constituted of

the components eki = γ(∇φγi (vk)−gki ), i = 1, . . . , N , while
eK = 0.

Proof: We sketch the idea behind the proof in the
Appendix. Due to its excessive length, the complete proof
has been deferred to the supplementary document [8].
Theorem 1 states that if the algorithm is terminated earlier,
the sequence {zk} will converge (in expectation) to a ball
that is centered at the optimum and has a radius that increases
with the expected error that has been accumulated since the
last correction occured.

Remark 3: Our focus on coordinate projected gradient de-
scent does not affect the generalizability of the approach. As
a matter of fact, convergence of the proximal gradient method
with errors in the classical setting can be found in several
works (e.g., [5]). In that setting, the coordinator would need
to solve (9) for the vector g = (g1, . . . , gN ) ∈ RNn, and
subsequently decide which agents should be communicated
based on some heuristic criterion.

IV. APPLICATION: DISTRIBUTED LOAD SHARING

This section considers the application of Algorithm 1
to a problem where the minimizer of a convex function
lies in the Cartesian product of a number of convex sets.
This classical problem is of particular interest in several
contexts. We consider the problem of cooperative tracking
of a reference signal from a population of buildings. These
problems typically arise in the context of microgrids, where
a mixture of energy generation, energy storage elements and
loads are coupled together in order to satisfy a predicted
power demand profile, as is the case in day ahead electricity
markets.

The sharing problem takes the form

minimize
1

2

T−1∑
t=0

(

N∑
i=1

zi(t)− r(t))2 +
N∑
i=1

fi(zi) ,

(11)
with variables zi = (zi(0), . . . , zi(T − 1)) ∈ RT and z =
(z1, . . . , zN ) ∈ RNT . The reference power profile is denoted
by r(t), while time spans from t = 0, . . . , T − 1, i.e., we
have a T -timesteps ahead prediction of the power profile.
The variable zi(t) refers to the total consumption of the ith

building at time instant t, where i = 1, . . . , N . The first
term, h(z) = (1/2)

∑T−1
t=0 (

∑N
i=1 zi(t) − r(t))2, penalizes

the deviation of the total power contribution to the reference
power profile. The individual components fi(zi) are implicit
descriptions of convex sets, constructed by the intersection
of linear equations (agent dynamics) and constraints, details
that are hidden from the global node.

A. Modeling of the agents

The microgrid comprises small, medium and large office
buildings, generated by the OpenBuild software [9]. The
buildings are described as linear dynamical systems, the input
to which is the thermal heat (kW ) that is entering or leaving
each zone, while the output is the temperature at each zone
(C◦). The energy conversion systems (electrical to thermal)
is modeled as a static map, which is represented by a constant



coefficient of performance (COP). The buildings can partici-
pate in the ancillary service market by increasing or decreas-
ing their consumption with respect to some baseline power
profile. An individual building seeks to contribute to the
tracking objective while respecting temperature constraints.
The local optimization problem for building i becomes

gi(zi, ui, xi) = δ((zi, ui, xi) | Cbuild) , (12)

Cbuild =


xi(t+ 1) = Aixi(t) +Biui(t)
xi(0) = xiniti

zi(t) =
∑Mi

j=1 uij(t)

Cixi(t) ∈ Xi(t)
‖ui(t)‖∞ ≤ umax

i

 ,

with zi ∈ RT , xi ∈ RnT , ui = {uij}1≤j≤Mi
∈ RMiT , where

xi are states zi(t) is the total amount (electrical equivalent)
of the thermal consumption at time t, and Mi is the number
of zones of the building. The linear mapping of the states
Cixi(t) corresponds to zone temperatures that are confined
within desired limits.

Simulation characteristics

Data 20th July 2013
Location Lausanne
Time 00:00 - 04:00
Sampling time 15 min
Horizon 17 −

Buildings

Minimum temperature 18 ◦C
Maximum temperature 28 ◦C
Heat pump COPhot 3.0 −
Heat pump COPcold 3.0 −

Small Medium Large
Number of systems (Case A, B) 9 7 4 #
Area 511 4982 46320 m2

Number of states 15 54 57 −
Number of inputs 5 18 19 −
Average thermal consumption 4 40 75 W/m2

TABLE I: Micro-grid case study overview

Instead of carrying the full building description (12),
which would result in a high-dimensional optimization prob-
lem, the authors in [10] propose a low-dimensional modeling
abstraction of the building as a ‘thermal battery’. A robust
optimization problem is solved to ensure that the trackable
power profiles zi(t) =

∑Mi

j=1 uij(t) ∈ RT for building
i reside inside a convex set, namely Zi, and satisfy the
constraints imposed in (12). Making use of this abstraction,
the problem we want to solve reads:

minimize 1
2

∑T−1
t=0 (

∑N
i=1 zi(t)− r(t))2 +

α
2 ‖z‖

2

subject to zi ∈ Zi, i = 1, . . . , N ,
(13)

where the term (α/2)‖z‖2 was added for regularization
purposes using α = 0.1.

B. Simulation setup

Our purpose is to assign 15 minute reference tracking to a
population that consists of agents described in the previous
section. We consider N = 20 buildings, while all the details
of the simulation are given in Table I.

We solve problem (13) using the projected gradient
method with random coordinate descent. Uniform updates
are considered, i.e., pi = 1/N while we set ηk = η = 0.9 ∀k
(its value should be smaller according to Theorem 1, but
the formula is rather conservative, while the aforementioned
choice performed well in practice). A comparison is per-
formed between the exact solution of the problem, and the
worst case and centering approaches proposed in Section IV.
The proximal minimization problems are solved in MATLAB
using the YALMIP optimizer [11] with the Gurobi solver,
while the QCQPs and the SDPs were solved using CVX [12]
with SEDUMI [13].

Figure 2 depicts the number of iterations versus the
number of communication rounds using all three approaches,
namely exact, inexact worst case and inexact with centering.
The termination criterion is a combination of feasibility and
optimality, namely we iterate until inclusion of zi in Zi is
satisfied for all agents with accuracy 10−3, while the distance
to the optimizer ‖zk− z∗‖/‖z∗‖ ≤ 10−1. It is observed that
in both cases where the proximal solution is estimated, the
communication rounds are significantly reduced, by more
than 50%. In addition, with the centering approach the
number of iterations for convergence is also reduced by more
than 50%. Surprising though it might seem, this is possible
since the estimated gradient gki might result in an infeasible
approximate optimizer zk+1

i for some i, such that zk+1
i /∈ Zi,

thus giving rise to a more aggressive step.
Furthermore, several levels of feasibility and optimality

are depicted with crosses and diamonds, respectively. It is
noteworthy that feasibility is more of an issue in the worst
case approach, while the iterates become feasible much
quicker when the centering approach is used.

V. CONCLUSION

Modern multi-agent setups consist of several heteroge-
neous components equipped with prediction and control
algorithms, that attribute to them some decision making
capacity. These attributes ask for distributed solutions which
come with an inherent communication overhead. We propose
a framework where the communication requests are reduced
by enabling the central coordinator to gradually ‘learn’ the
optimization model of the agents and triggers them based on
the result of a predesigned certification test.

The proposed approach is currently limited by two aspects:
First, the complexity of the optimization problems that need
to be solved in order to recover the approximate minimizer
scales with the number of the generated query points. Sec-
ond, both the test design and the demonstration regard the
projected gradient method. We reckon that both these aspects
give rise to practical limitations, which we will try to address
as part of future work.
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[14] J. Liang, J. Fadili, and G. Peyré, “Convergence rates with inexact non-
expansive operators,” Mathematical Programming, pp. 1–32, 2014.

[15] M. W. Schmidt, N. L. Roux, and F. R. Bach, “Convergence Rates
of Inexact Proximal-Gradient Methods for Convex Optimization,” in
Advances in Neural Information Processing Systems 24: 25th Annual
Conference on Neural Information Processing Systems 2011, Granada,
Spain., pp. 1458–1466, 2011.

APPENDIX
SKETCH OF THE PROOF OF THEOREM 1

The key point is to observe that the approximate iteration
zk+1
i = vki − γgki can be expressed as an inexact projected

gradient iteration. To this end, we introduce the error se-
quence {ek} so as to write

eki + PZi

(
vki
)
= vki − γgki , (14)

while
PZi

(
vki
)
= vki − γ∇φ

γ
i (v

k
i ) . (15)

Substituting (15) in (14) we have that

eki = γ(∇φγi (vi,k)− g
k
i ) . (16)

Using the error (16), the randomized coordinate descent
iteration can be expressed as{

zk+1
ik

= zkik + ηk
(
ekik + PZik

(
zkik − c∇ikh(z

k)
)
− zkik

)
zk+1
i6=ik = zki 6=ik ,

or, more compactly, as

zk+1 = zk+ηkUik

(
PZ
(
zk − c∇h(zk)

)
−zk+ek

)
. (17)

The matrix Uik : RNn 7→ RNn is drawn from a set of
orthogonal projection matrices {Ui}1≤i≤N such that Ui :

z 7→ (0, . . . , 0, zi, 0, . . . , 0), i = 1, . . . , N and
∑N
i=1 Ui =

INn. Consequently, Uik isolates the ithk component of its
argument, thus it updates the corresponding component of
z, while the other components (agents) are set to their
previous values. The projection operator PZ is defined as
PZ = PZ1

× PZ2
× · · · × PZN

.
Equation (17) is an instance of a more general inexact

fixed-point iteration. Such iterations have been heavily stud-
ied in the literature. The works [14], [5], [15] consider the
case of deterministic fixed-point iterations with errors both in
the gradient and in the proximal operator, where the errors
are summable, while [6] analyze asynchronous fixed-point
iterations, where the errors appear due to outdated samples
in the update. It turns out that the asynchronous iteration
in the latter works takes the form (17), the only difference
being the expression for the error (16). We can thus employ
similar arguments for proving convergence. Since the proof
is relatively lengthy, we have placed it as supplementary
material in the manuscript [8].

https://infoscience.epfl.ch/record/253180?&amp;amp;ln=fr
https://infoscience.epfl.ch/record/253180?&amp;amp;ln=fr
http://cvxr.com/cvx
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