Numerical optimization of the ramp-down phase with the RAPTOR code

A.A. Teplukhina¹, O. Sauter², F. Felici², A. Merle², the TCV team, the ASDEX-Upgrade team, the EUROfusion MST1 team and JET contributors

¹ École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
² Eindhoven University of Technology, Department of Mechanical Engineering, PO. Box 513, 5600 MB Eindhoven, The Netherlands

Research directions

1. Development of an optimization procedure for the ramp-down phase of the plasma discharge to terminate plasmas in the fastest and safest way:
 - Determination of the optimal time evolution of the plasma parameters, the plasma current I_p, plasma elongation κ, auxiliary power P_{aux} to terminate the plasma discharge as fast as possible.
 - For the safe termination physical constraints have to be specified: a constraint on normalized κ, not allowed P_{aux} too low (to avoid MHD modes), a constraint on the plasma elongation κ to avoid vertical instabilities.
 - Define technical constraints to match experimental limits, the maximal ramp rate of the plasma current I_p, constraints on the rate of change in the vertical magnetic field B_t for radial plasma control.
 - Determination of the optimal time of H- to L-mode transition.

2. Development of the RAPTOR code:
 - The RAPTOR code – Rapid Plasma Transport Simulator [1,2].
 - The RAPTOR control-oriented transport code without an equilibrium solver.
 - A lone degree of freedom can be computed.
 - The gradient-based transport models [3,4] for the electron heat and particle transport have been implemented.
 - Successful validation via simulations of TCV and AUG entire plasma discharges and comparison with the experimental plasma scenarios [5].

The trajectories optimization [2]

To get a good trajectory optimization:

1. realistic predictive simulations \rightarrow appropriate transport models;
2. fast solver \rightarrow RAPTOR.

- Plasma current I_p
- ECH power P_{ECH}
- NBI power P_{NBI}
- Plasma elongation κ

Cost function:

- Safety factor $q(z)$
- Plasma stability λ_e
- Edge local voltage V_e
- Various physical and technical constraints (I_p max ramp rate)

Predicted variables: same as for the TCV case except δ_{el} profiles, $H=0.20.25$ and $3.20.35$ for L-/H-mode, the line-averaged electron density $n_{el} \geq 2.0.350.3$ for L-/H-mode.

Transport coefficients: the gradient-based model [3,4] or n_{el}.

The TCV plasma simulation: #56693, NBH, LHL-modes

- Prescribed parameters: the total plasma current I_p and profiles of the electron density n_{el}, the total input NB power with central deposition and the prescribed Gaussian radial profile $H=0.50.45$ and $l=0.320.3$ for L-/H-mode.
- Predicted variables: the electron temperature T_e, the poloidal flux Ω, the electron heat diffusivity χ_e, various physical quantities.

Equilibrium: 9 CHEASE equilibria (marked as solid on the I_p plot)."}

The AUG plasma simulation: #33589, NBH, LHL-modes

- Prescribed parameters: same as for the TCV case except δ_{el} profiles, $H=0.20.25$ and $3.20.35$ for L-/H-mode, the line-averaged electron density $n_{el} \geq 2.0.350.3$ for L-/H-mode.
- Predicted variables: as for the TCV case except δ_{el}, $n_{el} \geq 2.0.350.3$ for L-/H-mode, the line-averaged electron density $n_{el} \geq 2.0.350.3$ for L-/H-mode.
- Transport coefficients: the gradient-based model [3,4]

The generic ramp-down optimization

The ramp-down optimization of the plasma current and the boundary elongation at $H=0.3$ for the AUG-like plasma with the cost function $\int_0^T L dt$. The reference case and the unconstrained optimum.

The ramp-down optimization: TCV #55520 and AUG #33589, test TCV #55672

TCV #55520: L-mode, the optimization of I_p and n_{el} at $t=[0.1-1.0]$ s with 10 ms step.
- Technical constraints: $dV_e/dt < 1.0 (MV/m)$; $dI_p/\lambda_e < 0.0 (T/s)$
- The cost function $J = \int_0^T L dt$
- Further J and λ_e ramp-down can be programmed.

TCV #55672: an experimental test of the TCV #55520 optimized trajectories.
- Further J but slower λ_e ramp-down obtained.
- λ_e is within the required limit except waist peaks.

Future directions

- The RAPTOR code development:
 - Y and impurities transport modeling.
 - A scaling law for the pedestal pressure for L-/H-mode to determine μ_e directly.
 - A radial-dependent core gradient λ_e.
- Continue to model validation with JET simulations.
- Continue for ITER simulations.

- The ramp-down optimization:
 - Constraints related to radiated power and impurities.
 - Technical constraints on the rate of change in the electron density.
 - Technical constraints related to the plasma shape change.
 - Technical constraint on the vertical position control (constraint on $d\delta_{el}/dt$).

PLANS

The ramp-down optimization: TCV #55520 and AUG #33589, test TCV #55672

OPTIMIZATION

The TCV plasma simulation: #56693, NBH, LHL-modes

The AUG plasma simulation: #33589, NBH, LHL-modes

Refrences

Figures

- The constraints for J are shown with the solid circles and the values of λ_e are at 0.15. An area where the constraint parameter violates the constraint is in yellow-marked.
- The contours for J are shown with the solid circles which correspond to values of λ_e at 0.15. An area where the constraint parameter violates the constraint is in yellow-marked.

Technical report

- JET plasma modelling: #9207
- The RAPTOR code transport equations
- The inverse scale length [3]: $l_e = \frac{e}{\gamma(1-\beta_0^2)T_e} \left(\frac{m_e}{2\pi} \right)^{1/2}$.