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Theorem 1 Let N agents update with probabilities pi and pmin = mini pi . Let ν =
1 −

√
(1− 2γµ+ µγ2L), where L is the Lipschitz constant of ∇h and µ the strong

convexity constant of h, while γ < 2/L. If z∗ is the unique optimizer of Problem 7 in [1],
for any time instant k > K, the sequence {zk} generated by Algorithm 1 satisfies

E[‖zk+K − z∗‖2] ≤
(
1− ρ(µ−ε)

N

)k
E[‖zK − z∗‖2]

+ ρ
N

(
1
ε +

ρ(1+δ)
Npminδ

)∑k
j=1

(
1− ρ(µ−ε)

N

)k−j
E[‖eK−1+j‖2] , (1)

for ρ ∈ (0, Npmin/(2(1 + δ))), δ > 0, ν > ε > 0, and ek = (ek1 , . . . , e
k
N) ∈ RNn the vector

that is constituted of the components eki = γ(∇φ
γ
i (v

k)− gki ), i = 1, . . . , N, while eK = 0.

Proof 1 The key point is to observe that the approximate iteration zk+1i = v ki − γgki can
be expressed as an inexact projected gradient iteration. To this end, we introduce the error
sequence {ek} so as to write

eki + PZi
(
v ki
)
= v ki − γgki , (2)

while
PZi

(
v ki
)
= v ki − γ∇φ

γ
i (v

k
i ) . (3)

Substituting (3) in (2) we have that

eki = γ(∇φ
γ
i (vi ,k)− g

k
i ) . (4)

Using the error (4), the randomized coordinate descent iteration can be expressed as{
zk+1ik

= zkik + η
k
(
ekik + PZik

(
zkik − γ∇ikh(z

k)
)
− zkik

)
zk+1i 6=ik = zki 6=ik ,
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or, more compactly, as

zk+1 = zk + ηkUik

(
PZ
(
zk − γ∇h(zk)

)
− zk + ek

)
. (5)

The matrix Uik : RNn 7→ RNn is drawn from a set of orthogonal projection matrices {Ui}Ni=1
such that Ui : z 7→ (0, . . . , 0, zi , 0, . . . , 0), i = 1, . . . , N and

∑N
i=1 Ui = I. Consequently,

Uik isolates the i
th
k component of its argument, thus it updates the corresponding component

of z , while the other components (agents) are set to their previous values. The projection
operator PZ is defined as PZ = PZ1 × PZ2 × · · · × PZN .
Equation (5) is an instance of a more general inexact fixed-point iteration. By introducing

the operator
T : Rn 7→ Rn, T := PZ (I − γ∇h)

and
S : Rn 7→ Rn, S = I − T .

equation (5) can be written as

zk+1 = zk + ηkUik (Tz
k − zk + ek) = zk − ηkUik s

k , (6)

where sk = Szk −ek , and ek is given by (4). We set the relaxation parameter to ηk = ρ
Npik

,
where ρ > 0 will be bounded from above later on.
Our purpose is to bound the distance of zk+1 to the fixed point z∗ as a function of
‖zk − z∗‖ and ‖ek‖, always in expectation. We thus introduce Zk =

{
z0, z1, . . . , zk

}
, and

by taking the conditional expectation and squaring (6), we get

E[‖zk+1 − z∗‖2 | Zk ] = ‖zk − z∗‖2 − 2
ρ

N
E[〈zk − z∗,

1

pik
Uik s

k〉 | Zk ] +
ρ2

N2
E[‖
1

pik
Uik s

k‖2 | Zk ]

= ‖zk − z∗‖2 − 2
ρ

N

N∑
i=1

pi〈zk − z∗,
1

pi
Uis

k〉+
ρ2

N2

N∑
i=1

pi〈
1

pi
Uis

k ,
1

pi
Uis

k〉

≤ ‖zk − z∗‖2 − 2
ρ

N
〈zk − z∗, sk〉+

ρ2

N2pmin
‖sk‖2 , (7)

where the second equality follows from the definition of the expectation and the third one
from the fact that Ui is an orthogonal projection operator.
Let us now analyze the second and third term in (7).

• Bound −2 ρN 〈z
k − z∗, sk〉: From the definition of sk = Szk − ek , it holds that

〈zk − z∗, sk〉 = 〈zk − z∗, Szk〉 − 〈zk − z∗, ek〉 . (8)

We will now upper-bound the resulting inner product terms. In order to do so, we
must use both the Lipschitz continuity of ∇h and the strong convexity of h.
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Lemma 1 Let S = I − PZ (I − γ∇h) as defined above. Then

〈zk − z∗, Szk〉 ≥
1

2
‖Szk‖2 .

Proof 2 If T = PZ (I − γ∇h) is a nonexpansive operator, then the property holds
for S = I − T from [3, Proposition 4.33]. Nonexpansivity of T can be easily shown
(see, e.g., [2, Proposition 2.2]), from where the result follows.

Lemma 2 Denoting as L be the Lipschitz continuous gradient constant of h and µ
its strong convexity modulus, it holds that

〈zk − z∗, Szk〉 ≥ ν‖zk − z∗‖2 ,

where ν = 1−
√
(1− 2γµ+ µγ2L) for γ < 2/L.

Proof 3 From [3, Example 22.5] we have that if T is β-Lipschitz continuous for some
β ∈ [0, 1) then I−T is (1−β)-strongly monotone. It is proven in [2, Proposition 2.2]
that ‖Tz − Tz∗‖ ≤

√
(1− 2γµ+ µγ2L)‖z − z∗‖ for γ < 2/L, so T is β-Lipschitz

continuous with β =
√
(1− 2γµ+ µγ2L), which concludes the proof.

Using Lemmata 1 and 2 we get

− 2
ρ

N
〈zk − z∗, Szk〉 ≤ −

ρν

N
‖zk − z∗‖2 −

ρ

2N
‖Szk‖2 . (9)

For the second inner product term in (8) we can easily derive the bound

2
ρ

N
〈zk − z∗, ek〉 ≤ 2

ρ

N
‖zk − z∗‖‖ek‖ . (10)

Equations (9) and (10) result in the bound

− 2
ρ

N
〈zk − z∗, sk〉 ≤ −

ρν

N
‖zk − z∗‖2 −

ρ

2N
‖Szk‖2 + 2

ρ

N
‖zk − z∗‖‖ek‖ . (11)

• Bound ρ2

N2pmin
‖sk‖2: Using again the definition of sk , we have that

‖sk‖2 = ‖Szk‖2 + ‖ek‖2 − 2〈Szk , ek〉

≤ ‖Szk‖2 + ‖ek‖2 +
δ

pmin
‖Szk‖2 +

1

δpmin
‖ek‖2 , (12)

where the inner product term was bounded by employing Young’s inequality.1 We
finally get the bound:

ρ2

N2pmin
‖sk‖2 ≤

ρ2

N2pmin
(1 + δ)‖Szk‖2 +

ρ2

N2pminδ
(1 + δ)‖ek‖2 . (13)

1For two nonnegative real numbers x and y , it holds that xy ≤ δx2

2
+ y2

2δ
for every δ > 0.
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Using (11) and (13), inequality (7) can be written as

E[‖zk+1 − z∗‖2 | Zk ] ≤ ‖zk − z∗‖2 −
ρν

N
‖zk − z∗‖2

+
ρ

N

(
ρ(1 + δ)

Npmin
−
1

2

)
‖Szk‖2

+ 2
ρ

N
‖zk − z∗‖‖ek‖+

ρ2

N2pminδ
(1 + δ)‖ek‖2 . (14)

The third term in the sum can be eliminated by asumming that

ρ(1 + δ)

Npmin
−
1

2
< 0⇒ ρ <

Npmin
2(1 + δ)

, (15)

which gives rise to the inequality

E[‖zk+1−z∗‖2 | Zk ] ≤ ‖zk−z∗‖2−
ρν

N
‖zk−z∗‖2+2

ρ

N
‖zk−z∗‖‖ek‖+

ρ2

N2pminδ
(1+δ)‖ek‖2 .

(16)
The complicating term on the right hand side can be eliminated by using once more Young’s
inequality, i.e.,

2
ρ

N
‖zk − z∗‖‖ek‖ ≤ 2

ρ

N

(
ε

2
‖zk − z∗‖2 +

1

2ε
‖ek‖2

)
=
ρε

N
‖zk − z∗‖2 +

ρ

Nε
‖ek‖2 .

Using the above in (16) and taking the expectation in both sides, we recover the inequality

E[‖zk+1 − z∗‖2] ≤
(
1−

ρ(ν − ε)
N

)
E[‖zk − z∗‖2] +

ρ

N

(
1

ε
+
ρ(1 + δ)

Npminδ

)
E[‖ek‖2] ,

for ρ ∈ (0, Npmin/(2(1 + δ))) and any δ > 0, ε > 0, which concludes the proof.
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