Supplementary material for the paper: A coordinator-driven communication reduction scheme for distributed optimization using the projected gradient method

Giorgos Stathopoulos and Colin N. Jones *

Theorem 1 Let N agents update with probabilities p_{i} and $p_{\min }=\min _{i} p_{i}$. Let $\nu=$ $1-\sqrt{\left(1-2 \gamma \mu+\mu \gamma^{2} L\right)}$, where L is the Lipschitz constant of ∇h and μ the strong convexity constant of h, while $\gamma<2 / L$. If z^{*} is the unique optimizer of Problem 7 in [1], for any time instant $k>K$, the sequence $\left\{z^{k}\right\}$ generated by Algorithm 1 satisfies

$$
\begin{align*}
& \mathbb{E}\left[\left\|z^{k+K}-z^{*}\right\|^{2}\right] \leq\left(1-\frac{\rho(\mu-\epsilon)}{N}\right)^{k} \mathbb{E}\left[\left\|z^{K}-z^{*}\right\|^{2}\right] \\
& +\frac{\rho}{N}\left(\frac{1}{\epsilon}+\frac{\rho(1+\delta)}{N p_{\min } \delta}\right) \sum_{j=1}^{k}\left(1-\frac{\rho(\mu-\epsilon)}{N}\right)^{k-j} \mathbb{E}\left[\left\|e^{K-1+j}\right\|^{2}\right] \tag{1}
\end{align*}
$$

for $\rho \in\left(0, N p_{\min } /(2(1+\delta))\right), \delta>0, \nu>\epsilon>0$, and $e^{k}=\left(e_{1}^{k}, \ldots, e_{N}^{k}\right) \in \mathbb{R}^{N n}$ the vector that is constituted of the components $e_{i}^{k}=\gamma\left(\nabla \phi_{i}^{\gamma}\left(v^{k}\right)-g_{i}^{k}\right), i=1, \ldots, N$, while $e^{k}=0$.

Proof 1 The key point is to observe that the approximate iteration $z_{i}^{k+1}=v_{i}^{k}-\gamma g_{i}^{k}$ can be expressed as an inexact projected gradient iteration. To this end, we introduce the error sequence $\left\{e^{k}\right\}$ so as to write

$$
\begin{equation*}
e_{i}^{k}+\mathcal{P}_{\mathcal{Z}_{i}}\left(v_{i}^{k}\right)=v_{i}^{k}-\gamma g_{i}^{k} \tag{2}
\end{equation*}
$$

while

$$
\begin{equation*}
\mathcal{P}_{\mathcal{Z}_{i}}\left(v_{i}^{k}\right)=v_{i}^{k}-\gamma \nabla \phi_{i}^{\gamma}\left(v_{i}^{k}\right) \tag{3}
\end{equation*}
$$

Substituting (3) in (2) we have that

$$
\begin{equation*}
e_{i}^{k}=\gamma\left(\nabla \phi_{i}^{\gamma}\left(v_{i, k}\right)-g_{i}^{k}\right) \tag{4}
\end{equation*}
$$

Using the error (4), the randomized coordinate descent iteration can be expressed as

$$
\left\{\begin{array}{l}
z_{i_{k}}^{k+1}=z_{i_{k}}^{k}+\eta^{k}\left(e_{i_{k}}^{k}+\mathcal{P}_{\mathcal{Z}_{i_{k}}}\left(z_{i_{k}}^{k}-\gamma \nabla_{i_{k}} h\left(z^{k}\right)\right)-z_{i_{k}}^{k}\right) \\
z_{i \neq i_{k}}^{k+1}=z_{i \neq i_{k}}^{k}
\end{array}\right.
$$

[^0]or, more compactly, as
\[

$$
\begin{equation*}
z^{k+1}=z^{k}+\eta^{k} U_{i_{k}}\left(\mathcal{P}_{\mathcal{Z}}\left(z^{k}-\gamma \nabla h\left(z^{k}\right)\right)-z^{k}+e^{k}\right) \tag{5}
\end{equation*}
$$

\]

The matrix $U_{i_{k}}: \mathbb{R}^{N n} \mapsto \mathbb{R}^{N n}$ is drawn from a set of orthogonal projection matrices $\left\{U_{i}\right\}_{i=1}^{N}$ such that $U_{i}: z \mapsto\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right), i=1, \ldots, N$ and $\sum_{i=1}^{N} U_{i}=I$. Consequently, $U_{i_{k}}$ isolates the $i_{k}^{\text {th }}$ component of its argument, thus it updates the corresponding component of z, while the other components (agents) are set to their previous values. The projection operator $\mathcal{P}_{\mathcal{Z}}$ is defined as $\mathcal{P}_{\mathcal{Z}}=\mathcal{P}_{\mathcal{Z}_{1}} \times \mathcal{P}_{\mathcal{Z}_{2}} \times \cdots \times \mathcal{P}_{\mathcal{Z}_{N}}$.

Equation (5) is an instance of a more general inexact fixed-point iteration. By introducing the operator

$$
T: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}, \quad T:=\mathcal{P}_{\mathcal{Z}}(I-\gamma \nabla h)
$$

and

$$
S: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}, \quad S=1-T
$$

equation (5) can be written as

$$
\begin{equation*}
z^{k+1}=z^{k}+\eta^{k} U_{i_{k}}\left(T z^{k}-z^{k}+e^{k}\right)=z^{k}-\eta^{k} U_{i_{k}} s^{k} \tag{6}
\end{equation*}
$$

where $s^{k}=S z^{k}-e^{k}$, and e^{k} is given by (4). We set the relaxation parameter to $\eta^{k}=\frac{\rho}{N p_{i_{k}}}$, where $\rho>0$ will be bounded from above later on.

Our purpose is to bound the distance of z^{k+1} to the fixed point z^{*} as a function of $\left\|z^{k}-z^{*}\right\|$ and $\left\|e^{k}\right\|$, always in expectation. We thus introduce $Z^{k}=\left\{z^{0}, z^{1}, \ldots, z^{k}\right\}$, and by taking the conditional expectation and squaring (6), we get

$$
\begin{align*}
\mathbb{E}\left[\left\|z^{k+1}-z^{*}\right\|^{2} \mid Z^{k}\right] & =\left\|z^{k}-z^{*}\right\|^{2}-2 \frac{\rho}{N} \mathbb{E}\left[\left.\left\langle z^{k}-z^{*}, \frac{1}{p_{i_{k}}} U_{i_{k}} s^{k}\right\rangle \right\rvert\, Z^{k}\right]+\frac{\rho^{2}}{N^{2}} \mathbb{E}\left[\left.\left\|\frac{1}{p_{i_{k}}} U_{i_{k}} s^{k}\right\|^{2} \right\rvert\, Z^{k}\right] \\
& =\left\|z^{k}-z^{*}\right\|^{2}-2 \frac{\rho}{N} \sum_{i=1}^{N} p_{i}\left\langle z^{k}-z^{*}, \frac{1}{p_{i}} U_{i} s^{k}\right\rangle+\frac{\rho^{2}}{N^{2}} \sum_{i=1}^{N} p_{i}\left\langle\frac{1}{p_{i}} U_{i} s^{k}, \frac{1}{p_{i}} U_{i} s^{k}\right\rangle \\
& \leq\left\|z^{k}-z^{*}\right\|^{2}-2 \frac{\rho}{N}\left\langle z^{k}-z^{*}, s^{k}\right\rangle+\frac{\rho^{2}}{N^{2} p_{\min }}\left\|s^{k}\right\|^{2} \tag{7}
\end{align*}
$$

where the second equality follows from the definition of the expectation and the third one from the fact that U_{i} is an orthogonal projection operator.

Let us now analyze the second and third term in (7).

- Bound $-2 \frac{\rho}{N}\left\langle z^{k}-z^{*}, s^{k}\right\rangle$: From the definition of $s^{k}=S z^{k}-e^{k}$, it holds that

$$
\begin{equation*}
\left\langle z^{k}-z^{*}, s^{k}\right\rangle=\left\langle z^{k}-z^{*}, S z^{k}\right\rangle-\left\langle z^{k}-z^{*}, e^{k}\right\rangle \tag{8}
\end{equation*}
$$

We will now upper-bound the resulting inner product terms. In order to do so, we must use both the Lipschitz continuity of ∇h and the strong convexity of h.

Lemma 1 Let $S=I-\mathcal{P}_{\mathcal{Z}}(I-\gamma \nabla h)$ as defined above. Then

$$
\left\langle z^{k}-z^{*}, S z^{k}\right\rangle \geq \frac{1}{2}\left\|S z^{k}\right\|^{2}
$$

Proof 2 If $T=\mathcal{P}_{\mathcal{Z}}(I-\gamma \nabla h)$ is a nonexpansive operator, then the property holds for $S=I-T$ from [3, Proposition 4.33]. Nonexpansivity of T can be easily shown (see, e.g., [2, Proposition 2.2]), from where the result follows.

Lemma 2 Denoting as L be the Lipschitz continuous gradient constant of h and μ its strong convexity modulus, it holds that

$$
\left\langle z^{k}-z^{*}, S z^{k}\right\rangle \geq \nu\left\|z^{k}-z^{*}\right\|^{2}
$$

where $\nu=1-\sqrt{\left(1-2 \gamma \mu+\mu \gamma^{2} L\right)}$ for $\gamma<2 / L$.
Proof 3 From [3, Example 22.5] we have that if T is β-Lipschitz continuous for some $\beta \in[0,1)$ then $I-T$ is $(1-\beta)$-strongly monotone. It is proven in [2, Proposition 2.2] that $\left\|T z-T z^{*}\right\| \leq \sqrt{\left(1-2 \gamma \mu+\mu \gamma^{2} L\right)}\left\|z-z^{*}\right\|$ for $\gamma<2 / L$, so T is β-Lipschitz continuous with $\beta=\sqrt{\left(1-2 \gamma \mu+\mu \gamma^{2} L\right)}$, which concludes the proof.

Using Lemmata 1 and 2 we get

$$
\begin{equation*}
-2 \frac{\rho}{N}\left\langle z^{k}-z^{*}, S z^{k}\right\rangle \leq-\frac{\rho \nu}{N}\left\|z^{k}-z^{*}\right\|^{2}-\frac{\rho}{2 N}\left\|S z^{k}\right\|^{2} . \tag{9}
\end{equation*}
$$

For the second inner product term in (8) we can easily derive the bound

$$
\begin{equation*}
2 \frac{\rho}{N}\left\langle z^{k}-z^{*}, e^{k}\right\rangle \leq 2 \frac{\rho}{N}\left\|z^{k}-z^{*}\right\|\left\|e^{k}\right\| \tag{10}
\end{equation*}
$$

Equations (9) and (10) result in the bound

$$
\begin{equation*}
-2 \frac{\rho}{N}\left\langle z^{k}-z^{*}, s^{k}\right\rangle \leq-\frac{\rho \nu}{N}\left\|z^{k}-z^{*}\right\|^{2}-\frac{\rho}{2 N}\left\|S z^{k}\right\|^{2}+2 \frac{\rho}{N}\left\|z^{k}-z^{*}\right\|\left\|e^{k}\right\| \tag{11}
\end{equation*}
$$

- Bound $\frac{\rho^{2}}{N^{2} p_{\text {min }}}\left\|s^{k}\right\|^{2}$: Using again the definition of s^{k}, we have that

$$
\begin{align*}
\left\|s^{k}\right\|^{2} & =\left\|S z^{k}\right\|^{2}+\left\|e^{k}\right\|^{2}-2\left\langle S z^{k}, e^{k}\right\rangle \\
& \leq\left\|S z^{k}\right\|^{2}+\left\|e^{k}\right\|^{2}+\frac{\delta}{p_{\min }}\left\|S z^{k}\right\|^{2}+\frac{1}{\delta p_{\min }}\left\|e^{k}\right\|^{2} \tag{12}
\end{align*}
$$

where the inner product term was bounded by employing Young's inequality $\sqrt{1}$ We finally get the bound:

$$
\begin{equation*}
\frac{\rho^{2}}{N^{2} p_{\min }}\left\|s^{k}\right\|^{2} \leq \frac{\rho^{2}}{N^{2} p_{\min }}(1+\delta)\left\|S z^{k}\right\|^{2}+\frac{\rho^{2}}{N^{2} p_{\min } \delta}(1+\delta)\left\|e^{k}\right\|^{2} \tag{13}
\end{equation*}
$$

${ }^{1}$ For two nonnegative real numbers x and y, it holds that $x y \leq \frac{\delta x^{2}}{2}+\frac{y^{2}}{2 \delta}$ for every $\delta>0$.

Using (11) and (13), inequality (7) can be written as

$$
\begin{align*}
\mathbb{E}\left[\left\|z^{k+1}-z^{*}\right\|^{2} \mid z^{k}\right] & \leq\left\|z^{k}-z^{*}\right\|^{2}-\frac{\rho \nu}{N}\left\|z^{k}-z^{*}\right\|^{2} \\
& +\frac{\rho}{N}\left(\frac{\rho(1+\delta)}{N p_{\min }}-\frac{1}{2}\right)\left\|S z^{k}\right\|^{2} \\
& +2 \frac{\rho}{N}\left\|z^{k}-z^{*}\right\|\left\|e^{k}\right\|+\frac{\rho^{2}}{N^{2} p_{\min } \delta}(1+\delta)\left\|e^{k}\right\|^{2} \tag{14}
\end{align*}
$$

The third term in the sum can be eliminated by asumming that

$$
\begin{equation*}
\frac{\rho(1+\delta)}{N p_{\min }}-\frac{1}{2}<0 \Rightarrow \rho<\frac{N p_{\min }}{2(1+\delta)} \tag{15}
\end{equation*}
$$

which gives rise to the inequality
$\mathbb{E}\left[\left\|z^{k+1}-z^{*}\right\|^{2} \mid Z^{k}\right] \leq\left\|z^{k}-z^{*}\right\|^{2}-\frac{\rho \nu}{N}\left\|z^{k}-z^{*}\right\|^{2}+2 \frac{\rho}{N}\left\|z^{k}-z^{*}\right\|\left\|e^{k}\right\|+\frac{\rho^{2}}{N^{2} p_{\min } \delta}(1+\delta)\left\|e^{k}\right\|^{2}$.
The complicating term on the right hand side can be eliminated by using once more Young's inequality, i.e.,

$$
\begin{aligned}
2 \frac{\rho}{N}\left\|z^{k}-z^{*}\right\|\left\|e^{k}\right\| & \leq 2 \frac{\rho}{N}\left(\frac{\epsilon}{2}\left\|z^{k}-z^{*}\right\|^{2}+\frac{1}{2 \epsilon}\left\|e^{k}\right\|^{2}\right) \\
& =\frac{\rho \epsilon}{N}\left\|z^{k}-z^{*}\right\|^{2}+\frac{\rho}{N \epsilon}\left\|e^{k}\right\|^{2}
\end{aligned}
$$

Using the above in (16) and taking the expectation in both sides, we recover the inequality

$$
\mathbb{E}\left[\left\|z^{k+1}-z^{*}\right\|^{2}\right] \leq\left(1-\frac{\rho(\nu-\epsilon)}{N}\right) \mathbb{E}\left[\left\|z^{k}-z^{*}\right\|^{2}\right]+\frac{\rho}{N}\left(\frac{1}{\epsilon}+\frac{\rho(1+\delta)}{N p_{\min } \delta}\right) \mathbb{E}\left[\left\|e^{k}\right\|^{2}\right]
$$

for $\rho \in\left(0, N p_{\min } /(2(1+\delta))\right)$ and any $\delta>0, \epsilon>0$, which concludes the proof.

References

[1] G. Stathopoulos and C. N. Jones A coordinator-driven communication reduction scheme for distributed optimization using the projected gradient method. Proceedings of the 17th IEEE European Control Conference, 2018.
[2] Peng, Z. and Xu, Y. and Yan, M. and Yin, W. ARock: an Algorithmic Framework for Asynchronous Parallel Coordinate Updates. SIAM Journal on Scientific Computing, 2016.
[3] H.H. Bauschke and P.L. Combettes Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, 2011.

[^0]: *The authors are with Laboratoire d'Automatique, EPFL, CH-1015 Lausanne, Switzerland, \{georgios.stathopoulos,colin.jones\}@epfl.ch

