
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

�3�U�R�I�����9�����.�X�Q���D�N�����S�U�p�V�L�G�H�Q�W���G�X���M�X�U�\
�3�U�R�I�����5�����*�X�H�U�U�D�R�X�L�����G�L�U�H�F�W�H�X�U���G�H���W�K�q�V�H

�3�U�R�I�����)�����7�D�L�D�Q�L�����U�D�S�S�R�U�W�H�X�U
�'�U���0�����%�L�O�H�Q�N�R�����U�D�S�S�R�U�W�H�X�U

�3�U�R�I�����%�����)�D�O�W�L�Q�J�V�����U�D�S�S�R�U�W�H�X�U

Towards Scalable Personalization

THÈSE NO 8299 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 23 FÉVRIER 2018

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE PROGRAMMATION DISTRIBUÉE

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2018

PAR

�5�K�L�F�K�H�H�N���3�$�7�5�$

Towards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable PersonalizationTowards Scalable Personalization
Rhicheek Patra

The greatest challenge to any thinker is stating the problem in a way that will allow a solution.

„ Bertrand Russell

In loving memory of my father...

Acknowledgements
To begin with, I am deeply thankful to my family, Tapasi Patra (my mother), Kusal Kumar Patra

(my father) and Suvam Patra (my brother), for their endless support throughout my career.

Pursuing a PH.D. has been an overwhelming experience for me. Throughout my P H.D., I

had the wonderful opportunity to collaborate with amazing researchers, from both academia

and industry, who made my experience even more amazing and these collaborations also

subsequently led to this dissertation. To highlight these wonderful collaborations, I would use

•weŽ instead of •IŽ throughout the main body of this dissertation.

First and foremost, I would like to thank my advisor, Rachid Guerraoui. Starting my P H.D.

right after my Bachelors, I did not have any signi“cant experience in research. In this regard,

Rachid was the ideal advisor for me due to his remarkable experience as an accomplished

researcher. His constant support and encouragement throughout these years allowed me to

grow as a researcher. I would also like to thank Anne-Marie Kermarrec, who co-supervised

me on some projects during the initial two years of my P H.D., for her insightful feedback and

excellent discussions leading to high-quality research papers in top-tier conferences.

As I mentioned before, I had the wonderful opportunity to work with amazing researchers

from industry throughout my P H.D. duration. More precisely, I spent three summers as

research intern at Technicolor (in 2015), Yandex (in 2016), and Oracle Labs (in 2017). These

internships led to fruitful collaborations on diverse topics for which I am extremely thankful

to my collaborators, namely, Erwan Le Merrer and Jean-Ronan Vigouroux (at Technicolor),

Egor Samosvat, Michael Roizner and Andrei Mishchenko (at Yandex), and lastly Jinha Kim and

Sungpack Hong (at Oracle Labs). These collaborations signi“cantly improved my perspective

on the practical impact of research in an industrial setting.

I also want to thank my excellent research colleagues from academia for our fruitful col-

laborations which led to multiple publications. During my “rst year, I had a very fruitful

collaboration with Antoine Boutet and Davide Frey on scalability aspects of recommenders

(Chapter 3), and also with Mahsa Taziki on users• privacy aspects (Chapter 5). The following

years, I collaborated with Jingjing Wang towards another interesting work related to users•

privacy (Chapter 5) as well as with Tao Lin on a project for designing recommenders for multi-

application objective (Chapter 6). During the last year, I had another very fruitful collaboration

with Georgios Damaskinos leading to interesting research papers on scalable recommenders

(Chapter 4) and distributed machine learning.

v

Acknowledgements

Besides the above-mentioned collaborators, many thanks to my other amazing colleagues

from the Distributed Programming Laboratory (LPD) as well as external collaborators for

creating a great working environment. Mainly a huge thanks to Karolos Antoniadis, Vasileios

Trigonakis, Tudor David, Davide Kozhaya, Georgios Chatzopoulos, Dragos-Adrian Seredinschi,

El Mahdi El Mhamdi, Oana Balmau, Matej Pavlovic, Igor Zablotchi, Mahammad Valiyev, and

Victor Bushkov. Also, a special thanks to Damien Hilloulin for the French version of the abstract

of this thesis.

I would also like to express my special appreciation for the committee members of my P H.D.

defense, namely, Boi Faltings, Viktor Kun� cak, Misha Bilenko, and Francois Taiani. I want

to thank EPFL, Google, and the European Research Council for “nancially supporting my

research.

Being a researcher, I was more focused on the research aspects of academia. However, there

are many administrative aspects associated with academics as well. In this regard, I want to

thank the two secretaries of our lab, Kristine Verhamme and France Faille. I would also like

to thank our system administrator Fabien Salvi for providing assistance during these years

concerning any technical issues with LPD•s computing resources.

Last but not the least, I also thank my close friends outside the lab who made the P H.D. years

a lot more bearable. First, a big thanks to Monika Parmar for accompanying me throughout

the last six years and most importantly for being there for me. Next, I also thank Saeid Sahraei

and Hanjie Pan who started in the same year as me and with whom I got to (sometimes) go

outside the lab.

EPFL, Lausanne, 18 January 2018 Rhicheek Patra

vi

Preface
This dissertation presents the work that I did during my P H.D. under the supervision of

Professor Rachid Guerraoui at EPFL in Switzerland since September, 2013. This thesis focuses

on three crucial aspects of personalization, namely, Scalability (Chapters 3 and 4), Privacy

(Chapter 5), and Heterogeneity (Chapter 6). Throughout the duration of my P H.D., I was

involved in various research projects leading to high-quality research articles (mentioned

below). The main results of this thesis appeared originally in the highlighted articles among

the following. Moreover, the publications are ordered by the corresponding personalization

aspects that they address.

S
C

A
L

A
B

IL
IT

Y

€ Antoine Boutet, Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, and Rhicheek

Patra (alphabetical order). HyRec: leveraging browsers for scalable recommenders. ACM/I-

FIP/USENIX Middleware, 2014.

€ Georgios Damaskinos, Rachid Guerraoui, and Rhicheek Patra (alphabetical order). Captur-

ing the Moment: Lightweight Similarity Computations . IEEE International Conference on

Data Engineering (ICDE), 2017.

€ Rachid Guerraoui, Erwan Le Merrer, Rhicheek Patra, and Jean-Ronan Vigouroux (alpha-

betical order). Sequences, Items And Latent Links: Recommendation With Consumed Item

Packs. (Under submission, arXiv:1711.06100)

€ Rachid Guerraoui, Erwan Le Merrer, Rhicheek Patra, and Bao-Duy Tran (alphabetical order).

Frugal Topology Construction for Stream Aggregation in the Cloud . IEEE International

Conference on Computer Communications (INFOCOM), 2016.

€ Georgios Damaskinos, Rachid Guerraoui, and Rhicheek Patra (alphabetical order). Mobile

Learning: Distributed Machine Learning on Mobile Devices . (Under submission)

P
R

IV
A

C
Y

€ Rachid Guerraoui, Anne-Marie Kermarrec, Rhicheek Patra, and Mahsa Taziki (alphabetical

order). D2P: Distance-Based Differential Privacy in Recommenders. Proceedings of the 41st

International Conference on Very Large Data Bases (PVLDB), 2015.

€ Rachid Guerraoui, Anne-Marie Kermarrec, Rhicheek Patra, Mahammad Valiyev, and

Jingjing Wang (alphabetical order). I know nothing about you but here is what you might

like . 47th IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), 2017.

vii

Preface
H

E
T

E
R

O
G

E
N

E
IT

Y € Rachid Guerraoui, Anne-Marie Kermarrec, Tao Lin, and Rhicheek Patra (alphabetical

order). Heterogeneous Recommendations: What You Might Like To Read After Watching

Interstellar . Proceedings of the 43rd International Conference on Very Large Data Bases

(PVLDB), 2017.

€ Rhicheek Patra, Egor Samosvat, Michael Roizner and Andrei Mishchenko. BoostJet: Towards

Combining Statistical Aggregates with Neural Embeddings for Recommendations . (Under

submission, arXiv:1711.05828)

EPFL, Lausanne, 18 January 2018 Rhicheek Patra

viii

Abstract
The ever-growing amount of online information calls for Personalization . Among the various

personalization systems, recommenders have become increasingly popular in recent years.

Recommenders typically use collaborative “ltering to suggest the most relevant items to their

users.

The most prominent challenges underlying personalization are: scalability , privacy , and het-

erogeneity. Scalability is challenging given the growing rate of the Internet and its dynamics,

both in terms of churn (i.e., users might leave/join at any time) and changes of user interests

over time. Privacy is also a major concern as users might be reluctant to expose their pro“les

to unknown parties (e.g., other curious users), unless they have an incentive to signi“cantly

improve their navigation experience and suf“cient guarantees about their privacy. Hetero-

geneity poses a major technical dif“culty because, to be really meaningful, the pro“les of

users should be extracted from a number of their navigation activities (heterogeneity of source

domains) and represented in a form that is general enough to be leveraged in the context of

other applications (heterogeneity of target domains).

In this dissertation, we address the above-mentioned challenges. For scalability, we introduce

democratization and incrementality . Our democratization approach focuses on iteratively

of”oading the computationally expensive tasks to the user devices (via browsers or applica-

tions). This approach achieves scalability by employing the devices of the users as additional

resources and hence the throughput of the approach (i.e., number of updates per unit time)

scales with the number of users. Our incrementality approach deals with incremental similar-

ity metrics employing either explicit (e.g., ratings) or implicit (e.g., consumption sequences

for users) feedback. This approach achieves scalability by reducing the time complexity of

each update, and thereby enabling higher throughput.

We tackle the privacy concerns from two perspectives, i.e., anonymity from either other curious

users (user-level privacy) or the service provider (system-level privacy). We strengthen the

notion of differential privacy in the context of recommenders by introducing distance-based

differential privacy (D2P) which prevents curious users from even guessing any category

(e.g., genre) in which a user might be interested in. We also brie”y introduce a recommender

(X-REC) which employs uniform user sampling technique to achieve user-level privacy and an

ef“cient homomorphic encryption scheme (X-HE) to achieve system-level privacy.

ix

Abstract

We also present a heterogeneous recommender (X-M AP) which employs a novel similarity

metric (X-S IM) based on paths across heterogeneous items (i.e., items from different domains).

To achieve a general form for any user pro“le, we generate her AlterEgo pro“le in a target

domain by employing an item-to-item mapping from a source domain (e.g., movies) to a

target domain (e.g., books). Moreover, X-M AP also enables differentially private AlterEgos.

While X-M AP employs user-item interactions (e.g., ratings), we also explore the possibility of

heterogeneous recommendation by using content-based features of users (e.g., demography,

time-varying preferences) or items (e.g., popularity, price).

Keywords: personalization, recommender, machine learning, collaborative “ltering, differen-

tial privacy, heterogeneity, similarity metric, scalability, energy ef“ciency, graph, distributed

system.

x

Résumé
La quantité croissante d•informations en ligne appelle à la Personnalisation . Parmi les dif-

férents systèmes de personnalisation, les systèmes de recommandation sont devenus de

plus en plus populaires ces dernières années. Les systèmes de recommandations utilisent

généralement le “ltrage collaboratif pour suggérer les éléments les plus pertinents à leurs

utilisateurs.

Les dé“s les plus importants sous-jacents à la personnalisation sont : l•évolutivité des systèmes

(« scalability«), la con“dentialité et l•hétérogénéité. L•évolutivité est dif“cile compte tenu du

taux croissant d•Internet et de sa dynamique, tant en termes de taux de désabonnement (c•est-

à-dire, les utilisateurs peuvent quitter / rejoindre à tout moment) et les changements d•intérêts

des utilisateurs au “l du temps. La con“dentialité est également une préoccupation majeure

car les utilisateurs peuvent être réticents à exposer leurs pro“ls à des parties inconnues (par

exemple, d•autres utilisateurs curieux), à moins d•être incités et d•améliorer signi“cativement

leur expérience de navigation et en garantissant leur con“dentialité. L•hétérogénéitépose une

dif“culté technique majeure car, pour être vraiment signi“catif, les pro“ls des utilisateurs

doivent être extraits d•un certain nombre de leurs activités de navigation (hétérogénéité des

domaines sources) et représenté sous une forme suf“samment générale pour être exploitée

dans le contexte d•autres applications (hétérogénéité des domaines cibles).

Dans cette thèse, nous abordons les dé“s mentionnés ci-dessus. Pour l•évolutivité, nous

introduisons la démocratisation et l•incrémentalité . Notre approche de démocratisation se

concentre sur le transfert des tâches coûteuses en calcul vers les périphériques utilisateurs

(via les navigateurs ou les applications) de manière itérative . Cette approche permet l•évoluti-

vité en utilisant les dispositifs des utilisateurs en tant que ressources supplémentaires et par

conséquent le débit de l•approche (c•est-à-dire le nombre de mises à jour par unité de temps)

augmente avec le nombre d•utilisateurs. Notre approche incrémentale utilise des métriques

de similarité incrémentale employant des retours explicites (par exemple, évaluations) ou im-

plicites (par exemple, des séquences de consommation pour les utilisateurs). Cette approche

permet une évolutivité en réduisant la complexité temporelle de chaque mise à jour et en

permettant ainsi un débit plus élevé.

Nous abordons les problèmes de con“dentialité sous deux angles, à savoir l•anonymat vis-à-

vis des autres utilisateurs curieux (con“dentialité au niveau de l•utilisateur) ou du fournisseur

de services (con“dentialité au niveau du système). Nous renforçons la notion de con“den-

xi

Résumé

tialité différentielle dans le contexte des systèmes de recommandation en introduisant la

con“dentialité différentielle basée sur la distance (« distance-based differential privacy« D2P)

qui empêche les utilisateurs curieux de deviner ne serait-ce qu•une catégorie (par exemple,

genre) dans laquelle un utilisateur pourrait être intéressé. Nous abordons aussi brièvement

un système de recommandation (X-R EC) qui utilise la technique d•échantillonnage utilisa-

teur uniforme pour atteindre la con“dentialité au niveau de l•utilisateur et un schéma de

chiffrement homomorphique ef“cace (X-HE) pour atteindre la con“dentialité au niveau du

système.

Nous présentons également un système de recommandation hétérogène (X-M AP) qui utilise

une nouvelle métrique de similarité (X-S IM) basée sur les chemins entre des éléments hétéro-

gènes (c•est-à-dire, des éléments de différents domaines). Pour obtenir une forme générale

pour n•importe quel pro“l utilisateur, nous générons son pro“l AlterEgo dans un domaine

cible en utilisant un portage élément à élément d•un domaine source (par exemple des “lms)

vers un domaine cible (par exemple, des livres). De plus, X-M AP permet également d•obte-

nir des pro“ls AlterEgos privés au sens différentiel. Bien que X-M AP utilise des interactions

utilisateur (par exemple des évaluations), nous explorons également la possibilité d•une re-

commandation hétérogène en utilisant les « caractéristiques de contenu » des utilisateurs (p.

Ex., Démographie, préférences variables) ou des éléments (popularité, prix).

Mots-clés : personnalisation, recommandation, apprentissage automatique, “ltrage collabo-

ratif, con“dentialité différentielle, hétérogénéité, métrique de similarité, évolutivité, ef“cacité

énergétique, graphique, système distribué.

xii

Contents

Acknowledgements v

Preface vii

Abstract (English) ix

Résumé (French) xi

List of Figures xvii

List of Tables xxi

1 Introduction 1

1.1 Challenges in Personalization . 1

1.1.1 Scalability . 1

1.1.2 Privacy . 2

1.1.3 Heterogeneity . 3

1.2 Contributions . 3

1.2.1 Scalability . 3

1.2.2 Privacy . 5

1.2.3 Heterogeneity . 6

1.3 Roadmap . 7

I Preliminaries 9

2 Background 11

2.1 Collaborative Filtering . 11

2.1.1 User-based collaborative “ltering . 12

2.1.2 Item-based collaborative “ltering . 12

2.2 Temporal Relevance . 13

2.3 Privacy . 15

xiii

Contents

2.4 Heterogeneity . 15

2.5 Gradient-descent Algorithm . 16

2.6 Trust-distrust Relationship in Online Social Networks 17

2.7 Evaluation Metrics . 17

II Scalability 21

3 Democratization 23

3.1 HYREC: Towards a hybrid architecture . 23

3.1.1 Overview . 23

3.1.2 HYREC . 24

3.1.3 Evaluation . 27

3.1.4 Related Work . 33

3.1.5 Conclusion . 33

3.2 Extension to machine learning on mobile devices 34

4 Incrementality 39

4.1 I-SIM : Incremental Similarity . 39

4.1.1 Overview . 39

4.1.2 I-SIM : A Novel Similarity . 42

4.1.3 I-SIM Applications . 46

4.1.4 Evaluation . 50

4.1.5 Related Work . 58

4.1.6 Conclusion . 60

4.2 CIP: Consumed Item Packs . 60

4.2.1 Overview . 60

4.2.2 Consumed Item Packs (CIPS) . 62

4.2.3 CIP Algorithms . 63

4.2.4 Implementation . 68

4.2.5 Evaluation . 70

4.2.6 Related Work . 74

4.2.7 Conclusion . 76

III Privacy 77

5 Privacy 79

5.1 User-level Privacy . 79

5.1.1 Overview . 79

xiv

Contents

5.1.2 D2P: Privacy for Recommenders . 81

5.1.3 D2P-based Recommender . 83

5.1.4 Evaluation . 88

5.1.5 Related Work . 95

5.1.6 Conclusion . 97

5.2 System-level Privacy . 98

IV Heterogeneity 99

6 Heterogeneous Recommendations 101

6.1 Heterogeneous Recommendations with Alter-Egos 101

6.1.1 Overview . 101

6.1.2 Heterogeneous Recommendation Problem 103

6.1.3 X-SIM : Cross-domain similarity . 104

6.1.4 X-MAP: Cross-domain recommender . 107

6.1.5 Implementation . 114

6.1.6 Evaluation . 116

6.1.7 Related Work . 124

6.1.8 Conclusion . 125

6.2 Content-enabled Heterogeneous Recommendations 125

V Thesis Conclusions and Remarks 127

7 Concluding Remarks 129

7.1 Summary and Implications . 129

7.2 Future Work . 130

VI Appendices 133

8 Appendices 135

8.1 Appendix A: I-S IM . 135

8.1.1 Correctness proofs . 135

8.2 Appendix B: X-M AP . 140

8.2.1 Correctness proofs . 140

8.2.2 Additional experiments . 142

Bibliography 145

Curriculum Vitae 161

xv

List of Figures

3.1 Centralized, decentralized and hybrid (H YREC) architecture of a recommender. 25

3.2 Timeline: a centralized approach vs. H YREC . 26

3.3 Average view similarity on ML1 dataset for H YREC and ideal KNN. 29

3.4 Convergence of the candidate set size (ML1 dataset). 30

3.5 Recommendation quality on the ML1 dataset for H YREC as well as of”ine and

online ideal KNN (k = 10). 31

3.6 Time to compute the k nearest neighbors on ML and Digg workloads. 32

3.7 The architecture overview of H YML. 35

3.8 Throughput comparison among single nodes (mobile, CPU, GPU) and a cluster. 37

4.1 Temporal effects in ML-1M dataset. 40

4.2 Limitations of state-of-the-art similarity metrics with respect to temporal rele-

vance and incremental updates. The gray areas in the right sub“gure indicate

the similarities (Si j) that need to be updated within a time interval [t Š � , t]. . . 41

4.3 Comparison between incremental (I-S IM) and non-incremental similarity com-

putations [157, 5] for ML-1M dataset. The time interval for the active users is 5

days. 44

4.4 The architecture overview of S WIFT. 46

4.5 The biased sampling technique of S WIFT. 48

4.6 Voters• trust in an administrator during a Wiki-Election 50

4.7 Impact of model size (K) and recommendations-per-click (N) on accuracy. . . 53

4.8 Impact of ”exibility mode on accuracy for ML-1M. 54

4.9 Impact of temporal relevance (�) on accuracy. Setting � to 0 deactivates SWIFT•s

temporal feature. 55

4.10 Impact of model size (K) on latency (stream processing). 56

4.11 Impact of batch processing on latency for ML-1M. 56

4.12 Scalability comparison for ML-20M. 57

4.13 Impact of item popularity on energy consumption for ML-20M. 58

xvii

List of Figures

4.14 Existence of temporal consumption habits of users in MovieLens dataset. . . . 61

4.15 Topology and data structures for CIP- U and CIP- I (arrows denote the RDD

dependencies). 69

4.16 Topology and data structures for D EEPCIP. 70

4.17 Recommendation quality of CIP-based algorithms versus competitors. 72

4.18 Partition effects. 74

4.19 Cluster size effects. 75

5.1 D2P Illustration. 80

5.2 D2P-based Recommender. 84

5.3 D2P Modi“cation Phase. 85

5.4 ML1 Dataset Partitions based on rating density. 89

5.5 Recall@N with varying Dataset Characteristics. 90

5.6 Effect of Pro“ler Probability (p �) on Quality for the ML Dataset (User-based CF). 91

5.7 Effect of Pro“ler Probability (p �) on Quality for the Jester Dataset (User-based CF). 91

5.8 Effect of Selector Probability (p) on Quality for the ML Dataset (User-based CF). 92

5.9 Effect of Selector Probability (p) on Quality for the Jester Dataset (User-based CF). 92

5.10 Effect of Distance Metric (�) on Quality for the ML Dataset (User-based CF). . . 92

5.11 Distance for Personal Choice. 93

5.12 Distance for Average. 93

5.13 Privacy Parameters Comparison. 94

5.14 Catalog Coverage Comparison. 95

5.15 Effect of Selector Probability (p) on Quality for the ML Dataset (Item-based CF). 96

5.16 Effect of Pro“ler Probability (p �) on Quality for the ML Dataset (Item-based CF). 96

6.1 Heterogeneous recommendation using meta-paths. 101

6.2 Layer-based pruning in X-M AP. 105

6.3 Alice•s AlterEgo pro“le (in target domain) mapped from her original pro“le (in

source domain). 108

6.4 The components of X-M AP: Baseliner, Extender, Generator, Recommender. . . . 114

6.5 Temporal relevance (X-M AP, NX-M AP). 119

6.6 Privacy-quality trade-off in X-M AP- IB. 119

6.7 Privacy-quality trade-off in X-M AP-UB. 120

6.8 MAE comparison with varying k. 120

6.9 MAE comparison (Overlap size). 1 . 121

6.10 MAE comparison based on pro“le size. 121

6.11 Scalability of X-M AP. 123

xviii

List of Figures

6.12 Feedback from 51 users over 1 week. 123

xix

List of Tables

2.1 Confusion Matrix for true/false positive/negative recommendations. 18

3.1 Datasets statistics . 28

3.2 Impact on the cost of a centralized back-end server according to the KNN selec-

tion period. 33

4.1 Model comparison (MAE) between incremental and non-incremental alternatives. 55

4.2 Runtime and accuracy comparisons for I-T RUST and C-T RUST. 58

4.3 Details of the datasets used in our experiments. 71

5.1 Datasets characteristics. 90

5.2 Overhead of Privacy. 95

6.1 Sub-domains (D1 and D2) based on genres in Movielens 20M dataset. 122

6.2 MAE comparison (homogeneous setting on ML-20M dataset). 122

8.1 Comparison between user-based (UB) and item-based (IB) recommenders

in different deployment scenarios with Amazon datasets. Bold denotes faster

computation time relative to the alternative. 143

8.2 MAE comparison between NX-M AP, X-M AP and ML LIB-ALS on Amazon datasets.143

8.3 Densities for two domains in the Amazon dataset. 144

xxi

1 Introduction

In the modern generation of web-based services, the number of users is increasing continu-

ously. This number bumped up from 16 million users in 1995 to 3.6 billion users in 2017. Such

an immense growth in the number of users evidently led to an exponential increase in the

amount of data available online (about 2.5 billion GB of data are created everyday). As a result,

the web has become a big storehouse of information, making it impossible for any individual

to explore the whole web contents to extract relevant data. Subsequently, personalization [25]

has become an essential tool to navigate this wealth of information available on the Internet.

Particularly popular now are recommender systems [107] which provide users with personal-

ized content, based on their past online behavior (e.g., browsing history, clicks) and that of

other similar users. These systems have been successfully employed by major online retailers

such as Amazon to propose new items to their customers. Social networking sites, such as

Facebook or Twitter, exploit these systems to suggest friends/followers to their users and to

“lter the content displayed on their feeds. Google or Yahoo! use these systems to provide

personalized news to registered users. Personalization has now become ubiquitous in social

media platforms and employed by almost all big players (e.g., Google, Facebook, Amazon) as

well as relatively smaller ones (e.g., startups).

1.1 Challenges in Personalization

While appealing, building such personalization systems raises several technical challenges.

We discuss about these technical challenges in the following.

1.1.1 Scalability

As we mentioned earlier that the growth in the number of online users led to the emergence

of personalization. However, the personalization schemes also need to be scalable in order

to process the ever-growing amount of information created by the users. Personalization

schemes, employed to build recommender systems, demand immense amount of computing

1

Chapter 1. Introduction

resources to process this huge volume of information and provide relevant personalized

content. Moreover, any such recommender system continuously needs to be updated due

to an ever-increasing amount of data, collected from online platforms, with ever-changing

patterns due to various factors e.g., popularity of items or behavioral trends of users [45, 193].

Billion-dollar companies such as Google or Facebook leverage their personal huge data centers

to distribute the computations for updating the recommender system using the incoming data

either in an online manner (e.g.., stream processing [92]) or in an of”ine manner (e.g., batch

processing [163] at predetermined periodic intervals). For relatively smaller service providers,

the most practical option is to employ cloud-based computing resources such as Amazon EC2

or Microsoft Azure but only in an of”ine manner. As a result, there are signi“cant investments

(i.e., Total Cost of Ownership) involved in employing such cloud-based resources. Dimension

reduction and algorithmic optimizations [74, 66], or sample-based approaches [54, 61, 51],

partially tackle the problem by reducing the time complexity of each update at the cost of

performing more updates in a parallelized fashion. Yet there exists the need of signi“cant

investments in computational resources with growing number of users and items [143, 46, 28].

Even with massive parallelization (map-reduce [49]) on multicore architectures [151, 130] or

elastic cloud architectures [46], personalization remains expensive in terms of both hardware

and energy consumption [38, 133]. In this thesis, the main technical challenge concerning

scalability is to design novel solutions that signi“cantly reduce the number of computations

(i.e., time complexity) for updating the recommender system and thereby also reduce the

investment in computing resources.

1.1.2 Privacy

The growing tendency towards personalization has raised several privacy concerns [150] as

more and more personal data is being collected and used by various personalization services.

It is often observed that when an Internet user accesses some service, the provider of this

service typically claims the ownership of any personal information provided by the user. The

service provider sometimes even distributes the collected information to third parties like

advertising and promotional partners [168]. Even the sharing of anonymized user information

like the Net”ix Prize dataset might end up not being secure. For instance, Narayanan et. al

presented a de-anonymization attack that linked the records in the Net”ix Prize dataset with

the IMDb pro“les available publicly [139].

Personalization systems like recommenders are particularly fragile with respect to privacy due

to their ability to provide serendipitous recommendations (i.e., unexpected but desired recom-

mendations) [150]. Recommender systems typically make predictions about the preferences

of any user by analyzing the preferences of other users. Hence, recommenders are particularly

vulnerable to privacy attacks as they directly rely on information about users to provide rele-

vant recommendations. Recommenders aggregate user preferences[152] in ways analogous

to database queries, which can be exploited by adversaries to extract personal identi“able

information about a speci“c user [150]. In this thesis, the primary challenge concerning

2

1.2. Contributions

privacy is to provide novel privacy-preserving solutions (with some formal guarantees) which

do not affect the recommendation quality signi“cantly, and also do not require a signi“cant

computation overhead for the privacy preservation.

1.1.3 Heterogeneity

Although widely used today, recommender systems are mainly applied in a homogeneous

sense: movie recommenders like IMDb or Net”ix, news recommenders like Google News

or Yahoo News, as well as music recommenders like Last.fm or Spotify, each focuses on a

single speci“c application domain. In short, you will be recommended books only if you rated

books, and you will be recommended movies only if you rated movies. Given the growing

multiplicity of web applications, homogeneity is a major limitation. For example, with most

state-of-the-art recommenders, Alice who just joined a book-oriented web application, and

never rated any book before, cannot be recommended any relevant book, even if she has been

rating many movies. This example is a classical illustration of the cold-start problem [159] in

recommender systems.

Heterogeneous preferences on the web, i.e., preferences from multiple application domains,

could be leveraged to improve personalization furthermore, not only for users who are new to

a domain (i.e., cold-start situation), but also when the data is sparse[2] (e.g., a very few ratings

per user). The scalability and privacy challenges become even more crucial in heterogeneous

recommenders due to increasing connections across users and items from multiple domains

or applications. In this thesis, the technical challenge is to design a private and scalable

heterogeneous recommender which provides relevant recommendations across multiple

domains or applications.

1.2 Contributions

In this thesis, we address the above-mentioned technical challenges concerning personaliza-

tion. We present the main contributions of this thesis in the following which are ordered by

the topics.

1.2.1 Scalability

In this thesis, we focus on two primary directions that improves the scalability of current

state-of-the-art personalization systems. We improve scalability by designing iterative or

incremental solutions that signi“cantly reduce the number of computations for updating the

recommender system.

3

Chapter 1. Introduction

A. Democratization

In our “rst step, we focus on the democratization of computationally expensive jobs for

updating the recommender. We use the notion of democratization since our solution can be

easily deployed by any service provider irrespective of the available computational resources.

The objective here is to of”oad customized computation jobs to computational devices which

could be high-end devices like laptops as well as lightweight devices like smartphones or

tablets. Typically, these are the devices of the end-users who are using the personalization

service for getting relevant suggestions. The computation jobs are customized based on the

computational capacity of the corresponding computing device. In Chapter 3.1 of this thesis,

we introduce H YREC [27] which of”oads computational jobs of constant time complexity

to the devices. The motivation of this work is to explore solutions that can democratize

personalization by making it accessible to any content-provider company, without requiring

huge investments. H YREC employs an iterative technique to update the nearest-neighbor

graph [174] of users. Such an iterative solution also scales out with an increasing number

of users as the throughput, in terms of the number of updates, increases with more devices

from the users. H YREC employs a hybrid architecture capable of providing a cost-effective

personalization platform to web-content services. Instead of scaling through either larger and

larger recommendation back-end servers, or through fully decentralizing the recommendation

process by relying solely on the front-end clients, H YREC delegates expensive computation

tasks to the clients while, at the same time, retaining on the server side the recommender•s

coordination tasks and the maintenance of the user-user graph (i.e., nearest-neighbor graph)

which re”ects the relationship between different users.

We also give a brief overview regarding how we can extend this idea of iteratively of”oading

computational jobs to Machine Learning (ML) applications. In Chapter 3.2 of this thesis, we

present H YML, an extension of H YREC, which of”oads computational jobs proportional to

the device features (e.g., available memory, cpu cores). Unlike collaborative “ltering employed

in H YREC, performance variability, due to varying device features, poses a signi“cant chal-

lenge [196] to train any centralized ML algorithm (i.e., a global ML model stored and updated

on a central server) by employing users• devices. Due to the asynchronous nature [120] of the

training procedure (i.e., model updates) combined with the heterogeneity of the mobile de-

vices, there exists signi“cant performance difference between the slow and fast mobile devices.

H YML currently employs classical heterogeneity-aware model update algorithms [97, 196] in

such a heterogeneous environment of mobile computing devices.

B. Incrementality

We next focus on the incrementality of the updates for the recommender system. At the heart

of many practical collaborative “ltering techniques [92] lies the computation of similarities

between users, also known as like-mindedness. Even for trust-distrust prediction in Online

Social Networks (OSNs), nearest neighbor graphs employ similarities between the nodes [197].

We observe that existing similarity metrics [157, 187] were not designed to handle a very

4

1.2. Contributions

large number of users with rapidly changing behavior. Moreover, recommenders typically

collect user preferencesusing explicit feedback such as numerical ratings (star ratings in

IMDb, Net”ix, Amazon), binary preferences (likes/dislikes in Youtube), or unary preferences

(retweets in Twitter). However, in systems where the item catalog is large, users tend to give

explicit feedback on a trace amount of those items leading the classical sparsity issue [2]. This

led to the usage of recommenders employing implicit feedback (e.g., time corresponding to

purchase events [115] or purchase sequences [39]). We provide incremental solutions for

recommender systems employing either explicit feedback (in Chapter 4.1) or implicit feedback

(in Chapter 4.2).

In Chapter 4.1 of this thesis, we introduce a novel similarity metric, we call I-S IM [45], which

enables lightweight similarity computations incorporating the rapidly changing temporal

behavior of users. I-S IM can be considered as a •temporalizationŽ of the adjusted cosine

similarity [157] and hence of the cosine similarity which is a speci“c instance of adjusted

cosine similarity. Therefore, I-S IM can be easily integrated with other time-aware applications

in Online Social Networks (OSNs) e.g., trust-distrust predictions. I-S IM is lightweight in

the sense that it can be updated incrementally to achieve low latency and limited energy

consumption. Lastly, we highlight the fact that I-S IM employs explicit feedback from users

(e.g. ratings) for the incremental updates.

As we mentioned above, relying on explicit feedback raises issues regarding feedback sparsity

(thereby impacting the quality of recommendations [2]), and limited ef“ciency for recom-

mending fresh items in reaction to recent user actions [122]. We investigate the existence of a

higher level abstraction for sequences of consumed items, and algorithms for dealing with

them. In Chapter 4.2 of this thesis, we introduce the notion of consumed item packs (CIPS [78])

to extract relevant implicit information from consumption history logs of users. We propose

novel algorithms using CIP S. To address scalability, the CIP-based algorithms are incremental :

they enable to incorporate fresh items consumed recently by users, in order to update the

recommendations in an ef“cient manner.

1.2.2 Privacy

In this thesis, we investigate how we can protect the privacy of users while providing per-

sonalized recommendations. We consider two levels of privacy. The “rst level is to protect

the privacy of any user from other curious users (who can perform attacks [31]) which we

denote as user-level privacy. The second level is to protect the privacy of users from the service

provider itself which we denote as system-level privacy.

In Chapter 5.1 of this thesis, we present D2P, a novel protocol that uses a probabilistic substi-

tution technique to create the AlterEgo pro“le of an original user pro“le. D2P ensures a strong

form of differential privacy [55, 57], which we call Distance-basedDifferential Privacy [76].

Differential privacy [55, 57] is a celebrated property, originally introduced in the context of

databases. Intuitively, it ensures that the removal of a record from a database does not change

5

Chapter 1. Introduction

the result of a query to that database - modulo some arbitrarily small value (�). In this sense,

the presence in the database of every single record - possibly revealing some information

about some user - is anonymous as no query can reveal the very existence of that record to

any other user (modulo �). Applying this notion in the context of recommenders would mean

that - modulo � - no user v would be able to guess - based on the recommendations she gets

- whether some other user u has some item i in her pro“le, e.g., whether u has seen some

movie i . Such a guarantee, however, might be considered weak as nothing would prevent v

from guessing that u has in her pro“le some item that is very similar to i , e.g., that u has seen

some movie similar to i . We strengthen the notion of differential privacy in the context of

CF recommenders to guarantee that any user v is not only prevented from guessing whether

the pro“le of u contains some item i , but also whether the pro“le of u contains any item i �

within some distance � from i (say any movie of the same category of i): hence the name

Distance-basedDifferential Privacy (D2P). Our D2P protocol ensures this property.

In Chapter 5.2 of this thesis, we provide a brief overview of how we design X-R EC [77], a

novel recommender which ensures the privacy of users against the service provider (system-

level privacy) or other curious users (user-level privacy) with negligible increase of latency

in providing recommendations to end-users (due to the privacy overhead), while preserving

recommendation quality. X-R EC employs a uniform user sampling technique to achieve user-

level privacy and an ef“cient homomorphic encryption scheme (X-HE) to achieve system-level

privacy .

1.2.3 Heterogeneity

In Chapter 6 of this thesis, we present a heterogeneous recommender which we call X-M AP:

Cross-domain personalization system [75]. X-M AP employs a novel similarity metric, X-S IM ,

which computes a meta-path-based 1 transitive closure of inter-item similarities across sev-

eral domains. X-S IM involves adaptations, to the heterogeneous case, of classical signi“-

cance weighting [84] (to account for the number of users involved in a meta-path) and path

length [150] (to capture the effect of meta-path lengths) schemes. X-M AP also employs the

notion of AlterEgos, namely arti“cial pro“les (created using X-S IM), of users even in domains

where they have no or very little activity yet. We generate an AlterEgo pro“le (of Alice) in a

target domain leveraging an item-to-item mapping from a source domain (e.g., movies) to the

target domain (e.g., books). AlterEgos enable to integrate any standard recommendation fea-

ture in the target domain and preserve, for example, the temporal behavior of users [53] across

the domains. X-M AP also provides differential privacy by using an obfuscation mechanism,

based on the meta-path-based similarities, to guarantee differentially private AlterEgos. We

also brie”y explore the possibility to perform content-enabled heterogeneous recommenda-

tions [144] by employing statistical aggregates of user features (e.g., demography, time-varying

preferences) or item features (e.g., popularity, price).

1A meta-path in a heterogeneous graph G can be de“ned as a sequence of adjacent heterogeneous vertices (e.g.,
movies or books) connected by edges in G.

6

1.3. Roadmap

1.3 Roadmap

The rest of this thesis is organized as follows.

P
A

R
T

I

� Chapter 2 presents some preliminary concepts in recommender systems, namely, collabo-

rative “ltering, differential privacy, and temporal relevance, along with the standard quality

metrics used to evaluate the recommenders.

P
A

R
T

II

� Chapter 3 presents the democratization approach for recommender systems (H YREC) and

then provides a brief overview regarding how the idea can be extended to classical machine

learning applications (H YML).

� Chapter 4 presents two incrementality approaches for scalability depending on the type of

the feedback which could be either explicit (I-SIM) or implicit (CIP).

P
A

R
T

III

� Chapter 5 presents our notion of distance-based differential privacy (D2P) which strength-

ens the notion of classical differential privacy used for providing user-level privacy in

recommenders. We also provide a brief overview regarding how we can achieve system-

level privacy besides user-level privacy by employing X-R EC.

P
A

R
T

IV � Chapter 6 presents a heterogeneous recommender system (X-M AP) which enables recom-

mendations across multiple domains based on user-item interactions (e.g., ratings). We

also brie”y explore content-enabled heterogeneous recommendations.

P
A

R
T

V

� Chapter 7 summarizes the contributions of this thesis along with its implications at a high

level. We also highlight some interesting research directions as potential future work that

the contributions of this thesis enable.

P
A

R
T

V
I

� Chapter 8 provides some supplementary materials (e.g., correctness proofs, additional

experiments) for interested readers.

7

PART I

Preliminaries

In this part of the thesis, we present the primary background concepts required for understand-

ing the various personalization-related approaches covered in this thesis. These concepts are

elementary to this thesis and we refer to them throughout the rest of the chapters.

2 Background

We recall here the classical notions of collaborative “ltering, temporal relevance, heterogeneity,

and privacy. Other than these standard concepts, we also provide a brief overview of trust-

distrust predictions in online social networks, the classical gradient-descent algorithm, and

the standard metrics for evaluating recommenders.

2.1 Collaborative Filtering

Collaborative Filtering (CF) algorithms fall mainly in two categories: memory-based [154, 170]

and model-based [89, 134, 180]. Memory-based algorithms typically compute the top-k like-

minded users for any given user (say Alice), denoted as the neighbors of Alice, from the

training database, and then make recommendations to Alice based on the rating history of

her neighbors. In contrast to memory-based algorithms, model-based ones “rst extract some

information (also known as features) about users (including Alice) from the database to train

a model and then use this model to make recommendations for the users (including Alice).

Memory-based algorithms are more ”exible in practice compared to model-based ones [92]. It

is relatively more time-consuming to add new incoming data to model-based systems because

training a model takes signi“cant amount of time depending on the complexity of the model

along with the hyper-parameter tuning.

Neighbor-based CF, based on k nearest neighbor (KNN) algorithms, are very popular and

widely used in practice [157, 83]. The goal is to “nd similar objects (users or items) by explor-

ing the relationships between them. The primary techniques employed by recommenders

to explore these relationships can be divided into two categories: user-basedand item-based.

A user-based technique predicts a target user•s preference for an item by leveraging the rat-

ing information aggregated from similar users. An item-based technique applies the same

approach, but utilizes similarities between items instead of users.

We now provide a detailed explanation of the user-based and item-based collaborative “ltering.

We start with presenting the recommendation setting. We consider a database consisting of

11

Chapter 2. Background

N rating events on a set of m items I = {i 1, i 2, ..,i m } by a set of n users U = {u1,u2, ...,un } over

time. The ratings are sorted based on the time of the event. Each rating event is in the form of

a tuple: � u , i , r ui , � ui � which re”ects the fact that user u provided a rating r ui for an item i at a

timestamp � ui . Furthermore, Ut
i denotes the set of users who have rated i until timestep t .

2.1.1 User-based collaborative “ltering

A user-based CF scheme typically consists of three phases as shown in Algorithm 1. We

describe each of these phases in the following.

Similarity computation phase. This phase concerns with the similarity computations based on

the observed ratings. We use the pearson correlation or cosine similarity [60] as the similarity

metric for this phase.

Neighborhood computation phase. This phase deals with computing the most similar users

corresponding to a given user, based on the computed similarities from the previous phase,

and then creating the user-user network. For each user u, the top- K users, i.e., with the K

highest similarities, are selected as the neighbors. The parameter K denotes the model size.

Prediction phase. In this phase, there are either prediction -based approach which predict

the scores for every item (or a “ltered set of items) typically according to Equation 2.2 or

popularity -based approach where the recommendations are the most popular items from a

given user•s neighborhood.

2.1.2 Item-based collaborative “ltering

A standard item-based CF scheme typically consists of three phases as shown in Algorithm 2.

We brie”y describe each of these phases in the following.

Similarity computation phase. This phase concerns with the similarity computations based

on the observed ratings. We mostly use the adjusted cosine similarity as it was empirically

demonstrated to be superior to other metrics for item-based CF [157]. The deviation from the

average rating effectively captures the user•s rating behavior. Moreover, the ratings provided

by users that generally give low (strict) or high (generous) ratings, have a uniform effect on the

similarities.

Neighborhood computation phase. This phase deals with computing the most similar items

corresponding to any given item, based on the computed similarities, and creating the item-

item network. For each item i , the top- K items, i.e., with the K highest similarities, are selected

as the neighbors. The parameter K denotes the model size.

Prediction phase. In this phase, the prediction scores are computed for each item according to

Equation 2.4. Note that subtracting a user•s average rating ¯r u compensates for differences in

her rating scale thus making predictions even more accurate.

12

2.2. Temporal Relevance

Algorithm 1 Standard User-based CF

Require: I : Item set; U: User set; I u : Set of Items rated by a user with user-id u .
Ensure: Ra: Top- N recommendations for a user Alice (a)

Phase 1 - Similarity computation: G ETSIMILARS (a,U)

Ensure: sa: Dictionary for user a with user-ids as keys and similarities as values.
1: for u in U do
2:

sa[u] =

�

i � I u � I a

(r ui Š ¯r u)(r ai Š ¯r a)

� �

i � I u

(r ui Š ¯r u)2
� �

i � I a

(r ai Š ¯r a)2
(2.1)

3: end for
4: return: sa

Phase 2 - Neighborhood computation: KNN (a,U)

Ensure: Na: K most similar users to user a.
5: Na = NLARGEST(K ,GETSIMILARS(a,U))
6: return: Na

Phase 3 - Prediction: T OPN(U)

Require: Sav : similarity between two users a, v.
Ensure: Ra: Top- N recommendations for Alice.

7: var PRED � Dictionary with predictions for Alice
8: for i in I do
9:

PRED[i] = ¯r a +

�

v � KNN(a,U)� Ui

(r vi Š ¯r v)Sav

�

v � KNN(a,U)� Ui

|Suv |
(2.2)

10: end for
11: Ra = NLARGEST(N ,PRED)
12: return: Ra

2.2 Temporal Relevance

Temporal relevance [110, 122] is a popular notion in data mining, commonly known as concept

drift , a dynamic learning problem over time. A typical example is the change in user•s interests

when following an online news stream. In such domains (e.g. news, deals), the target concept

(user•s interests) depends on some temporal context (e.g., mood, “nancial state). This con-

stantly changing context can induce changes in the target concepts, producing a concept drift.

We now provide the de“nition of temporal relevance at any given timestep as follows where

13

Chapter 2. Background

Algorithm 2 Standard Item-based CF

Require: I : Item set; U: User set; Uj : Set of users who rated an item with item-id j ; r̄ u : Average
rating for user u .

Ensure: Ra: Top- N recommendations for a user Alice (a)

Phase 1 - Similarity computation: G ETSIMILARS (j ,I)

Ensure: sj : Dictionary for item j with item-ids as keys and similarities as values.
1: for i in I do
2:

sj [i] =

�

u � Ui � Uj

(r ui Š ¯r u)(r u j Š ¯r u)

� �

u � Ui

(r ui Š ¯r u)2
� �

u � Uj

(r u j Š ¯r u)2
(2.3)

3: end for
4: return: sj

Phase 2 - Neighborhood computation: KNN (j ,I)

Ensure: N j : K most similar items to item j .
5: N j = NLARGEST(K ,GETSIMILARS(j , I))
6: return: N j

Phase 3 - Prediction: T OPN(I)

Require: Si j : similarity between two items i , j .
Ensure: Ra: Top- N recommendations for Alice.

7: var PRED � Dictionary with predictions for Alice
8: for i in I do
9:

PRED[i] = ¯r a +

�

j � KNN(i ,I)� I a

(r a j Š ¯r a)Si j

�

j � KNN(i ,I)� I a

|Si j |
(2.4)

10: end for
11: Ra = NLARGEST(N ,PRED)
12: return: Ra

timestep is a logical time corresponding to the current number of incremental updates.

De“nition 1 (TEMPORAL RELEVANCE). Temporal relevance measures the relevance of a feedback

sui for making predictions at a timestep t based on a time-decaying parameter � . In the

following, we denote the temporal relevance of sui at a timestep t by f �
ui (t) and assign a weight

14

2.3. Privacy

to sui depending on the interval since the timestep (tui) when the actual feedback was provided.

f �
ui (t) = eŠ� (t Štui) (2.5)

Temporal relevance can be incrementally updated as follows: f �
ui (t + 1) = eŠ� f �

ui (t). We

consider one decay factor (Equation 2.5). However, multiple weighting factors like temporal

regression [29] based ones might also be considered.

2.3 Privacy

Privacy is another crucial aspect in recommender systems and preserving privacy in CF rec-

ommenders is challenging. It was shown using the Net”ix Prize dataset that even anonymizing

individual data before releasing it publicly is not enough to preserve privacy [139]. Even cryp-

tographic approaches do not preclude the possibility of the output leaking information about

the personal input of individuals [181]. The need for stronger and robust privacy guarantees

motivated the emergence of the notion of Differential Privacy [55, 57, 64]. First introduced in

the context of databases, differential privacy provides quanti“able privacy guarantees.

Differential Privacy

Differential privacy [58] was initially devised in a context where statistical information about a

database is released without revealing information about its individual entries. Differential

privacy provides formal privacy guarantees that do not depend on an adversary•s background

knowledge (including access to other databases) or computational power. More speci“cally,

differential privacy is de“ned as follows.

De“nition 2 (D IFFERENTIAL PRIVACY [58]). A randomized function R ensures� -differential

privacy if for all datasets D1 and D2, differing on at most one user pro“le, and all t � Range(R),

the following inequality always holds:

Pr [R (D1) = t]

Pr [R (D2) = t]
� exp(�) (2.6)

Remark 1 (COMPOSITION IN DIFFERENTIAL PRIVACY[59]). Let R 1 be an � 1-differentially private

algorithm, and R 2 be an � 2-differentially private algorithm. Then, their composition, i.e.,

R 1,2(x) = (R 1(x),R 2(x)), is � 1 + � 2-differentially private.

2.4 Heterogeneity

The multiplicity of web domains (movies, books, songs) is calling for heterogeneousrecom-

menders that could utilize ratings for one domain (i.e., source) to provide recommendations in

another one (i.e., target). Without loss of generality, we formulate the heterogeneity problem

15

Chapter 2. Background

using two domains, referred to as the source domain (DS) and the target domain (DT). We

note that the problem of heterogeneous recommendations trivially extends to multiple source

and multiple target domains. We use superscript notations S and T to differentiate the source

and the target domains. We assume that users in US and UT overlap1, but I S and I T have no

common items. This captures the most common heterogeneous personalization scenario in

e-commerce companies such as Amazon or eBay nowadays. The heterogeneous recommen-

dation objective is to recommend items in I T to users in US based on the preferences of US

for I S (ratings in the source domain), UT for I T (ratings in the target domain) and US� UT for

I S	 I T (overlapping ratings across the domains). In other words, we aim to recommend items

in I T to a user who rated a few items (sparsity) or no items (cold-start) in I T . For instance, we

intend to recommend new relevant books (i.e., items in DT) either to Alice who never rated

any book (cold-start) or to Bob who rated only a single book (sparsity). Both the users (Alice

and Bob) rated a few movies (i.e., items in DS).

2.5 Gradient-descent Algorithm

Machine learning approaches typically focus on solving the following optimization prob-

lem [120].

min
� � R d

f (�) := E� [F(� ; �)]

where � � � is a random variable and f (�) is a smooth (but not necessarily convex) function.

The most common speci“cation is that � is an index set of all training samples � = {1,2, . . . ,N }

and F(� ; �) is the cost function with respect to the training sample indexed by � .

Gradient-descent (GD) is a standard algorithm, employed by many classical machine learning

models to minimize the above-mentioned optimization problem. GD minimizes the cost

function F(�) by executing the following two steps iteratively .

€ Gradient step. This step is responsible for computing the gradient (Equation 2.7) corre-

sponding to the cost function F(� ; � i), based on i th sampled example from the training

database, with respect to the model parameters (�).

G(� ; � i) =
 F(� ; � i) (2.7)

€ Descent step. This step then updates the current model parameters (�) in a direction

opposite to the compute gradient as shown in Equation 2.8. More precisely, given a

training database with N training examples and a learning rate � k , the model is updated at

any given step k using n examples (such that 1 � n � N) as follows.

� (k+1) = � (k) Š � k ·
n�

i =1
G(� ; � i) (2.8)

1This overlap is often derived from pro“les maintained by users across various web applications along with
interconnection mechanisms for cross-system interoperability [36] and cross-system user identi“cation [35].

16

2.6. Trust-distrust Relationship in Online Social Networks

We note that the above update rule is known as stochastic GD update when n = 1, then mini-

batch GD update when 1 < n < N , and lastly batch GD update when n = N . Depending on the

size of the mini-batch (n), there exists a trade-off between the robustness of a given update

(noise in the computed gradient) and the time required to compute this update. Lastly, the

initial model parameters � (0) typically have a speci“ed value or follow a prede“ned probability

distribution (e.g., Gaussian).

2.6 Trust-distrust Relationship in Online Social Networks

Online Social Networks (OSNs) are becoming increasingly popular nowadays as online places

where users gather and exchange information. However, this information exchange also

raises severe trust-distrust issues. Trust-distrust relations between users play a vital role in

making decisions in OSNs like voting for administrators. In practice, the available explicit

trust relations are often extremely sparse, therefore making the prediction task even more

challenging. Weighted nearest neighbor algorithms are widely used for predicting trust rela-

tions [197, 126]. Algorithm 3 demonstrates one such algorithm leveraging K -nearest neighbors

(KNN) to predict trust relations.

We denote the trust level of user w for a user v asRwv . Given n classes with labels C0, C1,...,

Cn which re”ect the different levels of trust or distrust [67] between two users, we de“ne a

mapping function 	 such that 	 (Rwv) = Ci and 0 � i � n . We then de“ne SCORE(w,v,Ci) as

follows.

SCORE(w,v,Ci) =

�
�

�
1 	 (Rwv) = Ci

0 	 (Rwv) �= Ci

(2.9)

Since trust relation between users is asymmetric, it is possible to have SCORE(w,v,Ci) �=

SCORE(v,w,Ci) when Rwv �= Rvw .

These three phases resemble the ones in Algorithm 1. The “rst phase (similarity computation)

employs the standard cosine similarity between users. The second phase is similar to the one

in Algorithm 1 and derives the KNN set for a given user. Finally, the last phase predicts the

trust relation between two users based on the KNN graph constructed in the previous two

phases.

2.7 Evaluation Metrics

We recall here some standard metrics used to evaluate the quality of recommender systems.

Based on the literature of recommender systems [43, 160], we use Precision, Recall, and F1-

scoreas our metrics to assess the quality of recommenders. Table 2.1 presents the terms

needed for de“ning these metrics: true positives (tp), true negatives (tn), false positives(fp),

false negatives(fn).

17

Chapter 2. Background

Algorithm 3 Trust Prediction

Require: U: User set; Uw : Set of users who trusted/distrusted another user with user-id w .
Ensure: Rwv : Trust level of user w for a user v.

Phase 1 - Similarity computation: G ETSIMILARS (v, U)

Ensure: sv : Dictionary for user v with user-ids as keys and similarities as values.
1: for w in U do
2:

sv [w] =

�

u � Uw � Uv

Rwu Rvu

� �

u � Uw

R2
wu

� �

u � Uv

R2
vu

(2.10)

3: end for
4: return: sv

Phase 2 - Neighborhood computation: KNN (v, U)

Ensure: Nv : K most similar users to user v.
5: Nv = NLARGEST(K ,GETSIMILARS(v,U))
6: return: Nv

Phase 3 - Prediction: P REDICT TRUST(w , v)

Ensure: Trust prediction of user w for a user v.
7: return: argmax

C� {C0,...,Cn }

�

l � KNN(w,U)
SCORE(l ,v,C)

Relevant Irrelevant Total
Recommended tp f p tp + f p

Not Recommended f n tn f n + tn
Total tp + f n f p + tn N

Table 2.1 …Confusion Matrix for true/false positive/negative recommendations.

Precision or True Positive Accuracy (TPA)is the ratio of the number of relevant recommended

items to the total number of recommended items.

Precision = TPA= tp
tp + f p

Recall or True Positive Rate (TPR)is the ratio of the number of relevant recommended items to

the total number of relevant items.

Recall= TPR= tp
tp + f n

18

2.7. Evaluation Metrics

F1-score is used to evaluate precision and recall simultaneously. Mathematically, it is the

harmonic mean of Precision and Recall.

F1 Š score= 2. Precision.Recall
Precision+Recall

We use these standard evaluation metrics throughout the rest of the thesis. In some sections of

this thesis, we introduce some additional evaluation metrics like Mean Absolute Error (MAE)

which are more speci“c to that section only.

Based on these background concepts, we explore and address the technical challenges for

designing a personalization system (i.e., scalability , privacy , and heterogeneity) in the next

three parts of this thesis. At the beginning of each part, we summarize the major contributions

of that speci“c part of the thesis.

19

PART II

Scalability

As the amount of web data increases, the need for highly scalable personalization solutions

grows proportionally. In this part of the thesis, we focus on two primary directions that

improve the scalability of recommender systems.

€ The “rst one is democratization where customized computation jobs are iteratively of-

”oaded to devices of the end-users which could be either high-end devices like laptops or

lightweight mobile devices like smartphones or tablets. The computation jobs are typically

lightweight and customized to the computational capacity of the device. We provide de-

mocratized solutions for classical collaborative “ltering (in §3.1) and demonstrate how it

could be extended to classical machine learning (in §3.2).

€ The second one is incrementality where the personalization model is updated in an in-

cremental manner to incorporate freshly arriving data without signi“cant computational

overhead. Recommenders typically collect user preferencesusing explicit feedback such as

numerical ratings (star ratings in IMDb, Net”ix, Amazon), binary preferences (likes/dislikes

in Youtube), or unary preferences (retweets in Twitter). We provide incremental solutions

for recommenders employing the above-mentioned explicit feedback (in §4.1) as well as

recommenders using implicit feedback such as sequences of consumed items (in §4.2).

3 Democratization

3.1 H YREC: Towards a hybrid architecture

3.1.1 Overview

The motivation of this work is to explore solutions that can democratize personalization by

making it accessible to any service provider, without requiring huge investments. We introduce

H YREC, a hybrid architecture capable of providing a cost-effective 1 scalable personalization

platform to any service provider. Instead of scaling through either larger and larger recom-

mendation back-end servers, or through fully decentralizing the recommendation process

by relying solely on the front-end clients, H YREC delegates expensive computation tasks to

clients while, at the same time, retaining on the server side the system•s coordination tasks

and the maintenance of the nearest-neighbor graph (for users) which re”ects the relationship

between different users. In a later section of this chapter, we also demonstrate how to extend

this democratization idea to enable service providers to of”oad various machine learning

tasks (e.g., classi“cation, ranking) on mobile devices like smartphones, tablets.

H YREC employs user-based collaborative “ltering (§2.1.1), namely predicting the interests

of a user by collecting preferences or taste information from many other users [60]. CF is

content agnostic and represents a natural opportunity for decentralizing recommendation

tasks on user devices. More speci“cally, H YREC adopts a k nearest neighbor (KNN) approach

(Algorithm 1), which consists of computing the k nearest neighbors according to a given

similarity metric, and identifying the items to recommend from the preferences of these

neighboring users [175]. The challenge here is to cope with a large number of users and items.

Traditional centralized recommendation architectures achieve this by computing neighbor-

hood information of”ine and exploiting elastic cloud platforms to massively parallelize the

recommendation jobs on a large number of nodes [46, 49]. Yet, of”ine computation is less

effective when new content is being added continuously as well as the dynamic change in user

preferences. Forcing periodic re-computations, induces signi“cant costs [46, 121, 133].

1Cost implies Total Cost of Ownership (TCO).

23

Chapter 3. Democratization

H YREC•s architecture avoids the need to process the entire sets of users and items by means of

an iterative sampling-based approach inspired by epidemic (gossip-based) computing [183,

22], and successfully used in state-of-the-art k -nearest-neighbor graph construction [54] as

well as query processing [3].

The computation for the personalization operations of a user are performed at the browser

of that user•s machine (which we sometimes simply call the user or the client). The H YREC

server provides each user with a sample set of pro“les of other users (candidate set). Every

user then computes her k nearest neighbors followed by the most popular items preferred by

her nearest neighbors. The server uses, in turn, the user•s new neighbors to compute the next

sample. This iterative process implements a feedback mechanism that improves the quality of

the selected neighbors and leads them to converge very quickly to those that could have been

computed using global knowledge in an of”ine manner.

We evaluate HYREC in the context of two use cases. The “rst is Digg, a personalized feed,

whereas the second is MovieLens, a movie recommender. We use real traces in both cases.

Our results show that the quality of the KNN approximation provided by H YREC is close to

the optimal one. As the convergence of the KNN graph is driven by user activity, users who

are frequently online bene“t from a better neighborhood than users who are rarely online.

We show that the reactiveness of H YREC to compute and re“ne the KNN during the activity

of online users drastically improves the recommendation quality, compared to solutions

using of”ine clustering (which can update this graph after the activity of users) and where

personalization is sometimes useless. We also note that user•s behavior keeps on changing

with time, commonly known as temporal dynamics , and hence H YREC, in practice, could lead

to better recommendation quality due to incorporation of the recent behavior of the user

during the recommendation generation.

3.1.2 H YREC

H YREC lies between fully decentralized, cheap but complex to implement/maintain, and

centralized, ef“cient but potentially costly, recommender frameworks. It leverages the locality

of the computation tasks involved in user-based CF schemes. In H YREC, (Figure 3.1), when

a user accesses a webpage from her browser, the server (i) updates the user pro“le in its

global data structure, and then (ii) selects a set of candidate users to send to the user (i.e.,

H YREC client) along with the associated pro“les. The client in turn performs the similarity

computations between the local pro“le and the ones of the candidate set followed by the item

recommendation. In the following, we brie”y describe how the client and the server operate

in H YREC.

24

3.1. H YREC: Towards a hybrid architecture

Figure 3.1 …Centralized, decentralized and hybrid (H YREC) architecture of a recommender.

A. HYREC server

The server is in charge of (i) orchestrating the decentralized computations carried out by

clients, and (ii) maintaining the global data structures, a Pro“le table and a KNN table. Each

entry in the Pro“le and the KNN tables, indexed by the user-id, contains the user pro“le and

those of its k nearest neighbors respectively.

The server decomposes the recommendation process into personalization jobs that run on

client-side widgets in the browsers of (connected) users. The KNN selection runs online (as it

is achieved by users), and not periodically as usually in a classical centralized architecture,

increasing the reactivity of the system. A personalization job consists of two tasks: (i) a KNN

selection task, and (ii) an item recommendation task. The H YREC server has two components

depicted in Figure 3.1: the Sampler and the Personalization orchestrator .

Sampler. H YREC relies on a local and iterative algorithm to associate each user with her k

nearest neighbors. We use a sampling-based approach inspired from epidemic clustering

protocols [183, 22].

The sampler is involved at each iteration of the KNN selection process and provides each

client with a small (with respect to the total number of users) set of candidate users, from

which the client selects its next k nearest neighbors. Let k be a system parameter determining

the size of a user•s neighborhood, Nu and containing the k nearest neighbors of u (computed

so far). The sampler builds a sample Su (t) for a user u at time t by aggregating three sets: (i)

the k current nearest (one-hop) neighbors Nu of u , (ii) their k nearest neighbors (two-hop),

25

Chapter 3. Democratization

Figure 3.2 …Timeline: a centralized approach vs. H YREC

and (iii) k random users. Because these sets may contain duplicate entries (more and more

as the KNN tables converge), the size of the sample is � 2k + k2. However, for a user u , as the

neighborhood of u , Nu converges towards the ideal one, N �
u , the candidate set tends to get

smaller as some of u•s neighbor share similar neighbors.

By constraining the size of the candidate set, H YREC•s sampling-based approach not only

limits computational cost, but also network traf“c (in terms of bandwidth), while preserving

recommendation quality as we show in our experiments. Research on epidemic [183] and

k-nearest-neighbor graph construction [54] protocols show that the process converges very

rapidly even in very large networks. Using u•s neighbors and their neighbors provides the client

with a set of candidates that are likely to have a high similarity with u. Adding random users

to the sample prevents this search from getting stuck into a local optimum. More precisely,

this guarantees that the process will eventually converge in the absence of pro“le changes by

recording the user•s k -nearest neighbors in the set Nu , so that lim t �
 (Nu Š N �
u) = 0, where N �

u

is the optimal set (i.e., containing the k most similar users). When pro“les do change, which

happens frequently in the targeted applications (e.g., news feed), the process provides each

user with a close approximation of her current optimal neighbors.

Personalization orchestrator. Once a user u accesses the server, (Arrow 1 in Figure 3.1),

the orchestrator retrieves a candidate set, parameterized by k from the sampler and builds

a personalization job. The personalization job for u consists in building a message that

includes u•s pro“le and the pro“les of all the candidates returned by the sampler (Arrow 2 in

Figure 3.1). Finally, the orchestrator manages the interaction with the H YREC client: sends the

personalization jobs, and collects the results of the KNN selection to update the global data

structures. Figure 3.2 illustrates the interactions between the clients and the server in H YREC

as well as in a centralized approach.

26

3.1. H YREC: Towards a hybrid architecture

B. H YREC client

In H YREC, users interact with the recommender system through a web interface. The client

side of H YREC consists of a Javascript widget, running in the web browser. This widget serves

as a web container that interacts with the server•s web API. The H YREC client sends requests

to the server whenever u requires some recommendations. The server replies by providing

a personalization job containing a candidate set along with the associated pro“les. Upon

receiving the job, the client (i) computes locally the recommendation, and (ii) runs locally

the KNN selection algorithm. Note that the client does not need to maintain any local data

structure: the information is provided by the server and garbage collected once the client has

computed the new KNN and sent an update to the server.

Recommendation. The client computes u•s personalized recommendations as Ru = � (Su ,Pu),

where � (Su ,Pu) returns the identi“ers of the top- N most popular items among those that

appear in the pro“les in Su , but not in Pu . These consist of the most popular items in the Su

to which u has not yet been exposed.

Su is composed of the pro“les of clients in the candidate set: u•s neighbors, u•s two-hop

neighbors, and k random users. By taking into account the items liked by the (one and two

hop) neighbors, the item recommendation exploits the opinions of similar users. By also

taking into account items from the pro“le of random users, it also includes some popular

items that may improve the serendipity of its recommendations.

In a real application, once the item to be recommended have been identi“ed, they might

need to be retrieved from a web server to be displayed in a web page. We omit the process of

retrieving the actual content of these items since that is application-dependent.

KNN selection. The client also updates the user•s k-nearest neighbors. To achieve this, the

KNN algorithm (Algorithm 1) computes the similarity between u•s pro“le and each of the

pro“les of the users in the candidate set (Su). It then retains the users that exhibit the highest

similarity values as u•s new neighbors, Nu = KNN (Pu ,Su), where KNN (Pu ,Su) denotes the k

users from Su whose pro“les are most similar to Pu according to a given similarity metric

(here the cosine similarity). This data is sent back to the server to update the KNN table on the

server (Arrow 3 in Figure 3.1).

3.1.3 Evaluation

In this section, we show that H YREC provides good-quality recommendations and reduces

cost. We start with a description of the experimental setup. We then study KNN selection,

recommendation quality, and the impact on cost.

27

Chapter 3. Democratization

A. Experimental setup

Platform. We consider a single server hosting all components (front and back-end) and

assume an in-memory database. In practice, several machines can be used to implement each

component separately to sustain the load at the network level. Yet, this does not affect the

outcome of our experiments. We use a PowerEdges 2950 III, Bi Quad Core 2.5GHz, with 32

GB of memory and Gigabit Ethernet, to evaluate the server. To evaluate the client, we use a

Dell laptop latitude E4310, Bi Quad Core 2.67GHz with 4 GB of memory and Gigabit Ethernet

under Linux Ubuntu.

Datasets. We use real traces from a movie recommender based on the MovieLens (ML)

workload [138] and from Digg [52], a social news web site. The ML dataset consists of movie-

rating data collected through the ML recommender website during a 7-month period and is

often used to evaluate recommenders [46]. For the sake of simplicity, we project ML ratings

into binary ratings as follows: for each item (movie) in a user pro“le, we set the rating to 1 if

the initial rating of the user for that item is above the average rating of the user across all her

items, and to 0 otherwise. We use the three available versions of this dataset, varying in their

number of users, to evaluate the quality of recommendation in H YREC.

The Digg dataset instead allows us to consider a dynamic setting. Digg is a social news website

to discover and share content where the value of a piece of news is collectively determined.

We collected traces from Digg for almost 60 ,000 users and more than 7 ,500 items over 2 weeks

in 2010. This dataset contains all observed users in the speci“ed period. Table 3.1 summarizes

the workload.

Dataset Users Items Ratings
ML1 943 1,700 100,000
ML2 6,040 4,000 1,000,000
ML3 69,878 10,000 10,000,000
Digg 59,167 7,724 782,807

Table 3.1 …Datasets statistics

Competitors. We compare the performance of H YREC with that of several alternatives to

highlight the bene“ts and limitations of our approach. For the alternatives, we distinguish

two major categories. Of”ine solutions perform KNN selection periodically on a back-end

server (Phase 2 in Algorithm 1), while they compute recommendations on demand on a

front-end (Phase 3 in Algorithm 1). Online solutions perform both KNN selection and item

recommendation on demand on the front-end.

Evaluation scheme. To measure recommendation quality, we split each dataset into a training

and a test set sorted according to time. The training set contains the “rst 80% of the ratings

while the test set contains the remaining 20%. The goal of the recommender is to recommend

to a user as many positively-rated items from the test set as possible.

28

3.1. H YREC: Towards a hybrid architecture

Evaluation metrics. To measure the effectiveness of H YREC in “nding the nearest neighbors in

term of interest, we compare the average pro“le similarity between users and their neighbors,

referred to as view similarity in the following. We obtain an upper bound on this view similarity

by considering neighbors computed with global knowledge. We refer to this upper bound as

the ideal or exhaustive KNN in the rest of the evaluation.

For each rating r in the test set, the associated user requests a set of n recommendations (�).

The recommendation quality metric counts the number of positive ratings for which the � set

contains the corresponding item from the testing set: the higher the better. If a positive rating

represents a movie the user liked, this metric counts the number of recommendations that

contain movies that the user is known to like.

B. KNN selection quality

To evaluate the quality of the KNN selection provided by H YREC, we replay the activity and

ratings of each user over time. When a user rates an item in the workload, the client sends a

request to the server, triggering the computation of recommendations. We compare H YREC

with the upper bound provided by the ideal/exhaustive KNN.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200

A
ve

ra
ge

 V
ie

w
 S

im
ila

rit
y

Time (day)

HyRec k=10
HyRec k=10 IR=7

HyRec k=20
Exhaustive k=10

Figure 3.3 …Average view similarity on ML1 dataset for H YREC and ideal KNN .

Figure 3.3 displays the average view similarity over all the users in the ML1 dataset as a function

of time. The plot compares the results obtained by H YREC with those obtained by an of”ine

protocol that computes the ideal KNN once a week. The period of one week allows us to

identify a step-like behavior in the of”ine approach. We observe this behavior in the of”ine

protocol because the neighbors remain “xed between two periodic computations and thus

cannot follow the dynamics of user interests. A typical period in existing recommenders is on

the order of 24 hours. Such a shorter period would make the steps thinner but it would not

lead to faster convergence. Indeed, the upper bound on view similarity can be obtained by

connecting the top-left corners of the steps in the of”ine-ideal (i.e., exhaustive) curve. This

corresponds to online protocol that computes the ideal KNN for each recommendation.

Overall, Figure 3.3 shows that H YREC effectively approximates this upper bound. For a neigh-

borhood size of k = 10, HYREC•s average view similarity remains within 20% of that of the ideal

29

Chapter 3. Democratization

KNN at the end of the experiment. The curve for k = 20 shows the impact of the neighbor-

hood size: larger values of k result in larger candidate sets that converge faster to the nearest

neighbors.

H YREC is an online protocol in the sense that it runs KNN selection as a reaction to user

requests. The timing of such requests follows the information available in the data trace. As

a term of comparison, we also consider a variant (IR=7) that bounds the inter-request time

(i.e., the interval between two requests of the same client) to one week. Results show that the

quality of KNN selection drastically improves according to the activity of users: more frequent

user activity results in better view quality. An inter-request period of one week for k = 10 is

enough to bring H YREC•s approximation within 10% of the upper bound at the end of the

experiment.

The iterative approach of H YREC re“nes its KNN selection over time. As the KNNs of each user

converge, the average size of the candidate set tends to decrease as each candidate is more

likely to be an actual neighbor. Figure 3.4 depicts the average candidate-set size on the entire

ML1 workload as a function of time for different values of k . We observe that the candidate-set

size quickly converges to a stable value. For instance, for k = 10, its value quickly converges to

around 55 instead of the upper bound of 120 (due to k2 + 2k). The small ”uctuations in the

curve result from the continuous arrival of new users, who start with large candidate sets.

 10

 100

 0 10000 20000 30000 40000 50000

A
ve

ra
ge

 c
an

di
da

te
 s

et
 s

iz
e

Time (minute)

k=5
k=10
k=20

Figure 3.4 …Convergence of the candidate set size (ML1 dataset).

C. Recommendation quality

The recommendation process leverages the KNN selection to identify the items to recommend.

Figure 3.5 displays the recommendation quality provided by H YREC and by systems based on

ideal KNN (both of”ine and online variants). Results show that the recommendation quality

of of”ine approaches drastically changes according to the period of of”ine KNN selection

(parameter p on Figure 3.5). The online ideal solution, which computes the ideal KNNs before

providing each recommendation, provides an upper bound on recommendation performance.

H YREC improves the recommendation quality by 12% with respect the of”ine ideal approach

even when this one runs with a period of 24 hours, which is already more costly than H YREC.

30

3.1. H YREC: Towards a hybrid architecture

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8 9 10
R

ec
om

m
en

da
tio

n
Q

ua
lit

y
NB Recommendation

HyRec
Exhaustive p=24h

Exhaustive p=1h
Exhaustive best

Figure 3.5 …Recommendation quality on the ML1 dataset for H YREC as well as of”ine and
online ideal KNN (k = 10).

It also provides better performance than of”ine ideal with a period of 1 hour and scores only

13% below the upper bound provided by online ideal.

To understand H YREC•s improvement on of”ine approaches, consider a user whose rating

activity “ts inside two updates of of”ine KNN selection. This user will not bene“t from any per-

sonalization with an of”ine approach. This is especially the case for new users which start with

random KNNs. In H YREC, on the other hand, users start to form their KNN selection at their

“rst rating and re“ne it during all their activity. This allows H YREC to achieve personalization

quickly, ef“ciently, and dynamically.

D. Impact on cost

We now compare the cost of running the H YREC front-end with that of running several of”ine

solutions based on the centralized recommender architecture as depicted in Figure 3.1. In

such solutions, a front-end server computes the item recommendation in real time upon a

client request, while a back-end server periodically runs the KNN selection. Since H YREC

leverages user machines to run the KNN selection task, it signi“cantly reduces the cost of

running a recommender system.

To ensure a fair comparison, we “rst identify a baseline by selecting the least expensive of-

”ine solution among several alternatives running on Grid5000 [24]. Exhaustive is the of”ine

approach we considered earlier. It computes similarities between all pairs of users thereby

yielding the ideal KNNs at each iteration. CRec is an of”ine solution that uses the same algo-

rithm as H YREC (i.e., a sampling approach for KNN) but with a map-reduce-based architecture.

Both exploit an implementation of the MapReduce paradigm on a single 4-core node [151].

Finally, Mahout and ClusMahout are variants based on the user-based CF implementation

in Mahout, an open-source machine-learning Apache library [129]. Both exploit the Apache

Hadoop platform [80] to parallelize the KNN selection on multiple cores. Mahout runs on

a single 4-core node, while ClusMahout runs on a cluster with two 4-core nodes. Because

all four solutions share the same front-end, we only compare the running time of their KNN

selection tasks on the back-end. In all cases, we consider two periods for of”ine KNN selection:

31

Chapter 3. Democratization

48 hours on MovieLens and 12 hours on Digg.

Figure 3.6 depicts the results. Not surprisingly, we observe a strong correlation between the

size of the dataset (in terms of number of users and size of the pro“le) and the time required

to achieve KNN selection. We observe that CRecconsistently outperforms other approaches

on all datasets with the exception of ClusMahout using two nodes on the ML1 dataset. On

average,CRecreduces the KNN-selection time by 95 .5% and 66% with respect to Exhaustive

and ClusMahout, respectively. Moreover, the gap between the wall time required by CRecand

by the other alternatives increases with the size of the dataset. We therefore select CRecas a

baseline to evaluate the gains provided by H YREC in terms of cost.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

ML1 ML2 ML3 Digg

S
ec

on
ds

CRec
ClusMahout

Mahout
Exhaustive

Figure 3.6 …Time to compute the k nearest neighbors on ML and Digg workloads.

Speci“cally, we gauge the cost associated with running CRecand the H YREC front-end on a

cloud infrastructure using Amazon EC2 services [9]. For the front-end server of both solutions,

we consider the cheapest medium-utilization reserved instances which cost around $681 per

year (the Pro“le table as well as the KNN table need to be stored in memory in order to answer

the client requests as fast as possible). For the back-end server of CRec, we consider one of the

midrange compute-optimized on-demand instances with a price of $0 .6 per hour (on-demand

instances allow the content provider to be ”exible in operating the of”ine KNN selection task).

The ef“ciency of CRec•s KNN selection depends on the frequency at which it is triggered: a

higher clustering frequency improves recommendation but it makes more frequent use of the

on-demand instances, thereby increasing cost.

Based on these estimates, Table 3.2 summarizes the cost reduction achieved by H YREC as the

percentage of the total cost saved by the content provider. We do not consider extra costs for

data transfer as the bandwidth overhead generated by H YREC is small and does not exceed

the free quota even with the ML3 dataset. Results show that the cost reduction ranges from

9.4% for ML1 with a KNN selection period of 48 hours to 97% for ML3. To compute this last

value of 97%, we considered a compute-optimized reserved instance over one year, which is

cheaper than the number of required on-demand instances.

32

3.1. H YREC: Towards a hybrid architecture

Dataset 48h 24h 12h
ML1 9.4% 18.8% 37.7%
ML2 45% 91% 97%
ML3 97% 97% 97%

12h 6h 2h
Digg 2.6% 5.3% 10.5%

Table 3.2 …Impact on the cost of a centralized back-end server according to the KNN selection
period.

3.1.4 Related Work

A radical way to address scalability is through a signi“cant departure from centralized (cloud-

based) architectures, namely through fully distributed CF solutions [190, 155, 11, 136, 195].

While appealing, these solutions face important deployment challenges. They require users to

install speci“c software that must manage their online/of”ine patterns, while taking care of

synchronization between multiple devices that may not be online at the same time. These

distributed solutions are also signi“cantly limited in their scalability due to communication

overheads across the nodes in the distributed setup. This limitation, combined with the inher-

ent scalability of decentralized solutions, provide a strong motivation for a hybrid approach

like ours: namely, combining a centralized entity that coordinates tasks and handles the

connections and disconnections of users with processes performing the actual tasks on the

clients.

Hybrid approaches have already proved successful in various contexts. SETI@home [162]

leverages machine of volunteers for analyzing radio telescope data whereas Weka [104] does

something similar for data mining. A distributed Weka requires either a grid hosted by the

service provider, or an application server on the clients. In addition, Weka is oriented towards

data analysis and does not provide a real-time personalization system. T IVO [5] proposes

a hybrid recommendation architecture similar to ours in the context of item-based CF (Al-

gorithm 2). Yet, T IVO does not completely decentralize the personalization process. It only

of”oads the computation of item recommendation scores to clients (Phase 3 in Algorithm 2).

The computation of the correlations between items is achieved on the server side (Phase 1 and

Phase 2 in Algorithm 2). Since the similarity computation operation is extremely expensive,

TIVO•s server only computes new correlations every two weeks, while its clients identify new

recommendations once a day. This makes T IVO unsuitable for dynamic websites dealing in

real time with continuous streams of items. H YREC addresses this limitation by delegating the

entire “ltering process to clients: it is to our knowledge the “rst system capable of doing so on

any user-based CF platform.

3.1.5 Conclusion

We report in this work on the design and evaluation of H YREC, a user-based collaborative

“ltering system. The architecture of H YREC is hybrid in the sense that it lies between tradi-

tional centralized systems on the one hand, and fully decentralized P2P solutions on the other.

33

Chapter 3. Democratization

H YREC seeks to provide the scalability of P2P approaches while retaining a centralized orches-

tration. We show that H YREC is cost-effective as it signi“cantly reduces the recommendation

cost and improves scalability with respect to centralized (possibly cloud-based) solution.

The motivation underlying H YREC is to explore solutions that could in some sense democratize

personalization by making it accessible to any service provider company without requiring

huge investments. H YREC is generic and can operate in many contexts. In its current version,

it performs a user-based CF scheme. However, any data “ltering algorithm which can be

split through the browsers of users can be used. We also experimented for instance with an

item-based CF recommendation protocol (Algorithm 2). In this implementation, the server

provides the client browsers with the current item (i.e., the item currently viewed by the user)

and a candidate set containing the neighborhood of the current item and their associated

pro“les. Here, the pro“le of an item is the set of users exposed to the items and their associated

ratings. The item recommendation process, executed at the user•s machine, computes the

nearest items (i.e., in term of user interest) to the current item. Whereas the recommendation

quality is smaller than the user-based CF variant described in this work, the same behavior is

observed regarding the KNN selection: the neighborhood of popular items is re“ned better

than unpopular items which is attributed due to the activity difference in the popular and

unpopular items.

Lastly, we note an important aspect in H YREC which is the Quality-of-Service as ultimately

perceived by the end user. With a good Internet connection and a powerful device, a user will

get its recommendations much faster than a user with a poor connection and an old device.

However, as the Javascript widget of H YREC is totally asynchronous, the delay to display the

recommendations does not block the display of the rest of the web page. With the advent of

Web 2.0 applications, end users• resources become exploitable transparently by the service

provider even through multi-threading Javascript tasks attached to web pages [98]. This new

feature increases the high potential of hybrid approaches as H YREC.

The possibility of attacks and their potential impact can also be a determining factor to decide

whether to deploy or not a hybrid architecture in practice. Indeed, H YREC limits the impact of

untrusted and malicious nodes: each user computes only its own recommendations. However,

it is also possible to use privacy-aware mechanisms such as homomorphic encryption [88]

or differential privacy [55] to generate encrypted or differentially-private pro“les of the users.

Then, these private pro“les are of”oaded and used for the recommendation computations.

3.2 Extension to machine learning on mobile devices

We now provide a brief overview regarding how the underlying idea of H YREC can be easily

extended to other context like machine learning on clients• devices (typically mobile devices).

In this extension, we propose a framework named H YML, similar to H YREC, which of”oads

machine learning tasks to mobile devices. H YML of”oads the training phase (Equation 2.7

in §2.5) of any GD-based machine learning model to the mobile devices.

34

3.2. Extension to machine learning on mobile devices

Similar to H YREC, our H YML framework also enables any service provider to deploy large-scale

ML applications without requiring huge investments. We focus on ML applications used by

clients through mobile devices (e.g., smartphones, tablets) of which the number is increasing

rapidly. Mobile devices provide a perfect opportunity since the number of smartphones

users is rising signi“cantly (currently 5 billion). Furthermore, several big industrial players

such as Huawei are focused on increasing the computational capacity of mobile devices by

introducing chips with performance in the order of tens of tera”ops (trillion ”oating point

operations per second).

Following H YREC•s approach, the service provider of”oads the most computational task (i.e.,

model training via gradient computation) to the client•s mobile device which is considered as

a computation unit in this work. However, the service provider must ensure that the effect on

the client•s device in terms of latency or energy consumption (i.e., less workload) is negligible

while also accelerating the learning process with the huge amount of incoming data. Hence,

there is an underlying trade-off between these two objectives, from the service provider•s and

the client•s perspectives, depending on the size of workload to be of”oaded to the devices.

Due to the asynchronous nature [120] of the training procedure (i.e., model updates via

gradients) combined with the heterogeneity of the mobile devices, there exists signi“cant

performance difference between the slow and fast mobile devices. H YML currently employs

classical heterogeneity-aware model update algorithms [97, 196] in such a heterogeneous

environment of mobile computing devices.

A. HYML Overview

H YML is a distributed framework that enables the service provider to employ mobile devices

as workers. The design of H YML is suitable for the deployment of any ML algorithm in which

the workers compute updates based on a current model version and a centralized server

generates a new model version by using these updates e.g., gradient-descent (Equations 2.7

and 2.8 in §2.5). A key component of H YML is a smart sampler , that employs an ML algorithm

(e.g., regression) to ensure that the workload for each device is proportional to the device

capabilities. This smart sampler handles the aforementioned trade-off based on the size of

the workload to be of”oaded to the mobile devices.

Figure 3.7 …The architecture overview of H YML .

H YML, as shown in Figure 3.7, has a classical master-worker architecture where the service

35

Chapter 3. Democratization

provider hosts the master module and each mobile device hosts the worker module. Below,

we brie”y describe the functionality of each module of our framework.

Master. H YML•s master component is similar to the Server component in H YREC (Figure 3.1).

More speci“cally, the master component in H YML consists of three subcomponents which we

describe brie”y in the following.

1. Master-orchestrator (M ORC). This subcomponent is similar to the Personalization orches-

trator component in H YREC and is responsible for the complete orchestration of the model

update process in H YML. The M ORC enables the communication between the master and

the workers (i.e., the mobile devices). Whenever a worker makes a query to the master,

the M ORC responds back with the customized workload, i.e., the current model (cached

in the updater subcomponent) along with a mini-batch which is provided by the sampler

(depending on the predicted mini-batch size). The M ORC also forwards the computed

gradients, received from the workers, to the updater subcomponent.

2. Sampler. This subcomponent is similar to the sampler component in H YREC and is respon-

sible for generating the workload to be sent to the worker. For each user query, the sampler

“rst predicts the appropriate mini-batch size depending on the device features by employ-

ing any classical regression technique and hence handles the computation workload to

be of”oaded to the client device. We highlight that H YML employs a dynamic workload

whereas HYREC employs a constant workload, dependent on the number of neighbors

(K) in the nearest-neighbor graph, for any device. In this regard, H YREC was designed to

of”oad computational tasks to browsers of users and hence a constant workload is prac-

tical (limited by the browser cache size). Lastly, the sampler also generates a mini-batch

sample (from the cached dataset 2) based on the predicted size. The workload consists of

this generated mini-batch along with the model which H YML sends to the worker.

3. Updater. The updater component is responsible for caching the model and performing the

model update (descent step in Equation 2.8 in §2.5) based on the gradients that the M ORC

forwards. This update operation is comparable to the nearest-neighbor update performed

in the KNN table in H YREC by the Server component.

Worker. The worker performs the computationally demanding part of the model training,

namely the gradient computation (G(�) in Equation 2.7), thus mitigating the requirement for

huge investments on cloud resources. This component is similar to the browser component in

H YREC (Figure 3.1). The worker consists of two main subcomponents described as follows.

1. Worker-orchestrator (WORC). The WORC subcomponent enables the worker to communi-

cate with the master and also initiates the communication with the master by forwarding

any client query like an image classi“cation. It receives the computation workload from the

M ORC and then invokes the trainer subcomponent to employ this workload for performing

local on-device training. The computed gradients are sent back to the M ORC along with

the performance statistics of the mobile device during the training step for improving the

2The cached dataset could be appended with new examples either collected from the clients or public sources.

36

3.2. Extension to machine learning on mobile devices

accuracy of the sampler.

2. Trainer. The trainer component is responsible for computing the gradients (as explained

in §2.5) employing the model and the mini-batch received from the W ORC. This component

is similar to the KNN selection one in H YREC.

B. Performance impact of mobile devices

As we mentioned before, H YML employs mobile devices as workers and of”oads the computa-

tions to these devices from the service provider. However, classical distributed ML frameworks

like Tensor”ow, DL4J or Torch typically employ CPUs or GPUs as their computation units.

Hence, we compare the throughput of mobile devices with the throughput achieved by CPUs

or GPUs. For the sake of fairness, we deploy DL4J on a mobile device (using H YML), a single

node consisting of 2 CPUs (Intel Xeon E5-2620) and 1 GPU (Nvidia Titan Black), as well as a

Spark cluster with 8 nodes of similar con“guration.

We use a classical Convolutional Neural Network (CNN [112]), using mini-batch of 100 exam-

ples, as the classi“er on a dataset consisting of hand-written characters and digits EMNIST 3

where each training instance has 784 input features. Figure 3.8 compares the throughput

(i.e., number of model updates per minute) among the various setups (i.e., mobile devices,

CPU, GPU, Spark cluster) employing the CNN classi“er. Interestingly, we observe that a GPU

(Nvidia Titan Black) achieves 42 times higher throughput than a mobile worker (Honor 9) in

our current setup. This comparison gives us a nice estimation of the number of mobile workers

required to replace one node in any classical distributed framework in order to achieve the

same throughput. Lastly, we also note that the scalability saturates with an increasing number

of nodes (as observed from the Spark cluster) due to the communication overhead [166, 192].

 1

 4

 16

 64

 256

 1024

Mobile CPU Cluster GPU

T
hr

ou
gh

pu
t (

up
da

te
s/

m
in

ut
e)

Figure 3.8 …Throughput comparison among single nodes (mobile, CPU, GPU) and a cluster.

C. Conclusion

We demonstrate how the approach of H YREC could be extended to machine learning on

user devices leading to H YML. H YML democratizes the machine learning task to the mobile

devices by of”oading the computation-intensive training part to the devices. Moreover, our

3https://www.nist.gov/itl/iad/image-group/emnist-dataset

37

Chapter 3. Democratization

GD-based approach could be extended to other machine learning algorithms as well for e.g.,

expectation-maximization.

38

4 Incrementality

In this chapter of the thesis, we tackle the scalability problem by updating the recommender

system in an incremental manner with fresh incoming data. We call this approach towards

addressing scalability as incrementality . We present I-SIM in §4.1 to incorporate explicit

feedback incrementally whereas we introduce CIP in §4.2 to handle implicit feedback in an

incremental manner (for online platforms without explicit feedback).

4.1 I-S IM : Incremental Similarity

4.1.1 Overview

The starting point of this work is the observation that existing similarity metrics were not

designed to handle a very large number of users with rapidly changing behavior. The number

of recommendation requests issued by users today, is in the order of millions per day [92],

which poses a major scalability challenge. State-of-the-art scalable recommenders [118, 158,

15] employ batch processing and update their recommenders at intervals of weeks. They

indeed achieve low latency recommendations, but ignore the temporal behavior of users

(temporal relevance [110, 122]), thereby leading to relatively lower recommendation accuracy.

For example, the number of views of news articles saturates within a few hours [117]: these

articles should be recommended within this time span to be relevant. On the other hand, the

very few recommenders that account for temporal relevance [92, 110] do not scale as they

require heavyweight computations, inducing high energy consumption which is becoming a

key issue in cloud computing [12].

An interesting temporal effect that emerges from the MovieLens (ML) dataset [138] is depicted

in Figure 4.1. Users typically provide their preferences for items in terms of feedback like

ratings . Figure 4.1(a) conveys the fact that the moving global average rating ”uctuates within

the “rst 200 days. This ”uctuation can be attributed to the initial user churn (as shown in

Figure 4.1(b)). However, when the number of users is stable, we observe a downward trend in

the average rating which saturates at around 3 .5. The primary reasons behind this temporal

39

Chapter 4. Incrementality

 3.45

 3.5

 3.55

 3.6

 3.65

 3.7

 0 200 400 600 800 1000

A
ve

ra
ge

 r
at

in
g

Time (days)

(a) Moving global average rating where each point av-
erages the 100,000 previous ratings.

 0

 1

 2

 3

 4

 5

 6

 7

 0 200 400 600 800 1000

N
um

be
r

of
 u

se
rs

 (
x1

03)

Time (days)

(b) Total number of users.

Figure 4.1 …Temporal effects in ML-1M dataset.

behavior can be attributed to the users• preferenceand behavioral drifts .

Preference drift. Users•preferencestypically ”uctuate over time. For example, a change in the

family structure can drastically change shopping patterns. Figure 4.2(a) depicts the preference

distribution of an individual user over time. The top genre preferences for this user on Day-1

were Adventure, Horror and Sci-Fi whereas on Day-37 her preferences were mostly Western,

Romance and Drama. We also observe other genre preferences that vary over the following

days (e.g. Thriller).

Behavioral drift. At another personalization level, a user•s feedback (e.g. scores, ratings, votes)

also ”uctuates over time possibly due to her varying behavior (e.g. mood). This feedback

”uctuation results in a user bias. Given that a user u provides a feedback sui for an item i at a

time t Š � when her average feedback was s̄u (t Š �), then the user is biased towards this item

by bui (t Š �) = sui Š s̄u (t Š �). Sarwar et al. empirically showed that including such a user bias

in the similarity computations, however in a static (non-temporal) manner, leads to better

recommendation quality [157]. The change in this user bias (bui (t Š �) Š bui (t)) over time is

the change in the average feedback (s̄u (t) Š s̄u (t Š �)).

Figure 4.2(b) captures the change in the user bias (behavioral drift) which we quantify using

a key user attribute (�) de“ned as follows: the average feedback of a user varies over time in

steps of a temporal parameter � , also denoted by� (t), between a time interval [t Š � , t]. State-

of-the-art incremental similarity metrics [122, 92] do not take into account this attribute

(Figure 4.2(c)I). Performing incremental updates based on the temporal parameter � is non-

trivial. Similarities until time t Š � are also a function of � and thus also need to be adjusted at

time t (Figure 4.2(c)II).

Based on these observations, one can easily infer that users• temporal behavior can impact

the prediction accuracy signi“cantly. However, designing an incremental similarity metric

that captures this temporal behavior is non-trivial.

Contributions. The main contribution of this work is a novel similarity metric, we call I-

SIM , which enables lightweight similarity computations incorporating the preference and

40

4.1. I-S IM : Incremental Similarity

 0

 10

 20

 30

 40

 50

 60

 70

0 1 37 50 16
8

17
3

28
1

28
3

30
8

51
3

51
5

51
6

54
5

57
2

64
2

65
0

N
um

be
r

of
 r

at
in

gs

Time (days)

Mystery
Drama
Sci-Fi

Fantasy
Horror

Film-Noir
Crime

Romance
Childrens

Musical
Animation
Adventure

Action
Comedy

Documentary
War

Thriller
Western

(a) Preference drift of a user in ML-1M.

 3.5

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

t-� t

�

A
ve

ra
ge

 r
at

in
g

Time

(b) Behavioral drift of a user in ML-1M.

(c) Dependence on temporal parameter � .

Figure 4.2 …Limitations of state-of-the-art similarity metrics with respect to temporal relevance
and incremental updates. The gray areas in the right sub“gure indicate the similarities (Si j)
that need to be updated within a time interval [t Š � , t].

behavioral drifts. I-S IM can be considered as a •temporalizationŽ of the adjusted cosine

similarity [157] and hence of the cosine similarity. Therefore, I-S IM can be easily integrated

with time-aware applications in OSNs. In this work, we primarily focus on collaborative

“ltering but nonetheless we also explore trust predictions in OSNs.

I-SIM is lightweight in the sense that it can be updated incrementally to achieve low latency

and limited energy consumption. In particular, I-S IM accounts for temporal relevance through

an exponential decrease in the weight of previous feedback over time. We formally prove that

the time complexity 1 of I-S IM is O(|� U |) where � U is the set of active users within a given

time interval (unlike the time complexity of non-incremental metrics [157] which is O(|U |)

where U is the set of total users in the system).

First, we illustrate the power of I-S IM in personalization applications by implementing a

novel recommender leveraging I-S IM , which we call S WIFT (Scalable Incremental Flexible

Temporal recommender). S WIFT is interesting in its own right, as it enables ”exible switching

between stream processingand batch processing [163]. We demonstrate the ef“ciency of I-S IM

through an in-depth experimental evaluation of S WIFT. More precisely, we compare S WIFT

with recommenders using incremental similarity computations (T ENCENTREC [92]), matrix

factorization techniques using temporal relevance (T IME SVD [110]), Alternating Least Squares

(ALS [111]) and factored similarity models (FISM [99]), on real-world traces in terms of latency,

energy consumption, and accuracy.

1If not stated otherwise, we refer to the worst-case complexity.

41

Chapter 4. Incrementality

Second, after demonstrating that trust relations in OSNs exhibit temporal behavior, we illus-

trate the power of I-S IM for trust-distrust predictions in OSNs by implementing I-T RUST. We

empirically show that I-T RUST signi“cantly outperforms the non-incremental alternative,

both in terms of runtime and accuracy.

4.1.2 I-S IM : A Novel Similarity

In this section, we “rst pose the similarity computation problem more formally and then

present our I-S IM similarity metric before analyzing it. We then show how I-S IM enables

incremental updates (for item-item similarities) over time.

A. Problem De“nition

Let U be a set of users, I be a set of items, and Si j (t) be the similarity between items i , j � I
till timestep t . We de“ne the similarity function as follows.

Si j (t) =
Pi j (t)

n
�

Qi (t) · n
�

Qj (t)
(4.1)

where n is a positive integer, P is a function of the item vectors i , j , and Q is a function of each

individual item vector. For example, if we take the standard cosine similarity (Equation 2.10),

then n is 2, P is the dot product of item vectors i and j whereas Q is the squared L2-norm

of each individual item vector. Note that the similarity function de“nition is formulated for

the similarity metrics designed for sparse data (e.g. cosine, jaccard, pearson correlation). For

sparse data, which often contains asymmetric data, similarity depends more on attributes

that are shared, rather than attributes that are lacking.

For an incremental similarity computation, each of these terms (P,Q) could be incrementally

updated as follows.

Pi j (t) = � Pi j (t) + Pi j (t Š 1)

Qi (t) = � Qi (t) + Qi (t Š 1)

This incremental update seems straightforward when each of the P and Q functions could be

expressed as a summation term independent of any time-varying parameter (Figure 4.2(c)I).

Nevertheless, for more precise similarity metrics, like adjusted cosine similarity, each timestep

depends on some time-varying parameter like the average rating of users. Therefore, the P

and Q values, computed in all previous t Š 1 timesteps, need to be updated (Figure 4.2(c)II).

In this work, we solve this non-trivial problem by essentially caching some additional terms.

We break the update computation into two components: standard (Ps,Qs) and adjustment

42

4.1. I-S IM : Incremental Similarity

(Pa,Qa) components as follows.

Pi j (t) = Ps
i j (t)

	
� �
standard component

+ Pa
i j (t)

	
� �
adjustment component

Qi (t) = Qs
i (t)

	
� �
standard component

+ Qa
i (t)

	
� �
adjustment component

More precisely, the standard component incorporates the preference drift (Figure 4.2(a))

whereas the adjustment component incorporates the behavioral drift (Figure 4.2(b)).

B. I-S IM

We now describe our I-S IM metric which temporalizes adjusted cosine similarity (Equa-

tion 2.3). Given m items and n users, the overall time complexity of the similarity update for

standard techniques (Algorithm 2) is O(m 2n) per timestep. Naively augmenting the standard

adjusted cosine with temporal relevance would require computing item-item similarities at

each batch update leveraging all the ratings (Figure 4.2(c)II). The resulting time complexity

(O(m 2n) per batch update) would be prohibitive for an online recommender.

We “rst rewrite the adjusted cosine similarity (Equation 2.3), incorporating temporal relevance

(Equation 2.5), in terms of pre-normalized correlation (Pi j) and normalization factors (Qi ,Qj)

following the pattern presented in Equation 4.1.

Si j (t) =
Pi j (t)

�
Qi (t)

�
Qj (t)

(4.2)

where

Pi j (t) =
�

u � Ut
i � Ut

j

f �
ui (t)(r ui Š ¯r u (t)) f �

u j (t)(r u j Š ¯r u (t)) (4.3)

Qi (t) =
�

u � Ut
i

(f �
ui (t)(r ui Š ¯r u (t)))2 (4.4)

Next, we show that the functions Pi j (t) and Qi (t) can be incrementally updated with a time

complexity O(|� U|). Thus Si j (t) can also be incrementally computed on-the-”y. Additionally,

this incremental feature reduces the time complexity drastically, enabling lightweight model

updates with incoming streams of data. The active usersat any given time interval are the users

who provide ratings in that interval. Figure 4.3(a) compares the total number of users (|U |)

at any given time with the number of active users (|� U |) during the last 5 days. Figure 4.3(b)

indicates that the computation time required for the similarity update of our incremental

approach on a single machine is a few orders of magnitude lower than a non-incremental

one. We also observe that the computation time for the incremental approach (Figure 4.3(b))

43

Chapter 4. Incrementality

corresponds to the number of active users (Figure 4.3(a)) at any given time.

 10

 100

 1000

 0 200 400 600

N
um

be
r

of
 u

se
rs

Time (days)

Total (U)
Active (� U)

(a) Total users vs active users.

 0.01

 0.1

 1

 10

 100

 1000

 0 200 400 600

U
pd

at
e

tim
e

(s
ec

)

Time (days)

Non-Incremental
Incremental

(b) Similarity computation time.

Figure 4.3 …Comparison between incremental (I-SIM) and non-incremental similarity compu-
tations [157, 5] for ML-1M dataset. The time interval for the active users is 5 days.

Before providing the incremental update relations, we introduce two adjustment terms (L, M).

These adjustment terms incorporate the behavioral drift captured by � (t).

Li j (t) =
�

u � Ut
i j

� (t) f �
ui (t) f �

u j (t)[(r ui Š ¯r u (t)) + (r u j Š ¯r u (t))],

Li (t) = 2
�

u � Ut
i

� (t) f 2�
ui (t)(r ui Š ¯r u (t)) (4.5)

M i j (t) =
�

u � Ut
i j

� (t)2 · f �
ui (t) f �

u j (t), M i (t) =
�

u � Ut
i

� (t)2 · f 2�
ui (t) (4.6)

where � (t) � ¯r u (t) Š ¯r u (t Š 1).

Theorem 1 (Pi j INCREMENTAL UPDATE). Let � Ut
i denote the set of users who newly ratedi at

timestep t , i.e. � Ut
i = Ut

i \ Ut Š1
i , then the time complexity for updating Pi j (t) is O(|� Ut

i |+| � Ut
j |).

Sketch. The incremental update relation of Pi j is:

Pi j (t) = � Pi j (t) + eŠ2� [Pi j (t Š 1)Š Li j (t Š 1)+ Mi j (t Š 1)]

where � Pi j (t) is de“ned as follows.

� Pi j (t) =
�

u � � Ut
i � Ut Š1

j

(r ui Š ¯r u (t)) f �
u j (t)(r u j Š ¯r u (t)) +

�

u � Ut Š1
i � � Ut

j

f �
ui (t)(r ui Š ¯r u (t))(r u j Š ¯r u (t))

+
�

u � � Ut
i � � Ut

j

(r ui Š ¯r u (t))(r u j Š ¯r u (t))

The summation terms in � Pi j (t) have a time complexity of O(|� Ut
i | + | � Ut

j |). The full proof is

provided in Appendix §8.1 for interested readers.

44

4.1. I-S IM : Incremental Similarity

Note that if Pi j (t) was updated non-incrementally then the time complexity would be O(|Ut
i �

Ut
j |). With each time step, the number of new ratings for i (|� Ut

i |) tends to be signi“cantly

smaller than the total number of ratings for i (|Ut
i |). The difference is huge even for the average

case as|Ut
i | can be of the order of all users in the system (Figure 4.3). For example, following

the long tail distribution (Figure 4.13(a)) the popular items (20% of all the items) would be

rated by nearly 80% of the users in the system.

Theorem 2 (Qi INCREMENTAL UPDATE). Given that � Ut
i denotes the set of users who newly rated

i at timestep t , i.e. � Ut
i = Ut

i \ Ut Š1
i , then the time complexity for updating Q i (t) is O(|� Ut

i |).

Sketch. The incremental update relation of Qi is:

Qi (t) = � Qi (t) + eŠ2� [Qi (t Š 1)Š Li (t Š 1)+ Mi (t Š 1)]

where � Qi (t) is de“ned as follows.

� Qi (t) =
�

u � � Ut
i

(r ui Š ¯r u (t))2

The incremental term (� Qi (t)) has a time complexity of O(|� Ut
i |). Note that the complexity

for the non-incremental update is again O(|Ut
i |). The full proof is provided in Appendix §8.1

for interested readers.

Hence, the “nal incremental relations for the adjusted cosine similarity are as follows.

Pi j (t) = � Pi j (t) + eŠ2� Pi j (t Š 1)
	
� �

standard component

Š eŠ2� [Li j (t Š 1)Š Mi j (t Š 1)]
	
� �

adjustment component

(4.7)

Qi (t) = � Qi (t) + eŠ2� Qi (t Š 1)
	
� �

standard component

Š eŠ2� [Li (t Š 1)Š Mi (t Š 1)]
	
� �

adjustment component

(4.8)

Li j (t) = � Li j (t) + eŠ2� [Li j (t Š 1)Š 2Mi j (t Š 1)] (4.9)

M i j (t) = � M i j (t) + eŠ2� M i j (t Š 1) (4.10)

The I-SIM values (Si j) can thus be computed on-the-”y, leveraging the incrementally updated

Pi j (t) and Qi (t) values. We only need to store the P, L, M and Q values which requires O(m 2)

space. Unlike classical non-incremental algorithms [157], we require extra storage for the ad-

justment terms (L, M). The non-incremental algorithms [157, 5] also require O(m 2) space for

storing the item-item similarities. Nonetheless, incremental as well as non-incremental algo-

rithms could bene“t from sparse data structures as well as count sketches[41] for signi“cantly

reducing the storage requirements.

45

Chapter 4. Incrementality

We now provide a variant of I-S IM we call I-S IM � =0 which temporalizes pure cosine similarity.

Adjusted cosine similarity leads to a pure cosine one if the average rating (¯r u) is set to 0

in Equation 2.3. More precisely, a lack of behavioral drift leads to Li j and Mi j being 0 in

Equations 4.7 and 4.8 due to � (t) being 0. The “nal incremental relations for pure cosine

similarity are as follows and do not require any additional storage due to the absence of

adjustment terms.

Pi j (t) = � Pi j (t) + eŠ2� Pi j (t Š 1) (4.11)

Qi (t) = � Qi (t) + eŠ2� Qi (t Š 1) (4.12)

I-SIM also applies to the case of static neighborhood based algorithms (i.e. without using

temporal relevance by setting � to 0 in the update equations). Such algorithms are often

utilized during the cold-start phase of a system.

4.1.3 I-S IM Applications

A. SWIFT : A Novel Recommender

To illustrate the ef“ciency of I-S IM , we plug it in a novel recommender we design and imple-

ment, called S WIFT (Scalable Incremental Flexible Temporal recommender). In the following,

we present SWIFT and highlight some optimization techniques that speed up its computations,

as we later demonstrate through our evaluations.

Figure 4.4 …The architecture overview of SWIFT.

Framework. As we pointed out, practical recommenders today need to deal with millions

of recommendation requests per day, leading to billions of computations. This scale of

recommendations calls for a framework which supports the incremental similarity metric

that we present in this work. We implement our framework on top of Apache Spark 2 and also

choose Apache Cassandra3 as our storage management system to handle large amount of data.

2http://spark.apache.org/
3http://cassandra.apache.org/

46

4.1. I-S IM : Incremental Similarity

The architecture of S WIFT consists of a front-end and back-end as illustrated in Figure 4.4.

Front-end. The front-end of S WIFT aggregates the new ratings from users in micro-batches.

These aggregated micro-batches form the incremental input employed by I-S IM to update

the recommender system. The front-end consists of two subcomponents to facilitate the

recommendation process.

€ Orchestrator. This subcomponent is responsible for receiving the recommendation requests

from the clients as well as aggregating the incoming rating events into new micro-batches

(with pre-de“ned size) which are temporarily cached on the front-end. The orchestrator

also responds to each client•s recommendation request by sending the recommendations

(received from the back-end and cached in the upgrader). Lastly, the orchestrator periodi-

cally transmits the cached micro-batches to the back-end server where the recommender

model is updated using I-S IM with these recent micro-batches.

€ Upgrader. This subcomponent caches locally the most up-to-date recommendations

for the clients (received from the back-end server periodically) and later forwards the

recommendations to the orchestrator corresponding to the incoming client requests.

Back-end. SWIFT•s back-end is responsible for computing the similarity updates for the

incoming micro-batches. The back-end performs two majors tasks: sampling and update as

shown in Figure 4.4. The incoming micro-batches are used to update the user information

(i.e., Ui), the item information (i.e., Li , M i , Qi), and the item-pair information (i.e., Li j , M i j ,

Pi j). Next, the back-end employs these updated information along with a biased sampling

technique (explained in the following subsection) to compute the item-item similarities on-

the-”y (Equation 4.2) and also update the item-item nearest neighbor graph. Lastly, it employs

this updated nearest neighbor graph to compute the most up-to-date recommendations for

the active users and then forwards these recommendations to the front-end.

A key advantage of this front-end, back-end design is parallelism, separating the two different

functionalities of S WIFT, namely recommendation request handling (front-end) and incremen-

tal update (back-end). The information between the front-end and back-end is transferred via

the network in a compressed gzip format in order to avoid an additional energy overhead.

This design also provides ”exibility to our system as the size of the micro-batch can be tuned.

The service provider that hosts S WIFT can choose the frequency of the updates depending

on the available resources. A small start-up company using S WIFT can aim for a medium-

sized micro-batch (say around 100 events per micro-batch) to trade the additional costly

updates for relatively less accurate similarity values. By setting a micro-batch size of 1, S WIFT

performs stream processing (similar to T ENCENTREC [92]). The micro-batch size can also

be automatically set by the front-end based on the rate of incoming events as well as the

estimated latency of the back-end such that bigger micro-batches can be used at peak usage

times. Additionally, the front-end can temporarily increase the micro-batch size to allow for

47

Chapter 4. Incrementality

(a) Candidate set for an item (in
black).

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400

A
ve

ra
ge

 v
ie

w
 s

im
ila

rit
y

Updates

Biased-Sampling
Random

(b) Convergence for ML-1M.

Figure 4.5 …The biased sampling technique of SWIFT.

some back-end maintenance. The ability to trade between stream and micro-batch processing

of new ratings, depending on the users• demands, highlights the ”exibility of our approach.

Biased sampling. Calculating all the similarity pairs for every new update would lead to a

prohibitive O(|I |2 � | � U|) time complexity for each update where I denotes the set of all items

and � U denotes the set of users who provided new ratings. In the average case, a small fraction

of the total similarity pairs is signi“cantly affected after an update. Therefore, updating the

similarities only for the aforementioned small fraction of item pairs and using stale values for

the rest would notably reduce time complexity without compromising the recommendation

accuracy. A sampling method is required for carefully selecting the item pairs to be updated,

balancing the trade-off between the number of updates and the recommendation accuracy.

We apply an incremental biased sampling technique (similar to H YREC in §3.1) to address this

issue. Our sampling technique is applied in an item-based manner as item-item similarities

are more stable than user-user similarities [94]. This biased sampling technique is illustrated in

Figure 4.5(a). The black item i is the most recently rated item. Region 1 contains the K -nearest

neighbors of i which we will reference to as one-hop neighbors (KNN (1)
i). Region 2 contains

K 2 two-hop neighbors of i (KNN (2)
i). Finally, region 3 contains K random items (Rand(K)),

thus creating the candidate set4 of maximum size: 1 + K + K � K + K = (K + 1)2 items. The

random neighbors are required in order to update the similarities for some items that are not

in the two-hop neighborhood. Therefore, the function for selecting the K -nearest neighbors is

not stuck at a local minimum. This technique results in a convergence to neighbors of good

quality 5 within a few updates and eventually converges to the optimal top- K (Figure 4.5(b)).

Theorem 3 (BIASED SAMPLING). The incremental biased sampling eventually converges to the

optimal top-K neighbors.

Proof. First, we mathematically denote the candidate set at timestep t : candi (t) = {KNN (1)
i (t Š

4The candidate set consists of all the items for which the information (i.e. P,Q,L,M) is incrementally updated
by SWIFT•s back-end.

5Good quality neighbors are the neighbors with relatively high similarity.

48

4.1. I-S IM : Incremental Similarity

1) 	 KNN (2)
i (t Š 1) 	 Rand(k)}. Our biased sampling technique results in a directed graph

GKNN (t) that connects each item with a set of items KNN (1)
i (t) that maximizes the similarity

function Si j (t):

KNN (1)
i (t) = max

j � candi (t)

K�

j =1
Si j (t)

After T iterations, the scanned items consist of
T

t =1
candi (t). Moreover, we have

T

t =1
candi (t)

T �

ŠŠŠŠ� I where I is the set of all items. Hence, our biased sampling technique

eventually converges to the optimal top- K neighbors.

Figure 4.5(b) depicts the fast convergence of our biased sampling as compared to a ran-

dom sampling technique where the candidate set does not include the two-hop neighbors

(candi (t) = {KNN (1)
i (t Š 1) 	 Rand(k)}). The view similarity denotes the average similarity of

the top- K neighbors at any given update step.

SWIFT•s sampling technique improves the incremental update time complexity to

O((K + 1)2 � | � U|) = O(|� U|). Note that there are other sampling techniques used to speedup

K -nearest neighbor computation like the one in T ENCENTREC with O(|I | � | � U|) time com-

plexity for each incremental update which makes our sampling technique signi“cantly faster.

Recommendation. We implement item-based CF (Algorithm 2) by executing the following

phases in SWIFT.

€ We substitute the similarity computation phase by leveraging our novel I-S IM metric.

€ The neighborhood computation phase leverages the candidate set selected using our item-

based biased sampling technique to reduce the time complexity of the K -nearest neighbor

search. More precisely, we replace the item set I with the candidate set in the GetSimilars

function within Phase 2 of Algorithm 1.

€ For the prediction phase , we apply the prediction score function, shown in Equation 2.4, to

generate the “nal predictions. We reduce the computations by predicting only for the top

10% of the items sorted by popularity. We then compute the top- N recommendations by

sorting the prediction scores.

One general problem for a recommender is the cold-start, when recommendations are re-

quired for new items (i.e. items with no previous ratings in the database). In S WIFT, we initially

assign the K most popular items as neighbors for the new item. Neighbors converge to the

K -nearest ones after a few iterations for this item as we demonstrate in Figure 4.5(b).

49

Chapter 4. Incrementality

B. I-T RUST: Trust-distrust Predictor in OSNs

To demonstrate the ef“ciency of I-S IM in trust-distrust predictions (§2.6), we plug I-S IM � =0 in

a trust-distrust prediction application which we call I-T RUST.

Temporal behavior also exists in trust-distrust relationship in OSNs. For example, the trust

between an elector and voters might change over time. One such behavior is demonstrated

in the Wiki-Elections trace [185]. We observe a decreasing trend in the number of votes on

Wiki-Elections as shown in Figure 4.6. More intuitively, this shows that during the “rst election,

the voters• trust for this wikipedia administrator decreases with time due to more negative

votes (distrust).

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

A
ve

ra
ge

 v
ot

e

Time (days)

Figure 4.6 …Voters• trust in an administrator during a Wiki-Election

We design a trust predictor which captures these temporal effects. We employ Algorithm 3

for two classes (C0: Trust, C1: Distrust) to predict the trust relationships. We plug I-S IM � =0 in

the similarity computation phase. Based on Equations 4.11 and 4.12, we update the similarity

computations incrementally after some given number of events during which O(|� U |) users

were active. The time complexity of each update step then decreases from O(|U |) to O(|� U |)

as shown in §4.1.2. As we demonstrate later in our experimental evaluation, I-T RUST•s incre-

mentality improves the latency signi“cantly whereas its temporality improves the prediction

accuracy.

4.1.4 Evaluation

In this section, we report on the performance of our two applications (S WIFT and I-T RUST) in

terms of accuracy, latency and energy consumption. Then, we compare them with state-of-

the-art alternatives on real-world traces.

A. Experimental Setup

We “rst describe our experimental environment along with our methodology for obtaining

the results.

50

4.1. I-S IM : Incremental Similarity

Platform. We select the Grid5000 testbed6 as our experimental platform. Each cluster on

Grid5000 has a set of nodes with speci“c resources. We measure the energy consumption

of our implementations using Grid5000•s customized Wattmeter which monitors the power

consumption.

Unless stated otherwise, we deploy our implementations on a Spark cluster consisting of four

nodes. Each node consists of two six-core Intel Xeon E5-2630 v3 CPUs, 128 GB of memory

along with 600 GB disk storage. We tune our Spark cluster optimally in order to achieve the

best possible performance in terms of the number of partitions and executors per node. We

empirically found that the optimal performance, in terms of latency, is obtained by using one

executor per machine and setting the number of partitions for all RDDs approximately equal

to the total number of physical cores in the Spark cluster.

Datasets. We use publicly available real-world datasets. More speci“cally, we use MovieLens

datasets [138]: ML-1M and ML-20M. The ML-1M dataset consists of 1,000,209ratings from

6040users on 4000movies. The ML-20M dataset consists of 20,000,263ratings from 138,493

users on 27,278movies. Rating density denotes the fraction of actual ratings collected among

all possible ratings. To evaluate the effect of increasing the rating density, we use a densi“ed 7

Flixster dataset by employing the method introduced in [122] which leads to 5,105,850ratings

from 10,000most active users on 4000most popular movies. Finally, for evaluating I-T RUST

we employ the Wiki-Elections dataset [185] containing 114,029votes from 6210users on 2391

editors.

Metrics. We evaluate both our applications from various aspects. We describe below the

metrics used in our evaluation.

Click-Through-Rate (CTR). We adopt this metric to test the accuracy of the recommendations.

Given that H u is the set of recommended items that were clicked by a user u (hits), and R u is

the set of items recommended to u, we denote the CTR for u by CT Ru and de“ne it as follows:

CT Ru = | H u |/ |R u |

The overall CTR over the whole test set is the average over the CTR values for all users in

the test set. Note that a recommended item is considered as a hit , if the user rates that item

anytime later than the time of the recommendation. Ideally, CTR for e-commerce services

varies between 1%-5% depending on the type of service [106].

Recall. As introduced in §2.7, this metric captures the sensitivity of a recommender to the

frequency of updates. Given that Cu is the set of items clicked by a user u , we denote the recall

for u by Recal lu and de“ne it as follows: Recal lu = | H u |/ |Cu |. The overall recall is the average

over the recall values for all the users in the test set.

Classi“cation accuracy. We use this metric to test the accuracy of trust-distrust predictions in

6https://www.grid5000.fr/
7The density for ML20M is 0.0053, for ML1M 0.045, and for Flixster 0.128.

51

Chapter 4. Incrementality

OSNs. More precisely, the classi“cation accuracy is the fraction of correct predictions among

all the predictions.

Mean Absolute Error (MAE). We employ this metric to ensure a fair comparison with model-

based alternatives which optimize for low prediction error. The MAE is de“ned as follows:

M AE =
�

u,i � S
| �r ui Š r ui |/ |S|, where �r ui denotes the rating prediction for user u and item i , r ui

denotes the actual rating and S denotes the set of test rating events. Since MAE captures

how close the predictions are to the actual ratings, the lower the error, the higher the model

prediction accuracy.

Latency. This metric quanti“es the delay observed to complete a single task. This delay consists

of three main parts: CPU time, I/O time, and communication delay (e.g. if data is scattered

on multiple nodes). For a set of tasks, we show the minimum, median and 99 th -percentile

latency8.

Energy-per-click. This metric quanti“es the amount of energy required for performing com-

putations for a single user click. This metric intuitively evaluates the impact of a single click

on the consumed energy. More precisely, we measure the aggregated energy consumption

of the entire cluster, on which we deploy our experiments, for the operations that a single

recommendation task (click) triggers. Given that P̄ denotes the average cluster power con-

sumption throughout the computation time of a click (denoted as t), the energy consumption

is computed as follows: E = P̄ � t . We measure the energy-per-click in terms of watt-hour

(Wh).

Evaluation scheme. The datasets include the timestamp for each event. We replay the dataset,

ordered by the timestamp, to capture the same temporal behavior as the original one. Further-

more, we split the dataset into training , validation and test sets. Based on the benchmark for

evaluating stream-based recommenders [105], our test set consists of the most recent 1000

ratings. The validation set consists of the last 1000 ratings from the training set and is used for

parameter tuning. For the non-incremental competitors we train the model on the training

set until it converges and then we evaluate the trained model on the test set.

B. SWIFT Evaluation

SWIFT is designed to provide accurate recommendations with low latency in an energy-

ef“cient manner. In this section, we evaluate S WIFT•s performance for varying parameter

settings and then compare it with state-of-the-art incremental and non-incremental competi-

tors.

To compare with incremental recommenders, we consider T ENCENTREC•s practical item-

based CF (which we refer to as T ENCENTREC). Compared to S WIFT, TENCENTREC•s practical

algorithm employs incremental approximate cosine similarity (instead of I-S IM) with real-time

8The latency observed by 99% of the tasks is below this value.

52

4.1. I-S IM : Incremental Similarity

pruning (instead of biased sampling) and real-time personalized “ltering while predicting only

for the top 10% of the items sorted by popularity similar to S WIFT (Phase 3 in Algorithm 2).

For the non-incremental alternatives, we compare with a standard matrix factorization based

recommender using temporal relevance (T IME SVD [110]) as well as with the factored sim-

ilarity models (FISM [99]), both of which are publicly available in the L IBREC9 library for

recommenders. Additionally, we compare with the distributed alternating least squares (ALS)

algorithm available in Spark•s MLlib.

We train SWIFT using the training set and then provide recommendations for each rating event

in the test set. More precisely, for the training set, S WIFT computes the required information

(P,Q,L,M) based on the Equations 4.3, 4.4, 4.5, 4.6 of the adjusted-cosine similarity (Equa-

tion 4.2). For the test set, S WIFT updates this information using Equations 4.7, 4.8, 4.9, 4.10 and

then provides recommendations using the updated information. Depending on the ”exibility

mode, the back-end is invoked for the update operations either per click (stream processing)

or per micro-batch (batch processing). In the stream processing mode, the front-end responds

to the clients• requests only after receiving the updated recommendations from the back-end.

Accuracy. The following experiments demonstrate the effect of S WIFT•s parameters on the

recommendation accuracy, namely: model size (K), recommendations-per-click (N), micro-

batch size (L) and temporal relevance (�).

Model size. We measure the CTR while varying the model size (K) which is the number of

neighbors in the item-item network. We observe in Figure 4.7 that after a certain model

size any further increase in the model size reduces the CTR. This decrease in CTR is due to

the inclusion of less similar neighbors in the neighborhood of an item. These less similar

neighbors add noise to the predictions.

 0
 25

 50
 75

K
 5

 10
 15

 20

N

 1.8
 2.4

 3
 3.6
 4.2

C
T

R
 (

%
)

 1.8
 2.4
 3
 3.6
 4.2

(a) ML-1M

 0 10 20 30 40 50
K

 5
 10

 15
 20

N

 1.8
 2.4

 3
 3.6

C
T

R
 (

%
)

 1.8

 2.4

 3

 3.6

(b) ML-20M

 0
 50

 100
 150

 200
K

 5
 10

 15
 20

N

 1.4
 1.6
 1.8

 2

C
T

R
 (

%
)

 1.4

 1.6

 1.8

 2

(c) Flixster
Figure 4.7 …Impact of model size (K) and recommendations-per-click (N) on accuracy.

9http://www.librec.net/

53

Chapter 4. Incrementality

Recommendations-per-click. The number of recommendations provided per click, is another

important parameter that affects the CTR as too few will be insuf“cient whereas too many will

reduce the interest of users in the recommendations. Hence, it is important to highlight that

in practical recommenders, the recommendations-per-click (N) should not exceed 20. For

example, IMDB uses Top-12 list to suggest movies and Last.fm uses Top-5 list to suggest songs.

We observe a steady behavior in CTR with increasing N as shown in Figure 4.7. This behavior

can be attributed to the fact that the size of the recommendation hits grows proportionally to

the size of the recommended items.

Micro-batch size. Recall that SWIFT provides a ”exible back-end as mentioned in §4.1.3.

More precisely, S WIFT provides recommendations treating each stream of rating events as a

micro-batch. Hence, S WIFT can provide stream processing with the micro-batch size set to 1

whereas the micro-batch size can be set to few hundreds of rating events for batch processing.

Note that this ”exibility is an important feature for practical recommenders, as depending

on the available resources (due to limited operational costs) or the network traf“c (due to

multiple recommendation requests), the micro-batch size can be adjusted by the service

provider hosting S WIFT.

We now evaluate the impact of the ”exibility mode on accuracy. Practically, many recom-

menders like Amazon or eBay repeat certain recommendations similar to S WIFT. Such re-

peated recommendations are less frequent in the stream processing mode (more frequent

updates in top- N recommendations) but occur more often as the micro-batch size increases.

Therefore, the denominator of the CTR (number of recommended items) decreases as the

micro-batch size increases. On the contrary, the denominator of the recall (number of clicked

items) is independent of the micro-batch size. More updated recommendations (smaller

micro-batch size) lead to more hits and thus result in an increase in the numerator. Hence, we

employ the recall to capture the difference in accuracy for varying micro-batch sizes. 10

 5.2

 5.6

 6

 6.4

 6.8

 7.2

 1 10 100 1000 10000

R
ec

al
l (

%
)

micro-batch size

Figure 4.8 …Impact of ”exibility mode on accuracy for ML-1M.

More precisely, Figure 4.8 illustrates this trade-off between accuracy and micro-batch size.

Compared to the stream processing mode (micro-batch size set to 1), there is an impact on the

recommendation accuracy, in terms of recall, for the batch processing mode. Furthermore,

there is a steep decrease in the recall with increasing micro-batch size. This behavior is due to

10Note that all the experiments leveraging the CTR metric have a “xed micro-batch size.

54

4.1. I-S IM : Incremental Similarity

less frequent updates leading to more temporally stale similarities.

Temporal relevance. We analyze the effect of temporal relevance on the quality of recommen-

dations in terms of CTR. For these experiments, we increase the test set to the last 10,000

events as the drift in the users• interests is more evident over longer test periods. We set the

micro-batch size to 100 and tune the degree of temporal relevance by regulating the temporal

weight parameter � . We observe an improvement in the CTR while increasing the value of

� as shown in Figure 4.9. Moreover, we also observe that the CTR starts decreasing at some

point. This outcome occurs due to the fact that many of the users rated very few items and

our item-based approach leverages the items in the pro“le of the user. Hence, an increased

value of � results in degrading the already few ratings in the user pro“le leading to a cold-start

scenario for the given user. Note that we can also vary � speci“cally for each user pro“le; this

is left for future work.

 5.2

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

0 10-6 10-5 10-4 10-3 10-2 10-1

C
T

R
 (

%
)

�

(a) ML-1M

 1.8

 1.9

 2

 2.1

 2.2

 2.3

0 10-6 10-5 10-4 10-3 10-2 10-1

C
T

R
 (

%
)

�

(b) ML-20M

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

0 10-6 10-5 10-4 10-3 10-2 10-1
C

T
R

 (
%

)

�

(c) Flixster

Figure 4.9 …Impact of temporal relevance (�) on accuracy. Setting � to 0 deactivates SWIFT•s
temporal feature.

Table 4.1 compares SWIFT with incremental recommenders (T ENCENTREC) as well as with

non-incremental ones (T IME SVD, ALS, FISM) in terms of mean absolute error in predictions.

We observe that SWIFT outperforms the others on the more sparse datasets (ML-1M, ML-20M)

whereas ALS performs best on a relatively dense dataset (Flixster).

Approach
Dataset

ML-1M ML-20M Flixster

FISM 0.731 0.873 0.713
TIME SVD 0.806 0.892 0.73

ALS 0.707 0.746 0.629
SWIFT 0.686 0.662 0.669

TENCENTREC 0.784 0.721 0.684

Table 4.1 …Model comparison (MAE) between incremental and non-incremental alternatives.

Latency. SWIFT•s latency is primarily affected by the model size (K), micro-batch size (L) and

cluster sizeparameters. We now provide the results concerning S WIFT•s latency for different

settings for these parameters.

55

Chapter 4. Incrementality

Model size. SWIFT•s biased sampling depends on the model size (K). An increase in the

model size generates larger candidate sets (O(K 2) size) thereby leading to more computations.

Figure 4.10 depicts that the increase in the computations is more evident for large and sparse

datasets like ML-20M. This behavior is due to the fact that the larger amount of items in the

database combined with the sparsity leads to more diverse items in a candidate set. Hence,

the amortized complexity of our biased sampling increases. In this speci“c case, the biased

sampling does not reduce the computations with large values of K , thereby having a signi“cant

impact on latency (as shown in Figure 4.10 for ML-20M and K = 200).

 0

 2

 4

 6

 8

 10

 12

 14

 5 50 100 150 200

La
te

nc
y

(s
ec

)

K

Flixster
ML-1M

ML-20M

Figure 4.10 …Impact of model size (K) on latency (stream processing).

Micro-batch size. We evaluate the ”exibility of S WIFT by varying the micro-batch size. Fig-

ure 4.11 shows the recommendation and update latency of S WIFT•s front-end and back-end

respectively for K = 50. The update latency is increasing with the micro-batch size as the

information for more items• candidate sets needs to be updated. Nevertheless the recommen-

dation time is nearly the same for varying micro-batch size. The latency observed between a

click and the generation of the recommendations is a few milliseconds. Note that in the batch

processing mode, the similarities are updated only after the system receives a micro-batch of

L fresh ratings.

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

La
te

nc
y

(s
ec

)

micro-batch size (L)

update-latency
recommendation-latency

Figure 4.11 …Impact of batch processing on latency for ML-1M.

Cluster size.We deploy SWIFT and ALS on the same cluster while increasing the cluster size

(number of nodes in the cluster) and compare the improvement in terms of median latency

(which we quantify as speedup). Figure 4.12 demonstrates that S WIFT (stream processing

mode with the model size set to 200) achieves a better speedup than ALS. Furthermore, an

56

4.1. I-S IM : Incremental Similarity

increase in the micro-batch size leads to an increase in the speedup for S WIFT. Therefore, the

increase in the update latency, shown in Figure 4.11, can be mitigated by employing more

nodes due to SWIFT•s scalability.

The scalability saturates after a certain cluster size (5 nodes) due to the communication

time with Cassandra as well as the sequential dependencies among S WIFT•s tasks. The

communication overhead with Cassandra could be possibly mitigated by using a distributed

Cassandra cluster and tuning it to maximize the bene“ts from locality whereas the sequential

dependencies could be reduced by pipelining the tasks to exploit more parallelism. It is

important to note that the observed bottleneck is implementation speci“c and not a limitation

of I-S IM .

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20

S
pe

ed
up

Number of nodes

SWIFT (stream)
SWIFT (micro-batch size = 100)

ALS

Figure 4.12 …Scalability comparison for ML-20M.

Energy Consumption. We evaluate the energy consumed by the computations induced due

to a user click. In other words, we estimate the impact of a single click on energy consumption.

Recall that our goal is to reduce the energy consumption by reducing the time complexity. We

analyze the energy consumption corresponding to the clicks for three representative items:

most popular , least popular and 80th percentile11. The ratings provided by users follow a long

tail distribution (Figure 4.13(a)) where 80% of the users rate only 20% of the items. Hence, we

choose our 80th percentile item along with the most popular and unpopular items as shown

in Figure 4.13(a).

Figure 4.13(b) depicts the energy consumption of S WIFT (K = 100) for clicks corresponding

to these three items. The unpopular items are not strongly correlated to their neighbors due

to the relatively small number of ratings provided for each of them. Therefore, the items in

their candidate sets have less overlap compared to those in the candidate sets of the more

popular items. Thus, there is an increase in the computation time for the unpopular items

leading to an increase in the energy-per-click. We deploy ALS on the same Spark cluster for

benchmarking the energy consumption of a single update on this cluster (Figure 4.13(b)). Note

that ALS is non-incremental and therefore requires signi“cantly more time for one update

than SWIFT, thus leading to higher energy consumption.

11The 80th percentile popular item is the one with popularity higher than 80% of the items.

57

Chapter 4. Incrementality

 0

 100

 200

 300

 400

 500

 600

 700

N
um

be
r

of
 r

at
in

gs
 (

x1
02)

ids

(a) Item Popularity

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

popular 80th%ile unpopular

E
ne

rg
y-

pe
r-

cl
ic

k
(W

h)

SWIFT
ALS

(b) Energy-per-click

Figure 4.13 …Impact of item popularity on energy consumption for ML-20M.

C. I-T RUST Evaluation

We now evaluate the effectiveness of I-T RUST in providing accurate predictions with low

latency. We denote the classical predictor implementing Algorithm 3 as C-T RUST. For the

experiments, we set the model size (K) to 150 for C-T RUST to achieve the optimal quality. We

have the same model size with the temporal parameter (�) as 0.3 for I-T RUST. We deploy these

experiments on a single node. While training I-T RUST, we update the similarities incrementally

after a “xed micro-batch of training events whereas for C-T RUST the similarities are computed

using all the training events in a non-incremental manner.

Runtime. We measure the total runtime for updating the similarities needed for constructing

the K -nearest neighbor graph using all the training events. This graph is then used to predict

the trust relations as shown in Algorithm 3 (Phase 3). For I-T RUST, we set the micro-batch

update for similarity computations to 1000 voting events. From Table 4.2, we observe that the

runtime improves by 36 times.

Accuracy. Table 4.2 con“rms I-T RUST•s superiority in terms of accuracy. I-S IM � =0 incorporates

the time-varying trust relations between an administrator and the voters, in the similarity

values. Therefore, the k-nearest neighbor graph is temporally more accurate and leads to

better predictions. The improvement is re”ected in the difference with C-T RUST for the voting

classi“cation task.

Approach Runtime Classi“cation Accuracy
C-TRUST 421.2 s 79.21%
I-T RUST 11.66 s 80.75%

Table 4.2 …Runtime and accuracy comparisons for I-T RUST and C-TRUST.

4.1.5 Related Work

Collaborative “ltering. CF algorithms can be generally divided into two categories: memory-

basedand model-based. Memory-based algorithms employ user-item ratings to compute the

58

4.1. I-S IM : Incremental Similarity

predictions and then generate relevant recommendations. These algorithms can be either

user-based[83] or item-based [157]. Our work focuses on the item-based CF technique which

has been shown to provide more accurate recommendations compared to the user-based

one [157]. In contrast to memory-based techniques, model-based ones build parametric

models by learning iteratively on the training datasets and then leverage the learned model

to generate predictions. Different types of models are typically used, including matrix fac-

torization [110] and factored item similarity models [99]. Standard model-based techniques

require to update their learned models by employing all the ratings, including the new ones,

and hence are not incremental in nature.

Real-time recommenders. These have recently attracted a lot of attention. Huang et al.

presented T ENCENTREC, a real-time stream recommender [92] which uses an incremental

version of approximate cosine similarity. We demonstrate in §4.1.4 that by trading storage

(to store the L and M information), I-S IM performs better in terms of accuracy compared to

the similarity metric leveraged by T ENCENTREC. Furthermore, S WIFT•s biased sampling is

signi“cantly faster than T ENCENTREC•s real-time pruning as we explained in Section 4.1.3.

Whilst Yang et al. [187] presented a scalable item-based CF method by using incremental

update, they did not however address the problem of temporal relevance.

Temporal relevance. Few approaches have addressed the problem of temporal relevance in

the context of CF. One simple heuristic to capture the temporal behavior of a user, applicable to

any recommender, is to consider only the most recent ratings in her pro“le for generating the

recommendations [92, 32, 37]. In our work, we focus on the temporal relevance in the context

of similarity computations. Ding et al. [53] exploited the timestamps of ratings to adapt the

item-based CF technique. They incorporated time-based weights in the score prediction stage

but did not adapt the similarity computations, hence leading to higher time complexity. Lathia

et al. [113] analyzed the effect of temporal relevance by varying the neighborhood size over

time. Koren et al. [110] designed a matrix factorization model that considers the temporal

behavior of users. However, their model has a higher time complexity as they employ multiple

time dependent parameters. Liu et al. [122] introduced an incremental version of cosine

similarity that provides temporal relevance. However, Sarwar et al. [157] empirically showed

that an item-based CF technique provides more accurate recommendations by leveraging the

adjusted cosine metric (compared to the classical cosine one). I-S IM provides incremental

updates for the adjusted cosine similarity while incorporating the temporal relevance feature.

Energy-ef“ciency. Despite a large amount of work on large-scale CF [198, 188, 157], none of

the existing approaches focuses on reducing the time complexity. The main focus has been so

far to design distributed algorithms which can decentralize the computations over multiple

nodes leading to better scalability. This strategy leads to more resource utilization and thereby

higher energy requirements. However, energy consumption is currently a major concern in

data centers [109]. Energy costs are quickly rising in large-scale data centers and are soon

projected to overtake the cost of hardware. Energy-ef“ciency is the new holy grail of data

management systems research [81]. We address this energy-ef“ciency issue by designing

59

Chapter 4. Incrementality

incremental computations with lower time complexity.

Trust-distrust in OSNs. Trust inference algorithms rely on users• feedback to predict future

trust relations. However, trust relations are assumed to be static in existing literature [126, 197].

In this work, we “rst demonstrate that trust relations can be time-varying and then present

how to capture these dynamic trust relations by leveraging I-S IM and thus enabling lightweight

incremental similarity updates.

4.1.6 Conclusion

We present I-SIM , a novel similarity metric that enables similarity computations in an incre-

mental and temporal manner. We illustrate through two applications the effectiveness of I-S IM

in practice: (a) S WIFT incorporating I-S IM for recommendation and (b) I-T RUST incorporat-

ing I-S IM � =0 for trust prediction. We empirically show that I-S IM leads to better accuracy and

lower latency along with energy ef“ciency compared to state-of-the-art alternatives. Moreover,

I-SIM can be leveraged to incorporate time-awareness in similarity-based applications, for

example, trust recommendation in mobile ad-hoc networks [126] or predictive blacklisting

against malicious traf“c on the Internet [171].

4.2 CIP: Consumed Item Packs

4.2.1 Overview

In §4.1, we observe how we can design recommender systems which incorporate explicit

feedback (e.g., ratings) in an incremental manner while preserving their temporality. Yet,

relying on explicit feedback raises issues regarding feedback sparsity (in systems where the

item catalog is large, users tend to give feedback on a trace amount of those items, impacting

the quality of recommendations [2]), and limited ef“ciency for recommending fresh items

in reaction to recent user actions [122]. In this work, we investigate the existence of a higher

level abstraction for sequences of consumed items, and algorithms for dealing with them.

Our Consumed Item Packs(CIPS) relate to high order relations between items enjoyed by a

user and therefore eliminating the need of explicit feedback. Some previous works such as

HOSLIM [39], considered the consumption of items by the same user as the basis for implicit

recommendation. HOSLIM places the so called user-itemsets(implicit feedback) in a matrix,

and then computes the similarity of jointly consumed items over the whole user history (that

leads to the optimal recommendation quality). High-order relations are sought in principle,

but due to the tractability issue of this approach (for m items and order k : O(m k) combinations

of the items are enumerated and tested for relevance), authors limit computations only to

pairs of items. Very recently, Barkan et al. proposed to consider item-item relations using the

model of word embeddings [16]. Our work generalizes the notion of implicit item relations,

based on consumption patterns.

60

4.2. CIP: Consumed Item Packs

(a) Communities of movies
(MovieLens).

(b) Distribution of genres in the 10 largest communities of the movie graph.
(Legend-colors on the x-axis correspond to colors of communities.

Figure 4.14 …Existence of temporal consumption habits of users in MovieLens dataset.

To get more intuition about the very notion of consumed item packs, consider the following

experiment we conduct on the publicly available MovieLens 1M dataset, from which we extract

an undirected graph. Vertices of the graph are movies. An edge exists between two movies if

some minimal number (M) of users have consumed both of them in a •shortŽ consumption inter-

val (here •shortŽ means consumed within -2 to 3 contiguous hops in the users• consumption

log).12

In the graph presented in Figure 4.14(a), we only depict, from the original graph, movies where

the edges have at least 30 transitions (i.e., 30 users have consumed the two movies within the

speci“ed consumption interval, leading to the representation of 1% of the total number of

edges). The edges of the graph are weighted by the number of transitions, which is then at

least 30 (M = 30).

We then apply a community detection algorithm [23] to the resulting graph. We use modularity

as a measure of the structure of the network. The value of the modularity [23] lies in the range

[-1,1]. It is positive if the number of edges within groups exceeds the number expected on the

basis of chance. For a given division of the network•s vertices into some modules, modularity

re”ects the concentration of edges within modules compared with random distribution of

links between all nodes regardless of modules. A high modularity score (0 .569) indicates

the presence of strong communities in the graph presented in Figure 4.14(a). We highlight

communities which represent at least 1% of the total number of nodes in the original graph.

There are 10 such communities, each ranging from 1 .08% to 5.21% of the original graph nodes.

The average clustering coef“cient of the graph is 0 .475, the one of the largest community

(in purple) is 0 .771, and the one of the smallest community (in dark blue) is 0 .842. Thus,

community clustering is signi“cantly more important than the graph one (which supports

the observed high graph modularity). Interestingly, those communities are then (densely)

connected, by a latent feature .

It is important to notice that this latent feature cannot be reduced to the genreof the movies.

To show this, we also plot the distribution of movie genres in the 10 (strong) communities

12The +/- signs denote the order of consumption for the pair of movies.

61

Chapter 4. Incrementality

in Figure 4.14(b). We “rst observe that each community conveys a very speci“c blend of

genres: one community cannot be trivially reduced to a genre. Secondly, it appears that some

communities are closer than others: •pinkŽ and •orangeŽ communities are well separated, both

by hop-distance on the graph (Figure 4.14(a)) and by their constituent genres (Figure 4.14(b)).

The latent feature cannot be reduced to item launch times either: e.g., movie launch times of

the smallest of the 10 clusters spread from 1931 to 1997.

We conduct a similar experiment for a product review website (Ciao [40]), setting M = 2 on

this very sparse dataset. The resulting weighted graph, with detected item communities, also

has a high modularity score of 0.61.

In short, these experiments highlight the very existence of a non trivial latent feature, namely

consumed item packs (CIP S), somehow representing the temporal consumption habits of

users. Extracting this latent information from item communities and then using it for person-

alization services is not straightforward.

4.2.2 Consumed Item Packs (CIP S)

To get access to this latent feature from service logs, we de“ne the CIP data structure. CIP S are

extracted from users• consumption patterns, and allow us to compute the similarity between

those users (or items consumed by them). A user•s pro“le is composed of multiple CIP S. The

notion of CIP is then instantiated in three different algorithms: a user-based algorithm, an

item-based one, and a word embedding based one.

To make things more precise, we recall from §2 our notations: a set of m users U =

{u1,u2, ...,um } and a set of n product catalog items I = {i 1, i 2, ...,i n }. The pro“le of a user

u, noted Pu , consists of a set of pairs of the form � i , tui � (where u consumed an item i at a

time tu,i), extracted from service logs. CIP S are composed of items: each CIP � I � . The order

of the items in a given user•s CIP represents their relative appearance in time, the leftmost

symbol being the oldest one:

CIPu = [i 1, i 2, i 3, ...,i k] such that t u ,i 1 < tu,i 2 < ... < tu,i k .

For instance, u1•s CIP (CIP1) is [i 14, i 3, i 20, i 99, i 53, i 10, i 25], while u2•s one (CIP2) is [i 20, i 53, i 4].

Items i 14 and i 25 are respectively the “rst and last items that u1 has consumed in CIP1, while

i 20 and i 53 are two items that both users have consumed. In the rest of the work, we assume

that one item occurs only once in a given CIP. 13

A CIP then represents the items consumed by a user over a prede“ned period of time. Using

such a data structure, one can devise a similarity measure sim :
�
I � × I � � R+

�
14 between

two CIP S, that captures the proximity between users (or items) as we explain in the next two

13Our similarity metrics might be extended to take re-consumption into account, but it is outside the scope of
this work.

14I � refers to the set of “nite length sequences of items from I .

62

4.2. CIP: Consumed Item Packs

sections.

In practice, CIP S are directly derived from service platform transaction logs, that are at least

composed of tuples of item-id and the corresponding consumption timestamp 15 of that item.

(It is important to note that an explicit recommender system requires tuples including, in

addition , the rating (r ui) that u provided for item i .)

4.2.3 CIP Algorithms

The core claim of this work is that the notion of CIP is general enough to capture differ-

ent algorithms that rely on sequences of items. In the next three subsections, we present

novel algorithms that determine CIP-based similarities and leverage sequence of items for

recommendations.

A. CIP- U: User-based Recommender

In this subsection, we introduce our user-based algorithm using CIP S, which we denote CIP- U.

We then present how to perform incremental updates with CIP- U.

CIP- U Algorithm. CIP-U is an incremental algorithm that maintains a user-user network

where each user is connected to the most similar K other users. CIP- U exploits users• CIPS,

and accepts batches of items freshly consumed by users (i.e., last logged transactions on the

platform) to update this network.

Pl
u denotes the pro“le of a user u till the l th update of her consumed items while CIPl +1

u

denotes the batch of new items consumed by her since the last batch update. Assuming

Pl
u = i 1i 2...i k and CIPl +1

u = i k+1i k+2...i n , we can denote the pro“le of a user u after the (l + 1)th

iteration as Pl +1
u = Pl

u 	 CIPl +1
u . Note that 	 is an order preserving union here.

Before we provide the similarity measure to compare users, we introduce some preliminary

de“nitions. We “rst introduce the notion of hammock distance between a pair of items in the

pro“le of a given user u .

De“nition 3 (H AMMOCK DISTANCE). The hammock distance between a pair of items (i , j) in

Pu , denoted by H u (i , j), is the number of hops between them.

For instance, in Pu = [i 14, i 3, i 20, i 99, i 53, i 10, i 25], H u (i 14, i 99) = 3.

Based on the hammock distance, we de“ne a hammock pair (HP) between two users, as a

pair of items that both users have in common.

De“nition 4 (H AMMOCK PAIRS). Given two usersu and v, their hammock pairs HP u,v are the

set of distinct item pairs both present in Pu and in Pv , under the constraint that the number of

15The timestamp denotes the actual consumption time of the item (in the UNIX format).

63

Chapter 4. Incrementality

hops between the item pairs is at most � H .

HP u,v = {(i , j) | H u (i , j) � � H � H v (i , j) � � H � i �= j }

Hyper-parameter � H denotes the hammock threshold and serves the purpose of tuning the

CIP-based latent feature considered between related items.

Let [] denote the Iverson bracket:

[P] =

�
�

�
1 if the predicate P is True

0 otherwise.

Finally, from hammock pairs, we derive the similarity of two users with regards to their CIP S

as follows.

De“nition 5 (SIMILARITY MEASURE FOR USER-BASED CIP). The similarity between two users u

and v is de“ned as a function of the cardinality of the set of hammock pairs between them:

simCIP-U (u ,v) = 1Š (1Š [Pu = Pv]) · eŠ|HP u,v | (4.13)

We obtain simCIP-U � [0,1], with the boundary conditions, simCIP-U = 0 if the two users have

no pair in common (|HP u,v | = 0 and [Pu = Pv] = 0), while simCIP-U = 1 if their CIP S are

identical ([Pu = Pv] = 1).

Incremental updates. CIP-U enables incremental updates, in order to conveniently re”ect the

latest users• consumption in recommendations without requiring a prohibitive computation

time. CIP- U processes batches of events (consumed items) at regular intervals and updates

the similarity measure for pairs of users. Cu,v denotes the set of items common in the pro“les

of two users u and v. More precisely, after the l th iteration, we obtain:

Cl
u,v = Pl

u � Pl
v

Then, at the (l + 1)th iteration, we get:

Cl +1
u,v = Pl +1

u � Pl +1
v = (Pl

u 	 CIPl +1
u) � (Pl

v 	 CIPl +1
v)

= (Pl
u � Pl

v) 	 (Pl
u � CIPl +1

v) 	 (Pl
v � CIPl +1

u) 	 (CIPl +1
u � CIPl +1

v) = Cl
u,v 	 � Cl +1

u,v

where � Cl +1
u,v =(Pl

u � CIPl +1
v) 	 (Pl

v � CIPl +1
u) 	 (CIPl +1

u � CIPl +1
v). Note that the time complexity

of this step is O((|Pl
u |+ | CIPl +1

v |) + (|Pl
v |+ | CIPl +1

u |)), where |CIPl +1
u |, |CIPl +1

v | are bounded by

the number of events after which the batch update will take place, say Q. Hence, the time

complexity is O(n + Q) = O(n), where n denotes the total number of items, and when Q << n

(as expected in a system built for incremental computation).

64

4.2. CIP: Consumed Item Packs

We next incrementally compute the new hammock pairs. � HP u,v denotes the set of new

hammock pairs for users u and v. Computation is performed as follows:

� HP u,v = {(i , j) | (i � Cl
u ,v , j � � Cl +1

u,v) � (i � � Cl +1
u,v , j � � Cl +1

u,v) � H u (i , j) � � H � H v (i , j) � � H }

The time complexity of this step is O(|Cl
u,v | · |� Cl +1

u,v |), where |� Cl +1
u,v | is bounded by the number

of events after which the batch update takes place (Q). Hence, the time complexity is also of

O(n ·Q) = O(n).

Finally, the similarities are computed leveraging the cardinality of the recently computed

incremental hammock pairs. More precisely, we compute the updated similarity on-the-”y

between a pair of users u and v after the (l + 1)th iteration as follows:

sim l +1
u,v = 1Š (1Š [Pl +1

u = Pl +1
v]) · eŠ|HP l

u,v + � HP u,v |

Hence, the similarity between one user and all m others is computed with a O(nm) time

complexity. 16 In CIP- U, we retain only a small number (K) of similar users. For each user

u, we retain the K most similar users, where K << m, and record these user-ids along with

their similarities with u. We term K as the model size. Selecting the top- K similar users for

collaborative “ltering based on their similarity requires sorting, which induces an additional

complexity of O(m log m). Hence, the total time complexity is O(nm) + O(m log m) = O(nm)

(since n >> log m). Note that classical explicit collaborative “ltering algorithms like user-

based [154] or item-based [157] ones also have same time complexity for periodically updating

their recommendation models. We can reduce the time complexity for the top- K neighbors

update further to O(n) by using biased sampling and iteratively updating the neighbors [27].

B. CIP- I : Item-based Recommender

In this subsection, we introduce our item-based algorithm using CIP S, which we denote as

CIP-I. We then present how to perform incremental updates with CIP- I.

CIP- I Algorithm. CIP-I is also an incremental algorithm that processes user consumption

events in CIP S, to update its item-item network.

Similar to CIP- U, we also leverage the notion of user pro“les : a pro“le of a user u is noted Pu ,

and is composed of one or more disjoint CIP S. We use multiple CIP S in a user pro“le to model

her consumption pattern. CIP S are separated based on the timestamps associated with the

consumed items: two consecutive CIP S are disjoint if the former•s last and latter•s “rst items

are separated in time by a given interval (noted �).

De“nition 6 (CIP PARTITIONS IN A USER PROFILE). Let i k and i k+1 denote two consecutive

16Our time complexity analysis concerns the training phase of the recommender as this phase requires more
computational effort.

65

Chapter 4. Incrementality

consumption events of a user u, with consumption timestamps tu,i k and tu,i k+1, such that

tu,i k � tu ,i k+1 . Given i k belongs toCIPl
u , item i k+1 is added to CIPl

u if tu ,i k+1 � tu ,i k + � . Otherwise

i k+1 is added as the “rst element in a new CIPl +1
u .

These CIPS are de“ned as � -distant. The rationale behind the creation of user pro“les com-

posed of CIPS is that each CIP is intended to capture the semantic taste of a user within a

consistent consumption period.

With i < CIP j denoting the prior occurrence of i before j in a given CIP, and the inverse

hammock distance (� u (i , j)) being a penalty function for distant items in a CIPu (e.g., � u (i , j) =
1

H u (i , j)), we express a similarity measure for items, based on those partitioned user pro“les, as

follows.

De“nition 7 (SIMILARITY MEASURE FOR ITEM-BASED CIP). Given a pair of items (i , j), their

similarity (sim CIP-I (i , j) = s) is:

s=

�

u

|l |u�

l =1

�
(i , j) � CIPl

u � i < CIP j
��

1+ � u (i , j)
�

2 ·max
� �

u

|l |u�

l =1

�
i � CIPl

u

�
,
�

u

|l |u�

l =1

�
j � CIPl

u

��
=

scoreCIP-I (i , j)

2 ·max
�
cardV (i),cardV (j)

� (4.14)

where |l |u denotes the number of CIPS in the pro“le of user u and [] denotes the Iverson bracket.

This re”ects the number of close and ordered co-occurrences of items i and j over the total

number of occurrences of both items independently: simCIP-I (i , j) = 1 if each appearance

of i is immediately followed by j in the current CIP. Contrarily, simCIP-I (i , j) = 0 if there is

no co-occurrence of those items in any CIP. Furthermore, we denote the numerator term

as scoreCIP-I (i , j) and the denominator term as a function of cardV (i) and cardV (j) sub-

terms for Equation 4.14 where cardV (i) =
�

u
� |l |u

l =1[i � CIPl
u]. As shown in Algorithm 4, we

can update scoreCIP-I (i , j) and cardV (i) terms incrementally. Finally, we can compute the

similarity on-the-”y leveraging scoreCIP-I (i , j) and cardV (i) terms.

Incremental updates. CIP-I processes users• recent CIPS scanned from users• consumption

logs. Score values (scoreCIP-I) are updated as shown in Algorithm 4. We require an item-item

matrix to maintain the scorevalues, as well as an n-dimensional vector that maintains the

current occurrence number of each item.

After the update of the scorevalues, the algorithm terminates by updating a data structure

containing the top- K closest items for each given item, leveraging the scorematrix and the

cardinality terms for computing similarities on-the-”y.

The complexity of Algorithm 4 depends on the maximum tolerated size of incoming CIP S. As

one expects an incremental algorithm to receive relatively small inputs as compared to the

total dataset size, the “nal complexity is compatible with online computation: e.g., if the largest

CIP allowed has cardinality |CIP| = O(log n), then run-time complexity is poly-logarithmic.

66

4.2. CIP: Consumed Item Packs

Algorithm 4 Incremental Updates for Item Pairs.

Require: CIPu � last � -distant CIP received for user u
1: scoreCIP-I [][] � item-item scorematrix, intialized to 0
2: cardV � n-dim. vector of appearance cardinality of items
3: for item i in CIP u do
4: cardV (i) = cardV (i) + 1
5: for item j in CIP u do
6: if i �= j then
7: � (i , j) = � (j , i) = 1

H u (i , j)
8: end if
9: if i < CIP j then

10: scoreCIP-I [i][j]+=(1 + � (i , j))
11: else
12: scoreCIP-I [j][i]+=(1 + � (j , i))
13: end if
14: end for
15: end for

C. DEEPCIP: Embedding-Based Recommender

In this subsection, we present an approach based on machine learning, inspired by

WORD2VEC[135, 16]. This approach relies on word embedding, transposed to items. We

speci“cally adapt this concept to our CIP data structure. We name this CIP-based approach

DEEPCIP.

WORD2VEC Embeddings. Neural word embeddings, introduced in [19, 135], are learned

vector representations for each word from a text corpus. These neural word embeddings are

useful for predicting the surrounding words in a sentence. A common approach is to use a

multi-layer Skip-gram model with negative sampling. The objective function minimizes the

distance of each word with its surrounding words within a sentence while maximizing the

distances to randomly chosen set of words (negative samples) that are not expected to be close

to the target. This is an objective quite similar to ours as it enables to compute proximity

between items in the same CIP. This approach computes similarity between two words as the

dot product of their word embeddings.

DEEPCIP Algorithm. We now describe how the W ORD2VEC concept is adapted to CIP S, for

they allow scalable and fresh item incorporation in the model. We feed a skip-gram model

with item-pairs in CIP S where each CIP is as usual an ordered set of items (similar to the

instantiation in CIP- I). More precisely, CIP S are � -distant as instantiated for CIP- I. DEEPCIP

trains the neural network with pairs of items at a distance less than a given window size within

a CIP. This window size corresponds to the notion of hammock distance (as de“ned for CIP- U)

where the distance hyper-parameter � H is de“ned by the window size . More formally, given a

sequence of T training items• vectors i 1, i 2, i 3, ..., i T , and a maximum hammock distance of k ,

the objective of the D EEPCIP model is to maximize the average log probability.

1

T

T Šk�

t =k
log P(i t |i t Šk ,,i t Š1, i t +1,,i t +k) (4.15)

67

Chapter 4. Incrementality

The Skip-gram model is employed to solve the optimization objective 4.15 where the weights

of the model are learned using backpropagation and stochastic gradient descent (SGD). SGD

is inherently synchronous as there is a dependence between the update from one iteration

and the computation in the next iteration. Each iteration must potentially wait for the update

from the previous iteration to complete. This approach does not allow the distribution of

computations on parallel resources which leads to a scalability issue. To circumvent this

scalability issue, we implement D EEPCIP using asynchronous stochastic gradient descent

(D OWNPOUR-SGD [48]). D OWNPOUR-SGD enables distributed training for the skip-gram

model on multiple machines by leveraging asynchronous updates from them. We use a

publicly-available deep learning framework [50] which implements D OWNPOUR-SGD in a

distributed setting. More precisely, D EEPCIP trains the model using D OWNPOUR-SGD on the

recent CIPS thereby updating the model incrementally.

DEEPCIP uses amost_similar functionality to select items to recommend to a user, using

as input recently consumed items (current CIP). We compute a CIP vector using the items

in the given CIP and then use this vector to “nd most similar other items. More precisely,

the most_similar method uses the cosine similarity between a simple mean of the projection

weight vectors of the recently consumed items (i.e., items in a user•s most recent CIP) and the

vectors for each item in the model.

Incremental updates. Online machine learning is performed to update a model when data

becomes available. The D EEPCIP model training is performed in an online manner [63]

where the model is updated using the recent CIP S. Online machine learning is crucial in

recommendation as it is necessary for the algorithm to dynamically adapt to new temporal

patterns [37] in the data. Hence, the complexity of the model update is dependent on the

number of new CIP S received along with the hyper-parameters for the learning algorithm

(primarily, skip-gram model parameters, dimensionality of item vectors, number of training

iterations, hammock distance).

4.2.4 Implementation

We provide here some implementation details of our CIP-based algorithms, i.e.,CIP- U, CIP-I

and D EEPCIP.

A. Spark Data Structures

We consider Apache Spark [172] as our framework for recommendation computations. Spark is

a cluster computing framework for large-scale data processing. It is built on top of the Hadoop

Distributed File System (HDFS) and provides several core abstractions, namely Resilient

Distributed Datasets (RDDs), parallel operations and shared variables.

An RDD is a fault-tolerant abstraction that enables users to explicitly persist intermediate

results in memory and control their partitioning to optimize data placement. It is a read-only

68

4.2. CIP: Consumed Item Packs

Figure 4.15 …Topology and data structures for CIP-U and CIP-I (arrows denote the RDD
dependencies).

collection of objects partitioned across a set of machines and can be rebuilt if a partition is lost.

In a Spark program, data is “rst read into an RDD object. This RDD object can be altered into

other RDD objects by using transformation operations like map, filter , and collect . Spark

also enables the use of shared variables, such as broadcast and accumulator , for accessing or

updating shared data across worker nodes.

B. Tailored Data Structures for CIP S

We now mention brie”y the RDDs leveraged in the memory-based approaches (CIP- U and

CIP-I) as shown in Figure 4.15 (the arrows, between RDDs, in the “gure denotes the sequential

dependency between the RDDs through transformation operations) as well as those in the

model-based approach (D EEPCIP) as shown in Figure 4.16.

RDDs for CIP- U. For CIP- U, we store the collected information into three primary RDDs as

follows. U SERSRDD stores the information about the user pro“les. U SERSIM RDD stores the

hammock pairs between all pairs of users. The pairwise user similarities are computed using a

transformation operation over this RDD. U SERTOPKRDD stores the K most similar users.

During each update step in CIP- U, after Q consumption events, the new events are stored into

a DELTAPROFILESRDD which is broadcast to all the executors using the broadcast abstraction

of Spark. Then, the hammock pairs between users are updated (in U SERSIM RDD) and conse-

quently transformed to pairwise user similarities using Equation 4.13. Finally, CIP- U updates

the the top- K neighbors (U SERTOPKRDD) based on the updated similarities.

RDDs for CIP- I . For CIP- I, we store the collected information into two primary RDDs as

follows. I TEMSIM RDD stores scorevalues between items. The pairwise item similarities are

computed using a transformation operation over this RDD. I TEMTOPKRDD stores the K most

69

Chapter 4. Incrementality

Figure 4.16 …Topology and data structures for DEEPCIP.

similar items for each item based on the updated similarities.

During each update step in CIP- I, the item scores are updated incorporating the received CIP

using Algorithm 4 in the I TEMSIM RDD, and consequently the pairwise item similarities are

also revised using Equation 4.14. CIP- I computes the top- K similar items and updates the

I TEMTOPKRDD at regular intervals.

RDDs for D EEPCIP. We implement the D EEPCIP using the DeepDist deep learning frame-

work [50] which accelerates model training by providing asynchronous stochastic gradient

descent (D OWNPOUR-SGD) for data stored on Spark.

DEEPCIP implements a standard master-workers parameter server model [48]. On the master

node, the CIP SRDD stores the recent CIP S aggregated from the user transaction logs preserv-

ing the consumption order. D EEPCIP trains on this RDD using the D OWNPOUR-SGD. The

skip-gram model is stored on the master node and the worker nodes fetch the model before

processing each partition, and send the gradient updates to the master node. The master

node performs the stochastic gradient descent (Equation 2.8 in §2.5) asynchronously using

the updates sent by the worker nodes. Finally, D EEPCIP predicts the most similar items to a

given user, based on her most recent CIP.

4.2.5 Evaluation

In this section, we report on the evaluation of the CIP-based algorithms, using real-world

datasets.

Platform. For our experiments, we use two deployment modes of the Spark large-scale

processing framework [172].

Standalone deployment. We launch a Spark Standalone cluster on a highperf server (Dell

Poweredge R930) with 4 Processors Intel(R) Xeon(R) E7-4830 v3 (12 cores, 30MB cache, hyper-

threading enabled) and 512 GB of RAM. We use this cluster to evaluate the effect of the number

of partitions for the RDD on scalability. For the standalone deployment, we use 19 executors

70

4.2. CIP: Consumed Item Packs

each with 5 cores since we have a total of 96 cores in this cluster. 17

YARN deployment. We use the Grid5000 testbed to launch a Spark cluster consisting of 20

machines on Hadoop YARN. Each machine is an Intel Xeon CPU E5520@ 2.26GHz. For the

YARN deployment, we set the number of executors equal to the number of machines in the

cluster.

Datasets. We use real-world traces from a movie recommendation website: MovieLens (ML-

100K, ML-1M) [138] as well as a product review website: Ciao [40]. Those traces contain users•

ratings for movies they enjoyed. We compare the performance of our implicit CIP based

models to the one of a widespread explicit (rating-based) collaborative “ltering. In these

datasets, each user rated at least 20 movies. The ratings vary from 1 to 5 with an increment

of 1 between the possible ratings. Note that the ratings are only used for the explicit (rating-

based) recommender. Table 4.3 provides further details about these datasets along with their

densities. The density of a dataset denotes the fraction of actual user-item (implicit or explicit)

interactions present in the dataset compared to all the possible interactions.

Datasets #Users, #Items #Training, #Validation, #Test Density
ML-100K 943, 1682 75000, 5000, 20000 6.31%
ML-1M 6040, 3952 970209, 10000, 20000 4.19%

Ciao 489, 12679 19396, 1000, 2000 0.36%

Table 4.3 …Details of the datasets used in our experiments.

Metrics. We evaluate the recommendation quality in terms of the Precision (§2.7) which is

a classi“cation accuracy metric used conventionally to evaluate top- N recommenders [43].

Precision denotes the fraction of recommended items which were indeed relevant to the target

user.

Hyper-parameters. We tune the core hyper-parameters for CIP- U, CIP-I and D EEPCIP. For

CIP-U, we have the hammock threshold (� H) whereas for the CIP- I, we have the distance (�)

to separate � -distant CIP S in a user•s pro“le. For D EEPCIP, we have the distance (�), similar to

CIP-I, as well as the window size (W) which denotes the maximum hop allowed for learning

the item vectors within a CIP. These hyper-parameters essentially determine the optimal size

of the consumption interval for achieving the best recommendation quality.

Evaluation scheme. The dataset is sorted based on the unix timestamps associated with the

rating events. Then, the sorted dataset is replayed to simulate the actual temporal behavior

of users. We measure the recommendation quality as follows: we divide the dataset into a

training set , a validation set and a test set. The training set is used to train our CIP based

models whereas the validation set is used to tune the hyper-parameters of the models. For

each event in the test set (or rating when applied to explicit recommenders), a set of top

17We use this deployment for running long duration experiments, due to reservation limitations on the Grid5000
cluster [73].

71

Chapter 4. Incrementality

recommendations is selected as the recommendation set with size denoted as N . Note that we

recommend the most popular items for new users (cold-start). Table 4.3 shows the partition

between training, validation and test sets along with the details of the datasets.

Competitors. We compare the recommendation quality of our three algorithms with also three

competitors: a matrix factorization based technique (using explicit ratings) [111], a popular

time-based recommender (without using any explicit ratings) [115], and the state-of-the art

approach mixing both implicit and explicit information [82].

Matrix factorization. Matrix factorization techniques map both users and items to a joint latent

factor space of dimensionality f , such that ratings are modeled as inner products in that space.

We use a publicly available library (Python-recsys [147]) for empirical evaluations. Python-

recsys is a widely used recommender framework for SVD-based approaches [191, 169, 178].

Implicit time-based recommender. We compare with a popular time-based recommender

designed to provide recommendations without the need for explicit feedback [115]. They

construct pseudo ratings from the collected implicit feedback based on temporal information

- user purchase-time and item launch-time - in order to improve recommendation accuracy.

They use two rating functions: W3 (coarse function with three launch-time groups and three

purchase-time groups) and W5 (“ne-grained function with “ve launch-time groups and “ve

purchase-time groups) where the later performs slightly better. Hence, we choose W5 rating

function for our empirical comparison and we denote this system as T BŠW5 in our evaluation.

Markov chain-based recommender. We compare with a recent recommender which combines

matrix factorization and markov chains [153, 82] to model personalized sequential behavior.

We use a publicly available library [161] for our empirical evaluation. We denote this system

as MCREC in our evaluation.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

Top-5 Top-10 Top-15 Top-20

P
re

ci
si

o
n

Recommendations

TB-W5 MCREC

(a) ML-100K

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

Top-5 Top-10 Top-15 Top-20

P
re

ci
si

o
n

Recommendations

SVD CIP-U

(b) ML-1M

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

Top-5 Top-10 Top-15 Top-20

P
re

ci
si

o
n

Recommendations

CIP-I DEEPCIP

(c) Ciao

Figure 4.17 …Recommendation quality of CIP-based algorithms versus competitors.

Quality comparison with competitors. Once we obtain the optimal setting of the hyper-

parameters for our CIP based models, we compare them with the competitors namely: the

matrix factorization based technique (SVD), the markov-chain based technique (MCR EC) and

the time-based approach (TB-W 5). We compare the recommendation quality in terms of the

precision (N = 10) on MovieLens (ML-100K, ML-1M) and Ciao datasets, in Figure 4.17. We

72

4.2. CIP: Consumed Item Packs

draw the following observations.

€ Regarding our three algorithms, D EEPCIP always outperforms CIP- I, which in turn is always

outperforming CIP- U (except on the Top-5 result on the Ciao dataset which is due to the

relatively limited number of recommendations).

€ The CIP-based algorithms outperform TB-W 5 on all the three datasets. For example,

consider top-10 recommendations in the ML-1M dataset, CIP- U provides around 1.82 ×

improvement in the precision, CIP- I provides around 2.1 × improvement, and D EEPCIP

provides around 2.4 × improvement.

€ The CIP-U algorithm performs on par with MCR EC as well as matrix factorization based

techniques. CIP- I overcomes MCREC on all three scenarios, sometimes only by a short mar-

gin (ML-1M). However, the D EEPCIP model outperforms all other models signi“cantly. For

example, consider the top-10 recommendations in the ML-1M dataset, D EEPCIP provides

2.4× improvement over TB-W 5, 1.29× improvement over MCR EC, and 1.31× improvement

over the matrix factorization based one. The reason behind this improvement is that D EEP-

CIP considers, for any given item, the packs of items at a distance dependent on the de“ned

window size, whereas MCR EC only considers pairs of items in the sequence of chain states

(and thus has a more constrained learning process).

Note that the precision we obtain for SVD on MovieLens (11% to 12%) is consistent with other

standard quality evaluation benchmarks for state-of-the-art recommenders [43].

These results show the existence of the latent information contained in closely consumed

items, accurately captured by the CIP structure. Note that this is intuitively consistent for

DEEPCIP to perform well in this setting: the original W ORD2VEC concept captures relation

among words w.r.t. their proximity in a given context. With D EEPCIP, we seek to capture item

proximity w.r.t. their consumption time.

Scalability. We now evaluate the scalability of CIP-based algorithms by varying the number

of RDD partitions employed by Spark as well as the size of the Spark cluster.

Effect of partitions. Spark•s RDD deals with fragmented data which enables Spark to ef“ciently

execute computations in parallel. The level of fragmentation is a function of the number

of partitions of an RDD which is crucial for the scalability performance of an application.

A small number of partitions reduces the concurrency and consequently leads to under-

utilization of the cluster. Furthermore, since with fewer partitions there is more data in each

partition, this increases the memory pressure on the application. On the ”ip side, with too

many partitions, the performance might degrade due to data shuf”ing as it takes a hit from

the network overheads and disk I/Os. Hence, tuning the number of partitions is important

in determining the attainable scalability of an algorithm. We thus conduce the effect of the

number of partitions on scalability. We run these experiments in the Standalone mode of

Spark.

Figures 4.18a and 4.18b demonstrate that scalability depends on the number of partitions

73

Chapter 4. Incrementality

which is ideally equal to the number of cores in the cluster. We observe a near-linear speedup

while increasing the number of partitions for both CIP- U as well as DEEPCIP. However, the

speedup is comparatively less for CIP- I due to the highly reduced time complexity of CIP- I

leading to signi“cantly less computations.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

Number of Partitions

CIP-I CIP-U

(a) ML-100K

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

Number of Partitions

DEEPCIP

(b) ML-1M

Figure 4.18 …Partition effects.

Effect of Cluster size.We now evaluate the scalability of our algorithms while increasing the

cluster size from one machine to a maximum of 20 machines. Furthermore, we also compare

the speedup achieved by a matrix factorization technique (ALS) implemented in the publicly

available ML LIB library for Spark. Number of partitions is set to 50.

Figure 4.19 depicts a sublinear increase in speedup while increasing the number of machines

on both the datasets. The sublinearity in the speedup is due to communication overheads in

Spark with increasing number of machines. The speedup on ML-1M is higher due to more

computations being required for larger datasets and higher utilization of the cluster. We

observe that the speedup for CIP- I is similar for both datasets as its time complexity depends

on the CIP size (Algorithm 4). D EEPCIP scales well due to the distributed asynchronous

stochastic gradient descent (D OWNPOUR-SGD) for training the skip-gram model where more

gradient computations could be executed asynchronously in parallel with increasing number

of nodes. CIP- U and D EEPCIP scale better than ALS for both setups.

4.2.6 Related Work

We now discuss previous work about using explicit and implicit feedback in recommenders.

Explicit feedback. Tapestry [68], one of the earliest implementations of collaborative “lter-

ing, relies on the explicit opinions of people from a close-knit community such as an of“ce

working group. Since then, a lot of work has been devoted to improve the recommendation

quality. All however require explicit feedback like numerical ratings, binary like/dislike or

just positive likes. Recently, Sen et al. demonstrated that different rating scales elicit different

levels of cognitive load on the end users [173]. Whitenton pointed out the relation between

74

4.2. CIP: Consumed Item Packs

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 2 4 6 8 10 12 14 16 18 20

S
p
e
e
d
u
p

Number of Machines

CIP-I CIP-U

(a) ML-100K

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16 18 20

S
p
e
e
d
u
p

Number of Machines

DEEPCIP MLLIB-ALS

(b) ML-1M

Figure 4.19 …Cluster size effects.

cognitive load and consumer usability and highlighted the very fact that to achieve maximum

usability, the cognitive load should be minimized [184]. In this work, we focus on utilizing the

information available in transaction logs, for it is available to arguably all services proposing a

catalog of items.

Implicit feedback. Our CIP-based algorithms belong to the category of recommenders using

implicit feedback from users [141]. HOSLIM [39] proposes to compute higher order relations

between items in consumed itemsets; those relations are the ones that maximize the recom-

mendation quality, but without notions of temporality in item consumption. The proposed

algorithm is time-agnostic, and does not scale for orders superior to pairs of items. More-

over, it is not designed to ef“ciently incorporate freshly consumed items and suffers from

computational intractability. Barkan et al. present I TEM2VEC [16], that also uses skip-gram

with negative sampling to retrieve items• relations w.r.t their context in time. Besides the

fact that their implementation does not scale on multiple machines due to the use of syn-

chronous stochastic gradient descent, they evaluated only on private datasets. This makes

precise evaluations w.r.t. state-of-the-art algorithms subjective. Implicit feedback has also

been used for multiple other applications: this is traditionally the case in search engines,

where clicks are tracked [42]. SPrank [142] leverages semantic descriptions of items, gathered

in a knowledge base available on the web. Koren et al. [90] showed that implicit information,

like channel switching on TV, is valuable enough to propose recommendations. Huang et

al. leverage unordered co-occurrence of contextual queries in session-based query logs in a

non-incremental manner for relevant term suggestion in search engines [91]. Recommenders

can also use the implicit social information of their users to improve “nal results [128].

Interestingly enough, in the context of music recommendation, Jawaheer et al. [95] pointed

out that implicit and explicit recommenders are complementary, and experimentally perform

similarly. Recently, Soldo et al. leveraged users• malicious (implicit) activity logs to recommend

which IP addresses to block [171]. Hence, implicit feedback based approaches could be

employed over a wide range of applications.

Time-based recommendation. Within implicit based recommenders, the notion of •timeŽ

75

Chapter 4. Incrementality

has been exploited in various ways since it is a crucial implicit information collected by all

services. Some companies implement implicit recommenders, as e.g., Amazon [10]; yet, we

are not aware of the use of any technique even remotely close to our notion of item packs.

The use of spatio-temporal proximity between users in a given place was introduced in [47].

However, such a technique requires auxiliary location-based information for detecting such

user proximity, which furthermore might be a privacy concern for users (location privacy [17]).

Baltrunas et al. presented a technique [13] very similar to CIP where a user pro“le is parti-

tioned into micro-pro“les (similar to CIP S in our approach). However, explicit feedback is

required for each of these micro-pro“les, to improve the quality of recommendations. Time

window (or decay) “ltering is another technique, applied to attenuate recommendation scores

for items having a small likelihood to be purchased at the moment when a user might view

them [70]. While such an approach uses the notion of time in transaction logs to improve

recommendations, it still builds on explicit ratings for computing the basic recommendation

scores. Campos et al. [32] proposed to bias recommendation according to freshness of ratings

in the dataset. However, their approach still uses explicit ratings to improve recommendation

quality using their time-biased strategy. Finally, Lee et al. [115] introduced a completely im-

plicit feedback based approach that gives more weight to new items if users are sensitive to the

item•s launch times. We compare our algorithms to this approach in §4.2.5 and demonstrate

that our CIP-based algorithms perform better in practice.

Sequence-based recommendation Recently, there have been some approaches using Markov

chains to model consumption sequences [153]. However, such approaches suffer from sparsity

issues and the long-tailed distribution of many datasets. We compare with a Markov-chain

based approach (MCR EC) and show that CIP-based approaches, updated incrementally in a

distributed manner, perform on par with MCR EC.

4.2.7 Conclusion

Since very recently, research efforts are dedicated to circumvent the absence of explicit feed-

back on online platforms, using individual techniques that leverage the sequential consump-

tion of items. In an effort for a detailed and scalable proposal for generalizing such a direction,

we presented two memory-based and one model-based recommendation algorithms exploit-

ing the implicit notion of item packs consumed by users, while showing that our framework can

also incorporate the previous state-of-the-art approach on the topic. Our novel algorithms

provide a better recommendation quality than the widespread SVD-based approach [111], as

well as implicit ones leveraging consumption time [115] or consumption sequences [82, 153].

This con“rms the fact that item packs allow to ef“ciently identify similar users or items. Impor-

tantly, for practical deployments, this key latent feature can be captured with the incremental

algorithms that we presented, thus allowing to build fast services using freshly consumed items.

Deeper analysis might be conduced in a sociological direction, in order to validate further the

relevance and robustness of this latent feature, across different datasets and services.

76

PART III

Privacy

Personalization and privacy are two sides of the same coin in the sense that there is a signi“cant

underlying trade-off between these two aspects. Personalization improves with an increase in

the amount of data. However, data leaks information about users and hence leads to severe

privacy concerns. In this part of the thesis, we will see how we can protect privacy of the users

while providing personalized recommendations to them. We consider two levels of privacy.

€ In §5.1, we “rst focus on protecting the privacy of any user from other curious users, which

we denote as user-level privacy.

€ We next provide a brief overview, in §5.2, of our approach to protect the privacy of users

from the service provider itself, which we denote as system-level privacy.

5 Privacy

5.1 User-level Privacy

5.1.1 Overview

CF recommenders induce an inherent trade-off between privacy and personalization [119]. In

this work, we address this trade-off by exploring a promising approach where the information

used for computing recommendations is concealed. We present D2P, a novel protocol that

uses a probabilistic substitution technique to create the AlterEgo pro“le of an original user

pro“le. D2P ensures a strong form of differential privacy [55, 57], which we call Distance-

basedDifferential Privacy. Differential privacy [55, 57] is a celebrated property, originally

introduced in the context of databases. Intuitively, it ensures that the removal of a record from

a database does not change the result of a query to that database - modulo some arbitrarily

small value (�). In this sense, the presence in the database of every single record - possibly

revealing some information about some user - is anonymous as no query can reveal the very

existence of that record to any other user (modulo �). Applying this notion in the context of

recommenders would mean that - modulo � - no user v would be able to guess - based on

the recommendations she gets - whether some other user u has some item i in her pro“le,

e.g., whether u has seen some movie i . Such a guarantee, however, might be considered too

weak as nothing would prevent v from guessing that u has in her pro“le some item that is very

similar to i , e.g., that u has seen some movie similar to i .

We strengthen the notion of differential privacy in the context of CF recommenders to guaran-

tee that any user v is not only prevented from guessing whether the pro“le of u contains some

item i , but also whether the pro“le of u contains any item i � within some distance � from i

(say any movie of the same category of i): hence the name Distance-basedDifferential Privacy

(D2P). Our D2P protocol ensures this property.

The basic idea underlying D2P is the following. We build, for each user pro“le, an AlterEgo

pro“le corresponding to it. The latter pro“le is based on the former one where we probabilis-

tically replace some of the items with either related or random ones. This poses of course

79

Chapter 5. Privacy

a challenging technical problem. If the AlterEgo pro“le is too far from the original one, the

recommendation quality is impacted: we lose the bene“ts of collaborative “ltering. If the

pro“le is too close to the original one, privacy remains weak. We demonstrate in this work

that the quality of the D2P recommendation is still good for values of � that can hide items

within a reasonable distance from the original pro“le - what might be considered a reasonable

distance depends on the dataset as we explain later in this work.

To illustrate the basic idea, consider traces from MovieLens and the scenario of Figure 5.1,

with a total of 5 movies. Consider a user who likes Shawshank Redemption (SR). We compute

the distance between the other 4 movies from SR based on their similarity (as shown later in

Equation 5.2). D2P selects movies (for replacement) with distance less than the upper bound

(� = 0, 1 or 2) with high probability (p) and any random movie from the dataset, including

those close to the item to be replaced, with a low probability (1 Š p). If � is set to 0, then D2P

satis“es the classical differential privacy (with � given in Equation 5.3 in §5.1.3). Our results

in §5.1.4 show that even if we consider � as 6.5, we still have a good recommendation quality.

Figure 5.1 …D2P Illustration.

D2P provide formal privacy guarantees in terms of parameters � and � . We also provide a

through empirical evaluation of the privacy-quality trade-off on real-world datasets, namely

MovieLens and Jester. Our results show that D2P provides proved privacy guarantees while

preserving the quality of the recommendation. We demonstrate, for instance, that D2P

achieves 1.5 times the coverage [65] provided by a standard recommender for MovieLens

dataset. Additionally, we show that the privatization overhead in D2P is very small compared

to [132], which makes it appealing for real-time workloads.

Interestingly, D2P is a generic protocol. As we show through our performance results, it

applies well in the context of a user-based and an item-based recommender. D2P can also be

customized for recommendation infrastructures where a KNN computation is deployed either

80

5.1. User-level Privacy

on the cloud [148] or on user machines [27].

5.1.2 D2P: Privacy for Recommenders

Preserving privacy in CF recommenders is challenging. It was shown using the Net”ix Prize

dataset that even anonymizing individual data before releasing it publicly is not enough to

preserve privacy [139]. Even cryptographic approaches do not preclude the possibility of

the output leaking information about the personal input of individuals [181]. The need for

stronger and robust privacy guarantees motivated the emergence of the notion of Differential

Privacy [55, 57, 64]. First introduced in the context of databases, differential privacy provides

quanti“able privacy guarantees. We introduce a stronger form of this notion in the context of

recommenders by accounting for the concept of distance between items.

A. Differential Privacy

Differential Privacy (DP) implies that the output of a given function becomes signi“cantly

more or less likely - based on some parameter � - if the inputs differ in one record. The basic

intuition is that an observer can extract limited information from the output in the absence or

presence of a speci“c record in the database.

De“nition 8 (D IFFERENTIAL PRIVACY). A randomized function R provides � -differential privacy

if for all datasets D1 and D2, differing on at most one element, and all S � Range(R), the

following inequality always holds:

Pr [R (D1) � S]

Pr [R (D2) � S]
� e�

Here, e� denotes exp(�).

B. Distance-based Differential Privacy

With differential privacy applied in its classical form recalled above to a recommender, an

adversary (a curious user) cannot know if one item has been rated by a user. However, the

adversary can know about items similar to the rated ones. Hence, the adversary can infer fairly

accurate information about user preferences without knowing the exact items rated by that

user. In this sense, classical differential privacy is not enough in the context of a recommender.

Our notion of Distance-based Differential Privacy is stronger: it extends DP to recommenders.

We ensure differential privacy for all the items, rated by that user, and ones that are within

a distance of � . The distance parameter (�) determines the closely related items to form the

AlterEgo pro“les , thereby concealing the actual user pro“les and preferences. The distance

parameter also aids in tuning the recommendation quality using the AlterEgopro“les as shown

later in Figure 5.10.

81

Chapter 5. Privacy

It is important to notice that our notion of Distance-based differential privacy is independent

from the underlying recommendation algorithm used. To de“ne this new notion more

precisely, we “rst de“ne the notions of Distance-based Group and Adjacent Pro“le Sets.

De“nition 9 (ELEMENT-WISE GROUP). We denote byEthe set of all elements. For every element

x � E, distance function � : E× E� R+ 	 {0}, and “xed distance threshold � , then GRP� (x) is

de“ned as the collection of all elements x k � Esuch that � (x,xk) � � . More speci“cally:

GRP� (x) = {xk � E|� (x,xk) � � }

We extend this notion of groups to a set of elements where each element in the set has a Group

de“ned by De“nition 9.

De“nition 10 (SET-WISE GROUP). For a set of elementsS, GRP� (S) is the union of all the

groups: GRP� (s) for each element s� S. More speci“cally:

GRP� (S) = 	
s� S

GRP� (s)

We now introduce the notion of Neighboring Groups (used in §5.1.3).

De“nition 11 (N EIGHBORING GROUP). We de“ne the KNN groups (KNN (GRP� (x))) of

GRP� (x) for an element x as the Top Š K groups sorted in decreasing order by the count of

shared elements with GRP� (x).

De“nition 12 (ADJACENT PROFILE SET). An event in the context of D2P is an interaction

between the system and the user when the user provides a rating for some item in the system.

Two pro“le sets D1 and D2 as adjacent pro“le sets when D1 and D2 differ in only one event,

which implies one user-item rating pattern is different in these two pro“le sets.

For any arbitrary recommendation mechanism R, which takes a pro“le set and a speci“c user

as input, the output is the set of items that the algorithm recommends to that speci“c user.

De“nition 13 (DISTANCE-BASED DIFFERENTIAL PRIVACY). For any two adjacent pro“le sets D1

and D2, where u denotes any arbitrary user and S denotes any possible subset of elements, then

any mechanism R is (� , �)-private if the following inequality holds:

Pr [R (D1,u) � GRP� (S)]

Pr [R (D2,u) � GRP� (S)]
� e� (5.1)

The result of the recommendations for two pro“le sets that are close to each other are of the

same order probabilistically with a coef“cient of e� . Later in §5.1.3, we present the mathemati-

82

5.1. User-level Privacy

cal relationship between � and � .1 D2P conceals the pro“les by anonymizing elements within

distance � from the elements of the original pro“le. We get the classic notion of differential

privacy with � as 0. If we increase � then the privacy increases but the quality decreases

slightly as shown later in Figure 5.10(a). In a user-level privacy scheme, more than one event

can differ for a pro“le in two adjacent pro“le sets, whereas in an event-level privacy approach

a single event differs for a pro“le in two adjacent pro“le sets.

5.1.3 D2P-based Recommender

Our D2P-based recommender implements a variant of the general CF recommendation

scheme, based on KNN (K Nearest Neighbors [175]), incorporating the D2P protocol. The

working principle of such a scheme is twofold (Algorithm 1). Firstly, the k most similar

neighbors of any active user are identi“ed in the KNN selection phase. Secondly, the recom-

mendation algorithm is run to suggest items to the users leveraging the pro“les obtained

through the KNN selection.

We consider a recommender scheme that stores user pro“les and item pro“les . The pro“le of a

user u , denoted by Pu , consists of all the items rated (alternatively shared or liked) by u along

with the ratings. In our implementation, we convert the numerical ratings into binary ratings,

a like (1) or a dislike (0). 2 An item pro“le (Pi) consists of users who rated item i along with the

ratings.

D2P relies on the distance between items to create AlterEgo pro“les, as we discuss below. The

recommender in D2P operates in four phases as shown in Figure 5.2.

A. Grouping Phase

In this phase, groups are formed for each item: group Gi for item i contains all the items with

distance less than a prede“ned upper-bound � . In our scheme, we de“ne the distance � i , j

between items i and j as:

� i , j =
1

� (i , j)
Š 1 (5.2)

Here, � (i , j) denotes the cosine similarity between items i and j . The neighboring group Gj

of a group Gi is de“ned as a group with which group Gi shares at least one item. Groups can

also be formed based on item features (e.g. genres, date-of-release in case of movies) where

similarity is measured between the feature vectors of the items. The groups need to be updated

periodically to account for newly added items and ratings. In D2P, the grouping of the items

in the Grouping Phase is performed by the FormGroups function shown in Algorithm 5. An

item can be included in more than one groups, e.g., an action-comedy movie X can be present

1For more details regarding the correctness proofs of our privacy guarantee (De“nition 13), we refer to our
paper [76] for interested readers.

2Binary ratings are considered for the sake of simplicity: this scheme can be generalized to numerical ratings.

83

Chapter 5. Privacy

Figure 5.2 …D2P-based Recommender.

in the group of an action movie as well as in the group of a comedy movie.

Algorithm 5 Grouping : FormGroups(ItemSet): Grouping Phase where ItemSet is the set of all items in
the database
1: Parameter: � � Distance threshold
2: var I temSet; � Denotes set of all items in the network
3: var � ; � Distance Metric
4: for i : item in I temSet do
5: Group i .add (i);
6: for j : item in (I temSet \ i) do
7: S= � (i , j); � Compute Similarity
8: if S> 0 then
9: � i , j = (1/ S) Š 1;

10: if � i , j � � then
11: Group i .add (j);
12: end if
13: end if
14: end for
15: end for
16: return: Group ; � The groups for the items

B. Modi“cation Phase

Privacy breaches occur in any standard user-based CF recommender due to leakage of the

information of neighboring pro“les to any active curious user through recommendations

provided to her. D2P relies on the above-mentioned groups of items, generated in the previous

phase, to create AlterEgo pro“les, and thus avoids to reveal the exact ones. D2P protects

the privacy of users in the modi“cation phase employing two components (conveyed by

Figure 5.3): Selector, which selects the items to replace, and the Pro“ler , which determines by

which items those entries should be replaced. These two components conceal the neighbors•

84

5.1. User-level Privacy

information from the active user, preventing this user to correlate the recommendations to

the neighbors• pro“les. The selectorand pro“ler are responsible for generating the AlterEgo3

pro“les in such a way that the quality is not impacted too much while privacy is preserved.

We now provide details on these two core components.

Figure 5.3 …D2P Modi“cation Phase.

D2P Selector. The selectoris responsible for selecting the items to replace by the pro“ler to

form the AlterEgo pro“les. We select an item with a probability p to replace with any possible

item at random and with a probability 1 Š p to replace with some random item from the

respective group (and neighboring groups) for that respective item. The getSelectProbfunction

mentioned in Algorithms 6 and 7, returns a random real number between 0 and 1. Finally, the

selectoroutputs a set of actual items (GItems) to be replaced by GroupItems and another set of

actual items (RItems) to be replaced by any item from the set of all possible items at random.

Algorithm 6 Selector Algorithm : Selector(Pu) where Pu is the pro“le of user u

1: Parameter: p � Selector Probability
2: var GItems[u] = NULL � Replace with group item
3: var RItems[u] = NULL � Replace with any item
4: for i : item in Pu .getItems() do
5: if getSelectProb() > p then
6: GItems[u] = GItems[u] 	 i ;
7: end if
8: if getSelectProb() � p then
9: RItems[u] = RItems[u] 	 i ;

10: end if
11: end for
12: return: {GItems[u], RItems[u]};

D2P Pro“ler. The pro“ler builds the AlterEgo pro“les which are used in the KNN selection

phase. The pro“ler replaces items in GItems with items from their respective group (and

3The AlterEgo pro“le of a user u denotes the imitation pro“le of u which hides the user preferences by substitut-
ing items in the user pro“le by utilizing D2P.

85

Chapter 5. Privacy

neighboring groups) with a probability 1 Š p� and retains the original item with a probability

p � . We also substitute items in RItems with items from the set of all possible items with a

probability 1 Š p� and preserves the actual ones with a probability p � . The SRSI (Select

Random Set I tem) function in Algorithm 7 selects randomly an item from the respective

groups• items. It selects either from GroupItems (based on a distance metric between items)

for all the items in the set GItems or from the ItemSet for all the items in RItems.

Algorithm 7 Pro“ler Algorithm : Pro“ler (Pu) where Pu is the pro“le of user u

1: Parameter: p � � Pro“ler Probability
2: var {GItems[u], RItems[u]} = Selector(Pu);
3: var Items[u] = GPI(Pu) � Get items from Pu
4: var ItemSet; � Set of all items in the network
5: for i : item in Pu .getItems() do
6: GroupID = Groupi ;
7: NBGroupIDs = Groupi .getNeighbors();
8: Groups = GroupID 	 NBGroupIDs;
9: GroupItems =

G� Groups Group.get(G);

10: if (getSelectProb() > p � & i � GItems[u]) then
11: j = SRSI(i ,GroupItems);
12: end if
13: if (getSelectProb() > p � & i � RItems[u]) then
14: j = SRSI(i , ItemSet);
15: end if
16: Pu = (Pu \ i) 	 j ;
17: end for
18: return: Pu ; � AlterEgo pro“le for user u

Interestingly, D2P can also be applied in recommendation infrastructures where the KNN is

computed by third-party cloud services that act as intermediaries between the recommen-

dation server and users: these servers create the AlterEgo pro“les, preserving privacy with

respect to a server. Moreover, D2P can be applied by the users themselves (in P2P or hybrid

infrastructures [27]), preserving privacy of users against other users.

C. KNN Selection Phase

In user-based CF recommenders, a K-Nearest Neighbors (KNN) [175] algorithm computes the

K most similar users based on some similarity metric (Phase 2 in Algorithm 1). In this phase,

we periodically update the top- Kuser s similar users for an active user as the nei ghbor s using

the AlterEgo pro“les generated in the modi“cation phase.

D. Recommendation Phase

In this “nal phase, the recommendations are computed using those Kuser s neighbors. In

the context of this work, we select the most popular items among the neighbors of u to be

recommended to u (similar to H YREC in §3.1).

86

5.1. User-level Privacy

D2P requires some maintenance operations which are as follows.

€ Pro“le update: When a user u rates an item i , then both Pu and Pi are updated. Pro“les

are updated incrementally as in standard online recommenders.

€ Group update: The static nature of the relationship (similarity) [111, 157] between items

stabilizes the grouping phase. So, the frequency of group updates has little impact on the

quality of the provided recommendations; The groups are updated periodically after every

10 days in our evaluation.

€ Recommendation: The new recommendations are delivered to the active user incremen-

tally whenever an item is rated by the user. In D2P, only the AlterEgopro“les of the KNN are

updated during each recommendation. We take into account the recent ratings provided

by the users to compute recommendations.

E. D2P Privacy Analysis

We now analyze our D2P privacy in the recommender model introduced above.

First, we denote the GroupI tems for an item i in Algorithm 7 as:

G� (i) =
�
	 j � KNN(GRP � (i)) GRP� (j)

�
	 GRP� (i)

As mentioned earlier, the selector selects to replace an element s with any random element

from Ewith a probability p and with any random element from G� (s) with a probability 1 Š p.

So, it “nally outputs two sets of elements GItems and RItems for each user pro“le. For both

of these sets (GItems and RItems), the pro“ler retains the original elements with probability

p � . It replaces elements in GItems with elements from G� (s) and elements in RItems with any

possible element e � Ewith probability 1 Š p� . Here NE is the total number of elements in E.

We now provide the following remark concerning the privacy parameter � from De“nition 13.

(Further details about the following remark along with additional formal proofs for an in-depth

privacy analysis are provided in [76] for interested readers.)

Remark 2 (PRIVACY QUANTIFICATION). For any given distance metric � and any two elements i

and j , we denoteSUB(i , j) the event of substituting element i with j in any mechanism M .

This substitution probability is denoted by Pr (SUB(i , j)). Then, for any mechanism M , we

have � as:

� = ln
�

max
i , j ,k � Eand i �= j

�
Pr (SUB(i ,k))

Pr (SUB(j ,k))

� �

We now compute the substitution probability for any two arbitrary elements s and t , in this

87

Chapter 5. Privacy

abstract recommender model. We get the following:

Pr (SUB(s, t)) =

�
���

���

p � + (1Šp)(1Šp�)
|G� (s)| + p(1Šp�)

N E
if s= t

(1Šp)(1Šp�)
|G� (s)| + p(1Šp�)

N E
if t � G� (s) \ s

p(1Šp�)
N E

if t � G� (s) .

Let � (p,p � ,�)
D2P denote the � for D2P with privacy parameters (p, p � and �) and |G� | denote

min
s� E

(|G� (s)|). Then, using the above substitution probabilities and Remark 2, we get:

� (p,p � ,�)
D2P

= ln(1 +
p � + (1Šp)(1Šp�)

|G� |
p(1Šp�)

N E

) (5.3)

So, when we compute using the original pro“le, we have p � = 1, which implies � (p,1,�)
D2P =
 (no

privacy). When p� = 0 in Equation 5.3, so all the items are replaced with some items. Then we

have � (p,0,�)
D2P as :

� (p,0,�)
D2P

= ln(1 +

(1Šp)
|G� |
p

N E

) = ln(1 +
(1Š p).NE

p.|G� |
) (5.4)

From this � (p,0,�)
D2P , we see that when p increases, the probability to replace an item with a

random item increases leading to more privacy and that is evident from the decreasing value

of � (p,0,�)
D2P in Equation 5.4. When p = 1 in Equation 5.4, D2P achieves � (1,0,�)

D2P
= 0 (perfect privacy).

For larger � , the size of the groups becomes larger, hence privacy increases resulting in smaller

� D2P .

5.1.4 Evaluation

This section presents an exhaustive experimental evaluation of our D2P-based recommender

using two real-world datasets namely Jester and MovieLens. In particular, we compare the

recommendation quality and coverage [65] of D2P with that of a non-private protocol directly

relying on the original user pro“les. We also provide a comparison with [132], one of the

closest to our work. Additionally, we discuss an item-based version of D2P (i- D2P) which we

also implemented and evaluated.

A. Experimental Setup

Evaluation scheme. We measure the recommendation quality as follows: we divide the

dataset into a training set (80% of the dataset trace) and a test set (20%). For each rating in the

test set, a set of top recommendations is selected as the Recommendation Set (RS). We denote

88

5.1. User-level Privacy

the size of the recommendation set as N . More precisely, we evaluate the extent to which the

recommender is able to predict the content of the test set while having computed the KNN on

the training set.

Evaluation metrics. We usePrecision and Recall as our evaluation metrics (§2.7). To get an

estimate of the drop in quality, we measure the decrease in precision for Top-5 recommen-

dations [137] (denoted by Pr@5), as most recommenders follow Top-N recommendations,

e.g: IMDB usesTop-6 list to suggest similar movies, Amazon usesTop-4 list to suggest similar

products and last.fm usesTop-5 list to suggest similar music.

Datasets. We evaluate D2P with two datasets: the MovieLens (ML) dataset [138] and the

Jester one [96]. The ML dataset consists of 100 ,000 (100K) ratings given by 943 users over 1682

movies. The Jester dataset [96] contains 4.1 million ratings of 100 jokes from 73,421 users. We

use a subset of the Jester dataset with around 36K ratings given by 500 users over 100 jokes.

The Jester subset consists of 500 users selected uniformly at random among all users who

rated at least 50 jokes. D2P relies on the item-replacement technique, so the quality of the

recommendation provided by D2P depends on how much two items are connected in the

dataset. We thus consider datasets with diverse characteristics to evaluate D2P.

Diversity: We created 4 diverse datasets from the ML 100 K dataset to cover a variety of charac-

teristics (typically sparsity). The ratings are stored in a user-item matrix where the rows of the

matrix contain the user-ids and the columns contain the item-ids. Then, the rows are sorted

based on the total number of ratings given by the users and the columns are sorted based on

the total number of times the items have been rated by different users. The partitioning of the

dataset is shown in Figure 5.4 as users× items matrix.

Figure 5.4 …ML1 Dataset Partitions based on rating density.

Characterization. To evaluate D2P in different settings, we characterize the datasets accord-

ing to rating density metric. The rating density (RD) is the ratio of the number of ratings given

by the users in the dataset to the total number of ratings possibly given (number of users

multiplied by the number of items).

Table 5.1 depicts the rating densities of different datasets.

89

Chapter 5. Privacy

Dataset #Users #Items Ratings RD(%)
Jester 500 100 36000 71.01
ML 1 940 1680 99647 6.31
MLV1 470 840 76196 19.3
MLV2 470 840 16187 4.1
MLV3 470 840 6317 1.6
MLV4 470 840 750 0.19

Table 5.1 …Datasets characteristics.

B. Impact of Rating Density

Figure 5.5 shows the recall measured with varying size of the recommendation set in D2P

with parameters p = 0.5, p � = 0.5 and � = 1. We observe that higher rating density results

in better recall using D2P. As shown in Table 5.1, the rating density of the MovieLens 100K

dataset is 6.31% and that of its 4 subsets varies with a maximum of 19.3% and minimum of

about 0.19%. From Figure 5.5, we observe that D2P is not suitable for datasets with too low

rating densities, like MLV3 and MLV4, as these result in lower recal l . However, we observe,

for MLV2, D2P provides slightly better recall compared to a more dense dataset (like MLV1).

This happens because the number of items relevant to a user (in the test set) is less in MLV2

(more sparse) compared to MLV1 (less sparse). However, for more sparse datasets like MLV3

or MLV4, collaborative “ltering is not effective because the ratings are insuf“cient to identify

similarities in user interests.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10 15 20 25 30 35 40 45 50

R
ec

al
l(N

)

N

ML1
MLV1
MLV2

MLV3
MLV4
Jester

Figure 5.5 …Recall@N with varying Dataset Characteristics.

C. Privacy-Quality Trade-off

Effect of pro“ler probability (p �). We vary the value of parameter p � from the Pro“ler al-

gorithm from a minimum of 0 to a maximum of 1 (no privacy) with other parameters � = 1,

p = 0.5.

90

5.1. User-level Privacy

MovieLens. Figure 5.6 demonstrates the performance of the D2P over several values of p � on

the MovieLens dataset. In Figure 5.6(a), we observe that the quality drops only by 3 .24%, in

terms of Pr@5, when compared to a non-private approach (p � = 1).

Jester. Figure 5.7 shows the results of the performance of the D2P over several values of p �

on Jester workload. In Figure 5.7(a), we observe that the quality drops only by 2 .9% in terms

of Pr@5. Interestingly, we observe in Figure 5.7(b) that the recall of a non-private approach

(p � = 1) is very similar to the one achieved by D2P (e.g, at N = 20, the recall values differ by

0.02 only). This observation also means that D2P provides good recommendation quality

in datasets with higher rating densities. The higher the pro“ler probability, the better the

recommendation quality.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20

P
re

ci
si

on
(N

)

N

D2P p*=0.0
D2P p*=0.2

D2P p*=0.6
D2P p*=1.0

(a) Precision@N Comparison.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16 18 20

R
ec

al
l(N

)

N

D2P p*=0.0
D2P p*=0.2

D2P p*=0.6
D2P p*=1.0

(b) Recall@N Comparison.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Recall

D2P p*=0.0
D2P p*=0.2

D2P p*=0.6
D2P p*=1.0

(c) Precision-Recall Comparison.

Figure 5.6 …Effect of Pro“ler Probability (p �) on Quality for the ML Dataset (User-based CF).

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0 5 10 15 20

P
re

ci
si

on
(N

)

N

D2P p*=0.0
D2P p*=0.2

D2P p*=0.6
D2P p*=1.0

(a) Precision@N Comparison.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10 12 14 16 18 20

R
ec

al
l(N

)

N

D2P p*=0.0
D2P p*=0.2

D2P p*=0.6
D2P p*=1.0

(b) Recall@N Comparison.

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
re

ci
si

on

Recall

D2P p*=0.0
D2P p*=0.22

D2P p*=0.6
D2P p*=1.0

(c) Precision-Recall Comparison.

Figure 5.7 …Effect of Pro“ler Probability (p �) on Quality for the Jester Dataset (User-based CF).

Effect of selector probability (p). Here, we vary the probability p from the Selectoralgorithm

from a minimum of 0 to a maximum of 0.5 (with � = 1, p � = 0).

MovieLens. Figure 5.8 demonstrates the performance of D2P over several values of p on

MovieLens.

Jester.Figure 5.9 shows the results of the performance of D2P over several values of p on Jester

dataset. The lower the selector probability, the better the recommendation quality.

Effect of distance metric (�). We also analyzed the effect of varying the level of privacy using

the distance parameter: � . We observed the quality of recommendations provided by D2P

91

Chapter 5. Privacy

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 5 10 15 20

P
re

ci
si

on
(N

)

N

D2P p=0.0
D2P p=0.2

D2P p=0.5

(a) Precision@N Comparison.

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6

 0 2 4 6 8 10 12 14 16 18 20
R

ec
al

l(N
)

N

D2P p=0.0
D2P p=0.2

D2P p=0.5

(b) Recall@N Comparison.

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

P
re

ci
si

on

Recall

D2P p=0.0
D2P p=0.2

D2P p=0.5

(c) Precision-Recall Comparison.

Figure 5.8 …Effect of Selector Probability (p) on Quality for the ML Dataset (User-based CF).

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0 5 10 15 20

P
re

ci
si

on
(N

)

N

D2P p=0.0
D2P p=0.2

D2P p=0.5

(a) Precision@N Comparison.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10 12 14 16 18 20

R
ec

al
l(N

)

N

D2P p=0.0
D2P p=0.2

D2P p=0.5

(b) Recall@N Comparison.

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
re

ci
si

on

Recall

D2P p=0.0
D2P p=0.2

D2P p=0.5

(c) Precision-Recall Comparison.

Figure 5.9 …Effect of Selector Probability (p) on Quality for the Jester Dataset (User-based CF).

with several values of � (with p = 0.5, p � = 0). The results of these experiments are given in

Figure 5.10. We observe that a lower � provides better quality because items gets replaced by

closer items for lower � .

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
re

ci
si

on

Recall

D2P (�h=1)
D2P (�h=5)

D2P (�h=10)

(a) Precision-Recall Comparison.

 0.4
 0.42
 0.44
 0.46
 0.48

 0.5
 0.52
 0.54
 0.56
 0.58

 0.6

 10 12 14 16 18 20

R
ec

al
l(N

)

N

D2P (�h=1)
D2P (�h=5)

D2P (�h=10)

(b) Recall@N Comparison.

Figure 5.10 …Effect of Distance Metric (�) on Quality for the ML Dataset (User-based CF).

D. Parameter Selection

The distance parameter � is used to protect user•s privacy. We now illustrate its usage on

two examples. The “rst one is depicted in Figure 5.11. We consider 3 categories (A,B,C), 3

users (U1,U2,U3) and 5 movies (I 1, I 2, I 3, I 4, I 5). We assume that each user wants to hide some

92

5.1. User-level Privacy

speci“c category. To hide a Category A for user U1, we anonymize it with at least one different

Category (B or C). We can achieve this by computing the minimum distance for items from

Category A in U1•s pro“le (I 1,I 3) to items in different categories. For item I1, we get the distance

is 2.8 to I 2 in Category B and 3 to I 4 in Category C. So, the minimum distance for I 1 is 2.8 to I 2

in Category B. We get the same for I 3 in U1•s pro“le. Now, to satisfy the distance for both of

these items, we choose the maximum among them which is 2.8. This gives us the � U1 to hide

Category A for U1. We do the same for users U2 and U3. Finally, to set the � for the system, we

get the maximum from all users (which is 2.8 in the example).

Figure 5.11 …Distance for Personal Choice.

The distance parameter can be also selected as the average distance for each user pro“le (� k).

Here, � k for user Uk is computed as the average value of the distance between all pairs of

items rated by user Uk . Figure 5.12 provides an intuition for this distance parameter. For the

datasets used for evaluation, we get � ML 1 = 6.5, � Jester= 1.5.

Figure 5.12 …Distance for Average.

To demonstrate the degradation of � based on parameters, p and p� , we “x the distance

93

Chapter 5. Privacy

parameter (� ML 1 = 6.5, � Jester = 1.5). Figure 5.13 demonstrates the degradation of � based

on the privacy parameters (p, p �). For MovieLens, we obtain good privacy (� = 2.9) and good

quality (F1-score=8.5%) with p =0.7, p � =0.03, � =6.5. For Jester, we obtain good privacy (� =

0.97) and good quality (F1-score=23.1%) with p =0.8, p � =0.01, � =1.5.

(a) Privacy Parameters for MovieLens (ML1). (b) Privacy Parameters for Jester.

Figure 5.13 …Privacy Parameters Comparison.

E. Coverage Evaluation

Beyond accuracy, there is a variety of other metrics that should be used to evaluate a recom-

mender [65, 85]. The Coverageof a recommender is a metric that captures the domain of items

over which it can make recommendations. In particular, we evaluate Catalog Coverage[65]

of D2P and compare it to the coverage provided by a standard non-private recommender.

Consider a set of items I j
K contained in the Top-K list during the j th recommendation instance.

Also, denote the total number of items by N . Hence, Catalog Coverageafter M recommenda-

tion instances can be mathematically represented as follows:

Catalog Cover age=
|	 j =1...M I j

K |
N

Figure 5.14 demonstrates the Catalog Coveragefor D2P and compares it with the coverage

in a standard recommender for MovieLens. We observe that D2P provides 1.5 times better

coverage than a standard recommender when the size of recommendation set is 1.

F. Overhead Evaluation

We evaluate here the computational overhead of D2P•s privacy and compare it to the

one of [132] which we denote as DP� . We call the computations performed for every

recommendation as Online computations and the computations done periodically as Of”ine

computations. We compare the privacy overhead with the Recommendation Latency (RL) in

D2P. Additionally, we compare the privacy overhead in D2P with the privacy overhead in

DP� . As shown in Table 5.2, the overhead for the of”ine computations in D2P is around 26.4

times smaller than that of [132] for MovieLens and around 4.5 times smaller for Jester. All

94

5.1. User-level Privacy

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20

C
at

al
og

 c
ov

er
ag

e
(%

)

Size of recommendation set

D2P Standard

Figure 5.14 …Catalog Coverage Comparison.

of”ine computations are parallelised on a 8-core machine.

Datasets D2P Overhead DP� Overhead
RL Online Of”ine Of”ine

ML 1 196ms 32ms 4.54s 120s
Jester 24ms 12ms 162ms 740ms

Table 5.2 …Overhead of Privacy.

G. Item-based D2P

D2P can be used with any collaborative “ltering technique. We evaluate D2P in another

context to illustrate the genericity of D2P. We implemented an item-based version of D2P:

i- D2P. In i- D2P, the grouping phase is responsible for creating groups of similar usersbased

on the distance metric � . The selector and pro“ler components in i- D2P create AlterReplica

pro“les of the items using the same approach as in D2P. Finally, the item recommendations

are computed using these AlterReplica pro“les during the recommendation phase in i- D2P.

Figure 5.15 conveys the quality of recommendations provided by i- D2P for varying values

of parameter p (with � = 1, p � = 0). Figure 5.16 conveys the quality of recommendations

provided by i- D2P for several values of parameter p � (with � = 1, p = 0.5). In Figure 5.16(a),

we observe that the quality drops by 1 .89% in terms of Pr@5 for the ML dataset. This shows

that D2P also provides good quality of recommendations in item-based CF recommenders.

5.1.5 Related Work

The notion of differential privacy was introduced by Cynthia Dwork [55, 57, 64]. Most of the

research focused on theoretical aspects and provided feasibility and infeasibility results [100].

In this work, we extend differential privacy to the context of recommenders. We appended

95

Chapter 5. Privacy

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 5 10 15 20

P
re

ci
si

on
(N

)

N

D2P p=0.0
D2P p=0.2

D2P p=0.5

(a) Precision@N Comparison.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10 12 14 16 18 20
R

ec
al

l(N
)

N

D2P p=0.0
D2P p=0.2

D2P p=0.5

(b) Recall@N Comparison.

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
re

ci
si

on

Recall

D2P p=0.0
D2P p=0.2

D2P p=0.5

(c) Precision-Recall Comparison.

Figure 5.15 …Effect of Selector Probability (p) on Quality for the ML Dataset (Item-based CF).

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 2 4 6 8 10 12 14 16 18 20

P
re

ci
si

on
(N

)

N

D2P p*=0.0
D2P p*=0.2

D2P p*=0.6
D2P p*=1.0

(a) Precision@N Comparison.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10 12 14 16 18 20

R
ec

al
l(N

)

N

D2P p*=0.0
D2P p*=0.2

D2P p*=0.6
D2P p*=1.0

(b) Recall@N Comparison.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

D2P p*=0.0
D2P p*=0.2

D2P p*=0.6
D2P p*=1.0

(c) Precision-Recall Comparison.

Figure 5.16 …Effect of Pro“ler Probability (p �) on Quality for the ML Dataset (Item-based CF).

the original de“nition with a distance metric (�) and presented an effective way to achieve it

through our D2P protocol.

Polat et. al. [146] proposed a randomized perturbation technique to protect user•s privacy.

Zhang et. al. [194] showed however that a considerable amount of information can be derived

from randomly perturbed ratings. Instead of adding perturbations to user pro“les, D2P uses

the AlterEgo pro“les which are created based on a distance threshold (�). Privacy breaches

(compromised user identities) occur when e-commerce sites release their databases to third-

parties for data-mining or statistical reporting [1]. The fact that with D2P, the third-parties

have only access to the AlterEgo pro“les alleviates the risk of revealing user•s identity to those

third parties.

In fact, although, there had been a lot of research work related to privacy in online recom-

menders [102, 127] and differential privacy [55, 57, 64], only a few of these combined these

two notions [93, 132]. McSherry et. al. designed a relaxed version of differential privacy in the

context of recommenders [132]. In short, the idea is to add to the rating s - a limited amount

of - Gaussian noise. Our notion of distance-based differential privacy provides a stronger

form of classical differential privacy in the context of recommender systems. In our case, we

replaced items in users pro“les with others at some distance. Other differences between the

two approaches include the way dynamic updates are addressed as well as the underlying

overhead. McSherry et. al. does not consider updates to the covariance matrix, and hence is

96

5.1. User-level Privacy

not applicable to a dynamic system without jeopardizing the privacy guarantee. The AlterEgo

pro“les used in D2P can grow naturally without the need to recompute from scratch like

in [132]. Also, the underlying overhead in D2P is lower. As shown in Table 4, the overhead in

D2P is around 26.4 times smaller than that of [132] for MovieLens and around 4.5 times smaller

for Jester. The additional overhead in [132] stems from the compute-intensive preprocessing

steps: (i) removal of per-movie global effects and (ii) centering and clamping process.

5.1.6 Conclusion

While personalization has become crucial on the web, it raises however privacy concerns

as its quality relies on leveraging user pro“les. In this work, we present an extension of

the notion of differential privacy to the context of recommenders: systems that personalize

recommendations based on similarities between users. We introduced D2P which ensures

this strong form of privacy. D2P addresses the trade-off between privacy and quality of

recommendation: it can be applied to any collaborative recommender.

The main intuition behind D2P is to rely on a distance metric between items so that groups

of similar items can be identi“ed. D2P leverages this notion of group to generate, from real

user pro“les, alternative ones, called AlterEgo pro“les. These represent differentially private

versions of the exact pro“les. Such pro“les are then used to compute the KNN and provide

recommendations. We analyze D2P and evaluate experimentally the impact of the privacy

mechanism on the quality of the recommendation in the context of two datasets: MovieLens

and Jester. Our results show that privacy can be ensured without signi“cantly impacting

the quality of the recommendation. Our experiments demonstrate that D2P can provide

1.5 times better coverage than a standard recommender for MovieLens. Additionally, D2P

incurs a small privatization overhead compared to other privacy-preserving system like [132]

which makes it comparatively more practical for dealing with real-time workloads. D2P

could be further extended to other “ltering techniques that rely on user pro“les for their

recommendation computations. It is also possible to incorporate a hybrid approach in D2P

where the item groups would be formed using content-based “ltering [182] while the actual

recommendations would be made based on collaborative “ltering techniques.

One limitation of D2P stems from the fact that the users trust the service-providers with

the original user pro“les. Privacy could hence be compromised by online spying on users•

activities [71]. It would be interesting to study the impact on privacy and recommendation

quality of probabilistically altering or encrypting user rating [4]: the goal would be to preserve

the pro“le anonymity even from service-providers. Combining such techniques with D2P

would result in a recommender which is robust to malicious users (user-level privacy) and

even untrusted service-providers engaged in spying activities (system-level privacy).

97

Chapter 5. Privacy

5.2 System-level Privacy

Recall that a service provider collects data from users in the form of pro“les to compute

neighbors and recommendations. This, however, opens major system-level privacy concerns

in the sense that the pro“le of any user (say Alice) might get leaked from service providers [156].

E-commerce sites often release their databases to third-parties for data mining, intrusion

detection and statistical reporting [150].

We designed X-REC, a novel recommender which ensures the privacy of users against the ser-

vice providers (system-level privacy) or other users (user-level privacy) with negligible increase

of latency in providing recommendations to end-users, while preserving recommendation

quality. X-R EC builds over two underlying services: a homomorphic encryption scheme over

integers to encrypt user pro“les, called X-HE, and a neighborhood selection protocol over the

encrypted pro“les, called X-NN. We provide ef“cient implementations of both these services.

X-NN operates over data encrypted under X-HE and selects nearest neighbors if their similar-

ities pass a given similarity threshold (T). It emulates the truth tables of the two logical gates

XOR and AND with integer operations and thus circumvents the necessity of FHE. We employ

a uniform user sampling technique which, we show, guarantees differential privacy [56] in the

context of a recommender. Unlike in recent privacy-preserving systems [18, 33, 87, 62] where

users are required to be logged-in, X-R EC does not restrict the dynamicity 4 of the system. For

interested readers, a more detailed information regarding how X-R EC provides system-level

privacy is provided in the following very interesting work [77].

4Users can log-in/log-out (resp. join/leave) at any time.

98

PART IV

Heterogeneity

As of today, most recommenders are homogeneousin the sense that they utilize one speci“c

application at a time. In short, Alice will only get recommended a movie if she has been rating

movies. But what if she would like to get recommendations for a book even though she rated

only movies? Clearly, the multiplicity of domains (movies, books, songs) is calling for heteroge-

neousrecommenders that could utilize ratings for one domain to provide recommendations

in another one. This chapter of the thesis presents novel heterogeneous recommenders based

on the preferences of users across various domains.

€ We “rst present a heterogeneous recommender system (X-M AP) which enables recom-

mendations across multiple domains based on user-item interactions (e.g., ratings) in

§6.1.

€ We also brie”y explore the possibility of content-enabled heterogeneous recommendations

in §6.2.

6 Heterogeneous Recommendations

6.1 Heterogeneous Recommendations with Alter-Egos

6.1.1 Overview

The next level to personalization is heterogeneity, namely personalization across multiple do-

mains [44]. Heterogeneous preferences on the web, i.e., preferences from multiple application

domains, should be leveraged to improve personalization, not only for users who are new to

a given domain (i.e, cold-start situation), but also when the data is sparse[2] (e.g, very few

ratings per user). In fact, if a user, say Alice, likes the Interstellar movie, then a heterogeneous

personalization scheme could actually recommend her books such as The Forever War by Joe

Haldeman. To get an intuition of how such recommendation can be made by going beyond

standard schemes, consider the scenario depicted in Figure 6.1(a) where “ve users rated at

most one book. Indeed, according to a standard metric (adjusted cosine [157]), the similarity

between Interstellar and The Forever War is 0, for there are no common users who rated both.

However, a closer look reveals the following meta-path 1 between these two heterogeneous

items: Interstellar
Bob
ŠŠŠ� Inception

Ceci l i a
ŠŠŠŠŠ� The Forever War.

(a) A simple scenario depicting heterogeneity across two
domains.

 0

 1

 2

 3

 4

 5

 6

 7

N
um

be
r

of
 s

im
ila

rit
ie

s
(in

 M
ill

io
ns

)

Standard

Meta-path-based

(b) The effect of meta-paths in computing heteroge-
neous similarities.

Figure 6.1 …Heterogeneous recommendation using meta-paths.

1We call meta-path any path involving heterogeneous items, e.g., movies and books.

101

Chapter 6. Heterogeneous Recommendations

Figure 6.1(b) compares the number of heterogeneous similarities that could be exhibited with

or without using meta-paths on real-world traces from Amazon (using two domains: movies

and books). Meta-path-based heterogeneous similarities clearly lead to better recommenda-

tion quality as we show later in §6.1.6.

A. Challenges

While appealing, building a practical heterogeneous meta-path-based recommender raises

several technical challenges.

Meta-path-based similarity. Consider an undirected graph G where the vertices represent

the items and each edge ei j is associated with a weight si j , representing the similarity between

items i and j . A meta-path in G can be de“ned as a sequence of adjacent vertices (movies

or books) connected by edges in G. Computing a heterogeneoussimilarity based on these

meta-paths is, however, not straight-forward. Such similarity could be affected by factors like

the number of users involved, directly or indirectly (in the meta-paths), as well as the strength

of the ties between item-pairs connected by (shorter) meta-paths. The challenge here is to

capture these factors in a way that improves the accuracy of heterogeneous similarities.

Scalability. Clearly, the computational complexity increases many-fold while computing

meta-path-based similarities. Computing all possible meta-paths on a large-scale graph with

millions of vertices (heterogeneous items) can quickly become computationally intractable.

Privacy. Heterogeneous recommendations also raise privacy concerns. For example, the new

transitive link between Alice and Cecilia (Figure 6.1(a)) provides the opportunity for a curious

user, say Alice, to discover the straddlers: people like Bob or Cecilia who connect multiple

domains. Alice can actually determine the item(s) that allows her to get this recommendation

by pretending to be another user and incrementally rating items until she gets the recommen-

dation. This is similar to the privacy risk in statistical database queries where inferences can

be derived from combinations of queries [149]. As pointed out in [150], such straddlers are

at a privacy risk, and information about their preferences could be used in conjunction with

other data sources to uncover identities and reveal personal details. This can be particularly

problematic across different applications like Net”ix (movies) and Last.fm (music).

Recent heterogeneous recommenders [164, 44], extending classical homogeneous recommen-

dation schemes across domains, are neither scalable nor private, and hence are not suitable

for applications involving millions of users and items.

B. Contributions

In this work, we present a recommender we call X-M AP: Cross-domain personalization sys-

tem. X-M AP fully utilizes the overlap among users across multiple domains, as depicted in

Figure 6.1(a). This overlap is often derived from pro“les maintained by users across various

102

6.1. Heterogeneous Recommendations with Alter-Egos

web applications along with interconnection mechanisms for cross-system interoperabil-

ity [36] and cross-system user identi“cation [35]. At the heart of X-M AP lie several novel

ideas.

€ We introduce a novel similarity metric, X-S IM , which computes a meta-path-based transi-

tive closure of inter-item similarities across several domains. X-S IM involves adaptations,

to the heterogeneous case, of classical signi“cance weighting [84] (to account for the

number of users involved in a meta-path) and path length [150] (to capture the effect of

meta-path lengths) schemes.

€ We introduce the notion of AlterEgos, namely arti“cial pro“les (created using X-S IM), of

users even in domains where they have no or very little activity yet. We generate an AlterEgo

pro“le (of Alice) in a target domain leveraging an item-to-item mapping from a source

domain (e.g., movies) to the target domain (e.g., books). AlterEgos enable to integrate any

standard recommendation feature in the target domain and preserve, for example, the

temporal behavior of users [53].

€ We use an effective layer-based pruning technique for selecting meta-paths. AlterEgos,

acting as a caching mechanism, alleviate computational intractability by only using the

information from the target domain. Combined with our layer-based pruning technique,

AlterEgos enable X-M AP to scale almost linearly with the number of machines (a major re-

quirement for the deployment of a recommender in a practical environment). We illustrate

this scalability through our implementation of X-M AP on top of Apache Spark [189].

€ We introduce an obfuscation mechanism, based on meta-path-based similarities, to guar-

antee differentially private AlterEgos. We adapt, in addition, a probabilistic technique,

inspired by Zhu et al. [199, 200], to protect the privacy of users in the target domain.

Interestingly, we show that, despite these privacy techniques, X-M AP outperforms the rec-

ommendation accuracy of alternative non-private heterogeneous approaches [14, 20, 44].

€ We deployed an online recommendation platform, using X-S IM on a database of 660K

items, to recommend books and movies to users based on their search queries at:

http://x-map.work/

Books like The Da Vinci Code are indeed recommended when the search query is the Angels

& Demons (2009) movie. Currently, we support Chrome, Safari and Firefox browsers.

6.1.2 Heterogeneous Recommendation Problem

Without loss of generality, we formulate the problem using two domains, referred to as the

sourcedomain (DS) and the target domain (DT). We use superscript notations S and T to

differentiate the source and the target domains. We assume that users in US and UT overlap,

but I S and I T have no common items. This captures the most common heterogeneous

personalization scenario in e-commerce companies such as Amazon or eBay nowadays. The

heterogeneous recommendation problem can then be stated as follows.

Problem 1. Given any source domain DS and any target domain DT , the heterogeneous rec-

103

Chapter 6. Heterogeneous Recommendations

ommendation problem consists in recommending items in I T to users in US based on the

preferences ofUS for I S (ratings in the source domain), UT for I T (ratings in the target domain)

and US � UT for I S 	 I T (overlapping ratings).

In other words, we aim to recommend items in I T to a user who rated a few items (sparsity) or

no items (cold-start) in I T . Figure 6.1(a) conveys the scenario that illustrates this problem.

The goal is to recommend new relevant items from DT (e.g., books) either to Alice who never

rated any book (cold-start) or to Bob who rated only a single book (sparsity). Both the users

rated items in DS (e.g., movies).

6.1.3 X-SIM : Cross-domain similarity

We now present X-S IM , our novel similarity metric designed for heterogeneous recommenda-

tion along with our meta-path pruning technique.

A. Baseline Similarity Graph

We “rst build a baseline similarity graph where the vertices are the items and the edges are

weighted by the similarities. We could use here any classical item-item similarity metric like

Cosine, Pearson, or Adjusted-cosine [157] for baseline similarity computations. We choose to

use adjusted-cosine for it is considered the most effective [157]:

sac(i , j) =

�
u � Ui � Uj

(r u ,i Š ¯r u)(r u, j Š ¯r u)
� �

u � Ui
(r u ,i Š ¯r u)2

� �
u � Uj

(r u , j Š ¯r u)2
(6.1)

In this “rst step, we compute the (baseline) similarities by integrating both DS and DT as a

single domain. We denote by Gac
2 the resulting similarity graph in which any two items are

connected if they have common users. As shown in Figure 6.1(b), the limitation of adjusted-

cosine similarity leads to sparse connections in Gac. We address this sparsity issue of Gac

precisely by extending it with meta-paths connecting both domains.

Clearly, a brute-force scheme considering all possible meta-paths would be computationally

intractable and not scalable. Assuming m items in the database, the time complexity of such

a brute-force scheme (computing similarity for every pair of items) would be O(m 2), which

is not suitable for big datasets like the Amazon one with millions of items. X-M AP uses a

layer-based technique to prune the number of meta-paths, thereby leading to O(km) � O(m)

time complexity where k � m .

2Here ac denotes adjusted cosine.

104

6.1. Heterogeneous Recommendations with Alter-Egos

Figure 6.2 …Layer-based pruning in X-M AP.

B. Layer-based Pruning

Based on the baseline similarity graph, we determine what we call bridge items, namely any

item i in a domain D which connects to some item j in another domain D�. Both i and j are

bridge items in this case. These bridge items are ascertained based on the overlapping users

from both domains. We accordingly call any item that is not a bridge item a non-bridge item .

X-M AP•s pruning technique partitions the items from DS and DT into six possible layers,

based on their connections with other items, as we explain below. In turn, the items in each

domain, say D, are divided into three layers (Figure 6.2).

€ BB-layer. The (Bridge, Bridge)-layer consists of the bridge items of D connected to the

bridge items of another domain.

€ NB-layer. The (Non-bridge, Bridge)-layer consists of the non-bridge items of D which are

connected to bridge items of D.

€ NN-layer. The (Non-bridge, Non-bridge)-layer consists of the non-bridge items of D which

are not connected to other bridge items.

X-M AP then considers only the paths crossing different layers, which we call meta-paths . Since

we use ak-nearest neighbor method in X-M AP, each item i in layer l is connected to the top- k

items from every neighboring layer l � based on the item-item similarities. We describe our

layered meta-path selection in more details in §6.1.5.

C. X-SIM : A Novel Similarity Metric

Consider any two items i and j . We denote by Ui � ī the set of users who rated item i higher

than or equal to the average rating for i over all the users in the database who rated i . We

also denote by Ui < ī as the set of users who rated item i lower than the average rating for i .

Additionally, we denote by |Ui | the cardinality of the set Ui .

De“nition 14 (WEIGHTED SIGNIFICANCE). Given any pair of items i and j , we de“ne weighted

signi“cance (Si , j) as the number of users who mutually like or dislike this given pair. Formally,

105

Chapter 6. Heterogeneous Recommendations

we de“ne the weighted signi“cance (S i , j) between i and j as follows.

Si , j =
�
�
�Ui � ī � Uj � j̄

�
�
�

	
� �
Mutual like

+
�
�
�Ui < ī � Uj < j̄

�
�
�

	
� �
Mutual dislike

Intuitively, a higher signi“cance value implies higher importance of the similarity value. For

example, a similarity value of 0.5 between an item-pair (i , j) with Si , j = 1000 is more signi“cant

than a similarity value of 0.5 between an item-pair (i ,k) with Si ,k = 1 (for the latter may be a

result of pure coincidence). 3

De“nition 15 (M ETA-PATH). Given G and its six corresponding layers of items, a meta-path

consists of at most one item from each layer.

For every meta-path p = i 1 � i 2 . . . � i k , we compute the meta-path-based similarity sp ,

weighted by its signi“cance value, as follows.

sp =

� t =kŠ1
t =1 Si t ,i t +1 · sac(i t , i t +1)

� t =kŠ1
t =1 Si t ,i t +1

For each pair of items (i , j) from different domains, if i , j are not connected directly, we

aggregate the path similarities of all meta-paths between i and j . Due to the different lengths

and similarities for meta-paths, we give different weights to different meta-paths. Shorter

meta-paths produce better similarities in recommenders [150, 176] and hence are preferred

over longer ones. We now explain the scheme behind assigning these weights and thereby

computing the X-S IM values.

De“nition 16 (N ORMALIZED WEIGHTED SIGNIFICANCE). Given any pair of items i and j , we

de“ne normalized weighted signi“cance (�Si , j) between i and j as their signi“cance value

weighted by the inverse of number of users rating either i or j . Formally, we denote normalized

weighted signi“cance as follows.
�Si , j =

Si , j
�
�Ui 	 Uj

�
�

Next, we determine the notion of path certainty (cp) of a meta-path to take into account the

factor of varying path lengths. Path certainty measures how good a path is for the similarity

computations.

De“nition 17 (PATH CERTAINTY). Given any meta-path (p = i 1 � i 2 . . . � i k), we compute the

path certainty (cp) of the meta-path p as the product of the normalized weighted signi“cance

between each consecutive pair of items in the path p. Formally, we de“ne the path certainty as

follows.

cp =
t =kŠ1�

t =1

�Si t ,i t +1

3This concept is analogous to statistical signi“cance used in hypothesis testing.

106

6.1. Heterogeneous Recommendations with Alter-Egos

It is important to note that the product of the normalized weighted signi“cance values inher-

ently incorporates the path length in our path certainty metric. Hence, shorter paths have

higher weights compared to longer ones. Finally, we de“ne our X-S IM metric as follows.

De“nition 18 (X-SIM). Let P(i , j) denote the set of all meta-paths between items i and j . We

de“ne the X-SIM for the item pair (i,j) as the path similarity weighted by the path certainty for

all paths in P (i , j). Formally, we de“ne X-SIM for any given pair of items i and j as follows.

X-SIM (i , j) =

�

p� P(i , j)
cp · sp

�

p� P(i , j)
cp

Here, X-SIM (i , j) denotes the meta-path-based heterogeneous similarity between any two

items i and j . X-SIM is then utilized to build the arti“cial pro“les for users (AlterEgos).

Note that a trivial transitive closure over similarities would not take into account the above-

mentioned factors, which would in turn impact the heterogeneous similarities and conse-

quently the recommendation quality.

6.1.4 X-M AP: Cross-domain recommender

We now show how to leverage our X-S IM metric to generate arti“cial (AlterEgo) pro“les of

users in domains where these users might not have any activity yet. For pedagogical reasons,

we “rst present the non-private (NX-M AP) scheme, and then the extensions needed for the

private (X-M AP) one.

A. Similarity Computation Phase

In this phase, X-M AP treats both the source and target domains as a single aggregated do-

main in order to compute pairwise item similarities, called baseline similarities. Basically,

X-M AP computes the adjusted cosine similarities between the items in I S 	 I T based on the

preferences of the users in US 	 UT for these items. We distinguish the following two types of

similarities:

(a) Homogeneous similarities are computed between items in the same domain. Such similari-

ties are used for intra-domain extensions in §6.1.5.

(b) Heterogeneous similarities are computed between items in different domains. Such simi-

larities are used for cross-domain extensions in §6.1.5.

B. X-SIM Computation Phase

After the computation of the baseline item-item similarities, X-M AP uses the X-SIM metric

within a single domain to extend the connections between the bridge items of a domain and

other items within the same domain. Then, X-M AP uses the X-SIM metric to extend the simi-

107

Chapter 6. Heterogeneous Recommendations

larities between items across domains (we come back to this in more details in §6.1.5). After

the heterogeneous similarity extension, each item in source domain (DS) has a corresponding

set of items in target domain (DT) with quanti“ed (positive or negative) X-S IM values.

C. AlterEgo Generation Phase

In this phase, the pro“le of Alice (in DS) is mapped to her AlterEgo pro“le (in DT) as shown in

Figure 6.3. We “rst present the non-private case, and then discuss the private one.

NX-M AP AlterEgo generation. The non-private mapping is performed in two steps.

Replacement selection. In this step, for every item i in DS, we determine the replacement

item j in DT . Here, j is the heterogeneous item which is most similar to i based on the

heterogeneous similarities computed using X-S IM .

AlterEgo pro“le construction. We then replace every item rated by Alice in DS with the most

similar item in DT computed in the previous step. This item replacement induces the AlterEgo

pro“le 4 of Alice in the target domain as shown in Figure 6.3.

This AlterEgo pro“le of Alice is the mapped pro“le of Alice from the source domain to the

target domain. Note that the AlterEgo pro“les could be incrementally updated to avoid

re-computations in X-M AP.

Figure 6.3 …Alice•s AlterEgo pro“le (in target domain) mapped from her original pro“le (in
source domain).

X-M AP AlterEgo generation. We now explain how we achieve the differentially private map-

ping.

Private replacement selection. We apply an obfuscation mechanism, depending on the meta-

path-based heterogeneous similarities, to design our differentially private replacement selec-

tion technique (Algorithm 8). Note that standard differentially private techniques consisting,

4If Alice has rated a few items in DT , then the mapped pro“le is appended to her original pro“le in DT to build
her AlterEgo pro“le.

108

6.1. Heterogeneous Recommendations with Alter-Egos

for example, in adding noise based on Laplace or Gaussian distributions would not work here

for they would not build a pro“le consisting of items in the target domain. The following

theorem conveys our resulting privacy guarantee.

Theorem 4 (PRIVACY GUARANTEE). Given any item i , we denote the global sensitivity of X-

SIM by GS and the similarity between i and any arbitrary item j by X-SIM (i , j). Our Private

Replacement Selection (PRS) mechanism, which outputs j as the replacement with a probability

proportional to exp (� ·X-SIM (i , j)
2·GS), ensures� -differential privacy.

Proof. (The full proof is provided in Appendix §8.2.1 for interested readers.) Consider any two

datasets D and D� that differ at one user, say u. We denote X-SIM (i , j) in dataset D by q(D,i , j)

and the set of items in target domain, with quanti“ed X-S IM values, by I (i). Furthermore,

we denote by q(D, I (i)) the set of X-SIM values between i and each item in I (i). The global

sensitivity (GS) is de“ned as max D,D � ||q(D,i , j) Š q(D �, i , j)||1. Our PRS mechanism outputs

an item j as a private replacement for i . We have the following:

Pr [PRS(i , I (i), q(D, I (i))) = j]

Pr [PRS(i , I (i), q(D �, I (i))) = j]
=

exp(� ·q(D,i , j)
2·GS)

�

k � I (i)
exp(� ·q(D,i ,k)

2·GS)
÷

exp(� ·q(D � ,i , j)
2·GS)

�

k � I (i)
exp(� ·q(D � ,i ,k)

2·GS)

=
exp(� ·q(D,i , j)

2·GS)

exp(� ·q(D � ,i , j)
2·GS)

	
� �
P

·

�

k � I (i)
exp(� ·q(D � ,i ,k)

2·GS)

�

k � I (i)
exp(� ·q(D,i ,k)

2·GS)

	
� �
Q

P = exp(
� · (q(D,i , j) Š q(D �, i , j))

2 ·GS
) � exp(

�

2
)

Q =

�

k � I (i)
exp(� ·q(D � ,i ,k)

2·GS)

�

k � I (i)
exp(� ·q(D,i ,k)

2·GS)
� exp(

�

2
)

Therefore, we get the following privacy guarantee:

Pr [PRS(i , I (i), q(D, I (i))) = j]

Pr [PRS(i , I (i), q(D �, I (i))) = j]
� exp(�)

Hence, PRS ensures� -differential privacy (De“nition 2).

AlterEgo pro“le construction. In this step, we replace every item rated by Alice in DS with

the item in DT returned by the PRS mechanism in the previous step. This item replacement

scheme produces a private AlterEgo pro“le of Alice in the target domain.

109

Chapter 6. Heterogeneous Recommendations

Algorithm 8 Private Replacement Selection Algorithm: PRS(i ,I(i),X-Sim(I(i))) where I(i) is the set
of items in the target domain with X-SIM values.

Require: � , i , I (i),X-Sim(I (i)) � � : Privacy parameter
1: Global sensitivity for X-S IM :
2: GS =|X-SIM max Š X-SIM min | = 2
3: for item j in I (i) do
4: Allocate probability as:

exp(� ·X-SIM (i , j)
2·GS)

�

k � I (i)
exp(� ·X-SIM (i ,k)

2·GS)

5: end for
6: Sample an element t from I (i) according to their probability.
7: return: t ; � � -differentially private replacement for i

Note that this private AlterEgo pro“le protects the privacy of the straddlers, users who rated

in both the domains, as the ratings of these users are used to compute the heterogeneous

similarities leaving their privacy at risk [150]. In addition, if the application domains are

typically owned by different companies like Net”ix and Last.fm, then this mechanism aids

the exchange of AlterEgo pro“les while preventing curious or malicious users to infer the

preferences of others.

D. Recommendation Phase

We now present the main steps of our recommendation scheme. Again, we “rst explain the

non-private case followed by the private one.

NX-M AP recommendation. The AlterEgo pro“le of Alice is used along with the original

pro“les in the target domain to compute the top-k similar users for Alice and then compute

recommendations for Alice leveraging the pro“les of the k most similar users from the target

domain as shown in Algorithm 1. The item-based version of X-M AP utilizes this AlterEgo

pro“le and computes the recommendations as demonstrated in Algorithm 2.

Furthermore, the AlterEgo pro“le in the target domain also retains the temporal behavior [53]

of the user in the source domain due to the item-to-item mapping. We incorporate this

temporal behavior in the item-based version of X-M AP by adding a time-based weight to the

ratings to improve the recommendation quality further. The predictions, weighted by the

time-based parameter (�), for user u•s ratings are computed as follows. 5

Pred[i](t) = r̄ i +

�
j � Nk (i)� I u

� (i , j) · (r u , j Š r̄ j) · eŠ� (t Štu, j)

�
j � Nk (i)� I u

|� (i , j)| · eŠ� (t Štu, j)
(6.2)

Note that the prediction has a time-based relevance factor (eŠ� (t Štu, j)) with a decaying rate

controlled by the parameter � to determine each rating•s weight for the prediction computa-

5Nk (i) denotes the top- k neighbors of item i .

110

6.1. Heterogeneous Recommendations with Alter-Egos

tion. Here, tu , j denotes the timestep 6 when user A rated the item j . This speci“c time-based

CF technique is applicable to the item-based CF approach as the prediction computation

(Equation 6.2) for a user A is dependent only on her previous ratings for similar items and

thereby leverages time as observed by A.

X-M AP recommendation. The private AlterEgo pro“le of Alice is used along with the original

pro“les in the target domain to compute the recommendations for Alice. To demonstrate

the adaptability of our heterogeneous recommender, the recommendation step is integrated

with a differentially private approach, inspired by [199, 200], to protect the privacy of users in

the target domain against other curious users. We implemented both item-based and user-

based versions of X-M AP. The item-based recommendation mechanism is demonstrated in

Algorithm 10 which utilizes the PNSA mechanism (Algorithm 9). We “rst present our similarity-

based sensitivity, required for the private approach, along with its correctness proof sketch.
7

De“nition 19 (LOCAL SENSITIVITY). For any given function f : R � R and a dataset D, the Lo-

cal Sensitivity of f is de“ned as LSf (D) = max
D �

� f (D)Š f (D �)� 1, where D and D� are neighboring

datasets which differ at one user pro“le.

We de“ne a rating vector r i = [r ai , ...,r xi , r yi] which consists of all the ratings for an item i � D .

Similarly, we de“ne a rating vector r �
i for i � D �. Since we use adjusted-cosine for X-S IM , a

rating r xi is the result after subtracting the average rating of user x (r̄ x) from the actual rating

provided by x for an item i . The similarity-based sensitivity is formulated as follows.

Theorem 5 (SIMILARITY -BASED SENSITIVITY). Given any score function q : R � R and a dataset

D, we formulate the similarity-based sensitivity corresponding to a score function qi (I , j) for a

pair of items i and j as:

SS(i , j) = max
�
max ux � Ui j

� r xi × r x j

� r �
i � × � r �

j �

�
,max ux � Ui j

� r i · r j

� r �
i � × � r �

j �
Š

r i · r j

� r i � × � r j �

��

Proof. (The full proof is provided in Appendix §8.2.1 for interested readers.) The similarity-

based sensitivity is measured by the maximal change in the similarity between two items when

deleting a user•s rating. The score function (q) for a pair of items i and j is de“ned as their

similarity value (s(i , j)). First, SSis de“ned as:

SS(i , j) = max � s(i , j) Š s�(i , j) � 1

6The timestep is a logical time corresponding to the actual timestamp of an event.
7Our similarity-based sensitivity is slightly different from the recommendation-aware one presented in [199,

200].

111

Chapter 6. Heterogeneous Recommendations

We arrive at the following equality after inserting the similarity values for s(i , j).

s(i , j) Š s�(i , j) =
r i · r j

� r i � × � r j �
Š

r �
i · r �

j

� r �
i � × � r �

j �
=

r i · r j × � r �
i � × � r �

j � Š r �
i · r �

j × � r i � × � r j �

� r i � × � r j � × � r �
i � × � r �

j �
=

P

Q

We assume that the pro“le of a user x, in D, is not present in D �. This user rated both i and

j . Note that if this user rated one of these items or none, then the similarity value does not

depend on the presence or absence of this user in the dataset. Hence, we get the inequality:

� r �
i � × � r �

j ��� r i � × � r j � .

Recall that P= (r i ·r j × � r �
i � × � r �

j � Š r �
i ·r �

j × � r i � × � r j �) and Q=(� r i � × � r j � × � r �
i � × � r �

j �).

Since Q � 0, we have two conditions depending on whether P � 0 or P � 0.

If P � 0, then

� s(i , j) Š s�(i , j) � 1�
(r i · r j Š r �

i · r �
j)

� r �
i � × � r �

j �
=

r xi × r x j

� r �
i � × � r �

j �
.

If P � 0, then

� s(i , j) Š s�(i , j) � 1�
r i · r j

� r �
i � × � r �

j �
Š

r i · r j

� r i � × � r j �
.

Hence, we have the similarity-based sensitivity as:

SS(i , j) = max
�
max ux � Ui j

� r xi × r x j

� r �
i � × � r �

j �

�
,max ux � Ui j

� r i · r j

� r �
i � × � r �

j �
Š

r i · r j

� r i � × � r j �

��

We use the notion of truncated similarity [199, 200] (Step 7 in Algorithm 9) along with our

similarity-based sensitivity to enhance the quality of selected neighbors. The two theorems

which prove that this truncated similarity along with our similarity-based sensitivity can

enhance the quality of neighbors are as follows. (The detailed proofs for the following two

theorems are available in the technical report hosted on our GitHub repository [186].)

Theorem 6. Given any item i , we denote its k neighbors by Nk (i), the maximal length of all

the rating vector pairs by |v|, the minimal similarity among the items in Nk (i) by Simk (i) and

the maximal similarity-based sensitivity between i and other items by SS. Then, for a small

constant 0 <
 < 1, the similarity of all the items in Nk (i) are larger than (Simk (i) Š w) with a

probability at least 1Š
 , where w = min (Simk (i), 4k×SS
� � × ln k× (|v |Šk)

).

Intuitively, Theorem 6 implies that the selected neighbors have similarities greater than some

112

6.1. Heterogeneous Recommendations with Alter-Egos

Algorithm 9 Private Neighbor Selection : PNSA(i ,I,Sim(i)) where I is the set of all items.

Require: � � ,w, i , I ,Sim(i), k � � � : Privacy
1: C1 = [j |s(i , j) � Simk (i) Š w, j � I]
2: C0 = [j |s(i , j) < Simk (i) Š w, j � I]
3: w = min (Simk (i), 4k×SS

� � × ln k× (|v |Šk)

)

4: for N=1:k do
5: for item j in I do
6:

SS(i , j) = max {max ux � Ui j
(

r xi × r x j

� r �
i � × � r �

j �
),max ux � Ui j

(
r i · r j

� r �
i � × � r �

j �
Š

r i · r j

� r i � × � r j �)
)}

7: �Sim(i , j) = max (Sim(i , j),Simk (i) Š w)
8: Allocate probability as: � � �

2k -Privacy

exp(� � · �Sim(i , j)
2k×2SS(i , j))

�

l � C1

exp(� � · �Sim(i ,l)
2k×2SS(i ,l)) +

�

l � C0

exp(� � · �Sim(i ,l)
2k×2SS(i ,l))

9: end for
10: Sample an element t from C1 and C0 without replacement according to their probability.
11: Nk (i) = Nk (i) 	 t
12: end for
13: return: Nk (i);

threshold value (Simk (i) Š w) with a high probability (1 Š
).

Theorem 7. Given any item i , for a small constant 0 <
 < 1, all items with similari-

ties greater than (Simk (i) + w) are present in Nk (i) with a probability at least 1 Š
 where

w = min (Simk (i), 4k×SS
� � × ln k× (|v |Šk)

).

Intuitively, Theorem 7 implies that the items with similarities greater than some threshold

value (Simk (i) + w) are selected as neighbors with a high probability (1 Š
).

Both theorems prove that the truncated similarity along with our similarity-based sensitivity

provides neighbors of good quality while providing � �/2-differential privacy. The predictions

are computed leveraging the PNCF mechanism (Algorithm 10) which adds Laplacian noise to

provide � �/2-differential privacy. By the composition property of differential privacy, PNSA

and PNCF together provide � �-differential privacy. The item-based version of X-M AP includes

the additional feature of temporally relevant predictions to boost the recommendation quality

traded for privacy.

We provide here two illustrations (temporal dynamics and differential privacy) of the adaptabil-

ity of our heterogeneous recommender. Since the AlterEgo pro“le could be considered as an

actual pro“le in the target domain, thereby any homogeneous recommendation algorithm [2]

like Matrix Factorization techniques, can be applied in the target domain to generate the

recommendations. We provide a demonstration regarding how to use Spark-ML LIB•s matrix

factorization technique with X-M AP in our GitHub repository [186].

113

Chapter 6. Heterogeneous Recommendations

Algorithm 10 Private Recommendation: PNCF(PA, I) where PA denotes the AlterEgo pro“le of Alice,
and I denotes the set of all items.

1: var P; � Dictionary with predictions for Alice
2: var � ; � User similarities
3: var r̄ ; � Average rating for each items
4: var � � � Degree of privacy
5: var Nk � Private neighbors using PNSA
6: for i : item in PA do
7: Nk (i) = PNSA(i , I ,Sim(i))
8: for j : item in Nk (i) do

9: P[j] = r̄ j +
�

k � Nk (j)(� (k , j)+Lap(SS(k , j)
� � /2

))·(r A,k Šr̄ k)
�

k � Nk (j) |� (k , j)+Lap(SS(k , j)
� � /2

)|

10: end for
11: end for
12: RA = P.sortByValue(ascending=false);
13: return: RA[: N]; � Top-N recommendations for Alice

6.1.5 Implementation

We now describe our implementation of X-M AP. Figure 6.4 outlines the four main components

of our implementation: baseliner, extender, generator and recommender. We describe each of

these components along with their functionality.

Figure 6.4 …The components of X-M AP: Baseliner, Extender, Generator, Recommender .

A. Baseliner

This component computes the baseline similarities leveraging the adjusted cosine similarity

(Equation 6.1) between the items in the two domains. The baseliner splits the item-pairs based

on whether both items belong to the same domain or not. If both items are from the same

domain, then the item-pair similarities will be delivered as homogeneous similarities . If one of

the items belongs to a different domain, then the item-pair similarities will be delivered as

heterogeneous similarities. The baseline heterogeneous similarities are computed based on

114

6.1. Heterogeneous Recommendations with Alter-Egos

the user overlap. 8

B. Extender

This component extends the baseline similarities both within a domain and across domains.

The items in each domain are divided into three layers based on our layer-based pruning

technique as shown in Figure 6.2. For every item in a speci“c layer, the extender computes the

top-k similar items for the neighboring layers. For instance, for the items in the BB-layer of

DS, the extender computes the top-k similar ones from items in the BB-layer in DT and also

the top-k similar ones from the items in the NB-layer in DS.

Intra-domain extension. In this step, the extender computes the X-S IM similarities for the

items in the NN-layer in DS and the items in the BB-layer of DS via the NB-layer items of DS.

Similar computations are performed for domain DT .

Cross-domain extension. After the previous step, the extender updates the NB and NN layers

in both domains based on the new connections (top- k). Then, it updates the connections

between the items in NB and BB layers in one domain and the items in NB and BB layers in

the other one.

At the end of the execution, the extender outputs, for every item i in DS, a set of items I (i) in

DT with some quanti“ed (positive or negative) X-S IM values with i .

C. Generator

The generator performs the following computational steps.

Item mapping. The Generator maps every item in one domain (say DS) to its most similar

item (for NX-M AP) or its private replacement (for X-M AP) in the other domain (DT). After,

the completion of this step, every item in one domain has a replacement item in the other

domain. 9

Mapped user pro“les. The Generator here creates an arti“cial pro“le (AlterEgo) of a user in a

target domain DT from her actual pro“le in the source domain DS by replacing each item in

her pro“le in DS with its replacement in DT as shown in Figure 6.3. Finally, after this step, the

Generator outputs the AlterEgo pro“le of a user in the target domain where she might have

little or no activity yet.

8These are the baseline similarities without any extension or enhancements.
9We could also choose a set of replacements for any item, using X-S IM , in the target domain to have more

diversity.

115

Chapter 6. Heterogeneous Recommendations

D. Recommender

This component utilizes the arti“cial AlterEgo pro“le created by the Generator to perform the

recommendation computation. It can implement any general recommendation algorithm

for its underlying recommendation computation. In this work, we implemented user-based

and item-based CF schemes. For NX-M AP, the recommender uses Algorithm 1 (user-based

CF) or Algorithm 2 (item-based CF) in the target domain. For X-M AP, the recommender

also uses the PNSA algorithm along with the PNCF algorithm to generate recommendations

either in a user-based manner or in an item-based manner. Additionally, for both NX-M AP

and X-M AP, the item-based CF recommender leverages the temporal relevance to boost the

recommendation quality. It is important to note that X-M AP runs periodically in an of”ine

manner to update the predicted ratings. The top-10 items (sorted by the predicted ratings),

not-yet-seen by the current user, would be recommended to users in X-M AP.

6.1.6 Evaluation

We report here on our empirical evaluation of X-M AP on a cluster computing framework,

namely Spark [189], with real world traces from Amazon [131] to analyze its prediction accu-

racy, privacy and scalability. We choose Spark as our cluster computing framework since the

underlying data processing framework to support X-M AP must be scalable and fault-tolerant.

A. Experimental Setup

Experimental platform. We perform all the experiments on a cluster of 20 machines. Each

machine is an Intel Xeon CPU E5520 @2.26GHz with 32 GB memory. The machines are

connected through a 2xGigabit Ethernet (Broadcom NetXtremeII BCM5716).

Datasets. We now provide an overview of the datasets used in our experiments.

Amazon. We use two sets of real traces from Amazon datasets [131]: movies and books. We

use the ratings for the period from 2011 till 2013. The movies dataset consists of 1,671,662

ratings from 473,764users for 128,402movies whereas the books dataset consists of 2,708,839

ratings from 725,846users for 403,234books. The ratings vary from 1 to 5 with an increment

of 1. The overlapping users in these two datasets are those Amazon users who are present

in both datasets and are ascertained using their Amazon customer-ids. The number of such

overlapping users from both the domains is 78,201.

Movielens. We use the Movielens dataset (ML-20M) for evaluating performance of X-M AP

within a single domain. This dataset consists of 20,000,263ratings from 138,493users for

27,278 movies. In this dataset, the ratings also vary from 1 to 5 with an increment of 1.

Evaluation metrics. We evaluate X-M AP along three complementary metrics: (1) the recom-

mendation quality as perceived by the users in terms of prediction accuracy, (2) the degree

116

6.1. Heterogeneous Recommendations with Alter-Egos

of privacy provided to the end-users in terms of the privacy parameters (� , � �), and (3) the

scalability in terms of speedupachieved in X-M AP when increasing the number of machines

in the cluster.

Accuracy. We evaluate the accuracy of the predictions in terms of Mean Absolute Error (MAE).

MAE computes the average absolute deviation between a predicted rating and the user•s true

rating. MAE is a standard metric used to evaluate state-of-the-art recommenders [84, 165]. We

assume that the predicted rating for an item i is denoted by pi and the actual rating is denoted

by r i in the test dataset. Then, the MAE for a test dataset, with N ratings, is computed as:
� N

i =1 |pi Šr i |
N . Given that r min and r max denotes the minimum and maximum ratings respectively,

the following inequality always holds: 0 < M AE < (r max Š r min). The lower the MAE, the more

accurate the predictions.

Privacy. Our differential privacy guarantees are parametrized as follows: � for the PRS

technique (Algorithm 8) used for AlterEgo generation and � � for the PNCF (Algorithm 10)

used for the private recommendation generation in X-M AP. According to the privacy litera-

ture [56, 199, 200], � = 1 or less would be suitable for privacy preserving purposes.

Speedup.We evaluate the speedup in terms of the time required for sequential execution (T1)

and the time required for parallel execution with p processors (Tp). Amdahl•s law models the

performance of speedup (Sp) as follows.

Sp =
T1

Tp

Due to the considerable amount of computations for heterogeneous recommendation on the

Amazon dataset, we compare the speedup on p processors with respect to a minimum of 5

processors (T5) instead of a sequential execution (T1).

Competitors. We now present the recommenders against which we compare X-M AP. Existing

recommendation schemes over several domains can be classi“ed as follows.

Linked-domain personalization. The goal here is to recommend items in the target domain

(DT) by exploring rating preferences aggregated from both source and target domains, i.e,

to recommend items in I T to users in US based on the preferences of users in US 	 UT for

items in I S 	 I T . In this approach, ratings from multiple domains are aggregated into a

single domain. Then, a traditional CF mechanism can be applied over this aggregated single

domain [157, 44]. I TEM-BASED-KNN is a linked-domain personalization approach [157, 44]

where we use item-based collaborative “ltering over the aggregated ratings from both the

domains.

Heterogeneous recommendation. The goal here is to recommend items in I T to users in US

based on the preferences of US for I S, UT for I T and US � UT for I S 	 I T . In this approach,

the user similarities are “rst computed in both source and target domains. These domain-

related similarities are then aggregated into the overall heterogeneous similarities. Finally, the

117

Chapter 6. Heterogeneous Recommendations

k-nearest neighbors, used for recommendation computations, are selected based on these

heterogeneous similarities [20]. In the R EMOTEUSERapproach [20], the user similarities in

source domain are used to compute the k nearest neighbors for users who have not rated in

the target domain. Finally, user-based collaborative “ltering is performed.

Baseline prediction. For a sparse dataset, the baseline is provided by item-based average

ratings [14] or user-based average ratings [116]. The goal here is to predict based on the

average ratings provided by users in US 	 UT for items in I S 	 I T . One of the most basic

prediction schemes is the I TEMAVERAGEscheme where we predict that each item will be rated

as the average over all users who rated that item [14]. Note that though this technique gives a

very good estimate of the actual rating but it is not personalized due to same predictions for

all the users.

We compare X-M AP with these three other systems namely: I TEM-BASED-KNN, REMOTEUSER

and I TEMAVERAGE.

Evaluation scheme. We partition the set of common users who rated both movies and books

into training and test sets. For the test users, we hide their pro“le in the target domain (say

books) and use their pro“le in the source domain (movies) to predict books for them. This

strategy evaluates the accuracy of the predictions if the user did not rate any item in the target

domain. Hence, we can evaluate the performance of X-M AP in the scenario where the test

users did not rate any item in the target domain (cold-start). Additionally, if we hide part of the

user pro“le in the target domain, then we can evaluate how X-M AP handles the scenario where

the test users rated very few items in the target domain (sparsity). Furthermore, we denote the

item-based variant of X-M AP as X-MAP- IB and the user-based variant as X-M AP-UB. Similarly

for NX-M AP, we denote the item-based variant of NX-M AP as NX-M AP- IB and the user-based

variant as NX-M AP-UB.

B. Temporal Dynamics

We observe the temporal effect of users, retained by the AlterEgos across domains, in X-M AP.

We leverage the item-based recommender, and tune the temporal parameter � accordingly.

Figure 6.5 demonstrates this temporal relevance effect where � varies between 0 (no temporal

effect) to 0.2. Note that an item-based CF approach computes the predictions leveraging the

target user•s very few observed ratings on the nearest neighbors and given the very limited

size of this set of ratings, any further ampli“cation of � impacts the predictions negatively

as it reduces the contribution of old ratings furthermore. We provide the optimally tuned

parameter (� o) for our experiments, shown in Figure 6.5, to achieve optimal recommendation

quality.

118

6.1. Heterogeneous Recommendations with Alter-Egos

 0.7106

 0.7107

 0.7108

 0.7109

 0.711

 0.7111

 0.7112

 0 0.04 0.08 0.12 0.16 0.2

M
A

E

�_

Source: Movie Target: Book (X-Map)

�_�k��������������

 0.68835

 0.6884

 0.68845

 0.6885

 0.68855

 0.6886

 0 0.04 0.08 0.12 0.16 0.2

M
A

E

�_

Source: Book Target: Movie (X-Map)

�_�k��������������

 0.59005

 0.5901

 0.59015

 0.5902

 0.59025

 0.5903

 0.59035

 0.5904

 0 0.04 0.08 0.12 0.16 0.2

M
A

E

�_

Source: Movie Target: Book (NX-Map)

�_�k��������������

 0.5638

 0.564

 0.5642

 0.5644

 0.5646

 0.5648

 0.565

 0 0.04 0.08 0.12 0.16 0.2

M
A

E

�_

Source: Book Target: Movie (NX-Map)

�_�k��������������

Figure 6.5 …Temporal relevance (X-M AP, NX-M AP).

C. Privacy

We tune the privacy parameters (� , � �) for X-M AP. Figures 6.6 and 6.7 demonstrate the effect of

tuning the privacy parameters on the prediction quality in terms of MAE. We observe that the

recommendation quality improves (lower MAE) as we decrease the degree of privacy (higher

� , � �). It is important to note that X-M AP inherently transforms to NX-M AP as the privacy

parameters increase furthermore (lower privacy guarantees). For the following experiments,

we select the privacy parameters as follows. For X-M AP- IB, we select � = 0.3 and � � = 0.8. For

X-M AP-UB, we select � = 0.6 and � � = 0.3. 10

Source: Movie Target: Book

 0
 0.2

 0.4
 0.6

 0.8

�¡
 0 0.2 0.4 0.6 0.8

�¡•

 0.64

 0.68

 0.72

M
A

E

 0.64

 0.68

 0.72

Source: Book Target: Movie

 0
 0.2

 0.4
 0.6

 0.8

�¡
 0 0.2 0.4 0.6 0.8

�¡•

 0.65

 0.66

 0.67

 0.68

M
A

E

 0.65

 0.66

 0.67

Figure 6.6 …Privacy-quality trade-off in X-M AP- IB.

D. Accuracy

We now compare the accuracy of the predictions of X-M AP and NX-M AP with the competitors.

10These parameters are selected from a range of possible values providing quality close to the optimal one as
observed from Figures 6.6 and 6.7.

119

Chapter 6. Heterogeneous Recommendations

Source: Movie Target: Book

 0
 0.2

 0.4
 0.6

 0.8

�¡
 0 0.2 0.4 0.6 0.8

�¡•

 0.52

 0.54

 0.56

M
A

E

 0.52

 0.54

 0.56

Source: Book Target: Movie

 0
 0.2

 0.4
 0.6

 0.8

�¡
 0 0.2 0.4 0.6 0.8

�¡•

 0.51

 0.52

 0.53

M
A

E

 0.51

 0.52

 0.53

Figure 6.7 …Privacy-quality trade-off in X-M AP-UB.

Impact of top-k neighbors. First, we evaluate the quality in terms of MAE when the size of

k (neighbors in Equation 6.2) is varied. Figure 6.8 (a) demonstrates that X-M AP-UB and NX-

M AP-UB outperform the competitors by a signi“cant margin of 30% where the source domain

is book and the target domain is movie. Also, Figure 6.8 (b) shows that X-M AP performs better

than the non-private competitors whereas NX-M AP again outperforms the competitors by

a margin of 18% where the source domain is movie and the target domain is book. A higher

number of neighbors induces more connections across the domains (Figure 6.2) and hence

enables X-M AP to explore better meta-paths between items. Moreover, better meta-paths

lead to better meta-path based similarities and thereby superior recommendation quality. We

consider k as 50 for all further experiments.

 0.48

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0 10 20 30 40 50 60 70 80 90 100

M
A

E

k

(a) Source: Book Target: Movie

X-MAP-IB
X-MAP-UB

ITEMAVERAGE
REMOTEUSER

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0 10 20 30 40 50 60 70 80 90 100
k

(b) Source: Movie Target: Book

NX-MAP-IB
NX-MAP-UB

ITEM-BASED-KNN

Figure 6.8 …MAE comparison with varying k.

Impact of overlap. We now evaluate how X-M AP and NX-M AP perform when the number of

users in the overlap increases. Intuitively, a good approach should provide better accuracy

as more and more users connect the domains. These increasing connections improve the

baseline heterogeneous similarities which are then leveraged by X-S IM to generate better meta-

path based similarities across the domains. Figure 6.9 shows that the prediction error of X-M AP

decreases as there are more users connecting the domains. This observation demonstrates

that the quality of the AlterEgo pro“les improves when the overlap size increases. Furthermore,

120

6.1. Heterogeneous Recommendations with Alter-Egos

we observe in Figure 6.9(a) that the user-based models show more improvement than the

item-based ones. This behavior occurs as the item similarities are more static than the user

similarities [94].

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
A

E

Fraction of Training Set

(a) Source: Book Target: Movie

X-MAP-IB
X-MAP-UB

ITEMAVERAGE
REMOTEUSER

 0.48

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fraction of Training Set

(b) Source: Movie Target: Book

NX-MAP-IB
NX-MAP-UB

ITEM-BASED-KNN

Figure 6.9 …MAE comparison (Overlap size).11

Impact of sparsity. We now evaluate how X-M AP performs when the size of the training

pro“le of a user, in the target domain, increases from a minimum of 0 (cold-start situation) to

a maximum of 6 (low sparsity), in addition to her pro“le in the source domain 12. This experi-

ment also highlights the performance of X-M AP when the sparsity of the dataset decreases.

Additionally, we evaluate the accuracy improvement of X-M AP over a single domain solution,

item-based KNN in the target domain denoted by KNN- SD, as well as over a heterogeneous

solution, item-based KNN in the aggregated domain denoted by KNN- CD. Figure 6.10 demon-

strates that KNN- SD and KNN- CD are outperformed by NX-M AP and X-M AP. Furthermore, we

observe a relatively fast improvement for our non-private item-based technique (NX-M AP- IB)

due to the improvement in item similarities with lower sparsity.

 0.4

 0.44

 0.48

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0 1 2 3 4 5 6

M
A

E

Items in auxiliary profile

(a) Source: Book Target: Movie

X-MAP-IB X-MAP-UB NX-MAP-UB

 0.4

 0.44

 0.48

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0.76

 0 1 2 3 4 5 6
Items in auxiliary profile

(b) Source: Movie Target: Book

KNN-CD KNN-SD NX-MAP-IB

Figure 6.10 …MAE comparison based on pro“le size.

11Training set size denotes overlap size.
12We consider only those users who rated at least 10 products in each domain.

121

Chapter 6. Heterogeneous Recommendations

E. Homogeneity

We now evaluate the ability of X-M AP to be applied to a homogeneous setting consisting of a

single domain. Depending on the structural property of the data (e.g., genres), any domain

could be partitioned into multiple sub-domains. For this experiment, we use the ML-20M

dataset which consists of 19 different genres. We partition this dataset into two sub-domains

D1 and D2 by sorting the genres based on the movie counts per genre and allocating alternate

sorted genres to the sub-domains as shown in Table 6.1. Note that a movie can have multiple

genres. If a movie m belongs to both the sub-domains, we add it to the sub-domain which

has the most number of genres overlapping with m•s set of genres and to any of the two

sub-domains in case of equal overlap with both sub-domains. Sub-domain D1 consists of

15,119 movies with 138 ,492 users whereas sub-domain D2 consists of 11,383 movies with

138,483 users.
D1 D2

Genres Movie counts Genres Movie counts
Drama 13344 Comedy 8374
Thriller 4178 Romance 4127
Action 3520 Crime 2939
Horror 2611 Documentary 2471

Adventure 2329 Sci-Fi 1743
Mystery 1514 Fantasy 1412

War 1194 Children 1139
Musical 1036 Animation 1027
Western 676 Film-Noir 330
Other 196 … …

Table 6.1 …Sub-domains (D 1 and D 2) based on genres in Movielens 20M dataset.

We compare X-M AP and NX-M AP with Alternating Least Square from ML LIB (ML LIB-ALS).

We observe from Table 6.2 that NX-M AP signi“cantly outperforms ML LIB-ALS whereas X-

M AP, even with the additional privacy overhead, almost retains the quality of non-private

ML LIB-ALS.

NX-M AP X-M AP ML LIB-ALS
MAE 0.6027 0.6830 0.6729

Table 6.2 …MAE comparison (homogeneous setting on ML-20M dataset).

F. Scalability

We evaluate the scalability of X-M AP in terms of the speedup achieved with an increasing

number of computational nodes. We also compare our scalability with a state-of-the-art homo-

geneous recommender leveraging Spark to implement Alternating-Least-Squares based matrix

factorization (ML LIB-ALS). For the ALS recommender, we use the aggregated ratings over

both the domains (linked-domain personalization). Figure 6.11 demonstrates the near-linear

122

6.1. Heterogeneous Recommendations with Alter-Egos

speedup of X-M AP. Additionally, we see that X-M AP outperforms the scalability achieved by

ML LIB-ALS. Note that X-M AP is periodically executed of”ine and the computation time for

the recommendations, corresponding to all the users in the test set, is around 810 seconds on

20 nodes.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4 6 8 10 12 14 16 18 20

S
pe

ed
up

Number of Machines

X-MAP MLLIB-ALS

Figure 6.11 …Scalability of X-M AP.

G. Online Deployment

We deployed an online recommendation platform (http://x-map.work/) leveraging X-S IM

and made it available to users. We observe that this recommender indeed provides book

recommendations like Shutter Island: A Novel when the user queries for the movie Inception .

Besides, it also recommends the Shutter Island movie as a homogeneous recommendation.

We observe similar results for multiple other queries.

We deployed a real-time recommender implementing the underlying X-S IM and made it

available to internet users. We collected user feedback for a duration of one week which is

summarized in Figure 6.12. The x-axis denotes the score, provided by the user, in terms of

a rating scale (1-5) with increment of 0.5 and the y-axis denotes the percentage of the total

number of users. This preliminary study shows that the user satisfaction level is high.

 0

 5

 10

 15

 20

 25

1 1.5 2 2.5 3 3.5 4 4.5 5

P
er

ce
nt

ag
e

(%
)

Score
Figure 6.12 …Feedback from 51 users over 1 week.

123

Chapter 6. Heterogeneous Recommendations

6.1.7 Related Work

Heterogeneous trends. Research on heterogeneous recommendation is relatively new. There

are, however, a few approaches to tackle the problem which we discuss below.

Smart User Models. González et al. introduced the notion of Smart User Models (SUMs) [69].

The idea is to aggregate heterogeneous information to build user pro“les that are applicable

across different domains. SUMs rely on users• emotional context which are, however, dif“cult

to capture. Additionally, it has been shown that users• ratings vary frequently with time

depending on their emotions [8].

Web Monitoring. Hyung et al. designed a web agent which pro“les user preferences across

multiple domains and leverages this information for personalized web support [108]. Tuf“eld

et al. proposed Semantic Logger, a meta-data acquisition web agent that collects and stores

any information (from emails, URLs, tags) accessed by the users [179]. However, web agents

are considered a threat to users• privacy as users• data over different e-commerce applications

are stored in a central database administered by the web agent.

Cross-domain Mediation. Berkovsky et al. [20] proposed the idea of cross-domain mediation

to compute recommendations by aggregating data from several recommenders. We showed

empirically that X-M AP outperforms cross-domain mediation in Figures 6.8 and 6.9.

In contrast, X-M AP introduces a new trend in heterogeneous personalization in the sense that

the user pro“le from a source domain is leveraged to generate an arti“cial AlterEgo pro“le in a

target domain. The AlterEgo pro“les can even be exchanged between e-commerce companies

like Net”ix, Last.fm thanks to the privacy guarantee in X-M AP.

Merging preferences. One could also view the heterogeneous recommendation problem as

that of merging single-domain user preferences. Through this viewpoint, several approaches

can be considered which we discuss below.

Rating aggregation. This approach is based on aggregating user ratings over several domains

into a single multi-domain rating matrix [21, 20]. Berkovsky et al. showed that this approach

can tackle cold-start problems in collaborative “ltering [21]. We showed empirically that

X-M AP easily outperforms such rating aggregation based approaches [20].

Common representation. This approach is based on a common representation of user prefer-

ences from multiple domains either in the form of a social tag [177] or semantic relationships

between domains [124]. Shi et al. developed a Tag-induced Cross-Domain Collaborative Filter-

ing (TAGCDCF) to overcome cold-start problems in collaborative “ltering [167]. TAGCDCF

exploits shared tags to link different domains. They thus need additional tags to bridge the

domains. X-M AP can bridge the domains based on the ratings provided by users using its

novel X-SIM measure without requiring any such additional information which is dif“cult to

collect in practice.

124

6.2. Content-enabled Heterogeneous Recommendations

Linked preferences. This approach is based on linking users• preferences in several do-

mains [44]. We showed empirically that X-M AP outperforms such linked preference based

approaches [44] in Figures 6.8 and 6.9.

Domain-independent features. This approach is based on mapping user preferences to

domain-independent features like personality types [34] or user-item interactions [125]. This

approach again requires additional information like personality scoreswhich might not be

available for all users.

6.1.8 Conclusion

We presented X-M AP, a scalable and private heterogeneous recommender. X-M AP leverages a

novel similarity metric X-S IM , identifying similar items across domains based on meta-paths,

to generate AlterEgo pro“les of users in domains where these users might not have any activity

yet. We demonstrated that X-M AP performs better in terms of recommendation quality than

alternative heterogeneous recommenders [14, 20, 44]. (Although, not surprisingly, there is a

trade-off between quality and privacy.)

6.2 Content-enabled Heterogeneous Recommendations

In the previous section, we introduced a heterogeneous recommender which employs only

the user-item interactions. However, it is also possible to perform content-enabled hetero-

geneous recommendations when the content is available about the users (e.g., demography,

time-varying preferences) or items (e.g., popularity, price). These features could be explored

concurrently to enable heterogeneous recommendations.

In this promising direction, we explore the notion of T RACKERSwhich enables us to incorporate

these factors concurrently. We also capture item-to-item relations, based on their consump-

tion sequence, leveraging neural embeddings for offers in our O FFER2VEC algorithm (similar

to D EEPCIP in §4.2). We then introduce B OOSTJET, a novel recommender which integrates the

TRACKERSalong with the neural embeddings using M ATRIXNET [79], an ef“cient distributed

implementation of gradient boosted decision tree, to improve the recommendation quality

signi“cantly.

More precisely, B OOSTJET computes the recommendations as follows. First, B OOSTJET gen-

erates the TRACKERSwhich are statistical aggregates of users• activity capturing factors of

different types (content, temporal, demographic, or monetary). Second, B OOSTJET generates

the offer embeddings to capture the higher-dimensional relation between different offers in

a given shop based on their consumption order by different users. These embeddings are

generated using the proposed O FFER2VEC algorithm, our modi“cation of D OC2VEC [114],

by treating each user session, in a given shop, as a document and offers in this session as

words. Finally, with the help of M ATRIXNET we combine these features by posing the recom-

125

Chapter 6. Heterogeneous Recommendations

mendation task as a classi“cation problem in B OOSTJET, i.e., the recommendation task is to

compute the likelihood probabilities for any given user corresponding to unseen items in a

given application and then provide the highly predicted ones as recommendations to the user.

We evaluate BOOSTJET on Yandex•s dataset, collecting online behavior from 14 million online

users over 1250 different e-commerce applications, to demonstrate the practicality of B OOST-

JET in terms of recommendation quality as well as scalability. Further details about this work

is available in [145] for interested readers.

126

PART V

Thesis Conclusions and Remarks

In this part of the thesis, we summarize the main contributions of this thesis and also provide

some concluding remarks regarding its implications on personalization at a high level. We

also discuss some interesting directions for future work that the contributions of this thesis

enable.

7 Concluding Remarks

We conclude this dissertation by discussing the outcomes and implications of the various

contributions presented in this thesis along with the potential extensions for future work.

7.1 Summary and Implications

We “rst recall that the primary challenges in designing personalization services are scalability ,

privacy , and heterogeneity. We address these challenges step-by-step in each part of this thesis.

In the “rst part of this dissertation (Chapters 3 and 4), we address the scalability challenge.

First, we signi“cantly reduce the number of computations by leveraging an iterative biased

sampling technique in H YREC (§3.1). Furthermore, H YREC democratizes these biased sam-

ples, personalized for each user, to the devices of the users for updating the recommender.

We also brie”y explore the extension of this democratization technique to classical machine

learning applications using H YML (§3.2). Second, we take an incremental approach where

we incorporate the updates to the recommender system in an incremental manner employ-

ing only the new incoming events (e.g., ratings or consumption events). We present two

approaches depending on the type of feedback (i.e., users• preferences) which could be either

explicit (e.g., numerical or binary ratings) or implicit (e.g., time for the consumption events).

I-SIM (§4.1) enables incremental updates for explicit feedback whereas CIP (§4.2) enables

incremental updates for implicit feedback.

In the second part of this dissertation (Chapter 5), we tackle the privacy challenge. We consider

two levels of privacy. The “rst one is user-level privacy which deals with protecting the privacy

of users from other curious users whereas the second one is system-level privacy which deals

with protecting the privacy of users from the service provider itself. Concerning the user-level

privacy, we introduce the notion of distance-based differential privacy (D2P) in §5.1 which

strengthens the notion of differential privacy for recommender systems. We also present a

brief overview of X-R EC in §5.2 which ensures the privacy of users against the service providers

(system-level privacy) or other users (user-level privacy) while preserving recommendation

129

Chapter 7. Concluding Remarks

quality.

In the third part of this dissertation (Chapter 6), we tackle the heterogeneity challenge. With

this objective in mind, we introduce X-M AP which is a novel heterogeneous recommender

system employing meta-path-based transitive closure of inter-item similarities across several

domains to provide recommendations across multiple domains. Additionally, we show that

X-M AP enables differentially private recommendations and also easily scales out on multiple

machines. We also brie”y explore the impact of content towards heterogeneous recommenda-

tions by employing statistical aggregates of content-based features of users (e.g., demography,

temporal preferences) or items (e.g., popularity, price).

At a high level, this dissertation takes a step in personalizing the Web in the sense that AlterE-

gos of any web user could be now extracted across various Internet applications and then

employed to identify a personalized slice of Internet for web navigation of that user. Moreover,

such heterogeneous web personalization could be now provided to the users without risking

their privacy thanks to the private AlterEgos (Chapter 6) and distance-based differential pri-

vacy (Chapter 5). The scalability of the different personalization schemes, presented in this

dissertation, also ensure that the personalized web slices for users could be updated in real-

time depending on their recent explicit or implicit preferences (which might vary signi“cantly

overtime).

7.2 Future Work

We now discuss some potential directions for future research that build on the work presented

in this dissertation.

Extension to other ML applications. Most of the work presented in this thesis could be

extended to various other ML applications. We provide one demonstration of such extension

where we show how we can extend the democratization idea used in H YREC to enable ML

on users• devices (Chapter 3). The notion of distance-based differential privacy (Chapter 5)

could also be explored in the context event-level privacy [103] for ML applications where the

distance could be de“ned based on the input features and the output labels. For e.g., it is

possible to design a privacy-aware classi“er such that it can distinguish between bikes and

cars where the distance could be de“ned in such a way that the bikes class is a superset of

different types of bikes (e.g., road bikes, mountain bikes, racing bikes) and the carsclass is a

superset of different types of cars (e.g., sports cars, family cars, luxury cars). Such a classi“er

would preserve privacy in the sense that images could also reveal various personal details

e.g., location [123]. It would also be interesting to employ techniques for system-level privacy

concerning various ML applications, e.g., ML over encrypted data [26, 72].

Private incremental updates. The privacy guarantees presented in this dissertation con-

cern with static databases of user-item interaction events (Chapter 5). However, we also

introduced the notion of incrementality to handle scalability (Chapter 4). If we apply the

130

7.2. Future Work

privacy-preserving techniques over the complete aggregated data during the incremental

updates, then the computation overhead for privacy might signi“cantly affect the total time

for performing the incremental updates. This limitation calls for incremental privacy-aware

techniques that would support such incremental updates without signi“cant overhead. There

has already been some recent work in this direction for ML to address the problems of pri-

vate incremental Expected Risk Minimization (ERM) and private incremental regression [101].

Hence, it would be interesting to explore such incremental private solutions for ML to design

private and incremental recommenders.

Energy-ef“cient recommenders. We brie”y demonstrate the impact of our approach on

reducing the energy consumption in §4.1. This impact is also intuitive due to the nature of

incrementality incorporated in the computations to update the recommender. ML appli-

cations are also extremely resource-greedy which leads to signi“cant energy consumption.

Recently, there has been some work in designing various compression techniques like quanti-

zation [6] or knowledge distillation [86] to signi“cantly reduce the ML workload and hence also

achieves energy-ef“ciency. Similar techniques could be employed along with our incremental

approaches for recommenders to improve the energy-ef“ciency furthermore.

131

PART VI

Appendices

In this part of the thesis, we provide some supplementary materials (e.g., detailed correctness

proofs of algorithms, additional experiments) for interested readers.

8 Appendices

8.1 Appendix A: I-S IM

8.1.1 Correctness proofs

Theorem 1 (Pi j INCREMENTAL UPDATE). Let � Ut
i denote the set of users who newly ratedi at

timestep t , i.e., � Ut
i = Ut

i \ Ut Š1
i , then the time complexity for updating Pi j (t) is O(|� Ut

i |+| � Ut
j |).

Proof. We obtain a recursive relation between Pi j (t) and Pi j (t Š 1) by decomposing Pi j (t) as

follows.

Pi j (t) =
�

u � Ut
i � Ut

j

f �
ui (t)(r ui Š ¯r u (t)) f �

u j (t)(r u j Š ¯r u (t))

=
�

u � � Ut
i � Ut Š1

j

(r ui Š ¯r u (t)) f �
u j (t)(r u j Š ¯r u (t)) +

�

u � Ut Š1
i � � Ut

j

f �
ui (t)(r ui Š ¯r u (t))(r u j Š ¯r u (t))

+
�

u � � Ut
i � � Ut

j

(r ui Š ¯r u (t))(r u j Š ¯r u (t)) +
�

u � Ut Š1
i � Ut Š1

j

f �
ui (t)(r ui Š ¯r u (t)) f �

u j (t)(r u j Š ¯r u (t))

= � Pi j (t) + eŠ2� P�
i j (t Š 1)

In the above mathematical expression, we have absorbed the “rst three summations into the

term � Pi j (t) and de“ned the last term as P�
i j (t Š1). Furthermore, we have: � (t) � ¯r u (t)Š ¯r u (t Š

1). Note that � (t) � � u (t) varies for each user and alters marginally over consecutive timesteps:

� (t) = � (t Š 1)+ � � . We rewrite P�
i j (t Š 1) as follows.

P�
i j (t Š 1) =

�

u � Ut Š1
i j

f �
ui (t Š 1)(r ui Š ¯r u (t)) f �

u j (t Š 1)(r u j Š ¯r u (t))

=
�

u � Ut Š1
i j

f �
ui (t Š 1)(r ui Š ¯r u (t Š 1)) f �

u j (t Š 1)(r u j Š ¯r u (t Š 1))

135

Chapter 8. Appendices

Š
�

u� Ut Š1
i j

(� (t Š 1)+ � �) f �
ui (t Š 1)f �

u j (t Š 1)(r ui Š ¯r u (t Š 1))

Š
�

u� Ut Š1
i j

(� (t Š 1)+ � �) f �
ui (t Š 1)f �

u j (t Š 1)(r u j Š ¯r u (t Š 1))

+
�

u � Ut Š1
i j

(� (t Š 1)+ � �)2 · f �
ui (t Š 1)f �

u j (t Š 1)

where Ut Š1
i j denotes Ut Š1

i � Ut Š1
j .

In the following, we ignore negligibly small higher order terms with the multiplicative factor

� � · f �
ui (t) · f �

u j (t) as each of the terms { � � , f �
ui (t), f �

u j (t)} << 1.

P�
i j (t Š 1) =

�

u � Ut Š1
i j

f �
ui (t Š 1)(r ui Š ¯r u (t)) f �

u j (t Š 1)(r u j Š ¯r u (t))

=
�

u � Ut Š1
i j

f �
ui (t Š 1)(r ui Š ¯r u (t Š 1)) f �

u j (t Š 1)(r u j Š ¯r u (t Š 1))

Š
�

u� Ut Š1
i j

� (t Š 1)f �
ui (t Š 1)f �

u j (t Š 1)(r ui Š ¯r u (t Š 1))

Š
�

u� Ut Š1
i j

� (t Š 1)f �
ui (t Š 1)f �

u j (t Š 1)(r u j Š ¯r u (t Š 1))

+
�

u � Ut Š1
i j

{� (t Š 1)}2 · f �
ui (t Š 1)f �

u j (t Š 1)

We introduce two adjustment terms L, M in the following. Note that these adjustment terms

incorporate the behavioral drift, captured by � (t), in I-S IM .

Li j (t) =
�

u � Ut
i j

� (t) f �
ui (t) f �

u j (t)[(r ui Š ¯r u (t)) + (r u j Š ¯r u (t))] =
�

u � Ut
i j

� (t) f �
ui (t) f �

u j (t)(r ui + r u j Š 2 ¯r u (t))

(8.1)

Li (t) = 2
�

u � Ut
i

� (t) f 2�
ui (t)(r ui Š ¯r u (t))

We introduce the other adjustment term M which is as follows.

M i j (t) =
�

u � Ut
i j

� (t)2 · f �
ui (t) f �

u j (t) (8.2)

M i (t) =
�

u � Ut
i

� (t)2 · f 2�
ui (t) (8.3)

We can thus compute Pi j (t) incrementally as follows.

Pi j (t) = � Pi j (t) + eŠ2� [Pi j (t Š 1)Š Li j (t Š 1)+ Mi j (t Š 1)]

136

8.1. Appendix A: I-S IM

We can have a similar incremental update relation for Li j (t) as follows.

Li j (t) =
�

u � Ut
i j

� (t) f �
ui (t) f �

u j (t)(r ui + r u j Š 2 ¯r u (t))

= � Li j (t) + eŠ2�
�

u � Ut Š1
i j

(� (t Š 1)+ � �) f �
ui (t Š 1)f �

u j (t Š 1)(r ui + r u j Š 2 ¯r u (t))

= � Li j (t) + eŠ2�
�

u � Ut Š1
i j

(� (t Š 1)+ � �) f �
ui (t Š 1)f �

u j (t Š 1)(r ui + r u j Š 2 ¯r u (t Š 1)Š 2(� (t Š 1)+ � �))

= � Li j (t) + eŠ2�
�

u � Ut Š1
i j

(� (t Š 1)+ � �) f �
ui (t Š 1)f �

u j (t Š 1)(r ui + r u j Š 2 ¯r u (t Š 1))

Š 2eŠ2�
�

u � Ut Š1
i j

(� (t Š 1)+ � �)2 f �
ui (t Š 1)f �

u j (t Š 1)

Again, we ignore negligibly small higher order terms with the multiplicative factor � � · f �
ui (t) ·

f �
u j (t) as each of the terms { � � , f �

ui (t), f �
u j (t)} << 1, and thereby get the following:

Li j (t) =
�

u � Ut
i j

� (t) f �
ui (t) f �

u j (t)(r ui + r u j Š 2 ¯r u (t))

= � Li j (t) + eŠ2�
�

u � Ut Š1
i j

� (t Š 1)f �
ui (t Š 1)f �

u j (t Š 1)(r ui + r u j Š 2 ¯r u (t))

= � Li j (t) + eŠ2�
�

u � Ut Š1
i j

� (t Š 1)f �
ui (t Š 1)f �

u j (t Š 1)(r ui + r u j Š 2 ¯r u (t Š 1)Š 2� (t Š 1))

= � Li j (t) + eŠ2�
�

u � Ut Š1
i j

� (t Š 1)f �
ui (t Š 1)f �

u j (t Š 1)(r ui + r u j Š 2 ¯r u (t Š 1))

Š 2eŠ2�
�

u � Ut Š1
i j

(� (t Š 1))2 f �
ui (t Š 1)f �

u j (t Š 1)

We get the recursive relation for Li j (t) as follows.

Li j (t) = � Li j (t) + eŠ2� [Li j (t Š 1)Š 2Mi j (t Š 1)]

where the � Li j (t) is as follows.

� Li j (t) =
�

u � � Ut
i � Ut Š1

j

� (t) f �
u j (t)(r ui + r u j Š 2 ¯r u (t)) +

�

u � Ut Š1
i � � Ut

j

� (t) f �
ui (t)(r ui + r u j Š 2 ¯r u (t))

+
�

u � � Ut
i � � Ut

j

� (t)(r ui + r u j Š 2 ¯r u (t))

We can get a similar recursive relation for M i j (t) as follows.

M i j (t) = � M i j (t) + eŠ2� M i j (t Š 1)

137

Chapter 8. Appendices

where the � M i j (t) is as follows.

� M i j (t) =
�

u � � Ut
i � Ut Š1

j

� (t)2 f �
u j (t) +

�

u � Ut Š1
i � � Ut

j

� (t)2 f �
ui (t) +

�

u � � Ut
i � � Ut

j

� (t)2

We observe that the terms to be incrementally updated in order to update Pi j (t), namely

� Pi j (t), � Li j (t) and � M i j (t), have a time complexity bounded by O(|� Ut
i |+ | � Ut

j |). Note that

if Pi j (t) was updated non-incrementally then the time complexity would be O(|Ut
i � Ut

j |). With

each timestep, the number of new ratings for i (|� Ut
i |) tends to be signi“cantly smaller than

the total number of ratings for i (|Ut
i |). The difference is huge even for the average case as |Ut

i |

can be of the order of all users in the system.

We now provide the update relation for Qi (t).

Theorem 2 (Qi INCREMENTAL UPDATE). Given that � Ut
i denotes the set of users who newly rated

i at timestep t , i.e. � Ut
i = Ut

i \ Ut Š1
i , then the time complexity for updating Q i (t) is O(|� Ut

i |).

Proof. We again obtain a recursive relation between Qi (t) and Qi (t Š 1) by decomposing Qi (t)

as follows.

Qi (t) =
�

u � Ut
i

(f �
ui (t)(r ui Š ¯r u (t)))2 =

�

u � � Ut
i

(r ui Š ¯r u (t))2 +
�

u � Ut Š1
i

(f �
ui (t)(r ui Š ¯r u (t)))2

= � Qi (t) + eŠ2�
�

u � Ut Š1
i

(f �
ui (t Š 1)(r ui Š ¯r u (t Š 1)Š � (t)))2

= � Qi (t) + eŠ2�
�

u � Ut Š1
i

(f �
ui (t Š 1)(r ui Š ¯r u (t Š 1)))2 Š 2eŠ2�

�

u � Ut Š1
i

� (t) · f 2�
ui (t Š 1)(r ui Š ¯r u (t Š 1))

+ eŠ2�
�

u � Ut Š1
i

� (t)2 · f 2�
ui (t Š 1)

= � Qi (t) + eŠ2�
�

u � Ut Š1
i

(f �
ui (t Š 1)(r ui Š ¯r u (t Š 1)))2

Š 2eŠ2�
�

u � Ut Š1
i

(� (t Š 1)+ � �) · f 2�
ui (t Š 1)(r ui Š ¯r u (t Š 1)) + eŠ2�

�

u � Ut Š1
i

(� (t Š 1)+ � �)2 · f 2�
ui (t Š 1)

Ignoring negligibly small higher order terms with multiplicative factor � � · f 2� (t)
ui as each of the

terms { � � , f �
ui (t)} << 1, we get the following:

Qi (t) = � Qi (t) + eŠ2�
�

u � Ut Š1
i

(f �
ui (t Š 1)(r ui Š ¯r u (t Š 1)))2

Š 2eŠ2�
�

u � Ut Š1
i

� (t Š 1) · f 2�
ui (t Š 1)(r ui Š ¯r u (t Š 1)) + eŠ2�

�

u � Ut Š1
i

� (t Š 1)2 · f 2�
ui (t Š 1)

138

8.1. Appendix A: I-S IM

We rewrite this expression for Qi (t) in the following manner.

Qi (t) = � Qi (t) + eŠ2� [Qi (t Š 1)Š Li (t Š 1)+ Mi (t Š 1)]

Interestingly, the terms required for incrementally updating Qi (t), namely � Qi (t), � Li j (t)

and � M i j (t), have a time complexity bounded by O(|� Ut
i |). Note that the complexity for the

non-incremental update is again O(|Ut
i |).

Hence, the “nal incremental relations for adjusted cosine similarity are as follows.

Pi j (t) = � Pi j (t) + eŠ2� [Pi j (t Š 1)Š Li j (t Š 1)+ Mi j (t Š 1)] (8.4)

Qi (t) = � Qi (t) + eŠ2� [Qi (t Š 1)Š Li (t Š 1)+ Mi (t Š 1)] (8.5)

Li j (t) = � Li j (t) + eŠ2� [Li j (t Š 1)Š 2Mi j (t Š 1)] (8.6)

M i j (t) = � M i j (t) + eŠ2� M i j (t Š 1) (8.7)

The I-SIM values (Si j) can thus be computed on-the-”y, leveraging the incrementally updated

Pi j (t) and Qi (t) values. We only need to store the P, L, M and Q values which requires

O(|I |2) space. Unlike classical non-incremental algorithms [157], we require extra storage for

the adjustment terms (L, M). Note that the non-incremental algorithm would also require

O(|I |2) space for storing the item-item similarities. Nonetheless, incremental as well as non-

incremental algorithms could bene“t from sparse data structures for signi“cantly reducing

the storage requirements.

Ignoring the higher order terms mentioned throughout the proofs does not pose a limitation

to I-S IM . Additional levels of adjustment terms (similar to L, M) could be employed to

overcome these approximations at the cost of increasing the storage requirements (the space

complexity remains O(|I |2)). Nevertheless, as we also demonstrate empirically (§4.1.4), these

negligibly small higher order terms indeed do not impact our accuracy. Approximate similarity

computations have been successfully used to provide performance bene“ts, both in terms of

computation time and storage with negligible impact on the accuracy [30, 140, 7]. Therefore,

since there is no practical trade-off between accuracy and storage, we choose to employ only a

single level of adjustment terms.

139

Chapter 8. Appendices

8.2 Appendix B: X-M AP

8.2.1 Correctness proofs

Theorem 4 (PRIVACY GUARANTEE). Given any item i , we denote the global sensitivity of X-

SIM by GS and the similarity between i and any arbitrary item j by X-SIM (i , j). Our Private

Replacement Selection (PRS) mechanism, which outputs j as the replacement with a probability

proportional to exp (� ·X-SIM (i , j)
2·GS), ensures� -differential privacy.

Proof. Consider two datasets D and D� which differ at one user, say u. We denote X-SIM

(i , j) in dataset D as q(D,i , j) and I (i) as the set of items in target domain with quanti“ed

X-SIM values. The global sensitivity (GS) is de“ned as max D,D � ||q(D,i , j) Š q(D �, i , j)||1. Our

PRS mechanism outputs an item j as a private replacement for i . Then, we get the following

equality:

Pr [PRS(i , I (i), q(D, I (i))) = j]

Pr [PRS(i , I (i), q(D �, I (i))) = j]
=

exp(� ·q(D,i , j)
2·GS)

�

k � I (i)
exp(� ·q(D,i ,k)

2·GS)
÷

exp(� ·q(D � ,i , j)
2·GS)

�

k � I (i)
exp(� ·q(D � ,i ,k)

2·GS)

=
exp(� ·q(D,i , j)

2·GS)

exp(� ·q(D � ,i , j)
2·GS)

	
� �
P

·

�

k � I (i)
exp(� ·q(D � ,i ,k)

2·GS)

�

k � I (i)
exp(� ·q(D,i ,k)

2·GS)

	
� �
Q

P = exp(
� · (q(D,i , j) Š q(D �, i , j))

2 ·GS
) � exp(

� ·GS

2·GS
) = exp(

�

2
)

Q =

�

k � I (i)
exp(� ·q(D � ,i ,k)

2·GS)

�

k � I (i)
exp(� ·q(D,i ,k)

2·GS)
�

�

k � I (i)
exp(� ·(q(D,i ,k)+GS)

2·GS)

�

k � I (i)
exp(� ·q(D,i ,k)

2·GS)
=

exp(�
2) ·

�

k � I (i)
exp(� ·q(D,i ,k)

2·GS)

�

k � I (i)
exp(� ·q(D,i ,k)

2·GS)
= exp(

�

2
)

Therefore, we get the following inequality:

Pr [PRS(i , I (i), q(D, I (i))) = j]

Pr [PRS(i , I (i), q(D �, I (i))) = j]
� exp(�)

Hence, PRS provides � -differential privacy.

Theorem 5 (SIMILARITY -BASED SENSITIVITY). Given any score function q : R � R and a dataset

D, we formulate the similarity-based sensitivity corresponding to a score function qi (I , j) for a

pair of items i and j as:

SS(i , j) = max
�
max ux � Ui j

� r xi × r x j

� r �
i � × � r �

j �

�
,max ux � Ui j

� r i · r j

� r �
i � × � r �

j �
Š

r i · r j

� r i � × � r j �

��

140

8.2. Appendix B: X-M AP

Proof. We now provide the proof of the similarity-based sensitivity. First, we de“ne similarity-

based sensitivity (SS) as follows.

SS(i , j) = max � s(i , j) Š s�(i , j) � 1

We then insert the similarity values for s(i , j). A rating vector r i = [r ai , ...,r xi , r yi] consists of all

the ratings for an item i . Note that here a rating r xi denotes the result after subtracting the

average rating of user x (¯r x) from the actual rating provide by x for an item i . Then, we get the

following equality:

s(i , j) Š s�(i , j) =
r i · r j

� r i � × � r j �
Š

r �
i · r �

j

� r �
i � × � r �

j �

=
r i · r j × � r �

i � × � r �
j � Š r �

i · r �
j × � r i � × � r j �

� r i � × � r j � × � r �
i � × � r �

j �
=

P

Q

We assume that the pro“le of a user x, in D, is not present in D �. This user rated both i and j

in D. Note that if this user rated one of these items or none, then the similarity value does not

depend on the presence or absence of this user in the dataset. Hence, the following inequality

holds: � r �
i � × � r �

j ��� r i � × � r j � .

Based on our assumption, P= (r i · r j × � r �
i � × � r �

j � Š r �
i · r �

j × � r i � × � r j �) and Q=(� r i � × �

r j � × � r �
i � × � r �

j �). Hence, Q � 0 and depending on whether P � 0 or P � 0 we have two

conditions which are as follows.

If P � 0, then we get the following inequality:

� s(i , j) Š s�(i , j) � 1 =
r i · r j × � r �

i � × � r �
j � Š r �

i · r �
j × � r i � × � r j �

� r i � × � r j � × � r �
i � × � r �

j �

�
(r i · r j Š r �

i · r �
j)× � r i � × � r j �

� r i � × � r j � × � r �
i � × � r �

j �
=

(r i · r j Š r �
i · r �

j)

� r �
i � × � r �

j �

If P � 0, then we get the following inequality:

� s(i , j) Š s�(i , j) � 1 =
r �

i · r �
j × � r i � × � r j � Š r i · r j × � r �

i � × � r �
j �

� r i � × � r j � × � r �
i � × � r �

j �

=
(r i · r j Š r xi × r x j)× � r i � × � r j �

� r i � × � r j � × � r �
i � × � r �

j �
Š

r i · r j × � r �
i � × � r �

j �

� r i � × � r j � × � r �
i � × � r �

j �

=
r i · r j × (� r i � × � r j � Š � r �

i � × � r �
j �)

� r i � × � r j � × � r �
i � × � r �

j �
Š

r xi × r x j × � r i � × � r j �

� r i � × � r j � × � r �
i � × � r �

j �

141

Chapter 8. Appendices

�
r i · r j × (� r i � × � r j � Š � r �

i � × � r �
j �)

� r i � × � r j � × � r �
i � × � r �

j �
=

r i · r j

� r �
i � × � r �

j �
Š

r i · r j

� r i � × � r j �

Hence, the similarity-based sensitivity is as follows:

SS(i , j) = max
�
max ux � Ui j

� r xi × r x j

� r �
i � × � r �

j �

�
,max ux � Ui j

� r i · r j

� r �
i � × � r �

j �
Š

r i · r j

� r i � × � r j �

��

8.2.2 Additional experiments

A. User-based vs Item-based recommenders

Different practical deployment scenarios bene“t from the proper choice of the recommenda-

tion algorithm. One requirement, which is crucial to any deployment scenario, is Scalability .

We highlight below two factors which affect scalability in such deployment scenarios.

€ Item-based recommenders leverage item-item similarities whereas user-based recom-

menders leverage user-user similarities. For big e-commerce players (e.g., Amazon, e-Bay),

the number of items is signi“cantly less than the number of users. Hence, such players

would prefer an item-based approach for scalability purpose. For new players, the number

of items would be signi“cantly larger than the number of users. Such new players would

thus bene“t from a user-based approach for scalability.

€ Similarities between items tend not to vary much from day to day, or even week to week [5].

Over ranges of months, however, the similarities do vary due to various temporal factors

like item popularity, behavioral drift of users. In this sense, item-item similarities are much

less dynamic than user-user similarities and thus they require fewer updates.

We conducted an experiment, which we describe below, through which we demonstrate how

the computation time differs for these two algorithms in two deployment scenarios. In both

the scenarios, we consider the movies domain as the source domain and the books domain as

the target domain.

S1. In the “rst deployment scenario, we retain the original Amazon dataset. The movies

dataset consists of ratings from 473,764users for 128,402movies whereas the books dataset

consists of ratings from 725,846users for 403,234books. We observe that the number of users

is approximately 1 .8× the number of books in the target domain. This deployment scenario

depicts the instance of big e-commerce players.

S2. In the second deployment scenario, we modify the dataset of the target domain (books).

The pro“les of the overlapping users are retained unchanged whereas those of the non-

overlapping users in the target domain are sorted, in a descending order, by the number of

142

8.2. Appendix B: X-M AP

corresponding ratings in the pro“les (pro“le size). Finally, only the top 100,000users are

retained in the target domain. This customized dataset consists of 104,535users and 236,710

books in the target domain. We observe that the number of items is now nearly 2 .27× the

number of users. This deployment scenario depicts the instance of new e-commerce players.

Approach S1 S2

Time (s) Time (s)
X-M AP-UB 886 870
X-M AP- IB 844 962

NX-M AP-UB 822 805
NX-M AP- IB 674 877

Table 8.1 …Comparison between user-based (UB) and item-based (IB) recommenders in differ-
ent deployment scenarios with Amazon datasets. Bold denotes faster computation time relative
to the alternative.

We evaluate the recommendation quality in terms of Mean Absolute Error (MAE). We observe

the following behaviour from Table 8.1.

€ The item-based version (IB) is computationally faster than the user-based alternative (UB)

in scenario S1 where the number of users is approximately 1 .8× the number of books in

the target domain.

€ The user-based version (UB) is computationally faster than the item-based alternative (IB)

in scenario S2 where the number of items is nearly 2.27 × the number of users.

B. Comparison with a dimensionality reduction approach

We now compare X-M AP with a dimensionality reduction approach such as matrix factoriza-

tion. For this purpose, we choose Spark•s Alternating Least Squares (ALS) implementation

available with its ML LIB library, denoted here by ML LIB-ALS, and apply it over the combined

Amazon dataset (movies, books) of items and users while keeping the test set same as the one

used for evaluating X-M AP (mentioned in the paper). We optimally tune ML LIB-ALS with

varying parameters like the number of latent factors in the model (rank) or the regularization

parameter (�) to obtain the best recommendation quality.

S:Movie, T:Book S:Book, T:Movie
NX-M AP 0.5332 0.5470
X-M AP 0.6616 0.6884

ML LIB-ALS 0.7527 0.8237

Table 8.2 …MAE comparison between NX-M AP, X-M AP and ML LIB-ALS on Amazon datasets.

Table 8.2 depicts the results of this experiment. We observe that ML LIB-ALS does not perform

so well in a heterogeneous recommendation scenario which could be partially attributed

143

Chapter 8. Appendices

to the decreased density 1 of the combined Amazon dataset (movies and books), shown in

Table 8.3, as well as the different online behavior of the users in the two domains.

Books Movies Books+Movies

0.0204 % 0.0569 % 0.0147 %

Table 8.3 …Densities for two domains in the Amazon dataset.

1Rating density is de“ned as the fraction of collected ratings over all the possible ratings.

144

Bibliography

[1] M. S. Ackerman and D. T. Davis Jr. Privacy and security issues in e-commerce. In New

Economy Handbook, pages 911…930. Academic Press/ Elsevier, 2003. [Cited on page 96]

[2] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems:

A survey of the state-of-the-art and possible extensions. In Transactions on Knowledge

and Data Engineering (TKDE) , pages 734…749. IEEE, 2005. [Cited on pages 3, 5, 60, 101,

and 113]

[3] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb: queries

with bounded errors and bounded response times on very large data. In Proceedings of

the 8th ACM European Conference on Computer Systems, pages 29…42. ACM, 2013. [Cited

on page 24]

[4] N. Ahituv, Y. Lapid, and S. Neumann. Processing encrypted data. Communications of

the ACM, 30(9):777…780, 1987. [Cited on page 97]

[5] K. Ali and W. Van Stam. Tivo: making show recommendations using a distributed col-

laborative “ltering architecture. In Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining , pages 394…401. ACM, 2004. [Cited

on pages xvii, 33, 44, 45, and 142]

[6] D. Alistarh, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Randomized quantization for

communication-optimal stochastic gradient descent. In NIPS, 2017. [Cited on page 131]

[7] G. Amato and P. Savino. Approximate similarity search in metric spaces using inverted

“les. In Proceedings of the 3rd international conference on Scalable information systems ,

page 28. ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-

cations Engineering), 2008. [Cited on page 139]

[8] X. Amatriain, J. M. Pujol, and N. Oliver. I like it... i like it not: Evaluating user ratings noise

in recommender systems. In International Conference on User Modeling, Adaptation,

and Personalization , pages 247…258. Springer, 2009. [Cited on page 124]

[9] Aws ec2 instances and pricing. http://aws.amazon.com/ec2. [Cited on page 32]

145

Bibliography

[10] Amazon: About recommendations. https://www.amazon.com/gp/help/customer/

display.html?ie=UTF8&nodeId=16465251. [Cited on page 76]

[11] L. Ardissono, A. Goy, G. Petrone, and M. Segnan. A multi-agent infrastructure for

developing personalized web-based systems. ACM Transactions on Internet Technology

(TOIT), 5(1):47…69, 2005. [Cited on page 33]

[12] U. Awada, K. Li, and Y. Shen. Energy consumption in cloud computing data centers.

International Journal of Cloud Computing and services science , 3(3):145, 2014. [Cited on

page 39]

[13] L. Baltrunas and X. Amatriain. Towards time-dependant recommendation based on

implicit feedback. In Workshop on context-aware recommender systems (CARS•09), 2009.

[Cited on page 76]

[14] L. Baltrunas and F. Ricci. Context-based splitting of item ratings in collaborative “ltering.

In Proceedings of the third ACM conference on Recommender systems, pages 245…248.

ACM, 2009. [Cited on pages 103, 118, and 125]

[15] R. Bambini, P. Cremonesi, and R. Turrin. A recommender system for an iptv service

provider: a real large-scale production environment. Recommender systems handbook,

pages 299…331, 2011. [Cited on page 39]

[16] O. Barkan and N. Koenigstein. Item2vec: neural item embedding for collaborative

“ltering. In Machine Learning for Signal Processing (MLSP), 2016 IEEE 26th International

Workshop on, pages 1…6. IEEE, 2016. [Cited on pages 60, 67, and 75]

[17] L. Barkhuus and A. K. Dey. Location-based services for mobile telephony: a study of

users• privacy concerns. In Interact , volume 3, pages 702…712, 2003. [Cited on page 76]

[18] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a system for secure multi-party com-

putation. In Proceedings of the 15th ACM conference on Computer and communications

security, pages 257…266. ACM, 2008. [Cited on page 98]

[19] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language model.

Journal of machine learning research , 3(Feb):1137…1155, 2003. [Cited on page 67]

[20] S. Berkovsky, T. Ku”ik, and F. Ricci. Cross-domain mediation in collaborative “ltering.

User Modeling 2007, pages 355…359, 2007. [Cited on pages 103, 118, 124, and 125]

[21] S. Berkovsky, T. Ku”ik, and F. Ricci. Distributed collaborative “ltering with domain

specialization. In Proceedings of the 2007 ACM conference on Recommender systems,

pages 33…40. ACM, 2007. [Cited on page 124]

[22] M. Bertier, D. Frey, R. Guerraoui, A.-M. Kermarrec, and V. Leroy. The gossple anonymous

social network. In Proceedings of the ACM/IFIP/USENIX 11th International Conference

on Middleware , pages 191…211. Springer-Verlag, 2010. [Cited on pages 24 and 25]

146

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

