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Abstract
The ever-growing amount of online information calls for Personalization. Among the various

personalization systems, recommenders have become increasingly popular in recent years.

Recommenders typically use collaborative filtering to suggest the most relevant items to their

users.

The most prominent challenges underlying personalization are: scalability, privacy, and het-

erogeneity. Scalability is challenging given the growing rate of the Internet and its dynamics,

both in terms of churn (i.e., users might leave/join at any time) and changes of user interests

over time. Privacy is also a major concern as users might be reluctant to expose their profiles

to unknown parties (e.g., other curious users), unless they have an incentive to significantly

improve their navigation experience and sufficient guarantees about their privacy. Hetero-

geneity poses a major technical difficulty because, to be really meaningful, the profiles of

users should be extracted from a number of their navigation activities (heterogeneity of source

domains) and represented in a form that is general enough to be leveraged in the context of

other applications (heterogeneity of target domains).

In this dissertation, we address the above-mentioned challenges. For scalability, we introduce

democratization and incrementality. Our democratization approach focuses on iteratively

offloading the computationally expensive tasks to the user devices (via browsers or applica-

tions). This approach achieves scalability by employing the devices of the users as additional

resources and hence the throughput of the approach (i.e., number of updates per unit time)

scales with the number of users. Our incrementality approach deals with incremental similar-

ity metrics employing either explicit (e.g., ratings) or implicit (e.g., consumption sequences

for users) feedback. This approach achieves scalability by reducing the time complexity of

each update, and thereby enabling higher throughput.

We tackle the privacy concerns from twoperspectives, i.e., anonymity fromeither other curious

users (user-level privacy) or the service provider (system-level privacy). We strengthen the

notion of differential privacy in the context of recommenders by introducing distance-based

differential privacy (D2P) which prevents curious users from even guessing any category

(e.g., genre) in which a user might be interested in. We also briefly introduce a recommender

(X-REC) which employs uniform user sampling technique to achieve user-level privacy and an

efficient homomorphic encryption scheme (X-HE) to achieve system-level privacy.
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Abstract

We also present a heterogeneous recommender (X-MAP) which employs a novel similarity

metric (X-SIM) based on paths across heterogeneous items (i.e., items from different domains).

To achieve a general form for any user profile, we generate her AlterEgo profile in a target

domain by employing an item-to-item mapping from a source domain (e.g., movies) to a

target domain (e.g., books). Moreover, X-MAP also enables differentially private AlterEgos.

While X-MAP employs user-item interactions (e.g., ratings), we also explore the possibility of

heterogeneous recommendation by using content-based features of users (e.g., demography,

time-varying preferences) or items (e.g., popularity, price).

Keywords: personalization, recommender, machine learning, collaborative filtering, differen-

tial privacy, heterogeneity, similarity metric, scalability, energy efficiency, graph, distributed

system.
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Résumé
La quantité croissante d’informations en ligne appelle à la Personnalisation. Parmi les dif-

férents systèmes de personnalisation, les systèmes de recommandation sont devenus de

plus en plus populaires ces dernières années. Les systèmes de recommandations utilisent

généralement le filtrage collaboratif pour suggérer les éléments les plus pertinents à leurs

utilisateurs.

Les défis les plus importants sous-jacents à la personnalisation sont : l’évolutivité des systèmes

(« scalability« ), la confidentialité et l’hétérogénéité. L’évolutivité est difficile compte tenu du

taux croissant d’Internet et de sa dynamique, tant en termes de taux de désabonnement (c’est-

à-dire, les utilisateurs peuvent quitter / rejoindre à toutmoment) et les changements d’intérêts

des utilisateurs au fil du temps. La confidentialité est également une préoccupation majeure

car les utilisateurs peuvent être réticents à exposer leurs profils à des parties inconnues (par

exemple, d’autres utilisateurs curieux), à moins d’être incités et d’améliorer significativement

leur expérience de navigation et en garantissant leur confidentialité. L’hétérogénéité pose une

difficulté technique majeure car, pour être vraiment significatif, les profils des utilisateurs

doivent être extraits d’un certain nombre de leurs activités de navigation (hétérogénéité des

domaines sources) et représenté sous une forme suffisamment générale pour être exploitée

dans le contexte d’autres applications (hétérogénéité des domaines cibles).

Dans cette thèse, nous abordons les défis mentionnés ci-dessus. Pour l’évolutivité, nous

introduisons la démocratisation et l’incrémentalité. Notre approche de démocratisation se

concentre sur le transfert des tâches coûteuses en calcul vers les périphériques utilisateurs

(via les navigateurs ou les applications) de manière itérative. Cette approche permet l’évoluti-

vité en utilisant les dispositifs des utilisateurs en tant que ressources supplémentaires et par

conséquent le débit de l’approche (c’est-à-dire le nombre de mises à jour par unité de temps)

augmente avec le nombre d’utilisateurs. Notre approche incrémentale utilise des métriques

de similarité incrémentale employant des retours explicites (par exemple, évaluations) ou im-

plicites (par exemple, des séquences de consommation pour les utilisateurs). Cette approche

permet une évolutivité en réduisant la complexité temporelle de chaque mise à jour et en

permettant ainsi un débit plus élevé.

Nous abordons les problèmes de confidentialité sous deux angles, à savoir l’anonymat vis-à-

vis des autres utilisateurs curieux (confidentialité au niveau de l’utilisateur) ou du fournisseur

de services (confidentialité au niveau du système). Nous renforçons la notion de confiden-
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Résumé

tialité différentielle dans le contexte des systèmes de recommandation en introduisant la

confidentialité différentielle basée sur la distance (« distance-based differential privacy« D2P)

qui empêche les utilisateurs curieux de deviner ne serait-ce qu’une catégorie (par exemple,

genre) dans laquelle un utilisateur pourrait être intéressé. Nous abordons aussi brièvement

un système de recommandation (X-REC) qui utilise la technique d’échantillonnage utilisa-

teur uniforme pour atteindre la confidentialité au niveau de l’utilisateur et un schéma de

chiffrement homomorphique efficace (X-HE) pour atteindre la confidentialité au niveau du

système.

Nous présentons également un système de recommandation hétérogène (X-MAP) qui utilise

une nouvelle métrique de similarité (X-SIM) basée sur les chemins entre des éléments hétéro-

gènes (c’est-à-dire, des éléments de différents domaines). Pour obtenir une forme générale

pour n’importe quel profil utilisateur, nous générons son profil AlterEgo dans un domaine

cible en utilisant un portage élément à élément d’un domaine source (par exemple des films)

vers un domaine cible (par exemple, des livres). De plus, X-MAP permet également d’obte-

nir des profils AlterEgos privés au sens différentiel. Bien que X-MAP utilise des interactions

utilisateur (par exemple des évaluations), nous explorons également la possibilité d’une re-

commandation hétérogène en utilisant les « caractéristiques de contenu » des utilisateurs (p.

Ex., Démographie, préférences variables) ou des éléments (popularité, prix).

Mots-clés : personnalisation, recommandation, apprentissage automatique, filtrage collabo-

ratif, confidentialité différentielle, hétérogénéité, métrique de similarité, évolutivité, efficacité

énergétique, graphique, système distribué.
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1 Introduction

In the modern generation of web-based services, the number of users is increasing continu-

ously. This number bumped up from 16 million users in 1995 to 3.6 billion users in 2017. Such

an immense growth in the number of users evidently led to an exponential increase in the

amount of data available online (about 2.5 billion GB of data are created everyday). As a result,

the web has become a big storehouse of information, making it impossible for any individual

to explore the whole web contents to extract relevant data. Subsequently, personalization [25]

has become an essential tool to navigate this wealth of information available on the Internet.

Particularly popular now are recommender systems [107] which provide users with personal-

ized content, based on their past online behavior (e.g., browsing history, clicks) and that of

other similar users. These systems have been successfully employed by major online retailers

such as Amazon to propose new items to their customers. Social networking sites, such as

Facebook or Twitter, exploit these systems to suggest friends/followers to their users and to

filter the content displayed on their feeds. Google or Yahoo! use these systems to provide

personalized news to registered users. Personalization has now become ubiquitous in social

media platforms and employed by almost all big players (e.g., Google, Facebook, Amazon) as

well as relatively smaller ones (e.g., startups).

1.1 Challenges in Personalization

While appealing, building such personalization systems raises several technical challenges.

We discuss about these technical challenges in the following.

1.1.1 Scalability

As wementioned earlier that the growth in the number of online users led to the emergence

of personalization. However, the personalization schemes also need to be scalable in order

to process the ever-growing amount of information created by the users. Personalization

schemes, employed to build recommender systems, demand immense amount of computing
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Chapter 1. Introduction

resources to process this huge volume of information and provide relevant personalized

content. Moreover, any such recommender system continuously needs to be updated due

to an ever-increasing amount of data, collected from online platforms, with ever-changing

patterns due to various factors e.g., popularity of items or behavioral trends of users [45, 193].

Billion-dollar companies such as Google or Facebook leverage their personal huge data centers

to distribute the computations for updating the recommender system using the incoming data

either in an onlinemanner (e.g.., stream processing [92]) or in an offlinemanner (e.g., batch

processing [163] at predetermined periodic intervals). For relatively smaller service providers,

the most practical option is to employ cloud-based computing resources such as Amazon EC2

or Microsoft Azure but only in an offline manner. As a result, there are significant investments

(i.e., Total Cost of Ownership) involved in employing such cloud-based resources. Dimension

reduction and algorithmic optimizations [74, 66], or sample-based approaches [54, 61, 51],

partially tackle the problem by reducing the time complexity of each update at the cost of

performing more updates in a parallelized fashion. Yet there exists the need of significant

investments in computational resources with growing number of users and items [143, 46, 28].

Even with massive parallelization (map-reduce [49]) on multicore architectures [151, 130] or

elastic cloud architectures [46], personalization remains expensive in terms of both hardware

and energy consumption [38, 133]. In this thesis, the main technical challenge concerning

scalability is to design novel solutions that significantly reduce the number of computations

(i.e., time complexity) for updating the recommender system and thereby also reduce the

investment in computing resources.

1.1.2 Privacy

The growing tendency towards personalization has raised several privacy concerns [150] as

more and more personal data is being collected and used by various personalization services.

It is often observed that when an Internet user accesses some service, the provider of this

service typically claims the ownership of any personal information provided by the user. The

service provider sometimes even distributes the collected information to third parties like

advertising and promotional partners [168]. Even the sharing of anonymized user information

like the Netflix Prize dataset might end up not being secure. For instance, Narayanan et. al

presented a de-anonymization attack that linked the records in the Netflix Prize dataset with

the IMDb profiles available publicly [139].

Personalization systems like recommenders are particularly fragile with respect to privacy due

to their ability to provide serendipitous recommendations (i.e., unexpected but desired recom-

mendations) [150]. Recommender systems typically make predictions about the preferences

of any user by analyzing the preferences of other users. Hence, recommenders are particularly

vulnerable to privacy attacks as they directly rely on information about users to provide rele-

vant recommendations. Recommenders aggregate user preferences [152] in ways analogous

to database queries, which can be exploited by adversaries to extract personal identifiable

information about a specific user [150]. In this thesis, the primary challenge concerning
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privacy is to provide novel privacy-preserving solutions (with some formal guarantees) which

do not affect the recommendation quality significantly, and also do not require a significant

computation overhead for the privacy preservation.

1.1.3 Heterogeneity

Although widely used today, recommender systems are mainly applied in a homogeneous

sense: movie recommenders like IMDb or Netflix, news recommenders like Google News

or Yahoo News, as well as music recommenders like Last.fm or Spotify, each focuses on a

single specific application domain. In short, you will be recommended books only if you rated

books, and you will be recommended movies only if you rated movies. Given the growing

multiplicity of web applications, homogeneity is a major limitation. For example, with most

state-of-the-art recommenders, Alice who just joined a book-oriented web application, and

never rated any book before, cannot be recommended any relevant book, even if she has been

rating many movies. This example is a classical illustration of the cold-start problem [159] in

recommender systems.

Heterogeneous preferences on the web, i.e., preferences frommultiple application domains,

could be leveraged to improve personalization furthermore, not only for users who are new to

a domain (i.e., cold-start situation), but also when the data is sparse [2] (e.g., a very few ratings

per user). The scalability and privacy challenges become even more crucial in heterogeneous

recommenders due to increasing connections across users and items frommultiple domains

or applications. In this thesis, the technical challenge is to design a private and scalable

heterogeneous recommender which provides relevant recommendations across multiple

domains or applications.

1.2 Contributions

In this thesis, we address the above-mentioned technical challenges concerning personaliza-

tion. We present the main contributions of this thesis in the following which are ordered by

the topics.

1.2.1 Scalability

In this thesis, we focus on two primary directions that improves the scalability of current

state-of-the-art personalization systems. We improve scalability by designing iterative or

incremental solutions that significantly reduce the number of computations for updating the

recommender system.
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A. Democratization

In our first step, we focus on the democratization of computationally expensive jobs for

updating the recommender. We use the notion of democratization since our solution can be

easily deployed by any service provider irrespective of the available computational resources.

The objective here is to offload customized computation jobs to computational devices which

could be high-end devices like laptops as well as lightweight devices like smartphones or

tablets. Typically, these are the devices of the end-users who are using the personalization

service for getting relevant suggestions. The computation jobs are customized based on the

computational capacity of the corresponding computing device. In Chapter 3.1 of this thesis,

we introduce HYREC [27] which offloads computational jobs of constant time complexity

to the devices. The motivation of this work is to explore solutions that can democratize

personalization by making it accessible to any content-provider company, without requiring

huge investments. HYREC employs an iterative technique to update the nearest-neighbor

graph [174] of users. Such an iterative solution also scales out with an increasing number

of users as the throughput, in terms of the number of updates, increases with more devices

from the users. HYREC employs a hybrid architecture capable of providing a cost-effective

personalization platform to web-content services. Instead of scaling through either larger and

larger recommendation back-end servers, or through fully decentralizing the recommendation

process by relying solely on the front-end clients, HYREC delegates expensive computation

tasks to the clients while, at the same time, retaining on the server side the recommender’s

coordination tasks and the maintenance of the user-user graph (i.e., nearest-neighbor graph)

which reflects the relationship between different users.

We also give a brief overview regarding how we can extend this idea of iteratively offloading

computational jobs to Machine Learning (ML) applications. In Chapter 3.2 of this thesis, we

present HYML, an extension of HYREC, which offloads computational jobs proportional to

the device features (e.g., available memory, cpu cores). Unlike collaborative filtering employed

in HYREC, performance variability, due to varying device features, poses a significant chal-

lenge [196] to train any centralizedML algorithm (i.e., a global MLmodel stored and updated

on a central server) by employing users’ devices. Due to the asynchronous nature [120] of the

training procedure (i.e., model updates) combined with the heterogeneity of the mobile de-

vices, there exists significant performance difference between the slow and fast mobile devices.

HYML currently employs classical heterogeneity-aware model update algorithms [97, 196] in

such a heterogeneous environment of mobile computing devices.

B. Incrementality

We next focus on the incrementality of the updates for the recommender system. At the heart

of many practical collaborative filtering techniques [92] lies the computation of similarities

between users, also known as like-mindedness. Even for trust-distrust prediction in Online

Social Networks (OSNs), nearest neighbor graphs employ similarities between the nodes [197].

We observe that existing similarity metrics [157, 187] were not designed to handle a very
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large number of users with rapidly changing behavior. Moreover, recommenders typically

collect user preferences using explicit feedback such as numerical ratings (star ratings in

IMDb, Netflix, Amazon), binary preferences (likes/dislikes in Youtube), or unary preferences

(retweets in Twitter). However, in systems where the item catalog is large, users tend to give

explicit feedback on a trace amount of those items leading the classical sparsity issue [2]. This

led to the usage of recommenders employing implicit feedback (e.g., time corresponding to

purchase events [115] or purchase sequences [39]). We provide incremental solutions for

recommender systems employing either explicit feedback (in Chapter 4.1) or implicit feedback

(in Chapter 4.2).

In Chapter 4.1 of this thesis, we introduce a novel similarity metric, we call I-SIM [45], which

enables lightweight similarity computations incorporating the rapidly changing temporal

behavior of users. I-SIM can be considered as a “temporalization” of the adjusted cosine

similarity [157] and hence of the cosine similarity which is a specific instance of adjusted

cosine similarity. Therefore, I-SIM can be easily integrated with other time-aware applications

in Online Social Networks (OSNs) e.g., trust-distrust predictions. I-SIM is lightweight in

the sense that it can be updated incrementally to achieve low latency and limited energy

consumption. Lastly, we highlight the fact that I-SIM employs explicit feedback from users

(e.g. ratings) for the incremental updates.

As we mentioned above, relying on explicit feedback raises issues regarding feedback sparsity

(thereby impacting the quality of recommendations [2]), and limited efficiency for recom-

mending fresh items in reaction to recent user actions [122]. We investigate the existence of a

higher level abstraction for sequences of consumed items, and algorithms for dealing with

them. In Chapter 4.2 of this thesis, we introduce the notion of consumed item packs (CIPS [78])

to extract relevant implicit information from consumption history logs of users. We propose

novel algorithms using CIPS. To address scalability, the CIP-based algorithms are incremental:

they enable to incorporate fresh items consumed recently by users, in order to update the

recommendations in an efficient manner.

1.2.2 Privacy

In this thesis, we investigate how we can protect the privacy of users while providing per-

sonalized recommendations. We consider two levels of privacy. The first level is to protect

the privacy of any user from other curious users (who can perform attacks [31]) which we

denote as user-level privacy. The second level is to protect the privacy of users from the service

provider itself which we denote as system-level privacy.

In Chapter 5.1 of this thesis, we present D2P, a novel protocol that uses a probabilistic substi-

tution technique to create the AlterEgo profile of an original user profile. D2P ensures a strong

form of differential privacy [55, 57], which we call Distance-based Differential Privacy [76].

Differential privacy [55, 57] is a celebrated property, originally introduced in the context of

databases. Intuitively, it ensures that the removal of a record from a database does not change
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the result of a query to that database - modulo some arbitrarily small value (ε). In this sense,

the presence in the database of every single record - possibly revealing some information

about some user - is anonymous as no query can reveal the very existence of that record to

any other user (modulo ε). Applying this notion in the context of recommenders would mean

that - modulo ε - no user v would be able to guess - based on the recommendations she gets

- whether some other user u has some item i in her profile, e.g., whether u has seen some

movie i . Such a guarantee, however, might be considered weak as nothing would prevent v

from guessing that u has in her profile some item that is very similar to i , e.g., that u has seen

some movie similar to i . We strengthen the notion of differential privacy in the context of

CF recommenders to guarantee that any user v is not only prevented from guessing whether

the profile of u contains some item i , but also whether the profile of u contains any item i ′

within some distance λ from i (say any movie of the same category of i ): hence the name

Distance-based Differential Privacy (D2P). Our D2P protocol ensures this property.

In Chapter 5.2 of this thesis, we provide a brief overview of how we design X-REC [77], a

novel recommender which ensures the privacy of users against the service provider (system-

level privacy) or other curious users (user-level privacy) with negligible increase of latency

in providing recommendations to end-users (due to the privacy overhead), while preserving

recommendation quality. X-REC employs a uniform user sampling technique to achieve user-

level privacy and an efficient homomorphic encryption scheme (X-HE) to achieve system-level

privacy.

1.2.3 Heterogeneity

In Chapter 6 of this thesis, we present a heterogeneous recommender which we call X-MAP:

Cross-domain personalization system [75]. X-MAP employs a novel similarity metric, X-SIM,

which computes a meta-path-based1 transitive closure of inter-item similarities across sev-

eral domains. X-SIM involves adaptations, to the heterogeneous case, of classical signifi-

cance weighting [84] (to account for the number of users involved in a meta-path) and path

length [150] (to capture the effect of meta-path lengths) schemes. X-MAP also employs the

notion of AlterEgos, namely artificial profiles (created using X-SIM), of users even in domains

where they have no or very little activity yet. We generate an AlterEgo profile (of Alice) in a

target domain leveraging an item-to-itemmapping from a source domain (e.g., movies) to the

target domain (e.g., books). AlterEgos enable to integrate any standard recommendation fea-

ture in the target domain and preserve, for example, the temporal behavior of users [53] across

the domains. X-MAP also provides differential privacy by using an obfuscation mechanism,

based on the meta-path-based similarities, to guarantee differentially private AlterEgos. We

also briefly explore the possibility to perform content-enabled heterogeneous recommenda-

tions [144] by employing statistical aggregates of user features (e.g., demography, time-varying

preferences) or item features (e.g., popularity, price).

1A meta-path in a heterogeneous graph G can be defined as a sequence of adjacent heterogeneous vertices (e.g.,
movies or books) connected by edges in G.
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1.3 Roadmap

The rest of this thesis is organized as follows.

P
A

R
T

I

� Chapter 2 presents some preliminary concepts in recommender systems, namely, collabo-

rative filtering, differential privacy, and temporal relevance, along with the standard quality

metrics used to evaluate the recommenders.

P
A

R
T

II

� Chapter 3 presents the democratization approach for recommender systems (HYREC) and

then provides a brief overview regarding how the idea can be extended to classical machine

learning applications (HYML).

� Chapter 4 presents two incrementality approaches for scalability depending on the type of

the feedback which could be either explicit (I-SIM) or implicit (CIP).

P
A

R
T

II
I� Chapter 5 presents our notion of distance-based differential privacy (D2P) which strength-

ens the notion of classical differential privacy used for providing user-level privacy in

recommenders. We also provide a brief overview regarding how we can achieve system-

level privacy besides user-level privacy by employing X-REC.

P
A

R
T

IV� Chapter 6 presents a heterogeneous recommender system (X-MAP) which enables recom-
mendations across multiple domains based on user-item interactions (e.g., ratings). We

also briefly explore content-enabled heterogeneous recommendations.

P
A

R
T

V� Chapter 7 summarizes the contributions of this thesis along with its implications at a high
level. We also highlight some interesting research directions as potential future work that

the contributions of this thesis enable.

P
A

R
T

V
I

� Chapter 8 provides some supplementary materials (e.g., correctness proofs, additional

experiments) for interested readers.
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PART I

Preliminaries

In this part of the thesis, we present the primary background concepts required for understand-

ing the various personalization-related approaches covered in this thesis. These concepts are

elementary to this thesis and we refer to them throughout the rest of the chapters.





2 Background

We recall here the classical notions of collaborative filtering, temporal relevance, heterogeneity,

and privacy. Other than these standard concepts, we also provide a brief overview of trust-

distrust predictions in online social networks, the classical gradient-descent algorithm, and

the standard metrics for evaluating recommenders.

2.1 Collaborative Filtering

Collaborative Filtering (CF) algorithms fall mainly in two categories: memory-based [154, 170]

andmodel-based [89, 134, 180]. Memory-based algorithms typically compute the top-k like-

minded users for any given user (say Alice), denoted as the neighbors of Alice, from the

training database, and then make recommendations to Alice based on the rating history of

her neighbors. In contrast to memory-based algorithms, model-based ones first extract some

information (also known as features) about users (including Alice) from the database to train

amodel and then use this model to make recommendations for the users (including Alice).

Memory-based algorithms aremore flexible in practice compared tomodel-based ones [92]. It

is relatively more time-consuming to add new incoming data tomodel-based systems because

training a model takes significant amount of time depending on the complexity of the model

along with the hyper-parameter tuning.

Neighbor-based CF, based on k nearest neighbor (KNN) algorithms, are very popular and

widely used in practice [157, 83]. The goal is to find similar objects (users or items) by explor-

ing the relationships between them. The primary techniques employed by recommenders

to explore these relationships can be divided into two categories: user-based and item-based.

A user-based technique predicts a target user’s preference for an item by leveraging the rat-

ing information aggregated from similar users. An item-based technique applies the same

approach, but utilizes similarities between items instead of users.

We nowprovide a detailed explanation of the user-based and item-based collaborative filtering.

We start with presenting the recommendation setting. We consider a database consisting of
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N rating events on a set ofm items I = {i1, i2, .., im} by a set of n users U = {u1,u2, ...,un} over

time. The ratings are sorted based on the time of the event. Each rating event is in the form of

a tuple: 〈u, i ,rui ,τui 〉which reflects the fact that user u provided a rating rui for an item i at a

timestamp τui . Furthermore, U t
i denotes the set of users who have rated i until timestep t .

2.1.1 User-based collaborative filtering

A user-based CF scheme typically consists of three phases as shown in Algorithm 1. We

describe each of these phases in the following.

Similarity computation phase. This phase concerns with the similarity computations based on

the observed ratings. We use the pearson correlation or cosine similarity [60] as the similarity

metric for this phase.

Neighborhood computation phase. This phase deals with computing the most similar users

corresponding to a given user, based on the computed similarities from the previous phase,

and then creating the user-user network. For each user u, the top-K users, i.e., with the K

highest similarities, are selected as the neighbors. The parameter K denotes themodel size.

Prediction phase. In this phase, there are either prediction-based approach which predict

the scores for every item (or a filtered set of items) typically according to Equation 2.2 or

popularity-based approach where the recommendations are the most popular items from a

given user’s neighborhood.

2.1.2 Item-based collaborative filtering

A standard item-based CF scheme typically consists of three phases as shown in Algorithm 2.

We briefly describe each of these phases in the following.

Similarity computation phase. This phase concerns with the similarity computations based

on the observed ratings. We mostly use the adjusted cosine similarity as it was empirically

demonstrated to be superior to other metrics for item-based CF [157]. The deviation from the

average rating effectively captures the user’s rating behavior. Moreover, the ratings provided

by users that generally give low (strict) or high (generous) ratings, have a uniform effect on the

similarities.

Neighborhood computation phase. This phase deals with computing the most similar items

corresponding to any given item, based on the computed similarities, and creating the item-

item network. For each item i , the top-K items, i.e., with theK highest similarities, are selected

as the neighbors. The parameter K denotes themodel size.

Prediction phase. In this phase, the prediction scores are computed for each item according to

Equation 2.4. Note that subtracting a user’s average rating r̄u compensates for differences in

her rating scale thus making predictions even more accurate.
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Algorithm 1 Standard User-based CF

Require: I : Item set; U : User set; Iu : Set of Items rated by a user with user-id u.
Ensure: Ra : Top-N recommendations for a user Alice (a)

Phase 1 - Similarity computation: GETSIMILARS(a,U)

Ensure: sa : Dictionary for user a with user-ids as keys and similarities as values.
1: for u in U do
2:

sa[u]=

∑
i∈Iu∩Ia

(rui − r̄u)(rai − r̄a)√ ∑
i∈Iu

(rui − r̄u)
2
√ ∑

i∈Ia

(rai − r̄a)
2

(2.1)

3: end for
4: return: sa

Phase 2 - Neighborhood computation: KNN (a,U)

Ensure: Na : K most similar users to user a.
5: Na = NLARGEST(K ,GETSIMILARS(a,U ))
6: return: Na

Phase 3 - Prediction: TOPN(U)

Require: Sav : similarity between two users a, v .
Ensure: Ra : Top-N recommendations for Alice.
7: var PRED �Dictionary with predictions for Alice
8: for i in I do
9:

PRED[i ]= r̄a +

∑
v ∈ KNN(a,U )∩Ui

(rvi − r̄v )Sav∑
v ∈ KNN(a,U )∩Ui

|Suv |
(2.2)

10: end for
11: Ra = NLARGEST(N , PRED)
12: return: Ra

2.2 Temporal Relevance

Temporal relevance [110, 122] is a popular notion in data mining, commonly known as concept

drift, a dynamic learning problem over time. A typical example is the change in user’s interests

when following an online news stream. In such domains (e.g. news, deals), the target concept

(user’s interests) depends on some temporal context (e.g., mood, financial state). This con-

stantly changing context can induce changes in the target concepts, producing a concept drift.

We now provide the definition of temporal relevance at any given timestep as follows where

13
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Algorithm 2 Standard Item-based CF

Require: I : Item set;U : User set;U j : Set of users who rated an itemwith item-id j ; r̄u : Average
rating for user u.

Ensure: Ra : Top-N recommendations for a user Alice (a)

Phase 1 - Similarity computation: GETSIMILARS( j ,I)

Ensure: s j : Dictionary for item j with item-ids as keys and similarities as values.
1: for i in I do
2:

s j [i ]=

∑
u∈Ui∩U j

(rui − r̄u)(ru j − r̄u)

√ ∑
u∈Ui

(rui − r̄u)
2
√ ∑

u∈U j

(ru j − r̄u)
2

(2.3)

3: end for
4: return: s j

Phase 2 - Neighborhood computation: KNN ( j ,I)

Ensure: N j : K most similar items to item j .
5: N j = NLARGEST(K ,GETSIMILARS( j ,I))
6: return: N j

Phase 3 - Prediction: TOPN(I)

Require: Si j : similarity between two items i , j .
Ensure: Ra : Top-N recommendations for Alice.
7: var PRED �Dictionary with predictions for Alice
8: for i in I do
9:

PRED[i ]= r̄a +

∑
j ∈ KNN(i ,I)∩Ia

(ra j − r̄a)Si j∑
j ∈ KNN(i ,I)∩Ia

|Si j |
(2.4)

10: end for
11: Ra = NLARGEST(N , PRED)
12: return: Ra

timestep is a logical time corresponding to the current number of incremental updates.

Definition 1 (TEMPORAL RELEVANCE). Temporal relevance measures the relevance of a feedback

sui for making predictions at a timestep t based on a time-decaying parameter α. In the

following, we denote the temporal relevance of sui at a timestep t by f α
ui (t ) and assign a weight

14



2.3. Privacy

to sui depending on the interval since the timestep (tui ) when the actual feedback was provided.

f α
ui (t )= e−α(t−tui ) (2.5)

Temporal relevance can be incrementally updated as follows: f α
ui (t + 1) = e−α f α

ui (t). We

consider one decay factor (Equation 2.5). However, multiple weighting factors like temporal

regression [29] based ones might also be considered.

2.3 Privacy

Privacy is another crucial aspect in recommender systems and preserving privacy in CF rec-

ommenders is challenging. It was shown using the Netflix Prize dataset that even anonymizing

individual data before releasing it publicly is not enough to preserve privacy [139]. Even cryp-

tographic approaches do not preclude the possibility of the output leaking information about

the personal input of individuals [181]. The need for stronger and robust privacy guarantees

motivated the emergence of the notion ofDifferential Privacy [55, 57, 64]. First introduced in

the context of databases, differential privacy provides quantifiable privacy guarantees.

Differential Privacy

Differential privacy [58] was initially devised in a context where statistical information about a

database is released without revealing information about its individual entries. Differential

privacy provides formal privacy guarantees that do not depend on an adversary’s background

knowledge (including access to other databases) or computational power. More specifically,

differential privacy is defined as follows.

Definition 2 (DIFFERENTIAL PRIVACY [58]). A randomized function R ensures ε-differential

privacy if for all datasets D1 and D2, differing on at most one user profile, and all t ∈Rang e(R),
the following inequality always holds:

Pr [R(D1)= t ]

Pr [R(D2)= t ]
≤ exp(ε) (2.6)

Remark 1 (COMPOSITION IN DIFFERENTIAL PRIVACY [59]). LetR1 be an ε1-differentially private

algorithm, and R2 be an ε2-differentially private algorithm. Then, their composition, i.e.,

R1,2(x)= (R1(x),R2(x)), is ε1+ε2-differentially private.

2.4 Heterogeneity

The multiplicity of web domains (movies, books, songs) is calling for heterogeneous recom-

menders that could utilize ratings for one domain (i.e., source) to provide recommendations in

another one (i.e., target). Without loss of generality, we formulate the heterogeneity problem

15
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using two domains, referred to as the source domain (DS) and the target domain (DT ). We

note that the problem of heterogeneous recommendations trivially extends to multiple source

and multiple target domains. We use superscript notations S and T to differentiate the source

and the target domains. We assume that users in US and UT overlap1, but IS and IT have no

common items. This captures the most common heterogeneous personalization scenario in

e-commerce companies such as Amazon or eBay nowadays. The heterogeneous recommen-

dation objective is to recommend items in IT to users in US based on the preferences of US

for IS (ratings in the source domain), UT for IT (ratings in the target domain) and US∩UT for

IS∪IT (overlapping ratings across the domains). In other words, we aim to recommend items

in IT to a user who rated a few items (sparsity) or no items (cold-start) in IT . For instance, we

intend to recommend new relevant books (i.e., items inDT ) either to Alice who never rated

any book (cold-start) or to Bob who rated only a single book (sparsity). Both the users (Alice

and Bob) rated a fewmovies (i.e., items inDS).

2.5 Gradient-descent Algorithm

Machine learning approaches typically focus on solving the following optimization prob-

lem [120].

min
θ∈Rd

f (θ) := Eξ[F (θ;ξ)]

where ξ ∈Ξ is a random variable and f (θ) is a smooth (but not necessarily convex) function.

The most common specification is thatΞ is an index set of all training samplesΞ= {1,2, . . . ,N }
and F (θ;ξ) is the cost function with respect to the training sample indexed by ξ.

Gradient-descent (GD) is a standard algorithm, employed by many classical machine learning

models to minimize the above-mentioned optimization problem. GD minimizes the cost

function F (θ) by executing the following two steps iteratively.

• Gradient step. This step is responsible for computing the gradient (Equation 2.7) corre-

sponding to the cost function F (θ;ξi ), based on i th sampled example from the training

database, with respect to the model parameters (θ).

G(θ;ξi )=∇F (θ;ξi ) (2.7)

• Descent step. This step then updates the current model parameters (θ) in a direction

opposite to the compute gradient as shown in Equation 2.8. More precisely, given a

training database with N training examples and a learning rate γk , the model is updated at

any given step k using n examples (such that 1≤ n ≤N ) as follows.

θ(k+1) = θ(k)−γk ·
n∑

i=1
G(θ;ξi ) (2.8)

1This overlap is often derived from profiles maintained by users across various web applications along with
interconnection mechanisms for cross-system interoperability [36] and cross-system user identification [35].
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We note that the above update rule is known as stochastic GD update when n = 1, thenmini-

batch GD update when 1< n <N , and lastly batch GD update when n =N . Depending on the

size of the mini-batch (n), there exists a trade-off between the robustness of a given update

(noise in the computed gradient) and the time required to compute this update. Lastly, the

initial model parameters θ(0) typically have a specified value or follow a predefined probability

distribution (e.g., Gaussian).

2.6 Trust-distrust Relationship in Online Social Networks

Online Social Networks (OSNs) are becoming increasingly popular nowadays as online places

where users gather and exchange information. However, this information exchange also

raises severe trust-distrust issues. Trust-distrust relations between users play a vital role in

making decisions in OSNs like voting for administrators. In practice, the available explicit

trust relations are often extremely sparse, therefore making the prediction task even more

challenging. Weighted nearest neighbor algorithms are widely used for predicting trust rela-

tions [197, 126]. Algorithm 3 demonstrates one such algorithm leveragingK -nearest neighbors

(KNN) to predict trust relations.

We denote the trust level of user w for a user v as Rw v . Given n classes with labelsC0,C1,...,

Cn which reflect the different levels of trust or distrust [67] between two users, we define a

mapping function φ such that φ(Rw v )=Ci and 0≤ i ≤ n. We then define SCORE(w,v,Ci ) as

follows.

SCORE(w,v,Ci )=
⎧⎨⎩1 φ(Rw v )=Ci

0 φ(Rw v ) �=Ci

(2.9)

Since trust relation between users is asymmetric, it is possible to have SCORE(w,v,Ci ) �=
SCORE(v,w,Ci ) when Rw v �=Rv w .

These three phases resemble the ones in Algorithm 1. The first phase (similarity computation)

employs the standard cosine similarity between users. The second phase is similar to the one

in Algorithm 1 and derives the KNN set for a given user. Finally, the last phase predicts the

trust relation between two users based on the KNN graph constructed in the previous two

phases.

2.7 Evaluation Metrics

We recall here some standard metrics used to evaluate the quality of recommender systems.

Based on the literature of recommender systems [43, 160], we use Precision, Recall, and F1-

score as our metrics to assess the quality of recommenders. Table 2.1 presents the terms

needed for defining these metrics: true positives (tp), true negatives (tn), false positives (fp),

false negatives (fn).
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Algorithm 3 Trust Prediction

Require: U : User set; Uw : Set of users who trusted/distrusted another user with user-id w .
Ensure: Rw v : Trust level of user w for a user v .

Phase 1 - Similarity computation: GETSIMILARS(v , U)

Ensure: sv : Dictionary for user v with user-ids as keys and similarities as values.
1: for w in U do
2:

sv [w]=

∑
u∈Uw∩Uv

RwuRvu√ ∑
u∈Uw

R2wu

√ ∑
u∈Uv

R2vu

(2.10)

3: end for
4: return: sv

Phase 2 - Neighborhood computation: KNN (v , U)

Ensure: Nv : K most similar users to user v .
5: Nv = NLARGEST(K ,GETSIMILARS(v,U ))
6: return: Nv

Phase 3 - Prediction: PREDICTTRUST(w , v)

Ensure: Trust prediction of user w for a user v .
7: return: argmax

C∈{C0,...,Cn }

∑
l∈KNN(w,U )

SCORE(l ,v,C )

Relevant Irrelevant Total
Recommended t p f p t p+ f p

Not Recommended f n tn f n+ tn
Total t p+ f n f p+ tn N

Table 2.1 – Confusion Matrix for true/false positive/negative recommendations.

Precision or True Positive Accuracy (TPA) is the ratio of the number of relevant recommended

items to the total number of recommended items.

Precision= TPA= t p
t p+ f p

Recall or True Positive Rate (TPR) is the ratio of the number of relevant recommended items to

the total number of relevant items.

Recall= TPR= t p
t p+ f n
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F1-score is used to evaluate precision and recall simultaneously. Mathematically, it is the

harmonic mean of Precision and Recall.

F1− score= 2. Precision.Recall
Precision+Recall

We use these standard evaluationmetrics throughout the rest of the thesis. In some sections of

this thesis, we introduce some additional evaluation metrics like Mean Absolute Error (MAE)

which are more specific to that section only.

Based on these background concepts, we explore and address the technical challenges for

designing a personalization system (i.e., scalability, privacy, and heterogeneity) in the next

three parts of this thesis. At the beginning of each part, we summarize the major contributions

of that specific part of the thesis.
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PART II

Scalability

As the amount of web data increases, the need for highly scalable personalization solutions

grows proportionally. In this part of the thesis, we focus on two primary directions that

improve the scalability of recommender systems.

• The first one is democratization where customized computation jobs are iteratively of-

floaded to devices of the end-users which could be either high-end devices like laptops or

lightweight mobile devices like smartphones or tablets. The computation jobs are typically

lightweight and customized to the computational capacity of the device. We provide de-

mocratized solutions for classical collaborative filtering (in §3.1) and demonstrate how it

could be extended to classical machine learning (in §3.2).

• The second one is incrementality where the personalization model is updated in an in-

crementalmanner to incorporate freshly arriving data without significant computational

overhead. Recommenders typically collect user preferences using explicit feedback such as

numerical ratings (star ratings in IMDb, Netflix, Amazon), binary preferences (likes/dislikes

in Youtube), or unary preferences (retweets in Twitter). We provide incremental solutions

for recommenders employing the above-mentioned explicit feedback (in §4.1) as well as

recommenders using implicit feedback such as sequences of consumed items (in §4.2).





3 Democratization

3.1 HYREC: Towards a hybrid architecture

3.1.1 Overview

The motivation of this work is to explore solutions that can democratize personalization by

making it accessible to any service provider, without requiring huge investments. We introduce

HYREC, a hybrid architecture capable of providing a cost-effective1 scalable personalization

platform to any service provider. Instead of scaling through either larger and larger recom-

mendation back-end servers, or through fully decentralizing the recommendation process

by relying solely on the front-end clients, HYREC delegates expensive computation tasks to

clients while, at the same time, retaining on the server side the system’s coordination tasks

and the maintenance of the nearest-neighbor graph (for users) which reflects the relationship

between different users. In a later section of this chapter, we also demonstrate how to extend

this democratization idea to enable service providers to offload various machine learning

tasks (e.g., classification, ranking) on mobile devices like smartphones, tablets.

HYREC employs user-based collaborative filtering (§2.1.1), namely predicting the interests

of a user by collecting preferences or taste information from many other users [60]. CF is

content agnostic and represents a natural opportunity for decentralizing recommendation

tasks on user devices. More specifically, HYREC adopts a k nearest neighbor (KNN) approach

(Algorithm 1), which consists of computing the k nearest neighbors according to a given

similarity metric, and identifying the items to recommend from the preferences of these

neighboring users [175]. The challenge here is to cope with a large number of users and items.

Traditional centralized recommendation architectures achieve this by computing neighbor-

hood information offline and exploiting elastic cloud platforms to massively parallelize the

recommendation jobs on a large number of nodes [46, 49]. Yet, offline computation is less

effective when new content is being added continuously as well as the dynamic change in user

preferences. Forcing periodic re-computations, induces significant costs [46, 121, 133].

1Cost implies Total Cost of Ownership (TCO).
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HYREC’s architecture avoids the need to process the entire sets of users and items by means of

an iterative sampling-based approach inspired by epidemic (gossip-based) computing [183,

22], and successfully used in state-of-the-art k-nearest-neighbor graph construction [54] as

well as query processing [3].

The computation for the personalization operations of a user are performed at the browser

of that user’s machine (which we sometimes simply call the user or the client). The HYREC

server provides each user with a sample set of profiles of other users (candidate set). Every

user then computes her k nearest neighbors followed by the most popular items preferred by

her nearest neighbors. The server uses, in turn, the user’s new neighbors to compute the next

sample. This iterative process implements a feedback mechanism that improves the quality of

the selected neighbors and leads them to converge very quickly to those that could have been

computed using global knowledge in an offline manner.

We evaluate HYREC in the context of two use cases. The first is Digg, a personalized feed,

whereas the second is MovieLens, a movie recommender. We use real traces in both cases.

Our results show that the quality of the KNN approximation provided by HYREC is close to

the optimal one. As the convergence of the KNN graph is driven by user activity, users who

are frequently online benefit from a better neighborhood than users who are rarely online.

We show that the reactiveness of HYREC to compute and refine the KNN during the activity

of online users drastically improves the recommendation quality, compared to solutions

using offline clustering (which can update this graph after the activity of users) and where

personalization is sometimes useless. We also note that user’s behavior keeps on changing

with time, commonly known as temporal dynamics, and hence HYREC, in practice, could lead

to better recommendation quality due to incorporation of the recent behavior of the user

during the recommendation generation.

3.1.2 HYREC

HYREC lies between fully decentralized, cheap but complex to implement/maintain, and

centralized, efficient but potentially costly, recommender frameworks. It leverages the locality

of the computation tasks involved in user-based CF schemes. In HYREC, (Figure 3.1), when

a user accesses a webpage from her browser, the server (i) updates the user profile in its

global data structure, and then (ii) selects a set of candidate users to send to the user (i.e.,

HYREC client) along with the associated profiles. The client in turn performs the similarity

computations between the local profile and the ones of the candidate set followed by the item

recommendation. In the following, we briefly describe how the client and the server operate

in HYREC.
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Figure 3.1 – Centralized, decentralized and hybrid (HYREC) architecture of a recommender.

A. HYREC server

The server is in charge of (i) orchestrating the decentralized computations carried out by

clients, and (ii)maintaining the global data structures, a Profile table and a KNN table. Each

entry in the Profile and the KNN tables, indexed by the user-id, contains the user profile and

those of its k nearest neighbors respectively.

The server decomposes the recommendation process into personalization jobs that run on

client-side widgets in the browsers of (connected) users. The KNN selection runs online (as it

is achieved by users), and not periodically as usually in a classical centralized architecture,

increasing the reactivity of the system. A personalization job consists of two tasks: (i) a KNN

selection task, and (ii) an item recommendation task. The HYREC server has two components

depicted in Figure 3.1: the Sampler and the Personalization orchestrator.

Sampler. HYREC relies on a local and iterative algorithm to associate each user with her k

nearest neighbors. We use a sampling-based approach inspired from epidemic clustering

protocols [183, 22].

The sampler is involved at each iteration of the KNN selection process and provides each

client with a small (with respect to the total number of users) set of candidate users, from

which the client selects its next k nearest neighbors. Let k be a system parameter determining

the size of a user’s neighborhood, Nu and containing the k nearest neighbors of u (computed

so far). The sampler builds a sample Su(t ) for a user u at time t by aggregating three sets: (i)

the k current nearest (one-hop) neighbors Nu of u, (ii) their k nearest neighbors (two-hop),
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Figure 3.2 – Timeline: a centralized approach vs. HYREC

and (iii) k random users. Because these sets may contain duplicate entries (more andmore

as the KNN tables converge), the size of the sample is ≤ 2k+k2. However, for a user u, as the

neighborhood of u, Nu converges towards the ideal one, N∗
u , the candidate set tends to get

smaller as some of u’s neighbor share similar neighbors.

By constraining the size of the candidate set, HYREC’s sampling-based approach not only

limits computational cost, but also network traffic (in terms of bandwidth), while preserving

recommendation quality as we show in our experiments. Research on epidemic [183] and

k-nearest-neighbor graph construction [54] protocols show that the process converges very

rapidly even in very large networks. Usingu’s neighbors and their neighbors provides the client

with a set of candidates that are likely to have a high similarity with u. Adding random users

to the sample prevents this search from getting stuck into a local optimum. More precisely,

this guarantees that the process will eventually converge in the absence of profile changes by

recording the user’s k-nearest neighbors in the setNu , so that limt→∞(Nu−N∗
u )= 0, where N∗

u

is the optimal set (i.e., containing the k most similar users). When profiles do change, which

happens frequently in the targeted applications (e.g., news feed), the process provides each

user with a close approximation of her current optimal neighbors.

Personalization orchestrator. Once a user u accesses the server, (Arrow 1 in Figure 3.1),

the orchestrator retrieves a candidate set, parameterized by k from the sampler and builds

a personalization job. The personalization job for u consists in building a message that

includes u’s profile and the profiles of all the candidates returned by the sampler (Arrow 2 in

Figure 3.1). Finally, the orchestrator manages the interaction with the HYREC client: sends the

personalization jobs, and collects the results of the KNN selection to update the global data

structures. Figure 3.2 illustrates the interactions between the clients and the server in HYREC

as well as in a centralized approach.
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B. HYREC client

In HYREC, users interact with the recommender system through a web interface. The client

side of HYREC consists of a Javascript widget, running in the web browser. This widget serves

as a web container that interacts with the server’s web API. The HYREC client sends requests

to the server whenever u requires some recommendations. The server replies by providing

a personalization job containing a candidate set along with the associated profiles. Upon

receiving the job, the client (i) computes locally the recommendation, and (ii) runs locally

the KNN selection algorithm. Note that the client does not need to maintain any local data

structure: the information is provided by the server and garbage collected once the client has

computed the new KNN and sent an update to the server.

Recommendation. The client computesu’s personalized recommendations asRu =α(Su ,Pu),

where α(Su ,Pu) returns the identifiers of the top-N most popular items among those that

appear in the profiles in Su , but not in Pu . These consist of the most popular items in the Su

to which u has not yet been exposed.

Su is composed of the profiles of clients in the candidate set: u’s neighbors, u’s two-hop

neighbors, and k random users. By taking into account the items liked by the (one and two

hop) neighbors, the item recommendation exploits the opinions of similar users. By also

taking into account items from the profile of random users, it also includes some popular

items that may improve the serendipity of its recommendations.

In a real application, once the item to be recommended have been identified, they might

need to be retrieved from a web server to be displayed in a web page. We omit the process of

retrieving the actual content of these items since that is application-dependent.

KNN selection. The client also updates the user’s k-nearest neighbors. To achieve this, the

KNN algorithm (Algorithm 1) computes the similarity between u’s profile and each of the

profiles of the users in the candidate set (Su). It then retains the users that exhibit the highest

similarity values as u’s new neighbors, Nu = KNN(Pu ,Su), where KNN(Pu ,Su) denotes the k

users from Su whose profiles are most similar to Pu according to a given similarity metric

(here the cosine similarity). This data is sent back to the server to update the KNN table on the

server (Arrow 3 in Figure 3.1).

3.1.3 Evaluation

In this section, we show that HYREC provides good-quality recommendations and reduces

cost. We start with a description of the experimental setup. We then study KNN selection,

recommendation quality, and the impact on cost.
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A. Experimental setup

Platform. We consider a single server hosting all components (front and back-end) and

assume an in-memory database. In practice, several machines can be used to implement each

component separately to sustain the load at the network level. Yet, this does not affect the

outcome of our experiments. We use a PowerEdges 2950 III, Bi Quad Core 2.5GHz, with 32

GB of memory and Gigabit Ethernet, to evaluate the server. To evaluate the client, we use a

Dell laptop latitude E4310, Bi Quad Core 2.67GHz with 4 GB of memory and Gigabit Ethernet

under Linux Ubuntu.

Datasets. We use real traces from a movie recommender based on the MovieLens (ML)

workload [138] and from Digg [52], a social news web site. The ML dataset consists of movie-

rating data collected through the ML recommender website during a 7-month period and is

often used to evaluate recommenders [46]. For the sake of simplicity, we project ML ratings

into binary ratings as follows: for each item (movie) in a user profile, we set the rating to 1 if

the initial rating of the user for that item is above the average rating of the user across all her

items, and to 0 otherwise. We use the three available versions of this dataset, varying in their

number of users, to evaluate the quality of recommendation in HYREC.

The Digg dataset instead allows us to consider a dynamic setting. Digg is a social news website

to discover and share content where the value of a piece of news is collectively determined.

We collected traces from Digg for almost 60,000 users and more than 7,500 items over 2 weeks

in 2010. This dataset contains all observed users in the specified period. Table 3.1 summarizes

the workload.

Dataset Users Items Ratings
ML1 943 1,700 100,000
ML2 6,040 4,000 1,000,000
ML3 69,878 10,000 10,000,000
Digg 59,167 7,724 782,807

Table 3.1 – Datasets statistics

Competitors. We compare the performance of HYREC with that of several alternatives to

highlight the benefits and limitations of our approach. For the alternatives, we distinguish

two major categories. Offline solutions perform KNN selection periodically on a back-end

server (Phase 2 in Algorithm 1), while they compute recommendations on demand on a

front-end (Phase 3 in Algorithm 1). Online solutions perform both KNN selection and item

recommendation on demand on the front-end.

Evaluation scheme. Tomeasure recommendation quality, we split each dataset into a training

and a test set sorted according to time. The training set contains the first 80% of the ratings

while the test set contains the remaining 20%. The goal of the recommender is to recommend

to a user as many positively-rated items from the test set as possible.
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Evaluation metrics. Tomeasure the effectiveness of HYREC in finding the nearest neighbors in

term of interest, we compare the average profile similarity between users and their neighbors,

referred to as view similarity in the following. We obtain an upper bound on this view similarity

by considering neighbors computed with global knowledge. We refer to this upper bound as

the ideal or exhaustive KNN in the rest of the evaluation.

For each rating r in the test set, the associated user requests a set of n recommendations (ℜ).
The recommendation quality metric counts the number of positive ratings for which theℜ set
contains the corresponding item from the testing set: the higher the better. If a positive rating

represents a movie the user liked, this metric counts the number of recommendations that

contain movies that the user is known to like.

B. KNN selection quality

To evaluate the quality of the KNN selection provided by HYREC, we replay the activity and

ratings of each user over time. When a user rates an item in the workload, the client sends a

request to the server, triggering the computation of recommendations. We compare HYREC

with the upper bound provided by the ideal/exhaustive KNN.
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Figure 3.3 – Average view similarity on ML1 dataset for HYREC and ideal KNN.

Figure 3.3 displays the average view similarity over all the users in theML1 dataset as a function

of time. The plot compares the results obtained by HYREC with those obtained by an offline

protocol that computes the ideal KNN once a week. The period of one week allows us to

identify a step-like behavior in the offline approach. We observe this behavior in the offline

protocol because the neighbors remain fixed between two periodic computations and thus

cannot follow the dynamics of user interests. A typical period in existing recommenders is on

the order of 24 hours. Such a shorter period would make the steps thinner but it would not

lead to faster convergence. Indeed, the upper bound on view similarity can be obtained by

connecting the top-left corners of the steps in the offline-ideal (i.e., exhaustive) curve. This

corresponds to online protocol that computes the ideal KNN for each recommendation.

Overall, Figure 3.3 shows that HYREC effectively approximates this upper bound. For a neigh-

borhood size of k = 10, HYREC’s average view similarity remains within 20% of that of the ideal
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KNN at the end of the experiment. The curve for k = 20 shows the impact of the neighbor-
hood size: larger values of k result in larger candidate sets that converge faster to the nearest

neighbors.

HYREC is an online protocol in the sense that it runs KNN selection as a reaction to user

requests. The timing of such requests follows the information available in the data trace. As

a term of comparison, we also consider a variant (IR=7) that bounds the inter-request time

(i.e., the interval between two requests of the same client) to one week. Results show that the

quality of KNN selection drastically improves according to the activity of users: more frequent

user activity results in better view quality. An inter-request period of one week for k = 10 is
enough to bring HYREC’s approximation within 10% of the upper bound at the end of the

experiment.

The iterative approach of HYREC refines its KNN selection over time. As the KNNs of each user

converge, the average size of the candidate set tends to decrease as each candidate is more

likely to be an actual neighbor. Figure 3.4 depicts the average candidate-set size on the entire

ML1 workload as a function of time for different values of k. We observe that the candidate-set

size quickly converges to a stable value. For instance, for k = 10, its value quickly converges to
around 55 instead of the upper bound of 120 (due to k2+2k). The small fluctuations in the

curve result from the continuous arrival of new users, who start with large candidate sets.
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Figure 3.4 – Convergence of the candidate set size (ML1 dataset).

C. Recommendation quality

The recommendation process leverages the KNN selection to identify the items to recommend.

Figure 3.5 displays the recommendation quality provided by HYREC and by systems based on

ideal KNN (both offline and online variants). Results show that the recommendation quality

of offline approaches drastically changes according to the period of offline KNN selection

(parameter p on Figure 3.5). The online ideal solution, which computes the ideal KNNs before

providing each recommendation, provides an upper bound on recommendation performance.

HYREC improves the recommendation quality by 12% with respect the offline ideal approach

even when this one runs with a period of 24 hours, which is already more costly than HYREC.
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Figure 3.5 – Recommendation quality on the ML1 dataset for HYREC as well as offline and
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It also provides better performance than offline ideal with a period of 1 hour and scores only

13% below the upper bound provided by online ideal.

To understand HYREC’s improvement on offline approaches, consider a user whose rating

activity fits inside two updates of offline KNN selection. This user will not benefit from any per-

sonalization with an offline approach. This is especially the case for new users which start with

random KNNs. In HYREC, on the other hand, users start to form their KNN selection at their

first rating and refine it during all their activity. This allows HYREC to achieve personalization

quickly, efficiently, and dynamically.

D. Impact on cost

We now compare the cost of running the HYREC front-end with that of running several offline

solutions based on the centralized recommender architecture as depicted in Figure 3.1. In

such solutions, a front-end server computes the item recommendation in real time upon a

client request, while a back-end server periodically runs the KNN selection. Since HYREC

leverages user machines to run the KNN selection task, it significantly reduces the cost of

running a recommender system.

To ensure a fair comparison, we first identify a baseline by selecting the least expensive of-

fline solution among several alternatives running on Grid5000 [24]. Exhaustive is the offline

approach we considered earlier. It computes similarities between all pairs of users thereby

yielding the ideal KNNs at each iteration. CRec is an offline solution that uses the same algo-

rithm as HYREC (i.e., a sampling approach for KNN) but with amap-reduce-based architecture.

Both exploit an implementation of the MapReduce paradigm on a single 4-core node [151].

Finally,Mahout and ClusMahout are variants based on the user-based CF implementation

in Mahout, an open-source machine-learning Apache library [129]. Both exploit the Apache

Hadoop platform [80] to parallelize the KNN selection on multiple cores. Mahout runs on

a single 4-core node, while ClusMahout runs on a cluster with two 4-core nodes. Because

all four solutions share the same front-end, we only compare the running time of their KNN

selection tasks on the back-end. In all cases, we consider two periods for offline KNN selection:
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48 hours onMovieLens and 12 hours on Digg.

Figure 3.6 depicts the results. Not surprisingly, we observe a strong correlation between the

size of the dataset (in terms of number of users and size of the profile) and the time required

to achieve KNN selection. We observe that CRec consistently outperforms other approaches

on all datasets with the exception of ClusMahout using two nodes on the ML1 dataset. On

average, CRec reduces the KNN-selection time by 95.5% and 66% with respect to Exhaustive

and ClusMahout, respectively. Moreover, the gap between the wall time required by CRec and

by the other alternatives increases with the size of the dataset. We therefore select CRec as a

baseline to evaluate the gains provided by HYREC in terms of cost.
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Figure 3.6 – Time to compute the k nearest neighbors on ML and Digg workloads.

Specifically, we gauge the cost associated with running CRec and the HYREC front-end on a

cloud infrastructure using Amazon EC2 services [9]. For the front-end server of both solutions,

we consider the cheapest medium-utilization reserved instances which cost around $681 per

year (the Profile table as well as the KNN table need to be stored in memory in order to answer

the client requests as fast as possible). For the back-end server of CRec, we consider one of the

midrange compute-optimized on-demand instances with a price of $0.6 per hour (on-demand

instances allow the content provider to be flexible in operating the offline KNN selection task).

The efficiency of CRec’s KNN selection depends on the frequency at which it is triggered: a

higher clustering frequency improves recommendation but it makes more frequent use of the

on-demand instances, thereby increasing cost.

Based on these estimates, Table 3.2 summarizes the cost reduction achieved by HYREC as the

percentage of the total cost saved by the content provider. We do not consider extra costs for

data transfer as the bandwidth overhead generated by HYREC is small and does not exceed

the free quota even with the ML3 dataset. Results show that the cost reduction ranges from

9.4% for ML1 with a KNN selection period of 48 hours to 97% for ML3. To compute this last

value of 97%, we considered a compute-optimized reserved instance over one year, which is

cheaper than the number of required on-demand instances.
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Dataset 48h 24h 12h
ML1 9.4% 18.8% 37.7%
ML2 45% 91% 97%
ML3 97% 97% 97%

12h 6h 2h
Digg 2.6% 5.3% 10.5%

Table 3.2 – Impact on the cost of a centralized back-end server according to the KNN selection
period.

3.1.4 Related Work

A radical way to address scalability is through a significant departure from centralized (cloud-

based) architectures, namely through fully distributed CF solutions [190, 155, 11, 136, 195].

While appealing, these solutions face important deployment challenges. They require users to

install specific software that must manage their online/offline patterns, while taking care of

synchronization between multiple devices that may not be online at the same time. These

distributed solutions are also significantly limited in their scalability due to communication

overheads across the nodes in the distributed setup. This limitation, combined with the inher-

ent scalability of decentralized solutions, provide a strong motivation for a hybrid approach

like ours: namely, combining a centralized entity that coordinates tasks and handles the

connections and disconnections of users with processes performing the actual tasks on the

clients.

Hybrid approaches have already proved successful in various contexts. SETI@home [162]

leverages machine of volunteers for analyzing radio telescope data whereas Weka [104] does

something similar for data mining. A distributed Weka requires either a grid hosted by the

service provider, or an application server on the clients. In addition, Weka is oriented towards

data analysis and does not provide a real-time personalization system. TIVO [5] proposes

a hybrid recommendation architecture similar to ours in the context of item-based CF (Al-

gorithm 2). Yet, TIVO does not completely decentralize the personalization process. It only

offloads the computation of item recommendation scores to clients (Phase 3 in Algorithm 2).

The computation of the correlations between items is achieved on the server side (Phase 1 and

Phase 2 in Algorithm 2). Since the similarity computation operation is extremely expensive,

TIVO’s server only computes new correlations every two weeks, while its clients identify new

recommendations once a day. This makes TIVO unsuitable for dynamic websites dealing in

real time with continuous streams of items. HYREC addresses this limitation by delegating the

entire filtering process to clients: it is to our knowledge the first system capable of doing so on

any user-based CF platform.

3.1.5 Conclusion

We report in this work on the design and evaluation of HYREC, a user-based collaborative

filtering system. The architecture of HYREC is hybrid in the sense that it lies between tradi-

tional centralized systems on the one hand, and fully decentralized P2P solutions on the other.

33



Chapter 3. Democratization

HYREC seeks to provide the scalability of P2P approaches while retaining a centralized orches-

tration. We show that HYREC is cost-effective as it significantly reduces the recommendation

cost and improves scalability with respect to centralized (possibly cloud-based) solution.

Themotivation underlying HYREC is to explore solutions that could in some sense democratize

personalization by making it accessible to any service provider company without requiring

huge investments. HYREC is generic and can operate in many contexts. In its current version,

it performs a user-based CF scheme. However, any data filtering algorithm which can be

split through the browsers of users can be used. We also experimented for instance with an

item-based CF recommendation protocol (Algorithm 2). In this implementation, the server

provides the client browsers with the current item (i.e., the item currently viewed by the user)

and a candidate set containing the neighborhood of the current item and their associated

profiles. Here, the profile of an item is the set of users exposed to the items and their associated

ratings. The item recommendation process, executed at the user’s machine, computes the

nearest items (i.e., in term of user interest) to the current item. Whereas the recommendation

quality is smaller than the user-based CF variant described in this work, the same behavior is

observed regarding the KNN selection: the neighborhood of popular items is refined better

than unpopular items which is attributed due to the activity difference in the popular and

unpopular items.

Lastly, we note an important aspect in HYREC which is the Quality-of-Service as ultimately

perceived by the end user. With a good Internet connection and a powerful device, a user will

get its recommendations much faster than a user with a poor connection and an old device.

However, as the Javascript widget of HYREC is totally asynchronous, the delay to display the

recommendations does not block the display of the rest of the web page. With the advent of

Web 2.0 applications, end users’ resources become exploitable transparently by the service

provider even throughmulti-threading Javascript tasks attached to web pages [98]. This new

feature increases the high potential of hybrid approaches as HYREC.

The possibility of attacks and their potential impact can also be a determining factor to decide

whether to deploy or not a hybrid architecture in practice. Indeed, HYREC limits the impact of

untrusted andmalicious nodes: each user computes only its own recommendations. However,

it is also possible to use privacy-aware mechanisms such as homomorphic encryption [88]

or differential privacy [55] to generate encrypted or differentially-private profiles of the users.

Then, these private profiles are offloaded and used for the recommendation computations.

3.2 Extension to machine learning on mobile devices

We now provide a brief overview regarding how the underlying idea of HYREC can be easily

extended to other context likemachine learning on clients’ devices (typically mobile devices).

In this extension, we propose a framework named HYML, similar to HYREC, which offloads

machine learning tasks to mobile devices. HYML offloads the training phase (Equation 2.7

in §2.5) of any GD-based machine learning model to the mobile devices.
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Similar to HYREC, our HYML framework also enables any service provider to deploy large-scale

ML applications without requiring huge investments. We focus onML applications used by

clients through mobile devices (e.g., smartphones, tablets) of which the number is increasing

rapidly. Mobile devices provide a perfect opportunity since the number of smartphones

users is rising significantly (currently 5 billion). Furthermore, several big industrial players

such as Huawei are focused on increasing the computational capacity of mobile devices by

introducing chips with performance in the order of tens of teraflops (trillion floating point

operations per second).

Following HYREC’s approach, the service provider offloads the most computational task (i.e.,

model training via gradient computation) to the client’s mobile device which is considered as

a computation unit in this work. However, the service provider must ensure that the effect on

the client’s device in terms of latency or energy consumption (i.e., less workload) is negligible

while also accelerating the learning process with the huge amount of incoming data. Hence,

there is an underlying trade-off between these two objectives, from the service provider’s and

the client’s perspectives, depending on the size of workload to be offloaded to the devices.

Due to the asynchronous nature [120] of the training procedure (i.e., model updates via

gradients) combined with the heterogeneity of the mobile devices, there exists significant

performance difference between the slow and fast mobile devices. HYML currently employs

classical heterogeneity-aware model update algorithms [97, 196] in such a heterogeneous

environment of mobile computing devices.

A. HYML Overview

HYML is a distributed framework that enables the service provider to employ mobile devices

as workers. The design of HYML is suitable for the deployment of any ML algorithm in which

the workers compute updates based on a current model version and a centralized server

generates a newmodel version by using these updates e.g., gradient-descent (Equations 2.7

and 2.8 in §2.5). A key component of HYML is a smart sampler, that employs an ML algorithm

(e.g., regression) to ensure that the workload for each device is proportional to the device

capabilities. This smart sampler handles the aforementioned trade-off based on the size of

the workload to be offloaded to the mobile devices.

Figure 3.7 – The architecture overview of HYML.

HYML, as shown in Figure 3.7, has a classical master-worker architecture where the service
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provider hosts the master module and eachmobile device hosts the worker module. Below,

we briefly describe the functionality of each module of our framework.

Master. HYML’s master component is similar to the Server component in HYREC (Figure 3.1).

More specifically, the master component in HYML consists of three subcomponents which we

describe briefly in the following.

1. Master-orchestrator (MORC). This subcomponent is similar to the Personalization orches-

trator component in HYREC and is responsible for the complete orchestration of themodel

update process in HYML. The MORC enables the communication between the master and

the workers (i.e., the mobile devices). Whenever a worker makes a query to the master,

the MORC responds back with the customized workload, i.e., the current model (cached

in the updater subcomponent) along with a mini-batch which is provided by the sampler

(depending on the predicted mini-batch size). The MORC also forwards the computed

gradients, received from the workers, to the updater subcomponent.

2. Sampler. This subcomponent is similar to the sampler component in HYREC and is respon-

sible for generating the workload to be sent to the worker. For each user query, the sampler

first predicts the appropriate mini-batch size depending on the device features by employ-

ing any classical regression technique and hence handles the computation workload to

be offloaded to the client device. We highlight that HYML employs a dynamic workload

whereas HYREC employs a constant workload, dependent on the number of neighbors

(K ) in the nearest-neighbor graph, for any device. In this regard, HYREC was designed to

offload computational tasks to browsers of users and hence a constant workload is prac-

tical (limited by the browser cache size). Lastly, the sampler also generates a mini-batch

sample (from the cached dataset2) based on the predicted size. The workload consists of

this generated mini-batch along with the model which HYML sends to the worker.

3. Updater. The updater component is responsible for caching the model and performing the

model update (descent step in Equation 2.8 in §2.5) based on the gradients that the MORC

forwards. This update operation is comparable to the nearest-neighbor update performed

in the KNN table in HYREC by the Server component.

Worker. The worker performs the computationally demanding part of the model training,

namely the gradient computation (G(θ) in Equation 2.7), thus mitigating the requirement for

huge investments on cloud resources. This component is similar to the browser component in

HYREC (Figure 3.1). The worker consists of two main subcomponents described as follows.

1. Worker-orchestrator (WORC). The WORC subcomponent enables the worker to communi-

cate with the master and also initiates the communication with the master by forwarding

any client query like an image classification. It receives the computationworkload from the

MORC and then invokes the trainer subcomponent to employ this workload for performing

local on-device training. The computed gradients are sent back to the MORC along with

the performance statistics of the mobile device during the training step for improving the

2The cached dataset could be appended with new examples either collected from the clients or public sources.
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accuracy of the sampler.

2. Trainer. The trainer component is responsible for computing the gradients (as explained

in §2.5) employing themodel and themini-batch received from theWORC. This component

is similar to the KNN selection one in HYREC.

B. Performance impact of mobile devices

As wementioned before, HYML employs mobile devices as workers and offloads the computa-

tions to these devices from the service provider. However, classical distributedML frameworks

like Tensorflow, DL4J or Torch typically employ CPUs or GPUs as their computation units.

Hence, we compare the throughput of mobile devices with the throughput achieved by CPUs

or GPUs. For the sake of fairness, we deploy DL4J on a mobile device (using HYML), a single

node consisting of 2 CPUs (Intel Xeon E5-2620) and 1 GPU (Nvidia Titan Black), as well as a

Spark cluster with 8 nodes of similar configuration.

We use a classical Convolutional Neural Network (CNN [112]), using mini-batch of 100 exam-

ples, as the classifier on a dataset consisting of hand-written characters and digits EMNIST3

where each training instance has 784 input features. Figure 3.8 compares the throughput

(i.e., number of model updates per minute) among the various setups (i.e., mobile devices,

CPU, GPU, Spark cluster) employing the CNN classifier. Interestingly, we observe that a GPU

(Nvidia Titan Black) achieves 42 times higher throughput than a mobile worker (Honor 9) in

our current setup. This comparison gives us a nice estimation of the number ofmobile workers

required to replace one node in any classical distributed framework in order to achieve the

same throughput. Lastly, we also note that the scalability saturates with an increasing number

of nodes (as observed from the Spark cluster) due to the communication overhead [166, 192].
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C. Conclusion

We demonstrate how the approach of HYREC could be extended to machine learning on

user devices leading to HYML. HYML democratizes the machine learning task to the mobile

devices by offloading the computation-intensive training part to the devices. Moreover, our

3https://www.nist.gov/itl/iad/image-group/emnist-dataset
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GD-based approach could be extended to other machine learning algorithms as well for e.g.,

expectation-maximization.
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4 Incrementality

In this chapter of the thesis, we tackle the scalability problem by updating the recommender

system in an incremental manner with fresh incoming data. We call this approach towards

addressing scalability as incrementality. We present I-SIM in §4.1 to incorporate explicit

feedback incrementally whereas we introduce CIP in §4.2 to handle implicit feedback in an

incremental manner (for online platforms without explicit feedback).

4.1 I-SIM: Incremental Similarity

4.1.1 Overview

The starting point of this work is the observation that existing similarity metrics were not

designed to handle a very large number of users with rapidly changing behavior. The number

of recommendation requests issued by users today, is in the order of millions per day [92],

which poses a major scalability challenge. State-of-the-art scalable recommenders [118, 158,

15] employ batch processing and update their recommenders at intervals of weeks. They

indeed achieve low latency recommendations, but ignore the temporal behavior of users

(temporal relevance [110, 122]), thereby leading to relatively lower recommendation accuracy.

For example, the number of views of news articles saturates within a few hours [117]: these

articles should be recommended within this time span to be relevant. On the other hand, the

very few recommenders that account for temporal relevance [92, 110] do not scale as they

require heavyweight computations, inducing high energy consumption which is becoming a

key issue in cloud computing [12].

An interesting temporal effect that emerges from the MovieLens (ML) dataset [138] is depicted

in Figure 4.1. Users typically provide their preferences for items in terms of feedback like

ratings. Figure 4.1(a) conveys the fact that the moving global average rating fluctuates within

the first 200 days. This fluctuation can be attributed to the initial user churn (as shown in

Figure 4.1(b)). However, when the number of users is stable, we observe a downward trend in

the average rating which saturates at around 3.5. The primary reasons behind this temporal
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Figure 4.1 – Temporal effects in ML-1M dataset.

behavior can be attributed to the users’ preference and behavioral drifts.

Preference drift. Users’ preferences typically fluctuate over time. For example, a change in the

family structure can drastically change shopping patterns. Figure 4.2(a) depicts the preference

distribution of an individual user over time. The top genre preferences for this user on Day-1

were Adventure, Horror and Sci-Fi whereas on Day-37 her preferences were mostly Western,

Romance and Drama. We also observe other genre preferences that vary over the following

days (e.g. Thriller).

Behavioral drift. At another personalization level, a user’s feedback (e.g. scores, ratings, votes)

also fluctuates over time possibly due to her varying behavior (e.g. mood). This feedback

fluctuation results in a user bias. Given that a user u provides a feedback sui for an item i at a

time t −δwhen her average feedback was s̄u(t −δ), then the user is biased towards this item

by bui (t −δ)= sui − s̄u(t −δ). Sarwar et al. empirically showed that including such a user bias

in the similarity computations, however in a static (non-temporal) manner, leads to better

recommendation quality [157]. The change in this user bias (bui (t −δ)−bui (t )) over time is

the change in the average feedback (s̄u(t )− s̄u(t −δ)).

Figure 4.2(b) captures the change in the user bias (behavioral drift) which we quantify using

a key user attribute (ε) defined as follows: the average feedback of a user varies over time in

steps of a temporal parameter ε, also denoted by ε(t), between a time interval [t −δ, t ]. State-

of-the-art incremental similarity metrics [122, 92] do not take into account this attribute

(Figure 4.2(c)I). Performing incremental updates based on the temporal parameter ε is non-

trivial. Similarities until time t −δ are also a function of ε and thus also need to be adjusted at

time t (Figure 4.2(c)II).

Based on these observations, one can easily infer that users’ temporal behavior can impact

the prediction accuracy significantly. However, designing an incremental similarity metric

that captures this temporal behavior is non-trivial.

Contributions. The main contribution of this work is a novel similarity metric, we call I-

SIM, which enables lightweight similarity computations incorporating the preference and
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behavioral drifts. I-SIM can be considered as a “temporalization” of the adjusted cosine

similarity [157] and hence of the cosine similarity. Therefore, I-SIM can be easily integrated

with time-aware applications in OSNs. In this work, we primarily focus on collaborative

filtering but nonetheless we also explore trust predictions in OSNs.

I-SIM is lightweight in the sense that it can be updated incrementally to achieve low latency

and limited energy consumption. In particular, I-SIM accounts for temporal relevance through

an exponential decrease in the weight of previous feedback over time. We formally prove that

the time complexity1 of I-SIM isO(|ΔU |) where ΔU is the set of active users within a given

time interval (unlike the time complexity of non-incremental metrics [157] which isO(|U |)
whereU is the set of total users in the system).

First, we illustrate the power of I-SIM in personalization applications by implementing a

novel recommender leveraging I-SIM, which we call SWIFT (Scalable Incremental Flexible

Temporal recommender). SWIFT is interesting in its own right, as it enables flexible switching

between stream processing and batch processing [163]. We demonstrate the efficiency of I-SIM

through an in-depth experimental evaluation of SWIFT. More precisely, we compare SWIFT

with recommenders using incremental similarity computations (TENCENTREC [92]), matrix

factorization techniques using temporal relevance (TIMESVD [110]), Alternating Least Squares

(ALS [111]) and factored similarity models (FISM [99]), on real-world traces in terms of latency,

energy consumption, and accuracy.

1If not stated otherwise, we refer to the worst-case complexity.
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Second, after demonstrating that trust relations in OSNs exhibit temporal behavior, we illus-

trate the power of I-SIM for trust-distrust predictions in OSNs by implementing I-TRUST. We

empirically show that I-TRUST significantly outperforms the non-incremental alternative,

both in terms of runtime and accuracy.

4.1.2 I-SIM: A Novel Similarity

In this section, we first pose the similarity computation problem more formally and then

present our I-SIM similarity metric before analyzing it. We then show how I-SIM enables

incremental updates (for item-item similarities) over time.

A. Problem Definition

Let U be a set of users, I be a set of items, and Si j (t ) be the similarity between items i , j ∈ I
till timestep t . We define the similarity function as follows.

Si j (t )=
Pi j (t )

n
√

Qi (t ) · n
√

Q j (t )
(4.1)

where n is a positive integer, P is a function of the item vectors i , j , andQ is a function of each

individual item vector. For example, if we take the standard cosine similarity (Equation 2.10),

then n is 2, P is the dot product of item vectors i and j whereas Q is the squared L2-norm

of each individual item vector. Note that the similarity function definition is formulated for

the similarity metrics designed for sparse data (e.g. cosine, jaccard, pearson correlation). For

sparse data, which often contains asymmetric data, similarity depends more on attributes

that are shared, rather than attributes that are lacking.

For an incremental similarity computation, each of these terms (P,Q) could be incrementally

updated as follows.

Pi j (t )=ΔPi j (t )+Pi j (t −1)
Qi (t )=ΔQi (t )+Qi (t −1)

This incremental update seems straightforward when each of the P andQ functions could be

expressed as a summation term independent of any time-varying parameter (Figure 4.2(c)I).

Nevertheless, for more precise similarity metrics, like adjusted cosine similarity, each timestep

depends on some time-varying parameter like the average rating of users. Therefore, the P

andQ values, computed in all previous t −1 timesteps, need to be updated (Figure 4.2(c)II).

In this work, we solve this non-trivial problem by essentially caching some additional terms.

We break the update computation into two components: standard (P s ,Qs) and adjustment
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4.1. I-SIM: Incremental Similarity

(P a ,Qa) components as follows.

Pi j (t )= P s
i j (t )︸ ︷︷ ︸

standard component

+ P a
i j (t )︸ ︷︷ ︸

adjustment component

Qi (t )= Qs
i (t )︸ ︷︷ ︸

standard component

+ Qa
i (t )︸ ︷︷ ︸

adjustment component

More precisely, the standard component incorporates the preference drift (Figure 4.2(a))

whereas the adjustment component incorporates the behavioral drift (Figure 4.2(b)).

B. I-SIM

We now describe our I-SIM metric which temporalizes adjusted cosine similarity (Equa-

tion 2.3). Givenm items and n users, the overall time complexity of the similarity update for

standard techniques (Algorithm 2) isO(m2n) per timestep. Naively augmenting the standard
adjusted cosine with temporal relevance would require computing item-item similarities at

each batch update leveraging all the ratings (Figure 4.2(c)II). The resulting time complexity

(O(m2n) per batch update) would be prohibitive for an online recommender.

We first rewrite the adjusted cosine similarity (Equation 2.3), incorporating temporal relevance

(Equation 2.5), in terms of pre-normalized correlation (Pi j ) and normalization factors (Qi ,Q j )

following the pattern presented in Equation 4.1.

Si j (t )=
Pi j (t )√

Qi (t )
√

Q j (t )
(4.2)

where

Pi j (t )=
∑

u∈U t
i ∩U t

j

f α
ui (t )(rui − r̄u(t )) f

α
u j (t )(ru j − r̄u(t )) (4.3)

Qi (t )=
∑

u∈U t
i

( f α
ui (t )(rui − r̄u(t )))

2 (4.4)

Next, we show that the functions Pi j (t ) andQi (t ) can be incrementally updated with a time

complexityO(|ΔU |). Thus Si j (t ) can also be incrementally computed on-the-fly. Additionally,

this incremental feature reduces the time complexity drastically, enabling lightweight model

updates with incoming streams of data. The active users at any given time interval are the users

who provide ratings in that interval. Figure 4.3(a) compares the total number of users (|U |)
at any given time with the number of active users (|ΔU |) during the last 5 days. Figure 4.3(b)
indicates that the computation time required for the similarity update of our incremental

approach on a single machine is a few orders of magnitude lower than a non-incremental

one. We also observe that the computation time for the incremental approach (Figure 4.3(b))
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corresponds to the number of active users (Figure 4.3(a)) at any given time.
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Figure 4.3 – Comparison between incremental ( I-SIM) and non-incremental similarity compu-
tations [157, 5] for ML-1M dataset. The time interval for the active users is 5 days.

Before providing the incremental update relations, we introduce two adjustment terms (L,M).

These adjustment terms incorporate the behavioral drift captured by ε(t ).

Li j (t )=
∑

u∈U t
i j

ε(t ) f α
ui (t ) f

α
u j (t )[(rui − r̄u(t ))+ (ru j − r̄u(t ))],

Li (t )= 2
∑

u∈U t
i

ε(t ) f 2αui (t )(rui − r̄u(t )) (4.5)

Mi j (t )=
∑

u∈U t
i j

ε(t )2 · f α
ui (t ) f

α
u j (t ), Mi (t )=

∑
u∈U t

i

ε(t )2 · f 2αui (t ) (4.6)

where ε(t )� r̄u(t )− r̄u(t −1).

Theorem 1 (Pi j INCREMENTAL UPDATE). Let ΔU t
i denote the set of users who newly rated i at

timestep t , i.e. ΔU t
i =U t

i \U t−1
i , then the time complexity for updating Pi j (t ) is O(|ΔU t

i |+|ΔU t
j |).

Sketch. The incremental update relation of Pi j is:

Pi j (t )=ΔPi j (t )+e−2α[Pi j (t −1)−Li j (t −1)+Mi j (t −1)]

where ΔPi j (t ) is defined as follows.

ΔPi j (t )=
∑

u∈ΔU t
i ∩U t−1

j

(rui − r̄u(t )) f
α

u j (t )(ru j − r̄u(t )) + ∑
u∈U t−1

i ∩ΔU t
j

f α
ui (t )(rui − r̄u(t ))(ru j − r̄u(t ))

+ ∑
u∈ΔU t

i ∩ΔU t
j

(rui − r̄u(t ))(ru j − r̄u(t ))

The summation terms in ΔPi j (t ) have a time complexity ofO(|ΔU t
i |+ |ΔU t

j |). The full proof is
provided in Appendix §8.1 for interested readers.
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4.1. I-SIM: Incremental Similarity

Note that if Pi j (t ) was updated non-incrementally then the time complexity would beO(|U t
i ∩

U t
j |). With each time step, the number of new ratings for i (|ΔU t

i |) tends to be significantly
smaller than the total number of ratings for i (|U t

i |). The difference is huge even for the average
case as |U t

i | can be of the order of all users in the system (Figure 4.3). For example, following
the long tail distribution (Figure 4.13(a)) the popular items (20% of all the items) would be

rated by nearly 80% of the users in the system.

Theorem 2 (Qi INCREMENTAL UPDATE). Given that ΔU t
i denotes the set of users who newly rated

i at timestep t , i.e. ΔU t
i =U t

i \U t−1
i , then the time complexity for updating Qi (t ) is O(|ΔU t

i |).

Sketch. The incremental update relation ofQi is:

Qi (t )=ΔQi (t )+e−2α[Qi (t −1)−Li (t −1)+Mi (t −1)]

where ΔQi (t ) is defined as follows.

ΔQi (t )=
∑

u∈ΔU t
i

(rui − r̄u(t ))
2

The incremental term (ΔQi (t )) has a time complexity ofO(|ΔU t
i |). Note that the complexity

for the non-incremental update is againO(|U t
i |). The full proof is provided in Appendix §8.1

for interested readers.

Hence, the final incremental relations for the adjusted cosine similarity are as follows.

Pi j (t )=ΔPi j (t )+e−2αPi j (t −1)︸ ︷︷ ︸
standard component

−e−2α[Li j (t −1)−Mi j (t −1)]︸ ︷︷ ︸
adjustment component

(4.7)

Qi (t )=ΔQi (t )+e−2αQi (t −1)︸ ︷︷ ︸
standard component

−e−2α[Li (t −1)−Mi (t −1)]︸ ︷︷ ︸
adjustment component

(4.8)

Li j (t )=ΔLi j (t )+e−2α[Li j (t −1)−2Mi j (t −1)] (4.9)

Mi j (t )=ΔMi j (t )+e−2αMi j (t −1) (4.10)

The I-SIM values (Si j ) can thus be computed on-the-fly, leveraging the incrementally updated

Pi j (t ) andQi (t ) values. We only need to store the P , L,M andQ values which requiresO(m2)
space. Unlike classical non-incremental algorithms [157], we require extra storage for the ad-

justment terms (L,M). The non-incremental algorithms [157, 5] also requireO(m2) space for
storing the item-item similarities. Nonetheless, incremental as well as non-incremental algo-

rithms could benefit from sparse data structures as well as count sketches [41] for significantly

reducing the storage requirements.
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We now provide a variant of I-SIM we call I-SIMε=0 which temporalizes pure cosine similarity.
Adjusted cosine similarity leads to a pure cosine one if the average rating (r̄u) is set to 0

in Equation 2.3. More precisely, a lack of behavioral drift leads to Li j and Mi j being 0 in

Equations 4.7 and 4.8 due to ε(t) being 0. The final incremental relations for pure cosine

similarity are as follows and do not require any additional storage due to the absence of

adjustment terms.

Pi j (t )=ΔPi j (t )+e−2αPi j (t −1) (4.11)

Qi (t )=ΔQi (t )+e−2αQi (t −1) (4.12)

I-SIM also applies to the case of static neighborhood based algorithms (i.e. without using

temporal relevance by setting α to 0 in the update equations). Such algorithms are often

utilized during the cold-start phase of a system.

4.1.3 I-SIM Applications

A. SWIFT: A Novel Recommender

To illustrate the efficiency of I-SIM, we plug it in a novel recommender we design and imple-

ment, called SWIFT (Scalable Incremental Flexible Temporal recommender). In the following,

we present SWIFT and highlight some optimization techniques that speed up its computations,

as we later demonstrate through our evaluations.

Figure 4.4 – The architecture overview of SWIFT.

Framework. As we pointed out, practical recommenders today need to deal with millions

of recommendation requests per day, leading to billions of computations. This scale of

recommendations calls for a framework which supports the incremental similarity metric

that we present in this work. We implement our framework on top of Apache Spark2 and also

choose Apache Cassandra3 as our storagemanagement system to handle large amount of data.

2http://spark.apache.org/
3http://cassandra.apache.org/
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4.1. I-SIM: Incremental Similarity

The architecture of SWIFT consists of a front-end and back-end as illustrated in Figure 4.4.

Front-end. The front-end of SWIFT aggregates the new ratings from users in micro-batches.

These aggregated micro-batches form the incremental input employed by I-SIM to update

the recommender system. The front-end consists of two subcomponents to facilitate the

recommendation process.

• Orchestrator. This subcomponent is responsible for receiving the recommendation requests

from the clients as well as aggregating the incoming rating events into newmicro-batches

(with pre-defined size) which are temporarily cached on the front-end. The orchestrator

also responds to each client’s recommendation request by sending the recommendations

(received from the back-end and cached in the upgrader). Lastly, the orchestrator periodi-

cally transmits the cached micro-batches to the back-end server where the recommender

model is updated using I-SIM with these recent micro-batches.

• Upgrader. This subcomponent caches locally the most up-to-date recommendations

for the clients (received from the back-end server periodically) and later forwards the

recommendations to the orchestrator corresponding to the incoming client requests.

Back-end. SWIFT’s back-end is responsible for computing the similarity updates for the

incoming micro-batches. The back-end performs twomajors tasks: sampling and update as

shown in Figure 4.4. The incoming micro-batches are used to update the user information

(i.e., Ui ), the item information (i.e., Li ,Mi ,Qi ), and the item-pair information (i.e., Li j ,Mi j ,

Pi j ). Next, the back-end employs these updated information along with a biased sampling

technique (explained in the following subsection) to compute the item-item similarities on-

the-fly (Equation 4.2) and also update the item-item nearest neighbor graph. Lastly, it employs

this updated nearest neighbor graph to compute the most up-to-date recommendations for

the active users and then forwards these recommendations to the front-end.

A key advantage of this front-end, back-end design is parallelism, separating the two different

functionalities of SWIFT, namely recommendation request handling (front-end) and incremen-

tal update (back-end). The information between the front-end and back-end is transferred via

the network in a compressed gzip format in order to avoid an additional energy overhead.

This design also provides flexibility to our system as the size of the micro-batch can be tuned.

The service provider that hosts SWIFT can choose the frequency of the updates depending

on the available resources. A small start-up company using SWIFT can aim for a medium-

sized micro-batch (say around 100 events per micro-batch) to trade the additional costly

updates for relatively less accurate similarity values. By setting a micro-batch size of 1, SWIFT

performs stream processing (similar to TENCENTREC [92]). The micro-batch size can also

be automatically set by the front-end based on the rate of incoming events as well as the

estimated latency of the back-end such that bigger micro-batches can be used at peak usage

times. Additionally, the front-end can temporarily increase the micro-batch size to allow for
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(a) Candidate set for an item (in
black).

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  100  200  300  400

A
ve

ra
ge

 v
ie

w
 s

im
ila

rit
y

Updates

Biased-Sampling
Random

(b) Convergence for ML-1M.

Figure 4.5 – The biased sampling technique of SWIFT.

some back-endmaintenance. The ability to trade between stream andmicro-batch processing

of new ratings, depending on the users’ demands, highlights the flexibility of our approach.

Biased sampling. Calculating all the similarity pairs for every new update would lead to a

prohibitiveO(|I|2∗|ΔU |) time complexity for each update where I denotes the set of all items
andΔU denotes the set of users who provided new ratings. In the average case, a small fraction
of the total similarity pairs is significantly affected after an update. Therefore, updating the

similarities only for the aforementioned small fraction of item pairs and using stale values for

the rest would notably reduce time complexity without compromising the recommendation

accuracy. A sampling method is required for carefully selecting the item pairs to be updated,

balancing the trade-off between the number of updates and the recommendation accuracy.

We apply an incremental biased sampling technique (similar to HYREC in §3.1) to address this

issue. Our sampling technique is applied in an item-based manner as item-item similarities

aremore stable than user-user similarities [94]. This biased sampling technique is illustrated in

Figure 4.5(a). The black item i is the most recently rated item. Region 1 contains the K -nearest

neighbors of i which we will reference to as one-hop neighbors (KNN(1)i ). Region 2 contains

K 2 two-hop neighbors of i (KNN(2)i ). Finally, region 3 contains K random items (Rand(K )),

thus creating the candidate set4 of maximum size: 1+K +K ∗K +K = (K +1)2 items. The
random neighbors are required in order to update the similarities for some items that are not

in the two-hop neighborhood. Therefore, the function for selecting the K -nearest neighbors is

not stuck at a local minimum. This technique results in a convergence to neighbors of good

quality5 within a few updates and eventually converges to the optimal top-K (Figure 4.5(b)).

Theorem 3 (BIASED SAMPLING). The incremental biased sampling eventually converges to the

optimal top-K neighbors.

Proof. First, wemathematically denote the candidate set at timestep t : candi (t )= {KNN(1)i (t−
4The candidate set consists of all the items for which the information (i.e. P,Q,L,M) is incrementally updated

by SWIFT’s back-end.
5Good quality neighbors are the neighbors with relatively high similarity.
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1)∪ KNN(2)i (t − 1)∪Rand(k)}. Our biased sampling technique results in a directed graph

GKNN(t ) that connects each item with a set of items KNN
(1)
i (t ) that maximizes the similarity

function Si j (t ):

KNN(1)i (t )= max
j∈candi (t )

K∑
j=1

Si j (t )

After T iterations, the scanned items consist of
T⋃

t=1
candi (t). Moreover, we have

T⋃
t=1

candi (t)
T→∞−−−−→ I where I is the set of all items. Hence, our biased sampling technique

eventually converges to the optimal top-K neighbors.

Figure 4.5(b) depicts the fast convergence of our biased sampling as compared to a ran-

dom sampling technique where the candidate set does not include the two-hop neighbors

(candi (t )= {KNN(1)i (t −1)∪Rand(k)}). The view similarity denotes the average similarity of

the top-K neighbors at any given update step.

SWIFT’s sampling technique improves the incremental update time complexity to

O((K +1)2∗|ΔU |)=O(|ΔU |). Note that there are other sampling techniques used to speedup
K -nearest neighbor computation like the one in TENCENTREC withO(|I|∗ |ΔU |) time com-
plexity for each incremental update which makes our sampling technique significantly faster.

Recommendation. We implement item-based CF (Algorithm 2) by executing the following

phases in SWIFT.

• We substitute the similarity computation phase by leveraging our novel I-SIM metric.

• The neighborhood computation phase leverages the candidate set selected using our item-

based biased sampling technique to reduce the time complexity of the K -nearest neighbor

search. More precisely, we replace the item set I with the candidate set in the GetSimilars

function within Phase 2 of Algorithm 1.

• For the prediction phase, we apply the prediction score function, shown in Equation 2.4, to

generate the final predictions. We reduce the computations by predicting only for the top

10% of the items sorted by popularity. We then compute the top-N recommendations by

sorting the prediction scores.

One general problem for a recommender is the cold-start, when recommendations are re-

quired for new items (i.e. items with no previous ratings in the database). In SWIFT, we initially

assign the K most popular items as neighbors for the new item. Neighbors converge to the

K -nearest ones after a few iterations for this item as we demonstrate in Figure 4.5(b).
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B. I-TRUST: Trust-distrust Predictor in OSNs

To demonstrate the efficiency of I-SIM in trust-distrust predictions (§2.6), we plug I-SIMε=0 in
a trust-distrust prediction application which we call I-TRUST.

Temporal behavior also exists in trust-distrust relationship in OSNs. For example, the trust

between an elector and voters might change over time. One such behavior is demonstrated

in theWiki-Elections trace [185]. We observe a decreasing trend in the number of votes on

Wiki-Elections as shown in Figure 4.6. More intuitively, this shows that during the first election,

the voters’ trust for this wikipedia administrator decreases with time due to more negative

votes (distrust).
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Figure 4.6 – Voters’ trust in an administrator during a Wiki-Election

We design a trust predictor which captures these temporal effects. We employ Algorithm 3

for two classes (C0: Trust,C1: Distrust) to predict the trust relationships. We plug I-SIMε=0 in
the similarity computation phase. Based on Equations 4.11 and 4.12, we update the similarity

computations incrementally after some given number of events during whichO(|ΔU |) users
were active. The time complexity of each update step then decreases fromO(|U |) toO(|ΔU |)
as shown in §4.1.2. As we demonstrate later in our experimental evaluation, I-TRUST’s incre-

mentality improves the latency significantly whereas its temporality improves the prediction

accuracy.

4.1.4 Evaluation

In this section, we report on the performance of our two applications (SWIFT and I-TRUST) in

terms of accuracy, latency and energy consumption. Then, we compare themwith state-of-

the-art alternatives on real-world traces.

A. Experimental Setup

We first describe our experimental environment along with our methodology for obtaining

the results.
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Platform. We select the Grid5000 testbed6 as our experimental platform. Each cluster on

Grid5000 has a set of nodes with specific resources. We measure the energy consumption

of our implementations using Grid5000’s customizedWattmeter which monitors the power

consumption.

Unless stated otherwise, we deploy our implementations on a Spark cluster consisting of four

nodes. Each node consists of two six-core Intel Xeon E5-2630 v3 CPUs, 128 GB of memory

along with 600 GB disk storage. We tune our Spark cluster optimally in order to achieve the

best possible performance in terms of the number of partitions and executors per node. We

empirically found that the optimal performance, in terms of latency, is obtained by using one

executor per machine and setting the number of partitions for all RDDs approximately equal

to the total number of physical cores in the Spark cluster.

Datasets.We use publicly available real-world datasets. More specifically, we useMovieLens

datasets [138]: ML-1M andML-20M. The ML-1M dataset consists of 1,000,209 ratings from

6040 users on 4000 movies. The ML-20M dataset consists of 20,000,263 ratings from 138,493

users on 27,278 movies. Rating density denotes the fraction of actual ratings collected among

all possible ratings. To evaluate the effect of increasing the rating density, we use a densified7

Flixster dataset by employing the method introduced in [122] which leads to 5,105,850 ratings

from 10,000 most active users on 4000 most popular movies. Finally, for evaluating I-TRUST

we employ theWiki-Elections dataset [185] containing 114,029 votes from 6210 users on 2391

editors.

Metrics. We evaluate both our applications from various aspects. We describe below the

metrics used in our evaluation.

Click-Through-Rate (CTR).We adopt this metric to test the accuracy of the recommendations.

Given thatHu is the set of recommended items that were clicked by a user u (hits), andRu is

the set of items recommended to u, we denote the CTR for u byC T Ru and define it as follows:

C T Ru = |Hu |/|Ru |

The overall CTR over the whole test set is the average over the CTR values for all users in

the test set. Note that a recommended item is considered as a hit, if the user rates that item

anytime later than the time of the recommendation. Ideally, CTR for e-commerce services

varies between 1%-5% depending on the type of service [106].

Recall. As introduced in §2.7, this metric captures the sensitivity of a recommender to the

frequency of updates. Given that Cu is the set of items clicked by a user u, we denote the recall

for u by Recal lu and define it as follows: Recal lu = |Hu |/|Cu |. The overall recall is the average
over the recall values for all the users in the test set.

Classification accuracy. We use this metric to test the accuracy of trust-distrust predictions in

6https://www.grid5000.fr/
7The density for ML20M is 0.0053, for ML1M 0.045, and for Flixster 0.128.
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OSNs. More precisely, the classification accuracy is the fraction of correct predictions among

all the predictions.

Mean Absolute Error (MAE).We employ this metric to ensure a fair comparison with model-

based alternatives which optimize for low prediction error. The MAE is defined as follows:

M AE = ∑
u,i∈S

|r̂ui − rui |/|S|, where r̂ui denotes the rating prediction for user u and item i , rui

denotes the actual rating and S denotes the set of test rating events. Since MAE captures

how close the predictions are to the actual ratings, the lower the error, the higher the model

prediction accuracy.

Latency. Thismetric quantifies the delay observed to complete a single task. This delay consists

of three main parts: CPU time, I/O time, and communication delay (e.g. if data is scattered

on multiple nodes). For a set of tasks, we show the minimum, median and 99th-percentile

latency8.

Energy-per-click. This metric quantifies the amount of energy required for performing com-

putations for a single user click. This metric intuitively evaluates the impact of a single click

on the consumed energy. More precisely, we measure the aggregated energy consumption

of the entire cluster, on which we deploy our experiments, for the operations that a single

recommendation task (click) triggers. Given that P̄ denotes the average cluster power con-

sumption throughout the computation time of a click (denoted as t ), the energy consumption

is computed as follows: E = P̄ ∗ t . We measure the energy-per-click in terms of watt-hour

(Wh).

Evaluation scheme. The datasets include the timestamp for each event. We replay the dataset,

ordered by the timestamp, to capture the same temporal behavior as the original one. Further-

more, we split the dataset into training, validation and test sets. Based on the benchmark for

evaluating stream-based recommenders [105], our test set consists of the most recent 1000

ratings. The validation set consists of the last 1000 ratings from the training set and is used for

parameter tuning. For the non-incremental competitors we train the model on the training

set until it converges and then we evaluate the trained model on the test set.

B. SWIFT Evaluation

SWIFT is designed to provide accurate recommendations with low latency in an energy-

efficient manner. In this section, we evaluate SWIFT’s performance for varying parameter

settings and then compare it with state-of-the-art incremental and non-incremental competi-

tors.

To compare with incremental recommenders, we consider TENCENTREC’s practical item-

based CF (which we refer to as TENCENTREC). Compared to SWIFT, TENCENTREC’s practical

algorithm employs incremental approximate cosine similarity (instead of I-SIM) with real-time

8The latency observed by 99% of the tasks is below this value.
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pruning (instead of biased sampling) and real-time personalized filtering while predicting only

for the top 10% of the items sorted by popularity similar to SWIFT (Phase 3 in Algorithm 2).

For the non-incremental alternatives, we compare with a standard matrix factorization based

recommender using temporal relevance (TIMESVD [110]) as well as with the factored sim-

ilarity models (FISM [99]), both of which are publicly available in the LIBREC9 library for

recommenders. Additionally, we compare with the distributed alternating least squares (ALS)

algorithm available in Spark’s MLlib.

We train SWIFT using the training set and then provide recommendations for each rating event

in the test set. More precisely, for the training set, SWIFT computes the required information

(P,Q,L,M) based on the Equations 4.3, 4.4, 4.5, 4.6 of the adjusted-cosine similarity (Equa-

tion 4.2). For the test set, SWIFT updates this information using Equations 4.7, 4.8, 4.9, 4.10 and

then provides recommendations using the updated information. Depending on the flexibility

mode, the back-end is invoked for the update operations either per click (stream processing)

or permicro-batch (batch processing). In the stream processingmode, the front-end responds

to the clients’ requests only after receiving the updated recommendations from the back-end.

Accuracy. The following experiments demonstrate the effect of SWIFT’s parameters on the

recommendation accuracy, namely: model size (K ), recommendations-per-click (N ),micro-

batch size (L) and temporal relevance (α).

Model size. We measure the CTR while varying the model size (K ) which is the number of

neighbors in the item-item network. We observe in Figure 4.7 that after a certain model

size any further increase in the model size reduces the CTR. This decrease in CTR is due to

the inclusion of less similar neighbors in the neighborhood of an item. These less similar

neighbors add noise to the predictions.
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Figure 4.7 – Impact of model size (K ) and recommendations-per-click (N ) on accuracy.

9http://www.librec.net/
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Recommendations-per-click. The number of recommendations provided per click, is another

important parameter that affects the CTR as too few will be insufficient whereas too many will

reduce the interest of users in the recommendations. Hence, it is important to highlight that

in practical recommenders, the recommendations-per-click (N ) should not exceed 20. For

example, IMDB uses Top-12 list to suggest movies and Last.fm uses Top-5 list to suggest songs.

We observe a steady behavior in CTR with increasing N as shown in Figure 4.7. This behavior

can be attributed to the fact that the size of the recommendation hits grows proportionally to

the size of the recommended items.

Micro-batch size. Recall that SWIFT provides a flexible back-end as mentioned in §4.1.3.

More precisely, SWIFT provides recommendations treating each stream of rating events as a

micro-batch. Hence, SWIFT can provide stream processing with the micro-batch size set to 1

whereas the micro-batch size can be set to few hundreds of rating events for batch processing.

Note that this flexibility is an important feature for practical recommenders, as depending

on the available resources (due to limited operational costs) or the network traffic (due to

multiple recommendation requests), the micro-batch size can be adjusted by the service

provider hosting SWIFT.

We now evaluate the impact of the flexibility mode on accuracy. Practically, many recom-

menders like Amazon or eBay repeat certain recommendations similar to SWIFT. Such re-

peated recommendations are less frequent in the stream processing mode (more frequent

updates in top-N recommendations) but occur more often as the micro-batch size increases.

Therefore, the denominator of the CTR (number of recommended items) decreases as the

micro-batch size increases. On the contrary, the denominator of the recall (number of clicked

items) is independent of the micro-batch size. More updated recommendations (smaller

micro-batch size) lead to more hits and thus result in an increase in the numerator. Hence, we

employ the recall to capture the difference in accuracy for varying micro-batch sizes.10

 5.2

 5.6

 6

 6.4

 6.8

 7.2

 1  10  100  1000  10000

R
ec

al
l (

%
)

micro-batch size

Figure 4.8 – Impact of flexibility mode on accuracy for ML-1M.

More precisely, Figure 4.8 illustrates this trade-off between accuracy and micro-batch size.

Compared to the stream processingmode (micro-batch size set to 1), there is an impact on the

recommendation accuracy, in terms of recall, for the batch processing mode. Furthermore,

there is a steep decrease in the recall with increasing micro-batch size. This behavior is due to

10Note that all the experiments leveraging the CTRmetric have a fixed micro-batch size.
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less frequent updates leading to more temporally stale similarities.

Temporal relevance.We analyze the effect of temporal relevance on the quality of recommen-

dations in terms of CTR. For these experiments, we increase the test set to the last 10,000

events as the drift in the users’ interests is more evident over longer test periods. We set the

micro-batch size to 100 and tune the degree of temporal relevance by regulating the temporal

weight parameter α. We observe an improvement in the CTR while increasing the value of

α as shown in Figure 4.9. Moreover, we also observe that the CTR starts decreasing at some

point. This outcome occurs due to the fact that many of the users rated very few items and

our item-based approach leverages the items in the profile of the user. Hence, an increased

value of α results in degrading the already few ratings in the user profile leading to a cold-start

scenario for the given user. Note that we can also vary α specifically for each user profile; this

is left for future work.
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Figure 4.9 – Impact of temporal relevance (α) on accuracy. Setting α to 0 deactivates SWIFT’s
temporal feature.

Table 4.1 compares SWIFT with incremental recommenders (TENCENTREC) as well as with

non-incremental ones (TIMESVD, ALS, FISM) in terms of mean absolute error in predictions.

We observe that SWIFT outperforms the others on themore sparse datasets (ML-1M,ML-20M)

whereas ALS performs best on a relatively dense dataset (Flixster).

Approach
Dataset

ML-1M ML-20M Flixster

FISM 0.731 0.873 0.713
TIMESVD 0.806 0.892 0.73
ALS 0.707 0.746 0.629
SWIFT 0.686 0.662 0.669

TENCENTREC 0.784 0.721 0.684

Table 4.1 – Model comparison (MAE) between incremental and non-incremental alternatives.

Latency. SWIFT’s latency is primarily affected by themodel size (K ),micro-batch size (L) and

cluster size parameters. We now provide the results concerning SWIFT’s latency for different

settings for these parameters.
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Model size. SWIFT’s biased sampling depends on the model size (K ). An increase in the

model size generates larger candidate sets (O(K 2) size) thereby leading to more computations.
Figure 4.10 depicts that the increase in the computations is more evident for large and sparse

datasets like ML-20M. This behavior is due to the fact that the larger amount of items in the

database combined with the sparsity leads to more diverse items in a candidate set. Hence,

the amortized complexity of our biased sampling increases. In this specific case, the biased

sampling does not reduce the computations with large values ofK , thereby having a significant

impact on latency (as shown in Figure 4.10 for ML-20M and K = 200).
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Figure 4.10 – Impact of model size (K ) on latency (stream processing).

Micro-batch size. We evaluate the flexibility of SWIFT by varying the micro-batch size. Fig-

ure 4.11 shows the recommendation and update latency of SWIFT’s front-end and back-end

respectively for K = 50. The update latency is increasing with the micro-batch size as the
information for more items’ candidate sets needs to be updated. Nevertheless the recommen-

dation time is nearly the same for varying micro-batch size. The latency observed between a

click and the generation of the recommendations is a fewmilliseconds. Note that in the batch

processing mode, the similarities are updated only after the system receives a micro-batch of

L fresh ratings.
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Figure 4.11 – Impact of batch processing on latency for ML-1M.

Cluster size.We deploy SWIFT and ALS on the same cluster while increasing the cluster size

(number of nodes in the cluster) and compare the improvement in terms of median latency

(which we quantify as speedup). Figure 4.12 demonstrates that SWIFT (stream processing

mode with the model size set to 200) achieves a better speedup than ALS. Furthermore, an
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increase in the micro-batch size leads to an increase in the speedup for SWIFT. Therefore, the

increase in the update latency, shown in Figure 4.11, can be mitigated by employing more

nodes due to SWIFT’s scalability.

The scalability saturates after a certain cluster size (5 nodes) due to the communication

time with Cassandra as well as the sequential dependencies among SWIFT’s tasks. The

communication overhead with Cassandra could be possibly mitigated by using a distributed

Cassandra cluster and tuning it to maximize the benefits from locality whereas the sequential

dependencies could be reduced by pipelining the tasks to exploit more parallelism. It is

important to note that the observed bottleneck is implementation specific and not a limitation

of I-SIM.
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Figure 4.12 – Scalability comparison for ML-20M.

Energy Consumption.We evaluate the energy consumed by the computations induced due

to a user click. In other words, we estimate the impact of a single click on energy consumption.

Recall that our goal is to reduce the energy consumption by reducing the time complexity. We

analyze the energy consumption corresponding to the clicks for three representative items:

most popular, least popular and 80th percentile11. The ratings provided by users follow a long

tail distribution (Figure 4.13(a)) where 80% of the users rate only 20% of the items. Hence, we

choose our 80th percentile item along with the most popular and unpopular items as shown

in Figure 4.13(a).

Figure 4.13(b) depicts the energy consumption of SWIFT (K = 100) for clicks corresponding
to these three items. The unpopular items are not strongly correlated to their neighbors due

to the relatively small number of ratings provided for each of them. Therefore, the items in

their candidate sets have less overlap compared to those in the candidate sets of the more

popular items. Thus, there is an increase in the computation time for the unpopular items

leading to an increase in the energy-per-click. We deploy ALS on the same Spark cluster for

benchmarking the energy consumption of a single update on this cluster (Figure 4.13(b)). Note

that ALS is non-incremental and therefore requires significantly more time for one update

than SWIFT, thus leading to higher energy consumption.

11The 80th percentile popular item is the one with popularity higher than 80% of the items.
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Figure 4.13 – Impact of item popularity on energy consumption for ML-20M.

C. I-TRUST Evaluation

We now evaluate the effectiveness of I-TRUST in providing accurate predictions with low

latency. We denote the classical predictor implementing Algorithm 3 as C-TRUST. For the

experiments, we set the model size (K ) to 150 for C-TRUST to achieve the optimal quality. We

have the samemodel size with the temporal parameter (α) as 0.3 for I-TRUST. We deploy these

experiments on a single node. While training I-TRUST, we update the similarities incrementally

after a fixedmicro-batch of training events whereas for C-TRUST the similarities are computed

using all the training events in a non-incremental manner.

Runtime. Wemeasure the total runtime for updating the similarities needed for constructing

the K -nearest neighbor graph using all the training events. This graph is then used to predict

the trust relations as shown in Algorithm 3 (Phase 3). For I-TRUST, we set the micro-batch

update for similarity computations to 1000 voting events. From Table 4.2, we observe that the

runtime improves by 36 times.

Accuracy. Table 4.2 confirms I-TRUST’s superiority in terms of accuracy. I-SIMε=0 incorporates
the time-varying trust relations between an administrator and the voters, in the similarity

values. Therefore, the k-nearest neighbor graph is temporally more accurate and leads to

better predictions. The improvement is reflected in the difference with C-TRUST for the voting

classification task.

Approach Runtime Classification Accuracy
C-TRUST 421.2 s 79.21%
I-TRUST 11.66 s 80.75%

Table 4.2 – Runtime and accuracy comparisons for I-TRUST and C-TRUST.

4.1.5 Related Work

Collaborative filtering. CF algorithms can be generally divided into two categories: memory-

based andmodel-based. Memory-based algorithms employ user-item ratings to compute the
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predictions and then generate relevant recommendations. These algorithms can be either

user-based [83] or item-based [157]. Our work focuses on the item-based CF technique which

has been shown to provide more accurate recommendations compared to the user-based

one [157]. In contrast to memory-based techniques, model-based ones build parametric

models by learning iteratively on the training datasets and then leverage the learnedmodel

to generate predictions. Different types of models are typically used, including matrix fac-

torization [110] and factored item similarity models [99]. Standard model-based techniques

require to update their learned models by employing all the ratings, including the new ones,

and hence are not incremental in nature.

Real-time recommenders. These have recently attracted a lot of attention. Huang et al.

presented TENCENTREC, a real-time stream recommender [92] which uses an incremental

version of approximate cosine similarity. We demonstrate in §4.1.4 that by trading storage

(to store the L andM information), I-SIM performs better in terms of accuracy compared to

the similarity metric leveraged by TENCENTREC. Furthermore, SWIFT’s biased sampling is

significantly faster than TENCENTREC’s real-time pruning as we explained in Section 4.1.3.

Whilst Yang et al. [187] presented a scalable item-based CF method by using incremental

update, they did not however address the problem of temporal relevance.

Temporal relevance. Few approaches have addressed the problem of temporal relevance in

the context of CF. One simple heuristic to capture the temporal behavior of a user, applicable to

any recommender, is to consider only the most recent ratings in her profile for generating the

recommendations [92, 32, 37]. In our work, we focus on the temporal relevance in the context

of similarity computations. Ding et al. [53] exploited the timestamps of ratings to adapt the

item-based CF technique. They incorporated time-based weights in the score prediction stage

but did not adapt the similarity computations, hence leading to higher time complexity. Lathia

et al. [113] analyzed the effect of temporal relevance by varying the neighborhood size over

time. Koren et al. [110] designed a matrix factorization model that considers the temporal

behavior of users. However, their model has a higher time complexity as they employ multiple

time dependent parameters. Liu et al. [122] introduced an incremental version of cosine

similarity that provides temporal relevance. However, Sarwar et al. [157] empirically showed

that an item-based CF technique provides more accurate recommendations by leveraging the

adjusted cosine metric (compared to the classical cosine one). I-SIM provides incremental

updates for the adjusted cosine similarity while incorporating the temporal relevance feature.

Energy-efficiency. Despite a large amount of work on large-scale CF [198, 188, 157], none of

the existing approaches focuses on reducing the time complexity. The main focus has been so

far to design distributed algorithms which can decentralize the computations over multiple

nodes leading to better scalability. This strategy leads to more resource utilization and thereby

higher energy requirements. However, energy consumption is currently a major concern in

data centers [109]. Energy costs are quickly rising in large-scale data centers and are soon

projected to overtake the cost of hardware. Energy-efficiency is the new holy grail of data

management systems research [81]. We address this energy-efficiency issue by designing
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incremental computations with lower time complexity.

Trust-distrust in OSNs. Trust inference algorithms rely on users’ feedback to predict future

trust relations. However, trust relations are assumed to be static in existing literature [126, 197].

In this work, we first demonstrate that trust relations can be time-varying and then present

how to capture these dynamic trust relations by leveraging I-SIM and thus enabling lightweight

incremental similarity updates.

4.1.6 Conclusion

We present I-SIM, a novel similarity metric that enables similarity computations in an incre-

mental and temporalmanner. We illustrate through two applications the effectiveness of I-SIM

in practice: (a) SWIFT incorporating I-SIM for recommendation and (b) I-TRUST incorporat-

ing I-SIMε=0 for trust prediction. We empirically show that I-SIM leads to better accuracy and
lower latency along with energy efficiency compared to state-of-the-art alternatives. Moreover,

I-SIM can be leveraged to incorporate time-awareness in similarity-based applications, for

example, trust recommendation in mobile ad-hoc networks [126] or predictive blacklisting

against malicious traffic on the Internet [171].

4.2 CIP: Consumed Item Packs

4.2.1 Overview

In §4.1, we observe how we can design recommender systems which incorporate explicit

feedback (e.g., ratings) in an incremental manner while preserving their temporality. Yet,

relying on explicit feedback raises issues regarding feedback sparsity (in systems where the

item catalog is large, users tend to give feedback on a trace amount of those items, impacting

the quality of recommendations [2]), and limited efficiency for recommending fresh items

in reaction to recent user actions [122]. In this work, we investigate the existence of a higher

level abstraction for sequences of consumed items, and algorithms for dealing with them.

Our Consumed Item Packs (CIPS) relate to high order relations between items enjoyed by a

user and therefore eliminating the need of explicit feedback. Some previous works such as

HOSLIM [39], considered the consumption of items by the same user as the basis for implicit

recommendation. HOSLIM places the so called user-itemsets (implicit feedback) in a matrix,

and then computes the similarity of jointly consumed items over the whole user history (that

leads to the optimal recommendation quality). High-order relations are sought in principle,

but due to the tractability issue of this approach (form items and order k:O(mk ) combinations

of the items are enumerated and tested for relevance), authors limit computations only to

pairs of items. Very recently, Barkan et al. proposed to consider item-item relations using the

model of word embeddings [16]. Our work generalizes the notion of implicit item relations,

based on consumption patterns.
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(a) Communities of movies
(MovieLens).

(b) Distribution of genres in the 10 largest communities of the movie graph.
(Legend-colors on the x-axis correspond to colors of communities.

Figure 4.14 – Existence of temporal consumption habits of users in MovieLens dataset.

To get more intuition about the very notion of consumed item packs, consider the following

experiment we conduct on the publicly availableMovieLens 1Mdataset, fromwhichwe extract

an undirected graph. Vertices of the graph are movies. An edge exists between two movies if

some minimal number (M) of users have consumed both of them in a “short” consumption inter-

val (here “short” means consumed within -2 to 3 contiguous hops in the users’ consumption

log).12

In the graph presented in Figure 4.14(a), we only depict, from the original graph, movies where

the edges have at least 30 transitions (i.e., 30 users have consumed the twomovies within the

specified consumption interval, leading to the representation of 1% of the total number of

edges). The edges of the graph are weighted by the number of transitions, which is then at

least 30 (M = 30).

We then apply a community detection algorithm [23] to the resulting graph. We usemodularity

as a measure of the structure of the network. The value of the modularity [23] lies in the range

[-1,1]. It is positive if the number of edges within groups exceeds the number expected on the

basis of chance. For a given division of the network’s vertices into somemodules, modularity

reflects the concentration of edges within modules compared with random distribution of

links between all nodes regardless of modules. A high modularity score (0.569) indicates

the presence of strong communities in the graph presented in Figure 4.14(a). We highlight

communities which represent at least 1% of the total number of nodes in the original graph.

There are 10 such communities, each ranging from 1.08% to 5.21% of the original graph nodes.

The average clustering coefficient of the graph is 0.475, the one of the largest community

(in purple) is 0.771, and the one of the smallest community (in dark blue) is 0.842. Thus,

community clustering is significantly more important than the graph one (which supports

the observed high graph modularity). Interestingly, those communities are then (densely)

connected, by a latent feature.

It is important to notice that this latent feature cannot be reduced to the genre of the movies.

To show this, we also plot the distribution of movie genres in the 10 (strong) communities

12The +/- signs denote the order of consumption for the pair of movies.
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in Figure 4.14(b). We first observe that each community conveys a very specific blend of

genres: one community cannot be trivially reduced to a genre. Secondly, it appears that some

communities are closer than others: “pink” and “orange” communities are well separated, both

by hop-distance on the graph (Figure 4.14(a)) and by their constituent genres (Figure 4.14(b)).

The latent feature cannot be reduced to item launch times either: e.g., movie launch times of

the smallest of the 10 clusters spread from 1931 to 1997.

We conduct a similar experiment for a product review website (Ciao [40]), settingM = 2 on
this very sparse dataset. The resulting weighted graph, with detected item communities, also

has a high modularity score of 0.61.

In short, these experiments highlight the very existence of a non trivial latent feature, namely

consumed item packs (CIPS), somehow representing the temporal consumption habits of

users. Extracting this latent information from item communities and then using it for person-

alization services is not straightforward.

4.2.2 Consumed Item Packs (CIPS)

To get access to this latent feature from service logs, we define the CIP data structure. CIPS are

extracted from users’ consumption patterns, and allow us to compute the similarity between

those users (or items consumed by them). A user’s profile is composed of multiple CIPS. The

notion of CIP is then instantiated in three different algorithms: a user-based algorithm, an

item-based one, and a word embedding based one.

To make things more precise, we recall from §2 our notations: a set of m users U =
{u1,u2, ...,um} and a set of n product catalog items I = {i1, i2, ..., in}. The profile of a user

u, noted Pu , consists of a set of pairs of the form 〈i , tui 〉 (where u consumed an item i at a

time tu,i ), extracted from service logs. CIPS are composed of items: each CIP ∈ I∗. The order
of the items in a given user’s CIP represents their relative appearance in time, the leftmost

symbol being the oldest one:

CIPu = [i1, i2, i3, ..., ik ] such that tu,i1 < tu,i2 < ...< tu,ik .

For instance, u1’s CIP (CIP1) is [i14, i3, i20, i99, i53, i10, i25], while u2’s one (CIP2) is [i20, i53, i4].

Items i14 and i25 are respectively the first and last items that u1 has consumed in CIP1, while

i20 and i53 are two items that both users have consumed. In the rest of the work, we assume

that one item occurs only once in a given CIP.13

A CIP then represents the items consumed by a user over a predefined period of time. Using

such a data structure, one can devise a similaritymeasure si m :
{I∗ ×I∗ → R+

}
14 between

two CIPS, that captures the proximity between users (or items) as we explain in the next two

13Our similarity metrics might be extended to take re-consumption into account, but it is outside the scope of
this work.
14I∗ refers to the set of finite length sequences of items from I.
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sections.

In practice, CIPS are directly derived from service platform transaction logs, that are at least

composed of tuples of item-id and the corresponding consumption timestamp15 of that item.

(It is important to note that an explicit recommender system requires tuples including, in

addition, the rating (rui ) that u provided for item i .)

4.2.3 CIP Algorithms

The core claim of this work is that the notion of CIP is general enough to capture differ-

ent algorithms that rely on sequences of items. In the next three subsections, we present

novel algorithms that determine CIP-based similarities and leverage sequence of items for

recommendations.

A. CIP-U: User-based Recommender

In this subsection, we introduce our user-based algorithm using CIPS, which we denote CIP-U.

We then present how to perform incremental updates with CIP-U.

CIP-U Algorithm. CIP-U is an incremental algorithm that maintains a user-user network

where each user is connected to the most similar K other users. CIP-U exploits users’ CIPS,

and accepts batches of items freshly consumed by users (i.e., last logged transactions on the

platform) to update this network.

P l
u denotes the profile of a user u till the l th update of her consumed items while CIPl+1

u

denotes the batch of new items consumed by her since the last batch update. Assuming

P l
u = i1i2...ik and CIP

l+1
u = ik+1ik+2...in , we can denote the profile of a user u after the (l +1)th

iteration as P l+1
u = P l

u ∪CIPl+1
u . Note that ∪ is an order preserving union here.

Before we provide the similarity measure to compare users, we introduce some preliminary

definitions. We first introduce the notion of hammock distance between a pair of items in the

profile of a given user u.

Definition 3 (HAMMOCK DISTANCE). The hammock distance between a pair of items (i , j ) in

Pu, denoted by Hu(i , j ), is the number of hops between them.

For instance, in Pu = [i14, i3, i20, i99, i53, i10, i25],Hu(i14, i99)= 3.

Based on the hammock distance, we define a hammock pair (HP) between two users, as a
pair of items that both users have in common.

Definition 4 (HAMMOCK PAIRS). Given two users u and v, their hammock pairs HPu,v are the

set of distinct item pairs both present in Pu and in Pv , under the constraint that the number of

15The timestamp denotes the actual consumption time of the item (in the UNIX format).
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hops between the item pairs is at most δH .

HPu,v = {(i , j ) |Hu(i , j )≤ δH ∧ Hv (i , j )≤ δH ∧ i �= j }

Hyper-parameter δH denotes the hammock threshold and serves the purpose of tuning the

CIP-based latent feature considered between related items.

Let [ ] denote the Iverson bracket:

[P ]=
⎧⎨⎩1 if the predicate P is True

0 otherwise.

Finally, from hammock pairs, we derive the similarity of two users with regards to their CIPS

as follows.

Definition 5 (SIMILARITY MEASURE FOR USER-BASED CIP). The similarity between two users u

and v is defined as a function of the cardinality of the set of hammock pairs between them:

si mCIP-U(u,v)= 1− (1− [Pu = Pv ]) ·e−|HPu,v | (4.13)

We obtain si mCIP-U ∈ [0,1], with the boundary conditions, si mCIP-U = 0 if the two users have
no pair in common (|HPu,v | = 0 and [Pu = Pv ] = 0), while si mCIP-U = 1 if their CIPS are
identical ([Pu = Pv ]= 1).

Incremental updates. CIP-U enables incremental updates, in order to conveniently reflect the

latest users’ consumption in recommendations without requiring a prohibitive computation

time. CIP-U processes batches of events (consumed items) at regular intervals and updates

the similarity measure for pairs of users. Cu,v denotes the set of items common in the profiles

of two users u and v . More precisely, after the l th iteration, we obtain:

C l
u,v = P l

u ∩P l
v

Then, at the (l +1)th iteration, we get:

C l+1
u,v = P l+1

u ∩P l+1
v = (P l

u ∪CIPl+1
u )∩ (P l

v ∪CIPl+1
v )

= (P l
u ∩P l

v )∪ (P l
u ∩CIPl+1

v )∪ (P l
v ∩CIPl+1

u )∪ (CIPl+1
u ∩CIPl+1

v )=C l
u,v ∪ΔC l+1

u,v

where ΔC l+1
u,v =(P

l
u∩CIPl+1

v )∪ (P l
v ∩CIPl+1

u )∪ (CIPl+1
u ∩CIPl+1

v ). Note that the time complexity

of this step isO((|P l
u |+ |CIPl+1

v |)+ (|P l
v |+ |CIPl+1

u |)), where |CIPl+1
u |, |CIPl+1

v | are bounded by
the number of events after which the batch update will take place, say Q. Hence, the time

complexity isO(n+Q)=O(n), where n denotes the total number of items, and whenQ <<n

(as expected in a system built for incremental computation).
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We next incrementally compute the new hammock pairs. ΔHPu,v denotes the set of new

hammock pairs for users u and v . Computation is performed as follows:

ΔHPu,v = {(i , j ) | (i ∈C l
u,v , j ∈ΔC l+1

u,v ) ∧ (i ∈ΔC l+1
u,v , j ∈ΔC l+1

u,v ) ∧ Hu(i , j )≤ δH ∧ Hv (i , j )≤ δH }

The time complexity of this step isO(|C l
u,v | · |ΔC l+1

u,v |), where |ΔC l+1
u,v | is bounded by the number

of events after which the batch update takes place (Q). Hence, the time complexity is also of

O(n ·Q)=O(n).

Finally, the similarities are computed leveraging the cardinality of the recently computed

incremental hammock pairs. More precisely, we compute the updated similarity on-the-fly

between a pair of users u and v after the (l +1)th iteration as follows:

si ml+1
u,v = 1− (1− [P l+1

u = P l+1
v ]) ·e−|HP l

u,v+ΔHPu,v |

Hence, the similarity between one user and all m others is computed with a O(nm) time

complexity.16 In CIP-U, we retain only a small number (K ) of similar users. For each user

u, we retain the K most similar users, where K <<m, and record these user-ids along with

their similarities with u. We term K as themodel size. Selecting the top-K similar users for

collaborative filtering based on their similarity requires sorting, which induces an additional

complexity ofO(m logm). Hence, the total time complexity isO(nm)+O(m logm)=O(nm)

(since n >> logm). Note that classical explicit collaborative filtering algorithms like user-

based [154] or item-based [157] ones also have same time complexity for periodically updating

their recommendationmodels. We can reduce the time complexity for the top-K neighbors

update further toO(n) by using biased sampling and iteratively updating the neighbors [27].

B. CIP-I: Item-based Recommender

In this subsection, we introduce our item-based algorithm using CIPS, which we denote as

CIP-I. We then present how to perform incremental updates with CIP-I.

CIP-I Algorithm. CIP-I is also an incremental algorithm that processes user consumption

events in CIPS, to update its item-item network.

Similar to CIP-U, we also leverage the notion of user profiles: a profile of a user u is noted Pu ,

and is composed of one or more disjoint CIPS. We use multiple CIPS in a user profile to model

her consumption pattern. CIPS are separated based on the timestamps associated with the

consumed items: two consecutive CIPS are disjoint if the former’s last and latter’s first items

are separated in time by a given interval (noted δ).

Definition 6 (CIP PARTITIONS IN A USER PROFILE). Let ik and ik+1 denote two consecutive

16Our time complexity analysis concerns the training phase of the recommender as this phase requires more
computational effort.
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consumption events of a user u, with consumption timestamps tu,ik and tu,ik+1 , such that

tu,ik ≤ tu,ik+1 . Given ik belongs to CIPl
u, item ik+1 is added to CIPl

u if tu,ik+1 ≤ tu,ik+δ. Otherwise

ik+1 is added as the first element in a new CIPl+1
u .

These CIPS are defined as δ-distant. The rationale behind the creation of user profiles com-

posed of CIPS is that each CIP is intended to capture the semantic taste of a user within a

consistent consumption period.

With i <CIP j denoting the prior occurrence of i before j in a given CIP, and the inverse

hammock distance (εu(i , j )) being a penalty function for distant items in a CIPu (e.g., εu(i , j )=
1

Hu (i , j )
), we express a similarity measure for items, based on those partitioned user profiles, as

follows.

Definition 7 (SIMILARITY MEASURE FOR ITEM-BASED CIP). Given a pair of items (i , j ), their

similarity (si mCIP-I(i , j )= s) is:

s =

∑
u

|l |u∑
l=1

[
(i , j ) ∈ CIPl

u ∧ i <CIP j
](
1+εu(i , j )

)
2 ·max{∑

u

|l |u∑
l=1

[
i ∈ CIPl

u

]
,
∑
u

|l |u∑
l=1

[
j ∈ CIPl

u

]} = scor eCIP-I(i , j )

2 ·max
{
car dV (i ),car dV ( j )

} (4.14)

where |l |u denotes the number of CIPS in the profile of user u and [ ] denotes the Iverson bracket.

This reflects the number of close and ordered co-occurrences of items i and j over the total

number of occurrences of both items independently: si mCIP-I(i , j ) = 1 if each appearance
of i is immediately followed by j in the current CIP. Contrarily, si mCIP-I(i , j )= 0 if there is
no co-occurrence of those items in any CIP. Furthermore, we denote the numerator term

as scor eCIP-I(i , j ) and the denominator term as a function of car dV (i ) and car dV ( j ) sub-

terms for Equation 4.14 where car dV (i )=∑
u

∑|l |u
l=1[i ∈ CIPl

u]. As shown in Algorithm 4, we

can update scor eCIP-I(i , j ) and car dV (i ) terms incrementally. Finally, we can compute the

similarity on-the-fly leveraging scor eCIP-I(i , j ) and car dV (i ) terms.

Incremental updates. CIP-I processes users’ recent CIPS scanned from users’ consumption

logs. Score values (scor eCIP-I) are updated as shown in Algorithm 4. We require an item-item

matrix to maintain the score values, as well as an n-dimensional vector that maintains the

current occurrence number of each item.

After the update of the score values, the algorithm terminates by updating a data structure

containing the top-K closest items for each given item, leveraging the scorematrix and the

cardinality terms for computing similarities on-the-fly.

The complexity of Algorithm 4 depends on the maximum tolerated size of incoming CIPS. As

one expects an incremental algorithm to receive relatively small inputs as compared to the

total dataset size, the final complexity is compatible with online computation: e.g., if the largest

CIP allowed has cardinality |CIP| =O(logn), then run-time complexity is poly-logarithmic.

66



4.2. CIP: Consumed Item Packs

Algorithm 4 Incremental Updates for Item Pairs.

Require: CIPu � last δ-distant CIP received for user u
1: scor eCIP-I[ ][ ] � item-item scorematrix, intialized to 0
2: car dV �n-dim. vector of appearance cardinality of items
3: for item i in CIPu do
4: car dV (i )= car dV (i )+1
5: for item j in CIPu do
6: if i �= j then
7: ε(i , j )= ε( j , i )= 1

Hu (i , j )
8: end if
9: if i <CIP j then
10: scor eCIP-I[i][j]+=(1+ε(i , j ))
11: else
12: scor eCIP-I[j][i]+=(1+ε( j , i ))
13: end if
14: end for
15: end for

C. DEEPCIP: Embedding-Based Recommender

In this subsection, we present an approach based on machine learning, inspired by

WORD2VEC[135, 16]. This approach relies on word embedding, transposed to items. We

specifically adapt this concept to our CIP data structure. We name this CIP-based approach

DEEPCIP.

WORD2VEC Embeddings. Neural word embeddings, introduced in [19, 135], are learned

vector representations for each word from a text corpus. These neural word embeddings are

useful for predicting the surrounding words in a sentence. A common approach is to use a

multi-layer Skip-grammodel with negative sampling. The objective function minimizes the

distance of each word with its surrounding words within a sentence while maximizing the

distances to randomly chosen set of words (negative samples) that are not expected to be close

to the target. This is an objective quite similar to ours as it enables to compute proximity

between items in the same CIP. This approach computes similarity between two words as the

dot product of their word embeddings.

DEEPCIP Algorithm.We now describe how the WORD2VEC concept is adapted to CIPS, for

they allow scalable and fresh item incorporation in the model. We feed a skip-grammodel

with item-pairs in CIPS where each CIP is as usual an ordered set of items (similar to the

instantiation in CIP-I). More precisely, CIPS are δ-distant as instantiated for CIP-I. DEEPCIP

trains the neural network with pairs of items at a distance less than a givenwindow sizewithin

a CIP. This window size corresponds to the notion of hammock distance (as defined for CIP-U)

where the distance hyper-parameter δH is defined by thewindow size. More formally, given a

sequence of T training items’ vectors i1, i2, i3, ..., iT , and a maximum hammock distance of k,

the objective of the DEEPCIP model is to maximize the average log probability.

1

T

T−k∑
t=k

log P (it |it−k , ...., it−1, it+1, ...., it+k ) (4.15)
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The Skip-grammodel is employed to solve the optimization objective 4.15 where the weights

of the model are learned using backpropagation and stochastic gradient descent (SGD). SGD

is inherently synchronous as there is a dependence between the update from one iteration

and the computation in the next iteration. Each iteration must potentially wait for the update

from the previous iteration to complete. This approach does not allow the distribution of

computations on parallel resources which leads to a scalability issue. To circumvent this

scalability issue, we implement DEEPCIP using asynchronous stochastic gradient descent

(DOWNPOUR-SGD [48]). DOWNPOUR-SGD enables distributed training for the skip-gram

model on multiple machines by leveraging asynchronous updates from them. We use a

publicly-available deep learning framework [50] which implements DOWNPOUR-SGD in a

distributed setting. More precisely, DEEPCIP trains the model using DOWNPOUR-SGD on the

recent CIPS thereby updating the model incrementally.

DEEPCIP uses a most_similar functionality to select items to recommend to a user, using

as input recently consumed items (current CIP). We compute a CIP vector using the items

in the given CIP and then use this vector to find most similar other items. More precisely,

themost_similarmethod uses the cosine similarity between a simple mean of the projection

weight vectors of the recently consumed items (i.e., items in a user’s most recent CIP) and the

vectors for each item in the model.

Incremental updates. Online machine learning is performed to update a model when data

becomes available. The DEEPCIP model training is performed in an online manner [63]

where the model is updated using the recent CIPS. Online machine learning is crucial in

recommendation as it is necessary for the algorithm to dynamically adapt to new temporal

patterns [37] in the data. Hence, the complexity of the model update is dependent on the

number of new CIPS received along with the hyper-parameters for the learning algorithm

(primarily, skip-grammodel parameters, dimensionality of item vectors, number of training

iterations, hammock distance).

4.2.4 Implementation

We provide here some implementation details of our CIP-based algorithms, i.e.,CIP-U, CIP-I

and DEEPCIP.

A. Spark Data Structures

We consider Apache Spark [172] as our framework for recommendation computations. Spark is

a cluster computing framework for large-scale data processing. It is built on top of the Hadoop

Distributed File System (HDFS) and provides several core abstractions, namely Resilient

Distributed Datasets (RDDs), parallel operations and shared variables.

An RDD is a fault-tolerant abstraction that enables users to explicitly persist intermediate

results in memory and control their partitioning to optimize data placement. It is a read-only
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Figure 4.15 – Topology and data structures for CIP-U and CIP-I (arrows denote the RDD
dependencies).

collection of objects partitioned across a set of machines and can be rebuilt if a partition is lost.

In a Spark program, data is first read into an RDD object. This RDD object can be altered into

other RDD objects by using transformation operations like map, filter, and collect. Spark
also enables the use of shared variables, such as broadcast and accumulator, for accessing or

updating shared data across worker nodes.

B. Tailored Data Structures for CIPS

We nowmention briefly the RDDs leveraged in the memory-based approaches (CIP-U and

CIP-I) as shown in Figure 4.15 (the arrows, between RDDs, in the figure denotes the sequential

dependency between the RDDs through transformation operations) as well as those in the

model-based approach (DEEPCIP) as shown in Figure 4.16.

RDDs for CIP-U. For CIP-U, we store the collected information into three primary RDDs as

follows. USERSRDD stores the information about the user profiles. USERSIMRDD stores the

hammock pairs between all pairs of users. The pairwise user similarities are computed using a

transformation operation over this RDD. USERTOPKRDD stores the K most similar users.

During each update step in CIP-U, afterQ consumption events, the new events are stored into

a DELTAPROFILES RDD which is broadcast to all the executors using the broadcast abstraction

of Spark. Then, the hammock pairs between users are updated (in USERSIMRDD) and conse-

quently transformed to pairwise user similarities using Equation 4.13. Finally, CIP-U updates

the the top-K neighbors (USERTOPKRDD) based on the updated similarities.

RDDs for CIP-I. For CIP-I, we store the collected information into two primary RDDs as

follows. ITEMSIMRDD stores score values between items. The pairwise item similarities are

computed using a transformation operation over this RDD. ITEMTOPKRDD stores the K most
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Figure 4.16 – Topology and data structures for DEEPCIP.

similar items for each item based on the updated similarities.

During each update step in CIP-I, the item scores are updated incorporating the received CIP

using Algorithm 4 in the ITEMSIMRDD, and consequently the pairwise item similarities are

also revised using Equation 4.14. CIP-I computes the top-K similar items and updates the

ITEMTOPKRDD at regular intervals.

RDDs for DEEPCIP.We implement the DEEPCIP using the DeepDist deep learning frame-

work [50] which accelerates model training by providing asynchronous stochastic gradient

descent (DOWNPOUR-SGD) for data stored on Spark.

DEEPCIP implements a standard master-workers parameter server model [48]. On the master

node, the CIPSRDD stores the recent CIPS aggregated from the user transaction logs preserv-

ing the consumption order. DEEPCIP trains on this RDD using the DOWNPOUR-SGD. The

skip-grammodel is stored on the master node and the worker nodes fetch the model before

processing each partition, and send the gradient updates to the master node. The master

node performs the stochastic gradient descent (Equation 2.8 in §2.5) asynchronously using

the updates sent by the worker nodes. Finally, DEEPCIP predicts the most similar items to a

given user, based on her most recent CIP.

4.2.5 Evaluation

In this section, we report on the evaluation of the CIP-based algorithms, using real-world

datasets.

Platform. For our experiments, we use two deployment modes of the Spark large-scale

processing framework [172].

Standalone deployment. We launch a Spark Standalone cluster on a highperf server (Dell

Poweredge R930) with 4 Processors Intel(R) Xeon(R) E7-4830 v3 (12 cores, 30MB cache, hyper-

threading enabled) and 512 GB of RAM.We use this cluster to evaluate the effect of the number

of partitions for the RDD on scalability. For the standalone deployment, we use 19 executors
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each with 5 cores since we have a total of 96 cores in this cluster.17

YARN deployment. We use the Grid5000 testbed to launch a Spark cluster consisting of 20

machines on Hadoop YARN. Each machine is an Intel Xeon CPU E5520@ 2.26GHz. For the

YARN deployment, we set the number of executors equal to the number of machines in the

cluster.

Datasets.We use real-world traces from amovie recommendation website: MovieLens (ML-

100K, ML-1M) [138] as well as a product review website: Ciao [40]. Those traces contain users’

ratings for movies they enjoyed. We compare the performance of our implicit CIP based

models to the one of a widespread explicit (rating-based) collaborative filtering. In these

datasets, each user rated at least 20 movies. The ratings vary from 1 to 5 with an increment

of 1 between the possible ratings. Note that the ratings are only used for the explicit (rating-

based) recommender. Table 4.3 provides further details about these datasets along with their

densities. The density of a dataset denotes the fraction of actual user-item (implicit or explicit)

interactions present in the dataset compared to all the possible interactions.

Datasets #Users, #Items #Training, #Validation, #Test Density
ML-100K 943, 1682 75000, 5000, 20000 6.31%
ML-1M 6040, 3952 970209, 10000, 20000 4.19%
Ciao 489, 12679 19396, 1000, 2000 0.36%

Table 4.3 – Details of the datasets used in our experiments.

Metrics. We evaluate the recommendation quality in terms of the Precision (§2.7) which is

a classification accuracy metric used conventionally to evaluate top-N recommenders [43].

Precision denotes the fraction of recommended items which were indeed relevant to the target

user.

Hyper-parameters.We tune the core hyper-parameters for CIP-U, CIP-I and DEEPCIP. For

CIP-U, we have the hammock threshold (δH ) whereas for the CIP-I, we have the distance (δ)

to separate δ-distant CIPS in a user’s profile. For DEEPCIP, we have the distance (δ), similar to

CIP-I, as well as the window size (W ) which denotes the maximum hop allowed for learning

the item vectors within a CIP. These hyper-parameters essentially determine the optimal size

of the consumption interval for achieving the best recommendation quality.

Evaluation scheme. The dataset is sorted based on the unix timestamps associated with the

rating events. Then, the sorted dataset is replayed to simulate the actual temporal behavior

of users. We measure the recommendation quality as follows: we divide the dataset into a

training set, a validation set and a test set. The training set is used to train our CIP based

models whereas the validation set is used to tune the hyper-parameters of the models. For

each event in the test set (or rating when applied to explicit recommenders), a set of top

17We use this deployment for running long duration experiments, due to reservation limitations on the Grid5000
cluster [73].

71



Chapter 4. Incrementality

recommendations is selected as the recommendation set with size denoted as N . Note that we

recommend the most popular items for new users (cold-start). Table 4.3 shows the partition

between training, validation and test sets along with the details of the datasets.

Competitors.Wecompare the recommendation quality of our three algorithmswith also three

competitors: amatrix factorization based technique (using explicit ratings) [111], a popular

time-based recommender (without using any explicit ratings) [115], and the state-of-the art

approach mixing both implicit and explicit information [82].

Matrix factorization.Matrix factorization techniquesmap both users and items to a joint latent

factor space of dimensionality f , such that ratings are modeled as inner products in that space.

We use a publicly available library (Python-recsys [147]) for empirical evaluations. Python-

recsys is a widely used recommender framework for SVD-based approaches [191, 169, 178].

Implicit time-based recommender. We compare with a popular time-based recommender

designed to provide recommendations without the need for explicit feedback [115]. They

construct pseudo ratings from the collected implicit feedback based on temporal information

- user purchase-time and item launch-time - in order to improve recommendation accuracy.

They use two rating functions:W3 (coarse function with three launch-time groups and three

purchase-time groups) andW5 (fine-grained function with five launch-time groups and five

purchase-time groups) where the later performs slightly better. Hence, we chooseW5 rating

function for our empirical comparison andwe denote this system as T B−W5 in our evaluation.

Markov chain-based recommender. We compare with a recent recommender which combines

matrix factorization andmarkov chains [153, 82] to model personalized sequential behavior.

We use a publicly available library [161] for our empirical evaluation. We denote this system

as MCREC in our evaluation.
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Figure 4.17 – Recommendation quality of CIP-based algorithms versus competitors.

Quality comparison with competitors. Once we obtain the optimal setting of the hyper-

parameters for our CIP basedmodels, we compare themwith the competitors namely: the

matrix factorization based technique (SVD), the markov-chain based technique (MCREC) and

the time-based approach (TB-W5). We compare the recommendation quality in terms of the

precision (N = 10) on MovieLens (ML-100K, ML-1M) and Ciao datasets, in Figure 4.17. We
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draw the following observations.

• Regarding our three algorithms, DEEPCIP always outperforms CIP-I, which in turn is always

outperforming CIP-U (except on the Top-5 result on the Ciao dataset which is due to the

relatively limited number of recommendations).

• The CIP-based algorithms outperform TB-W5 on all the three datasets. For example,

consider top-10 recommendations in the ML-1M dataset, CIP-U provides around 1.82×
improvement in the precision, CIP-I provides around 2.1× improvement, and DEEPCIP
provides around 2.4× improvement.
• The CIP-U algorithm performs on par with MCREC as well as matrix factorization based

techniques. CIP-I overcomes MCREC on all three scenarios, sometimes only by a short mar-

gin (ML-1M). However, the DEEPCIP model outperforms all other models significantly. For

example, consider the top-10 recommendations in the ML-1M dataset, DEEPCIP provides

2.4× improvement over TB-W5, 1.29× improvement over MCREC, and 1.31× improvement
over the matrix factorization based one. The reason behind this improvement is that DEEP-

CIP considers, for any given item, the packs of items at a distance dependent on the defined

window size, whereas MCREC only considers pairs of items in the sequence of chain states

(and thus has a more constrained learning process).

Note that the precision we obtain for SVD onMovieLens (11% to 12%) is consistent with other

standard quality evaluation benchmarks for state-of-the-art recommenders [43].

These results show the existence of the latent information contained in closely consumed

items, accurately captured by the CIP structure. Note that this is intuitively consistent for

DEEPCIP to perform well in this setting: the original WORD2VEC concept captures relation

among words w.r.t. their proximity in a given context. With DEEPCIP, we seek to capture item

proximity w.r.t. their consumption time.

Scalability.We now evaluate the scalability of CIP-based algorithms by varying the number

of RDD partitions employed by Spark as well as the size of the Spark cluster.

Effect of partitions. Spark’s RDD deals with fragmented data which enables Spark to efficiently

execute computations in parallel. The level of fragmentation is a function of the number

of partitions of an RDD which is crucial for the scalability performance of an application.

A small number of partitions reduces the concurrency and consequently leads to under-

utilization of the cluster. Furthermore, since with fewer partitions there is more data in each

partition, this increases the memory pressure on the application. On the flip side, with too

many partitions, the performance might degrade due to data shuffling as it takes a hit from

the network overheads and disk I/Os. Hence, tuning the number of partitions is important

in determining the attainable scalability of an algorithm. We thus conduce the effect of the

number of partitions on scalability. We run these experiments in the Standalone mode of

Spark.

Figures 4.18a and 4.18b demonstrate that scalability depends on the number of partitions
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which is ideally equal to the number of cores in the cluster. We observe a near-linear speedup

while increasing the number of partitions for both CIP-U as well as DEEPCIP. However, the

speedup is comparatively less for CIP-I due to the highly reduced time complexity of CIP-I

leading to significantly less computations.
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Figure 4.18 – Partition effects.

Effect of Cluster size.We now evaluate the scalability of our algorithms while increasing the

cluster size from one machine to a maximum of 20 machines. Furthermore, we also compare

the speedup achieved by a matrix factorization technique (ALS) implemented in the publicly

available MLLIB library for Spark. Number of partitions is set to 50.

Figure 4.19 depicts a sublinear increase in speedup while increasing the number of machines

on both the datasets. The sublinearity in the speedup is due to communication overheads in

Spark with increasing number of machines. The speedup onML-1M is higher due to more

computations being required for larger datasets and higher utilization of the cluster. We

observe that the speedup for CIP-I is similar for both datasets as its time complexity depends

on the CIP size (Algorithm 4). DEEPCIP scales well due to the distributed asynchronous

stochastic gradient descent (DOWNPOUR-SGD) for training the skip-grammodel where more

gradient computations could be executed asynchronously in parallel with increasing number

of nodes. CIP-U and DEEPCIP scale better than ALS for both setups.

4.2.6 Related Work

We now discuss previous work about using explicit and implicit feedback in recommenders.

Explicit feedback. Tapestry [68], one of the earliest implementations of collaborative filter-

ing, relies on the explicit opinions of people from a close-knit community such as an office

working group. Since then, a lot of work has been devoted to improve the recommendation

quality. All however require explicit feedback like numerical ratings, binary like/dislike or

just positive likes. Recently, Sen et al. demonstrated that different rating scales elicit different

levels of cognitive load on the end users [173]. Whitenton pointed out the relation between
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Figure 4.19 – Cluster size effects.

cognitive load and consumer usability and highlighted the very fact that to achieve maximum

usability, the cognitive load should be minimized [184]. In this work, we focus on utilizing the

information available in transaction logs, for it is available to arguably all services proposing a

catalog of items.

Implicit feedback. Our CIP-based algorithms belong to the category of recommenders using

implicit feedback from users [141]. HOSLIM [39] proposes to compute higher order relations

between items in consumed itemsets; those relations are the ones that maximize the recom-

mendation quality, but without notions of temporality in item consumption. The proposed

algorithm is time-agnostic, and does not scale for orders superior to pairs of items. More-

over, it is not designed to efficiently incorporate freshly consumed items and suffers from

computational intractability. Barkan et al. present ITEM2VEC [16], that also uses skip-gram

with negative sampling to retrieve items’ relations w.r.t their context in time. Besides the

fact that their implementation does not scale on multiple machines due to the use of syn-

chronous stochastic gradient descent, they evaluated only on private datasets. This makes

precise evaluations w.r.t. state-of-the-art algorithms subjective. Implicit feedback has also

been used for multiple other applications: this is traditionally the case in search engines,

where clicks are tracked [42]. SPrank [142] leverages semantic descriptions of items, gathered

in a knowledge base available on the web. Koren et al. [90] showed that implicit information,

like channel switching on TV, is valuable enough to propose recommendations. Huang et

al. leverage unordered co-occurrence of contextual queries in session-based query logs in a

non-incremental manner for relevant term suggestion in search engines [91]. Recommenders

can also use the implicit social information of their users to improve final results [128].

Interestingly enough, in the context of music recommendation, Jawaheer et al. [95] pointed

out that implicit and explicit recommenders are complementary, and experimentally perform

similarly. Recently, Soldo et al. leveraged users’ malicious (implicit) activity logs to recommend

which IP addresses to block [171]. Hence, implicit feedback based approaches could be

employed over a wide range of applications.

Time-based recommendation. Within implicit based recommenders, the notion of “time”

75



Chapter 4. Incrementality

has been exploited in various ways since it is a crucial implicit information collected by all

services. Some companies implement implicit recommenders, as e.g., Amazon [10]; yet, we

are not aware of the use of any technique even remotely close to our notion of item packs.

The use of spatio-temporal proximity between users in a given place was introduced in [47].

However, such a technique requires auxiliary location-based information for detecting such

user proximity, which furthermore might be a privacy concern for users (location privacy [17]).

Baltrunas et al. presented a technique [13] very similar to CIP where a user profile is parti-

tioned into micro-profiles (similar to CIPS in our approach). However, explicit feedback is

required for each of these micro-profiles, to improve the quality of recommendations. Time

window (or decay) filtering is another technique, applied to attenuate recommendation scores

for items having a small likelihood to be purchased at the moment when a user might view

them [70]. While such an approach uses the notion of time in transaction logs to improve

recommendations, it still builds on explicit ratings for computing the basic recommendation

scores. Campos et al. [32] proposed to bias recommendation according to freshness of ratings

in the dataset. However, their approach still uses explicit ratings to improve recommendation

quality using their time-biased strategy. Finally, Lee et al. [115] introduced a completely im-

plicit feedback based approach that gives more weight to new items if users are sensitive to the

item’s launch times. We compare our algorithms to this approach in §4.2.5 and demonstrate

that our CIP-based algorithms perform better in practice.

Sequence-based recommendation Recently, there have been some approaches usingMarkov

chains tomodel consumption sequences [153]. However, such approaches suffer from sparsity

issues and the long-tailed distribution of many datasets. We compare with a Markov-chain

based approach (MCREC) and show that CIP-based approaches, updated incrementally in a

distributed manner, perform on par with MCREC.

4.2.7 Conclusion

Since very recently, research efforts are dedicated to circumvent the absence of explicit feed-

back on online platforms, using individual techniques that leverage the sequential consump-

tion of items. In an effort for a detailed and scalable proposal for generalizing such a direction,

we presented twomemory-based and one model-based recommendation algorithms exploit-

ing the implicit notion of item packs consumed by users, while showing that our framework can

also incorporate the previous state-of-the-art approach on the topic. Our novel algorithms

provide a better recommendation quality than the widespread SVD-based approach [111], as

well as implicit ones leveraging consumption time [115] or consumption sequences [82, 153].

This confirms the fact that item packs allow to efficiently identify similar users or items. Impor-

tantly, for practical deployments, this key latent feature can be captured with the incremental

algorithms that we presented, thus allowing to build fast services using freshly consumed items.

Deeper analysis might be conduced in a sociological direction, in order to validate further the

relevance and robustness of this latent feature, across different datasets and services.
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PART III

Privacy

Personalization and privacy are two sides of the same coin in the sense that there is a significant

underlying trade-off between these two aspects. Personalization improves with an increase in

the amount of data. However, data leaks information about users and hence leads to severe

privacy concerns. In this part of the thesis, we will see how we can protect privacy of the users

while providing personalized recommendations to them. We consider two levels of privacy.

• In §5.1, we first focus on protecting the privacy of any user from other curious users, which

we denote as user-level privacy.

• We next provide a brief overview, in §5.2, of our approach to protect the privacy of users

from the service provider itself, which we denote as system-level privacy.





5 Privacy

5.1 User-level Privacy

5.1.1 Overview

CF recommenders induce an inherent trade-off between privacy and personalization [119]. In

this work, we address this trade-off by exploring a promising approach where the information

used for computing recommendations is concealed. We present D2P, a novel protocol that

uses a probabilistic substitution technique to create the AlterEgo profile of an original user

profile. D2P ensures a strong form of differential privacy [55, 57], which we call Distance-

based Differential Privacy. Differential privacy [55, 57] is a celebrated property, originally

introduced in the context of databases. Intuitively, it ensures that the removal of a record from

a database does not change the result of a query to that database - modulo some arbitrarily

small value (ε). In this sense, the presence in the database of every single record - possibly

revealing some information about some user - is anonymous as no query can reveal the very

existence of that record to any other user (modulo ε). Applying this notion in the context of

recommenders would mean that - modulo ε - no user v would be able to guess - based on

the recommendations she gets - whether some other user u has some item i in her profile,

e.g., whether u has seen somemovie i . Such a guarantee, however, might be considered too

weak as nothing would prevent v from guessing that u has in her profile some item that is very

similar to i , e.g., that u has seen somemovie similar to i .

We strengthen the notion of differential privacy in the context of CF recommenders to guaran-

tee that any user v is not only prevented from guessing whether the profile of u contains some

item i , but also whether the profile of u contains any item i ′ within some distance λ from i

(say any movie of the same category of i ): hence the nameDistance-based Differential Privacy

(D2P). Our D2P protocol ensures this property.

The basic idea underlying D2P is the following. We build, for each user profile, an AlterEgo

profile corresponding to it. The latter profile is based on the former one where we probabilis-

tically replace some of the items with either related or random ones. This poses of course
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a challenging technical problem. If the AlterEgo profile is too far from the original one, the

recommendation quality is impacted: we lose the benefits of collaborative filtering. If the

profile is too close to the original one, privacy remains weak. We demonstrate in this work

that the quality of the D2P recommendation is still good for values of λ that can hide items

within a reasonable distance from the original profile - what might be considered a reasonable

distance depends on the dataset as we explain later in this work.

To illustrate the basic idea, consider traces from MovieLens and the scenario of Figure 5.1,

with a total of 5 movies. Consider a user who likes Shawshank Redemption (SR). We compute

the distance between the other 4 movies from SR based on their similarity (as shown later in

Equation 5.2). D2P selects movies (for replacement) with distance less than the upper bound

(λ = 0, 1 or 2) with high probability (p) and any randommovie from the dataset, including

those close to the item to be replaced, with a low probability (1−p). If λ is set to 0, then D2P

satisfies the classical differential privacy (with ε given in Equation 5.3 in §5.1.3). Our results

in §5.1.4 show that even if we consider λ as 6.5, we still have a good recommendation quality.

Figure 5.1 – D2P Illustration.

D2P provide formal privacy guarantees in terms of parameters ε and λ. We also provide a

through empirical evaluation of the privacy-quality trade-off on real-world datasets, namely

MovieLens and Jester. Our results show that D2P provides proved privacy guarantees while

preserving the quality of the recommendation. We demonstrate, for instance, that D2P

achieves 1.5 times the coverage [65] provided by a standard recommender for MovieLens

dataset. Additionally, we show that the privatization overhead in D2P is very small compared

to [132], which makes it appealing for real-time workloads.

Interestingly, D2P is a generic protocol. As we show through our performance results, it

applies well in the context of a user-based and an item-based recommender. D2P can also be

customized for recommendation infrastructures where a KNN computation is deployed either
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on the cloud [148] or on user machines [27].

5.1.2 D2P: Privacy for Recommenders

Preserving privacy in CF recommenders is challenging. It was shown using the Netflix Prize

dataset that even anonymizing individual data before releasing it publicly is not enough to

preserve privacy [139]. Even cryptographic approaches do not preclude the possibility of

the output leaking information about the personal input of individuals [181]. The need for

stronger and robust privacy guarantees motivated the emergence of the notion ofDifferential

Privacy [55, 57, 64]. First introduced in the context of databases, differential privacy provides

quantifiable privacy guarantees. We introduce a stronger form of this notion in the context of

recommenders by accounting for the concept of distance between items.

A. Differential Privacy

Differential Privacy (DP ) implies that the output of a given function becomes significantly

more or less likely - based on some parameter ε - if the inputs differ in one record. The basic

intuition is that an observer can extract limited information from the output in the absence or

presence of a specific record in the database.

Definition 8 (DIFFERENTIAL PRIVACY). A randomized functionR provides ε-differential privacy

if for all datasets D1 and D2, differing on at most one element, and all S ⊆ Rang e(R), the

following inequality always holds:

Pr [R(D1) ∈S]
Pr [R(D2) ∈S] ≤ eε

Here, eε denotes exp(ε).

B. Distance-based Differential Privacy

With differential privacy applied in its classical form recalled above to a recommender, an

adversary (a curious user) cannot know if one item has been rated by a user. However, the

adversary can know about items similar to the rated ones. Hence, the adversary can infer fairly

accurate information about user preferences without knowing the exact items rated by that

user. In this sense, classical differential privacy is not enough in the context of a recommender.

Our notion of Distance-based Differential Privacy is stronger: it extendsDP to recommenders.

We ensure differential privacy for all the items, rated by that user, and ones that are within

a distance of λ. The distance parameter (λ) determines the closely related items to form the

AlterEgo profiles, thereby concealing the actual user profiles and preferences. The distance

parameter also aids in tuning the recommendation quality using the AlterEgo profiles as shown

later in Figure 5.10.
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It is important to notice that our notion of Distance-based differential privacy is independent

from the underlying recommendation algorithm used. To define this new notion more

precisely, we first define the notions ofDistance-based Group and Adjacent Profile Sets.

Definition 9 (ELEMENT-WISE GROUP). We denote by E the set of all elements. For every element

x ∈ E, distance function Λ : E×E→R+∪ {0}, and fixed distance threshold λ, then GRPλ(x) is

defined as the collection of all elements xk ∈ E such that Λ(x,xk )≤λ. More specifically:

GRPλ(x)= {xk ∈ E|Λ(x,xk )≤λ}

We extend this notion of groups to a set of elements where each element in the set has a Group

defined by Definition 9.

Definition 10 (SET-WISE GROUP). For a set of elements S , GRPλ(S) is the union of all the

groups: GRPλ(s) for each element s∈ S . More specifically:

GRPλ(S)= ∪
s∈S

GRPλ(s)

We now introduce the notion ofNeighboring Groups (used in §5.1.3).

Definition 11 (NEIGHBORING GROUP). We define the KNN groups (KNN(GRPλ(x))) of

GRPλ(x) for an element x as the Top −K groups sorted in decreasing order by the count of

shared elements with GRPλ(x).

Definition 12 (ADJACENT PROFILE SET). An event in the context of D2P is an interaction

between the system and the user when the user provides a rating for some item in the system.

Two profile sets D1 and D2 as adjacent profile sets when D1 and D2 differ in only one event,

which implies one user-item rating pattern is different in these two profile sets.

For any arbitrary recommendation mechanismR, which takes a profile set and a specific user
as input, the output is the set of items that the algorithm recommends to that specific user.

Definition 13 (DISTANCE-BASED DIFFERENTIAL PRIVACY). For any two adjacent profile sets D1
and D2, where u denotes any arbitrary user and S denotes any possible subset of elements, then

any mechanism R is (ε,λ)-private if the following inequality holds:

Pr [R(D1,u) ∈GRPλ(S)]
Pr [R(D2,u) ∈GRPλ(S)] ≤ eε (5.1)

The result of the recommendations for two profile sets that are close to each other are of the

same order probabilistically with a coefficient of eε. Later in §5.1.3, we present the mathemati-
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cal relationship between ε and λ.1 D2P conceals the profiles by anonymizing elements within

distance λ from the elements of the original profile. We get the classic notion of differential

privacy with λ as 0. If we increase λ then the privacy increases but the quality decreases

slightly as shown later in Figure 5.10(a). In a user-level privacy scheme, more than one event

can differ for a profile in two adjacent profile sets, whereas in an event-level privacy approach

a single event differs for a profile in two adjacent profile sets.

5.1.3 D2P-based Recommender

Our D2P-based recommender implements a variant of the general CF recommendation

scheme, based on KNN (K Nearest Neighbors [175]), incorporating the D2P protocol. The

working principle of such a scheme is twofold (Algorithm 1). Firstly, the k most similar

neighbors of any active user are identified in the KNN selection phase. Secondly, the recom-

mendation algorithm is run to suggest items to the users leveraging the profiles obtained

through the KNN selection.

We consider a recommender scheme that stores user profiles and item profiles. The profile of a

user u, denoted by Pu , consists of all the items rated (alternatively shared or liked) by u along

with the ratings. In our implementation, we convert the numerical ratings into binary ratings,

a like (1) or a dislike (0). 2 An item profile (Pi ) consists of users who rated item i along with the

ratings.

D2P relies on the distance between items to create AlterEgo profiles, as we discuss below. The

recommender in D2P operates in four phases as shown in Figure 5.2.

A. Grouping Phase

In this phase, groups are formed for each item: groupGi for item i contains all the items with

distance less than a predefined upper-bound λ. In our scheme, we define the distance Λi , j

between items i and j as:

Λi , j = 1

Ψ(i , j )
−1 (5.2)

Here,Ψ(i , j ) denotes the cosine similarity between items i and j . The neighboring groupG j

of a groupGi is defined as a group with which groupGi shares at least one item. Groups can

also be formed based on item features (e.g. genres, date-of-release in case of movies) where

similarity ismeasured between the feature vectors of the items. The groups need to be updated

periodically to account for newly added items and ratings. In D2P, the grouping of the items

in the Grouping Phase is performed by the FormGroups function shown in Algorithm 5. An

item can be included in more than one groups, e.g., an action-comedymovie X can be present

1For more details regarding the correctness proofs of our privacy guarantee (Definition 13), we refer to our
paper [76] for interested readers.
2Binary ratings are considered for the sake of simplicity: this scheme can be generalized to numerical ratings.
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Figure 5.2 – D2P-based Recommender.

in the group of an actionmovie as well as in the group of a comedymovie.

Algorithm 5 Grouping : FormGroups(ItemSet): Grouping Phase where ItemSet is the set of all items in
the database
1: Parameter: λ � Distance threshold
2: var I temSet ; � Denotes set of all items in the network
3: var λ; � Distance Metric
4: for i : item in I temSet do
5: Gr oupi .add(i );
6: for j : item in (I temSet \ i ) do
7: S =Ψ(i , j ); � Compute Similarity
8: if S > 0 then
9: Λi , j = (1/S)−1;
10: if Λi , j ≤λ then
11: Gr oupi .add( j );
12: end if
13: end if
14: end for
15: end for
16: return: Gr oup; � The groups for the items

B. Modification Phase

Privacy breaches occur in any standard user-based CF recommender due to leakage of the

information of neighboring profiles to any active curious user through recommendations

provided to her. D2P relies on the above-mentioned groups of items, generated in the previous

phase, to create AlterEgo profiles, and thus avoids to reveal the exact ones. D2P protects

the privacy of users in the modification phase employing two components (conveyed by

Figure 5.3): Selector, which selects the items to replace, and the Profiler, which determines by

which items those entries should be replaced. These two components conceal the neighbors’
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information from the active user, preventing this user to correlate the recommendations to

the neighbors’ profiles. The selector and profiler are responsible for generating the AlterEgo3

profiles in such a way that the quality is not impacted too much while privacy is preserved.

We now provide details on these two core components.

Figure 5.3 – D2PModification Phase.

D2P Selector. The selector is responsible for selecting the items to replace by the profiler to

form the AlterEgo profiles. We select an item with a probability p to replace with any possible

item at random and with a probability 1− p to replace with some random item from the

respective group (and neighboring groups) for that respective item. The getSelectProb function

mentioned in Algorithms 6 and 7, returns a random real number between 0 and 1. Finally, the

selector outputs a set of actual items (GItems) to be replaced by GroupItems and another set of

actual items (RItems) to be replaced by any item from the set of all possible items at random.

Algorithm 6 Selector Algorithm: Selector(Pu)where Pu is the profile of user u

1: Parameter: p � Selector Probability
2: var GItems[u]=NU LL � Replace with group item
3: var RItems[u]=NU LL � Replace with any item
4: for i : item in Pu .getItems() do
5: if getSelectProb()> p then
6: GItems[u]=GItems[u]∪ i ;
7: end if
8: if getSelectProb()≤ p then
9: RItems[u]=RItems[u]∪ i ;
10: end if
11: end for
12: return: {GItems[u], RItems[u]};

D2P Profiler. The profiler builds the AlterEgo profiles which are used in the KNN selection

phase. The profiler replaces items in GItems with items from their respective group (and

3The AlterEgo profile of a user u denotes the imitation profile of u which hides the user preferences by substitut-
ing items in the user profile by utilizing D2P.
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neighboring groups) with a probability 1−p∗ and retains the original item with a probability
p∗. We also substitute items in RItems with items from the set of all possible items with a

probability 1− p∗ and preserves the actual ones with a probability p∗. The SRSI (Select

Random Set I tem) function in Algorithm 7 selects randomly an item from the respective

groups’ items. It selects either from GroupItems (based on a distance metric between items)

for all the items in the set GItems or from the ItemSet for all the items in RItems.

Algorithm 7 Profiler Algorithm: Profiler(Pu)where Pu is the profile of user u

1: Parameter: p∗ � Profiler Probability
2: var {GItems[u], RItems[u]}= Selector(Pu );
3: var Items[u]=GPI (Pu ) � Get items from Pu
4: var ItemSet; � Set of all items in the network
5: for i : item in Pu .getItems() do
6: GroupID=Groupi ;
7: NBGroupIDs=Groupi .getNeighbors();
8: Groups=GroupID∪NBGroupIDs;
9: GroupItems=⋃

G∈Groups Group.get(G);
10: if (getSelectProb()> p∗ & i ∈GItems[u]) then
11: j = SRSI (i ,GroupItems);
12: end if
13: if (getSelectProb()> p∗ & i ∈RItems[u]) then
14: j = SRSI (i , ItemSet);
15: end if
16: Pu = (Pu \ i )∪ j ;
17: end for
18: return: Pu ; � AlterEgo profile for user u

Interestingly, D2P can also be applied in recommendation infrastructures where the KNN is

computed by third-party cloud services that act as intermediaries between the recommen-

dation server and users: these servers create the AlterEgo profiles, preserving privacy with

respect to a server. Moreover, D2P can be applied by the users themselves (in P2P or hybrid

infrastructures [27]), preserving privacy of users against other users.

C. KNN Selection Phase

In user-based CF recommenders, a K-Nearest Neighbors (KNN) [175] algorithm computes the

Kmost similar users based on some similarity metric (Phase 2 in Algorithm 1). In this phase,

we periodically update the top-Kuser s similar users for an active user as the nei g hbor s using

the AlterEgo profiles generated in the modification phase.

D. Recommendation Phase

In this final phase, the recommendations are computed using those Kuser s neighbors. In

the context of this work, we select the most popular items among the neighbors of u to be

recommended to u (similar to HYREC in §3.1).
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D2P requires somemaintenance operations which are as follows.

• Profile update:When a user u rates an item i , then both Pu and Pi are updated. Profiles

are updated incrementally as in standard online recommenders.

• Group update: The static nature of the relationship (similarity) [111, 157] between items

stabilizes the grouping phase. So, the frequency of group updates has little impact on the

quality of the provided recommendations; The groups are updated periodically after every

10 days in our evaluation.

• Recommendation: The new recommendations are delivered to the active user incremen-

tally whenever an item is rated by the user. In D2P, only theAlterEgo profiles of the KNN are

updated during each recommendation. We take into account the recent ratings provided

by the users to compute recommendations.

E. D2P Privacy Analysis

We now analyze our D2P privacy in the recommender model introduced above.

First, we denote theGr oupI tems for an item i in Algorithm 7 as:

Gλ(i )=
(∪ j∈KNN(GRPλ(i ))GRPλ( j )

)∪GRPλ(i )

As mentioned earlier, the selector selects to replace an element s with any random element

from Ewith a probability p and with any random element from Gλ(s) with a probability 1−p.

So, it finally outputs two sets of elements GItems and RItems for each user profile. For both

of these sets (GItems and RItems), the profiler retains the original elements with probability

p∗. It replaces elements in GItems with elements from Gλ(s) and elements in RItems with any

possible element e ∈ Ewith probability 1−p∗. HereNE is the total number of elements in E.

We now provide the following remark concerning the privacy parameter ε from Definition 13.

(Further details about the following remark along with additional formal proofs for an in-depth

privacy analysis are provided in [76] for interested readers.)

Remark 2 (PRIVACY QUANTIFICATION). For any given distance metric λ and any two elements i

and j , we denote SUB(i , j ) the event of substituting element i with j in any mechanism M.

This substitution probability is denoted by Pr (SUB(i , j )). Then, for any mechanism M, we

have ε as:

ε= ln
(

max
i , j ,k∈Eand i �= j

(
Pr (SUB(i ,k))
Pr (SUB( j ,k))

))

We now compute the substitution probability for any two arbitrary elements s and t , in this
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abstract recommender model. We get the following:

Pr (SUB(s, t ))=

⎧⎪⎪⎨⎪⎪⎩
p∗ + (1−p)(1−p∗)

|Gλ(s)| + p(1−p∗)
NE

if s = t

(1−p)(1−p∗)
|Gλ(s)| + p(1−p∗)

NE
if t ∈Gλ(s) \ s

p(1−p∗)
NE

if t ∉Gλ(s) .

Let ε(p,p
∗,λ)

D2P denote the ε for D2P with privacy parameters (p, p∗ and λ) and |Gλ| denote
min
s∈E
(|Gλ(s)|). Then, using the above substitution probabilities and Remark 2, we get:

ε(p,p
∗,λ)

D2P
= ln(1+

p∗ + (1−p)(1−p∗)
|Gλ|

p(1−p∗)
NE

) (5.3)

So, when we compute using the original profile, we have p∗ = 1, which implies ε(p,1,λ)D2P =∞ (no

privacy). When p∗ = 0 in Equation 5.3, so all the items are replaced with some items. Then we
have ε(p,0,λ)D2P as :

ε(p,0,λ)
D2P

= ln(1+
(1−p)
|Gλ|

p
NE

)= ln(1+ (1−p).NE

p.|Gλ|
) (5.4)

From this ε(p,0,λ)D2P , we see that when p increases, the probability to replace an item with a

random item increases leading to more privacy and that is evident from the decreasing value

of ε(p,0,λ)D2P in Equation 5.4. When p = 1 in Equation 5.4, D2P achieves ε(1,0,λ)
D2P

= 0 (perfect privacy).

For larger λ, the size of the groups becomes larger, hence privacy increases resulting in smaller

εD2P .

5.1.4 Evaluation

This section presents an exhaustive experimental evaluation of our D2P-based recommender

using two real-world datasets namely Jester and MovieLens. In particular, we compare the

recommendation quality and coverage [65] of D2P with that of a non-private protocol directly

relying on the original user profiles. We also provide a comparison with [132], one of the

closest to our work. Additionally, we discuss an item-based version of D2P (i-D2P) which we

also implemented and evaluated.

A. Experimental Setup

Evaluation scheme. We measure the recommendation quality as follows: we divide the

dataset into a training set (80% of the dataset trace) and a test set (20%). For each rating in the

test set, a set of top recommendations is selected as the Recommendation Set (RS). We denote
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the size of the recommendation set as N . More precisely, we evaluate the extent to which the

recommender is able to predict the content of the test set while having computed the KNN on

the training set.

Evaluation metrics. We use Precision and Recall as our evaluation metrics (§2.7). To get an

estimate of the drop in quality, we measure the decrease in precision for Top-5 recommen-

dations [137] (denoted by Pr@5), as most recommenders follow Top-N recommendations,

e.g: IMDB uses Top-6 list to suggest similar movies, Amazon uses Top-4 list to suggest similar

products and last.fm uses Top-5 list to suggest similar music.

Datasets. We evaluate D2P with two datasets: the MovieLens (ML) dataset [138] and the

Jester one [96]. The ML dataset consists of 100,000 (100K) ratings given by 943 users over 1682

movies. The Jester dataset [96] contains 4.1 million ratings of 100 jokes from 73,421 users. We

use a subset of the Jester dataset with around 36K ratings given by 500 users over 100 jokes.

The Jester subset consists of 500 users selected uniformly at random among all users who

rated at least 50 jokes. D2P relies on the item-replacement technique, so the quality of the

recommendation provided by D2P depends on how much two items are connected in the

dataset. We thus consider datasets with diverse characteristics to evaluate D2P.

Diversity: We created 4 diverse datasets from the ML 100K dataset to cover a variety of charac-

teristics (typically sparsity). The ratings are stored in a user-itemmatrix where the rows of the

matrix contain the user-ids and the columns contain the item-ids. Then, the rows are sorted

based on the total number of ratings given by the users and the columns are sorted based on

the total number of times the items have been rated by different users. The partitioning of the

dataset is shown in Figure 5.4 as users × itemsmatrix.

Figure 5.4 – ML1 Dataset Partitions based on rating density.

Characterization. To evaluate D2P in different settings, we characterize the datasets accord-

ing to rating densitymetric. The rating density (RD) is the ratio of the number of ratings given

by the users in the dataset to the total number of ratings possibly given (number of users

multiplied by the number of items).

Table 5.1 depicts the rating densities of different datasets.
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Dataset #Users #Items Ratings RD(%)
Jester 500 100 36000 71.01
ML1 940 1680 99647 6.31
MLV1 470 840 76196 19.3
MLV2 470 840 16187 4.1
MLV3 470 840 6317 1.6
MLV4 470 840 750 0.19

Table 5.1 – Datasets characteristics.

B. Impact of Rating Density

Figure 5.5 shows the recall measured with varying size of the recommendation set in D2P

with parameters p = 0.5, p∗ = 0.5 and λ = 1. We observe that higher rating density results
in better recall using D2P. As shown in Table 5.1, the rating density of the MovieLens 100K

dataset is 6.31% and that of its 4 subsets varies with a maximum of 19.3% andminimum of

about 0.19%. From Figure 5.5, we observe that D2P is not suitable for datasets with too low

rating densities, likeMLV3 andMLV4, as these result in lower r ecal l . However, we observe,

forMLV2, D2P provides slightly better recall compared to a more dense dataset (likeMLV1).

This happens because the number of items relevant to a user (in the test set) is less inMLV2
(more sparse) compared toMLV1 (less sparse). However, for more sparse datasets likeMLV3
orMLV4, collaborative filtering is not effective because the ratings are insufficient to identify

similarities in user interests.
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Figure 5.5 – Recall@N with varying Dataset Characteristics.

C. Privacy-Quality Trade-off

Effect of profiler probability (p∗). We vary the value of parameter p∗ from the Profiler al-

gorithm from aminimum of 0 to a maximum of 1 (no privacy) with other parameters λ= 1,
p = 0.5.
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MovieLens. Figure 5.6 demonstrates the performance of the D2P over several values of p∗ on
the MovieLens dataset. In Figure 5.6(a), we observe that the quality drops only by 3.24%, in

terms of Pr@5, when compared to a non-private approach (p∗ = 1).
Jester. Figure 5.7 shows the results of the performance of the D2P over several values of p∗

on Jester workload. In Figure 5.7(a), we observe that the quality drops only by 2.9% in terms

of Pr@5. Interestingly, we observe in Figure 5.7(b) that the recall of a non-private approach

(p∗ = 1) is very similar to the one achieved by D2P (e.g, at N = 20, the recall values differ by

0.02 only). This observation also means that D2P provides good recommendation quality

in datasets with higher rating densities. The higher the profiler probability, the better the

recommendation quality.
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Figure 5.6 – Effect of Profiler Probability (p∗) on Quality for the ML Dataset (User-based CF).
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Figure 5.7 – Effect of Profiler Probability (p∗) on Quality for the Jester Dataset (User-based CF).

Effect of selector probability (p). Here, we vary the probability p from the Selector algorithm

from aminimum of 0 to a maximum of 0.5 (with λ= 1, p∗ = 0).
MovieLens. Figure 5.8 demonstrates the performance of D2P over several values of p on

MovieLens.

Jester. Figure 5.9 shows the results of the performance of D2P over several values of p on Jester

dataset. The lower the selector probability, the better the recommendation quality.

Effect of distance metric (λ).We also analyzed the effect of varying the level of privacy using

the distance parameter: λ. We observed the quality of recommendations provided by D2P
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Figure 5.8 – Effect of Selector Probability (p) on Quality for the ML Dataset (User-based CF).
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Figure 5.9 – Effect of Selector Probability (p) on Quality for the Jester Dataset (User-based CF).

with several values of λ (with p = 0.5, p∗ = 0). The results of these experiments are given in
Figure 5.10. We observe that a lower λ provides better quality because items gets replaced by

closer items for lower λ.
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Figure 5.10 – Effect of Distance Metric (λ) on Quality for the ML Dataset (User-based CF).

D. Parameter Selection

The distance parameter λ is used to protect user’s privacy. We now illustrate its usage on

two examples. The first one is depicted in Figure 5.11. We consider 3 categories (A,B,C), 3

users (U1,U2,U3) and 5 movies (I1, I2, I3, I4, I5). We assume that each user wants to hide some
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5.1. User-level Privacy

specific category. To hide a Category A for userU1, we anonymize it with at least one different

Category (B or C). We can achieve this by computing the minimum distance for items from

Category A inU1’s profile (I1,I3) to items in different categories. For item I1, we get the distance

is 2.8 to I2 in Category B and 3 to I4 in Category C. So, the minimum distance for I1 is 2.8 to I2
in Category B. We get the same for I3 inU1’s profile. Now, to satisfy the distance for both of

these items, we choose the maximum among them which is 2.8. This gives us the λU1 to hide

Category A forU1. We do the same for usersU2 andU3. Finally, to set the λ for the system, we

get the maximum from all users (which is 2.8 in the example).

Figure 5.11 – Distance for Personal Choice.

The distance parameter can be also selected as the average distance for each user profile (λk ).

Here, λk for userUk is computed as the average value of the distance between all pairs of

items rated by userUk . Figure 5.12 provides an intuition for this distance parameter. For the

datasets used for evaluation, we get λML1 = 6.5, λJester = 1.5.

Figure 5.12 – Distance for Average.

To demonstrate the degradation of ε based on parameters, p and p∗, we fix the distance
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parameter (λML1 = 6.5, λJester = 1.5). Figure 5.13 demonstrates the degradation of ε based
on the privacy parameters (p, p∗). For MovieLens, we obtain good privacy (ε= 2.9) and good
quality (F1-score=8.5%) with p =0.7, p∗=0.03, λ=6.5. For Jester, we obtain good privacy (ε=
0.97) and good quality (F1-score=23.1%) with p =0.8, p∗=0.01, λ=1.5.

(a) Privacy Parameters for MovieLens (ML1). (b) Privacy Parameters for Jester.

Figure 5.13 – Privacy Parameters Comparison.

E. Coverage Evaluation

Beyond accuracy, there is a variety of other metrics that should be used to evaluate a recom-

mender [65, 85]. The Coverage of a recommender is a metric that captures the domain of items

over which it can make recommendations. In particular, we evaluate Catalog Coverage [65]

of D2P and compare it to the coverage provided by a standard non-private recommender.

Consider a set of items I j
K contained in the Top-K list during the j th recommendation instance.

Also, denote the total number of items by N . Hence, Catalog Coverage afterM recommenda-

tion instances can be mathematically represented as follows:

C at al og Cover ag e = |∪ j=1...M I j
K |

N

Figure 5.14 demonstrates the Catalog Coverage for D2P and compares it with the coverage

in a standard recommender for MovieLens. We observe that D2P provides 1.5 times better

coverage than a standard recommender when the size of recommendation set is 1.

F. Overhead Evaluation

We evaluate here the computational overhead of D2P’s privacy and compare it to the

one of [132] which we denote as DPδ. We call the computations performed for every

recommendation asOnline computations and the computations done periodically as Offline

computations. We compare the privacy overhead with the Recommendation Latency (RL) in

D2P. Additionally, we compare the privacy overhead in D2P with the privacy overhead in

DPδ. As shown in Table 5.2, the overhead for the offline computations in D2P is around 26.4

times smaller than that of [132] for MovieLens and around 4.5 times smaller for Jester. All
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Figure 5.14 – Catalog Coverage Comparison.

offline computations are parallelised on a 8-core machine.

Datasets D2P Overhead DPδ Overhead
RL Online Offline Offline

ML1 196ms 32ms 4.54s 120s
Jester 24ms 12ms 162ms 740ms

Table 5.2 – Overhead of Privacy.

G. Item-based D2P

D2P can be used with any collaborative filtering technique. We evaluate D2P in another

context to illustrate the genericity of D2P. We implemented an item-based version of D2P:

i-D2P. In i-D2P, the grouping phase is responsible for creating groups of similar users based

on the distance metric λ. The selector and profiler components in i-D2P create AlterReplica

profiles of the items using the same approach as in D2P. Finally, the item recommendations

are computed using these AlterReplica profiles during the recommendation phase in i-D2P.

Figure 5.15 conveys the quality of recommendations provided by i-D2P for varying values

of parameter p (with λ = 1, p∗ = 0). Figure 5.16 conveys the quality of recommendations
provided by i-D2P for several values of parameter p∗ (with λ= 1, p = 0.5). In Figure 5.16(a),
we observe that the quality drops by 1.89% in terms of Pr@5 for the ML dataset. This shows

that D2P also provides good quality of recommendations in item-based CF recommenders.

5.1.5 Related Work

The notion of differential privacy was introduced by Cynthia Dwork [55, 57, 64]. Most of the

research focused on theoretical aspects and provided feasibility and infeasibility results [100].

In this work, we extend differential privacy to the context of recommenders. We appended
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Figure 5.15 – Effect of Selector Probability (p) on Quality for the ML Dataset (Item-based CF).
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Figure 5.16 – Effect of Profiler Probability (p∗) on Quality for the ML Dataset (Item-based CF).

the original definition with a distance metric (λ) and presented an effective way to achieve it

through our D2P protocol.

Polat et. al. [146] proposed a randomized perturbation technique to protect user’s privacy.

Zhang et. al. [194] showed however that a considerable amount of information can be derived

from randomly perturbed ratings. Instead of adding perturbations to user profiles, D2P uses

the AlterEgo profiles which are created based on a distance threshold (λ). Privacy breaches

(compromised user identities) occur when e-commerce sites release their databases to third-

parties for data-mining or statistical reporting [1]. The fact that with D2P, the third-parties

have only access to the AlterEgo profiles alleviates the risk of revealing user’s identity to those

third parties.

In fact, although, there had been a lot of research work related to privacy in online recom-

menders [102, 127] and differential privacy [55, 57, 64], only a few of these combined these

two notions [93, 132]. McSherry et. al. designed a relaxed version of differential privacy in the

context of recommenders [132]. In short, the idea is to add to the ratings - a limited amount

of - Gaussian noise. Our notion of distance-based differential privacy provides a stronger

form of classical differential privacy in the context of recommender systems. In our case, we

replaced items in users profiles with others at some distance. Other differences between the

two approaches include the way dynamic updates are addressed as well as the underlying

overhead. McSherry et. al. does not consider updates to the covariance matrix, and hence is
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not applicable to a dynamic system without jeopardizing the privacy guarantee. The AlterEgo

profiles used in D2P can grow naturally without the need to recompute from scratch like

in [132]. Also, the underlying overhead in D2P is lower. As shown in Table 4, the overhead in

D2P is around 26.4 times smaller than that of [132] forMovieLens and around 4.5 times smaller

for Jester. The additional overhead in [132] stems from the compute-intensive preprocessing

steps: (i) removal of per-movie global effects and (ii) centering and clamping process.

5.1.6 Conclusion

While personalization has become crucial on the web, it raises however privacy concerns

as its quality relies on leveraging user profiles. In this work, we present an extension of

the notion of differential privacy to the context of recommenders: systems that personalize

recommendations based on similarities between users. We introduced D2P which ensures

this strong form of privacy. D2P addresses the trade-off between privacy and quality of

recommendation: it can be applied to any collaborative recommender.

The main intuition behind D2P is to rely on a distance metric between items so that groups

of similar items can be identified. D2P leverages this notion of group to generate, from real

user profiles, alternative ones, called AlterEgo profiles. These represent differentially private

versions of the exact profiles. Such profiles are then used to compute the KNN and provide

recommendations. We analyze D2P and evaluate experimentally the impact of the privacy

mechanism on the quality of the recommendation in the context of two datasets: MovieLens

and Jester. Our results show that privacy can be ensured without significantly impacting

the quality of the recommendation. Our experiments demonstrate that D2P can provide

1.5 times better coverage than a standard recommender for MovieLens. Additionally, D2P

incurs a small privatization overhead compared to other privacy-preserving system like [132]

which makes it comparatively more practical for dealing with real-time workloads. D2P

could be further extended to other filtering techniques that rely on user profiles for their

recommendation computations. It is also possible to incorporate a hybrid approach in D2P

where the item groups would be formed using content-based filtering [182] while the actual

recommendations would be made based on collaborative filtering techniques.

One limitation of D2P stems from the fact that the users trust the service-providers with

the original user profiles. Privacy could hence be compromised by online spying on users’

activities [71]. It would be interesting to study the impact on privacy and recommendation

quality of probabilistically altering or encrypting user rating [4]: the goal would be to preserve

the profile anonymity even from service-providers. Combining such techniques with D2P

would result in a recommender which is robust to malicious users (user-level privacy) and

even untrusted service-providers engaged in spying activities (system-level privacy).
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5.2 System-level Privacy

Recall that a service provider collects data from users in the form of profiles to compute

neighbors and recommendations. This, however, opens major system-level privacy concerns

in the sense that the profile of any user (say Alice)might get leaked from service providers [156].

E-commerce sites often release their databases to third-parties for data mining, intrusion

detection and statistical reporting [150].

We designed X-REC, a novel recommender which ensures the privacy of users against the ser-

vice providers (system-level privacy) or other users (user-level privacy) with negligible increase

of latency in providing recommendations to end-users, while preserving recommendation

quality. X-REC builds over two underlying services: a homomorphic encryption scheme over

integers to encrypt user profiles, called X-HE, and a neighborhood selection protocol over the

encrypted profiles, called X-NN. We provide efficient implementations of both these services.

X-NN operates over data encrypted under X-HE and selects nearest neighbors if their similar-

ities pass a given similarity threshold (T ). It emulates the truth tables of the two logical gates

XOR and AND with integer operations and thus circumvents the necessity of FHE. We employ

a uniform user sampling technique which, we show, guarantees differential privacy [56] in the

context of a recommender. Unlike in recent privacy-preserving systems [18, 33, 87, 62] where

users are required to be logged-in, X-REC does not restrict the dynamicity 4 of the system. For

interested readers, a more detailed information regarding how X-REC provides system-level

privacy is provided in the following very interesting work [77].

4Users can log-in/log-out (resp. join/leave) at any time.
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PART IV

Heterogeneity

As of today, most recommenders are homogeneous in the sense that they utilize one specific

application at a time. In short, Alice will only get recommended a movie if she has been rating

movies. But what if she would like to get recommendations for a book even though she rated

only movies? Clearly, the multiplicity of domains (movies, books, songs) is calling for heteroge-

neous recommenders that could utilize ratings for one domain to provide recommendations

in another one. This chapter of the thesis presents novel heterogeneous recommenders based

on the preferences of users across various domains.

• We first present a heterogeneous recommender system (X-MAP) which enables recom-

mendations across multiple domains based on user-item interactions (e.g., ratings) in

§6.1.

• We also briefly explore the possibility of content-enabled heterogeneous recommendations

in §6.2.





6 Heterogeneous Recommendations

6.1 Heterogeneous Recommendations with Alter-Egos

6.1.1 Overview

The next level to personalization is heterogeneity, namely personalization across multiple do-

mains [44]. Heterogeneous preferences on the web, i.e., preferences frommultiple application

domains, should be leveraged to improve personalization, not only for users who are new to

a given domain (i.e, cold-start situation), but also when the data is sparse [2] (e.g, very few

ratings per user). In fact, if a user, say Alice, likes the Interstellarmovie, then a heterogeneous

personalization scheme could actually recommend her books such as The Forever War by Joe

Haldeman. To get an intuition of how such recommendation can be made by going beyond

standard schemes, consider the scenario depicted in Figure 6.1(a) where five users rated at

most one book. Indeed, according to a standard metric (adjusted cosine [157]), the similarity

between Interstellar and The Forever War is 0, for there are no common users who rated both.

However, a closer look reveals the followingmeta-path 1 between these two heterogeneous

items: Interstellar
Bob−−−→Inception

Ceci l i a−−−−−→The Forever War.

(a) A simple scenario depicting heterogeneity across two
domains.
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Figure 6.1 – Heterogeneous recommendation using meta-paths.

1We callmeta-path any path involving heterogeneous items, e.g., movies and books.
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Figure 6.1(b) compares the number of heterogeneous similarities that could be exhibited with

or without using meta-paths on real-world traces from Amazon (using two domains: movies

and books). Meta-path-based heterogeneous similarities clearly lead to better recommenda-

tion quality as we show later in §6.1.6.

A. Challenges

While appealing, building a practical heterogeneous meta-path-based recommender raises

several technical challenges.

Meta-path-based similarity. Consider an undirected graph G where the vertices represent

the items and each edge ei j is associated with a weight si j , representing the similarity between

items i and j . A meta-path in G can be defined as a sequence of adjacent vertices (movies

or books) connected by edges in G. Computing a heterogeneous similarity based on these

meta-paths is, however, not straight-forward. Such similarity could be affected by factors like

the number of users involved, directly or indirectly (in the meta-paths), as well as the strength

of the ties between item-pairs connected by (shorter) meta-paths. The challenge here is to

capture these factors in a way that improves the accuracy of heterogeneous similarities.

Scalability. Clearly, the computational complexity increases many-fold while computing

meta-path-based similarities. Computing all possible meta-paths on a large-scale graph with

millions of vertices (heterogeneous items) can quickly become computationally intractable.

Privacy. Heterogeneous recommendations also raise privacy concerns. For example, the new

transitive link between Alice and Cecilia (Figure 6.1(a)) provides the opportunity for a curious

user, say Alice, to discover the straddlers: people like Bob or Cecilia who connect multiple

domains. Alice can actually determine the item(s) that allows her to get this recommendation

by pretending to be another user and incrementally rating items until she gets the recommen-

dation. This is similar to the privacy risk in statistical database queries where inferences can

be derived from combinations of queries [149]. As pointed out in [150], such straddlers are

at a privacy risk, and information about their preferences could be used in conjunction with

other data sources to uncover identities and reveal personal details. This can be particularly

problematic across different applications like Netflix (movies) and Last.fm (music).

Recent heterogeneous recommenders [164, 44], extending classical homogeneous recommen-

dation schemes across domains, are neither scalable nor private, and hence are not suitable

for applications involving millions of users and items.

B. Contributions

In this work, we present a recommender we call X-MAP: Cross-domain personalization sys-

tem. X-MAP fully utilizes the overlap among users across multiple domains, as depicted in

Figure 6.1(a). This overlap is often derived from profiles maintained by users across various
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web applications along with interconnection mechanisms for cross-system interoperabil-

ity [36] and cross-system user identification [35]. At the heart of X-MAP lie several novel

ideas.

• We introduce a novel similarity metric, X-SIM, which computes a meta-path-based transi-

tive closure of inter-item similarities across several domains. X-SIM involves adaptations,

to the heterogeneous case, of classical significance weighting [84] (to account for the

number of users involved in a meta-path) and path length [150] (to capture the effect of

meta-path lengths) schemes.

• We introduce the notion of AlterEgos, namely artificial profiles (created using X-SIM), of

users even in domains where they have no or very little activity yet. We generate an AlterEgo

profile (of Alice) in a target domain leveraging an item-to-item mapping from a source

domain (e.g., movies) to the target domain (e.g., books). AlterEgos enable to integrate any

standard recommendation feature in the target domain and preserve, for example, the

temporal behavior of users [53].

• We use an effective layer-based pruning technique for selecting meta-paths. AlterEgos,

acting as a caching mechanism, alleviate computational intractability by only using the

information from the target domain. Combined with our layer-based pruning technique,

AlterEgos enable X-MAP to scale almost linearly with the number of machines (a major re-

quirement for the deployment of a recommender in a practical environment). We illustrate

this scalability through our implementation of X-MAP on top of Apache Spark [189].

• We introduce an obfuscation mechanism, based onmeta-path-based similarities, to guar-

antee differentially private AlterEgos. We adapt, in addition, a probabilistic technique,

inspired by Zhu et al. [199, 200], to protect the privacy of users in the target domain.

Interestingly, we show that, despite these privacy techniques, X-MAP outperforms the rec-

ommendation accuracy of alternative non-private heterogeneous approaches [14, 20, 44].

• We deployed an online recommendation platform, using X-SIM on a database of 660K

items, to recommend books andmovies to users based on their search queries at:

http://x-map.work/

Books like The Da Vinci Code are indeed recommendedwhen the search query is the Angels

& Demons (2009) movie. Currently, we support Chrome, Safari and Firefox browsers.

6.1.2 Heterogeneous Recommendation Problem

Without loss of generality, we formulate the problem using two domains, referred to as the

source domain (DS) and the target domain (DT ). We use superscript notations S and T to

differentiate the source and the target domains. We assume that users in US and UT overlap,

but IS and IT have no common items. This captures the most common heterogeneous

personalization scenario in e-commerce companies such as Amazon or eBay nowadays. The

heterogeneous recommendation problem can then be stated as follows.

Problem 1. Given any source domain DS and any target domain DT , the heterogeneous rec-
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ommendation problem consists in recommending items in IT to users in US based on the

preferences of US for IS (ratings in the source domain), UT for IT (ratings in the target domain)

and US ∩UT for IS ∪IT (overlapping ratings).

In other words, we aim to recommend items in IT to a user who rated a few items (sparsity) or

no items (cold-start) in IT . Figure 6.1(a) conveys the scenario that illustrates this problem.

The goal is to recommend new relevant items fromDT (e.g., books) either to Alice who never

rated any book (cold-start) or to Bob who rated only a single book (sparsity). Both the users

rated items inDS (e.g., movies).

6.1.3 X-SIM: Cross-domain similarity

We now present X-SIM, our novel similarity metric designed for heterogeneous recommenda-

tion along with our meta-path pruning technique.

A. Baseline Similarity Graph

We first build a baseline similarity graph where the vertices are the items and the edges are

weighted by the similarities. We could use here any classical item-item similarity metric like

Cosine, Pearson, or Adjusted-cosine [157] for baseline similarity computations. We choose to

use adjusted-cosine for it is considered the most effective [157]:

sac (i , j )=
∑

u∈Ui∩U j
(ru,i − r̄u)(ru, j − r̄u)√∑

u∈Ui
(ru,i − r̄u)2

√∑
u∈U j
(ru, j − r̄u)2

(6.1)

In this first step, we compute the (baseline) similarities by integrating bothDS andDT as a

single domain. We denote byGac
2 the resulting similarity graph in which any two items are

connected if they have common users. As shown in Figure 6.1(b), the limitation of adjusted-

cosine similarity leads to sparse connections in Gac . We address this sparsity issue of Gac

precisely by extending it withmeta-paths connecting both domains.

Clearly, a brute-force scheme considering all possible meta-paths would be computationally

intractable and not scalable. Assumingm items in the database, the time complexity of such

a brute-force scheme (computing similarity for every pair of items) would beO(m2), which

is not suitable for big datasets like the Amazon one with millions of items. X-MAP uses a

layer-based technique to prune the number of meta-paths, thereby leading toO(km)�O(m)

time complexity where k ≪m.

2Here ac denotes adjusted cosine.
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Figure 6.2 – Layer-based pruning in X-MAP.

B. Layer-based Pruning

Based on the baseline similarity graph, we determine what we call bridge items, namely any

item i in a domainD which connects to some item j in another domainD′. Both i and j are

bridge items in this case. These bridge items are ascertained based on the overlapping users

from both domains. We accordingly call any item that is not a bridge item a non-bridge item.

X-MAP’s pruning technique partitions the items from DS and DT into six possible layers,

based on their connections with other items, as we explain below. In turn, the items in each

domain, sayD, are divided into three layers (Figure 6.2).

• BB-layer. The (Bridge, Bridge)-layer consists of the bridge items of D connected to the
bridge items of another domain.

• NB-layer. The (Non-bridge, Bridge)-layer consists of the non-bridge items ofD which are
connected to bridge items ofD.
• NN-layer. The (Non-bridge, Non-bridge)-layer consists of the non-bridge items ofD which
are not connected to other bridge items.

X-MAP then considers only the paths crossing different layers, which we callmeta-paths. Since

we use a k-nearest neighbor method in X-MAP, each item i in layer l is connected to the top-k

items from every neighboring layer l ′ based on the item-item similarities. We describe our
layered meta-path selection in more details in §6.1.5.

C. X-SIM: A Novel Similarity Metric

Consider any two items i and j . We denote by Ui≥ī the set of users who rated item i higher

than or equal to the average rating for i over all the users in the database who rated i . We

also denote by Ui<ī as the set of users who rated item i lower than the average rating for i .

Additionally, we denote by |Ui | the cardinality of the set Ui .

Definition 14 (WEIGHTED SIGNIFICANCE). Given any pair of items i and j , we define weighted

significance (Si , j ) as the number of users who mutually like or dislike this given pair. Formally,
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we define the weighted significance (Si , j ) between i and j as follows.

Si , j =
∣∣∣Ui≥ī ∩U j≥ j̄

∣∣∣︸ ︷︷ ︸
Mutual like

+
∣∣∣Ui<ī ∩U j< j̄

∣∣∣︸ ︷︷ ︸
Mutual dislike

Intuitively, a higher significance value implies higher importance of the similarity value. For

example, a similarity value of 0.5 between an item-pair (i , j ) with Si , j = 1000 ismore significant
than a similarity value of 0.5 between an item-pair (i ,k) with Si ,k = 1 (for the latter may be a
result of pure coincidence). 3

Definition 15 (META-PATH). Given G and its six corresponding layers of items, a meta-path

consists of at most one item from each layer.

For every meta-path p = i1 ↔ i2 . . .↔ ik , we compute the meta-path-based similarity sp ,

weighted by its significance value, as follows.

sp =
∑t=k−1

t=1 Sit ,it+1 · sac (it , it+1)∑t=k−1
t=1 Sit ,it+1

For each pair of items (i , j ) from different domains, if i , j are not connected directly, we

aggregate the path similarities of all meta-paths between i and j . Due to the different lengths

and similarities for meta-paths, we give different weights to different meta-paths. Shorter

meta-paths produce better similarities in recommenders [150, 176] and hence are preferred

over longer ones. We now explain the scheme behind assigning these weights and thereby

computing the X-SIM values.

Definition 16 (NORMALIZED WEIGHTED SIGNIFICANCE). Given any pair of items i and j , we

define normalized weighted significance (Ŝi , j ) between i and j as their significance value

weighted by the inverse of number of users rating either i or j . Formally, we denote normalized

weighted significance as follows.

Ŝi , j =
Si , j∣∣Ui ∪U j

∣∣
Next, we determine the notion of path certainty (cp ) of a meta-path to take into account the

factor of varying path lengths. Path certainty measures how good a path is for the similarity

computations.

Definition 17 (PATH CERTAINTY). Given any meta-path (p = i1↔ i2 . . .↔ ik ), we compute the

path certainty (cp ) of the meta-path p as the product of the normalized weighted significance

between each consecutive pair of items in the path p. Formally, we define the path certainty as

follows.

cp =
t=k−1∏

t=1
Ŝit ,it+1

3This concept is analogous to statistical significance used in hypothesis testing.
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It is important to note that the product of the normalized weighted significance values inher-

ently incorporates the path length in our path certainty metric. Hence, shorter paths have

higher weights compared to longer ones. Finally, we define our X-SIM metric as follows.

Definition 18 (X-SIM). Let P (i , j ) denote the set of all meta-paths between items i and j . We

define the X-SIM for the item pair (i,j) as the path similarity weighted by the path certainty for

all paths in P (i , j ). Formally, we define X-SIM for any given pair of items i and j as follows.

X-SIM(i , j )=

∑
p∈P (i , j )

cp · sp∑
p∈P (i , j )

cp

Here, X-SIM(i , j ) denotes the meta-path-based heterogeneous similarity between any two

items i and j . X-SIM is then utilized to build the artificial profiles for users (AlterEgos).

Note that a trivial transitive closure over similarities would not take into account the above-

mentioned factors, which would in turn impact the heterogeneous similarities and conse-

quently the recommendation quality.

6.1.4 X-MAP: Cross-domain recommender

We now show how to leverage our X-SIM metric to generate artificial (AlterEgo) profiles of

users in domains where these users might not have any activity yet. For pedagogical reasons,

we first present the non-private (NX-MAP) scheme, and then the extensions needed for the

private (X-MAP) one.

A. Similarity Computation Phase

In this phase, X-MAP treats both the source and target domains as a single aggregated do-

main in order to compute pairwise item similarities, called baseline similarities. Basically,

X-MAP computes the adjusted cosine similarities between the items in IS ∪IT based on the

preferences of the users in US ∪UT for these items. We distinguish the following two types of

similarities:

(a) Homogeneous similarities are computed between items in the same domain. Such similari-

ties are used for intra-domain extensions in §6.1.5.

(b) Heterogeneous similarities are computed between items in different domains. Such simi-

larities are used for cross-domain extensions in §6.1.5.

B. X-SIM Computation Phase

After the computation of the baseline item-item similarities, X-MAP uses the X-SIM metric

within a single domain to extend the connections between the bridge items of a domain and

other items within the same domain. Then, X-MAP uses the X-SIM metric to extend the simi-
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larities between items across domains (we come back to this in more details in §6.1.5). After

the heterogeneous similarity extension, each item in source domain (DS) has a corresponding

set of items in target domain (DT ) with quantified (positive or negative) X-SIM values.

C. AlterEgo Generation Phase

In this phase, the profile of Alice (inDS) is mapped to her AlterEgo profile (inDT ) as shown in

Figure 6.3. We first present the non-private case, and then discuss the private one.

NX-MAP AlterEgo generation. The non-private mapping is performed in two steps.

Replacement selection. In this step, for every item i in DS , we determine the replacement

item j in DT . Here, j is the heterogeneous item which is most similar to i based on the

heterogeneous similarities computed using X-SIM.

AlterEgo profile construction.We then replace every item rated by Alice inDS with the most

similar item inDT computed in the previous step. This item replacement induces the AlterEgo

profile 4 of Alice in the target domain as shown in Figure 6.3.

This AlterEgo profile of Alice is the mapped profile of Alice from the source domain to the

target domain. Note that the AlterEgo profiles could be incrementally updated to avoid

re-computations in X-MAP.

Figure 6.3 – Alice’s AlterEgo profile (in target domain) mapped from her original profile (in
source domain).

X-MAP AlterEgo generation.We now explain how we achieve the differentially private map-

ping.

Private replacement selection.We apply an obfuscation mechanism, depending on the meta-

path-based heterogeneous similarities, to design our differentially private replacement selec-

tion technique (Algorithm 8). Note that standard differentially private techniques consisting,

4If Alice has rated a few items inDT , then the mapped profile is appended to her original profile inDT to build
her AlterEgo profile.
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for example, in adding noise based on Laplace or Gaussian distributions would not work here

for they would not build a profile consisting of items in the target domain. The following

theorem conveys our resulting privacy guarantee.

Theorem 4 (PRIVACY GUARANTEE). Given any item i , we denote the global sensitivity of X-

SIM by GS and the similarity between i and any arbitrary item j by X-SIM(i , j ). Our Private

Replacement Selection (PRS) mechanism, which outputs j as the replacement with a probability

proportional to exp( ε·X-SIM(i , j )2·GS ), ensures ε-differential privacy.

Proof. (The full proof is provided in Appendix §8.2.1 for interested readers.) Consider any two

datasetsD andD ′ that differ at one user, say u. We denote X-SIM (i , j ) in datasetD by q(D, i , j )

and the set of items in target domain, with quantified X-SIM values, by I (i ). Furthermore,

we denote by q(D, I (i )) the set of X-SIM values between i and each item in I (i ). The global

sensitivity (GS) is defined asmaxD,D ′ ||q(D, i , j )−q(D ′, i , j )||1. Our PRSmechanism outputs
an item j as a private replacement for i . We have the following:

Pr [PRS(i , I (i ),q(D, I (i )))= j ]

Pr [PRS(i , I (i ),q(D ′, I (i )))= j ]
= exp( ε·q(D,i , j )2·GS )∑

k∈I (i )
exp( ε·q(D,i ,k)2·GS )

÷ exp( ε·q(D
′,i , j )

2·GS )∑
k∈I (i )

exp( ε·q(D
′,i ,k)

2·GS )

= exp( ε·q(D,i , j )2·GS )

exp( ε·q(D
′,i , j )

2·GS )︸ ︷︷ ︸
P

·

∑
k∈I (i )

exp( ε·q(D
′,i ,k)

2·GS )

∑
k∈I (i )

exp( ε·q(D,i ,k)2·GS )︸ ︷︷ ︸
Q

P = exp(
ε · (q(D, i , j )−q(D ′, i , j ))

2 ·GS
)≤ exp(

ε

2
)

Q =

∑
k∈I (i )

exp( ε·q(D
′,i ,k)

2·GS )

∑
k∈I (i )

exp( ε·q(D,i ,k)2·GS )
≤ exp(

ε

2
)

Therefore, we get the following privacy guarantee:

Pr [PRS(i , I (i ),q(D, I (i )))= j ]

Pr [PRS(i , I (i ),q(D ′, I (i )))= j ]
≤ exp(ε)

Hence, PRS ensures ε-differential privacy (Definition 2).

AlterEgo profile construction. In this step, we replace every item rated by Alice in DS with

the item inDT returned by the PRSmechanism in the previous step. This item replacement

scheme produces a private AlterEgo profile of Alice in the target domain.

109



Chapter 6. Heterogeneous Recommendations

Algorithm 8 Private Replacement Selection Algorithm: PRS(i ,I(i ),X-Sim(I(i ))) where I(i ) is the set
of items in the target domain with X-SIM values.

Require: ε, i , I (i ),X-Sim(I (i )) � ε : Privacy parameter
1: Global sensitivity for X-SIM:
2: GS = |X-SIMmax −X-SIMmi n | = 2
3: for item j in I (i ) do
4: Allocate probability as:

exp( ε·X-SIM(i , j )2·GS )∑
k∈I (i )

exp( ε·X-SIM(i ,k)2·GS )

5: end for
6: Sample an element t from I (i ) according to their probability.
7: return: t ; � ε-differentially private replacement for i

Note that this private AlterEgo profile protects the privacy of the straddlers, users who rated

in both the domains, as the ratings of these users are used to compute the heterogeneous

similarities leaving their privacy at risk [150]. In addition, if the application domains are

typically owned by different companies like Netflix and Last.fm, then this mechanism aids

the exchange of AlterEgo profiles while preventing curious or malicious users to infer the

preferences of others.

D. Recommendation Phase

We now present the main steps of our recommendation scheme. Again, we first explain the

non-private case followed by the private one.

NX-MAP recommendation. The AlterEgo profile of Alice is used along with the original

profiles in the target domain to compute the top-k similar users for Alice and then compute

recommendations for Alice leveraging the profiles of the k most similar users from the target

domain as shown in Algorithm 1. The item-based version of X-MAP utilizes this AlterEgo

profile and computes the recommendations as demonstrated in Algorithm 2.

Furthermore, the AlterEgo profile in the target domain also retains the temporal behavior [53]

of the user in the source domain due to the item-to-item mapping. We incorporate this

temporal behavior in the item-based version of X-MAP by adding a time-based weight to the

ratings to improve the recommendation quality further. The predictions, weighted by the

time-based parameter (α), for user u’s ratings are computed as follows.5

Pr ed [i ](t )= r̄i +
∑

j ∈Nk (i )∩Iu
τ(i , j ) · (ru, j − r̄ j ) ·e−α(t−tu, j )∑

j ∈Nk (i )∩Iu
|τ(i , j )| ·e−α(t−tu, j )

(6.2)

Note that the prediction has a time-based relevance factor (e−α(t−tu, j )) with a decaying rate

controlled by the parameter α to determine each rating’s weight for the prediction computa-

5Nk (i ) denotes the top-k neighbors of item i .
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tion. Here, tu, j denotes the timestep 6 when user A rated the item j . This specific time-based

CF technique is applicable to the item-based CF approach as the prediction computation

(Equation 6.2) for a user A is dependent only on her previous ratings for similar items and

thereby leverages time as observed by A.

X-MAP recommendation. The private AlterEgo profile of Alice is used along with the original

profiles in the target domain to compute the recommendations for Alice. To demonstrate

the adaptability of our heterogeneous recommender, the recommendation step is integrated

with a differentially private approach, inspired by [199, 200], to protect the privacy of users in

the target domain against other curious users. We implemented both item-based and user-

based versions of X-MAP. The item-based recommendation mechanism is demonstrated in

Algorithm 10 which utilizes the PNSAmechanism (Algorithm 9). We first present our similarity-

based sensitivity, required for the private approach, along with its correctness proof sketch.
7

Definition 19 (LOCAL SENSITIVITY). For any given function f :R→R and a dataset D, the Lo-

cal Sensitivity of f is defined as LS f (D)=max
D ′ ‖ f (D)− f (D ′)‖1, where D and D ′ are neighboring

datasets which differ at one user profile.

We define a rating vector ri = [rai , ...,rxi ,ryi ] which consists of all the ratings for an item i ∈D .

Similarly, we define a rating vector r ′i for i ∈D ′. Since we use adjusted-cosine for X-SIM, a
rating rxi is the result after subtracting the average rating of user x (r̄x) from the actual rating

provided by x for an item i . The similarity-based sensitivity is formulated as follows.

Theorem 5 (SIMILARITY-BASED SENSITIVITY). Given any score function q :R→R and a dataset

D, we formulate the similarity-based sensitivity corresponding to a score function qi (I , j ) for a

pair of items i and j as:

SS(i , j )=max
{
maxux∈Ui j

( rxi × rx j

∥ r ′i ∥ × ∥ r ′j ∥
)
,maxux∈Ui j

( ri · r j

∥ r ′i ∥ × ∥ r ′j ∥
− ri · r j

∥ ri ∥ × ∥ r j ∥
)}

Proof. (The full proof is provided in Appendix §8.2.1 for interested readers.) The similarity-

based sensitivity is measured by themaximal change in the similarity between two items when

deleting a user’s rating. The score function (q) for a pair of items i and j is defined as their

similarity value (s(i , j )). First, SS is defined as:

SS(i , j )=max ∥ s(i , j )− s′(i , j ) ∥1

6The timestep is a logical time corresponding to the actual timestamp of an event.
7Our similarity-based sensitivity is slightly different from the recommendation-aware one presented in [199,

200].
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We arrive at the following equality after inserting the similarity values for s(i , j ).

s(i , j )− s′(i , j )= ri · r j

∥ ri ∥ × ∥ r j ∥
−

r ′i · r ′j
∥ r ′i ∥ × ∥ r ′j ∥

=
ri · r j× ∥ r ′i ∥ × ∥ r ′j ∥ −r ′i · r ′j× ∥ ri ∥ × ∥ r j ∥

∥ ri ∥ × ∥ r j ∥ × ∥ r ′i ∥ × ∥ r ′j ∥
= P

Q

We assume that the profile of a user x, in D, is not present in D ′. This user rated both i and

j . Note that if this user rated one of these items or none, then the similarity value does not

depend on the presence or absence of this user in the dataset. Hence, we get the inequality:

∥ r ′i ∥ × ∥ r ′j ∥≤∥ ri ∥ × ∥ r j ∥.

Recall that P= (ri ·r j× ∥ r ′i ∥ × ∥ r ′j ∥ −r ′i ·r ′j× ∥ ri ∥ × ∥ r j ∥) andQ=(∥ ri ∥ × ∥ r j ∥ × ∥ r ′i ∥ × ∥ r ′j ∥).
SinceQ ≥ 0, we have two conditions depending on whether P ≥ 0 or P ≤ 0.

If P ≥ 0, then

∥ s(i , j )− s′(i , j ) ∥1≤
(ri · r j − r ′i · r ′j )
∥ r ′i ∥ × ∥ r ′j ∥

= rxi × rx j

∥ r ′i ∥ × ∥ r ′j ∥
.

If P ≤ 0, then

∥ s(i , j )− s′(i , j ) ∥1≤
ri · r j

∥ r ′i ∥ × ∥ r ′j ∥
− ri · r j

∥ ri ∥ × ∥ r j ∥
.

Hence, we have the similarity-based sensitivity as:

SS(i , j )=max
{
maxux∈Ui j

( rxi × rx j

∥ r ′i ∥ × ∥ r ′j ∥
)
,maxux∈Ui j

( ri · r j

∥ r ′i ∥ × ∥ r ′j ∥
− ri · r j

∥ ri ∥ × ∥ r j ∥
)}

We use the notion of truncated similarity [199, 200] (Step 7 in Algorithm 9) along with our

similarity-based sensitivity to enhance the quality of selected neighbors. The two theorems

which prove that this truncated similarity along with our similarity-based sensitivity can

enhance the quality of neighbors are as follows. (The detailed proofs for the following two

theorems are available in the technical report hosted on our GitHub repository [186].)

Theorem 6. Given any item i , we denote its k neighbors by Nk(i ), the maximal length of all

the rating vector pairs by |v |, the minimal similarity among the items in Nk (i ) by Si mk (i ) and

the maximal similarity-based sensitivity between i and other items by SS. Then, for a small

constant 0< ρ < 1, the similarity of all the items in Nk (i ) are larger than (Si mk (i )−w)with a

probability at least 1−ρ, where w =mi n(Si mk (i ),
4k×SS

ε′ × ln k×(|v |−k)
ρ ).

Intuitively, Theorem 6 implies that the selected neighbors have similarities greater than some
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Algorithm 9 Private Neighbor Selection : PNSA(i ,I,Sim(i )) where I is the set of all items.

Require: ε′,w, i , I ,Sim(i ), k � ε′ : Privacy
1: C1 = [ j |s(i , j )≥ Simk (i )−w, j ∈ I ]
2: C0 = [ j |s(i , j )< Simk (i )−w, j ∈ I ]
3: w =mi n(Simk (i ),

4k×SS
ε′ × l n k×(|v |−k)

ρ )
4: forN=1:k do
5: for item j in I do
6:

SS(i , j )=max{maxux∈Ui j
(

rxi × rx j

∥ r ′i ∥ × ∥ r ′j ∥
),maxux∈Ui j

(
ri · r j

∥ r ′i ∥ × ∥ r ′j ∥
− ri · r j

∥ ri ∥ × ∥ r j ∥)
)}

7: Ŝim(i , j )=max(Sim(i , j ),Simk (i )−w)
8: Allocate probability as: � ε′

2k -Privacy

exp( ε′·Ŝim(i , j )
2k×2SS(i , j ) )∑

l∈C1
exp( ε′·Ŝim(i ,l )

2k×2SS(i ,l ) )+
∑

l∈C0
exp( ε′·Ŝim(i ,l )

2k×2SS(i ,l ) )

9: end for
10: Sample an element t fromC1 andC0 without replacement according to their probability.
11: Nk (i )=Nk (i )∪ t
12: end for
13: return: Nk (i );

threshold value (Si mk (i )−w) with a high probability (1−ρ).

Theorem 7. Given any item i , for a small constant 0 < ρ < 1, all items with similari-

ties greater than (Si mk(i )+w) are present in Nk(i ) with a probability at least 1−ρ where

w =mi n(Si mk (i ),
4k×SS

ε′ × ln k×(|v |−k)
ρ ).

Intuitively, Theorem 7 implies that the items with similarities greater than some threshold

value (Si mk (i )+w) are selected as neighbors with a high probability (1−ρ).

Both theorems prove that the truncated similarity along with our similarity-based sensitivity

provides neighbors of good quality while providing ε′/2-differential privacy. The predictions
are computed leveraging the PNCFmechanism (Algorithm 10) which adds Laplacian noise to

provide ε′/2-differential privacy. By the composition property of differential privacy, PNSA
and PNCF together provide ε′-differential privacy. The item-based version of X-MAP includes
the additional feature of temporally relevant predictions to boost the recommendation quality

traded for privacy.

We provide here two illustrations (temporal dynamics and differential privacy) of the adaptabil-

ity of our heterogeneous recommender. Since the AlterEgo profile could be considered as an

actual profile in the target domain, thereby any homogeneous recommendation algorithm [2]

like Matrix Factorization techniques, can be applied in the target domain to generate the

recommendations. We provide a demonstration regarding how to use Spark-MLLIB’s matrix

factorization technique with X-MAP in our GitHub repository [186].
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Algorithm 10 Private Recommendation: PNCF(P A , I ) where P A denotes the AlterEgo profile of Alice,
and I denotes the set of all items.

1: var P; �Dictionary with predictions for Alice
2: var τ; �User similarities
3: var r̄ ; � Average rating for each items
4: var ε′ �Degree of privacy
5: var Nk � Private neighbors using PNSA
6: for i : item in P A do
7: Nk (i ) = P N S A(i , I ,Sim(i ))
8: for j : item in Nk (i ) do

9: P [ j ]= r̄ j +
∑

k∈Nk ( j )
(τ(k, j )+Lap( SS(k, j )

ε′/2 ))·(r A,k−r̄k )∑
k∈Nk ( j )

|τ(k, j )+Lap( SS(k, j )
ε′/2 )|

10: end for
11: end for
12: RA = P.sortByValue(ascending=false);
13: return: RA[:N ]; � Top-N recommendations for Alice
6.1.5 Implementation

Wenowdescribe our implementation of X-MAP. Figure 6.4 outlines the fourmain components

of our implementation: baseliner, extender, generator and recommender. We describe each of

these components along with their functionality.

Figure 6.4 – The components of X-MAP: Baseliner, Extender, Generator, Recommender.

A. Baseliner

This component computes the baseline similarities leveraging the adjusted cosine similarity

(Equation 6.1) between the items in the two domains. The baseliner splits the item-pairs based

on whether both items belong to the same domain or not. If both items are from the same

domain, then the item-pair similarities will be delivered as homogeneous similarities. If one of

the items belongs to a different domain, then the item-pair similarities will be delivered as

heterogeneous similarities. The baseline heterogeneous similarities are computed based on
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the user overlap. 8

B. Extender

This component extends the baseline similarities both within a domain and across domains.

The items in each domain are divided into three layers based on our layer-based pruning

technique as shown in Figure 6.2. For every item in a specific layer, the extender computes the

top-k similar items for the neighboring layers. For instance, for the items in the BB-layer of

DS , the extender computes the top-k similar ones from items in the BB-layer inDT and also

the top-k similar ones from the items in the NB-layer inDS .

Intra-domain extension. In this step, the extender computes the X-SIM similarities for the

items in the NN-layer inDS and the items in the BB-layer ofDS via the NB-layer items ofDS .

Similar computations are performed for domainDT .

Cross-domain extension. After the previous step, the extender updates the NB and NN layers

in both domains based on the new connections (top-k). Then, it updates the connections

between the items in NB and BB layers in one domain and the items in NB and BB layers in

the other one.

At the end of the execution, the extender outputs, for every item i inDS , a set of items I (i ) in

DT with some quantified (positive or negative) X-SIM values with i .

C. Generator

The generator performs the following computational steps.

Item mapping. The Generator maps every item in one domain (sayDS) to its most similar

item (for NX-MAP) or its private replacement (for X-MAP) in the other domain (DT ). After,

the completion of this step, every item in one domain has a replacement item in the other

domain. 9

Mapped user profiles. The Generator here creates an artificial profile (AlterEgo) of a user in a

target domainDT from her actual profile in the source domainDS by replacing each item in

her profile inDS with its replacement inDT as shown in Figure 6.3. Finally, after this step, the

Generator outputs the AlterEgo profile of a user in the target domain where she might have

little or no activity yet.

8These are the baseline similarities without any extension or enhancements.
9We could also choose a set of replacements for any item, using X-SIM, in the target domain to have more

diversity.
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D. Recommender

This component utilizes the artificial AlterEgo profile created by the Generator to perform the

recommendation computation. It can implement any general recommendation algorithm

for its underlying recommendation computation. In this work, we implemented user-based

and item-based CF schemes. For NX-MAP, the recommender uses Algorithm 1 (user-based

CF) or Algorithm 2 (item-based CF) in the target domain. For X-MAP, the recommender

also uses the PNSA algorithm along with the PNCF algorithm to generate recommendations

either in a user-basedmanner or in an item-basedmanner. Additionally, for both NX-MAP

and X-MAP, the item-based CF recommender leverages the temporal relevance to boost the

recommendation quality. It is important to note that X-MAP runs periodically in an offline

manner to update the predicted ratings. The top-10 items (sorted by the predicted ratings),

not-yet-seen by the current user, would be recommended to users in X-MAP.

6.1.6 Evaluation

We report here on our empirical evaluation of X-MAP on a cluster computing framework,

namely Spark [189], with real world traces from Amazon [131] to analyze its prediction accu-

racy, privacy and scalability. We choose Spark as our cluster computing framework since the

underlying data processing framework to support X-MAP must be scalable and fault-tolerant.

A. Experimental Setup

Experimental platform. We perform all the experiments on a cluster of 20 machines. Each

machine is an Intel Xeon CPU E5520 @2.26GHz with 32 GB memory. The machines are

connected through a 2xGigabit Ethernet (BroadcomNetXtremeII BCM5716).

Datasets.We now provide an overview of the datasets used in our experiments.

Amazon. We use two sets of real traces from Amazon datasets [131]: movies and books. We

use the ratings for the period from 2011 till 2013. The movies dataset consists of 1,671,662

ratings from 473,764 users for 128,402 movies whereas the books dataset consists of 2,708,839

ratings from 725,846 users for 403,234 books. The ratings vary from 1 to 5 with an increment

of 1. The overlapping users in these two datasets are those Amazon users who are present

in both datasets and are ascertained using their Amazon customer-ids. The number of such

overlapping users from both the domains is 78,201.

Movielens. We use the Movielens dataset (ML-20M) for evaluating performance of X-MAP

within a single domain. This dataset consists of 20,000,263 ratings from 138,493 users for

27,278 movies. In this dataset, the ratings also vary from 1 to 5 with an increment of 1.

Evaluation metrics.We evaluate X-MAP along three complementary metrics: (1) the recom-

mendation quality as perceived by the users in terms of prediction accuracy, (2) the degree

116



6.1. Heterogeneous Recommendations with Alter-Egos

of privacy provided to the end-users in terms of the privacy parameters (ε,ε′), and (3) the
scalability in terms of speedup achieved in X-MAP when increasing the number of machines

in the cluster.

Accuracy. We evaluate the accuracy of the predictions in terms of Mean Absolute Error (MAE).

MAE computes the average absolute deviation between a predicted rating and the user’s true

rating. MAE is a standardmetric used to evaluate state-of-the-art recommenders [84, 165]. We

assume that the predicted rating for an item i is denoted by pi and the actual rating is denoted

by ri in the test dataset. Then, the MAE for a test dataset, with N ratings, is computed as:∑N
i=1 |pi−ri |

N . Given that rmi n and rmax denotes theminimum andmaximum ratings respectively,

the following inequality always holds: 0<M AE < (rmax − rmi n). The lower the MAE, the more

accurate the predictions.

Privacy. Our differential privacy guarantees are parametrized as follows: ε for the PRS

technique (Algorithm 8) used for AlterEgo generation and ε′ for the PNCF (Algorithm 10)
used for the private recommendation generation in X-MAP. According to the privacy litera-

ture [56, 199, 200], ε= 1 or less would be suitable for privacy preserving purposes.

Speedup. We evaluate the speedup in terms of the time required for sequential execution (T1)

and the time required for parallel execution with p processors (Tp ). Amdahl’s lawmodels the

performance of speedup (Sp ) as follows.

Sp = T1
Tp

Due to the considerable amount of computations for heterogeneous recommendation on the

Amazon dataset, we compare the speedup on p processors with respect to a minimum of 5

processors (T5) instead of a sequential execution (T1).

Competitors. We now present the recommenders against which we compare X-MAP. Existing

recommendation schemes over several domains can be classified as follows.

Linked-domain personalization. The goal here is to recommend items in the target domain

(DT ) by exploring rating preferences aggregated from both source and target domains, i.e,

to recommend items in IT to users in US based on the preferences of users in US ∪ UT for

items in IS ∪ IT . In this approach, ratings from multiple domains are aggregated into a

single domain. Then, a traditional CF mechanism can be applied over this aggregated single

domain [157, 44]. ITEM-BASED-KNN is a linked-domain personalization approach [157, 44]

where we use item-based collaborative filtering over the aggregated ratings from both the

domains.

Heterogeneous recommendation. The goal here is to recommend items in IT to users in US

based on the preferences of US for IS , UT for IT and US ∩ UT for IS ∪ IT . In this approach,

the user similarities are first computed in both source and target domains. These domain-

related similarities are then aggregated into the overall heterogeneous similarities. Finally, the
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k-nearest neighbors, used for recommendation computations, are selected based on these

heterogeneous similarities [20]. In the REMOTEUSER approach [20], the user similarities in

source domain are used to compute the k nearest neighbors for users who have not rated in

the target domain. Finally, user-based collaborative filtering is performed.

Baseline prediction. For a sparse dataset, the baseline is provided by item-based average

ratings [14] or user-based average ratings [116]. The goal here is to predict based on the

average ratings provided by users in US ∪ UT for items in IS ∪ IT . One of the most basic

prediction schemes is the ITEMAVERAGE scheme where we predict that each item will be rated

as the average over all users who rated that item [14]. Note that though this technique gives a

very good estimate of the actual rating but it is not personalized due to same predictions for

all the users.

We compare X-MAP with these three other systems namely: ITEM-BASED-KNN, REMOTEUSER

and ITEMAVERAGE.

Evaluation scheme.We partition the set of common users who rated both movies and books

into training and test sets. For the test users, we hide their profile in the target domain (say

books) and use their profile in the source domain (movies) to predict books for them. This

strategy evaluates the accuracy of the predictions if the user did not rate any item in the target

domain. Hence, we can evaluate the performance of X-MAP in the scenario where the test

users did not rate any item in the target domain (cold-start). Additionally, if we hide part of the

user profile in the target domain, thenwe can evaluate how X-MAP handles the scenario where

the test users rated very few items in the target domain (sparsity). Furthermore, we denote the

item-based variant of X-MAP as X-MAP-IB and the user-based variant as X-MAP-UB. Similarly

for NX-MAP, we denote the item-based variant of NX-MAP as NX-MAP-IB and the user-based

variant as NX-MAP-UB.

B. Temporal Dynamics

We observe the temporal effect of users, retained by the AlterEgos across domains, in X-MAP.

We leverage the item-based recommender, and tune the temporal parameter α accordingly.

Figure 6.5 demonstrates this temporal relevance effect where α varies between 0 (no temporal

effect) to 0.2. Note that an item-based CF approach computes the predictions leveraging the

target user’s very few observed ratings on the nearest neighbors and given the very limited

size of this set of ratings, any further amplification of α impacts the predictions negatively

as it reduces the contribution of old ratings furthermore. We provide the optimally tuned

parameter (αo) for our experiments, shown in Figure 6.5, to achieve optimal recommendation

quality.
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Figure 6.5 – Temporal relevance (X-MAP, NX-MAP).

C. Privacy

We tune the privacy parameters (ε,ε′) for X-MAP. Figures 6.6 and 6.7 demonstrate the effect of
tuning the privacy parameters on the prediction quality in terms of MAE. We observe that the

recommendation quality improves (lower MAE) as we decrease the degree of privacy (higher

ε, ε′). It is important to note that X-MAP inherently transforms to NX-MAP as the privacy
parameters increase furthermore (lower privacy guarantees). For the following experiments,

we select the privacy parameters as follows. For X-MAP-IB, we select ε= 0.3 and ε′ = 0.8. For
X-MAP-UB, we select ε= 0.6 and ε′ = 0.3. 10
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Figure 6.6 – Privacy-quality trade-off in X-MAP-IB.

D. Accuracy

We now compare the accuracy of the predictions of X-MAP and NX-MAP with the competitors.

10These parameters are selected from a range of possible values providing quality close to the optimal one as
observed from Figures 6.6 and 6.7.
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Figure 6.7 – Privacy-quality trade-off in X-MAP-UB.

Impact of top-k neighbors. First, we evaluate the quality in terms of MAE when the size of

k (neighbors in Equation 6.2) is varied. Figure 6.8(a) demonstrates that X-MAP-UB and NX-

MAP-UB outperform the competitors by a significant margin of 30% where the source domain

is book and the target domain is movie. Also, Figure 6.8(b) shows that X-MAP performs better

than the non-private competitors whereas NX-MAP again outperforms the competitors by

a margin of 18% where the source domain is movie and the target domain is book. A higher

number of neighbors induces more connections across the domains (Figure 6.2) and hence

enables X-MAP to explore better meta-paths between items. Moreover, better meta-paths

lead to better meta-path based similarities and thereby superior recommendation quality. We

consider k as 50 for all further experiments.
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Figure 6.8 – MAE comparison with varying k.

Impact of overlap.We now evaluate how X-MAP and NX-MAP perform when the number of

users in the overlap increases. Intuitively, a good approach should provide better accuracy

as more and more users connect the domains. These increasing connections improve the

baseline heterogeneous similarities which are then leveraged by X-SIM to generate bettermeta-

path based similarities across the domains. Figure 6.9 shows that the prediction error of X-MAP

decreases as there are more users connecting the domains. This observation demonstrates

that the quality of the AlterEgo profiles improves when the overlap size increases. Furthermore,
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we observe in Figure 6.9(a) that the user-based models show more improvement than the

item-based ones. This behavior occurs as the item similarities are more static than the user

similarities [94].
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Figure 6.9 – MAE comparison (Overlap size).11

Impact of sparsity. We now evaluate how X-MAP performs when the size of the training

profile of a user, in the target domain, increases from aminimum of 0 (cold-start situation) to

a maximum of 6 (low sparsity), in addition to her profile in the source domain 12. This experi-

ment also highlights the performance of X-MAP when the sparsity of the dataset decreases.

Additionally, we evaluate the accuracy improvement of X-MAP over a single domain solution,

item-based KNN in the target domain denoted by KNN-SD, as well as over a heterogeneous

solution, item-based KNN in the aggregated domain denoted by KNN-CD. Figure 6.10 demon-

strates that KNN-SD and KNN-CD are outperformed by NX-MAP and X-MAP. Furthermore, we

observe a relatively fast improvement for our non-private item-based technique (NX-MAP-IB)

due to the improvement in item similarities with lower sparsity.
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Figure 6.10 – MAE comparison based on profile size.

11Training set size denotes overlap size.
12We consider only those users who rated at least 10 products in each domain.
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E. Homogeneity

We now evaluate the ability of X-MAP to be applied to a homogeneous setting consisting of a

single domain. Depending on the structural property of the data (e.g., genres), any domain

could be partitioned into multiple sub-domains. For this experiment, we use the ML-20M

dataset which consists of 19 different genres. We partition this dataset into two sub-domains

D1 andD2 by sorting the genres based on the movie counts per genre and allocating alternate

sorted genres to the sub-domains as shown in Table 6.1. Note that a movie can have multiple

genres. If a moviem belongs to both the sub-domains, we add it to the sub-domain which

has the most number of genres overlapping with m’s set of genres and to any of the two

sub-domains in case of equal overlap with both sub-domains. Sub-domain D1 consists of

15,119 movies with 138,492 users whereas sub-domain D2 consists of 11,383 movies with

138,483 users.
D1 D2

Genres Movie counts Genres Movie counts
Drama 13344 Comedy 8374
Thriller 4178 Romance 4127
Action 3520 Crime 2939
Horror 2611 Documentary 2471
Adventure 2329 Sci-Fi 1743
Mystery 1514 Fantasy 1412
War 1194 Children 1139
Musical 1036 Animation 1027
Western 676 Film-Noir 330
Other 196 – –

Table 6.1 – Sub-domains (D1 and D2) based on genres in Movielens 20M dataset.

We compare X-MAP and NX-MAP with Alternating Least Square fromMLLIB (MLLIB-ALS).

We observe from Table 6.2 that NX-MAP significantly outperforms MLLIB-ALS whereas X-

MAP, even with the additional privacy overhead, almost retains the quality of non-private

MLLIB-ALS.

NX-MAP X-MAP MLLIB-ALS
MAE 0.6027 0.6830 0.6729

Table 6.2 – MAE comparison (homogeneous setting on ML-20M dataset).

F. Scalability

We evaluate the scalability of X-MAP in terms of the speedup achieved with an increasing

number of computational nodes. We also compare our scalability with a state-of-the-art homo-

geneous recommender leveraging Spark to implement Alternating-Least-Squares basedmatrix

factorization (MLLIB-ALS). For the ALS recommender, we use the aggregated ratings over

both the domains (linked-domain personalization). Figure 6.11 demonstrates the near-linear
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speedup of X-MAP. Additionally, we see that X-MAP outperforms the scalability achieved by

MLLIB-ALS. Note that X-MAP is periodically executed offline and the computation time for

the recommendations, corresponding to all the users in the test set, is around 810 seconds on

20 nodes.
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Figure 6.11 – Scalability of X-MAP.

G. Online Deployment

We deployed an online recommendation platform (http://x-map.work/) leveraging X-SIM

and made it available to users. We observe that this recommender indeed provides book

recommendations like Shutter Island: A Novel when the user queries for the movie Inception.

Besides, it also recommends the Shutter Islandmovie as a homogeneous recommendation.

We observe similar results for multiple other queries.

We deployed a real-time recommender implementing the underlying X-SIM and made it

available to internet users. We collected user feedback for a duration of one week which is

summarized in Figure 6.12. The x-axis denotes the score, provided by the user, in terms of

a rating scale (1-5) with increment of 0.5 and the y-axis denotes the percentage of the total

number of users. This preliminary study shows that the user satisfaction level is high.
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Figure 6.12 – Feedback from 51 users over 1 week.
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6.1.7 Related Work

Heterogeneous trends. Research on heterogeneous recommendation is relatively new. There

are, however, a few approaches to tackle the problem which we discuss below.

Smart User Models. González et al. introduced the notion of Smart User Models (SUMs) [69].

The idea is to aggregate heterogeneous information to build user profiles that are applicable

across different domains. SUMs rely on users’ emotional context which are, however, difficult

to capture. Additionally, it has been shown that users’ ratings vary frequently with time

depending on their emotions [8].

Web Monitoring. Hyung et al. designed a web agent which profiles user preferences across

multiple domains and leverages this information for personalized web support [108]. Tuffield

et al. proposed Semantic Logger, a meta-data acquisition web agent that collects and stores

any information (from emails, URLs, tags) accessed by the users [179]. However, web agents

are considered a threat to users’ privacy as users’ data over different e-commerce applications

are stored in a central database administered by the web agent.

Cross-domain Mediation. Berkovsky et al. [20] proposed the idea of cross-domain mediation

to compute recommendations by aggregating data from several recommenders. We showed

empirically that X-MAP outperforms cross-domain mediation in Figures 6.8 and 6.9.

In contrast, X-MAP introduces a new trend in heterogeneous personalization in the sense that

the user profile from a source domain is leveraged to generate an artificial AlterEgo profile in a

target domain. The AlterEgo profiles can even be exchanged between e-commerce companies

like Netflix, Last.fm thanks to the privacy guarantee in X-MAP.

Merging preferences. One could also view the heterogeneous recommendation problem as

that of merging single-domain user preferences. Through this viewpoint, several approaches

can be considered which we discuss below.

Rating aggregation. This approach is based on aggregating user ratings over several domains

into a single multi-domain rating matrix [21, 20]. Berkovsky et al. showed that this approach

can tackle cold-start problems in collaborative filtering [21]. We showed empirically that

X-MAP easily outperforms such rating aggregation based approaches [20].

Common representation. This approach is based on a common representation of user prefer-

ences frommultiple domains either in the form of a social tag [177] or semantic relationships

between domains [124]. Shi et al. developed a Tag-induced Cross-Domain Collaborative Filter-

ing (TAGCDCF) to overcome cold-start problems in collaborative filtering [167]. TAGCDCF

exploits shared tags to link different domains. They thus need additional tags to bridge the

domains. X-MAP can bridge the domains based on the ratings provided by users using its

novel X-SIM measure without requiring any such additional information which is difficult to

collect in practice.

124



6.2. Content-enabled Heterogeneous Recommendations

Linked preferences. This approach is based on linking users’ preferences in several do-

mains [44]. We showed empirically that X-MAP outperforms such linked preference based

approaches [44] in Figures 6.8 and 6.9.

Domain-independent features. This approach is based on mapping user preferences to

domain-independent features like personality types [34] or user-item interactions [125]. This

approach again requires additional information like personality scores which might not be

available for all users.

6.1.8 Conclusion

We presented X-MAP, a scalable and private heterogeneous recommender. X-MAP leverages a

novel similarity metric X-SIM, identifying similar items across domains based onmeta-paths,

to generate AlterEgo profiles of users in domains where these users might not have any activity

yet. We demonstrated that X-MAP performs better in terms of recommendation quality than

alternative heterogeneous recommenders [14, 20, 44]. (Although, not surprisingly, there is a

trade-off between quality and privacy.)

6.2 Content-enabled Heterogeneous Recommendations

In the previous section, we introduced a heterogeneous recommender which employs only

the user-item interactions. However, it is also possible to perform content-enabled hetero-

geneous recommendations when the content is available about the users (e.g., demography,

time-varying preferences) or items (e.g., popularity, price). These features could be explored

concurrently to enable heterogeneous recommendations.

In this promising direction, we explore the notion of TRACKERS which enables us to incorporate

these factors concurrently. We also capture item-to-item relations, based on their consump-

tion sequence, leveraging neural embeddings for offers in our OFFER2VEC algorithm (similar

to DEEPCIP in §4.2). We then introduce BOOSTJET, a novel recommender which integrates the

TRACKERS along with the neural embeddings using MATRIXNET [79], an efficient distributed

implementation of gradient boosted decision tree, to improve the recommendation quality

significantly.

More precisely, BOOSTJET computes the recommendations as follows. First, BOOSTJET gen-

erates the TRACKERS which are statistical aggregates of users’ activity capturing factors of

different types (content, temporal, demographic, or monetary). Second, BOOSTJET generates

the offer embeddings to capture the higher-dimensional relation between different offers in

a given shop based on their consumption order by different users. These embeddings are

generated using the proposed OFFER2VEC algorithm, our modification of DOC2VEC [114],

by treating each user session, in a given shop, as a document and offers in this session as

words. Finally, with the help of MATRIXNET we combine these features by posing the recom-
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mendation task as a classification problem in BOOSTJET, i.e., the recommendation task is to

compute the likelihood probabilities for any given user corresponding to unseen items in a

given application and then provide the highly predicted ones as recommendations to the user.

We evaluate BOOSTJET on Yandex’s dataset, collecting online behavior from 14 million online

users over 1250 different e-commerce applications, to demonstrate the practicality of BOOST-

JET in terms of recommendation quality as well as scalability. Further details about this work

is available in [145] for interested readers.
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PART V

Thesis Conclusions and Remarks

In this part of the thesis, we summarize the main contributions of this thesis and also provide

some concluding remarks regarding its implications on personalization at a high level. We

also discuss some interesting directions for future work that the contributions of this thesis

enable.





7 Concluding Remarks

We conclude this dissertation by discussing the outcomes and implications of the various

contributions presented in this thesis along with the potential extensions for future work.

7.1 Summary and Implications

We first recall that the primary challenges in designing personalization services are scalability,

privacy, and heterogeneity. We address these challenges step-by-step in each part of this thesis.

In the first part of this dissertation (Chapters 3 and 4), we address the scalability challenge.

First, we significantly reduce the number of computations by leveraging an iterative biased

sampling technique in HYREC (§3.1). Furthermore, HYREC democratizes these biased sam-

ples, personalized for each user, to the devices of the users for updating the recommender.

We also briefly explore the extension of this democratization technique to classical machine

learning applications using HYML (§3.2). Second, we take an incremental approach where

we incorporate the updates to the recommender system in an incremental manner employ-

ing only the new incoming events (e.g., ratings or consumption events). We present two

approaches depending on the type of feedback (i.e., users’ preferences) which could be either

explicit (e.g., numerical or binary ratings) or implicit (e.g., time for the consumption events).

I-SIM (§4.1) enables incremental updates for explicit feedback whereas CIP (§4.2) enables

incremental updates for implicit feedback.

In the second part of this dissertation (Chapter 5), we tackle the privacy challenge. We consider

two levels of privacy. The first one is user-level privacy which deals with protecting the privacy

of users from other curious users whereas the second one is system-level privacy which deals

with protecting the privacy of users from the service provider itself. Concerning the user-level

privacy, we introduce the notion of distance-based differential privacy (D2P) in §5.1 which

strengthens the notion of differential privacy for recommender systems. We also present a

brief overview of X-REC in §5.2 which ensures the privacy of users against the service providers

(system-level privacy) or other users (user-level privacy) while preserving recommendation
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quality.

In the third part of this dissertation (Chapter 6), we tackle the heterogeneity challenge. With

this objective in mind, we introduce X-MAP which is a novel heterogeneous recommender

system employing meta-path-based transitive closure of inter-item similarities across several

domains to provide recommendations across multiple domains. Additionally, we show that

X-MAP enables differentially private recommendations and also easily scales out on multiple

machines. We also briefly explore the impact of content towards heterogeneous recommenda-

tions by employing statistical aggregates of content-based features of users (e.g., demography,

temporal preferences) or items (e.g., popularity, price).

At a high level, this dissertation takes a step in personalizing the Web in the sense that AlterE-

gos of any web user could be now extracted across various Internet applications and then

employed to identify a personalized slice of Internet for web navigation of that user. Moreover,

such heterogeneous web personalization could be now provided to the users without risking

their privacy thanks to the private AlterEgos (Chapter 6) and distance-based differential pri-

vacy (Chapter 5). The scalability of the different personalization schemes, presented in this

dissertation, also ensure that the personalized web slices for users could be updated in real-

time depending on their recent explicit or implicit preferences (which might vary significantly

overtime).

7.2 Future Work

We now discuss some potential directions for future research that build on the work presented

in this dissertation.

Extension to other ML applications. Most of the work presented in this thesis could be

extended to various other ML applications. We provide one demonstration of such extension

where we show how we can extend the democratization idea used in HYREC to enable ML

on users’ devices (Chapter 3). The notion of distance-based differential privacy (Chapter 5)

could also be explored in the context event-level privacy [103] for ML applications where the

distance could be defined based on the input features and the output labels. For e.g., it is

possible to design a privacy-aware classifier such that it can distinguish between bikes and

cars where the distance could be defined in such a way that the bikes class is a superset of

different types of bikes (e.g., road bikes, mountain bikes, racing bikes) and the cars class is a

superset of different types of cars (e.g., sports cars, family cars, luxury cars). Such a classifier

would preserve privacy in the sense that images could also reveal various personal details

e.g., location [123]. It would also be interesting to employ techniques for system-level privacy

concerning various ML applications, e.g., ML over encrypted data [26, 72].

Private incremental updates. The privacy guarantees presented in this dissertation con-

cern with static databases of user-item interaction events (Chapter 5). However, we also

introduced the notion of incrementality to handle scalability (Chapter 4). If we apply the
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privacy-preserving techniques over the complete aggregated data during the incremental

updates, then the computation overhead for privacy might significantly affect the total time

for performing the incremental updates. This limitation calls for incremental privacy-aware

techniques that would support such incremental updates without significant overhead. There

has already been some recent work in this direction for ML to address the problems of pri-

vate incremental Expected Risk Minimization (ERM) and private incremental regression [101].

Hence, it would be interesting to explore such incremental private solutions for ML to design

private and incremental recommenders.

Energy-efficient recommenders. We briefly demonstrate the impact of our approach on

reducing the energy consumption in §4.1. This impact is also intuitive due to the nature of

incrementality incorporated in the computations to update the recommender. ML appli-

cations are also extremely resource-greedy which leads to significant energy consumption.

Recently, there has been some work in designing various compression techniques like quanti-

zation [6] or knowledge distillation [86] to significantly reduce theMLworkload and hence also

achieves energy-efficiency. Similar techniques could be employed along with our incremental

approaches for recommenders to improve the energy-efficiency furthermore.
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PART VI

Appendices

In this part of the thesis, we provide some supplementary materials (e.g., detailed correctness

proofs of algorithms, additional experiments) for interested readers.





8 Appendices

8.1 Appendix A: I-SIM

8.1.1 Correctness proofs

Theorem 1 (Pi j INCREMENTAL UPDATE). Let ΔU t
i denote the set of users who newly rated i at

timestep t , i.e., ΔU t
i =U t

i \U t−1
i , then the time complexity for updating Pi j (t ) isO(|ΔU t

i |+|ΔU t
j |).

Proof. We obtain a recursive relation between Pi j (t ) and Pi j (t −1) by decomposing Pi j (t ) as

follows.

Pi j (t )=
∑

u∈U t
i ∩U t

j

f α
ui (t )(rui − r̄u(t )) f

α
u j (t )(ru j − r̄u(t ))

= ∑
u∈ΔU t

i ∩U t−1
j

(rui − r̄u(t )) f
α

u j (t )(ru j − r̄u(t ))+
∑

u∈U t−1
i ∩ΔU t

j

f α
ui (t )(rui − r̄u(t ))(ru j − r̄u(t ))

+ ∑
u∈ΔU t

i ∩ΔU t
j

(rui − r̄u(t ))(ru j − r̄u(t ))+
∑

u∈U t−1
i ∩U t−1

j

f α
ui (t )(rui − r̄u(t )) f

α
u j (t )(ru j − r̄u(t ))

=ΔPi j (t )+e−2αP ′i j (t −1)

In the above mathematical expression, we have absorbed the first three summations into the

termΔPi j (t ) and defined the last term as P ′i j (t−1). Furthermore, we have: ε(t )� r̄u(t )− r̄u(t−
1). Note that ε(t )≡ εu(t ) varies for each user and alters marginally over consecutive timesteps:

ε(t )= ε(t −1)+Δε. We rewrite P ′i j (t −1) as follows.

P ′i j (t −1)=
∑

u∈U t−1
i j

f α
ui (t −1)(rui − r̄u(t )) f

α
u j (t −1)(ru j − r̄u(t ))

= ∑
u∈U t−1

i j

f α
ui (t −1)(rui − r̄u(t −1)) f α

u j (t −1)(ru j − r̄u(t −1))
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− ∑
u∈U t−1

i j

(ε(t −1)+Δε) f α
ui (t −1) f α

u j (t −1)(rui − r̄u(t −1))

− ∑
u∈U t−1

i j

(ε(t −1)+Δε) f α
ui (t −1) f α

u j (t −1)(ru j − r̄u(t −1))

+ ∑
u∈U t−1

i j

(ε(t −1)+Δε)2 · f α
ui (t −1) f α

u j (t −1)

where U t−1
i j denotes U t−1

i ∩U t−1
j .

In the following, we ignore negligibly small higher order terms with the multiplicative factor

Δε · f α
ui (t ) · f α

u j (t ) as each of the terms {Δε, f
α

ui (t ), f α
u j (t )}<< 1.

P ′i j (t −1)=
∑

u∈U t−1
i j

f α
ui (t −1)(rui − r̄u(t )) f

α
u j (t −1)(ru j − r̄u(t ))

= ∑
u∈U t−1

i j

f α
ui (t −1)(rui − r̄u(t −1)) f α

u j (t −1)(ru j − r̄u(t −1))

− ∑
u∈U t−1

i j

ε(t −1) f α
ui (t −1) f α

u j (t −1)(rui − r̄u(t −1))

− ∑
u∈U t−1

i j

ε(t −1) f α
ui (t −1) f α

u j (t −1)(ru j − r̄u(t −1))

+ ∑
u∈U t−1

i j

{ε(t −1)}2 · f α
ui (t −1) f α

u j (t −1)

We introduce two adjustment terms L,M in the following. Note that these adjustment terms

incorporate the behavioral drift, captured by ε(t ), in I-SIM.

Li j (t )=
∑

u∈U t
i j

ε(t ) f α
ui (t ) f

α
u j (t )[(rui − r̄u(t ))+ (ru j − r̄u(t ))]=

∑
u∈U t

i j

ε(t ) f α
ui (t ) f

α
u j (t )(rui + ru j −2r̄u(t ))

(8.1)

Li (t )= 2
∑

u∈U t
i

ε(t ) f 2αui (t )(rui − r̄u(t ))

We introduce the other adjustment termM which is as follows.

Mi j (t )=
∑

u∈U t
i j

ε(t )2 · f α
ui (t ) f

α
u j (t ) (8.2)

Mi (t )=
∑

u∈U t
i

ε(t )2 · f 2αui (t ) (8.3)

We can thus compute Pi j (t ) incrementally as follows.

Pi j (t )=ΔPi j (t )+e−2α[Pi j (t −1)−Li j (t −1)+Mi j (t −1)]
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We can have a similar incremental update relation for Li j (t ) as follows.

Li j (t )=
∑

u∈U t
i j

ε(t ) f α
ui (t ) f

α
u j (t )(rui + ru j −2r̄u(t ))

=ΔLi j (t )+e−2α
∑

u∈U t−1
i j

(ε(t −1)+Δε) f α
ui (t −1) f α

u j (t −1)(rui + ru j −2r̄u(t ))

=ΔLi j (t )+e−2α
∑

u∈U t−1
i j

(ε(t −1)+Δε) f α
ui (t −1) f α

u j (t −1)(rui + ru j −2r̄u(t −1)−2(ε(t −1)+Δε))

=ΔLi j (t )+e−2α
∑

u∈U t−1
i j

(ε(t −1)+Δε) f α
ui (t −1) f α

u j (t −1)(rui + ru j −2r̄u(t −1))

−2e−2α ∑
u∈U t−1

i j

(ε(t −1)+Δε)2 f α
ui (t −1) f α

u j (t −1)

Again, we ignore negligibly small higher order terms with the multiplicative factor Δε · f α
ui (t ) ·

f α
u j (t ) as each of the terms {Δε, f

α
ui (t ), f α

u j (t )}<< 1, and thereby get the following:

Li j (t )=
∑

u∈U t
i j

ε(t ) f α
ui (t ) f

α
u j (t )(rui + ru j −2r̄u(t ))

=ΔLi j (t )+e−2α
∑

u∈U t−1
i j

ε(t −1) f α
ui (t −1) f α

u j (t −1)(rui + ru j −2r̄u(t ))

=ΔLi j (t )+e−2α
∑

u∈U t−1
i j

ε(t −1) f α
ui (t −1) f α

u j (t −1)(rui + ru j −2r̄u(t −1)−2ε(t −1))

=ΔLi j (t )+e−2α
∑

u∈U t−1
i j

ε(t −1) f α
ui (t −1) f α

u j (t −1)(rui + ru j −2r̄u(t −1))

−2e−2α ∑
u∈U t−1

i j

(ε(t −1))2 f α
ui (t −1) f α

u j (t −1)

We get the recursive relation for Li j (t ) as follows.

Li j (t )=ΔLi j (t )+e−2α[Li j (t −1)−2Mi j (t −1)]

where the ΔLi j (t ) is as follows.

ΔLi j (t )=
∑

u∈ΔU t
i ∩U t−1

j

ε(t ) f α
u j (t )(rui + ru j −2r̄u(t ))+

∑
u∈U t−1

i ∩ΔU t
j

ε(t ) f α
ui (t )(rui + ru j −2r̄u(t ))

+ ∑
u∈ΔU t

i ∩ΔU t
j

ε(t )(rui + ru j −2r̄u(t ))

We can get a similar recursive relation forMi j (t ) as follows.

Mi j (t )=ΔMi j (t )+e−2αMi j (t −1)
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where the ΔMi j (t ) is as follows.

ΔMi j (t )=
∑

u∈ΔU t
i ∩U t−1

j

ε(t )2 f α
u j (t )+

∑
u∈U t−1

i ∩ΔU t
j

ε(t )2 f α
ui (t )+

∑
u∈ΔU t

i ∩ΔU t
j

ε(t )2

We observe that the terms to be incrementally updated in order to update Pi j (t), namely

ΔPi j (t ), ΔLi j (t ) and ΔMi j (t ), have a time complexity bounded byO(|ΔU t
i |+ |ΔU t

j |). Note that
if Pi j (t ) was updated non-incrementally then the time complexity would beO(|U t

i ∩U t
j |). With

each timestep, the number of new ratings for i (|ΔU t
i |) tends to be significantly smaller than

the total number of ratings for i (|U t
i |). The difference is huge even for the average case as |U t

i |
can be of the order of all users in the system.

We now provide the update relation forQi (t ).

Theorem 2 (Qi INCREMENTAL UPDATE). Given that ΔU t
i denotes the set of users who newly rated

i at timestep t , i.e. ΔU t
i =U t

i \U t−1
i , then the time complexity for updating Qi (t ) is O(|ΔU t

i |).

Proof. We again obtain a recursive relation betweenQi (t ) andQi (t −1) by decomposingQi (t )

as follows.

Qi (t )=
∑

u∈U t
i

( f α
ui (t )(rui − r̄u(t )))

2 = ∑
u∈ΔU t

i

(rui − r̄u(t ))
2+ ∑

u∈U t−1
i

( f α
ui (t )(rui − r̄u(t )))

2

=ΔQi (t )+e−2α
∑

u∈U t−1
i

( f α
ui (t −1)(rui − r̄u(t −1)−ε(t )))2

=ΔQi (t )+e−2α
∑

u∈U t−1
i

( f α
ui (t −1)(rui − r̄u(t −1)))2−2e−2α

∑
u∈U t−1

i

ε(t ) · f 2αui (t −1)(rui − r̄u(t −1))

+e−2α
∑

u∈U t−1
i

ε(t )2 · f 2αui (t −1)

=ΔQi (t )+e−2α
∑

u∈U t−1
i

( f α
ui (t −1)(rui − r̄u(t −1)))2

−2e−2α ∑
u∈U t−1

i

(ε(t −1)+Δε) · f 2αui (t −1)(rui − r̄u(t −1))+e−2α
∑

u∈U t−1
i

(ε(t −1)+Δε)2 · f 2αui (t −1)

Ignoring negligibly small higher order terms with multiplicative factor Δε · f 2α(t )ui as each of the

terms {Δε, f α
ui (t )}<< 1, we get the following:

Qi (t )=ΔQi (t )+e−2α
∑

u∈U t−1
i

( f α
ui (t −1)(rui − r̄u(t −1)))2

−2e−2α ∑
u∈U t−1

i

ε(t −1) · f 2αui (t −1)(rui − r̄u(t −1))+e−2α
∑

u∈U t−1
i

ε(t −1)2 · f 2αui (t −1)
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We rewrite this expression forQi (t ) in the following manner.

Qi (t )=ΔQi (t )+e−2α[Qi (t −1)−Li (t −1)+Mi (t −1)]

Interestingly, the terms required for incrementally updating Qi (t), namely ΔQi (t), ΔLi j (t)

and ΔMi j (t ), have a time complexity bounded byO(|ΔU t
i |). Note that the complexity for the

non-incremental update is againO(|U t
i |).

Hence, the final incremental relations for adjusted cosine similarity are as follows.

Pi j (t )=ΔPi j (t )+e−2α[Pi j (t −1)−Li j (t −1)+Mi j (t −1)] (8.4)

Qi (t )=ΔQi (t )+e−2α[Qi (t −1)−Li (t −1)+Mi (t −1)] (8.5)

Li j (t )=ΔLi j (t )+e−2α[Li j (t −1)−2Mi j (t −1)] (8.6)

Mi j (t )=ΔMi j (t )+e−2αMi j (t −1) (8.7)

The I-SIM values (Si j ) can thus be computed on-the-fly, leveraging the incrementally updated

Pi j (t) and Qi (t) values. We only need to store the P , L, M and Q values which requires

O(|I|2) space. Unlike classical non-incremental algorithms [157], we require extra storage for
the adjustment terms (L,M). Note that the non-incremental algorithm would also require

O(|I|2) space for storing the item-item similarities. Nonetheless, incremental as well as non-
incremental algorithms could benefit from sparse data structures for significantly reducing

the storage requirements.

Ignoring the higher order terms mentioned throughout the proofs does not pose a limitation

to I-SIM. Additional levels of adjustment terms (similar to L, M) could be employed to

overcome these approximations at the cost of increasing the storage requirements (the space

complexity remainsO(|I|2)). Nevertheless, as we also demonstrate empirically (§4.1.4), these
negligibly small higher order terms indeed do not impact our accuracy. Approximate similarity

computations have been successfully used to provide performance benefits, both in terms of

computation time and storage with negligible impact on the accuracy [30, 140, 7]. Therefore,

since there is no practical trade-off between accuracy and storage, we choose to employ only a

single level of adjustment terms.
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8.2 Appendix B: X-MAP

8.2.1 Correctness proofs

Theorem 4 (PRIVACY GUARANTEE). Given any item i , we denote the global sensitivity of X-

SIM by GS and the similarity between i and any arbitrary item j by X-SIM(i , j ). Our Private

Replacement Selection (PRS) mechanism, which outputs j as the replacement with a probability

proportional to exp( ε·X-SIM(i , j )2·GS ), ensures ε-differential privacy.

Proof. Consider two datasets D and D ′ which differ at one user, say u. We denote X-SIM

(i , j ) in dataset D as q(D, i , j ) and I (i ) as the set of items in target domain with quantified

X-SIM values. The global sensitivity (GS) is defined asmaxD,D ′ ||q(D, i , j )−q(D ′, i , j )||1. Our
PRS mechanism outputs an item j as a private replacement for i . Then, we get the following

equality:

Pr [PRS(i , I (i ),q(D, I (i )))= j ]

Pr [PRS(i , I (i ),q(D ′, I (i )))= j ]
= exp( ε·q(D,i , j )2·GS )∑

k∈I (i )
exp( ε·q(D,i ,k)2·GS )

÷ exp( ε·q(D
′,i , j )

2·GS )∑
k∈I (i )

exp( ε·q(D
′,i ,k)

2·GS )

= exp( ε·q(D,i , j )2·GS )

exp( ε·q(D
′,i , j )

2·GS )︸ ︷︷ ︸
P

·

∑
k∈I (i )

exp( ε·q(D
′,i ,k)

2·GS )

∑
k∈I (i )

exp( ε·q(D,i ,k)2·GS )︸ ︷︷ ︸
Q

P = exp(
ε · (q(D, i , j )−q(D ′, i , j ))

2 ·GS
)≤ exp(

ε ·GS

2 ·GS
)= exp(

ε

2
)

Q =

∑
k∈I (i )

exp( ε·q(D
′,i ,k)

2·GS )

∑
k∈I (i )

exp( ε·q(D,i ,k)2·GS )
≤

∑
k∈I (i )

exp( ε·(q(D,i ,k)+GS)
2·GS )

∑
k∈I (i )

exp( ε·q(D,i ,k)2·GS )
=

exp( ε2 ) ·
∑

k∈I (i )
exp( ε·q(D,i ,k)2·GS )

∑
k∈I (i )

exp( ε·q(D,i ,k)2·GS )
= exp(

ε

2
)

Therefore, we get the following inequality:

Pr [PRS(i , I (i ),q(D, I (i )))= j ]

Pr [PRS(i , I (i ),q(D ′, I (i )))= j ]
≤ exp(ε)

Hence, PRS provides ε-differential privacy.

Theorem 5 (SIMILARITY-BASED SENSITIVITY). Given any score function q :R→R and a dataset

D, we formulate the similarity-based sensitivity corresponding to a score function qi (I , j ) for a

pair of items i and j as:

SS(i , j )=max
{
maxux∈Ui j

( rxi × rx j

∥ r ′i ∥ × ∥ r ′j ∥
)
,maxux∈Ui j

( ri · r j

∥ r ′i ∥ × ∥ r ′j ∥
− ri · r j

∥ ri ∥ × ∥ r j ∥
)}
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Proof. We now provide the proof of the similarity-based sensitivity. First, we define similarity-

based sensitivity (SS) as follows.

SS(i , j )=max ∥ s(i , j )− s′(i , j ) ∥1

We then insert the similarity values for s(i , j ). A rating vector ri = [rai , ...,rxi ,ryi ] consists of all

the ratings for an item i . Note that here a rating rxi denotes the result after subtracting the

average rating of user x (r̄x) from the actual rating provide by x for an item i . Then, we get the

following equality:

s(i , j )− s′(i , j )= ri · r j

∥ ri ∥ × ∥ r j ∥
−

r ′i · r ′j
∥ r ′i ∥ × ∥ r ′j ∥

=
ri · r j× ∥ r ′i ∥ × ∥ r ′j ∥ −r ′i · r ′j× ∥ ri ∥ × ∥ r j ∥

∥ ri ∥ × ∥ r j ∥ × ∥ r ′i ∥ × ∥ r ′j ∥
= P

Q

We assume that the profile of a user x, inD , is not present inD ′. This user rated both i and j

inD . Note that if this user rated one of these items or none, then the similarity value does not

depend on the presence or absence of this user in the dataset. Hence, the following inequality

holds: ∥ r ′i ∥ × ∥ r ′j ∥≤∥ ri ∥ × ∥ r j ∥.

Based on our assumption, P= (ri · r j× ∥ r ′i ∥ × ∥ r ′j ∥ −r ′i · r ′j× ∥ ri ∥ × ∥ r j ∥) and Q=(∥ ri ∥ × ∥
r j ∥ × ∥ r ′i ∥ × ∥ r ′j ∥). Hence, Q ≥ 0 and depending on whether P ≥ 0 or P ≤ 0 we have two
conditions which are as follows.

If P ≥ 0, then we get the following inequality:

∥ s(i , j )− s′(i , j ) ∥1 =
ri · r j× ∥ r ′i ∥ × ∥ r ′j ∥ −r ′i · r ′j× ∥ ri ∥ × ∥ r j ∥

∥ ri ∥ × ∥ r j ∥ × ∥ r ′i ∥ × ∥ r ′j ∥

≤
(ri · r j − r ′i · r ′j )× ∥ ri ∥ × ∥ r j ∥
∥ ri ∥ × ∥ r j ∥ × ∥ r ′i ∥ × ∥ r ′j ∥

=
(ri · r j − r ′i · r ′j )
∥ r ′i ∥ × ∥ r ′j ∥

If P ≤ 0, then we get the following inequality:

∥ s(i , j )− s′(i , j ) ∥1 =
r ′i · r ′j× ∥ ri ∥ × ∥ r j ∥ −ri · r j× ∥ r ′i ∥ × ∥ r ′j ∥

∥ ri ∥ × ∥ r j ∥ × ∥ r ′i ∥ × ∥ r ′j ∥

= (ri · r j − rxi × rx j )× ∥ ri ∥ × ∥ r j ∥
∥ ri ∥ × ∥ r j ∥ × ∥ r ′i ∥ × ∥ r ′j ∥

−
ri · r j× ∥ r ′i ∥ × ∥ r ′j ∥

∥ ri ∥ × ∥ r j ∥ × ∥ r ′i ∥ × ∥ r ′j ∥

=
ri · r j × (∥ ri ∥ × ∥ r j ∥ − ∥ r ′i ∥ × ∥ r ′j ∥)

∥ ri ∥ × ∥ r j ∥ × ∥ r ′i ∥ × ∥ r ′j ∥
− rxi × rx j× ∥ ri ∥ × ∥ r j ∥
∥ ri ∥ × ∥ r j ∥ × ∥ r ′i ∥ × ∥ r ′j ∥
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≤
ri · r j × (∥ ri ∥ × ∥ r j ∥ − ∥ r ′i ∥ × ∥ r ′j ∥)

∥ ri ∥ × ∥ r j ∥ × ∥ r ′i ∥ × ∥ r ′j ∥
= ri · r j

∥ r ′i ∥ × ∥ r ′j ∥
− ri · r j

∥ ri ∥ × ∥ r j ∥

Hence, the similarity-based sensitivity is as follows:

SS(i , j )=max
{
maxux∈Ui j

( rxi × rx j

∥ r ′i ∥ × ∥ r ′j ∥
)
,maxux∈Ui j

( ri · r j

∥ r ′i ∥ × ∥ r ′j ∥
− ri · r j

∥ ri ∥ × ∥ r j ∥
)}

8.2.2 Additional experiments

A. User-based vs Item-based recommenders

Different practical deployment scenarios benefit from the proper choice of the recommenda-

tion algorithm. One requirement, which is crucial to any deployment scenario, is Scalability.

We highlight below two factors which affect scalability in such deployment scenarios.

• Item-based recommenders leverage item-item similarities whereas user-based recom-

menders leverage user-user similarities. For big e-commerce players (e.g., Amazon, e-Bay),

the number of items is significantly less than the number of users. Hence, such players

would prefer an item-based approach for scalability purpose. For new players, the number

of items would be significantly larger than the number of users. Such new players would

thus benefit from a user-based approach for scalability.

• Similarities between items tend not to vary much from day to day, or even week to week [5].

Over ranges of months, however, the similarities do vary due to various temporal factors

like item popularity, behavioral drift of users. In this sense, item-item similarities are much

less dynamic than user-user similarities and thus they require fewer updates.

We conducted an experiment, which we describe below, through which we demonstrate how

the computation time differs for these two algorithms in two deployment scenarios. In both

the scenarios, we consider the movies domain as the source domain and the books domain as

the target domain.

S1. In the first deployment scenario, we retain the original Amazon dataset. The movies

dataset consists of ratings from 473,764 users for 128,402 movies whereas the books dataset

consists of ratings from 725,846 users for 403,234 books. We observe that the number of users

is approximately 1.8× the number of books in the target domain. This deployment scenario
depicts the instance of big e-commerce players.

S2. In the second deployment scenario, we modify the dataset of the target domain (books).

The profiles of the overlapping users are retained unchanged whereas those of the non-

overlapping users in the target domain are sorted, in a descending order, by the number of
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corresponding ratings in the profiles (profile size). Finally, only the top 100,000 users are

retained in the target domain. This customized dataset consists of 104,535 users and 236,710

books in the target domain. We observe that the number of items is now nearly 2.27× the
number of users. This deployment scenario depicts the instance of new e-commerce players.

Approach S1 S2
Time (s) Time (s)

X-MAP-UB 886 870
X-MAP-IB 844 962
NX-MAP-UB 822 805
NX-MAP-IB 674 877

Table 8.1 – Comparison between user-based (UB) and item-based ( IB) recommenders in differ-
ent deployment scenarios with Amazon datasets. Bold denotes faster computation time relative
to the alternative.

We evaluate the recommendation quality in terms of Mean Absolute Error (MAE). We observe

the following behaviour from Table 8.1.

• The item-based version (IB) is computationally faster than the user-based alternative (UB)

in scenario S1 where the number of users is approximately 1.8× the number of books in
the target domain.

• The user-based version (UB) is computationally faster than the item-based alternative (IB)

in scenario S2 where the number of items is nearly 2.27× the number of users.

B. Comparison with a dimensionality reduction approach

We now compare X-MAP with a dimensionality reduction approach such as matrix factoriza-

tion. For this purpose, we choose Spark’s Alternating Least Squares (ALS) implementation

available with its MLLIB library, denoted here by MLLIB-ALS, and apply it over the combined

Amazon dataset (movies, books) of items and users while keeping the test set same as the one

used for evaluating X-MAP (mentioned in the paper). We optimally tune MLLIB-ALS with

varying parameters like the number of latent factors in the model (rank) or the regularization

parameter (λ) to obtain the best recommendation quality.

S:Movie, T:Book S:Book, T:Movie
NX-MAP 0.5332 0.5470
X-MAP 0.6616 0.6884

MLLIB-ALS 0.7527 0.8237

Table 8.2 – MAE comparison between NX-MAP, X-MAP andMLLIB-ALS on Amazon datasets.

Table 8.2 depicts the results of this experiment. We observe that MLLIB-ALS does not perform

so well in a heterogeneous recommendation scenario which could be partially attributed
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to the decreased density 1 of the combined Amazon dataset (movies and books), shown in

Table 8.3, as well as the different online behavior of the users in the two domains.

Books Movies Books+Movies

0.0204 % 0.0569 % 0.0147 %

Table 8.3 – Densities for two domains in the Amazon dataset.

1Rating density is defined as the fraction of collected ratings over all the possible ratings.
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