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Abstract
Learning transformation invariant representa-
tions of visual data is an important problem in
computer vision. Deep convolutional networks
have demonstrated remarkable results for image
and video classification tasks. However, they
have achieved only limited success in the classi-
fication of images that undergo geometric trans-
formations. In this work we present a novel
Transformation Invariant Graph-based Network
(TIGraNet), which learns graph-based features
that are inherently invariant to isometric transfor-
mations such as rotation and translation of input
images. In particular, images are represented as
signals on graphs, which permits to replace clas-
sical convolution and pooling layers in deep net-
works with graph spectral convolution and dy-
namic graph pooling layers that together con-
tribute to invariance to isometric transformation.
Our experiments show high performance on ro-
tated and translated images from the test set com-
pared to classical architectures that are very sen-
sitive to transformations in the data. The inherent
invariance properties of our framework provide
key advantages, such as increased resiliency to
data variability and sustained performance with
limited training sets.

1. Introduction
Deep convolutional networks (ConvNets) have achieved
impressive results for various computer vision tasks, such
as image classification (Krizhevsky et al., 2012) and seg-
mentation (Ronneberger et al., 2015). However, they still
suffer from the potentially high variability of data in high-
dimensional image spaces. In particular, ConvNets that are
trained to recognize an object from a given perspective or
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Figure 1. Illustrative transformation-invariant handwritten digit
classification task. Rotated test images, along with their clas-
sification label obtained from ConvNets (Conv) (Boureau et al.,
2010), Spatial-Transformer Network (STN) (Jaderberg et al.,
2015), and our method. (best seen in color)

camera viewpoint, will likely fail when the viewpoint is
changed or the image of the object is simply rotated. In
order to overcome this issue the most natural step is to
extend the training dataset with images of the same ob-
jects but seen from different perspectives. This however
increases the complexity of data collection and more im-
portantly leads to the growth of the training dataset when
the variability of the data is high.

Instead of simply augmenting the training set, which may
not always be feasible, one can try to solve the aforemen-
tioned problem by making the classification architecture in-
variant to transformations of the input signal as illustrated
in Fig. 1. In that perspective, we propose to represent input
images as signals on the grid graph instead of simple matri-
ces of pixel intensities. The benefits of this representation
is that graph signals do not carry a strict notion of orienta-
tion, while at the same time, signals on a grid graph stay in-
variant to translation. We exploit these properties to create
features that are invariant to isometric transformations and
we design new graph-based convolutional and pooling lay-
ers, which replace their counterparts used in the classical
deep learning settings. This permits preserving the trans-
formation equivariance of each intermediate feature repre-
sentation under both translation and rotation of the input
signals. Specifically, our convolutional layer relies on fil-
ters that are polynomials of the graph Laplacian for effec-
tive signal representation without computing eigendecom-
positions of the graph signals. We further introduce a new
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statistical layer that is placed right before the first fully-
connected layer of the network prior to the classification.
This layer is specific to our graph signal representation, and
in turn permits combining the rotation and translation in-
variance features along with the power of fully-connected
layers that are essential for solving the classification task.
We finally design a complete architecture for a deep neural
network called TIGraNet, which efficiently combines spec-
tral convolutional, dynamic pooling, statistical and fully-
connected layers to process images represented on grid
graphs. We train our network in order to learn isomet-
ric transformation invariant features. These features are
used in sample transformation-invariant image classifica-
tion tasks, where our solution outperforms the state-of-the-
art algorithms for handwritten digit recognition and classi-
fication of objects seen from different viewpoints.

In summary, we propose the following contributions:

• We design a new graph-based deep learning frame-
work that learns isometric invariant features;

• We propose a new sta tistical layer that leads to effec-
tive transformation-invariant classification of images
described by graph-based features;

• Through experiments, we show that our method cor-
rectly classifies rotated or translated images even if
such deformations are not present in the training data.

The remainder of the paper is organized as follows. In Sec-
tion 2 we describe the related work. Section 3 reviews el-
ements of graph signal processing, which are later used to
design graph filters. Our new graph-based architecture is
presented in details in Section 4. Finally, our experiments
and their analysis are presented in Section 5.

2. Related work
Most of the recent architectures (LeCun et al., 2001;
Krizhevsky et al., 2012) have been very successful in pro-
cessing natural images, but not necessarily in properly han-
dling geometric transformations in the data. We describe
below some of the recent attempts that have been proposed
to construct transformation-invariant architectures. We fur-
ther quickly review the recent works that extend deep learn-
ing data represented on graphs or networks.

2.1. Transformation-invariant deep learning

One intuitive way to make the classification architectures
more robust to isometric transformations is to augment the
training set with transformed data (e.g., (Dyk & Meng,
2012)), which however, increases both the training set and
training time. Alternatively, there have been works that
incorporate sort of data augmentation inside the network
learning framework. The authors in (Fasel & Gatica-Perez,
2006) construct deep neural networks that operate in paral-

lel on the original and transformed images simultaneously
with weight-shared convolutional filters. Then, the authors
in (Laptev et al., 2016) propose to use max-pooling to com-
bine the outputs of these networks. A different approach
was proposed in (Jaderberg et al., 2015), where the authors
introduce a new spatial transformer layer that deforms im-
ages according to a predefined transformation class. Then,
the work in (Marcos et al., 2016) suggests using rotated fil-
ter banks and a special max pooling operation to combine
their outcomes and improve invariance to transformations.
The authors in (Cohen & Welling, 2016) propose a general-
ization of the ConvNets and introduce equivariance to 90◦

rotations and flips. Finally, the authors in (Dieleman et al.,
2015) exploit rotation symmetry in the Convolutional Net-
work for the specific problem of galaxy morphology pre-
diction. This work has been extended in (Dieleman et al.,
2016) which introduces an additional layer that makes the
network to be partially invariant to rotations. All the above
methods, however, still need to be trained on a large dataset
of randomly rotated images in order to be rotation invariant
and achieve effective performance.

Contrary to the previous methods, we propose to directly
learn feature representations that are invariant to isometric
data transformations. With such features, our architecture
preserves all the advantages of deep networks, but addition-
ally provides invariance to isometric geometric transforma-
tions. The methods in (Oyallon & Mallat, 2015; Bruna &
Mallat, 2013; Worrall et al., 2016) are the closest in spirit
to ours. In order to be invariant to local transformation, the
works in (Oyallon & Mallat, 2015; Bruna & Mallat, 2013)
propose to replace the classical convolutional layers with
wavelets, which are stable to some deformations. The lat-
ter achieves high performance on texture classification task,
however it does not improve the performance of supervised
ConvNets on natural images, due to the fact that the final
feature representations are too rigid and unable to adapt to
a specific task. Further, (Mathieu et al., 2014; Rippel et al.,
2015) propose to use convolutional filters in Fourier do-
main to reduce complexity. The latter introduces spectral
pooling to truncate the representation in the frequency do-
main. Finally, a recent work (Worrall et al., 2016) proposes
a so called Harmonic Network, which uses specifically de-
signed complex valued filters to make feature representa-
tions equivariant to rotations. This method, however, still
requires the training dataset to contain examples of rotated
images to achieve its full potential. On the other hand, we
propose building features that are inherently invariant to
isometric transformations, which allows us to train more
compact networks and achieve state-of-the-art results.

2.2. Deep learning and graph signal processing

While there has been a lot of research efforts related to
the application of deep learning methods to traditional data
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like 1-D speech signals or 2-D images, it is only recently
that researchers have started to consider the analysis of
network or graph data with such architectures (Kipf &
Welling, 2016; Henaff et al., 2015; Duvenaud et al., 2015;
Jain et al., 2015). The work in (Bruna et al., 2014) has
been among the pioneering efforts in trying to bridge the
gap between graph-based learning and deep learning meth-
ods. The authors calculate the projection of graph signals
onto the space defined by the eigenvectors of the Lapla-
cian matrix of the input graph, which itself describes the
geometry of the data. It however requires an expensive cal-
culation of the graph eigendecomposition, which can be a
strong limitation for large graphs, as it requires O(N3) op-
erations with N being the number of nodes in the graph.
The authors in (Defferrard et al., 2016) later propose an al-
ternative to analyse network data, which is built on a vertex
domain feature representation and on fast spectral convo-
lutional filters. Both methods directly integrate the graph
features into a fully-connected layer similarly to classi-
cal ConvNets, which is however not directly amenable to
transformation-invariant image classification.

To the best of our knowledge, the current approaches to
deep learning on graphs do not provide transformation-
invariance in image classification. At the same time, the
methods that specifically target transformation invariance
in image datasets mostly rely on data augmentation, which
largely remains an art. We propose to bridge this gap and
present a novel method that uses the power of graph signal
processing to add translation and rotation invariance to the
image feature representation learned by deep networks.

3. Graph signal processing elements
We now briefly review some elements of graph signal pro-
cessing that are important in the construction of our novel
framework. We represent an input image as a signal y(vn)
on the nodes {vn} of the grid graph G. In more details,
G = {V, E , A} is an undirected, weighted and connected
graph, where V is a set of N vertices (i.e., the image pix-
els), E is a set of edges and A is a weighted adjacency ma-
trix. An edge e(vi, vj) that connects two nodes vi and vj
is associated with the weight aij = aji, which is usually
chosen to capture the distance between both vertices. The
edge weight is set to zero for pairs of nodes that are not
connected, and all the edge weights together build the ad-
jacency matrix A. Every vertex vn of G carries the lumi-
nance value of the corresponding image pixel. Altogether,
the valued vertices define a graph signal y(vn) : V → R.

Similarly to regular 1-D or 2-D signals, the graph signals
can be efficiently analysed via harmonic analysis and pro-
cessed in the spectral domain (Shuman et al., 2013). In that
respect, we first consider the normalized graph Laplacian

operator of the graph G, defined as

L = I −D−1/2AD−1/2,

where D is a diagonal degree matrix with elements di =∑N
n=0,n6=iAni. The Laplacian operator is a real symmet-

ric and positive semidefinite matrix, which has a set of
orthonormal eigenvectors and corresponding eigenvalues.
Let χ = [χ0, χ1, . . . , χN−1] denote these eigenvectors and
{0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1} denote the corresponding
eigenvalues with λN−1 = λmax ≤ 2 for the normalized
Laplacian L. The eigenvectors form a Fourier basis and the
eigenvalues carry a notion of frequencies as in the classi-
cal Fourier analysis. The Graph Fourier Transform ŷ(λi) at
frequency λi for signal y and respectively the inverse graph
Fourier transform for the vertex vn ∈ V are thus defined as:

ŷ(λi) =

N∑
n=1

y(vn)χ∗i (vn), (1)

and

y(vn) =

N−1∑
i=0

ŷ(λi)χi(vn), (2)

where the superscript ∗ denotes the complex conjugate.
Equipped with the above notion of Graph Fourier Trans-
form, we can denote the generalized convolution of two
graph signals y1 and y2 with help of the graph Laplacian
eigenvectors as

(y1 ∗ y2)(vn) =

N−1∑
i=0

ŷ1(λi)ŷ2(λi)χi(vn). (3)

By comparing the previous relations, we can see that the
convolution in the vertex domain is equivalent to the mul-
tiplication in the graph spectral domain. Graph spectral fil-
tering can further be defined as

ŷf (λi) = ŷ(λi)ĥ(λi), (4)

where ĥ(λi) is the spectral representation of the graph filter
h(vn) and ŷf (λi) is the Graph Fourier Transform of the
filtered signal yf . In a matrix form, the graph filter can be
denoted by H ∈ RN×N : H = χĤχT , where Ĥ is a
diagonal matrix constructed on the spectral representation
of the graph filter:

Ĥ = diag(ĥ(λ0), . . . , ĥ(λN−1)). (5)

The graph filtering process becomes yf = Hy, with the
vectors y and yf being the graph signal and its filtered ver-
sion in the vertex domain. Finally, we can define the gen-
eralized translation operator Tvn for a graph signal y as the
convolution of y with a delta function δvn

centered at vertex
vn (Thanou et al., 2014):

Tvny =
√
N(y ∗ δvn)

=
√
N

∑N−1
i=0 ŷ(λi)χ

∗
i (vn)χi.

(6)
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More details about the above graph signal processing oper-
ators can be found in (Shuman et al., 2013).

4. Graph-based convolutional network
We now present the overview of our new architecture,
which is illustrated in Fig. 2. The input to our system
can be characterized by a normalized Laplacian matrix
L computed on the grid graph G and the signal y0 =
(y0(v1), . . . , y0(vN )), where y0(vj) is the intensity of the
pixel j in the input image and N is the number of pixels
in the images. Our network eventually returns a class label
for each input signal.

In more details, our deep learning architecture consists
of an alternation of spectral convolution F l and dynamic
pooling P l layers. They are followed by a statistical layer
H and a sequence of fully-connected layers that precedes
a softmax operator that produces a categorical distribu-
tion over labels to classify the input data. Both the spec-
tral convolution and the dynamic pooling layers contain
Kl operators denoted by F l

i and P l
i , i = 1, . . . ,Kl, re-

spectively. Each F l
i is specifically designed to compute

transformation-invariant features on grid graphs. The dy-
namic pooling layer follows the same principles as the
classical ConvNet’s max-pooling operation but preserves
the graph structure in the signal representation. Finally,
the statistical layer H is a new layer designed specifically
to achieve invariance to isometric transformations on grid
graphs. It does not have any correspondent in the classical
ConvNets architectures. We discuss more thoroughly each
of these layers in the remainder of this section.

4.1. Spectral convolutional layer

Similarly to the convolutional layers in classical architec-
tures, the spectral convolutional layer l in our network
consists of Kl convolutional filters F l

i , as illustrated in
Fig. 3. However, each filter i operates in the graph spec-
tral domain. In order to avoid computing the graph eigen-
decomposition that is required to perform filtering through
Eq. (3), we choose to design our graph filters as smooth
polynomial filters of order M (Thanou et al., 2014):

ĥ(λl) =

M∑
m=0

αmλ
m
l . (7)

Following the notation of Eq. (5), each filter operator in the
spectral convolutional layer l can be written as

F l
i =

M∑
m=0

αl
i,mLm, (8)

where Lm denotes the Laplacian matrix of power m. The
polynomial coefficients {αl

i,m} have to be learned during

the training of the network, for each spectral convolutional
layer l. Each column of this N × N operator corresponds
to an instance of the graph filter centered at a different ver-
tex of the graph (Thanou et al., 2014). The support of each
graph filter is directly controlled by the degree M of the
polynomial kernel, as the filter takes values only on ver-
tices that are less than M-hop away from the filter cen-
ter. Larger values of M require more parameters but allow
training more complex filters. Therefore, M can be seen as
a counterpart of the filter’s size in the classical ConvNets.

The filtering operation then simply consists in multiplying
the graph signal by the transpose of the operator defined in
Eq. (8), namely

ỹli,k =
[
F l

i |N l−1
i

]T
ylk, (9)

where ylk and ỹli,k are the kth graph signals at the input
and respectively the output of the lth spectral convolu-
tional layer (see Fig. 3). In particular, y(1)k = y0 is the
input image for the first level filter, while at the next levels
of the network ylk is rather one of the feature maps out-
put by the lower layers. We finally use the notation A|N l

i

to represent an operator that preserves the columns of the
matrix A, which have an index in the set N l

i , and set all
the other columns to zero. This operator permits comput-
ing the filtering operations only on specific vertices of the
graphs. It is important to note that the spectral graph con-
volutional filter permits equivariance to isometric transfor-
mations, which is a key property for designing a classifier
that is invariant to rotation and translation.

Finally, the output of the lth spectral convolutional layer
is a set of Kl feature maps zli. Each ith feature map is
computed as a linear combination of the outputs of the cor-
responding polynomial filter as follows:

zli =

Kl−1∑
k=1

βl
k ỹ

l
i,k, (10)

where the set of signals ỹli,k are the outputs of the ith poly-
nomial filter applied on the Kl−1 input signals of the spec-
tral convolutional layer with Eq. (9). The vector of parame-
ters {βl

k}, for each spectral convolutional layer l is learned
during the training of the network. The operations in the
spectral convolutional layer are illustrated in Fig. 3. Lastly,
the complexity of spectral filtering can be computed based
on the fact that L and thus the filters are sparse matrices.
Then, the complexity is O(|EM |N) where |EM | is a maxi-
mum number of nonzero elements in the columns of F l

i .

4.2. Dynamic pooling layer

In classical ConvNets the goal of pooling layers is to sum-
marize the outputs of filters for each operator at the previ-
ous convolutional layer. Inspired by (Kalchbrenner et al.,
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Figure 2. TIGraNet architecture. The network is composed of an alternation of spectral convolution layers F l and dynamic pooling
layers P l, followed by a statistical layerH, multiple fully-connected layers (FC) and a softmax operator (SM). The input of the network
is an image that is represented as a signal y0 on the grid-graph with Laplacian matrix L. The output of the system is a label that
corresponds to the most likely class for the input sample.

Figure 3. Spectral convolutional layer F l in TIGraNet. The out-
puts of the previous layer l − 1 are fed to a set of filter operators
F l

i . The outputs of F l
i are then linearly combined to get the filter

maps zli that are further passed to the dynamic pooling layer.

2014) we introduce a novel layer that we refer to as dy-
namic pooling layer, which consists in preserving only the
most important features at each level of the network.

In more details, we perform a dynamic pooling operation,
which is essentially driven by the set of graph vertices of
interest Ωl. This set is initialised to include all the nodes of
graph, i.e., Ω1 = V . It is then successively refined along
the progression through the multiple layers of the network.
More particularly, for each dynamic pooling layer l, we se-
lect the Jl vertices that are part of Ωl−1 and that have the
highest values in zli. The indexes of these largest valued
vertices form a set of nodesN l

i . The union of these sets for
the different features maps zli form the new set Ωl, i.e.,

Ωl =

Kl⋃
i=1

N l
i . (11)

The sets Ωl drives the pooling operations at the next dy-
namic pooling layer P l+1. We note that, by construc-
tion, the different sets Ωl are embedded, namely we have
Ωl ⊇ Ωl+1, ∀l ∈ [1..L]. Fig. 4 illustrates the effect of the
pooling process through the different network levels.

The sets N l
i are used to control the filtering process at the

next layer. The spectral convolutional filters F l+1
i compute

the output of filters centred on the nodes in N l
i that are

selected by the dynamic pooling layer, and not necessarily
for all the nodes in the graph. The filtering operation is
given by Eq. (9).

Finally, we note that one of the major differences with the

Figure 4. Pooling process, with succession of dynamic pooling
layers with operators P l

i that each selects the vertices with maxi-
mum intensity according to Eq. (11).

classical max-pooling operator is that our dynamic pool-
ing layer is not limited to a small neighbourhood around
each node. Instead, it considers the set of nodes of interest
Ωl which is selected over all graph’s nodes. The dynamic
pooling operator P l is thus equivariant to the isometric
transformations R, similarly to the spectral convolutional
layers, which is a key property in building a transformation-
invariant classification architecture. The complexity of P l

is comparable with the classical pooling operator as the task
ofP l is equivalent to finding Jl highest statistics. Using the
selection algorithm (Knuth, 1998) we can reach the average
computational complexity of O(N).

4.3. Upper layers

After the series of alternating spectral convolutional and
dynamic pooling layers, we add output layers that compute
the label probability distributions for the input images. In-
stead of connecting directly a fully-connected layer as in
ConvNet architectures, we first insert a new statistical layer,
whose output is fed to fully-connected layers (see Fig. 2).

The main motivation for the statistical layer resides in our
objective of designing a transformation-invariant classifi-
cation architecture. If fully-connected layers are added di-
rectly on top of the last dynamic pooling layers, their neu-
rons would have to memorize large amounts of information
corresponding to the different positions and rotation of the
visual objects. Instead, we propose to insert a new statis-
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tical layer, which computes transformation-invariant statis-
tics of the input signal distributions.

In more details, the statistical layer estimates the distribu-
tion of values on the active nodes after the last pooling
layer. The inputs of the statistical layer j are denoted as
z̃i, which correspond to the outputs zj−1i of the last pool-
ing layer Pj−1 where the values on non-active nodes (i.e.,
the nodes in N l

i ) are set to zero. We then calculate mul-
tiscale statistics of these input features maps using Cheby-
shev polynomials of the graph Laplacian. These polynomi-
als have two important benefits. First, they permit to cap-
ture the relation between different neighbors of the graph
nodes. In particular, polynomials of order 1 consider direct
neighbors, polynomials of order 2 include second neigh-
bors and so on. Gathering all this information permits to ef-
ficiently discriminate different objects. As the statistics are
calculated from the entire feature map, the final feature rep-
resentation is independent of the actual signal transforma-
tion. Secondly, Chebyshev polynomials can be calculated
in an iterative manner, which make them readily amenable
to effective computation. (Shuman et al., 2011). In order
to construct these polynomials, we first shift the spectrum
of the Laplacian L to the interval [−1, 1], which is the orig-
inal support of Chebyshev polynomials. Equivalently, we
set L̃ = L − I .

As suggested in (Defferrard et al., 2016), for each input
feature map z̃i we iteratively construct a set of signals ti,k
using Chebyshev polynomials of order k, with k ≤ Kmax:

ti,k = 2L̃ti,k−1 − ti,k−2, (12)

with ti,0 = z̃i and ti,1 = L̃z̃i. We finally compute
a feature vector that gathers the first order statistics of
the magnitude of these signals, namely the mean µi,k

and variance σ2
i,k for each signal |ti,k|. This forms a

feature vector φi of 2Kmax + 2 elements, i.e., φi =
[µi,0, σ

2
i,0, . . . , µi,Kmax , σ

2
i,Kmax

]. We choose these partic-
ular statistics as they are prone to efficient gradient com-
putation, which is important during back propagation. Fur-
thermore, we note that such feature vectors are inherently
invariant to transformation such as translation or rotation.

The feature vectors φi’s are eventually sent to a series of
fully-connected layers similarly to classical ConvNet archi-
tectures. However, since our feature vectors are transfor-
mation invariant, the fully-connected layers will also ben-
efit from these properties. This is in opposition to their
counterparts in classical ConvNet systems, which need to
compute position-dependent parameters. The details about
fully-connected layer parameters are given in the Section 5.
The output of the fully-connected layers is then fed to a
softmax layer (Bishop, 2006), which finally returns the
probability distribution of a given input sample to belong
to a given set of classes.

5. Experiments
In this section we compare our network to the state-of-the-
art transformation-invariant classification algorithms.

5.1. Experimental settings

We run experiments with different numbers of layers and
parameters. For each architecture, the network is trained
using back-propagation with Adam (Kingma & Ba, 2014)
optimization. The exact formulas of the partial deriva-
tives and explanation about the initialization of the net-
work parameters are provided in the supplementary mate-
rial. Our architecture has been trained and tested on differ-
ent datasets, namely:

• MNIST-012. This is a small subset of the MNIST
dataset (LeCun & Cortes, 2010). It includes 500 train-
ing, 100 validation and 100 test images selected ran-
domly from the MNIST images with labels ‘0’, ‘1’
and ‘2’. This small dataset permits studying the be-
havior of our network in detail and to analyze the in-
fluence of each of the layers on the performance.

• Rotated and translated MNIST. To test the invari-
ance to rotation and translation of the objects in an im-
age we create MNIST-rot and MNIST-trans datasets
respectively. Both of these datasets contain 50k train-
ing, 3k validation and ∼9k test images. We use all
MNIST digits (LeCun & Cortes, 2010) except ‘9’ as
it is rotated version resembles ‘6’. In order to be able
to apply transformation to the digits, we resize the
MNIST-rot to the size 26 × 26 and MNIST-trans to
the 34× 34. The training and validation data of these
datasets contain images of digits without any trans-
formation. However, the testing set of MNIST-rot
contains randomly rotated digits by angles in range
[0◦, 360◦], while the testing set of MNIST-trans com-
prises randomly translated MNIST examples up to±6
pixels in both vertical and horizontal directions.

• ETH-80. The dataset (Leibe & Schiele, 2003) con-
tains images of 80 objects that belong to 8 classes.
Each object is represented by 41 images captured from
different viewpoints located on a hemisphere. The
dataset shows a real life example where isometric
transformation invariant features are useful for the ob-
ject classification. We resize the images to [50 × 50]
and randomly select 2300, 300 of them as the training,
validation sets and we use the rest of them for testing.

For all these datasets, we define G as a grid graph where
each node corresponds to a pixel location and is connected
with 8 its nearest neighbors with a weight that is equal to
1. The pixel luminance values finally define the signal y on
the graph G for each image.
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Method Architecture

Experiments on MNIST-012
ConvNet (Boureau et al., 2010) C[3]-P[2]-C[6]-P[2]-FC[50]-FC[30]-FC[10]
STN (Jaderberg et al., 2015) C[3]-ST[6]-C[6]-ST[6]-FC[50]-FC[30]-FC[10]
TIGraNet SC[3, 3]-DP[300]-SC[6, 3]-DP[100]-S[10]-FC[50]-FC[30]-FC[10]

Other experiments
ConvNet (Boureau et al., 2010) C[10]-P[2]-C[20]-P[2]-FC[500]-FC[300]-FC[100]
STN (Jaderberg et al., 2015) C[10]-ST[6]-C[20]-ST[6]-FC[500]-FC[300]-FC[100]
DeepScat (Oyallon & Mallat, 2015) W[2, 5]-PCA[20]
HarmNet (Worrall et al., 2016) HRC[1, 10]-HCN[10]-HRC[10, 10]-HRC[10, 20]-HCN[20]-HRC[20, 20]
TIGraNet SC[10, 4]-DP[600]-SC[20, 4]-DP[300]-S[12]-FC[500]-FC[300]-FC[100]

Table 1. Architectures used for the experiments on (Leibe & Schiele, 2003). We use the following notations to describe the architectures
of the networks. C[X1], P[X2], FC[X3] correspond to the convolutional, pooling and fully-connected layers respectively, with X1

being the number of 3 × 3 filters, X2 – the size of the max-pooling area and X3 – the number of hidden units. ST[X4] denotes the
spatial transform layer with X4 affine transformation parameters. W[O, J] and PCA[X5] denote the parameters of DeepScat network
with wavelet-based filters of order O and maximum scales J , with dimension of the affine PCA classifier X5. HRC[X6, X7] depicts the
harmonic cross correlation filter operating on the X7 neighborhood with X6 feature maps. HCN[X8] is the complex nonlinearity layer
of HarmNet with X8 parameters. Finally, SC[Kl, M ] is a spectral convolutional layer with Kl filters of degree M , DP[Jl] is a dynamic
pooling that retains Jl most important values. S[Kmax] is a statistical layer with Kmax the maximum order of Chebyshev polynomials.

5.2. Performance evaluation

Here, we compare TIGraNet to state-of-the art algorithms
for transformation-invariant image classification tasks, i.e.,
ConvNet (Boureau et al., 2010), Spatial Transformer Net-
work (STN) (Jaderberg et al., 2015), Deep Scattering
(DeepScat) (Oyallon & Mallat, 2015) and Harmonic Net-
works (HarmNet) (Worrall et al., 2016). Briefly, ConvNet
is a classical convolutional deep network that is invariant
to small image translations. STN compensates for image
transformations by learning the affine transformation ma-
trix. Further, DeepScat uses filters based on rich wavelet
representation to achieve transformation invariance, how-
ever, it does not contain any parameters for the convolu-
tional layers. Finally, HarmNet trains complex valued fil-
ters that are equivariant to signal rotations. For the sake of
fairness in our comparisons, we use versions of these archi-
tectures that have roughly the same number of parameters,
which means that each of the approaches learns features
with a comparable complexity. For the DeepScat we use
the default architecture. Further for the HarmNet we pre-
serve the default network structure, keeping the same num-
ber of complex harmonic filters, as the number of spectral
convolutional filters that we have in TIGraNet.

We first compare the performance of our algorithm to
the ones of ConvNet and STN for the small digit dataset
MNIST-012. The specific architectures used in this experi-
ments are given in Table 1. The results of this first experi-
ment are presented in Table. 2. We can see that if we train
the methods on the dataset that does not contain rotated im-
ages and test on the rotated images of digits, our approach
achieves a significant increase in performance (i.e., 86%),

Training set Validation set Rotated test set

Training set with data augmentation

ConvNet 99 94 78± 2.1
STN 100 97 93± 0.97

Training set without data augmentation

ConvNet 100 100 55± 5
STN 100 98 50± 5
TIGraNet 98 97 94 ± 0.42

Table 2. Classification accuracy of ConvNet, STN and TIGraNet
on MNIST-012 averaged over 10 runs.

MNIST-rot MNIST-trans

ConvNet 44.3 43.5
STN 44.5 67.1
TIGraNet 83.8 79.6

Table 3. Evaluation of the accuracy of the ConvNet, STN and
TIGraNet on the MNIST-rot and MNIST-trans datasets. All the
methods are trained on sets without transformed images.

due to its inherent transformation invariant characteristics.
We further run experiments where a simple augmentation
of the training set is implemented with randomly rotated
each image of digits. This permits increasing the perfor-
mance of all algorithms, as expected, possibly at the price
of more complex training. Still, due to the rotation invari-
ant nature of its features, TIGraNet is still able to achieve
higher classification accuracy than all its competitors.

We then run experiments on the MNIST-rot and MNIST-
trans datasets. Note that both of them do not contain any
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Figure 5. Network feature maps visualization. Each row shows
the feature maps of different digits after the first and the sec-
ond spectral convolutional layers. The misclassified images are
marked by red bounding boxes. (best seen in color)

STN (Jaderberg et al., 2015) 45.1
ConvNet (Boureau et al., 2010) 80.1
DeepScat (Oyallon & Mallat, 2015) 87.3
HarmNet (Worrall et al., 2016) 94.0
TIGraNet 95.1

Table 4. Classification accuracy of ConvNet, STN, DeepScat,
HarmNet and TIGraNet on the ETH-80 dataset.

isometric transformation in training and validation sets, but
the test set contains transformed images. For all the meth-
ods we have used the architectures defined in Table 1. Ta-
ble 3 shows that our algorithm significantly outperforms
the competitor methods on both datasets due to its transfor-
mation invariant features. The other architectures have only
limited capabilities with respect to such transformation as
rotation. Additionally, we run experiments for our MNIST-
rot with different types of data augmentation. We have tried
several settings, when input image is rotated by an angle
that is a multiple of X degrees, with X being 360, 90, 60, 30
and 15. As expected, the accuracy of ConvNets increases to
44.3%, 67.2%, 76.7%, 79.4%, 80.1% respectively with the
increasing amount of data augmentation. We observe simi-
lar dynamics for STN method and its accuracy matches our
approach for X = 15 degrees rotations.

To further analyze the performance of our network we il-
lustrate several sample feature maps for the different filters
of the first two spectral convolutional layers of TIGraNet
in Fig. 5, for the MNIST-rot and MNIST-trans datasets. We
can see a few examples of misclassification of our network;
for example, the algorithm predicts label ‘5’ for the digit
‘6’. This mostly happens due to the border artifacts: if
an isometric transformation shifts the digit too close to the
border, the neighborhood of some nodes may change. This
problem can be solved by increasing the image borders or
applying filters only to the central pixel locations.

Finally, we evaluate the performance of our algorithm in

more realistic settings where the objective is to classify im-
ages of objects that are captured from different viewpoints.
This task requires having a classifier that is invariant to iso-
metric transformations of the input signal. We therefore run
experiments on the ETH-80 dataset and compare the clas-
sification performance of TIGraNet to those of ConvNet,
STN, DeepScat and HarmNet. The architectures of the dif-
ferent methods are described in Table 1.

Table 4 shows the classification results in this experiment.
We can see that our approach outperforms the state-of-the-
art methods due to its transformation invariant features.
The closest performance is achieved by Harmonic Net-
works, since this architecture also learns equivariant fea-
tures. It is important to note that the ETH-80 dataset con-
tains less training examples than other publicly available
datasets that are commonly used for training of deep neural
networks. This likely results in decrease of accuracy for
such methods as ConvNet and STN. On the contrary, our
method is able to achieve good accuracy even with small
amounts of training data, due to its inherent invariance to
isometric transformations.

Overall, all the above experiments confirm the benefit
of our transformation invariant classification architecture,
which learns features that are invariant to transformation
by construction. Classification performance improves with
these features, such that the algorithm reaches sustained
performance even if the training set is relatively small, or
does not contain similar transformed images as the test set.
These are very important advantages in practice.

6. Conclusion
In this paper we present a new transformation invariant
classification architecture, which combines the power of
deep networks and graph signal processing, which allows
developing filters that are equivariant to translation and ro-
tation. A novel statistical layer further renders our full
network invariant to the isometric transformations. This
permits outperforming state-of-the-art algorithms on var-
ious illustrative benchmarks. Having inherently invariant
to transformation features gives our network the ability to
learn well from a few training examples and to generalize
to unseen transformations. This confirms its high potential
in practical settings where the training sets are limited but
where the data is expected to present high variability.
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