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Abstract
The current energetic transition planed by the European commission targets to reduce the

greenhouse gas emission level to 80% below 1990 at the time horizon of 2050. Electric energy is

therefore encouraged as main driving force, which in fact promotes the development of renew-

able energy sources, such as photovoltaic and wind energy, due to their large and imminent

potential. The growing contribution of these energy sources on the power distribution and

transmission system can jeopardize the stability of the electric grid due to their intermittent

nature, which are strongly correlated to the weather conditions and impact therefore randomly

the balance of the electric consumption and production. In this context, hydropower plays in

important role and will increasingly do so, on one hand, to contribute to renewable energy

production and, on the other hand, to preserve the grid stability through the provision of

further advanced system services to mitigate power fluctuations.

The overarching objective of this research work is, as a result, the enhancement of hydropower

plant value by extending the operating range of the most worldwide and powerful generating

units: the Francis turbine, while improving their long-term availability. Off-design operating

conditions of Francis turbines are, however, hindered by large pressure fluctuations, which

causes risks of operating instability, and, fatigue and resonance of the mechanical structures.

These pressure fluctuations are induced by the cavitation vortex rope, which develops as a

single helical precessing vortex inside the turbine draft tube at part load regime. The control

of this part load vortex rope is therefore addressed in the present work using optimal fluid flow

control technique, based on the hydrodynamic instability properties of draft tube flow field.

The control strategy adopted is first developed on an academic benchmark flow, the spiral

vortex breakdown to assess the feasibility and the validity of the approach. The stabilization of

the flow is targeted by reducing the most unstable eigenvalue growth rate exhibited by global

stability analysis. Stability analysis distinguishes two cases: base flow stability analysis, which

correctly predicts the exponential growth of disturbances close to the instability threshold and

mean flow stability analysis, which correctly predicts the frequency of the nonlinear dynamical

system further away from the threshold. This fact is confirmed for the case of the spiral vortex

breakdown and the stabilization of the eigenvalue growth rate of the mean flow is successfully

achieved. This result emphasizes the physical significance and practical usefulness of mean

flow stability analysis and related optimal control strategies.

Nonlinear interactions of purely hydrodynamic instabilities are also investigated in this re-
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Abstract

search work by direct numerical flow simulations of the spiral vortex breakdown for a fixed

swirl number S = 1.095. A Ruelle-Takens-Newhouse scenario is identified and leads to the

onset of chaos as the Reynolds number increases to Re = 220. The mechanism leading to this

route to chaos is supported by studying the emergence of self-sustained instabilities in this

flow, which is provided by global stability analysis.

The transposition of the idealized uncluttered theoretical framework of fundamental research

at low Reynolds number Re =O(102) is then accomplished to include the inherent complex-

ity of industrial design in our approach, embedding in particular turbulence modeling to

reach high Reynolds number flows around Re =O(106). Global stability analysis of the mean

turbulent flow of the Francis turbines draft tube flow is performed including turbulent eddy

viscosity and interprets the part load vortex rope as an inviscid global unstable eigenmode.

In close resemblance to spiral vortex breakdown, a single-helix self-sustained disturbance

develops around the time-averaged flow field and growths in time to finally form the vortex

rope. The frequency and the structure of this unstable linear disturbance are found in good

agreement with respect to the 3-D numerical flow simulations.

The identification of the part load vortex rope as a self-sustained instability has allowed us to

investigate the origin of the synchronous pressure wave in elbow draft tubes. An asymptotic

expansion around the mean turbulent flow, constituted by a domain perturbation method

and a global stability analysis, shows that the mode of the part load vortex rope and the mode

of the wall disturbance interact and produce an axisymmetric pulsating force at the next order

composed of their intercrossed Reynolds stresses, exciting therefore the synchronous wave at

the frequency of the vortex rope.

Based on the hydrodynamic instability properties of the part load vortex rope, the predictive

control of this vortex is performed by targeting the most unstable eigenvalue growth rate

of the draft tube mean turbulent flow. An optimal force distribution is determined, which

successfully quenches the vortex rope and sketches the design of a realistic control appendage.

This result brings a promising solution to control the part load vortex rope and to increase the

operation flexibility of Francis turbines.

This research work, based on the control and the study of self-sustained instabilities, con-

tributes to explaining fundamental issues in hydraulic turbomachines and the transition to

turbulence in open swirling flows.

Key words: Francis turbines, Chaos, Part load vortex rope, Pressure fluctuation, Optimal fluid

flow control, Spiral vortex breakdown, Hydrodynamic instability, Turbulent swirling flow,

Nonlinear dynamics
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Résumé
L’actuelle transition énergétique planifiée par la commission Européenne a pour objectif

de réduire le niveau d’émission de gaz à effet de serre à un taux de 80% au-dessous du ni-

veau de 1990, d’ici à l’année 2050. L’énergie électrique est ainsi encouragée comme force

motrice principale, qui de ce fait promeut le développement des énergies renouvelables, telles

que l’énergie photovoltaique et éolienne en raison de leurs forts potentiels disponible. La

contribution croissante de ces énergies dans le système de distribution et de transmission de

puissance peut compromettre la stabilité du réseau électrique à cause de leurs intermittences,

qui sont fortement corrélées aux conditions météorologiques et impactent ainsi aléatoirement

l’équilibre entre la consommation électrique et la production électrique. Dans ce contexte, l’hy-

droélectricité joue un rôle prépondérant, en contribuant d’une part à la production d’énergie

renouvelable et en préservant d’autre part la stabilité du réseau, maintenue par des systèmes

de contrôle avancé atténuants les fluctuations de puissances électriques.

L’objectif final de ce travail de recherche est d’améliorer la contribution des centrales hy-

droélectriques en augmentant la plage de fonctionnement de la turbine la plus répandue

au monde et la plus puissante : la turbine Francis, tout en garantissant la longévité de ces

centrales. Les turbines Francis opérant hors conditions nominales sont néanmoins sujettes à

de fortes fluctuations de pression qui induisent des risques d’instabilité de fonctionnement

ainsi que de résonance et fatigue de la structure mécanique. Ces fluctuations de pression sont

principalement produites par la torche de cavitation qui, à charge partielle, est caractérisée

par un tourbillon à simple hélice ayant un mouvement de précession dans le diffuseur de la

turbine. Le contrôle de cette torche de charge partielle est ainsi étudié dans le présent travail

en utilisant des techniques issues du contrôle optimal des écoulements fluides et basées sur

les propriétés d’instabilités hydrodynamiques du champ de vitesse dans l’aspirateur de la

turbine.

La stratégie de contrôle adoptée est premièrement développée sur un écoulement académique

de référence, soit l’éclatement tourbillonnaire spiralé, pour évaluer la faisabilité et la validité

de l’approche. La stabilisation de cet écoulement est recherchée en réduisant le taux de

croissance de la valeur propre la plus instable determinée par une analyse de stabilité globale.

L’analyse de stabilité distingue deux cas : celui de la stabilité autour de l’écoulement de base

qui prédit correctement la croissance exponentielle de perturbations proche du seuil de cette

instabilité, et celui de la stabilité autour de l’écoulement moyen qui predit correctement la

fréquence de la dynamique du système non-linéaire plus loin de son seuil. Ce fait est vérifié
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Résumé

dans le cas de l’éclatement tourbillonnaire spiralé où la stabilisation du taux de croissance

de la valeur propre originaire de l’écoulement moyen est atteinte avec succès. Ce résultat

souligne la signification physique et l’utilité pratique du critère utilisé, à savoir celui du taux

de croissance de la valeur propre issue de l’écoulement moyen, et de la stratégie de contrôle

associée.

Les interactions non-linéaires d’instabilités purement hydrodynamiques sont aussi étudiées

dans ce travail de recherche par la simulation directe des écoulements de l’éclatement tour-

billonnaire spiralé à un nombre de swirl fixé à S = 1.095. Un scénario de Ruelle-Takens-

Newhouse est identifié et met en évidence l’apparition du chaos lorsque le nombre de Rey-

nolds croît jusqu’à la valeur de Re = 220. Le mécanisme conduisant à ce chaos est confirmé

par l’étude de l’émergence d’instabilités auto-entretenues dans cet écoulement qui est fourni

par l’analyse de stabilité globale.

La transposition du cadre théorique idéalisé et épuré de la recherche fondamentale à bas

nombre de Reynolds Re =O(102) est ensuite accomplie dans notre approche pour inclure la

complexité intrinsèque des configurations industrielles, en intégrant en particulier la modéli-

sation de la turbulence pour atteindre des écoulements à haut nombre de Reynolds autour de

Re =O(106). L’analyse de stabilité globale de l’écoulement turbulent dans le diffuseur de la

turbine Francis moyenné en temps est réalisée en incluant la viscosité turbulente des tour-

billons et interprète la torche à charge partielle comme un mode propre globalement instable.

De manière similaire à l’éclatement tourbillonnaire spiralé, l’instabilité auto-entretenue à une

seule hélice se développe autour du champ de vitesse moyenné en temps et évolue pour fina-

lement former la torche. La valeur de la fréquence et la structure de cette perturbation linéaire

instable se trouvent en bon accord avec les simulations numériques 3-D des écoulements.

L’identification de la torche à charge partielle comme une source d’instabilité auto-entretenue

nous a permis d’investiguer l’origine de l’onde de pression synchrone dans les aspirateurs cou-

dés. Un développement asymptotique autour de l’écoulement turbulent moyenné en temps,

constitué d’une méthode de perturbation de domaine et d’une analyse de stabilité globale,

montre l’interaction du mode de la torche à charge partielle et de celui de la perturbation de la

paroi produisant une force pulsante axisymétrique à l’ordre suivant. Cette force est composée

de la contraintes de Reynolds entrecroisées de ces modes, excitant ainsi l’onde synchrone à la

fréquence de la torche.

Par la suite, le contrôle prédictif de ce tourbillon, basé sur les propriétés des instabilités

hydrodynamiques de la torche à charge partielle, est réalisé en ciblant le taux de croissance

de la valeur propre la plus instable provenant de l’écoulement turbulent moyenné en temps.

Cette méthode a permis de déterminer la force distribuée optimale qui supprime la torche

et dessine le design d’un réel appendice de contrôle. Ce résultat apporte la solution la plus

favorable pour contrôler la torche de charge partielle et aussi pour augmenter la flexibilité

d’opération des turbines Francis.

Ce travail de recherche, basé sur le contrôle et l’étude des instabilités auto-entretenues contri-
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bue à l’explication des problèmes fondamentaux des machines hydrauliques et de la transition

à la turbulence des écoulements tournants dans un domaine semi-infini.

Mots clefs : Turbines Francis, chaos, torche à charge partielle, fluctuation de pression, control

optimal des écoulements fluides, éclatement tourbillonnaire spiralé, instabilité hydrodyna-

mique, écoulement tournant turbulent, dynamique non-linéaire.
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1 Introduction

In 2050, the European commission plans to achieve actual energetic transition, which con-

tributes in meeting the climate change challenges by moving away from the fossil fuels and by

developing a competitive low-carbon economy. This transition edited as a road-map since

2009, has almost reach the first objectives established for 2020, known as the "20-20-20" targets

enacted in the climate and energy package. These objectives plans:

• A 20% reduction in EU greenhouse gas emissions from 1990 levels

• Raising the share of EU energy consumption produced from renewable resources to

20%

• A 20% improvement in the EU’s energy efficiency.

Future aims according to this road-map, are to target 40% reduction emissions in 2030, 60% in

2040 and finally the EU greenhouse gas emissions should be cut to 80% at least below 1990

levels at the time horizon of 2050. The action plan of these ambitious objectives are supported

by two main strategies, first, the use of energy from renewable sources is promoted, and

second, a broad deployment of energy efficiency initiatives and technologies in each economy

branch, i.e. power generation and distribution, buildings, industry, agriculture and transport,

are encouraged.

In this context, renewable energies are rising up by developing their power capacity since

2005 in Europe. This increase is mainly attributed to the photovoltaic and wind energy

sources, which represents 11% and 16.7% in 2016 of the installed capacity instead of 0.3%

and 6%, respectively in 2005. This impressive growth is made available by the technology

development and the large potential of implementation sites of these energies compare to

other renewable energies such as large hydropower, which has 120GW installed capacity in

2005 compare to 138GW in 2016 in Europe. However, to meet the 2050 objectives, an increase

of hydroelectricity production is also encouraged by developing the small hydroelectricity,

run-of-river hydroelectricity, the installation of new reservoirs and the enhancement of the
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Chapter 1. Introduction

Figure 1.1 – Reduce scale FLINDT Francis turbine (a) and section cut (b).

actual reservoir capacity by removing sediment of the lake bed and increasing the height of

the dams. The current trend in renewable energies will therefore continue, as expected, to

reach the energy and climate objectives targeted by the European policies. While the path

toward a competitive low-carbon economy seems realistic, the growing contribution from

the wind and photovoltaic energy on the power distribution and transmission system can

jeopardize the stability of the electric grid due to their short-time intermittent nature, which

are strongly correlated to the weather conditions and impact therefore the balance of the

electric consumption and production randomly.

The new power apportionment of energy sources needs first a sufficient base load production,

acting as a large inertial mass to avoid voltage drop of the grid and second powerful, flexible

and reactive systems to deal with the future massive intermittent renewable power production.

The run-of-river hydroelectricity delivers a constant production, which accounts for the grid

base load as the nuclear power plant production and becomes even more important due to

the insecure future of the nuclear power, in sight of the recent catastrophe of Fukushima. The

large hydroelectric turbines match the latter system characteristics which are indeed currently

used to regulate the grid. Further improvements are, however, needed to continue to support

the growth of intermittent renewable energies. They are provided by the electric and hydraulic
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Figure 1.2 – Francis turbine runner geometry as a function a the specific speed ν (Häckert [1]).

machine of these generating units with the development of variable speed generators and the

extension of the hydraulic operating range. Therefore, the grid stability will be preserved by

coupling the power production of high efficiency turbines to that of extremely flexible turbines

in operating conditions, without forgetting pumped storage capacity, which can increase the

water driving force by refiling reservoirs.

In the present manuscript, the increase of operation flexibility of the most worldwide and

powerful generating units is considered i.e. Francis turbines, see fig 1.1, which represent

around 60% of the actual installed capacity. Francis turbines easily modulate power gen-

eration by changing the hydraulic torque of the runner, which is prescribed by the runner

blade pressure distribution and therefore controlled by the incoming flow incidence. Fran-

cis turbines are equipped with pivoting guide vanes, which are the unique regulator of the

turbine and control the discharge flowing through the turbine by opening or closing them

(GV O = guide vane opening) and define the flow incidence on the runner blades. In contrast,

the head of the turbine is almost constant for existing installations, which is imposed by

the topography of the construction site and only varies with the seasons due to the water

level of the headwater reservoir. This head defines the specific energy En available for the

turbine, which is a prerequisite to design the runner. Once the rated discharge Qn and the

angular frequency of the generator ωn is known, the specific speed of the turbine can be

computed: ν=ωn · (Qn/π)1/2/(2En)3/4. This dimensionless number defines the geometrical

characteristics of the runner design, see fig. 1.2. In a second step, this design is improved using

shape optimization to achieve the highest efficiency η, around 95%, at the nominal conditions,

therefore called best efficiency point (BEP). The effective efficiency of the turbine is at the end

carried out by experimental measurements, which leads to the typical efficiency hillchart (see

fig. 1.3a). This diagram displays the efficiency as a function of the operating conditions, it

means the flow coefficient φ=Q/(πωnR3) (discharge), the energy coefficient ψ= 2E/(ω2
nR2)

(head) and the guide vane opening (GV O). As the implementation sites of hydraulic turbines

are always different, each runner design is unique and leads to an unique efficiency hillchart.

While operation at the best efficiency point (BEP) is favored to monetize the machine, off-

design operating conditions within a small range around the nominal discharge are acceptable

to mitigate the power grid fluctuations. Further extension is however prohibited due to hazards

3
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Figure 1.3 – Efficiency hillchart η of a Francis turbine as a function of the energy coefficient ψ,
the flow coefficient φ and the guide vane opening GV O (a) and typipcal cavitation regime (b),
see Franck et al. [2].

risks induced by operating instability and fatigue, and resonance of the mechanical structures

in response to the appearance of a vortex flow in the draft tube of the turbine, which produces

large pressure fluctuations. Figure 1.3(b) illustrates these vortical structures. As mentionned,

when the guide vane opening (GV O) is controlled in a real turbine, which has an equivalent

representation in this diagram by moving along a horizontal line centered on the best efficiency

point, the vortex rope free region (labeled 4) is left to either the part load vortex rope (labeled

5) or the full load vortex rope (labeled 6 in fig. 1.3). This figure 1.3 represents also the others

typical cavitation regimes, which also bound the vortex free zone along the energy coefficient

direction by inlet edge suction side cavitation and outlet edge suction side bubble cavitation.

These vortex ropes appear with the residual swirling flow at the runner outlet. Such operation

variations are better visualized using the flow velocity diagram, see fig. 1.4. This diagram is

based on the velocity composition law that allows one to transfer the velocity vector of fluid
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Figure 1.4 – Inlet and outlet velocity triangle relation of a runner at the best efficiency point
(BEP), at part load operating condition and full load operating condition and its assocaited
vortex rope.

particles from the stator reference frame to the rotor reference frame and vice-versa. In the

hydraulic turbomachine context, the absolute velocity vector �C in the stationary reference

frame is given by the guide vane opening α and the velocity of the rotating reference frame

is imposed by the runner rotation �U = R�ω. At the outlet of the runner the velocity vector is

prescribed by the blade angle β. Since we consider incompressible fluid flow, the meridional

component of the absolute velocity is obtained by dividing the discharge by the area at the

runner inlet or outlet and the velocity triangle is completed using the guide vane angle α and

the blade angle β. The velocity diagram results in the absolute velocity vector at the runner

outlet, which give access to the flow direction in the draft tube. At the best efficiency point, the

hydraulic losses are minimized and therefore the runner design should drive an axial flow in

the draft tube. In contrast, at off-design operating conditions, the residual swirling flow leads

to a vortex core, see fig. 1.4. More precisely, at full load regime, it means at larger discharge

than the BEP, the pulsating vortex rope, which spins in the opposite direction of the runner
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rotation, is observed, or at part load regime i.e. at lower discharge than the BEP, the precessing

helical vortex rope, which spins temporally in the same direction of the runner rotation, is

observed. The part load vortex rope is characterized by a coherent structure and a periodic

frequency around 0.2 to 0.4 times the runner frequency Nishi et al. [11]. The dynamics of

these vortical structures is still investigated nowadays using experimental measurements such

as pressure sensor, Laser Doppler Velocimetry (LDV) and two-phase flow Particule Image

Velocimetry (PIV), see Nishi et al. [12], Nishi et al [13], Nishi & Liu [14], Avellan [15], Arpe &

Avellan [8], Iliescu et al. [16] and Favrel et al. [17] among others. Numerical flow simulation

is also widely used to design turbines and investigate the flow distribution, see Ruprecht et

al. [18], Mauri et al. [19], Paik et al. [20], Buntić et al. [21], Wang & Zhou [22], Ciocan et al. [9],

Trivedi et al. [23] and Brammer et al. [24] among others.

As mentioned earlier, the vortex rope causes the onset of large pressure fluctuations at off-

design operating conditions. The increase of operation flexibility of Francis turbines therefore

call for advanced fluid flow control techniques to mitigate the pressure fluctuations at these

operating conditions. Passive strategies were investigated such as stabilizer fins [25] or J-

groove (Kurokawa et al .[26]) to decrease the residual swirl of the draft tube flow. A different

blade design with shaped outlet was also studied by Brekke [27] to correcting the swirling flow

at the runner outlet. Mitigation of the recirculation zone close to the runner was also attempt

by using appendage at the tip of the runner cone (Qian et al. [28]). Other passive strategies,

which do not require a modification of the geometry were investigated, such as constant wall

blowing. A jet flow acting at the center line of the draft tube and issuing from the crown tip of

the runner has successfully mitigated the pressure fluctuations over a large operating range

by controlling the jet velocity around 10% to 12% of the turbine discharge (Susan-Resiga et

al. [29], Zhang et al. [30] and Foroutan & Yavuzkurt [31]). Active feedback control were also

investigated to mitigate the first harmonic of the part load vortex rope by injecting mass flow

at the end of the draft tube cone (Blommaert et al. [32]). Despite the large number of control

techniques which have been tested over the years, the best control strategy still needs to be

assessed. From this perspective we therefore use an optimization technique, following the

optimal control theory, to compute an optimal volume force to control the part load vortex

rope.

Cavitation is usually encountered in Francis turbines, see fig. 1.3. This phase change occurs

when the local pressure of the water is below the vapor pressure. Low pressure zone such as

vortices or blade suction sides are, therefore, more sensitive to cavitation inception. The vapor

volume fraction is highly correlated to the reference pressure of the water phase, which in our

case is a function of the height from the tail-water level or atmospheric pressure to the turbine

setting level. This characteristic is attributed to the Thoma cavitation dimensionless number

σ= N PSE/E (Net Positive Suction Energy divided by the specific energy of the turbine), where

a low value of this number indicates a high risk of cavitation development.

Not only can cavitation induce erosion, it can also play the role of catalyst for the synchronous

pressure surge effect. This critical phenomenon appears when the synchronous pressure
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Figure 1.5 – Flow oscillator example, the Von-Karman vortex street (a) and flow amplifier
example, jet flow (b), see Van Dyke [3].

fluctuations excites the natural frequency of the piping system. This frequency matching

is enabled by the satisfaction of two conditions, the natural frequency of the piping system

and the local wave speed are reduced as the cavitation increases inside the draft tube of the

turbine (Landry et al. [33]), and second, the part load vortex rope induces a planar wave or a

synchronous wave, which acts as an excitation source (Nicolet [34], Alligné et al. [35], Favrel

et al. [17] and Landry et al. [36]). This planar wave can be identified by an azimuthal Fourier

serie decomposition in the circular section of the draft tube, the convective wave represents

therefore the non-axisymmetric coefficients of the part load vortex rope and the synchronous

wave represents the temporal azimuthal-averaged variation of the state variable (Nishi et

al. [12]). In this context, the characterization of the eigenfrequency of the piping system is

obtained by 1-D hydroacoustic model including elastic pipe developed by Nicolet [34], based

in the method of the transfer matrices (Zielke & Hack [37]). The origin and the amplitude of

the synchronous pressure remains however poorly understood except the fact that it appears

in elbow draft tubes (Fanelli [38] and Nishi & Liu [14]). In the present research work, the origin

of the synchronous pressure wave is investigated.

The turbine fluid flow can belongs to the class of open flows characterized by fluid particles

continuously entering and leaving the experimental domain, in contrast to wall enclosed flow.

The periodic motion of the part load vortex rope is an archetype shared by many other open

fluid flow examples: boundary layers, mixing layers, wakes, jets and Pipe flows, among many

others. With respect to a bifurcation parameter, which can be the Reynolds number or the

swirl number (associated to the discharge in Francis turbines S =∫R
0 ρCmCur 2dr /

∫R
0 ρC 2

mr dr

Gupta [39]), the flow, which is initially stationary at low Reynolds number or at the BEP,

suddenly changes its topology as the Reynolds number or swirl number increases. This

change or bifurcation takes its physical meaning by studying the development of intrinsic

perturbation of the flow, i.e modal analysis and non-modal stability analysis. In real flows, fluid

particles entering an experimental domain are always submitted to infinitesimal stochastic

fluctuations, which in certain case can develop, supported by an amplification mechanism,

to modify the flow. These mechanisms are illustrated in fig. 1.5 with two examples, the

cylinder wake flow and the jet flow. The former case is defined as a flow oscillator, in which

a self-sustained instability emerges and induces an intrinsic oscillating dynamics, the von
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Figure 1.6 – Space-time evolution of a disturbance located close to X = 0 at time t = 0, from a
base state with positive advection. (a) stable base state, (b) convectively unstable base state,
(c) absolutely unstable base state (see Charru [4]).

Karman vortex street. The latter case is defined as a flow amplifier, in which a strong sensitivity

to external disturbance is observed. If harmonic forcing is applied to these systems, an

oscillator will typically lead to nonlinear interactions between the forcing and its natural

frequency, while an amplifier will adopt the frequency imposed by the harmonic forcing with

an amplified response. This amplification mechanism is due to the non-normality of the

linearized evolution operator, in contrast to the development of an unstable global eigenmode

of an oscillator. The non-normality corresponds to the non-orthogonal basis formed by the

eigenvector space of the linearized evolution operator, see Schmid [40] and Chomaz [41].

Hence, non-normality can also produce large transient growth (Trefethen et al. [42]) due to

the superposition of the eigenvectors, which described linear evolution of perturbations.

The dynamical analysis of disturbance evolution can be computed by two approaches, the

local linear stability analysis or the global linear stability analysis. Both methods solve an

eigenvalue problem linearized around a base state. The local framework is suitable for weakly

nonparallel flows, which assume slow variation along the streamwise direction of the base state.

The instability properties of the flow is therefore built as a superposition of instability waves of

each station location. Locally the response of the system can exhibit three different behaviors.

The flow is either linearly stable when all disturbances decay to zero as time tends to infinite, or

the flow is linearly unstable and wavy perturbations in space grow exponentially in time. Two

different scenarii are distinguished in the second case, the flow is either convectively unstable

or absolutely unstable leading to weakly non-parallel interpretation of the differentiation

of amplifier flows or oscillator flows, see fig. 1.6. Instead of considering only the temporal

stability (perturbation of the form c(R)exp(i (kz−ωt )) with the axial wavenumber k ∈R and the

eigenvalue ω ∈C) that is the case for linear stable or unstable flows, the convective/absolute

properties are determined by assessing a spatio-temporal stability analysis, which consider
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Figure 1.7 – Stability analysis performed by Barkley [5] around the base and mean clinder wake
flow at Re = 100. (a) Instantaneous vorticity, (b) base flow, (c) mean flow, (d) frequency of the
leading eigenmode, (e) growth rate of the leading eigenmode.

both eigenvalue and spatial wavenumber as complex (k ∈C and ω ∈C), Bers [43] and Huerre

& Monkewitz [44].

Global stability analysis consider strongly nonparallel flow by keeping the base state as global,

while locale stability analysis partitions the physical domain. Globally unstable flows are

therefore oscillators as absolutely unstable flow but globally stable flow can be either linearly

stable or convectively locally unstable. Disturbance evolution of oscillator characterized by

an unstable global mode explains the first transition of such flows, which occurs through a

supercritical Hopf bifurcation and leads to a limit cycle solution. This concept was further

extended to unsteady laminar flow using instead of base state, which is equal to the stationary

solution of the flow field, the mean flow, defined as the time averaged of the flow field Barkley

[5].

The base flow, computed far away from the instability threshold, is known to yield natural

frequencies, which deviate from the limit cycle frequency. In contrast, the stability analysis

around the mean flow is known to correctly capture the frequency of the instability, see fig.

1.7. While the Reynolds number is often the bifurcation parameter of flows, swirling flow have

a second bifurcation parameter, which is the swirl number and therefore we can investigate

in the case of the part load vortex rope, the stability at high Reynolds number with respect

to the swirl bifurcation parameter. The success of this approach to low-Reynolds number

flows in recent years is impressive: it ranges from wake flows around obstacles (Barkley [5])

to idealized configurations of swirling wakes (Meliga et al. [45]) as well as jets-in-cross flows
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Figure 1.8 – Variations of the growth rate (a) as a function of the location of the steady force.
Results are given for the critical Reynolds number Re = 46.8 performed by Marquet et al [6]. (b)
Results of passive control by Stykowski & Sreenivasan [7]. A control cylinder 10 times smaller
than the main cylinder is placed at various locations of the flow. For each location of the
control cylinder and for various Reynolds numbers, the growth rate of the perturbations is
measured. Contours where the growth rate is nul are represented for each Reynolds number.

(see Theofilis [46] for a review). Its generalization to the global stability analysis of turbulent

flows at high Reynolds number has been found recently successful by Meliga et al. [47].

Recently local and global stability analyses about mean and mean turbulent swirling flows

experiencing vortex breakdown were investigated in several confined geometries. Among

others, Tammisola & Juniper [48] investigated the flow in a swirl generator setup at a Reynolds

number of 4.8 ·103, Oberleithner et al. [49] and Paredes et al. [50] studied the precessing

vortex core in a combustion chamber at Reynolds number around 3 ·104, Grimble et al. [51]

considered the flow in a cyclone separator setup at a Reynolds number around 104. These

studies successfully predict the frequency of the helical mode and its unstable nature, which

structure the flow and can act as an excitation source in the associated industrial applications.

The eigenvalue resulting from the stability analysis moreover, can define a measure to assess

control efficiency or can be used as an input to investigate relevant control strategies such as

feedback or predictive control.

The stability properties of the flow can be altered by small modification of the base flow, such

as the advection rate, the presence of localized forces, turbulence level or boundary conditions.

These modifications can be represented as sensitivity maps localizing the most receptivity

region of the flow, where passive control could be applied see Camarri [52] for a review. The

most famous example is the passive control of vortex shedding of the cylinder wake flow.

Strykowski & Sreenivasan [7] have experimentally investigated how a small control cylinder

suitably placed in the wake of the main cylinder alters the vortex shedding, see fig. 1.8(a). For

various diameter ratios of the two cylinders they determined the regions of the flow where

the placement of the control cylinder leads to a complete suppression of the phenomenon

over a specific range of Reynolds numbers. The same optimal positions were found by Kim &

Chang [53] and Mittal & Raghuvanshi [54], from direct numerical simulations, who performed

a global stability analysis of cylinder flow in the presence of a small control cylinder. All these

approaches successfully determined the optimal placement of a control cylinder to suppress

the vortex shedding, but required that various locations of the control cylinder be tested and
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either experimental measurements, direct numerical simulations or global stability analyses

be carried out in each case. A systematic approach was developed by Giannetti & Luchini

[55] and Marquet et al. [6]. It consists of assessing the variations of the eigenvalue induced

by generic structural modifications of the linearized Navier-Stokes operator. They proposed

modeling the feedback mechanisms triggering the global instability by a specific structural

modification of the perturbation operator: a local force proportional to the perturbation

velocity acting as a momentum source in the perturbation equations. Marquet et al. [6], and

Gianetti & Luchini [55] show trough sensitivity maps, see fig. 1.8(b), that the insertion of a

small cylinder just above the main cylinder (red location of fig. 1.8(b)) increases the amplitude

and diminishes the frequency of the vortex shedding. On the contrary the addition of a small

cylinder in the blue region of fig. 1.8(b) diminishes the amplitude and increases the critical

Reynolds number. Recent results of Meliga et al. [47] have shown how an algebraic viscosity

model could be included in the linear stability analysis for that purpose. Sensitivity maps

analogous to those shown in fig. 1.7 in the laminar case could be obtained in the turbulent

regime, where the sensitivity map of the frequency of the vortex shedding as a function of the

control cylinder location is compared to a robotized experimental campaign of Parezdonic &

Cadot [56].

These sensitivity map provide relevant information to control self-sustained instability close

to its threshold because only small modification of the flow are needed to stabilize the flow.

However far away from this threshold or in turbulent regime, small modifications of the flow

are not sufficient and the optimal amplitude of the control need to be determined. The linear

approximation of the sensitivity map can be therefore used as iteration step for computing

nonlinear sensitivity maps, which is assessed in the present research work.
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1.1 Present work

The primary aim of this research work consists in increasing the operation flexibility of Francis

turbines at part load regime, which is thought to be one of the main solutions to mitigate the

large power fluctuations of the electric grid arising from the foreseeable massive introduction

of intermittent renewable energies in the distribution systems. An intense cavitation vortex

rope is however known to appear in these operating conditions and prohibits power generation

due to large pressure fluctuations at a well-defined frequency, which causes risks of operating

instability, and, fatigue and resonance of the mechanical structures. The control of the part

load vortex rope is therefore assessed in this research work using optimal predictive control

technique.

Control algorithms need a physically-based target about this helical structure, which is brought

by investigating the hydrodynamic instability properties of the draft tube flow distribution,

in similarity to the recent development on helical vortex breakdown phenomenon affecting

swirling jets and wakes. It requires, however to transpose the idealized uncluttered theoretical

framework of fundamental research to the complexity inherent to industrial design, including

in particular turbulence modeling to reach high Reynolds number flows Re = O(106). The

present work has bridged this gap and presents a linear framework to investigate the flow in

hydraulic turbines based on global stability analysis.

The linear dynamics and the optimal predictive control of the draft tube flow field of a Francis

turbine operating at part load conditions are assessed in the present research work for the

reference case study, the FLINDT project - flow investigation in draft tube — project, Eureka

No. 1625.

This linear framework is also used to investigate the origin of the synchronous pressure at part

load operating conditions. This excitation source, associated to a planar wave oscillating at

the same frequency as the precessing vortex rope, induces critical pressure surges when it

enters in resonance with the eigenfrequency of the hydraulic piping system. An asymptotic

expansion around the mean turbulent flow, constituted by a domain perturbation to include

wall disturbance interactions and by a global stability analysis, is performed to show the origin

and the mechanism of the synchronous pressure associated to this fluid-solid interaction.

The control algorithm used in the part load vortex rope case is first developed on an aca-

demic test case, the spiral vortex breakdown, to assess the feasibility and the validity of the

approach. In addition, the direct numerical flow simulation of the spiral vortex breakdown has

revealed the onset of chaos at a Reynolds value of Re = 220 induced by purely hydrodynamic

interactions. A bifurcation analysis is performed and the nonlinear interactions of several

self-sustained instability revealed by stability analysis are investigated to identify the route to

chaos in this flow.

This research work is supported by the Swiss National Science Foundation (SNSF) - grant no.

200021 149818.1
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1.2. Outline

1.2 Outline

This thesis is a compilation of published articles or submitted articles in peer-reviewed journal.

Each chapter is composed by an introductory paragraph following by one article. Chapter 2

presents the stability analysis and the predictive control algorithm developed on the academic

benchmark flow, spiral vortex breakdown. Chapter 3 transposes the idealized uncluttered

theoretical framework of fundamental research to the complexity inherent to industrial design.

The stability analysis of high Reynolds flows is assessed on the part load vortex rope appearing

the draft tube of Francis turbines at a Reynolds number around Re =O(106). The control of the

part load vortex rope is then reported in the chapter 4, where the optimal predictive control

algorithm previously validated is applied. Chapter 5 presents the origin of the synchronous

pressure using the framework of the global linear stability analysis of the part load vortex rope

embedded in an asymptotic expansion, which shows the interaction of the part load vortex

rope and the draft tube wall. Chapter 6 comes back on the spiral vortex breakdown to present

the nonlinear interaction of several self-sustained modes, which lead to the onset of chaos at a

Reynolds number of Re = 220. Finally a conclusion and the perspectives are drawn in Chapter

7.
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2 Stability analysis and predicitive con-
trol of spiral vortex breakdown

Barkley’s study [5] on the stability analysis around the base and mean flow of the cylinder

wake is revisited in the first part of this chapter. Self-sustained instability emerging from

laminar swirling flows experiencing spiral vortex breakdown are investigated using global

stability analysis. The deviation of the frequency prediction from the eigenvalue of the base

flow is less pronounced but remains valid compare to the cylinder wake and the excellent

frequency prediction of the the stability analysis around mean flow is further emphasized,

while two unstable eigenmodes are observed. The second part of this chapter introduces

the predictive control of the spiral vortex breakdown. The neutral assumption of unstable

eigenvalue around the mean flow is revoked by successfully stabilizing the instantaneous flow

using a minimization algorithm, which targets the eigenvalue growth rate of the most unstable

eigenmode. This encouraging results obtained close and far from the instability threshold has

allowed us to envisage to quench the part load vortex rope.

The variables used in this document are susceptible to change in comparison to the submitted

version of the article to keep the document consistency. Additional paragraph and results

could be also added.

PAPER: Predictive control of spiral vortex breakdown
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Chapter 2. Stability analysis and predicitive control of spiral vortex breakdown

Predictive control of spiral vortex breakdown

Simon Pasche1, François Gallaire2, François Avellan1

1 LMH, Swiss Federal Institute of Technology (EPFL), CH-1007, Lausanne, Switzerland
2 LFMI, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland

Preprint version of the article submitted in Journal of Fluid Mechanics including reviewers’

comments, (2017)

The predictive control of the self-sustained single spiral vortex breakdown mode is addressed

in the three-dimensional flow geometry of Ruith, Chen, Meiburg & Maxworthy [57] for a con-

stant swirl number S = 1.095. Based on adjoint optimization algorithms, two different control

strategies have been designed. First, a quadratic objective function minimizing the radial

velocity intensity, taking advantage of the physical mechanism underpinning spiral vortex

breakdown. The second strategy focuses on the hydrodynamic instability properties using as

objective function the growth rate of the most unstable global eigenmode. These minimization

algorithms seek for an optimal volume force in an axisymmetric domain avoiding therefore

expensive 3-D computations. In addition to considering eigenvalues around the base flow, we

also investigate the stability around the mean flow and we find that it correctly predicts the

frequency of the self-sustained single spiral vortex breakdown mode for Reynolds numbers up

to Re = 500. Close to the instability threshold, at a Reynolds value of Re = 180, all these control

strategies successfully quench the spiral vortex breakdown. The related volume force is found

identical for the base and mean flow eigenvalue control even if the uncontrolled growth rates

differ significantly. The control of the least unstable eigenvalue of the mean flow is not only

found optimal at Re = 180, it also stabilizes the flow at a Reynolds value as large as Re = 300,

which opens promising extensions to industrial applications.

2.1 Introduction

Vortex breakdown is a characteristic phenomenon affecting swirling jet and wake flows. It is

associated to a sudden change of the flow topology when the swirl number S, defined as the

ratio between the characteristic tangential velocity and the centerline axial velocity, reaches

a critical value. While the flow remains columnar below this threshold, it suddenly changes

topology into several possible vortex breakdown states, which have been observed and labeled

across the last decades. As first observed by Lambourne & Bryer [58] on delta-wings, both

the bubble vortex breakdown characterized by an axisymmetric recirculation region and

the spiral vortex breakdown can exist in similar flow conditions. Even richer dynamics and
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2.1. Introduction

structures have been observed in tube experiments by Hall [59], Leibovich [60] and Escudier

& Zehnder [61] where the bubble breakdown may be followed by columnar, single spiral or

double spiral flows, depending on the parameters. In this vein, Sarpkaya [62] reported a flow

map of the different possible states with respect to the bifurcation parameters. Vortex flows

possibly experiencing vortex breakdown are found in several industrial applications, such as

flow over delta-wings, thermal and hydraulic turbomachines as well as combustion chambers.

In these industrial situations, vortex breakdown often results in performance degradation

and structure fatigue although in certain case it may be also beneficial, for example in burner

stabilization where the stagnation point play the role of flame anchor. High performance

industrial exploitation of these systems under secure operating conditions therefore calls

for flow control techniques which could enable to operate at off design regime and thereby

increase operating flexibility (European policy [63]), see among others Susan-Resiga et al. [64],

Favrel et al. [17], Pasche et al. [65] for hydraulic turbomachines and Gursul et al. [66] for

leading-edge vortices and Paschereit et al. [67], Syred [68] for thermal turbomachines.

To interpret the variety of observed vortex breakdown states, two different physical mech-

anisms were mainly highlighted over the years. First, the transition from columnar flow to

bubble breakdown was interpreted by Squire [69] as the consequence of an infinitesimal

standing wave, which exists only when the swirl surpasses a certain threshold. In addition,

Benjamin [70] showed that this threshold coincides with the super/subcritical transition where

Kelvin waves hosted by the vortex core start propagating upstream. This led him to draw an

analogy with the hydraulic jump phenomenon, known to be also associated to a super/sub-

critical transition of gravity waves. Since then, Wang & Rusak [71] have proposed a unifying

view connecting these local wave propagation properties to the global stability properties of

inviscid vortex flows of finite length.

Second, the hydrodynamic instabilities of swirling jets and wakes have been analyzed in

great detail with emphasis on the development in space and time of helical disturbances.

While several mechanisms can be active for velocity profiles with strong axial or azimuthal

shear (Gallaire & Chomaz[72]), even vortex flows with Gaussian axial vorticity and velocity

distributions, referred to as the Bachelor vortex, were found very unstable at intermediate

values of swirl, as the result of the so-called generalized centrifugal instability (Leibovich &

Stewartson [73]). The observation that helical instability could become absolutely unstable

(Huerre & Monkewitz [44]) in swirling wakes (Delbende et al. [74]) has led to the interpretation

of spiral vortex breakdown as a secondary instability of axisymmetric vortex breakdown

(Gallaire et al. [75]). The absolutely or convectively unstable nature of the flow was determined

by computing numerically the linear impulse response of a localized disturbance on the

numerically computed axisymmetric flow solution, as previously performed by Ruith et al.

[57]. The self-sustained instability accounting for spiral vortex breakdown was interpreted as

the consequence of the existence of an absolutely unstable region.

Ruith et al.’s [57] direct numerical simulations (DNS) of the incompressible Navier-Stokes

equations were probably the first attempt to break the dependence on the lateral boundary
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condition in comparison with previous studies such as Spall et al. [76], Althaus et al. [77].

In addition to axisymmetric direct numerical simulations (DNS), the author also performed

full three-dimensional (3-D) DNS, using convective radial boundary condition mimicking

a semi-infinite domain, in order to analyze the mode selection in a free vortex breakdown

phenomenon. The flow solutions were initiated by the inlet Grabowski & Berger[78] vortex

profile and this vortex now appears as a benchmark model for disturbance analysis of the

vortex breakdown in the more recent work of Vyazmina et al. [79], Meliga et al. [45], Qadri

et al. [80] and Rusak et al. [81]. Both Meliga et al. [45] and Qadri et al. [80] performed a

global linear stability analysis about the axisymmetric base flow, and successfully described

the Hopf bifurcation and the development of the spiral vortex breakdown spinning in time

around the axisymmetric breakdown bubble for Reynolds number and swirl number close

to Re = 200 and S = 1, confirming the weakly non parallel local analysis of Gallaire et al. [75].

Furthermore Meliga et al. [45] used the global stability analysis to rigorously derive coupled

weakly nonlinear amplitude equations that helped understanding the mode selection between

a single spiral m = 1 and a double spiral m = 2 in the vicinity of the codimension-2 point

Re = 71.95 and S = 1.436.

Such global stability analyses about the axisymmetric base flow is relevant at the instability

onset but one may question its validity further away from threshold. This fundamental issue

related to the application of global stability analysis to real flows was revived by Barkley [5].

Considering the Bénard-von-Karman vortex street in the cylinder wake, Barkley [5] showed

that the Strouhal number was correctly captured by a global linear stability analysis around

the mean flow while the prediction from the linearization around the base flow quickly failed

when the Reynolds number was increased. This can be interpreted as a consequence of the

mean-flow distortion (Maurel et al. [82]) resulting from the nonlinear Reynolds stresses, which

both account for the difference between the base and mean flow and for the saturation of

the disturbance, as demonstrated by Sipp & Lebedev [83] using a weakly nonlinear multiple-

scale expansion to derive a Landau amplitude equation. More recently, this approach was

extended further away from threshold (Mantič-Lugo et al. [84]) by a semilinear coupling of,

on one hand, the correction to the base flow through the Reynolds stresses, to, on the other

hand, a linearized disturbance equation. Without going into that level of analysis, we will

in the present study address the quality of the frequency prediction resulting both from the

stability analysis about the base and mean flows in Ruith et al.’s [57] semi-infinite swirling flow

configuration by considering Reynolds numbers up to Re = 500.

Recently local and global stability analyses about mean and turbulent mean swirling flows

experiencing vortex breakdown were investigated in several confined geometries. Among

others, Tammisola & Juniper [48] investigated the flow in a swirl generator setup at a Reynolds

number of 4.8 ·103, Oberleithner et al. [49] and Paredes et al. [50] studied the precessing

vortex core in a combustion chamber at Reynolds number around 3 ·104, Grimble et al. [51]

considered the flow in a cyclone separator setup at a Reynolds number around 104 and

Pasche et al. [65] who investigated the part load vortex rope in Francis turbines at a Reynolds

number around 106. These studies successfully predict the unstable nature of the helical
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mode and its frequency, which structures the flow and acts as an excitation source in these

industrial applications. The growth rate resulting from the stability analysis moreover can

define a measure to assess control efficiency or can be used as an input to investigate relevant

control strategies such as feedback or predictive control. Control techniques applied to

Navier-Stokes equations were reviewed by Kim & Bewley [85], and can be categorized for our

purpose into two main approaches: the closed-loop and open-loop control strategies. Among

open-loop control strategies, one distinguishes between passive and active strategies, the

latter being subcategorized into steady and unsteady. All these control approaches seek flow

manipulations which aim at optimizing some features of the flow. The control target can be

an eigenvalue, the drag on an obstacle, among many other possible choices of objectives.

Regarding first closed-loop control, foundations were laid out by Lions [86], who demonstrated

the existence and the uniqueness of the optimal control solution for linear partial differential

equations and quadratic objectives. Such predictive techniques were initiated by Joslin et

al. [87] and Bewley et al. [88]. They are computationally extremely demanding, because of

the need to perform unsteady direct and adjoint calculations, with the associated memory

requirements. With the recent advent of high performance computing facilities (HPC), there

is a certain revival in the approach (Passaggia & Ehrenstein [89] and Goit & Meyers [90]). An

alternative closed-loop control approach, inspired by automatic control and based on direct

feedback control, was promoted in the hydrodynamic instability context by Bewley & Liu [91],

among others. The closed-loop control couples actuators to sensors for optimal disturbance

rejection using a feedback gain matrix that is determined by solving a matrix Riccati equation.

While several examples of direct feedback control can be found in the literature (see Kim

& Bewley [85] for a review), they most often need to be combined with a model reduction

technique.

Focusing next on steady open-loop control, although it can be based on trial and error

(Strykowski & Streenivasan [7]), it can also be determined within an adjoint-based optimiza-

tion approach. This approach is derived in the Lagrangian functional framework and uses

the adjoint fields as Lagrangian multipliers to determines a closed-form expressions of the

gradient direction in a very cost-effective way (Gunzburger [92] and Giannetti & Luchini [93]).

The first gradient direction may be viewed as the sensitivity field, following Giannetti & Luchini

[55] or Marquet et al. [6]. The sensitivity is defined as the gradient of the objective (for instance

the eigenvalue) with respect to the control variable (for instance a distributed volume force).

The sensitivity to base flow modification were applied to the stabilization of the cylinder wake

flow by Marquet et al. [6]. More rarely does the adjoint-based optimization approach seem to

have been used in its entire nonlinear spirit (Camarri & Iollo [94]). The sensitivity analysis of

the laminar and steady base flow solution was extended to the mean flow for turbulent flows

by Meliga et al. [47], focusing on nominally 2-D flow configurations, followed more recently by

Mettot et al. [95] and Carini et al. [96].

Turning back to axisymmetric vortex breakdown, Gallaire et al. [97] applied Ricatti-based

feedback control to quench the global axisymmetric unstable mode above the transition from
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supercritical to subcritical state for the inviscid flow in pipe of finite length, while Rusak et al.

[81] recently implemented a more efficient physically-based feedback control on the same flow.

Steady open-loop wall control through blowing and suction was explored by Meliga & Gallaire

[98] for viscous flow in a confined geometry and analyzed in the framework of sensitivity

analysis by determining the effect of the control on the amplitude equation governing the

steady bifurcation. In the present study we will consider different steady open-loop flow

control strategies to mitigate the development of the spiral mode in Ruith et al.’s flow [57].

We will first attempt to minimize the radial velocity intensity as a proxy for the flow non-

parallelism i.e. quenching the axisymmetric bubble, a strategy referred to as "optimal base

flow manipulation" and then we devise an iterative scheme to optimally quench the dominant

eigenvalue growth rate of the base and mean flows. This "optimal flow stabilization control"

determines what could be called a nonlinear sensitivity field to a steady force and determines

the control amplitude, which becomes relevant to design efficient control appendages (Lacis

et al. [99]).

The paper is organized as follows: the open geometry of Ruith et al. [57] leading to spiral

vortex breakdown is described together with the governing equations in section 2.2, while we

perform unsteady 3-D DNS of the spiral vortex breakdown at various Reynolds numbers and

determine the prevailing axisymmetric laminar base flow solution in section 2.3. This section

is completed by a comparison of the stability properties of the base and mean flows, which are

also compared to the limit cycle frequency obtained from the DNS. The theoretical framework

for the optimal flow control problem is described in section 2.4 both for the optimal base

flow manipulation and the base and mean flow stabilization approaches. The results of these

different control strategies are compared in section 2.5, before conclusions are drawn.

2.2 Flow configuration

2.2.1 Governing equations

We consider the dimensionless incompressible Navier-Stokes equations in a semi-infinite

domain Ω,

∂C

∂t
+ (C ·∇)C =−∇P +Re−1∇2C in Ω

∇·C = 0 in Ω,

(2.1)

where (C,P ) are the state variables and Re the Reynolds number, built on the fluid’s kinematic

viscosity and on the vortex core radius and incoming centerline streamwise velocity prevailing

at inlet. This system is written in compact form as

N ∂t U+M (U) = 0 in Ω, (2.2)
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2.2. Flow configuration

Figure 2.1 – Three-dimensional schematic of the flow configuration.

where U = (C,P ), M is the nonlinear evolution operator and N is the singular operator

premultiplying the time-derivative. We consider the dynamics governed by equations (2.1)

and resulting from an inlet Grabowski & Berger [78] vortex profile

CR (R) = 0, Cθ(R) = SΨ, CZ (R) = 1, on Γi n

Ψ(R <= 1) = R(2−R2), Ψ(R > 1) = 1/R,
(2.3)

This vortex is composed of a unitary uniform dimensionless axial velocity component CZ = 1, a

null radial velocity component, and a tangential velocity component with maximum intensity

assigned by the swirl number S and composed of a vortex core of dimensionless radius 1 in

solid body rotation and a potential decay outside the vortex core. In the present study, we

fix the swirl number to S = 1.095 but let vary the Reynolds number up to Re = 500, thereby

restricting our investigation to the spiral vortex breakdown case, in contrast to pure bubble

vortex breakdown or multiple helix vortex breakdown observed respectively at lower and larger

swirl numbers (Ruith et al. [57] and Meliga et al. [45]).

2.2.2 Direct numerical flow simulation

Direct numerical flow simulations (DNS) have been performed on a 3-D cylindrical domain

based on a cartesian coordinate system (X ,Y , Z ). The main axis of the cylinder is oriented

along the Z -component and its origin is located at the center of the inlet, see fig. 2.1. A

second, cylindrical, coordinate system is introduced (R,θ, Z ), which is more convenient to

study vortex flows, its axial axis Z and origin remaining identical. The transformation matrix

between the two reference frames is defined as follows: the X -axis is oriented along R for θ = 0,

while the Y -axis completes the reference frame to obtain a right-handed coordinate system

and corresponds therefore to θ =π/2. The radial extension of the domain equals Rmax = 50

while its length is Zmax = 40. Such dimensions were necessary to guarantee an unconfined

radial boundary condition (see appendix 2.7.1) because the vortex breakdown resulting from

these flow conditions is known to be very sensitive to confinement effects, as experimented
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by Ruith et al. [57]. The computational domain is bounded by the Grabowsky and Berger

vortex (2.3) on the inlet boundary Γi n , a free-outflow condition (−PI+Re−1 · (∇C)) ·n = 0

on the external boundary Γext , and a convective condition ∂t C+Cc ·∂nC = 0 on the outlet

boundary Γout . We have fixed the convective velocity to be equal to the free-stream velocity

Cc = eZ . The governing equations are solved numerically with NEK5000 a spectral element

solver developed by Fischer et al. [100]. The temporal discretization of the nonlinear terms is

treated explicitly by a third order backward-differentiation scheme (BDF3) combined with

a third order extrapolation scheme (EXT3). The linear terms are treated implicitly in time

and a pressure-velocity decoupling method is used for the spatial discretization. The velocity

and pressure space are represented by a tensor-product array of Gauss-Lobatto-Legendre

(GLL) and Gauss-Legendre (GL) points of polynomial orders N and N −2. In the present study,

P10 −P8 polynomial orders for velocity-pressure with 11040 hexahedral elements are required

to compute the flow field. This represents a computation of 8 millions of degree of freedoms.

The validation of the 3-D DNS is presented in appendix 2.7.1.

2.2.3 Axisymmetric flow

The steady axisymmetric flow solution developing from the inlet Grabowsky and Berger vortex

(2.3) is also investigated, with governing equations written in compact form as

M̂ (UB ) = 0 in Ωa , (2.4)

with UB = (CB ,PB ) the base flow state variables. An axisymmetric domain Ωa , with the same

dimensions as those of the 3-D domain is used Rmax = 50 and Zmax = 40, except that a sponge

region is added along the Z -component at the end of the domain. The length of this sponge

region is equal to Lspong e = 60, using the same smoothing function as in Meliga et al. [45]. The

inlet and external boundary conditions are equivalent to those of the 3-D case but a symmetry

condition is applied on the axis Γaxi s that equals to CBR =CBθ = 0,∂RCB Z = 0, while the outlet

boundary has a free-outflow condition.

The flow solution is carried out by the means of the finite element library Freefem++ [101].

The steady axisymmetric incompressible Navier-Stokes equations are first premultiplied by

R to avoid the axis singularity and then solved numerically via a Newton-Raphson iterative

method. The related linear system is carried out by the Unsymmetric Multifrontal sparse LU

Factorization PACKage (UMFPACK) [102]. The computational domain is meshed by 408’866

triangular Taylor-Hood elements, P2 −P1 polynomial order elements for the velocity-pressure

unknowns. A convergence criterion of 10−8 on the H1-norm is reached in the Newton-Raphson

iterative method, which leads to the base flow solution.
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2.2. Flow configuration

2.2.4 Global stability analysis

The small disturbance dynamics, Ũ = (C̃, P̃ ), of the Navier-Stokes equations are investigated

by global linear stability analyses around the base flow UB and the mean flow Ū = (C̄, P̄ ) in the

axisymmetric domain Ωa . The disturbances Ũ are expanded in normal modes for different

azimuthal wave numbers m ∈Z,

Ũ(R,θ, Z , t ) = u(R, Z )exp(i (mθ−ωt ))+ c.c., (2.5)

where c.c. is the complex conjugate. We assume mean flow solutions unperturbed at first order

by the Reynolds stresses (Barkley [5], Meliga et al. [47], Mantic̃-Lugo et al. [84] for discussion

on this hypothesis). Therefore the eigenvalue problems related to the base and mean flow

state become similar and may be written in a compact form using a generic flow solution

U0 = (C0,P0) as

(−i (ωr + iωi )N +Lm(C0))u = 0, in Ωa , (2.6)

where Lm is the operator for the linearized Navier-Stokes equations of azimuthal wave number

m and U0 the linearization point that is equal to UB for base flow eigenvalue problem and

Ū for mean flow eigenvalue problem. The time-averaged flow distribution Ū is computed

on the fly in NEK5000 with a minimum of 160 periods of the characteristic oscillation, after

the transient phase has died out. In addition, an interpolation step is needed to transfer the

mean flow from the 3-D mesh to the axisymmetric mesh. This is carried out by a spectral

interpolation of 10−13 accuracy integrated in NEK5000. At this level the mean flow is assumed

purely axisymmetric and only a slice at X = 0 and Y > 0 is interpolated and exported to the

eigenvalue solver.

In this context we use the definition that a positive azimuthal wavenumber m > 0 corresponds

to a spiral coiling in space in the anti-trigonometric direction and therefore, since S > 0, in

the opposite direction as that of the ambient flow while m < 0 designates a spiral coiling in

the same direction as the flow. The boundary conditions applied to the disturbances are

homogeneous Dirichlet conditions when Dirichlet conditions are imposed on the base flow

and remain unchanged in case of a Neumann condition. Specific boundary conditions, which

Azimuthal wave number Boundary conditions

m = 0 cR = vθ = 0, ∂R cZ = 0

m =±1 cZ = p = 0, ∂R cR = ∂R cθ

m > 1 cR = cθ = cZ = 0

Table 2.1 – Boundary conditions on the axisymmetric axis applied to the disturbances for
different azimuthal wave numbers.
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are recalled in Table 2.1, are applied on the symmetry axis due to the azimuthal expansion.

They are obtained by symmetry considerations of the perturbations (Khorrami [103]).

The global stability analysis is carried out by finite element method implemented in the

Freefem++ software [101]. The eigenvalue problem is first premultiplied by R and then the

discretized equations are solved by the implicit restarted Arnoldi method of the ARPACK

library [104]. The eigenvalues are obtained with a tolerance of 10−6 of the ARPACK solver. The

axisymmetric mesh described in section 2.2.3 is used to compute the eigenvalue problem of

the base and mean flow, except that the sponge region is removed for the latter. A validation of

the eigenvalue calculations of the base and mean flows is presented in appendices 2.7.2 and

2.7.3 respectively.

2.3 Flow dynamics and stability analyses

2.3.1 Three dimensional flow

The 3-D instantaneous flow computations are illustrated for two specific Reynolds values,

Re = 180 and Re = 300, by axial vorticity contours in fig. 2.2(a) and (b), respectively. These

Figure 2.2 – Iso-surfaces of axial vorticity contour of the 3-D DNS flow solution for (a) Re = 180
and (b) Re = 300, for S = 1.095.

contours highlight the recirculation bubble and the spiraling motions of the flow. In the case of

Re = 180, the recirculation bubble is accompanied by a single helical vortex structure coiling

in its wake, fig. 2.2(a). The spiral spins temporally in the same direction as the Grabowsky
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& Berger vortex but coils spatially in the opposite direction, which is consistent with the

previous results of Ruith et al. [57]. The temporal discrete Fourier amplitude spectrum of the

radial velocity at the location (R,θ, Z ) = (0.1,0.0,5.0), see fig. 2.3(a), exhibits a quasi-sinusoidal

signal at the frequency f = 0.189. The system has reached a limit cycle that arises from a

self-sustained instability. In contrast, at Re = 300, the wake of the bubble is followed by two

helical spirals, which have the same spatial coiling and temporal spinning as for Re = 180.

The axial vorticity contours in fig. 2.2(b) exhibit a second, slaved, spiral in the vicinity of

first, master, spiral. They are differentiated by their axial vorticity magnitudes, the slaved

structure exhibiting a modulated axial vorticity iso-contour when compared to the master

structure, characterized by a dense iso-contour, at a value of 2.4. The temporal discrete Fourier

amplitude spectrum is richer than that prevailing at Re = 180, see fig. 2.3(b). This amplitude

spectrum exhibits four peaks: a main one with a frequency of f = 0.204 corresponding to the

master helical vortex, a smaller peak close to the main peak with a frequency of f = 0.167, a

low frequency peak at a frequency of f = 0.003, as well as the main peak’s second harmonic at

f = 0.408. The low frequency component and the broad base of the main peak, which is not a

lack of FFT accuracy, are markers of the nonlinear interactions between the two spirals.

Figure 2.3 – Discrete Fourier amplitude spectrum of the time signal of the 3-D DNS of the
radial velocity component located at (R,θ, Z ) = (0.1,0.0,5.0) for Re = 180 and Re = 300, for
S = 1.095.

The axisymmetric time-averaged flow fields, to be investigated by global stability analysis

are displayed in fig. 2.4. These figures are composed by the tangential velocity component

on the upper part, R > 0, and streamsurfaces colored by the magnitude of the axial velocity

component on the lower part, R < 0. The time-averaged streamsurfaces exhibit a recirculation

bubble, characteristic of vortex breakdown. At Re = 180, the bubble is elongated and lifted

up from the centerline in its downstream part while the bubble has a more round shape for

Re = 300, and additionally a second decelerated region is observed at Z = 5. We have observed

that the extension of the time-averaged bubble decreases with the Reynolds number while the

intensity of the undulating wake in the lee of the bubble increases with the Reynolds number.
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Figure 2.4 – Time averaged solution of the 3-D Navier Stokes equations, C̄, for S = 1.095 and
Re = 180 (a) and Re = 300 (b). The upper part of the graph shows the tangential velocity
component and on the lower part, the streamsurfaces colored by the magnitude of the axial
velocity component.

2.3.2 Axisymmetric flow

The axisymmetric base flow, governed by eqn. (2.4), is displayed in fig. 2.5(a) and (b) for

Re = 180 and Re = 300, respectively, for S = 1.095. At a Reynolds value of Re = 180, the

difference between the mean flow (fig. 2.4a) and the base flow (fig. 2.5a) is almost invisible.

The mean flow correction resulting from the saturation of the self-sustained instability is

therefore best observed at Re = 300, see fig. 2.5(b) and fig. 2.4(b), where the mean flow

strongly deviates from the base flow, supporting the observations already reported by Ruith et

al. [57].

Figure 2.5 – Solution of the steady axisymmetric Navier Stokes equations, CB , for S = 1.095
and Re = 180 (a) and Re = 300 (b). The upper part of the graph shows the tangential velocity
component and on the lower part, the streamsurfaces colored by the magnitude of the axial
velocity component.
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2.3.3 Global stability analysis

The global stability of the base flow and the mean flow has been investigated, with focus on

the first helical mode m = 1. A representative example is presented in fig. 2.6 at a Reynolds

value of Re = 300. Up to three unstable eigenmodes, labeled Bn for n = 1,2,3 can be identified

in the eigenvalue spectrum of the base flow, while only two unstable modes M1 and M2 are

detected in the mean flow eigenvalue spectrum. The associated growth rates are significantly

larger when the linearization is performed around the base flow than around the mean flow,

in agreement with mean flow modification based saturation mechanisms reported in different

flow geometries (Barkley [5] and Mantic̃-Lugo et al. [84]).

Figure 2.6 – Eigenvalue spectrums of the global linear stability of mode m = 1 about the base
(a) and mean (b) flow at Re = 300 and S = 1.095. Unstable eigenvalues are labeled respectively
B1, B2, B3 and M1 and M2.

We have then systematically compared the frequency prediction of the base and mean flow

stability analyses for different Reynolds values Re = 100−500 by keeping constant the swirl

number S = 1.095, focusing only on unstable modes and on the azimuthal wavenumber m = 1,

since other azimuthal wavenumbers were all found linearly damped. The instability threshold

was found at Re = 143.5 for the base flow and approximately at Re = 143.7 for the mean flow,

where the dying out of the transient in the DNS become prohibitively long close to threshold.

In the vicinity of the threshold, the linear frequency predictions (respectively in red and blue

for the base and mean flow) are in agreement with the limit cycle frequency extracted from

discrete Fourier transform of the 3-D DNS signal (in green), see fig. 2.7(a). As the Reynolds

number increases, the growth rate of the dominant unstable mode linearized about the base

flow (B1) increases rapidly, followed by a second unstable mode (B2) bifurcating at Re = 200

and subsequently emerging unstable eigenvalues B3 and B4. At Re = 350, where the base flow

stability analysis has been stopped, the base flow is found to be unstable to no less than four

unstable modes, as seen in fig. 2.7(b). The frequencies of the four eigenvalues considered

are all around ωr
∼= 1.08 at their respective instability thresholds, beyond which they increase
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Figure 2.7 – Growth rate and angular frequency of the global linear stability of the mean,
M1, M2 and base flow, B1, B2, B3, B4, for azimuthal wave number m = 1 compared to the
3-D angular frequency from the DNS, computed by discrete Fourier transform at location
(R,θ, Z ) = (0.1,0.0,5.0).

linearly with the Reynolds number. The base flow frequency prediction of the dominant

unstable mode remains acceptable before it crosses the non-monotonic limit cycle frequency

evolution (in green) around Re = 235. This appears as an a posteriori justification of the

validity range of the linear stability analysis about the base flow of Meliga et al. [45] and Qadri

et al. [80].

The limit cycle frequency (in green) indeed first strongly increases away from threshold until

it drops for Re > 230 and finally slowly increases with the Reynolds number for Re > 240.

The frequency of the leading eigenvalue (M1) of the mean flow (in blue) closely follows the

limit cycle frequency (in green) along the whole Reynolds number range, demonstrating a

correct frequency prediction by the global stability analysis around the mean flow, as found

in the canonical cylinder wake flow (Barkley [5]). Similarly the maximum growth rate of the

mean flow remains much smaller that the growth rate of the dominant mode of the base

flow that stays close to zero. Above Re > 300, a second unstable eigenvalue is found with a

frequency that corresponds to the second peak observed in the temporal discrete Fourier

amplitude spectrum (the angular frequencies ωr should be divided by 2π to compare to the

frequencies obtained in fig. 2.3, for example at Re = 300, fM2 = 0.156, and fDN S = 0.167). The

most unstable eigenmode is likely to correspond to the master helix. The second unstable

eigenmode would be associated the slaved helix. These frequency predictions, together with

the global stability of the base and mean flows with respect to m = 2 (not shown for brevity)

are a confirmation that the snapshot of fig. 2.2(b) at Re = 300 does not correspond to an m = 2

instability but rather to the superimposition of two m = 1 spirals, each corresponding to a

separate frequency peak and without any phase correlation.

These results on the frequency prediction of the stability analysis about the mean flow support

the recent extension of this technique to high Reynolds number industrial flows, such as the

frequency prediction of the precessing vortex core in combustion chamber Oberleithner et al.
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[49], Paredes et al. [50], Tammisola & Juniper [48] or of the part load vortex rope in Francis

hydraulic turbines Pasche et al. [65]. Moreover, we identify up to two unstable eigenmodes,

which may offer a relevant test case for the need to take into account mode interaction in

generalizing the self-consistent model for saturation dynamics developed by Mantič-Lugo et

al. [84], in the spirit of the generalized quasi-linear models developed by Marston et al. [105].

2.4 Optimal control: flow stabilization and flow manipulation con-

trols

2.4.1 Optimal control theory

Although it can be beneficial to improve mixing, the self-sustained instability in the spiral

vortex breakdown is a source of perturbations that is undesirable in several applications

Rheingans [106], Syred [68], Gursul et al. [66], Nishi & Liu [14]. The finite amplitude nonlinear

predictive control of such perturbations is investigated for two specific Reynolds values Re =
180 and Re = 300, with the aim to stabilize the periodic fluctuations by applying a constant

volume force. In the present study, we have chosen to minimize two different objectives to

achieve this goal, a "flow stabilization control" which targets a zero value of the growth rate of

the most unstable eigenvalue declined into two versions controlling the base and mean flow

eigenvalue, and a "flow manipulation control" which targets a minimal radial velocity intensity.

The rationale behind this latter choice is to minimize the radial flow associated to the bubble

formation and thereby to maintain the flow as columnar as possible. This strategy is based

on the physical mechanism underpinning spiral vortex breakdown: the wake induced by the

bubble triggers an absolute instability region that leads to the spiral vortex oscillation (Gallaire

et al. [75] and Qadri et al. [80]). The mathematical framework required in these minimization

problems is the optimal control theory. The objective functions for the two control strategies,

to be defined in eqn. (2.7) and (2.8), are derived for the axisymmetric domain where the base

flows and the relevant base and mean flow stability analyses were computed, bypassing larger

and more expensive 3-D computations. This dimensionality reduction from the 3-D domain

to a 2-D axisymmetric domain is performed thanks to the azimuthal Fourier decomposition

naturally appearing in the eigenvalue analysis involved in the "flow stabilization control". In

the context of the "flow manipulation control", only the axisymmetric base flow is considered,

which is 2-D by definition. To be more specific the following objective function are defined,
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Flow manipulation control

Min JM ani p (F) =
1

2

∫∫
Ωa

CR (F)2 dΩa +
α

2

∫∫
Ωa

||F||2 dΩa , (2.7)

Flow stabilization control

Min JSt ab(F) = |ℑ(ω)|+
α

2

∫∫
Ωa

||F||2 dΩa , (2.8)

where J is the objective function, F the control variable (here a volume force), (C,P ) the state

variables, ω the eigenvalue of the most unstable eigenmode linearized around the base (ωB1 )

or mean flow (ωM1 ) and α the scalar weight penalizing of the control cost (here the L2-norm

of the volume force). We control the flow on the entire axisymmetric domain Ωa through

the radial and axial volume force components only. We made this choice to avoid trivial

control solutions, which would simply decrease the tangential velocity magnitude, and to

consider simple control distributions that are easier to visually translate in terms of potential

appendage control devices. At convergence, the distributed control investigated will end to an

optimal volume force (F∗
R ,F∗

Z ) and optimal state variables (C∗,P∗).

The gradient direction of these objective functions allows us to look for the minimum of

J through an iterative algorithm such as a conjugate-gradient method. This gradient is

computed by the use of the Frechet derivative applied to a specific Lagrangian functional

related to each optimal control problems. These Lagrangian functionals which are expressed

in appendix 2.8.1, use the adjoint variables as Lagrange multipliers, (C†,P †) for the Navier-

Stokes equations and (c†, p†) for the eigenvalue problem. The gradient direction is defined by

eqn. (2.9) for the distributed control

∇J = C† +αF in Ωa . (2.9)

We should mention that the computation of the "flow stabilization control", where the leading

eigenvalue directly intervenes, uses the sensitivity to a steady force ∇Fωi as gradient direction,

see Giannetti & Luchini [55] and Marquet et al. [6]. Since however the steady force is no

more expected to remain infinitesimal, the non-linearity of the controlled Navier-Stokes

equations is included in our optimization strategy, which can therefore be seen as a "nonlinear

sensitivity" to a steady force. Since in the case of the canonical cylinder wake flow (Strykowski

& Streenivasan [7] and Marquet et al. [6]), the linear sensitivity to a steady force, mimicking a

small control cylinder, was sufficient to stabilize the flow close to the instability threshold, we

have also investigated the efficiency of this linear sensitivity approach in the case of the spiral

vortex breakdown. In this called "linear sensitivity-based finite amplitude control", the first
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gradient direction ∇Fωi = F(o) is multiplied by a finite amplitude A determined by a bisection

method until the growth rate of the controlled leading eigenvalue is equal to zero. Next, we

compute the "base flow manipulation control", the "base flow stabilization control", the

"mean flow stabilization control" and the "linear sensitivity-based finite amplitude control" of

the base and mean flow at a Reynolds value of Re = 180, before turning to a Reynolds value

of Re = 300, further away from instability threshold, where only the "mean flow stabilization

method" and the "linear sensitivity-based finite amplitude control" of the mean flow are

determined.

2.4.2 Minimization and numerical methods

The optimal control problems are solved by a conjugate-gradient method where the direction

is updated by a Polak-Ribiere method [107] and the step length is defined by an Armijo line

search method, see Polak [108]. The initial step τ is dependent on the flow case and has

been chosen to ensure convergence (see appendix 2.8.2) and the control weight is set to

α= 10−5. Since the "base flow stabilization" is a nonconvex problem, the solution invariance

was checked with respect to the parameter α, the initial step lengths and the optimization

methods. The results are presented in appendix 2.8.2, where the solution has been found to

be quasi-invariant under these choices in the methods.

The optimization algorithms for the "flow manipulation control" and the "base flow stabiliza-

tion control" have been solved numerically with Freefem++ software in the same spirit as the

base flow and eigenvalue problem computations, the same mesh and discretization technique

are applied. In the case of the "mean flow stabilization control", the time averaged flow field is

computed by DNS in NEK5000 before being transferred on the axisymmetric mesh. The other

minimization steps of the conjugate-gradient algorithm are computed within Freefem++ until

the next updated control (updated volume force) is obtained and returned to the 3-D DNS.

The optimization process is stopped when the objective function J reaches a minimum, see

appendix 2.8.2.

2.5 Flow control results

2.5.1 Base flow manipulation control at Re = 180

The predictive control of the axisymmetric bubble base flow minimizing the quadratic ob-

jective function eqn. (2.7) at Re = 180 is displayed through the associated volume forcing

in fig. 2.8(a) and the flow solution C∗ in fig. 2.8(b). The radial velocity component exhib-

ited by the streamsurfaces is clearly reduced by the minimization algorithm, starting with

a maximum value of C max
R = 0.3 and ending with a value of C max

R = 0.037 at convergence,

leading to a columnar solution contrasting with the uncontrolled bubble breakdown, see

fig. 2.5(a). Although the control target is not the recirculation bubble itself (in contrast to

what was proposed in Boujo & Gallaire [109] for plane flows) or the recirculation intensity, we
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Figure 2.8 – Navier Stokes solutions for the base flow manipulation control at Re = 180 (b) and
the associated volume force (a) at the minimum of the functional JM ani p .

note that the use of our physical mechanism inspired surrogate objective entirely suppresses

the recirculation: the minimum centerline axial velocity evolves from an uncontrolled value

of C mi n
Z = −0.08 to a controlled value of C mi n

Z = 0.8. The volume force needed to restore a

breakdown-free columnar solution is a predominating axial suction upstream of the nominal

breakdown bubble combined with a subdominant radial correction, see fig. 2.8(a), both

resulting in a control amplitude at convergence of ||F∗|| = 0.084, see fig. 2.18 in appendix 2.8.2.

We have verified that the suppression of the recirculation bubble results in the stabilization of

the spiral mode, as anticipated by the understanding of the underlying physical mechanism.

Figure 2.9(a) (blue solid curve) demonstrates that the stabilization is achieved for a control

amplitude of ||F|| = 0.028, far beyond the minimizing control amplitude ||F∗|| = 0.084. Note

that this stabilization is accompanied by a 10% frequency shift (see the blue solid curve in

fig. 2.9b). While physically well motivated the "flow manipulation control" will appear as

suboptimal when compared to the "flow stabilization control" presented in section 2.5.2. As

we will see, the comparison of fig. 2.8(a) and 2.10(a) will show that a lot of control authority is

spent in reducing the radial velocity in regions of low receptivity of the instability. We therefore

now turn our efforts to base flow stabilization control, trading the conservative but quadratic

cost-functional, eqn. (2.7) for a more precise but nonconvex cost-functional, eqn. (2.8).

2.5.2 Base flow stabilization control at Re = 180

Despite the absence of mathematical proof, we have observed that the minimization algorithm

targeting the eigenvalue growth rate of the spiral vortex breakdown mode developing on the

base flow, herein referred to as "base flow stabilization control", succeeds in stabilizing the

flow. As seen by the red solid curve in fig. 2.9(a), the normalized eigenvalue growth rate

progressively decreases until stabilization for ||F∗|| = 0.0058, i.e. 5 times less than the "flow

manipulation control" approach. Interestingly, a finite amplitude recirculation bubble is still

present in the stable, optimally controlled flow reported in fig. 2.10(b). The comparison with

the uncontrolled base flow (see fig. 2.5a) shows that minimal changes in the recirculation
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Figure 2.9 – Base flow dominant growth rate normalized by the most unstable uncontrolled
eigenvalue at Re = 180 as a function of the norm of the control (a) and of the angular frequency
of the mode (b) for the "flow manipulation control" (blue solid curve) and "base flow stabiliza-
tion control" (red solid curve), and the "linear sensitivity-based finite amplitude control" (red
dashed curve).

Figure 2.10 – Optimal "base flow stabilization control" force (a) and associated flow solution
(b) at Re = 180 and S = 1.095.

Figure 2.11 – Suboptimal "linear sensitivity-based finite amplitude control" (a) and associated
flow solution (b) at Re = 180 and S = 1.095.
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bubble are sufficient to restore the stability of the flow and this stabilization goes together

with a small frequency shift reported in fig. 2.9(b).

The determination of this optimal, nonlinear, predictive control requires a computationally

expensive iterative minimization procedure. A linear sensitivity-based finite amplitude control

therefore provides a promising alternative. The latter is included in red dashed curve in fig.

2.9(a), showing that, although linearity is preserved, flow stabilization is achieved for approxi-

mately two times more control amplitude. A comparison of both volume force distributions

in fig. 2.10(a) and 2.11(a) shows in addition that the first gradient direction may deviate quite

substantially from the nonlinear optimal control. While the latter suggests to decelerate the

flow in the inlet region, thereby pulling on the recirculation bubble, the sensitivity-based

centerline axial force accelerates the flow upstream of the bubble, thereby pushing the bubble

downstream. This results in slightly different flow topologies (see fig. 2.10b and 2.11b), noting

that in both cases, the bubble is slightly smaller than in the nominal, unstable, base flow

reported in fig. 2.5(a). In contrast the volume forces acting in bubble wake around Z = 5 are

very similar and act to accelerate the flow in the wake region. This is also clearly visible from

the resulting controlled flows (fig. 2.10b and 2.11b) when compared to the base flow (fig. 2.5a).

All these results illustrate that, even for moderate growth rates, the finite amplitude linear

sensitivity to a steady force can remain significantly suboptimal.

We now turn our attention to the mean flow stabilization control, first at Re = 180.

2.5.3 Mean flow stabilization at Re = 180

The control magnitude and eigenvalue path during the minimization process are exhibited

in solid red lines in fig. 2.12(a) and (b) for the "mean flow stabilization control" at Re =
180, together with the "linear sensitivity-based finite amplitude control" of the mean flow

(red dashed lines). The optimal mean flow stabilization control is reached for a norm of

||F∗|| = 0.0057 while the linear sensitivity-based finite amplitude control stabilizes the flow

for ||F∗|| = 0.014. These values compare very well with those obtained for the base flow

stabilization control. The volume force and controlled solution, see fig. 2.13, are also very

similar to those of the base flow control, see fig. 2.10. This indicates the consistency of both

approaches targeting the dominant growth rate of the mean and base flows respectively, for

parameters close to the bifurcation threshold, even if the least unstable eigenvalues of the

base and mean flow differ by a factor 10. The 3-D vorticity contour of the controlled flow

solution is plotted in fig. 2.16(a), demonstrating that the axisymmetry of the flow is restored

and the inspection of the time-dependent traces remains stationary.

The linear sensitivity-based finite amplitude control about the mean flow is presented in fig.

2.14(a) and represents the initial sensitivity to a steady force for Re = 180. The receptivity

distribution, while suboptimal, is very similar to the nonlinear sensitivity map, and enables a

correct identification of the maximum and minimum locations.
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Figure 2.12 – Mean flow dominant growth rate, normalized by the most unstable uncontrolled
mean flow eigenvalue at Re = 180 (red curves) and Re = 300 (blue curves) as a function of the
norm of the control (a) and of the angular frequency of the mode (b) for the nonlinear mean
flow stabilization (solid curves) and the "linear sensitivity-based finite amplitude control"
(dashed curves).

Figure 2.13 – Time averaged 3-D Navier Stokes solution of the "mean flow stabilization control"
(b) and the related force applied (a) for Re = 180 at convergence.

Figure 2.14 – Suboptimal "linear sensitivity-based finite amplitude control" about the mean
flow at Re = 180 (a) and Re = 300 (b) for a swirl number of S = 1.095.

35



Chapter 2. Stability analysis and predicitive control of spiral vortex breakdown

2.5.4 Mean flow stabilization at Re = 300

At Re = 300, the minimization path is less straight, and the optimal solution (solid blue line

in fig. 2.12) seems to oscillate around the trajectory of the "linear sensitivity-based finite

amplitude control" (dashed blue line in fig. 2.12) before eventually sensibly reducing the

eigenvalue growth rate at the end of the algorithm. The control magnitude is ||F∗|| = 0.019

at convergence, to be compared with the value of ||F∗|| = 0.027 required for the mean flow

"linear sensitivity-based finite amplitude control". The optimal volume force as well as the

resulting controlled flow solution are exhibited in fig. 2.15. In contrast to the Reynolds number

Re = 180 case, most of the control effort is located in the recirculating bubble region while

little forcing acts in the wake region. The upstream forcing blows the bubble downstream, as

opposed to the optimal forcing at Re = 180, where the bubble was sucked. The controlled flow

solution has no recirculation, but adopts instead a wavy form and demonstrates therefore

that a large modification of the mean flow is required to restore its stability, while a small

modification is required at a Reynolds value of Re = 180. The 3-D solution is displayed in

fig. 2.16(b), demonstrating the axisymmetrization of the controlled flow. Although several

waves are observed on the vorticity contour, we have checked that the controlled flow remains

steady. In addition, the "linear sensitivity-based finite amplitude control" about the mean flow

is presented in fig. 2.14(b) and represents the initial sensitivity to a steady force for Re = 300.

Similarly to the "mean flow stabilization control" at a Reynolds value of Re = 180, the linear

receptivity well identifies the maximum and minimum of the nonlinear receptivity map (see

fig. 2.15a), although it remains suboptimal (see fig. 2.12).

Figure 2.15 – Time averaged 3-D Navier Stokes solution of the mean flow stabilization control
(b) and the related force applied (a) for Re = 300 at convergence.

2.6 Discussion & Conclusion

In this study, we have first discussed the validity of the base flow and mean flow stability

analysis in predicting the frequency of the self-sustained single spiral vortex breakdown mode

appearing for sufficient swirl and Reynolds numbers in the flow geometry of Ruith et al. [57].

Fixing the swirl number to S = 1.095, we have seen that the two stability analyses coincide
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Figure 2.16 – 3-D Navier Stokes vorticity of the optimal mean flow stabilization control solution
for Re = 180 (a) and Re = 300 (b). These 3D-flows are steady solutions and they correspond to
the mean flows (and therefore base) reported in fig. 2.13 and 2.15.

with the limit cycle frequency close to the bifurcation threshold until Re ∼ 200. For larger

Reynolds number, the mean flow stability analysis provides an excellent prediction of the

dominant frequency in the nonlinear simulations, in contrast to the base flow stability analysis,

as the consequence of an important mean flow modification: while the base flow has two

recirculation bubbles at Re = 300, the mean flow has only one much smaller recirculation

bubble. This result emphasizes the successful prediction provided by the stability analysis

around the mean flow, which was also recently reported for turbulent mean flow in industrial

applications (Oberleithner et al. [49], Paredes et al [50], Tammisola & Juniper [48] and Pasche

et al. [65]). Moreover in the present study, we observe a second unstable global mode above

a Reynolds value of Re = 300. This second instability should be interpreted in light of the

self-consistent model for saturation dynamics of self-sustained instabilities (Mantic̃-Lugo et

al. [84]).

We have then investigated the predictive control of the spiral vortex breakdown based on

adjoint optimization method. The spiral vortex breakdown was quenched by an axisymmetric

steady volume force distribution on (eR ,eZ ) obtained by minimizing two different objective

functions, a nonconvex objective function targeting the most unstable eigenvalue growth

rate of the base or mean flow stability analyses, that directly acts on the instability marker

("flow stabilization control") and a quadratic objective function minimizing the norm of the

radial velocity distribution that is inspired by the physical mechanism governing spiral vortex

breakdown ("flow manipulation control"). These control strategies were computed in an ax-

isymmetric domain avoiding expensive 3-D minimization computations. This dimensionality
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reduction from the 3-D domain to a 2-D axisymmetric domain is performed thanks to the

azimuthal Fourier decomposition naturally appearing in the eigenvalue analysis involved in

the "flow stabilization control". We can therefore expect to tackle self-sustained instability

control at larger Reynolds numbers. The gradient direction involved in the minimization of

the "flow stabilization control" uses the linear sensitivity to a steady force (Giannetti & Luchini

[55] and Marquet et al. [6]) at each iteration step. A simpler approach has also been followed

where the first gradient direction is chosen and only the amplitude varied referred to as "linear

sensitivity-based finite amplitude control".

The "flow manipulation control" succeeded in stabilizing the flow at Re = 180, to the price

of a significant control cost. This surrogate control was found suboptimal in contrast to the

"flow stabilization control" but the direction of the volume force upstream of the bubble is

identical and pulls on the recirculation bubble. The "linear sensitivity-based finite amplitude

control" was found also successful but suboptimal. While the force distribution was correct in

the vortex breakdown bubble wake, its sign was opposite to the optimal stabilization control

upstream of the bubble, demonstrating the fragility of this computationally cheaper method.

The control of the mean flow was found equivalent to the base flow control at Re = 180. Both

yielded a controlled flow preserving its recirculation bubble. The same control norm and force

distribution are found for the base and mean flow control, while the growth rate differs by a

factor 10 between the base and mean eigenvalue, showing the consistency of the base and

mean flow eigenvalues control. This result emphasizes the non-neutrality of the eigenvalue

growth rate and its practical usefulness to apply such control strategies. This encouraged us to

explore the mean flow stabilization control at a much larger Reynolds number of Re = 300.

Targeting only the dominant mean flow growth rate, the optimal control was found successful

in quenching all spiral modes for a control cost four times higher than at Re = 180, yielding a

controlled flow solution where recirculation regions were quenched by a volume force pushing

the bubble downstream. The "linear sensitivity-based finite amplitude control" was also found

successful, although suboptimal.

This also suggests using this technique to stabilize instabilities prevailing in a turbulent

background, i.e. in turbulent flows dominated by a self-sustained periodic instability, by using

the sensitivity computed by Meliga et al. [47] for turbulent flows. In the context of spiral

vortex breakdown, a natural extension of the present work is the control of the precessing

vortex rope in Francis turbines operating at off-design conditions (Pasche et al. [110]). While

the finite amplitude volume force projected on the radial and axial component may appear

as a pure theoretical concept, it can be in principle practically realized by an axisymmetric

appendage to control the flow without external energy or it can be used as a design step to

access the most receptive region of the instability by applying blowing or suction along a

suitable region. Alternatively the present control strategy can be generalized to boundary

control. First attempts (section 2.9) indicate that the instability can be quenched successfully

at Reynolds Re = 180 by pure radial inlet injection. This result contrasts with the distributed

control, which shows a larger contribution of the axial component (fig. 2.13). Turning back
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to distributed control, we underline the correct identification by the mean flow based linear

sensitivity map of the minimum and maximum of the nonlinear receptivity regions, both close

to the threshold Re = 180 and far away from it Re = 300. Linear sensitivity maps may therefore

be sufficient to develop an appendage accessing these locations, although their validity cannot

be ensured a priori. Optimal nonlinear sensitivity maps, as developed in this study, appear

therefore as the most consistent and promising approach for industrial applications (Paredes

et al. [50] and Pasche et al. [110]).

2.7 Appendix: Validation and convergence studies

2.7.1 Validation of the 3-D DNS

The 3-D direct numerical flow simulations have been validated by changing the mesh size,

the mesh topology, the boundary conditions, the domain dimensions and the time step for a

fixed swirl number S = 1.095 and Reynolds number Re = 200. The convergence criterion is

based on the deviation of the frequency and the amplitude of the radial velocity component

of the single helical vortex flow. These values are monitored at (R,θ, Z ) = (0.1,0.0,5.0) which

is located after the bubble, in the helical flow region. The results of this convergence study

are displayed on Table 2.2. The topology of the mesh is an O-grid type with two different cell

arrangements in the center: diamond cells that almost preserve the azimuthal symmetry of the

problem and square cells. All cells have a P10 and P8 spectral discretizations with a uniform

number of nodes nx x ny x nz = 10 x 10 x 10 and nx x ny x nz = 8 x 8 x 8 for velocities and

pressure respectively. The robustness of the solutions with respect to the convective boundary

Case Topology BC on Γext Zmax Rmax ne CFL 3-D (Amp,freq) Eigenvalue

M5 Diamonds free-outflow 40 50 11040 0.37 (0.1299,0.1991) (0.01427,1.25009)

M6 Diamonds free-outflow 60 50 16320 0.37 (0.1224,0.1991) (0.01454,1.25193)

M7 Diamonds free-outflow 40 50 29696 0.44 (0.1284,0.1984) (0.01475,1.25175)

M8 Squares No slip 40 50 12512 0.34 (0.1231,0.1991) -

M9 Diamonds free-outflow 40 50 11040 0.18 (0.1267,0.1991) -

Table 2.2 – Convergence of the 3-D numerical flow simulations and eigenvalues of mean flow
for Re = 200, S = 1.095.

condition on the outlet Γout is investigated by changing the length of the reference domain

to Zmax = 60 for mesh M6 instead of Zmax = 40. The radial unconfinement is guaranteed

by the invariance in regard to the lateral boundary conditions (free-outflow or no-slip). The

CFL number invariance is also investigated on the mesh M9 and finally a refined mesh M7

concludes the convergence analysis. In the present study the mesh M5 is the reference mesh

for the results presented.
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2.7.2 Eigenvalue convergence of the base flow

The mesh of the axisymmetric domain is designed in a way that the convergence of the most

unstable eigenvalue is obtained when solving the eigenvalue problem related to eqn. (2.6).

Therefore different domain sizes and meshes have been investigated, and the values of the

most eigenvalue are resumed on Table 2.3. The mesh M1 has been selected for the present

study and the same mesh is used for the base flow computation.

Mesh Zmax Rmax Sponge length ne Eigenvalue

M1 40 50 60 408866 (0.081167,1.20117)

M2 40 50 60 633502 (0.081610,1.20010)

M3 80 50 60 556443 (0.081277,1.20091)

M4 40 60 60 416488 (0.081175,1.20116)

Table 2.3 – Eigenvalue sensitivity to the mesh configuration for Re = 200, S = 1.095.

2.7.3 Eigenvalue convergence of the mean flow

The mesh designed for the eigenvalue problem of the base flow is kept for the eigenvalue

problem of the mean flow except that the sponge region is removed. The domain without

the sponge region exactly fits the 3-D domain avoiding the need for an extrapolation proce-

dure. A spectral interpolation is solely required to transfer the time averaged flow field to the

axisymmetric velocity space. We have to mention that the convective boundary condition

at the outlet of the 3-D domain is replaced by a free-outflow condition at the outlet of the

axisymmetric domain. This does not have any impact on the convergence of the eigenvalues,

as supported by the invariance of the eigenvalue with respect to the length of the 3-D domain

(see the last column of Table 2.2). For the reference mesh M5, the refined mesh M7 and the

longer domain mesh M6, both the frequency and the growth rates of the eigenvalues are

similar.

2.8 Appendix: Optimal control problem

2.8.1 Optimal control theory

The formalism of the optimal control problem for the "flow manipulation control" and the

"flow stabilization control" is introduced in this appendix. Our aim is to solve the following
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general constrained minimization problem:

find F ∈U , F = min J (F,C) with

(C ·∇)C =−∇P +Re−1∇2C+F in Ωa

∇·C = 0 in Ωa

−iωc+ (C ·∇)c+ (c ·∇)C =−∇p +Re−1∇2c in Ωa

∇·c = 0 in Ωa

G(C) = 0 on Γ

g (c) = 0 on Γ,

(2.10)

where J is the objective function, (C,P ) ∈ V the state variables, F the control variable, [c, p]

the global eigenmodes, Ω the domain, Γ the boundaries of the domain, G and g the associated

boundary conditions and V and U two Hilbert spaces.

We consider first the "flow manipulation problem" for a distributed control, the objective

function of which reads:

JM ani p (F) =
1

2

∫∫
Ωa

||C(F)−zd||2 dΩa +
α

2

∫∫
Ωa

||F||2 dΩa , (2.11)

with zd = 0, C = (CR ,0,0) and F = (FR ,0,FZ ). This objective function targets a minimal radial

velocity component controlled by radial and axial distributed volume forces. Since we have

defined the objective function, the associated Lagrangian functional with respect to the

governing equations expresses as

L
(
[C,P ],F, [C†,P †]

)
=J (C,F)−a(C,C†)−d(C,C,C†)

−b(C†,P )−b(C,P †)+< F,C† >, (2.12)

where a(., .), b(., .) are the bilinear form of the viscous, pressure and divergence, < ., . > is the

Hermitian inner product, d(., ., .) is the trilinear form and [C†,P †] are the Lagrange multipliers,

also called adjoint variables. Observe that the eigenvalue equation does not appear in this

Lagrangian, since it is not a control target, as we manipulate the base flow by targeting the

radial velocity intensity as a proxy for flow non-parallelism. The distinct set of equations

systems solved in the minimization problem are derived by satisfying the first order optimal

condition of the Lagrangian, according to

d

dε
L ([...+εΦ])

∣∣∣∣
ε=0

= 0. (2.13)

This condition is computed by the Frechet derivative, where Φ ∈ V , is test function associated
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to each variable and leads to the state equations, the adjoint problem and the optimality

condition. These systems of equations are expressed in strong form with the boundary

conditions related to our problem in eqns. (2.14), (2.15) and (2.16).

State equations:

∇C ·C =−∇P +Re−1∇2C+F in Ωa

∇·C = 0 in Ωa

CR (R) = 0, Cθ(R) = SΨ, CZ (R) = 1 on Γi n

CR =Cθ = ∂RCZ = 0 on Γaxi s

Re−1∂nC−Pn = 0 on Γext ,Γout

(2.14)

Adjoint equations:

∇T C ·C† −∇C† ·C =−∇P † +Re−1∇2C† +C−zd in Ωa

∇·C† = 0 in Ωa

C† = 0 on Γi n

C †
R =C †

θ
= ∂RC †

Z = 0 on Γaxi s

Re−1∂nC† −P †n+ (C ·n)C† = 0 on Γext ,Γout

(2.15)

Optimality condition:

∇J = C† +αF

(2.16)

As highlighted in the body of the paper, the main advantage of this flow manipulation control

approach is to ensure a quadratic objective function.

We next consider the direct so-called "flow stabilization control" problem for a distributed

control, the objective function of which reads:

JSt ab(F) = |ℑ(ω)|+
α

2

∫∫
Ωa

||F||2 dΩa . (2.17)
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The Lagrangian functional of this minimization problem is expressed as:

L
(
ω, [c, p], [C,P ], [c†, p†], [C†,P †],F

)
=J (ω,F)− t (c,c†)−a(c,c†)

−d(c,C,c†)−d(C,c,c†)−b(c†, p)−b(c, p†)−a(C,C†)−d(C,C,C†)

−b(C†,P )−b(C,P †)+< F,C† >, (2.18)

where t (., .) is the mass matrix of the time derivative including the eigenvalue ω. Following the

same procedure as for the previous problem, the stationary point of the Lagrangian functional

leads to a system of 6 equations, the state equation, the direct eigenvalue problem, the adjoint

eigenvalue problem, a normalization condition, the adjoint problem and the optimality

condition. These problems are expressed in strong from with the boundary conditions related

to our study in eqns (2.19), (2.20), (2.21), (2.22), (2.23) and (2.24).

State equations:

∇C ·C =−∇P +Re−1∇2C+F in Ωa

∇·C = 0 in Ωa

CR (R) = 0, Cθ(R) = SΨ, CZ (R) = 1 on Γi n

CR =Cθ = ∂RCZ = 0 on Γaxi s

Re−1∂nC−Pn = 0 on Γext ,Γout

(2.19)

Direct eigenvalue equations:

−iωc+∇mc ·C+∇C ·c =−∇m p +Re−1∇2
mc in Ωa

∇m ·c = 0 in Ωa

c = 0 on Γi n

c.f. Table 2.1 on Γaxi s

Re−1∂nc−pn = 0 on Γext ,Γout

(2.20)
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Adjoint eigenvalue equations:

iω∗c† +∇T
mC ·c† −∇mc† ·C =−∇m p† +Re−1∇2

mc† in Ωa

∇m ·c† = 0 in Ωa

c† = 0 on Γi n

c.f. Table 2.1 on Γaxi s

Re−1∂nc† −p†n+ (C ·n)c† = 0 on Γext ,Γout

(2.21)

Normalization condition:

1−< c,c† >= 0 in Ωa

(2.22)

Adjoint equations:

∇T C ·C† −∇C† ·C =−∇P † +Re−1∇2C† +∇mc† ·c∗ − (∇mc)H ·c† in Ωa

∇·C† = 0 in Ωa

C† = 0 on Γi n

C †
R =C †

θ
= ∂RC †

Z = 0 on Γaxi s

Re−1∂nC† −P †n+ (C ·n)C† − (c∗ ·n)c† = 0 on Γext ,Γout

(2.23)

Optimality condition:

∇J = C† +αF

(2.24)

These systems of equations are solved iteratively by a conjugate gradient method in the

FreeFEM++ software, except for the mean flow, which is computed by NEK5000 and then

interpolated on the 2-D axisymmetric mesh.
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Figure 2.17 – Objective function evolution as a function of iteration steps and normalized
error.

Figure 2.18 – Dominant growth rate as a function of the norm of the control (a) and of the
angular frequency of the mode (b) for the "flow manipulation control".

2.8.2 Validation of the optimal control problem

The evolution of the "flow manipulation" objective function and its normalized error between

two consecutive steps are displayed in fig. 2.17 and the variation of the eigenvalue during the

minimization process is displayed in fig. 2.18. The algorithm converges to a minimum where

the radial velocity component of the flow is indeed very small. The most unstable eigenvalue

is stabilized before the minimum of the objective function is reached.

The minimization of the objective function associated to the "flow stabilization control"

is nonconvex and therefore several solutions may exist. All these solutions are legitimate

for the problem but the set of these solutions must be almost invariant with respect to the

optimization algorithm to obtain an optimal control. Thus we compute the "flow stabilization

control" for different initial step length τ and two different algorithms. The first one is the

conjugate gradient method that is used for the previously outlined optimization procedure

and the second is the steepest descent method. The results are displayed in fig. 2.19 and we

observe that the path of the eigenvalue during the minimization procedure is similar in all
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Figure 2.19 – Dominant growth rate as a function of the norm of the control (a) and of the
angular frequency of the mode (b) for different minimization algorithms.

cases. The solution thus appears as quasi-independent of the computational parameters,

ensuring its robustness and validity. Finally, the influence of α is not presented here because

the solutions were seen to be invariant with respect to this parameter. We set α= 10−5 in the

present study.

2.9 Appendix: Boundary control

The minimization algorithm, presented in this study, can be modified to control the inlet

boundary condition of the Grabowski & Berger [78] vortex at Re = 180 considering, for instance,

the eigenvalue growth rate linearized around the base flow. The objective function is written

as

Inlet flow stabilization control

Min JSt ab(f) = |ℑ(ω)|+
α

2

∫
Γi n

||f||2 dΓi n , (2.25)

where α = 1 ·10−5 is kept constant and the force on the inlet boundary is projected on the

radial and axial components as for the distributed control. The state equation reads:

State equations:

∇C ·C =−∇P +Re−1∇2C in Ωa

∇·C = 0 in Ωa

CR (R) = 0+ fR , Cθ(R) = SΨ, CZ (R) = 1+ fZ on Γi n

CR =Cθ = ∂RCZ = 0 on Γaxi s

Re−1∂nC−Pn = 0 on Γext ,Γout ,

(2.26)
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and the gradient direction that minimize the eigenvalue growth rate is given by

∇J =−
dC†

dn
+αf on Γi n , (2.27)

This algorithm follows the same step as for the distributed control. The base flow equations,

the direct eigenvalue equations, the adjoint eigenvalue equations, the normalization condition,

the adjoint equations are solved to compute the optimality condition eqn. (2.27). The results

of this control strategy applied to the base flow and for a Reynolds value of Re = 180 are

displayed in fig. 2.20 and 2.21. The optimal inlet condition reported in fig. 2.20(a) successfully

Figure 2.20 – Optimal inlet velocity profile to stabilize the spiral vortex breakdown at a Reynolds
value of Re = 180, determined by controlling the eigenvalue growth rate from the base flow (a)
and the associated flow distribution (b).

stabilizes the spiral vortex breakdown by imposing a negative radial velocity, and no noticeable

modification to the axial component. Such inlet velocity profile leads to a controlled flow

solution (see fig. 2.20b) suppressing the recirculation zone and having the same wavy form

as for the distributed control at a Reynolds value of Re = 300 (see fig. 2.15b). The control

magnitude and the eigenvalue paths during the minimization process are illustrated in fig.

2.21 (yellow solid curves). These dimensionless curves are superimposed with the distributed

control results obtained in this paper, although the the norms of the distributed and boundary

controls have different physical meanings. The yellow solid curve in fig. 2.21(a) reports the

stabilization of the most unstable eigenvalue growth rate by the inlet flow stabilization control.

We surprisingly observe that the axial velocity component is kept untouched, while solely the

radial velocity component is modified to quench the helical instability. This result contrasts

with the distributed control, which shows largest control effort on the axial component. We,

therefore, observe that a constrained optimization in a more restrictive set of parameters

(boundary vs distributed) can distort or even miss the relevant information about the dis-

tribution of the receptivity region of the instability, which are mainly carried by the axial

component in the present case. In addition, the gradient of the adjoint state in turbulent

industrial applications may be oscillating and could jeopardize the robustness of boundary

control algorithms.
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Figure 2.21 – Base flow dominant growth rate normalized by the most unstable uncontrolled
eigenvalue at Re = 180 as a function of the norm of the control (a) and of the angular frequency
of the mode (b) for the "flow manipulation control" (blue solid curve), the "base flow stabi-
lization distributed control" (red solid curve), the "linear sensitivity-based finite amplitude
distributed control" (red dashed curve), and the "base flow stabilization inlet control" (yellow
solid curve).
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3 Stability analysis of mean turbulent
swirling flows at Re = O(106): Applica-
tion to the Francis turbine part load
vortex rope

The stability analysis of the Francis turbine part load vortex rope is assessed in this chapter.

The coherent structure of this vortex flow, which is kept at a high Reynolds number Re = O(106),

makes this industrial flow an excellent candidate to validate the linear stability analysis around

mean turbulent flows. The part load vortex rope often associated to the vortex breakdown

phenomenon is definitely shown to come from the same mechanism, the development of a

globally unstable disturbance inducing self-sustained oscillations.

The variables used in this document are suseptible to change in comparison to the submitted

version of the article to keep the document consistency.

PAPER: Part Load Vortex Rope as a Global Unstable Mode
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Renewable energy sources (RES) have reached 23.7% of the worldwide electrical generation

production in 2015. The hydraulic energy contribution amounts to 16.6% and comes mainly

form large-scale hydropower plants, where Francis turbines represents 60% of the generating

units. However, the future massive development of RES will require more advanced grid

regulation strategies that may be achieved by increasing the operation flexibility of the Francis

generating units. Part load operating condition of these turbines is hindered by pressure

fluctuations in the draft tube of the machine. A precessing helical vortex rope develops in

this condition, which imperils the mechanical structure and limits the operation flexibility

of these turbines. A thorough description of the physical mechanism leading to the vortex

rope is a prerequisite to develop relevant flow control strategies. This work, based on a linear

global stability analysis of the time-averaged flow field, including a turbulent eddy viscosity,

interprets the vortex rope as a global unstable eigenmode. In close resemblance to spiral

vortex breakdown, a single-helix disturbance develops around the time-averaged flow field

and growths in time to finally form the vortex rope. The frequency and the structure of this

unstable linear disturbance are found in good agreement with respect to the 3-D numerical

flow simulations.

3.1 Introduction

A massive penetration of alternative renewable energies and a broad deployment of energy

efficiency initiatives and technologies reflect the current energy developments. In this context,

hydropower already contributes and will increasingly do so, on one hand, to participate to

renewable energy production and, on the other, to absorb the highly dynamic energy storage

requirements associated to a widely distributed injection of the photovoltaic and wind energy

into the transmission and the distribution systems. The hydropower thereby preserves the

stability of these systems through the provision of advanced system services.

Hydraulic turbines are able to produce several hundreds of megawatts in a time lapse of
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the order of a minute, which makes them excellent candidates for the regulation of grid

fluctuations. The use of Francis turbines, which represent the largest turbine market, in

this regulation context hinges on the prescriptions on the operating conditions. Standard

operating conditions are met at the Best Efficiency operating Point (BEP) of the turbine. At the

BEP, which is the design point of the runner, an axial flow is produced in the draft tube of the

turbine that minimizes the hydraulic losses. The turbines can however respond to fast and

elastic grid fluctuations only by operating at off-design conditions. This not only increases the

hydraulic losses at the price of a reduced efficiency, this merely exposes the turbines to risks of

operating instability, structural fatigue as well as resonance of the mechanical structures due

to the appearance of a vortex flow in the draft tube which produces large pressure fluctuations.

Flow control strategies aimed at mitigating the development of hydrodynamic instabilities are

therefore desirable to improve the flexibility of the operating regime of Francis turbines.

A detailed understanding of the unsteady vortex flows appearing in the draft tube is a pre-

requisite for the development of targeted control methods. Two different vortex structures

have been observed in Francis turbines: an axisymmetric pulsating vortex rope at full load

operating conditions (see Jacob et al. [111] and Tsujimoto et al. [112]) and a helical precess-

ing vortex rope at part load operating conditions, which is relevant in the context of grid

regulation and which the present study is focused. The first observations of this precessing

vortex rope were reported by Dériaz [113] when he investigated the pressure surge effect,

that was discovered in a hydroelectric power plant, see Rheingans [106]. Nishi et al. [12]

then characterized the different flow regimes and investigated the frequency dependency

against the operating conditions. Theses authors also identified a synchronous and convective

component of the pressure fluctuations by signal decomposition of pressure measurements.

Deeper experimental investigations were performed by unsteady wall pressure measurements

reported by Arpe & Avellan [8], laser Doppler velocimetry and two-phase flow particle image

velocity by Ciocan et al. [9], Iliescu et al. [16], Favrel et al. [17], Müller et al. [114]. From an

analytical point of view, idealized models of the instantaneous vortex rope were derived to

better describe this phenomenon (Dörfler [115] and Fanelli [38]). Susan-Resiga et al. [116]

have succeeded in modeling the mean flow velocity at the runner outlet over a broad range of

operating conditions of the Francis turbine by the superposition of three elementary vortices.

They also performed a linear wave perturbation analysis of these fitted velocity profiles and

showed that the flow is sensitive to axisymmetric disturbances when a sudden variation in

the draft tube pressure recovery occurs. This sudden variation results in a transition from

supercritical to a subcritical state as the discharge coefficient decreases, and is reminiscent

of vortex breakdown. Kuibin et al. [117] have derived an analytical model to predict the

time averaged velocity profile at the runner outlet and the frequency of the vortex rope as a

function of the discharge coefficient, the dimensionless flux of momentum, and the swirl-free

radial velocity profile. In this study, we interpret the vortex rope as the development of an

infinitesimal global disturbance of the turbulent mean flow, conducting a so-called global

hydrodynamic instability analysis.

Hydrodynamic instability analysis investigates the development of infinitesimal disturbances
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emerging from a base state. The first theory which has been developed is the so-called local

temporal stability analysis, which considers the linearized time-evolution of perturbations

superimposed on a streamwise (say ex ) base flow. Further assuming a wavy dependence of

the form exp((i (kx −ωt )) for a prescribed wavelength 2π/k, this yields a dispersion relation

ω(k). The stable or unstable nature of the flow is then given by the sign of the imaginary

part of the dispersion relation. The flow is unstable if there exists at least one wavenumber

with positive imaginary part of the frequency. This approach has been very successful in

explaining and predicting several instabilities, e.g. the Rayleigh-Plateau, Rayleigh-Taylor or

Kelvin-Helmholz instabilities, among others. However this approach fails to correctly capture

the effect of advection on the behavior of a spatially developing flow. In real situations, there

is indeed often a dominant advection direction and the question becomes to evaluate the

growth in time and space of incoming fluctuations. This has led to the concept of convective

and absolute instability, which distinguishes the situation where advection dominates over

growth and where instability waves are swept away while they grow (convective instability)

from the one where growth dominates over advection and some instability waves withstand

the advection and invade the entire domain (absolute instability). In less idealized, spatially

developing flows, locally absolutely unstable flows give rise to synchronized oscillator behavior

while convectively unstable flows behave as noise amplifiers. Despite their importance in the

physical understanding of instabilities, the local stability approaches are limited to weakly

non-parallel flows and difficult to apply in real flows. In situations where the geometry is

complex, such as draft tubes and where in addition the flow quickly recovers when exiting the

rotating vanes, the flow evolves over length scales which are comparable to the wavelength

of the instability and the weakly non parallel theories can be questioned. One has then to

resort to global stability analysis where the full base flow is considered and yields a 2-D, 2-D

axisymmetric or sometimes even 3-D eigenvalue problem, that can now be tackled with the

power of modern high performance computers. The success of this approach to low-Reynolds

number flows in recent years is impressive: it ranges from wake flows around obstacles

(Barkley [5]) to idealized configurations of swirling wakes Meliga & Gallaire [98] as well as

jets-in-cross flows (see Theofilis [46] for a review). Its generalization to the global stability

analysis of turbulent flows at high Reynolds number has been found recently successful by

Meliga et al. [47].

In this study, we apply global hydrodynamic instability analysis to the turbulent mean flow

in a draft tube. This contrasts with the local stability analysis of helical modes of Zhang et

al. [118]. More recently Topor & Bristrian [119] have investigated the absolute/convective

inviscid instability of the mean velocity profile at the runner outlet and obtained a satisfactory

prediction of the frequency and wavelength of the vortex rope. A global stability analysis

of inviscid flow has also been recently performed by Pochyly et al. [120] on the solution of

the Reynolds-Averaged-Navier-Stokes equations, resulting in a myriad of unstable modes,

one of which captures the vortex rope frequency. While these studies highlight the unstable

character of the flow at part-load conditions, they have only partially succeeded in describing

the intrinsic physical mechanism originating in the vortex rope.
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The paper is structured as follows: the framework of the global stability analysis applied to

the vortex rope is presented under section 3.2 then the numerical tools are presented, section

3.3. The results of the 3-D numerical flow simulations are exhibited and a comparison with

experimental measurements is performed under section 3.4. The mean flow quantities are

extracted in section 3.5 and the global stability analysis on the turbulent mean flow is carried

out in section 3.6. Finally the application of the global stability analysis on the vortex rope is

discussed under section 3.7.

3.2 Problem formulation

The precessing vortex rope appearing in the draft tube cone of a Francis turbine operating

at part load conditions is investigated by global linear stability analysis for the FLINDT Case

study - Flow Investigation In Draft Tube - project, Eureka No. 1625. Since the rotating vortex

is an unsteady phenomenon occurring at high Reynolds number, no steady solution of the

governing equations can be obtained numerically, only unsteady solutions are available from

computations. This restriction results in a modification of the classical formalism of the linear

stability analysis. Thus instead of computing the evolution of infinitesimal perturbations

emerging from a base flow, or fixed point, defined as a steady solution of the Navier-Stokes

equations in our case, the global linear stability analysis is performed on the mean flow,

the time averaged solution of the unsteady equations. The shift from base to mean flow

is mathematically valid when the Reynolds stresses are unperturbed at leading order, as

discussed by Barkley [5]. However the vortex rope is far from this assumption and the validity

of applying a global linear stability approach remains questionable. There are only several

flows where periodic coherent structures persist at high Reynolds number. Jet flows and shear

flows are classical examples where a broadband spectrum appears with the turbulent level in

contrast to the bluff body or the vortex rope which robustly exist at high Reynolds number.

Thus the vortex rope is an appropriate candidate to evaluate the emergence of infinitesimal

perturbations in turbulent flow and therefore the outcomes of instability theory for coherent

structure prediction.

The 3-D flow field of the initial geometry of the turbine is computed and validated with

experimental results from Arpe & Avellan [8] and Ciocan et al. [9]. The periodic motion of

the flow field allows us to design a second geometry of the draft tube, a Moody type draft

tube by discharge velocity conservation over the cross sections of the original one. This is the

main point to perform accurate linear global stability analysis, by reducing from a 3-D to a

2-D axisymmetric formulation. On the practical side, the main drawback for using a Moody

draft tube is the impact on the turbine efficiency but this is out of the scope of this study. We

show that the eigenvalues and eigenmodes solutions of the 2-D axisymmetric linear global

stability analysis inform us about the frequency values and the growth rates of the developed

perturbed modes in the draft tube of the Francis turbine.
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3.3 Numerical tools

3.3.1 3-D flow field

Three dimensional numerical flow simulations are performed for the reference part load

operating condition of the FLINDT project for a flow rate coefficient of φ = 0.27, a specific

energy of ψ= 1.16, a Thomas cavitation number of σ= 1.16 and a Reynolds number based on

the runner outlet diameter of Re ≈ 106. At this regime, cavitation free conditions exist. Only

the flow in the runner and the draft tube is computed using ANSYS CFX 15.0 software. This

computational domain was demonstrated to be sufficient to accurately predict the unsteady

behaviour of the vortex rope, see Ciocan et al. [9]. Unsteady Reynolds Average Navier-Stokes

S1.3

S1.75

S1.3S1.75

Pressure Sensors

12

3 4

12
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Figure 3.1 – Cross section of the FLINDT geometry with the location of the section 1.3 and 1.75
and their cross planes where pressure sensors are located.

(URANS) equations are solved considering the following boundary conditions: A constant

velocity profile and a turbulence intensity are imposed at the inlet boundary where their

values come from a previous steady calculation of the spiral casing and distributor, as Ciocan

et al. [9], and open conditions are applied at the outlet of the domain. A transient rotor

stator interaction allows the flow to transit from the runner domain to the draft tube domain

by a general grid connection (GGI) method, which takes into account all interaction effects

between components. Mesh is locally refined in the runner and in the draft tube cone to

obtain an accurate solution of the flow field in these regions. SAS-SST turbulence model is

used to correctly capture flow separation in the runner, Egorov & Menter [121], in order to

obtain an accurate flow field at the runner outlet that is the starting point of the vortex rope.
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Three different meshes are used to analyze the mesh influence, 3.7 mio, 7.5 mio and 14 mio of

cells with a mean y+ of 136, 90, and 23, respectively. A time step of 1◦ of runner revolution is

used to obtain a rms convergence error of each components of 10−4. The simulation runs for

5 vortex rope revolutions, i.e. about 18 runner revolutions, after an initialization phase that

includes the transient effects. Pressure is monitored on two sections (1.3 & 1.75) in the cone

by 22 sensors at the same location as the experimental measurements of Arpe & Avellan [8],

see fig. 3.1, allowing us to validate the results with experimental data. The time averaged flow

field is computed while the simulation is running, and starts after the transient effects to 5

vortex revolutions.

The flow field in the Moody draft tube type designed from the original elbow type is computed

using the same numerical setup of the original one excepts that the mesh contains a total of

4.0 mio, 7.5 mio and 10 mio of cells spread in the runner, the draft tube cone and the diffuser.

3.3.2 2-D global linear stability analysis

The stability analysis is performed on the time averaged flow field of the Moody draft tube.

Since the mean flow is turbulent, the stability analysis has to consider the spatial variation of

eddy viscosity in its formulation which leads to a linear stability analysis of a turbulent mean

flow. The dynamical equations driven small amplitude wave disturbances C̃ in incompressible

turbulent flow were first derived by Reynolds & Hussain [122]. The primitive variables are

decomposed in a time averaged [̄·], a periodic [̃·] and turbulent fluctuations [·]′, in order that

the velocity yields to

C = C̄+ C̃+C′, (3.1)

where phase averaging operator holds

〈C〉 = C̄+ C̃. (3.2)

The phase averaging operator is applied to the triple decomposed Navier-Stokes equations.

The results are subtracted to the time average of the same equations. This leads to the non-

linear evolution of the periodic perturbations,

∂C̃

∂t
+∇C̃ · C̄+∇C̄ · C̃ =−∇P̃ +Re−1∇2C̃+∇·

(
C̃C̃− C̃C̃

)
+∇·

(
C′C′ − 〈C′C′〉

)
∇· C̃ = 0

(3.3)

The closure problem of eqn. (3.3) is solved by using Boussinesq approximation for the time av-

eraging −C ′
i C ′

j = 2νt S̄i j −2/3k̄δi j and phase averaging −〈C ′
i C ′

j 〉 = 2νt 〈Si j 〉−2/3〈k〉δi j , where

Si j is the strain tensor defined as Si j = 1/2(∂Ci /∂X j +∂C j /∂Xi ), and assuming that the phase

averaging process only affects the turbulence structure and not the energy, i.e. 〈k〉 = k̄, see

Reynolds & Hussain [122] and Viola et al. [123] for more details.
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In the frameworks of stability analysis, a linearised version of eqn. (3.3) is derived including

the previous assumptions. The term ∇ ·
(
C̃C̃− C̃C̃

)
is cancelled due to higher order non-

linearity, and the term ∇ ·
(
C′C′ − 〈C′C′〉

)
is simplified using the eddy viscosity formulation

∇·[νt
(
C̄

)(∇+∇T
)

C̃
]

and the linearisation of the turbulence model ∇·[(∇νt (C̄) · C̃)(∇+∇T )C̄
]
.

The contribution from the linearisation of the turbulence model ∇· [(∇νt (C̄) · C̃)(∇+∇T )C̄
]

is

assumed to be small and is neglected, as Mettot et al. [95], Meliga et al. [47], Cossu et al.[124],

Delàlamo & Jiminez [125] and Reynolds & Hussain [122]. Finally the periodic disturbance

(C̃, P̃ ) is expanded in normal mode according to

(C̃, P̃ )(R,θ, Z , t ) = (c, p)(R, Z )e(i (mθ−ωt )) +complex conjugate, (3.4)

where (c, p) are defined as the global eigenmodes and leads to the linearised wave disturbance

equations of turbulent flows for azimuthal wave numbers:

−iωc+∇mc · C̄+∇mC̄ ·c =−∇m p +Re−1∇2
mc+∇m · [νt

(
C̄

)(∇m +∇T
m

)
c
]

∇m ·c = 0,
(3.5)

where νt (C̄) is the spatial eddy viscosity and (∇m) is the gradient operator, (∇m ·) is the di-

vergence operator, (∇2
m) is the laplacian in cylindrical coordinates with the derivative with

respect to θ replaced by i m. At this level different turbulent viscosity models are available

for the stability analysis. The zero order approximation leads to a constant eddy viscosity

νt =C st , while in higher order models, the eddy viscosity is a function of the mean flow C̄. In

a general sense, the eddy viscosity is modelled through the combination of several scalars, like

the kinetic turbulent viscosity k, which are governed by transport equations. For common

models νt becomes, νt =C st ·k2/ε for the k −ε model or νt = k/ω for the k −ω model which

by definition is locally dependent of the instantaneous velocity. In our case for SAS-SST model

the definition of νt is a quite tedious and is not presented here, see Egorov & Menter [121].

The spatial eddy viscosity νt (C̄ ) is a solution of the 3-D numerical flow simulation and is

accessible to perform the stability analysis. This approach is referred to as eddy viscosity

model and is used as reference eigenvalue computation. A second approach, with constant

eddy viscosity νt (C̄ ) = νt , is also defined and allows us to investigate the influence of the eddy

viscosity model in the stability analysis. This last definition leads to the simplification of the

dissipative term of eqn. (3.5) to
(
Re−1∇2

mc+∇m · [νt
(
C̄

)(∇m +∇T
m

)
c
])= (

(Re−1 +νt )∇2
mc

)
. We

refer to this formulation, which is similar to the frozen eddy viscosity approach of Mettot et al.

[95]. The spatial eddy viscosity distribution is determined, similar as the mean flow, through

successive time and azimuthal averaging procedures. All these variables have been computed

in a dimensional framework and they are made dimensionless to be consistent with the stabil-

ity analysis. The reference length is the runner outlet radius R1e and the reference velocity is

the discharge velocity Cr e f . This defined a Reynolds number of Re = R1eCr e f /ν= 824′400 for

the present computation and a turbulent Reynolds number defined as Ret = R1eCr e f /νt .

The set of equations eqn. (3.5) in axisymmetric form is discretized by finite element methods
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in the software Freefem++, see Meliga & Gallaire [98]. A 2-D axisymmetric domain of the

Francis turbine from the runner blade trailing edge to the outlet of the Moody draft tube is

meshed using P2-P1 triangular finite elements. The resulting eigenvalue problem is solved

using Krylov methods from ARPACK libraries, (Lehoucq [104]), where a direct solver is used for

matrix inversion through a sparse LU factorization (UMFPACK package, Davis [102]). Dirichlet

boundary conditions are imposed at the wall of the turbine and at the inlet. Free-outflow

condition is set at the outlet (−pI+ (Re−1 +νt (C̄))∇c) ·n = 0. On the axisymmetric axis, the

boundary condition that is recalled in Table 3.1 is dependent of the azimuthal wave number m,

see Khorrami [103]. The inlet variables C̄ and νt (C̄) are interpolated on the 2-D axisymmetric

Table 3.1 – Boundary conditions imposed on the symmetry axis of the domain

Wave number Axis boundary conditions

m = 0 cR = cθ = 0, ∂R cZ = 0

m =±1 cZ = p = 0, ∂R cR = ∂R cθ = 0

|m| > 1 cR = cθ = cZ = 0

mesh of the eigenvalue problem using Matlab interpolation tools. This mesh is composed of

approximately 500’000 triangles to compute accurately the eigenvalue ω of eqn. (3.5). The

imaginary part of ω describes the growth or decay of disturbances and the real part of ω

informs about the frequency of these disturbances.

The convergence of the eigenvalues is ensured by the tolerance of the ARPACK solver, set

to 10−6, and by the invariance of the 2-D axisymmetric mesh size. However the eigenvalue

problem incorporates the mean flow, whose native resolution is based on the 3-D mesh size,

that may implicitly induce a variation of the eigenvalues. These variations have been evaluated

by computing the eigenvalues associated to the 3-D meshes, the coarse, the medium and the

fine ones, and reported as error bars in fig. 3.8(c), which is presented in section 3.6.

3.4 3-D flow fields

The 3-D numerical flow simulations of the original draft tube are validated against the experi-

mental measurements, wall pressure and laser Doppler velocimetry measurements on the

sections 1.3 and 1.75 from Arpe & Avellan [8] and Ciocan et al. [9]. The Moody draft tube is

designed with the aim to conserve the velocity field of the original case. This feature is also

evaluated in this section by comparison to the experimental data and the CFD results.

A first relevant parameter of the vortex rope dynamics is its frequency. This frequency is

evaluated by fast Fourier transform of the wall pressure signals at both sections. The frequency

observed in the experiment is fr ope / fr unner = 0.3 and the numerical flow simulations have a
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Figure 3.2 – Phase averaged of the wall pressure signals at section 1.3 (a) and 1.75 (b) at the
sensor 1,2,3 and 4 of the experimental data [8] and the present 3-D numerical flow simulation
of the original elbow.

frequency of fr ope / fr unner = 0.34 for the coarse mesh and fr ope / fr unner = 0.33 for the medium

and fine mesh. Note that no discrepancy is observed between the two sections. The relative

error between the CFD and the experiments, 10%, is slightly improved compare to Ciocan et

al. [9], 13%, but remains in the same order of magnitude. The Moody geometry reproduces

the same frequency as the original draft tube, a value of fr ope / fr unner = 0.33 is computed

for all meshes. The frequency invariance of the numerical flow simulations ensures mesh

independent results for both cases and underlines the self-sustained character of the vortex

rope while a symmetry breaking is imposed by the elbow.

The wall pressure signals provide an accurate insight of the vortex rope dynamics by following

its evolutions over one rotation. A phase averaged post processing is performed to extract the

relevant part of the pressure signal by excluding turbulent fluctuations and noise. A reference

signal, sensor 1, provides the phase change for every signals on the same section. Each pieces

of signal, between two phase change, are superimposed and averaged for an increment of

rotation of 1◦, see Müller et al. [114]. In figure 3.2, the phase averaged signal of the section

1.3 and 1.75 are displayed for the fine mesh of the original draft tube and the experimental

measurements. Both signals of the different sensors reproduce the fluctuations of the vortex

rope. Along section 1.3 the pressure peak and shape are well reproduced. On the section 1.75,

sensor 1 is reproduced accurately but the pressure peaks and the signal shapes of the others

have more discrepancies. The numerical flow simulation is able to reproduce the vortex rope

dynamics in the cone of the draft tube but as it enters the elbow, the results deflect from the

experimental measurements.

This deflection is also seen from the time averaged flow field. Figure 3.3 reproduces the

LDV measurements of Ciocan et al. [9], without error bars and the present results of the

numerical flow simulations. The velocity deficit and the shape of the velocity profile are in

good agreement for the section 1.3. For the axial velocity component, the main velocity deficit

as well as the velocity increase close to the wall are captured by the CFD. The slope of the
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Figure 3.3 – Time averaged velocity profile for the axial and tangential component at the center
line of sections 1.3 (a), (c) and 1.75 (b), (d) for the original and Moody draft tube of the present
3-D numerical flow simulations and the LDV measurements [9].

tangential velocity is also captured in the domain except at a radius of 0.5 where the curve is

smoothed. At section 1.75 the CFD curves of the tangential velocity are smoothed compare to

the experimental results. A plateau appears while in reality the curve has a linear behaviour.

The axial deficit is also larger than in reality. As previously seen, a deflection between the

CFD and the measurements appears in the elbow of the draft tube. Improving the fine scale

resolution by mesh refinement and turbulence model investigation could help obtaining a

more realistic dissipation of the vortex rope in the elbow, potentially yielding closer results with

the experimental measurements. However the behaviour of the vortex rope is well captured in

the cone of the draft tube and the CFD results are in global agreement with the experimental

measurements.

The stability analysis is performed on the time averaged flow field which from the point of

view of the CFD results are identical for the Moody and original draft tube in the cone as seen

in fig. 3.3. This means that the 2-D axisymmetric approximation of the 3-D elbow reflects the

real development of the vortex rope and lets envisage a good transportability of the results of

the stability analysis to the original draft tube.

In summary our numerical flow simulations of the FLINDT turbine are validated with the

experimental data and we succeed in conserving the flow field of the original draft tube with

the Moody draft tube. A last figure exhibits this similarity between the original and Moody draft
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Figure 3.4 – Vortex rope appearing in the original draft tube (a) and in the Moody draft tube
(b), highlighted by a blue iso-pressure and the corresponding instantaneous axial velocity field
on the ZX-cross section.

tube. A slice plane of the instantaneous axial velocity field and the vortex rope materialized by

the same iso-pressure are displayed in fig 3.4(a) and (b) for both cases.

3.5 Time averaged flow field

The time averaged flow field is the reference point where stability analysis is deployed in order

to understand the main characteristics of the flow dynamics. The time averaged axial velocity

displayed in fig. 3.5(a), highlights two regions, an external region where the axial velocity

accelerates along the wall and a center region where the velocity approaches zero. In the

second region, a recirculation appears at the tip of the runner cone where the vortex rope

starts developing, see fig. 3.5(b).

More details of this flow are shown in fig. 3.6, where the velocity profiles on three different

sections are displayed, one just after the runner (fig. 3.6a), one along section 1.3 (fig. 3.6b)

and a last in the middle of section 1.3 and 1.75 (fig. 3.6c). The external region has the axial

and tangential velocity that approaches the discharge velocity and a radial component with

non zero value is observed. The intensity of each component is maximum just after the

runner outlet and decreases progressively along the draft tube. This means that the vortex

rope interpreted as a self-sustained instability has better chances to develop in the upper

part of the cone than at the end of the cone. The center part of the velocity profiles reveals

a plateau that has approximately zero value for the radial and tangential velocity. The radial

length of this plateau grows along the streamline direction and reflects the radial coiling of the
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Figure 3.5 – Time averaged axial velocity field of the vortex rope (a), where the solid black curve
is the iso-contour C̄Z = 0. Zoom on the recirculation region at the tip of the runner cone (b).

Figure 3.6 – Velocity profiles of the time averaged flow field of the Moody draft tube for different
location along the cone, (a) just after the runner, (b) at section 1.3 and (c) between section 1.3
and 1.75.
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vortex rope. This plateau corresponds to the trace of the center part of the helical filament. All

velocity components have a sharp transition between the center and the external region. This

transition results in a shear in three components and coincides with the location of the center

of the instantaneous vortex rope.

Another important point resulting from the 3-D numerical flow simulations is the time aver-

aged spatial distribution of the eddy viscosity νt (C̄ ) that is used for the global stability analysis.

This one is displayed in fig. 3.7 as the turbulent Reynolds number Ret . The colorscale is

limited to 12′000 to be able to observed relevant behaviours.

In the cone center, the turbulent Reynolds number is between Ret = 10′050 and Ret = 4′200.

This one drops to a value of Ret = 1′000 in the fluid region, where the vortex rope precesses.

This spatial distribution exhibits the work of the turbulence model in the URANS equations

which needs to increase locally the fluid viscosity to obtain a solid body rotation in the core of

the vortex rope. The global stability analysis, eqn. (3.5), takes into account both the molecular

viscosity and the eddy viscosity through the Reynolds number and the turbulent Reynolds

number. Recalling that the Reynolds number is Re = 824′400 for the studied flow configuration,

the eddy viscosity prevails over the molecular viscosity, as clearly exhibited in fig. 3.7.

Figure 3.7 – Time averaged turbulent Reynolds number used for the stability analysis.
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3.6 Global Stability Analysis

3.6.1 Frequency prediction

Once the mean velocity field and the mean eddy viscosity are azimuthally averaged and

interpolated on the 2-D axisymmetric mesh, the stability analysis is performed by the means

of the finite element library FreeFEM++. The eigenvalue spectra, using the eddy viscosity

model, show only positive eigenvalues for the azimuthal wave number m = 1, see fig. 3.8(c), as

the single helical vortex observed in the experiments. The eigenvalues for the other azimuthal

wave numbers, especially m = 0 and m = 2, are stable, see fig 3.8(a) and (b). Two eigenvalues

Figure 3.8 – Eigenvalue spectra of the vortex rope for azimuthal wave number (a) m = 0, (b)
m = 2 and (c) m = 1 with standard deviation of the eigenvalues with respect to the mean flow
resolution, highlighted by error bars.

are unstable for m = 1, the first one corresponding to ω = 1.43−0.20i and a second to ω =
3.20−0.27i . We recall that −ℑ(ω) represents the growth rate and ℜ(ω) represents the frequency

associate to the normal mode expansion eqn.(3.4). Note that the second eigenvalue which has

the larger growth rate is sensitive to the mean flow resolution, see the error bars in fig. 3.8(c).

These error bars represent the standard deviation of the eigenvalues with respect to the mean

flow resolution, the coarse, medium and fine 3-D mesh. This behaviour is only observed for

the second unstable eigenvalue while all the others are insensitive. This suggests to exclude

this eigenvalue, due to its lack of robustness and convergence (remind that eigenvalues of a

(3x250′000)2 eigenvalue problem are practically delicate). The only remaining unstable mode

is ω= 1.43−0.20i . The dimensionless frequency of this eigenvalue is fr ope / fr unner = 0.38. The
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frequency prediction of our stability analysis is not far from the reality, a relative error of 15 %

from the CFD results is obtained. This result remains relevant, because the condition to apply

a linear stability analysis is not all met.

3.6.2 Turbulence effects

The unstable eigenvalues are computed with a spatially varying eddy viscosity. As presented

earlier, a constant turbulence model is also used to investigate the involvement of the turbu-

lence in the stability analysis. In the constant model, the turbulent Reynolds number and

Reynolds number are just added. As the first one is preponderant in front of the second one,

the turbulent Reynolds number prevails. Thus the involvement of the turbulence model in the

global stability analysis is investigated by computing the eigenvalue problem for a series of

turbulent Reynolds numbers , Ret = 140−30′000, see fig. 3.9(a) and (b). Under a turbulent

Reynolds number of Ret < 190 all eigenvalues are stable. On contrary for Ret > 190, the single

Figure 3.9 – Single unstable eigenvalue computed with the spatially varying eddy viscosity
(dash line) and variation of the unstable eigenvalue (circle) with respect to the turbulent
Reynolds number Ret = 140−30′000 when frozen approach is used, the pulsation (a) and the
growth rate (b).

helical mode, m = 1, becomes unstable. In fig. 3.9(b), the growth rate increases rapidly with

the turbulent Reynolds number and reaches an asymptote of value 0.23 near the growth rate of

the eddy viscosity model. The pulsation, in fig. 3.9(a), has a maximum value for Ret = 500 and

then decrease to reach an asymptote of value 1.41. The maximum deviation of the pulsation

δωi , over the range of Ret is 0.025. This deviation corresponds to a frequency variation of the

vortex rope of δ fr ope / fr unner = 0.01. The frequency of the unstable eigenmode is not very

affected by the turbulent model. Thus a mean value of the spatial eddy viscosity is sufficient

to have a good approximation of the frequency of the mode for turbulent base flow.

3.6.3 Eigenmodes

The global linear stability analysis predicts that the most unstable eigenmode will develop

in the flow at infinitely long time. A 3-D reconstruction of the axial velocity of the unstable
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Figure 3.10 – Three dimensional reconstruction of the axial velocity field for the unstable
eigenmode ω = 1.43−0.20i , m = 1 (a) and the 3-D axial velocity disturbance from the 3-D
numerical flow simulation (b).

eigenmode is shown in fig. 3.10(a). This eigenmode shows the vortex rope helical structure in

the center part of the cone and a second branch along the draft tube wall similar to a tongue.

This eigenmode is defined up to a constant; so only qualitative comparison with the real

perturbations of the 3-D flow field can be made. The wave disturbance of the 3-D flow field is

extracted by removing the time averaged flow from the instantaneous flow C̃ = C− C̄ without

including the turbulent motion because URANS equations are solved. These two modes for

the axial velocity disturbance are in excellent agreement in term of shape, see fig. 3.10(a) and

(b) . The second branch is also displayed in the instantaneous case that is formed along the

draft tube wall too. The center part of the eigenmode that reflects the vortex rope, does not

extend up to the tip of the runner cone, in contrast to the nonlinear vortex rope obtained

when the full URANS equations are considered. The eigenmode associated to the unstable

eigenvalue finally exhibits an excellent agreement with the instantaneous disturbance of the

vortex rope.

3.7 Discussion & Conclusion

Three-dimensional numerical flow simulations of the FLINDT geometry have been performed

for part load operating conditions, φ= 0.27 and ψ= 1.16. Two designs have been investigated,

the original one with an elbow draft tube and a simplified one, with a Moody type draft tube.

In both cases, a precessing vortex rope appears. The frequency of the vortex rope as well as

the time averaged velocity profiles have been validated against experimental measurements

and a good agreement has been obtained. The self-sustained character of the vortex rope is
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highlighted by its frequency invariance against the symmetry breaking of the elbow draft tube.

These results enable the further investigation of the main focus of this study: the instability

properties of the vortex rope, that is carried out by a global stability analysis. According to

this analysis, we investigate the development of infinitesimal disturbances governed by the

linearised Navier-Stokes equations around a turbulent mean flow. This turbulent mean flow

is obtained by time-averaging the flow field of the previously described 3-D numerical flow

simulations. Thanks to the helical structure of the vortex rope and to the axisymmetry of the

Moody type draft tube, the 3-D stability problem can be reduced to a 2-D axisymmetric global

stability analysis. The mean flow is obtained by azimuthal averaging while each azimuthal

wavenumber requires a separate eigenvalue calculation.

The results of this 2-D axisymmetric global stability analysis exhibit only two unstable eigen-

values for the single helical mode m = 1. The second unstable eigenvalue, that has the highest

frequency can be excluded due to lack of convergence. The frequency of the first unstable

eigenvalue fr ope / fr unner = 0.38, see Table 3.2, compares well with the instantaneous fre-

quency of the vortex rope fr ope / fr unner = 0.33, with a relative error of 15%. A similar error, 9%,

was observed in the study on the stability of the turbulent flow around a D-shaped cylinder at

Reynolds number Re = 13′000 by Meliga et al. [47]. Stability analysis of turbulent flows is seen

to be less accurate to predict the main frequency of a flow than stability analysis of laminar

flows. However the frequency prediction of the vortex rope remains remarkable given the large

Reynolds number Re ≈ 106 of the instantaneous flow.

Table 3.2 – Frequency of the vortex rope obtains by the FFT of the experimental data [8], CFD
of the original and Moody draft tube and the present global linear stability analysis.

Experimental
Elbow draft tube

fine mesh

Moody draft tube

fine mesh

Global linear

stability

fr ope / fr unner 0.30 0.33 0.33 0.38

The eigenmode associated to the unstable eigenvalue is in close agreement with the 3-D

disturbance of the vortex rope. This eigenmode exhibits a secondary vortex along the draft

wall that is also present in the 3-D simulations and that may be interpreted as a tilting Kelvin-

Helmholz mode (see Gallaire & Chomaz [126] and Maxworthy & Liang [127]) due to the

combination of the swirling flow and the shear of time averaged axial velocity profile near the

draft tube wall, see fig. 3.6. The primary vortical structure of the eigenmode, located in the

cone center, is the very reminiscent of the vortical structure that develops in the 3-D flow and

forms the precessing vortex rope. In the instantaneous case, when the nonlinear effects are

numerically solved, this instability attaches to the tip of the runner cone and extends in the

draft tube elbow, an effect not captured by the linear stability analysis. It is striking that these

results have been obtained by considering a 2-D axisymmetric Moody type draft tube, but are
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still representative of the structure found in the full simulation of the 3-D original draft tube.

The geometrical simplification thereby ensures a more accurate eigenvalue calculation.

The linearised wave disturbance equations of turbulent flows for azimuthal wave numbers,

eqn. (3.5), takes into account the incompressibility condition and the turbulent fluctuations

of the flow. These equations have been derived under several assumptions that finally model

these fluctuations by a dissipative viscous term where the viscosity is defined as the time-

average of the instantaneous eddy viscosity. The molecular viscosity remains included in

the model, but is seen to be negligible with respect to the turbulent viscosity. Indeed, the

molecular viscosity has an equivalent Reynolds number of Re = 824′400 while the turbulent

viscosity has an equivalent turbulent Reynolds number of Ret = 1000 in the precessing cone

of the vortex rope. While it has often been observed that the growth rate of the dominant

unstable eigenmode of a mean flow was close to zero, Barkley [5], Mantic̃-Lugo et al. [84], this

not the case in our study, as in the turbulent stability analysis of Meliga et al. [47].

The vortex rope captured as an instability in a "viscous framework" (in view of the large turbu-

lent eddy viscosity) is found insensitive to different turbulence models used in the stability

analysis. The frequency and the growth rate both reach an asymptotes as the frozen eddy

viscosity is decreased, which are close to those computed by including the eddy viscosity

turbulence model. This suggests that the vortex rope is an inviscid instability that can be cap-

tured by Euler equations using an appropriate 2-D axisymmetric formulation. This approach

has been followed by Pochyly et al. [120], by considered as base flow an axisymmetric steady

solution of the Navier-Stokes equations in a straight cone draft tube, that mimics the vortex

rope time averaged flow field.

The success of our approach relies on the use of global linear stability on a mean flow which

was proven to correctly capture the main frequency of the flow (Barkley [5] and Giannetti

& Luchini [55]) in comparison to the temporal local stability analysis, which was not able

to predict the correct most unstable azimuthal wave number for self-sustained instabilities,

see Gallaire & Chomaz [72]. While an absolute/convective instability approach, Huerre &

Monkewitz [44], can be sometimes used to obtain a correct prediction, Gallaire et al. [75],

Qadri et al. [80], Pasche et al. [128], this approach is restricted to parallel or weakly non parallel

flows, which can be questioned in the complex geometry of a Francis turbine draft tube.

In summary, the investigation of the vortex rope as an unstable infinitesimal perturbation

by global linear stability analysis around a turbulent mean flow provides insight into the

physical understanding of this phenomenon. A global unstable eigenmode develops on the

time averaged flow field and leads to the formation of the vortex rope in the draft tube of the

Francis turbine operating at part load conditions. This instability is interpreted as an inviscid

instability in view of the frequency invariance with respect to the turbulent Reynolds number.

To improve the power generation flexibility of Francis turbines for grid compensations, control

schemes targeting this unstable eigenmode should be implemented as a natural continuation

of this work using sensitivity analysis methods (Marquet et al. [6]).
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4 Optimal control of self-sustained in-
stabilities in turbulent swirling flows:
Application to the Francis turbine
part load vortex rope

The self-sustained character of the part load vortex rope was demonstrated in the third chapter

using stability analysis and the control of such instabilities at low Reynolds number Re = 300

was performed in the second chapter. As reminder, this control technique minimizes the

eigenvalue growth rate from the stability analysis around the mean flow. In this chapter, the

control of self-sustained instabilities at high Reynolds number using the same control strategy

is addressed. The Francis turbine vortex rope at Re =O(106) is controlled.

The variables used in this document are susceptible to change in comparison to the submitted

version of the article to keep the document consistency. Additional paragraph and results

could be also added.

PAPER: Predictive control of part load vortex rope in Francis turbines
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The global trend in reduction of CO2 emission encourages electric energy as main driving force

and promotes the development of renewable energy sources (RES), such as photovoltaic and

wind energy, due to their large and imminent potential. The intermittent production of these

unsteady RES added to the daily fluctuations of the consumption must be regularized to deliver

a safe electric supply. The grid stability can be currently maintained by the reactive and flexible

hydropower production but advanced regulation technique must be developed to continue to

support the development of intermittent RES. Regarding the Francis turbines that represent

60% of the generating hydo-units, a natural improvement is the enlargement of operation

flexibility, nowadays restricted to the design point of the machine. However operating at

off-design is hindered by large pressure fluctuations that imperil the mechanical structure,

calling for the development of flow control methods. We investigated the optimal control

of the flow distribution at the part load operating condition characterized by a precessing

helical vortex in the turbine draft tube. This vortex is identified as a self-sustained instability

associated to the development of an infinitesimal disturbance, we demonstrate that it can

be stabilized by targeting the dominant growth rate of the mean turbulent flow through an

adjoint-based minimization algorithm. We determine an optimal force distribution that

successfully quenches the part load vortex rope and sketches the design of a realistic control

appendage.

4.1 Introduction

The daily fluctuations of the electrical consumption are balanced by flexible electric power

generation to insure a safe electric supply. This monitoring capacity is perfectly mastered, but

the additional incoming intermittent electric power production from the renewable energy

sources (RES) has started to stress the electric grid and will jeopardize in a foreseeable future

the grid stability. These variations, resulting both from consumption and production, can be

mainly regulated by the flexible power production of hydraulic turbines, which are able to
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generate or interrupt hundred of megawatts in less than a minute in certain cases. However

this regulation technique has almost reached its limits and further improvements and devel-

opments are needed for hydropower to be able to continue to support the future development

of the unsteady RES. Among all turbine types that contribute to hydropower capacity, which

amounts to 17% of the total electric energy production, the Francis units represent 60% of

the world wide market. We, therefore, focus on advanced regulation techniques provided

by Francis generating units. A natural improvement may be the enlargement of the Francis

turbine operating region, restricted to a limited region between the best efficiency conditions

and full load for the moment. Unfortunately off-design operating conditions in Francis tur-

bines result in complex flow patterns in the turbine draft tube that produce large pressure

fluctuations and expose the turbines to the risks of operating instability, structural fatigue

and resonance of the mechanical structures. These fluctuations originate from large coherent

vortex structures, resulting from residual swirling flow at the runner outlet, and characterized

by an axisymmetric pulsating vortex at full load conditions and an helical precessing vortex at

part load conditions called part load vortex rope. In contrast, at the design point, a nominal

flow condition is observed: an axial flow exits the runner and minimizes the hydraulic losses,

denominated as best efficiency point (BEP). An extension of operating conditions thus passes

through the pressure fluctuations mitigation in hydraulic turbines by controlling the flow, so

as to best release the full hydropower potential.

A wide variety of control techniques have been developed over the years, which fall within

categories like open-loop, closed-loop, passive or active controls, without forgetting trial and

error methods based on designers’ intuitions that are always legitimate for complex cases. We

refer to Kim & Bewley [85] for an overview of the control techniques applied to Navier-Stokes

equations, among all we focus, in the present study, on the so-called predictive control or

adjoint-based cost functional minimization approach (Joslin et al. [87], Gunzburger [92] and

Bewley et al. [88]). This optimization problem solves the first-order necessary conditions of

a Lagrangian functional, suitably built from the governing equations and a defined objec-

tive function, to determine a closed-form expression of the gradient direction or optimality

condition so as to iteratively minimizes a flow target. This target may be defined as the drag

of an obstacle, the turbulent kinetic energy, an eigenvalue associated to an instability, etc.

Such predictive techniques are computationally extremely demanding, due to the need of

unsteady direct and adjoint computations, although with the recent advent of high perfor-

mance computing facilities (HPC), there is a certain revival in this approach (Passaggia &

Uhrenstein [89] and Goit & Meyers [90]). This adjoint-based method has been applied to

self-sustained instabilities in open flows by targeting the most unstable eigenvalue as objective

function, in a suboptimal sense through the computation of linear sensitivity maps, to find

the most preferable actuation locations (Giannetti & Luchini [55], Marquet et al. [6] and Qadri

et al. [80]) or more rarely in an optimal sense for annihilation of the self-sustained instability,

Camarri & Iollo [94] in a 2D case, Pasche et al. [10] in a 3D case. Being first investigated in the

laminar regime, the global linear stability analysis around a base flow is able to predict the flow

bifurcation from a stationary solution of the Navier-Stokes equations to the development of a
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self-sustained instability identified by the exponential growth rate of an unstable eigenmode.

The frequency prediction of this unstable eigenvalue becomes however often incorrect as the

system departs from the instability threshold, while the global stability analysis of the mean

flow successfully predicts the limit cycle frequency in some canonical flows (Barkley [5]). This

improved frequency approximation from the mean flow stability analysis comes from a flow

feedback mechanism associated to the self-sustained instability development. The difference

between the base flow and mean flow is imputed to the Reynolds stresses of the self-sustained

instability, as demonstrated by Sipp & Lebedev [83] using a weakly nonlinear multiple-scale

expansion at the threshold, and by Mantič-Lugo et al. [84] further away from threshold using a

self-consistent model that couples the forced base flow by the perturbation’s Reynolds stresses

to a linear disturbance equation. This correct frequency prediction of laminar limit cycles

translates in some cases to turbulent flows. The stability analysis of mean turbulent flow was

shown to correctly capture dominant frequencies (Viola et al. [123]) while linear sensitivity

maps (Meliga et al. [47]) developed around the mean flow were found predictive. The consis-

tent sensitivity map predictions in turbulent flows let us envisage the mitigation of the part

load vortex rope by solving an optimal control problem that targets an unstable eigenvalue of

the mean flow in a Francis turbine.

The part load vortex rope was investigated over many years experimentally and numerically.

Numerical tools dealing with complex 3-D rotating geometry and two-phase flows were

developed, see Trivedi et al. [23] for a review, and experimental measurements using wall

pressure acquisitions, laser Doppler velocimetry (LDV), particle image velocimetry (PIV) in

two phase flows or high speed visualizations were performed (Ciocan et al. [9], Iliescu et al.

[16], Kirschner et al. [129], Favrel et al. [17] and Müller et al. [114]). Numerical flow simulations

and experimental measurements result in an accurate description of flow phenomena as well

as a data collection for flow models development with the aim to predict for example the swirl

at the runner outlet (Susan-Resiga et al. [116]), or acoustic resonance of the machine (Alligné

et al. [35] and Landry et al. [130]). The control of the vortex rope was investigated by trial

and error or physical intuitions due to the lack of a significant target to build a minimization

problem. One approach, related to passive control, is to decrease the swirl at part load regime

by applying stabilizer fins (Nishi et al. [25]) or J-groove (Kurokawa et al. [26]), on the draft tube

wall. A different blade design with shaped outlet was investigated by Brekke [27] that also aims

to correct the swirling flow distribution at the draft tube inlet. Another approach is to modify

the recirculation region close to the runner by adding an extension to the crown tip (Qian et al.

[28]). However such techniques are only able to mitigate the pressure fluctuations in a narrow

operating regime and can create additional undesirable hydraulic losses due to permanent

geometry modification. Regarding active controls, a feeding pipe in the turbine draft tube

controled by a rotating valve is able to cancel the first harmonic of the part load vortex rope by

producing an inverse signal (Blommaert et al. [32]). However this technique has amplified

the second and third harmonic, reducing the total pressure fluctuations by only one quarter.

Susan-Resiga et al. [29] have investigated an axial water injection from the crown tip, and have

successfully mitigated the pressure fluctuations over a large operating range by controlling the
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jet velocity. This technique allows one to suppress the part load vortex rope by letting the jet

velocity reaches a value of 10% to 12% of the turbine discharge (Zhang et al. [30]). The same

conclusions were obtained using a swirling vane (Bosioc et al. [131]). In addition a parametric

study of the jet velocity and discharge is proposed by Foroutan & Yavuzkurt [31] to obtain a

better combination to eliminate the pressure fluctuations in a straight draft tube.

Despite the large number of control techniques which have been tested over the years, the

best control strategy still needs to be assessed. From this perspective we therefore use an

optimization technique, following the optimal control theory, to compute a relevant volume

force to control the vortex rope. Since the part load vortex rope is an unstable eigenmode

associated to an unstable eigenvalue (Pasche et al. [65]), we choose to minimize the growth

rate of this unstable eigenvalue as target for the flow stabilization, a direct way to suppress this

self-sustained instability. While a volume force cannot be imposed in practice, it illustrates

where to act to effectively control the part load vortex rope.

The paper is structured as follows: the case studied is presented in section 4.2. Then an adjoint-

based algorithm is described in section 4.3 and its computation is introduced in section 4.4.

Then the results are presented in section 4.5 and a conclusion is drawn.

4.2 Flow configuration

We have investigated numerically flow control applied to the Francis turbine geometry of the

FLINDT case study - flow investigation in draft tube - project, Eureka No. 1625, see Avellan

[15]. This turbine is composed of a high specific speed runner followed by an elbow draft

tube and a pier, see fig. 4.1(a) and (c). In the present study, we have introduced a second

draft tube geometry, an axisymmetric Moody type [132] draft tube fig. 4.1(d), designed by

discharge conservation over cross sections of the elbow draft tube (Pasche et al. [65]). We

have considered the flow distribution bounded by these geometries for prescribed part load

operating conditions, a flow rate coefficient of φ= 0.27, a specific energy of ψ= 1.16 and a

Thoma cavitation number of σ= 1.16. At these conditions, 67% of the BEP discharge flows

across the turbine, and the residual swirling flow appearing at the runner outlet leads to

a precessing cavitation-free vortex rope inside the draft tube. The time evolution of this

vortex has been monitored by wall pressure points at two cross sections, S1.3 and S1.75, in

the draft tube cone fig. 4.1(b), localized at the same positions as the pressure sensors in the

experimental measurements preformed by Arpe & Avellan [8].

4.3 Theoretical framework

As detailed in Pasche et al. [65], the part load vortex rope develops through the exponential

growth of an infinitesimal disturbance whose amplitude saturates by a nonlinear feedback

mechanism and leads to its final self-sustained rotating vortex structure. A natural control

strategy is therefore to prevent the development of this disturbance, which can be caught by a
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Figure 4.1 – Reduce scale model of the FLINDT Francis turbine (a), pressure sensor location
(b), the original elbow draft tube (c), and the axisymmetric Moody type draft tube used to
compute the minimization algorithm (d).

global stability analysis around the mean turbulent flow from an infinitesimal disturbance

decomposed in an azimuthal-temporal complex Fourier series:

(C̃, P̃ )(R,θ, Z , t ) = (c, p)(R, Z )exp(i (mθ−ωt ))+ c.c., (4.1)

with c.c. the complex conjugate, m the azimuthal wavenumber and ω the eigenvalue. The

part load vortex rope disturbance is characterized by an unstable eigenmode associated to an

unstable eigenvalue ωv of azimuthal wavenumber m = 1. Since the stability analysis results

in a large set of eigenvalues, we choose as control target the eigenvalue associated to the

vortex rope disturbance on the basis of its frequency (real part) and eigenfunction. We have

developed a minimization algorithm to stabilize the flow, based on the optimal control theory

whose objective function targeted the growth rate of the unstable eigenmode −ℑ(ωv ). This

minimization problem writes as:

Min J (ωv ,F) = |ℑ(ωv )|+
α

2

∫∫
Ωa

||F||2 dΩa , (4.2)
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where J is the objective function, F the control variable, α the scalar weight penalizing of

the control intensity and ωv the targeted eigenvalue. The control variable is defined as a

volume force distributed along (eR ,eZ ), that at convergence ended to (F∗
R ,F∗

Z ). We reformulate

this optimization problem using Lagrangian functional L , expressed in appendix eqn. (4.4),

where the adjoint fields are used as Lagrangian multipliers: (C†,P †) for the state variable and

(c†, p†) for the disturbance. We derive the set of equations that sought for a gradient direction

of this problem by satisfying the stationary condition of L . This set of equations expressed in

appendix eqns. (4.6-4.11), leads to the following general form of the gradient direction for a

distributed control force F :

∇J = C† +αF. (4.3)

This gradient direction coupled with a steepest descent method allowed us to minimize our

objective function eqn. (4.2). A schematic of the minimization algorithm is displayed in fig.

4.2. Instead of computing this minimization problem in a full 3-D domain we are able to

Figure 4.2 – Schematic of the minimization algorithm for the mean turbulent flow stabilization.

compute it partially in a 2-D axisymmetric domain (on a slice of the 3-D domain), thanks

firstly to the symmetry properties of the part load vortex rope that can be caught by azimuthal

Fourier decomposition eqn. (4.1) and secondly to the axisymmetric Moody type draft tube

design that preserves the frequency of the vortex rope (Pasche et al. [65]). The algorithm

solves the following steps: The Unsteady Reynolds-Averaged Navier Stokes (URANS) equations
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bounded by the Moody type draft tube geometry are first solved numerically. On the fly, the

time averaged solutions of the velocity, pressure and eddy viscosity distribution are computed.

The dimensionality reduction from the 3-D to the 2-D axisymmetric domain is obtained by

azimuthal averaging procedure leading to an axisymmetric mean turbulent flow solution

about which linear disturbance developments are investigated. The iterative computation

of the direct eigenvalue problem eqn. (4.7), the adjoint eigenvalue problem eqn. (4.8), the

normalization condition eqn. (4.9) and the adjoint flow equations eqn. (4.10) results in the

gradient direction (optimal condition) eqn. (4.3). Coupled to a steepest descent method,

this gradient direction minimizes our objective function. As the first loop is performed, an

axisymmetric volume force is obtained and is included in the URANS equations of the next

step, and so forth, until the vortex rope is quenched. Finally the 2-D axisymmetric optimal

volume force is applied to the elbow draft tube geometry by solving the associated forced

URANS equations.

We focus in this Chapter on the mean turbulent flow stabilization control, issued from the

computation of the linear sensitivity map (Giannetti & Luchini [55] and Marquet et al. [6])

at each iterative step. However, with the thought to provide an overview and to increase the

pertinence of the proposed method in turbulent swirling flows, we also compute the "linear

sensitivity-based finite amplitude control" of the part load vortex rope, similar to the spiral

vortex breakdown control in laminar swirling flow (Chapter 2 and Pasche et al. [10]), while

this second approach appears to be suboptimal to control the spiral vortex breakdown. As

reminder, in this called "linear sensitivity-based finite amplitude control", the first gradient

direction ∇Fωi = F(0) is multiplied by a finite amplitude A determined by a bisection method

until the growth rate of the controlled leading eigenvalue is equal to zero. The results of this

second approach are presented in appendix 4.7.2.

4.4 Numerical methods

4.4.1 Three-dimensional numerical flow simulations

The solution of the URANS equations for the two geometries considered, the elbow draft and

the axisymmetric Moody type draft tube, are computed with ANSYS CFX 16.0. We reused

the solver configurations and the meshes from the previous study on stability analysis of

the part load vortex rope in Pasche et al. [65], where the numerical solution from these

pre-processing steps were already validated against experimental measurements. The fluid

domain includes the runner, the draft tube and a draft tube extension to avoid backward

perturbations from the outlet. The velocity and the turbulence intensity is distributed at

the inlet of the runner coming from a previous steady calculation of the spiral casing and

guide vane cascade. An open condition is set at the outlet and the flow is transferred from the

rotational to the stationary domain by a general grid connection (GGI). A time step of 1 deg

of runner revolution and a rms convergence error of 10−4 are imposed and the turbulence is

modeled by a shear stress transport-based scale-adaptive simulation (SST-SAS) model. The
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meshes have a total of 7.5 mio of hexahedral cells for the axisymmetric Moody type draft

tube and 7.5 mio for the elbow draft tube case. The time averaged variables, velocity and

eddy viscosity, is computed on the fly while the simulation is running and they start to be

averaged after the transient dies out corresponding to time lap from 1.5 to 5 vortex rotations.

The pressure is also monitored on the two different section S1.3 and S1.75. The mean flow

velocity and mean eddy viscosity, around which the minimization algorithm is computed to

control the vortex rope, is azimuthally averaged to obtain a 2-D axisymmetric solution.

4.4.2 Minimization problem

Except the mean turbulent flow, the optimization algorithm is solved numerically on a 2-

D axisymmetric domain by the means of the finite element solver Freefem++ [101] for the

axisymmetric Moody type draft tube only. The meshe satisfies the inf-sup conditions by using

P2-P1 shape functions on triangular elements. The fluid domain ends at the outlet 3-D draft

tube domain and starts as close as possible to the runner blade to avoid inlet perturbations.

This domain is discretized by a total of 300’000 triangular cells suitably distributed. The direct

and adjoint eigenvalue problem are solved using a Krylov method from ARPACK libraries [104]

with a tolerance of 10−6 where matrix inversions are performed with UMFPACK package, a

sparse lower-upper triangular matrix factorization. After obtaining the gradient direction,

a steepest descent method is used to update the control with a step length defined by an

Armijo line search method [108]. The initial step τ= 5 ·10−4 and a weight control parameter of

α= 10−2 are set. The algorithm is computed until the part load vortex rope is stabilized.

4.5 Results

4.5.1 Optimal control of the part load vortex rope

The effect of the predictive control of the part load vortex rope minimizing eqn. (4.2) is

displayed in fig. 4.3. The uncontrolled flow (fig. 4.3a) shows a single helical vortex core in

the turbine draft tube, materialized by a pressure iso-contour. This vortex rotates in time in

the same direction as the ambient swirling flow and coils spatially in the opposite direction.

This precession induces a local flow acceleration along the draft tube wall in the free-stream

direction and a counter flow acceleration in the draft tube center. In opposition, the controlled

flow (fig. 4.3b) displays a columnar vortex confined along the draft tube center line. This

columnar vortex appears disorganized, without coherent vortex core and it disintegrates at the

draft tube cone end. This vortex is characterized by counter flow regions of high intensity in its

center, surrounded by accelerated flow regions in the free-stream direction. The shear stress

between these flow regions not only produces small scale velocity fluctuations that increase

the turbulence intensity, but also increases the pressure level inside the draft tube as shown

by the constant pressure iso-contour CP = −4.1. The flow topology change demonstrates

the achievement of the control goal, which minimizes the unstable eigenvalue of the mean
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Figure 4.3 – Uncontrolled (a) and controlled (b) axial flow solutions carried out by minimizing
the dominant unstable eigenmode of the mean flow, superimposed with a pressure iso-contour
(CP =−4.1) materializing the part load vortex rope.

turbulent flow associated to the part load vortex rope.

The influence of the minimization procedure on the part load vortex rope is monitored by two

parameters, the amplitude of the peak-to-peak pressure coefficient at the monitoring points

of sections S1.3 and S1.75 and the growth rate of the unstable eigenvalue computed from the

mean turbulent flow. These parameters are reported as a function of the volume force norm

in fig. 4.4. The peak-to-peak amplitudes (fig. 4.4a) of the vortex rope slowly decrease following

a linear trend until the penultimate update of the volume force is carried out. The pressure

fluctuations are damped by 30% before being totally mitigated by the ultimate volume force

update, which quenches the vortex rope. This sudden mitigation of the vortex rope has also

been reported in experimental setup using axial water jet injection at the tip of the runner

cone (Bosioc et al. [131]). The same curve behavior is observed for the unstable eigenvalue

evolution (fig. 4.4b), except for one iteration where the growth rate increases, pointing to the

fragility of computing eigenvalues of high Reynolds number flows, although the peak-to-peak

pressure amplitudes monotonically decrease. At the ultimate iteration, the dimensionless

force norm requires to quench the part load vortex rope was equal to ||F∗|| = 0.56.

The eigenvalue spectrum of the azimuthal wavenumber m = 1 is displayed for the initial,

penultimate and ultimate iteration of the minimization procedure in fig.4.5(a), (b) and (c),

respectively. As remainder, only eigenmodes of azimuthal wavenumber m = 1 are shown to be
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Figure 4.4 – Influence of the control norm on the peat-to-peak pressure coefficient ampli-
tude (a) and growth rate normalized by uncontrolled dominant eigenvalue (b) during the
minimization procedure. Each symbol corresponds to an iteration.

Figure 4.5 – Eigenvalue spectrum of azimuthal wavenumber m = 1 from the mean turbulent
flow of the initial iteration (a), the penultimate iteration (b) and the ultimate iteration (c). The
symbol (∗) represents the direct eigenvalue from eqn. (4.7) and the symbol (◦) represents the
complex conjugate adjoint eigenvalue form eqn. (4.8), only displayed in subfigure (a)

.
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unstable (Pasche et al. [65]), which corresponds to single helical disturbances coiling spatially

in the opposite direction of the ambient flow rigorously identical as the part load vortex

rope. Initially the unstable eigenvalue of the vortex rope is clearly apart from the other stable

eigenvalue. At the penultimate iteration, an additional marginally unstable eigenvalue at low

frequency appears beside the eigenvalue associated to the part load vortex rope disturbance.

The growth rate and frequency of the vortex rope eigenvalue is slightly inferior as compared

to the uncontrolled flow, and remains clearly dissociated from the other eigenvalues. At the

ultimate iteration, several unstable eigenvalues located at low frequency appear. Among

all, the eigenvalue associated to the vortex rope is selected on a narrow band width filter

from the frequency of the previous iteration, and its associated eigenmode is found to be

confined in the center of the draft tube. Since the other eigenmodes are also concentrated

in the columnar vortex observed in fig. 4.3(b), we speculate that the increase of turbulence

intensity is produced by small scale fluctuations as well as the disintegration of the columnar

vortex at the cone end might be explained by the interactions of these m = 1 instabilities. The

emergence of other unstable eigenmodes while the dominant growth rate is minimized, can

compromise the algorithm convergence but in the present study, the marginally unstable

eigenvalue of the penultimate iteration remains ineffective allowing us to quench the part

load vortex rope by our control strategy.

While the force norm is updated, we observe a sudden flow transition from the penultimate

iteration, where a coherent single helical state (one unstable eigenvalue) is observed to a

columnar centralized vortex state (several unstable eigenvalue) at the ultimate iteration.

We expect a smooth stabilization of the unstable eigenvalue associated to the vortex rope.

However, the eigenvalue growth rate drops suddenly. This behaviour can be the consequence

of the mean flow distortion by the nonlinear mode interactions, such as harmonic mode

generations (Sipp & Lebedev [83]) that is additionally accounted in the eigenvalue growth rate.

The radial and axial volume forces that quench the part load vortex rope are exhibited in fig.

4.6(a) and (b), respectively. The radial volume force acts in two locations, under the runner

crown tip rising to the runner crown wall, and in the middle of the draft tube. The axial volume

force acts along the whole draft tube center line until the end of the draft tube cone. The

control effort are mainly achieved by the axial volume force that accelerates the flow along

the draft tube center line and decelerates it around the tip of the runner crown. Both forces

display a control free region at the tip of the runner cone and along the draft tube wall where

the part load vortex rope is not sensitive to control strategies.

4.5.2 Flow control in reduced scale model geometry

The optimal volume force obtained by minimizing eqn. (4.2) quenches successfully the part

load vortex rope in the axisymmetric Moody type draft tube, we have next tested this volume

force on the reduced scale model geometry designed with the elbow draft tube. For that

purpose, the axisymmetric optimal volume force is interpolated on the elbow draft tube mesh.
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Figure 4.6 – Radial (a) and axial (b) volume force obtained by minimizing the dominant growth
rate of the mean turbulent flow that stabilizes the part load vortex rope.

The pressure monitored at the section S1.3 during the transient phase of the vortex rope

control is displayed in fig. 4.7 for the sensor 1, 2, 3, 4. The pressure fluctuations decrease in

amplitude to reach a quasi steady state after 5 initial vortex rope precessions, showing the

successful annihilation of the part load vortex rope by the computed axisymmetric volume

force. In addition, we observe that the different pressure signals merge at time t = 0.82 s

and therefore the flow becomes axisymmetric as the coherent structure of the vortex rope

is destroyed. The vortex flow associated to these pressure temporal signals is exhibited in

fig. 4.8 by temporal snapshots of axial velocity superimposed with a constant pressure iso-

contour. The vortex intensity starts first to decrease until t = 0.82, where the vortex, which

keeps its helical shape, is shrunk at the runner outlet and its tail is no longer extending in

the elbow. From t = 0.82 on, the coherent structure is destroyed and small scale fluctuations

are increased, leading finally to a columnar vortex in the draft tube center line similar to the

controlled flow of the Moody type draft tube, fig. 4.3(b).

Time averaged global parameters, such as the runner torque and the turbine specific en-

ergy, are calculated in the uncontrolled flow regime and in the quasi stationary regime of

the controlled flow. We obtain identical parameter values for both cases, showing that our

optimal volume force does not modify the flow condition in the runner. Time-averages of local

parameters are also investigated for the controlled and uncontrolled cases. Figure 4.9 exhibits

the surface integral of the specific energies associated to the static ES , the kinetic Ek and the

total Etot pressures on cross sections along the draft tube curvilinear center line, normalized
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Figure 4.7 – Monitored coefficient pressure on section S1.3 at the sensor location 1, 2, 3, 4,
during the transient control of the part load vortex rope in the elbow geometry.

Figure 4.8 – Temporal snapshots of the axial velocity and the pressure iso-contour of value
Cp =−4.1, exhibiting the part load vortex rope quenched by the 2-D axisymmetric optimal
force obtained by minimizing eqn. (4.2).

82



4.6. Conclusion

Figure 4.9 – Surface specific energy of static ES , kinetic Ek and total Etot pressures on cross
sections along the draft tube curvilinear distance normalized by the kinetic specific energy at
the draft tube inlet.

by the dynamic pressure at the draft tube inlet. The total pressure specific energy drops inside

the elbow as a consequence of the part load operating condition due to hydraulic losses, in

opposition to the BEP condition where the total pressure specific energy is kept close to a

value of 1 and delivers therefore a high turbine efficiency. The static pressure specific energy

was increased in the draft tube cone when the vortex rope was controlled, but this specific

energy returned to the uncontrolled energy level of the elbow draft tube after the cone.

4.6 Conclusion

We have investigated the predictive control of the part load vortex rope. We have defined a

relevant objective function that targets an intrinsic property of this flow. Since the vortex rope

is an infinitesimal disturbance growing about the mean turbulent flow, which is expressed

as an unstable eigenmode (Pasche et al. [65]), we choose to minimize the growth rate of this

dominant unstable eigenmode. Using the optimal control framework, we have derived the

gradient direction that minimizes our objective function, by satisfying the first order necessary

condition of the Lagrangian functional of our problem. Coupled with a steepest descent

method, this gradient direction leads to an optimal volume force that successfully quenches

the part load vortex rope and reduces the pressure fluctuations to a quasi-stationary state.

Starting from a coherent single helical vortex, the ultimate control shrinks the part load vortex

rope in the center of the draft tube, and produces turbulence fluctuations in this region. The

remaining flow does not have any coherent single spiral. When the control is activated, the

flow needs 5 initial vortex rope precessions to quench the self-sustained instability.

The volume force controlling the radial and axial flow distribution is located along the center

line of the draft tube cone. This force has a largest intensity on the axial component and
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accelerates the flow in the draft tube center line starting at the runner outlet location and

keeps the region of the tip of the runner cone control-free. A decelerated axial force is also

showed along the runner crown wall. The blade torques and the specific energy as well as the

energy distribution in the draft tube are investigated but no significant change are observed,

the torques and specific energies remaining identical.

We have developed a minimization algorithm to find an optimal volume force that is able to

quench a self-sustained instability in turbulent swirling flows. The resulting bulk force can

be used to design a control device that mitigates the part load vortex rope and therefore can

open part load operating conditions of Francis turbines.

4.7 Appendix

4.7.1 Optimal control

We consider the constrained minimization problem associated to eqn. (4.2) that minimizes

the dominant growth rate of the mean turbulent flow. The Lagrangian functional framework is

used to find a close form expression of the gradient direction. This Lagrangian functional is

expressed as:

L
(
ωv , [c, p], [C̄, P̄ ], [c†, p†], [C†,P †],F

)
=J (ωv ,F)− t (c,c†)−a(c,c†)

−d(c, C̄,c†)−d(C̄,c,c†)−b(c†, p)−b(c, p†)−a(C̄,C†)−d(C̄, C̄,C†)

−b(C†,P )−b(C̄,P †)+< F,C† >+< T,C† >, (4.4)

where a(., .), b(., .) are the bilinear form of the viscous, pressure and divergence, < ., . > is the

Hermitian inner product, d(., ., .) is the trilinear form, t(., .) is the mass matrix of the time

derivative including the eigenvalue ωv , (C†,P †) are the Lagrange multipliers of the mean flow

and (c†, p†) are the Lagrange multipliers of the perturbed flow, both called adjoint variables.

A minimum if it exists is defined as a stationary point of the Lagrangian functional that is

derived using the Frechet derivative

d

dε
L ([...+εφ])

∣∣∣∣
ε=0

= 0. (4.5)

where φ is test functions associated to each variable. This computation leads to 6 sets of

equations, the state equation, the direct eigenvalue problem, the adjoint eigenvalue problem,

a normalization condition, the adjoint problem and the optimality condition. These problems

are expressed in strong from in eqn. (4.6-4.11). The state equation considered in this problem

are the mean flow equations, a RANS equations forced by the Reynolds stresses of the self-

sustained instability that compensate for the mean flow distortion (Barkley [5], Sipp & Lebedev
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[83] and Mantic̃-Lugo et al. [84]).

State equations:

∇C̄ · C̄ =−∇P +Re−1∇2C̄+∇· [ν̄t
(∇+∇T

)
C̄

]+F+T

∇· C̄ = 0,

(4.6)

where F is the control force and T is the Reynolds stresses of the self-sustained mode.

Direct eigenvalue equations:

−iωc+∇mc · C̄+∇C̄ ·c =−∇m p +Re−1∇2
mc+∇· [ν̄t

(∇+∇T
)

c
]

∇m ·c = 0

(4.7)

Adjoint eigenvalue equations:

iω∗c† +∇T
mC̄ ·c† −∇mc† · C̄ =−∇m p† +Re−1∇2

mc† +∇· [ν̄t
(∇+∇T

)
c†

]
∇m ·c† = 0

(4.8)

Normalization condition:

1−< c,c† >= 0

(4.9)

Adjoint flow equations:

∇T C̄ ·C† −∇C† · C̄ =−∇P † +Re−1∇2C† +∇mc† ·c∗ − (∇mc)H ·c† +∇· [ν̄t
(∇+∇T

)
C†

]
∇·C† = 0

(4.10)

Optimality condition:

∇J = C† +αF

(4.11)

All this equations are solved in a 2-D axisymmetric domain by the means of the Freefem++

software [101] and lead to the gradient direction that is updated by a steepest descent method
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and allow us to compute the optimal force to control the part load vortex rope.

We have verified that the targeted eigenvalue in the minimization problem eqn. (4.2) obtained

by computing the direct eigenvalue equations eqn. (4.7) is the complex conjugate of the adjoint

eigenvalue computed from the adjoint eigenvalue equations eqn. (4.8). These eigenvalues are

exhibited in fig. 4.5(a).

Practically the state equations eqn. (4.6) are not solved in the presented form, it allows us to

derived consistent equations. The mean flow (C̄, P̄ ) is computed by taking the time averaged

of the URANS flow solution, solved in a 3-D domain defined by equations:

∂C

∂t
+∇C ·C =−∇P +Re−1∇2C+∇· [νt

(∇+∇T
)

C
]

∇·C = 0.

(4.12)

Then a slice of the time and azimuthal averaging flow solution is taken to reduce the 3-D

domain to a 2-D axisymmetric domain to compute the minimization procedure.

4.7.2 Linear sensitivity-based finite amplitude control

Although the "linear sensitivity-based finite amplitude control" of the spiral vortex breakdown

in laminar swirling flow appears as suboptimal compared to the "mean flow stabilization con-

trol" (Chapter 2), the former approach well identifies the minima and maxima of the nonlinear

receptivity region of this laminar flow. Therefore the outcomes of the "linear sensitivity-based

Figure 4.10 – Influence of the control norm on the peat-to-peak pressure coefficient amplitude
for the "mean turbulent flow stabilization control" (solid curves) and the "linear sensitivity-
based finite amplitude control" (dash curves) at the monitoring points of section 1.3 (black
curves) and the section 1.75 (gray curves) for the axisymmetric draft tube. Each symbol
corresponds to an iteration.

finite amplitude control" applied to the part load vortex rope are now assessed in this turbulent

swirling flow.
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The "linear sensitivity-based finite amplitude control" uses the first gradient direction (∇Fωi =
F(0)) of the minimization algorithm (fig. 4.2) or equivalently the linear sensitivity map (Gian-

netti & Luchini [55] and Marquet et al. [6]) multiplied by a finite amplitude A, determined

by a bisection method until the growth rate of the controlled leading eigenvalue is equal to

zero (Chapter 2). As we have seen for the ultimate minimization step of the "mean turbulent

flow stabilization control" of the draft tube flow distribution (see fig. 4.5c), the eigenvalue

associated to the part load vortex rope is very difficult to identify in the stabilized regime. The

determination of the amplitude A is therefore supported by the assessment of the the peak-to-

peak pressure coefficient amplitude at the draft tube cone sections 1.3 and 1.75. Figure 4.10

displays these peak-to-peak oscillations as a function of the distributed force norm for the

two control methods. Both approaches reduce the flow oscillations close to zero in the draft

tube cone. More surprisingly, we observe that the "linear sensitivity-based finite amplitude

control" has a smaller norm than the "mean turbulent flow stabilization control", possibly

because of the increase of the growth rate at one iteration during the minimization process

(see fig. 4.4b).

Figure 4.11 – Controlled axial flow solutions of the axisymmetric draft tube (a) and elbow draft
tube (b) carried out by the "linear sensitivity-based finite amplitude control", superimposed
with a pressure iso-contour (CP =−4.1) materializing the part load vortex rope.

The controlled flow of the "linear sensitivity-based finite amplitude control" is displayed in fig.

4.11 for the axisymmetric draft tube and the elbow draft tube. Note that the axisymmetric draft

tube is used to determine the ultimate distributed force, while this force is only transferred

to the elbow draft tube as final validation step. In both geometries, the part load vortex rope

is quenched and a columnar vortex remains in the draft tube center line, which appears

disorganized and disintegrates at the draft tube cone end. These results are similar to the

"mean turbulent flow stabilization control", see fig. 4.3 and 4.8.
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Figure 4.12 – Radial (a) and axial (b) volume force obtained from the "linear sensitivity-based
finite amplitude control" that stabilizes the part load vortex rope.

The associated distributed force which quenches the part load vortex rope is displayed in

fig. 4.12. This force differs from the "mean turbulent flow stabilization control" (see fig. 4.6),

except for the draft tube cone center line region where the bulk force pushes the flow toward

the streamwise direction in both approaches. The linear receptivity, provided by the first

gradient direction, well identifies , therefore, the minimum of the nonlinear receptivity map in

this turbulent swirling flow.

4.8 Discussion

Linear sensitivity maps correctly identify the min/max nonlinear receptivity regions of the

part load vortex rope and therefore appear to be sufficient to develop an appendage to access

these regions in order to control the flow. However the validity of this approach cannot be

ensured a priori. The proposed minimization algorithm appears therefore promising to design

a robust control, which aims at stabilizing self-sustained instability of turbulent swirling flows.

The identification of the near optimal amplitude A of the "linear sensitivity-based finite

amplitude control" is difficult in practice. An approximated amplitude A based on the first

gradient direction is not suitable due to the sudden drop of the control curves during the

minimization process (see fig. 4.4). We should mention that we have finally required in the

bisection method as many steps as the minimization process to obtain this near-optimal

amplitude A. Therefore the "linear sensitivity-based finite amplitude control", which should

be a priori computationally cheaper than a nonlinear receptivity is in reality equivalent if the

marginally stable solution is sought.
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5 Pressure surge and synchronous pres-
sure fluctuations in Francis turbines

In this chapter, we investigate the origin of the synchronous pressure fluctuations in Francis

turbines. This synchronous pressure, associated to a planar wave, can excite the hydraulic

piping systems of the power plant and can lead to dangerous pressure surges when the

frequency resonance occurs. The interaction between the solid wall of the draft tube and the

part load vortex rope is investigated using asymptotic analysis to provide further insight of the

mechanism generating the synchronous pressure wave.

The variables used in this document are susceptible to change in comparison to the submitted

version of the article to keep the document consistency. Additional paragraph and results

could be also added.

PAPER: Origin of the synchronous pressure fluctuations in the draft
tube of Francis turbines operating at part load conditions
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The synchronous pressure surge effect is a critical phenomenon occurring in Francis turbines

operating at part load conditions. In this regime, pressure fluctuations are predominantly

coming from the temporal rotation of a single helical vortex inside the turbine draft tube,

called the part load vortex rope. However the combination of multi-physics interactions,

geometry, cavitation, swirling flow and acoustic waves leads to a pressure amplification, called

the synchronous pressure surge effect, which is more dangerous than the fluctuations resulting

from the precessing vortex rope. This amplification is caused by the frequency match between

the natural frequency of the hydraulic piping system and an excitation source consisting of

a synchronous wave. While the synchronous pressure is only observed in elbow draft tube,

the physical mechanism originating in the synchronous pressure wave remains poorly under-

stood. We have therefore investigated the starting position and the growth of the synchronous

pressure wave in Francis turbines. By energy consideration of an azimuthal-temporal Fourier

decomposition of the flow in an axisymmetric draft tube geometry that was slightly disturbed

at the wall, the source of the synchronous pressure and its amplification region were iden-

tified. In addition, the origin of this wave as the interaction of a wall disturbance with the

part load vortex rope, was investigated using an asymptotic analysis and brought deeper

comprehension of the synchronous wave generation mechanism.

5.1 Introduction

Electric production from renewable energy sources (RES) contributed a quarter of the world-

wide electrical generation in 2016. The continuing development of these sources is currently

reaching a level where the production assigned to intermittent RES, which are dependent of

the input available-energy, needs to be regulated to guarantee the stability of the electrical

grid. One major actor for providing advanced regulation techniques is the hydroelectric power

capacity that is representing more than the 50% the total RES. Through the reactive electric
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production of hydraulic turbines, hydropower already compensates for the fluctuations of the

electrical consumption and allows up to now to integrate the actual fluctuations of the inter-

mittent RES production. The future development of the intermittent RES power capacity may

become problematic but it may be still and further supported by improvements of regulation

techniques from the hydroelectric power plant through the extension of the operating range

of hydraulic turbines that will allow electric production at off-design operating conditions.

Unfortunately off-design operating conditions of Francis turbines, that represent 60% of the

hydraulic turbine installed capacity, are hindered by complex flow patterns, which has led to

the development of control strategies to overcome pressure fluctuations (Susan-Resiga et al.

[29], Zhang et al. [30], Bosioc et al. [131], Tǎnasǎ et al. [133], Foroutan et al. [31] and Pasche et

al. [110]). These patterns differ according to the off-design operating conditions. In opposition

to the runner design regime that coincides to the best efficiency point (BEP) where an axial

flow exits the runner, the off-design regime is characterized by a residual swirling flow at the

runner outlet that results in fluctuating velocity and pressure distributions in the draft tube.

These unsteadiness develop as a pulsating axisymmetric cavitation vortex rope at full load

operating condition, for higher discharge than the one at BEP or as a helical precessing vortex

called part load vortex rope, for lower discharge than the one at BEP. In addition to these vortex

flows implying pressure and velocity surge, a critical phenomenon may occur at off-design

condition, when the cavitation vortex flow and the natural frequency of the entire power

plant enter in resonance (Dörfler [115]). At part load operating conditions, this resonance

phenomenon is called synchronous pressure surge and was first reported by Reinghans [106]

with the power swing of a generator. Exclusively observed in elbow type draft tube turbines,

this critical effect produces severe pressure fluctuations of higher amplitude than the internal

pressure pulsation of the precessing vortex rope. Furthermore Nishi et al. [12] underlined

the contribution of a synchronous fluctuation at the frequency of the part load vortex rope

in this surge phenomenon by experimental measurements, highlighting the amplification of

the synchronous pressure depending on the cavitation parameters of the vortex flow. The

synchronous wave is defined as the unsteady azimuthal-averaged component of the flow,

which is equivalent to a planar wave by assuming long wave length with respect to the runner

diameter. Nishi et al. [12] described also a convective fluctuation, which is associated to the

precessing motion of the vortex rope. Therefore the synchronous pressure surge prediction

becomes essential to avoid critical situations in power plants and leads to the characterization

of the hydraulic system eigenfrequency and of the cavitation parameters of the vortex flow.

A significant improvement of the system eigenfrequency characterization is brought by the

1-D model of mass and momentum flow conservation including elastic pipe wall derived

by Nicolet [34]. This hydro-acoustic model, in analogy to an electric circuit, not only de-

scribes eigenfrequencies but also transient and unsteady phenomena in hydraulic systems. In

particular, Alligné [134] have developped a relevant model of the Francis turbine cavitation

vortex rope, by adding among others the flaring of the draft tube, the dissipation induced

by the compressibility of the cavitation volume, and the cavitation compliance. In the case

of the part load vortex rope, the synchronous pressure that is observed to promote the syn-
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chronous surge effect is modeled by an external ad-hoc momentum source. The piping system

indeed has a much higher eigenfrequency than the frequency of the cavitation vortex rope,

but their interaction becomes possible when the system eigenfrequency is lowered by the

local decrease of the traveling pressure wave speed due to the development of the cavitation

inside the draft tube. However this 1-D model become only predictive after the definition of

calibration curves, associated to the specific geometry and part load operating conditions, as

investigated by Landry et al. [130]. Experimental measurements on a reduced scale Francis

turbine model were performed with a mass flow source in the feeding pipe, by harmonic

excitation techniques and ensured a proper calibration.

Cavitation vortex ropes were experimentally and numerically investigated by many researchers,

see Jacob [135], Ruprecht et al. [18], Mauri et al. [19], Paik et al. [20], Buntic et al. [21], Wang &

Zhou [22], Pacot et al. [136] and Wilhelm et al. [137] among others. They have contributed to

the complete description of the flow conditions appearing at different operating regimes in

Francis turbines. They have also developed numerical methods to perform simulations of the

complex flow inside rotating hydromachines. Technology development has enabled system-

atic wall pressure measurements over the whole draft tube (Arpe & Avellan [8], providing a

global description of the acoustic phenomenon. In particular, the position of the synchronous

pressure maximum amplitude was measured on the inner part of the draft tube elbow. Others

experimental measurements such as laser Doppler velocimetry (LDV) and two-phase flow

particle image velocimetry (PIV) have brought pressure-velocity correlations (Ciocan et al.

[9], Iliescu et al. [16] and Kirschner et al. [129]), which were compared to numerical flow

simulations, see Trivedi et al. [23] for a review.

A recent experimental study of Favrel et al. [17] compared the part load vortex rope frequency

as a function of the discharge coefficient, as well as on focuses on the dependence of the flow

modifications associated to the synchronous pressure amplification. The intrinsic frequency

of the part load vortex rope, that is induced by its self-sustained global instability character

(Pasche et al. [65]), is observed to linearly decrease in the lower part load regime and to be

constant in the upper part load regime as the discharge growths. The synchronous pressure

amplification emphases a wider vortex rope trajectory and circulation intensity. The cavitation

vortex rope, viewed as an excitation source in the hydraulic systems, indeed produces a

synchronous wave that is capable to excite the piping system eigenfrequency but the way

the synchronous wave emerges from the precessing vortex rope remains an open topic of

discussion.

In the present paper, we investigate the origin of the physical mechanism responsible for the

generation of the synchronous pressure from the part load vortex rope. The system is viewed

as a fluid solid interaction problem due to the symmetry breaking of the elbow draft tube,

and it is studied by means of numerical flow simulations (CFD). In addition, an asymptotic

development of the flow field is derived to highlight the interactions responsible for the

development of the synchronous pressure.
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5.2 Methodology

The case studied is the FLINDT geometry - Flow Investigation In Draft Tube - project Eureka

No. 1625, where the turbine is composed of a high specific speed runner and an elbow

draft tube, see fig. 5.1(a), (c). The origin of the synchronous pressure is investigated for a

part load operating regime of the turbine with a flow rate coefficient of φ = 0.27, a specific

energy of ψ = 1.16 and a Thomas cavitation number of σ = 1.16. In this regime, the flow

field is cavitation free and a precessing vortex rope develops in the elbow draft tube. We

use dimensionless variables made by the radius of the runner outlet R1̄e and the discharge

velocity Cr e f = Q/(πR2
1̄e

). Therefore our operating condition defines a Reynolds number

built on the fluid’s kinematic viscosity of value Re = R1̄eCr e f /ν = 824400. The pressure is

reported as a pressure coefficient defined as C p = P/(0.5ρC 2
r e f ), with ρ the water density.

In the present study, we consider three other draft tube designs. The first geometry is an

axisymmetric draft tube (Moody draft tube) based on a discharge velocity conservation over

the cross sections of the original elbow draft tube, see fig. 5.1(d), identical to Pasche et al. [65].

The second is an axisymmetric draft tube disturbed at the wall, at the Z locations Z I
0 = 2.6

and of relative amplitude εI = 0.1 (Disturbed Moody draft tube case I), see fig. 5.1(e). The

third geometry is an axisymmetric draft tube disturbed at a different wall location Z II
0 = 3.375

and of relative amplitude εII = 0.04 (Disturbed Moody type draft tube case II), see fig. 5.1(f).

The wall disturbance case I is located at the end of the draft tube cone to mimic the elbow

start while the wall disturbance case II is located more downstream with a smaller amplitude

on an expanded region to be compared to an asymptotic analysis. The chosen disturbances

break the symmetry of the draft tube by an eccentric displacement of a circular section of

the wall following a Gaussian function along Z , of variance σI = 0.1 and σII = 0.25 for case I

and II, respectively. These configurations allow us to dissociate the flow pattern induced by

the structure and by the self-sustained vortex, by the means of a double azimuthal-temporal

Fourier series decomposition of 3-D numerical flow simulations that is previously carried out.

We investigate the physical mechanism originating in the synchronous pressure by performing

an asymptotic analysis. Starting from the mean flow of the unperturbed geometry (axisym-

metric Moody draft tube) at the zero order, we derive first order equations associated to the

part load vortex rope leading to a stability analysis and to the effect of the wall disturbance

using a domain perturbation method. Then, the synchronous pressure equation is obtained at

the second order. Due to symmetry consideration of the problem, we are able to compute this

asymptotic analysis in a 2-D axisymmetric domain instead of a 3-D domain (appendix 5.6.1),

where the governing equations are written in a cylindrical coordinate system. The asymptotic

results are then compared to the azimuthal-temporal Fourier series decomposition of 3-D

numerical flow simulation.
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Figure 5.1 – Flindt reduced scale physical CAO model (a) with the wall pressure sensor at two
different cross section S1.3 and S1.75 (b), and the different hydraulic draft tube domain inves-
tigated by numerical flow simulations, (c) the original elbow draft tube, (d) the axisymmetric
Moody type draft tube, (e) the disturbed Moody type draft tube case I and (f) the disturbed
Moody type draft tube case II.
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5.3 Numerical methods

5.3.1 Three dimensional flow field

The 3-D flow solutions of the elbow and the Moody draft tube are recovered from a previous

study, see Pasche et al. [65]. The same numerical setup is used to compute the flow field in the

other geometries, the disturbed Moody draft tube case I and case II. The Unsteady Reynolds

Averaged Navier-Stokes equations (URANS), eqn. (5.1), are solved with ANSYS CFX 16.0. We

use a shear stress transport-based scale-adaptive simulation (SST-SAS) turbulence model that

is not reported here for the sake of simplicity (Egorov & Menter [121]). This turbulence model

defines the spatial varying turbulence eddy viscosity νt (C).

∂C

∂t
+∇C ·C =−∇P +Re−1∇2C+∇· [νt (C)

(∇+∇T
)

C
]

∇·C = 0,

(5.1)

The computational domain is composed of the runner and the draft tube only, which is

demonstrated to be sufficient to compute the flow distribution in the draft tube (Ciocan et

al. [9]). The applied boundary conditions are an open condition at the outlet, and a constant

velocity and turbulence intensity profile at the inlet, coming from a previous steady calculation

of the spiral casing and guide vane cascade. A general grid connection (GGI) method is used

to transfer the flow field between the rotational and the stationary domain. A time step of 1

deg of runner revolution and a rms convergence error of 10−4 are set in the computational

setup. While the simulation is running, the time averaged flow field is computed and the

pressure is monitored on the wall of the draft tube cone, at two different sections S1.3 and

S1.75 (fig. 5.1b), over five vortex rope precessions. The mesh from the previous computation

of the Moody draft tube of Pasche et al. [65] is kept except that the cells are translated to follow

the wall disturbances of the present geometry (distributed Moody draft tube case I and II).

This mesh is made of a total of 7.5 mio of hexahedral cells.

5.3.2 Fourier series analysis

The interactions of the fluid and the structure are then exhibited by the double azimuthal-

temporal (m−q) Fourier series decomposition, eqn. (5.2), of the phase averaged state variable
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< U >=< (C,P ) >, for m ∈N and q ∈N:

< U(R,θ, Z , t ) >= Ū(R,θ, Z )+ Ũ(R,θ, Z , t ) =
∞∑

m=0

[
ām0(R, Z )cos(mθ)− b̄m0(R, Z )sin(mθ)

]+
∞∑

m=0

∞∑
q=1

[
ãmq (R, Z )

(
cos(qωv t )cos(mθ)− sin(qωv t )sin(mθ)

)
−b̃mq (R, Z )

(
sin(qωv t )cos(mθ)+cos(qω f t )sin(mθ)

)]
=ℜ

( ∞∑
m=0

∞∑
q=1

Umq (R, Z )ei (mθ+qωv t )

)
(5.2)

where ām0,b̄m0 are the Fourier coefficients of the time averaged flow field and ãmq ,b̃mq are

the Fourier coefficients of the periodic wave. Umq is not computed on the full domain of

the axisymmetric Moody draft tube but in the reduced domain of the disturbed Moody draft

tube case I and II, delimited by circular cross-section centered on the axis of the inward wall

disturbance radius. This decomposition is carried out in Matlab, after interpolating the state

variable U = (C,P ) over 5 vortex rope precessions, on a 3-D cylindrical point distribution

performed by the batch post-processing tool of Ansys 16.0. The phase average process is

computed using a trigger signal of the vortex rope frequency ωv /ωr unner = 0.33. Thus the

term qωv for q ≥ 1 designates the fundamental or the harmonics of the precessing vortex

rope. From these definitions, we are able to identify the Fourier coefficients to the disturbance

mode of the vortex rope: U11 = ã11 + i b̃11, to the draft tube disturbance: U10 = ā10 + i b̄10 and

to the synchronous component: U01 = ã01 + i b̃01. The kinetic energy computed by

Ek =
∫
Ω

Cmq ·C∗
mq dΩ, (5.3)

on the control volume assuming Einstein summation convention, assesses the contribution

of the different modes. Similarly the potential energy is computed as

Ep =
∫
Ω

√
Pmq ·P∗

mq dΩ. (5.4)

A kinetic energy per unit length is also defined

ek (Z ) = 2π

R∫
0

Cmq ·C∗
mq R dR, (5.5)

as well as a potential energy per unit length

ep (Z ) = 2π

R∫
0

√
Pmq ·P∗

mq R dR, (5.6)
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both being functions of Z .

5.3.3 Asymptotic expansion

An asymptotic analysis is performed to approximate the flow solution of the disturbed Moody

draft tube case II. We consider a solution in a power series form of the state variable U = (C,P ),

written as

U = Ū+εU(1) +ε2U(2), (5.7)

where ε represents the disturbance amplitude of the geometry and is assumed small ε<< 1,

for case II, εII = 0.04. The obstacle equation is written as

R =G(θ, Z ) =G0(Z )+εG1(Z )cos(θ), (5.8)

with G0(Z ) the axisymmetric Moody type draft tube wall function and

G1(Z ) = exp
(−(Z −Z0)2/σ2

)
a Gaussian perturbation located at Z0 of variance σI I = 0.25, for

case II. The following convention is used, θ = 0 designated the most outward disturbance while

the θ =π designated the most inward disturbance. Substituting the asymptotic expansion in

the governing equations, eqn. (5.1), we obtain a series of systems of equations at various ε

orders. These systems are written in a 2-D axisymmetric domain (see appendix 5.6.2), so that

Γw all =G0(Z ) for all systems.

Order ε0

At order ε0, we assume that the steady mean turbulent flow equations, that govern the time av-

eraged state variable Ū are retrieved, according to eqn. (5.9). Following the same assumptions

as Barkley [5], Meliga et al. [47] and Mantič-Lugo et al. [84], we obtain that the mean turbulent

flow is a steady solution of the governing equations (5.1) forced by the constant Reynolds

stresses of the coherent fluctuations of the flow field, symbolized by F̄. The mean turbulent

flow is bounded by the same conditions as the instantaneous flow except at the outlet where a

free-outflow condition is applied, because a finite element solver is used for this asymptotic

analysis. This change does not affect the solutions because the outlet is far enough. Since we

consider a 2-D axisymmetric domain, the mean flow satisfies a supplementary axisymmetric

boundary condition on Γaxi s . As expected at this order, no corrections from the disturbed

geometry appears. In addition, the mean turbulent eddy viscosity ν̄t (C̄) is also involved in eqn.
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(5.9) to correctly capture the mean flow.

∇C̄ · C̄+∇P̄ −Re−1∇2C̄−∇· [ν̄t
(
C̄

)(∇+∇T
)

C̄
]= F̄

∇· C̄ = 0

C̄R = C̄θ =
∂C̄Z

∂R
= 0 on Γaxi s

C̄ = 0 on Γw all

C̄ = Ci n on Γi n

(−PI+Re−1∇C̄+ ν̄t
(
C̄

)(∇+∇T
)

C̄
) ·n = 0 on Γout

(5.9)

Order ε1

at order ε1, the linearized URANS equations around the mean flow are obtained with specific

boundary conditions that arise from the disturbed geometry, eqn. (5.8). Taylor series are

used to derive these conditions that read C(1) = G1(Z ) ·∂R C̄ on Γw all . Since we deal with a

linear system of equations, the superposition principle applies, and U1 reads therefore after

normal-mode decomposition of azimuthal wavenumbers m and eigenfrequency ω:

U(1)(R,θ, Z , t ) = AU(1)
11 (R, Z )ei (mθ−ωt ) +εU(1)

10 (R, Z )e(i mθ) +c.c. (5.10)

At this order we choose the distinguished limit such that the amplitude of the vortex rope

disturbance and the amplitude of the wall disturbance are of the same order of magnitude,

A =O (ε). The general solution U(1)
11 is associated to the eigenvalue problem linearized about

the mean turbulent flow equations with homogeneous boundary conditions, written as

−iωC(1)
11 +∇mC(1)

11 · C̄+∇mC̄ ·C(1)
11 =−∇mP (1)

11 +Re−1∇2
mC(1)

11 +∇m ·
[
ν̄t

(
C̄

)(∇m +∇T
m

)
C(1)

11

]

∇m ·C(1)
11 = 0

C (1)
11Z = P (1)

11 =
∂C (1)

11R

∂R
=

∂C (1)
11θ

∂R
= 0 on Γaxi s

C(1)
11 = 0 on Γw all

C(1)
11 = 0 on Γi n(

−P (1)
11 I+Re−1∇C(1)

11 + ν̄t
(
C̄

)(∇+∇T
)

C(1)
11

)
·n = 0 on Γout .

(5.11)

98



5.3. Numerical methods

The most relevant solution of this eigenvalue problem is the unstable mode, which well

describes the vortex rope disturbance of eigenvalue ωv for m = 1, found by Pasche et al.

[65]. The capacity of stability analysis on turbulent mean flows to correctly capture helical

structures like the part load vortex rope has been also assessed by recent studies on swirling

injectors (Oberleithner et al. [138] and Tammisola & Juniper [48]).

The particular solution U(1)
10 is associated to the wall disturbance system of equation, written

as

∇mC(1)
10 · C̄+∇mC̄ ·C(1)

10 =

−∇mP (1)
10 +Re−1∇2

mC(1)
10 +∇m ·

[
ν̄t

(
C̄

)(∇m +∇T
m

)
C(1)

10

]

∇m ·C(1)
10 = 0

C (1)
10Z = P (1)

10 =
∂C (1)

10R

∂R
=

∂C (1)
10θ

∂R
= 0 on Γaxi s

C(1)
10 =G1(Z ) ·

∂C̄

∂R
on Γw all

C(1)
10 = 0 on Γi n(

−P (1)
10 I+Re−1∇C(1)

10 + ν̄t
(
C̄

)(∇+∇T
)

C(1)
10

)
·n = 0 on Γout .

(5.12)

The boundary condition on Γw all obtained by applying a domain perturbation method,

mimic the wall disturbance. U(1)
10 is time independent because a static solution to the eccentric

disturbance of the draft tube wall is sought. We should mention that the linearized solution

only projects onto the azimuthal wavenumber m = 1 due to the disturbance shape of our

prescribed geometry.

Order ε2

At order ε2, systems of linear equations including interactions between the previous order

solutions appears. The separation of the systems by frequency and by azimuthal wavenumber

leads to five different solutions, according to

U(2)(R,θ, Z , t ) = U(2)
22 (R, Z )ei (2θ−2ωt ) +U(2)

00 (R, Z )

+U(2)
20 (R, Z )ei 2θ+U(2)

21 (R, Z )ei (2θ−ωt ) +U(2)
01 (R, Z )e−iωt +c.c.

(5.13)

These solutions are respectively the second harmonic self-interaction of the vortex rope

disturbance, the mean flow correction by the coherent fluctuations, the second harmonic

self-interaction of the geometrical disturbance, the second harmonic of the geometrical

disturbance with the vortex rope disturbance and, eventually, the synchronous component.
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The last solution U(2)
01 is of particular interest, and is governed by

−iωv C(2)
01 +∇mC(2)

01 · C̄+∇mC̄ ·C(2)
01 +∇mP (2)

01 −Re−1∇2
mC(2)

01

−∇m ·
[
ν̄t

(
C̄

)(∇m +∇T
m

)
C(2)

01

]
=−∇mC(1)

11 ·C∗(1)
10 −∇mC∗(1)

10 ·C(1)
11

∇m ·C(2)
01 = 0

C (2)
01R =C (2)

01θ =
∂C (2)

01Z

∂R
= 0 on Γaxi s

C(2)
01 = 0 on Γw all

C(2)
01 = 0 on Γi n(

−P (2)
01 I+Re−1∇C(2)

01 + ν̄t
(
C̄

)(∇+∇T
)

C(2)
01

)
·n = 0 on Γout

(5.14)

This system describes the synchronous wave disturbance, i.e. an axisymmetric pulsation

of the flow, coming from the interaction between the geometric elbow disturbance and the

dynamic vortex rope disturbance synchronized at the vortex rope frequency as observed in

the experimental measurements of Arpe & Avellan [8].

Figure 5.2 – Methodology applied to the vortex rope to investigate the development of the
synchronous pressure, left branch the nonlinear analysis of the axisymmetric Moody draft
tube, right branch analysis of the disturbed Moody draft tube, in red the asymptotic analysis
and the curved gray arrows show the flow field comparison carried out in the present study.
The boxes represent the computational operations.
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The solutions obtained by the asymptotic analysis are next compared to the Fourier series de-

composition of the 3-D numerical flow simulation. The different links between these analysis

and solutions are sketched in fig. 5.2. In this schematic, the boxes represent computational

operations. The left branch summarizes the methodology applied to the 3-D axisymmetric

Moody draft tube and the right branch summarizes it for the 3-D disturbed draft tube. The red

parts summarize the asymptotic expansion and comparisons between the different analyses

are showed by curved gray arrows.

Numerical computation

The systems of equations, eqns. (5.11), (5.12) and (5.14) are written in weak form and solved

numerically with the finite element solver Freefem++ [101] on a 2-D axisymmetric domain,

see appendix 5.6.1. The mesh has approximately 500’000 triangle elements using P2-P1 shape

functions for the velocity-pressure fields. No further validations are provided because this

mesh is identical to the mesh used in Pasche et al [65], in which the computation of the eigen-

value problem associated to the part load vortex rope was carried out. These different systems

of equations are solved using (Unsymmetric Multifrontal sparse LU Factorization) UMFPACK

package, that was combined with the ARPACK library [104] for solving the eigenvalue problem.

The mean turbulent flow is given by the solution of eqn. (5.9) theoretically, but in practice

this set of equations is not solved. The mean turbulent flow C̄ is determined from the time

averaged flow distribution that is evaluated on the fly while the 3-D numerical flow simulation

of the axisymmetric Moody type draft tube geometry is running. The time averaged flow

field obtained on the 3-D mesh is then azimuthally averaged and interpolated on the 2D

axisymmetric mesh using matlab interpolation tool. The set of equations eqns. (5.11), (5.12),

(5.14) needs not only the mean turbulent flow but also the time averaged spatial distribution

of the turbulent eddy viscosity ν̄t (C̄), that is computed in the same way.

Several assumptions are performed to proceed to the asymptotic analysis. Since the eigen-

vector magnitude ||C(1)
11 || associated to the vortex rope disturbance, solution of eqn. (5.11), is

left undefined, its norm is identified to the norm of C11, as extracted from the Fourier series

decomposition of the 3-D flow field of the vortex rope associated to the axisymmetric Moody

type draft tube geometry without disturbance. The wall boundary condition, imposed for

C(1)
10 in eqn. (5.12), defined by C(1)

10 |Γw all =G1(Z ) ·∂R C̄|Γw all , could not be computed directly in

this way. Since we deal indeed with URANS equations, the boundary layer is modeled by a

wall function and its derivative is strongly oscillating. We identify therefore the velocity at the

boundary of the Fourier series decomposition associated to the same mode C10, extracted

from the 3-D URANS of the disturbed flow, so as to avoid computing derivatives in the near

wall region. We impose C(1)
10 |Γw all ≈ γC10|Γ̆w all

as boundary condition in eqn. (5.12), in which a

scalar correction factor γ appears and compensates for the reduced domain of the Fourier

series decomposition, since the disturbed region G1(Z ) has to be excluded, see fig. 5.3. In the

asymptotic analysis, the value of this correction factor is 1.73 minimizing the least square fit of

the velocity profiles at the maximum wall disturbance Z II
0 .
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Figure 5.3 – Boundary condition applied for domain disturbance using the matching prefactor
γ on the associated Fourier mode. The disturbance of the Fourier decomposition domain is
enlarged to help understanding the analysis.

5.4 Results

5.4.1 Fourier series analysis

The instantaneous 3-D flow distribution of the elbow draft tube geometry is reported in fig.

5.4. The axial velocity is plotted on a Y Z slice and the vortex core of the part load vortex is

materialized by a pressure iso-contour of value C p =−4.1. On the side of the draft tube center

line, positive axial velocity regions appear close to the vortex core, that are surrounded by a

stagnant axial flow. Along the wall of the draft tube, in contrast, the axial flow has a strong

negative value oriented in the free-stream direction. The inlet flow discharge is therefore

recovered in the confined region delimited by this negative axial velocity, which presents

locally the largest value close to the vortex core strengthened by its rotation.

The pressure monitored on the section 1.3 and 1.75 is a first indicator of the apparition of the

synchronous component. The pressure periodic wave are reported in fig. 5.5, for the elbow

draft tube (a and b), for the axisymmetric Moody draft tube (c and d), and for the disturbed

Moody type draft tube case I (e and f), on sections 1.3 and 1.75 respectively. The synchronous

and convective waves in the draft tube are obtained by phase averaged computation based on

the reference pressure sensor N ◦ 2. The synchronous pressure coefficient, reported by the solid

curves, is experienced in both sections in the elbow draft tube (fig. 5.5a and b). Since a single

phase numerical flow simulation is performed and the remaining hydraulic system is not

computed, no resonance effect can be induced and the synchronous component amplitude

in the cone is therefore smaller than the convective components, which are reported by dash

curves. Furthermore the synchronous pressure signal is also observed in the case of the wall

disturbance case I (fig. 5.5c and d). The localized wall displacement is sufficient to generate
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5.4. Results

Figure 5.4 – Pressure isocontour of the vortex rope (C p =−4.1) and axial velocity distribution
on the YZ plane for the instantaneous URANS solution in the elbow draft tube

a synchronous fluctuation. A similar amplitude as the elbow draft tube is obtained in the

section 1.75 but the synchronous pressure is spread and phase shifted in section 1.3. On the

contrary, no synchronous fluctuation is observed in the axisymmetric Moody draft tube, and

only the convective oscillation remains (fig. 5.5e and f). In agreement with Nishi et al. [12],

the synchronous wave appears exclusively when the symmetry axis of the draft tube axis is

broken.

The part load vortex rope passage in front of each sensor is felt as a pressure minimum of the

convective oscillations (dashed curves) in fig. 5.5, due to the low pressure inside the vortex

core. Regarding the axisymmetric Moody type draft tube (fig. 5.5c and d), this minimum is

around C̃ p ≈ −0.45 in section 1.3 compared to C̃ p ≈ −1 in section 1.75. This discrepancy

shows the faring angle of the vortex rope that brings it closer to the wall at section 1.75 than

at section 1.3 and therefore strengthens the pressure minimum. This pressure minimum of

the convective oscillations in the axisymmetric Moody type draft tube is at the same level. In

contrast, this level is modulated at section 1.75 of the elbow draft tube and disturbed draft

tube case I (fig. 5.5b and f), which is representative of the helical mode distortion induced by

the symmetry breaking of the draft tube.
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Figure 5.5 – convective part (dashed curve) and synchronous part (solid curve) of the wall pres-
sure measurements at the sensor N ◦ 1,2,3,4 on the cross section S1.3 for elbow (a), disturbed
case I (c), axisymmetric (e) draft tube and at the cross section S1.75 for elbow (b), disturbed
case I (d), axisymmetric (f) draft tube.
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Regarding the disturbed axisymmetric draft tube case I, we investigate the nonlinear interac-

tions by computing an azimuthal-temporal m −q Fourier series decomposition. This method

allows us to separate the wall disturbance mode from the fluid flow modes by our setup

definition. Thus the wall disturbance is completely assigned to a stationary, q = 0, azimuthal

wavenumber m = 1 mode. The synchronous component of the vortex rope is therefore defined

by the Fourier mode m = 0 and q = 1, and the vortex rope mode by m = 1 and q = 1. The

kinetic energy of each m-azimuthal and q-temporal modes are computed using eqn. (5.3) and

are reported in fig. 5.6(a) for the axisymmetric Moody draft tube and in fig. 5.6(b) the disturbed

Moody draft tube case I. For both cases, the strongest contribution to the total kinetic energy

Figure 5.6 – Volume integral of kinetic energy of temporal-azimuthal (m-q) Fourier modes
of the disturbed Moody draft tube case I (a) and the axisymmetric Moody draft tube (b). The
energy of the diagonal terms is scaled by 1/4.

is the mode m = 1, q = 1, the part load vortex rope, that is also observed in the CFD. The har-

monics of this mode, the m = q pairs (2,2) and (3,3), follow in the energy cascade. The mode

energy repartition demonstrates the absence of synchronous fluctuations for axisymmetric

draft tubes (fig. 5.6b). The introduction of a small disturbance on the wall, however, generates

several Fourier modes coming from the quadratic nonlinearity of the Navier-Stokes equations.

Figure 5.6(a) shows the onset of the synchronous mode m = 0, q = 1 with the sixth highest

amplitude of kinetic energy after the vortex fundamental and its harmonics, and the wall

disturbance m = 1, q = 0 and its harmonic. We should mention that the potential energy, eqn.

(5.4) is found to follow the same energy distribution as the kinetic energy.
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The Fourier modes of interest are reported in fig. 5.7 as a 2-D axisymmetric and 3-D represen-

tation of the axial velocity and pressure coefficient. The Fourier mode of the vortex rope, m = 1

and q = 1, is displayed in fig. 5.7(a) and (b). The pressure iso-contour and the axial velocity

iso-contour materialize the shape of the vortex flow. Only negative pressure iso-contours are

displayed and therefore show the spatial location of the vortex. In contrast the axial velocity

iso-contours show positive and negative values and therefore display simultaneously the flow

when the vortex rope hits the inward wall disturbance (negative iso-contour) or hits the out-

ward wall disturbance (positive iso-contour), and vice versa due to symmetry consideration

of the Fourier series decomposition. In the left fig. 5.7(b) the vortex rope disturbed by the

wall causes a secondary tiny iso-contour of value C p =−1, observed on the top of the inward

disturbance. This pressure perturbation of the vortex rope is also observed by a tightened

negative axial velocity iso-contour on the right side of fig. 5.7(a) due to the flow acceleration

over the wall disturbance.

The Fourier mode of the wall disturbance, m = 1 and q = 0, is displayed in fig. 5.7(c) and

(d). Although this mode has a similar amplitude as the vortex rope mode, it remains in

contrast localized in the wall disturbance region. Since this Fourier mode is stationary, the

3-D representations show the inward disturbance on the left part of the iso-contour graphs

and the outward disturbance on the right part of the iso-contour graphs. The axial velocity

of the inward disturbance shows a flow acceleration on the free-stream direction (negative

value) on the top of the wall disturbance and a flow deceleration (positive value) above and

below the wall bump. In contrast, the axial velocity iso-contour of the outward disturbance

shows only an accelerated flow on a larger region.

The Fourier mode of the synchronous wave, m = 0 and q = 1, is displayed in fig. 5.7(e) and

(f). The synchronous wave is spatially located along the draft tube wall starting from the wall

disturbance. A series of minima and maxima along the wall are observed on the axial velocity

(right fig. 5.7e). These peaks are separated by a distance that is observed to be set by the axial

convective velocity of the vortex rope. The synchronous wave minimum is reached when

the vortex hits the outward wall disturbance and its maximum when the vortex rope hits the

inward wall disturbance. The time evolution of the synchronous pressure for one precession

of the vortex rope is presented in fig. 5.8 and shows the onset of the synchronous pressure

formed by the interaction of two single helical disturbances, rhythmed by the self-sustained

frequency of the vortex rope.
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Figure 5.7 – Fourier series decomposition of the disturbed Moody draft tube case I and their
related 3-D reconstruction of axial and pressure components for the vortex rope Fourier mode
m = 1, q = 1, (a) and (b), the stationary wall disturbance Fourier mode m = 1, q = 0, (c) and
(d), and the synchronous Fourier mode m = 0, q = 1, (e) and (f) at an arbitrary chosen time t .
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Figure 5.8 – Time evolution of the vortex rope materialized by a pressure iso-contour of value
C p = −4.1 (a) and associated instantaneous pressure field of the azimuthal Fourier series
decomposition for the vortex rope disturbance m = 1, q = 1 left (b) and the synchronous
pressure m = 0, q = 1 right (b).
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The kinetic and potential energy per unit length, eqns. (5.5) and (5.6) of the synchronous

Fourier mode are reported in fig. 5.9 as a function of the Z coordinate. The two curves have a

similar behaviour, tightened peaks over a plateau located at the wall disturbance Z (I)
0 = 2.6

that are surrounded by a minimum value of energy at the runner outlet and a maximum value

of energy in the axisymmetric elbow. These peaks are associated to the excitation source

of the synchronous component, and are due to the axisymmetry breaking of the draft tube.

However the excitation source does not correspond to the maximum of energy, this maximum

is located in the axisymmetric elbow. Therefore an amplification mechanism occurs when

the synchronous wave travels downstream the turbine. In contrast, the synchronous wave is

damped at the runner outlet because waves seem to hardly travel upstream in this geometry.

Figure 5.9 – Kinetic and potential energy per unit length of the synchronous Fourier mode as
a function of Z for the disturbed Moody draft tube case II.

We now focus on the physical mechanism behind the synchronous wave by investigating

the interactions of the different observed disturbances in an asymptotic framework for the

disturbed Moody type draft tube case II.

5.4.2 Asymptotic expansion

At zero order, the axisymmetric mean flow solution, defined by eqn. (5.9) is displayed in fig.

5.10(a). The axial velocity shows two regions, a strong velocity along the wall in the free-stream

direction and a center region flowing slowly that has one recirculation region close to the tip of

the runner cone, for detailed results see Pasche et al. [65]. Not only is the axisymmetric mean

flow used in the asymptotic expansion, but also the axisymmetric turbulent eddy viscosity.

Figure 5.10(b) illustrates the mean turbulent eddy viscosity where also two different regions are

shown, a high eddy viscosity region along the vortex rope path of magnitude νt ∼ 1 ·10−3, and

a low eddy viscosity region at the runner exit and in the draft tube center around νt ∼ 1 ·10−4.

In any case the turbulent eddy viscosity is dominant compared to the molecular viscosity that

is equal to 1/Re = 1.2 ·10−6 in this study.

The first and second order solutions are illustrated in fig. 5.11 and are compared to the Fourier

series decomposition of the 3-D CFD for the disturbed Moody type draft tube case II. Figures
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Figure 5.10 – Axisymetric turbulent eddy viscosity (a) and axisymmetric mean velocity distri-
bution (b) where the flow is linearized around in the asymptotic expansion

5.11(a) and (b) compare the solution U(1)
11 to U11, that are defined as, from left to right in (a), the

Fourier series decomposition of the 3-D CFD for m = 1 and q = 1, and the unstable eigenvector

associated to the vortex rope for m = 1 and q = 1, and in (b) their associated velocity profiles

on three different sections, at Z0 centered on the wall disturbance, at Z1 = Z0 −25% of the

Gaussian variance and at Z2 = Z0 +25% of the Gaussian variance. In a similar way fig. 5.11(c)

and (d) compare U(1)
10 to U10, the axial velocity distribution and the velocity profiles of the

Fourier series decomposition m = 1 and q = 0 of 3-D CFD and the wall disturbance solution of

eqn. (5.12). Finally fig. 5.11(e) and (f) compare U(2)
01 to U01, the Fourier series decomposition

m = 0 and q = 1 of 3-D CFD with the solution of eqn. (5.14) that approximates the synchronous

components m = 0 and q = 1.

The unstable eigenvector U(1)
11 , illustrated in fig. 5.11(a) is found to be slightly different when

compared to the CFD result in the axisymmetric Moody draft tube, as discussed in Pasche et

al. [65]. However the radial and axial velocity profile traced in fig. 5.11(b) are similar in the

region of the wall disturbance. The tangential velocity profiles have similar shapes but their

magnitudes differ slightly.

The solution of eqn. (5.12) is reported in fig. 5.11(c) and (d). This solution is localized on the

wall disturbance position and has a positive velocity along the wall and a negative on the top

of the bump. It is found to correctly approximate the wall disturbance perturbation at ε order.

Figures 5.11(e) and (f) report the synchronous wave of the disturbed type Moody draft tube

case II. The synchronous wave from the asymptotic analysis has indeed a larger amplitude

than the associated Fourier mode but the location and the shape are found similar in the

region of the disturbance. A negative region of axial velocity is obtained at the disturbance

location followed by a positive region along the draft tube wall in both cases, and the velocity

profiles have the same shapes but their amplitudes are larger. The discrepancy is may be

linked to the chosen distinguished limit ε= A or to feedbacks of higher order modes.
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Figure 5.11 – Azimuthal-temporal Fourier series decomposition of the disturbed Moody type
draft tube case II, compared with the asymptotic expansion for the vortex rope Fourier mode
and its eigenvalue (m = 1, q = 1) (a) and (b), the stationary wall disturbances (m = 1, q = 0) (c)
and (d), and the synchronous waves (m = 0, q = 1) (e) and (f).
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5.5 Conclusion & Discussion

We have investigated the origin of the synchronous pressure in Francis turbines by the means

of 3-D numerical flow simulations. A synchronous wave is observed in the original elbow draft

tube by phase averaging of the pressure signal of the wall monitoring points. The frequency

of this wave is found identical to the frequency of the vortex rope, consistently with previous

studies (Nishi et al. [12] and Arpe & Avellan [8]). Since the numerical domain is reduced to the

runner and the draft tube, no acoustic resonance is possible with the piping system, therefore

the magnitude of the synchronous pressure wave is inferior than the convective pressure

magnitude of the vortex rope. In contrast this synchronous pressure wave is totally absent in

the 3-D numerical flow simulations of an axisymmetric Moody draft tube for the same flow

regime. The synchronous wave is therefore a fluid-solid interaction between the draft tube

geometry and the vortex rope as Nishi et al. [12] have reported in experimental measurements.

We further investigate this interaction using two other draft tube designs, case I and case

II where the axisymmetric Moody draft tube is disturbed on the wall at two different places

and with different magnitudes. These disturbances are specially designed as an azimuthal

wave disturbance m = 1, meaning that on a region the draft tube wall sections are translated

along one axis only. This setup allows us to separate by double azimuthal-temporal Fourier

series decomposition the modes coming from the structure and from the fluid. The energy

distributions of these modes shows explicitly the development of a stationary m = 1 azimuthal

mode, the mode of the structure, that has the largest energy after the vortex rope mode and

its harmonics (m, q) = (1,1), (2,2) and (3,3), as well as the development of the synchronous

mode (m, q) = (0,1) with lower energy. Thus the temporal rotation of a single helical vortex

in a slightly deformed geometry of an equivalent wavenumber shape produces by nonlinear

interactions a planar wave. In these axysimmetric disturbed draft tubes, the origin of the

synchronous pressure is located at the disturbance position but its maximum amplitude is

observed in the downstream axisymmetric elbow. A second mechanism, yet to be investigated,

amplifies the synchronous wave as it travels along the draft tube.

An asymptotic expansion of the flow around the axisymmetric mean turbulent flow helps

to formalize the interaction mechanism of the synchronous wave development. A domain

perturbation method allows us to include the wall disturbance as a modified boundary con-

dition. By assuming a distinguished limit for the amplitude of the vortex rope similar to the

geometrical disturbance, these modes interact and produce an axisymmetric pulsating force

at the next order composed of their intercrossed Reynolds stresses, exciting therefore the

synchronous wave at the frequency of the vortex rope. This asymptotic analysis compare well

to the azimuthal-temporal Fourier series decomposition of the 3-D CFD.

Regarding elbow draft tube turbines where large wall deformation are imposed, the syn-

chronous wave development is expected to affect a broader region, starting at the beginning

of the elbow. Its maximum intensity is likely to take place where the vortex rope starts to hit

the elbow wall.
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5.6 Appendix

5.6.1 Two dimensional axisymmetric computational domain

The asymptotic expansion was computed on a 2-D axisymmetric domain displayed in fig.

5.12. The inlet went back to the runner blade and the outlet was pushed to this end of the 3-D

computational domain to isolate these boundary from the computed solution. This domain is

identical as Pasche and allowed us to compute an accurate unstable eigenvalue corresponding

to the vortex rope, eqn. (5.11)

Figure 5.12 – Two dimensional axisymmetric domain used to compute the asymptotic analysis.

5.6.2 Asymptotic expansion complementary equations

The four systems of equations at the order ε2 were reported in the following section. Each

systems were related to different variables: C(2)
22 the self-interaction of the vortex rope, C(2)

00

the Reynolds stresses correction of the mean turbulent flow, C(2)
20 the wall disturbance self-

interaction, C(2)
21 the interaction of the wall disturbance and the vortex rope for azimuthal

wavenumber m = 2.

m = 2, q = 2 :

−iωv C(2)
22 +∇mC(2)

22 · C̄+∇mC̄ ·C(2)
22 +∇mP (2)

22 −Re−1∇2
mC(2)

22

−∇m ·
[
νt

(
C̄

)(∇m +∇T
m

)
C(2)

22

]
=−∇mC(1)

11 ·C(1)
11

∇m ·C(2)
22 = 0

(5.15)
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m = 0, q = 0 :

∇mC(2)
00 · C̄+∇mC̄ ·C(2)

00 +∇mP (2)
00 −Re−1∇2

mC(2)
00

−∇m ·
[
νt

(
C̄

)(∇m +∇T
m

)
C(2)

00

]
=−∇mC(1)

11 ·C∗(1)
11 −∇mC(1)

01 ·C∗(1)
01

∇m ·C(2)
00 = 0

(5.16)

m = 2, q = 0 :

∇mC(2)
20 · C̄+∇mC̄ ·C(2)

20 +∇mP (2)
20 −Re−1∇2

mC(2)
20

−∇m ·
[
νt

(
C̄

)(∇m +∇T
m

)
C(2)

20

]
=−∇mC(1)

10 ·C(1)
10

∇m ·C(2)
20 = 0

(5.17)

m = 2, q = 1 :

−iωv C(2)
21 +∇mC(2)

21 · C̄+∇mC̄ ·C(2)
21 +∇mP (2)

21 −Re−1∇2
mC(2)

21

−∇m ·
[
νt

(
C̄

)(∇m +∇T
m

)
C(2)

21

]
=−∇mC(1)

11 ·C(1)
10 −∇mC(1)

10 ·C(1)
11

∇m ·C(2)
21 = 0

(5.18)

These ancillary systems reflected the other interactions coming from the quadratic nonlineari-

ties of the Navier-Stokes equations that appeared in the energy distribution of the different

modes in fig. 5.6.
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6 Nonlinear interaction of self-
sustained instabilities in laminar
swirling flows: Route to chaos

Fluid-solid interactions were investigated in the previous chapter. Nonlinear dynamics of fluid

motion governed by self-sustained instabilities are presently investigated. Global stability

analysis about the mean flow of the spiral vortex breakdown has revealed two unstable global

modes. Their interactions are assessed using direct numerical flow simulations, where a route

to chaos is revealed.

The variables used in this document are susceptible to change in comparison to the submitted

version of the article to keep the document consistency. Additional paragraph and results

could be also added.

PAPER: Onset of chaos in helical vortex breakdown at low Reynolds
number
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The nonlinear dynamics of a swirling flow stemming from a Graboswksi and Berger vortex in a

semi-infinite domain is addressed at low Reynolds numbers and at a fixed swirl number of

S = 1.095. In this system, only purely hydrodynamic instabilities develop and interact through

the quadratic nonlinearities of the Navier-Stokes equations, leading to the onset of chaos

at a Reynolds value of Re = 220. This chaotic state is reached by following a Ruelle-Takens-

Newhouse scenario, which is initiated by a Hopf bifurcation - the spiral vortex breakdown

- as the Reynolds number increases. At larger Reynolds value, a frequency synchronization

regime is also observed. Nonlinear time series analyses corroborate this scenario. Stability

analysis around the time-average flow in association with double azimuthal-temporal Fourier

decomposition of the nonlinear flow distributions identify the developing vortices, and pro-

vide deeper insight on the development of the flow patterns leading to this route to chaos.

Three single helical vortices, the primary spiral associated to the spiral vortex breakdown,

a downstream spiral and a near-wake spiral interact together to form a strong axisymmet-

ric mode. As the frequency of the downstream spiral becomes closer to the primary spiral,

nonlinear interaction are amplified leading to the chaotic state.

6.1 Introduction

Swirling flows experience vortex breakdown for sufficiently large Reynolds number, as soon

as the swirl intensity reaches a critical value. Crossing this threshold, the columnar state of

the vortex may bifurcate to several states characterized by a bubble, a spiral or a double spiral

breakdown configuration, which have all been reported in many experimental and numerical

studies of the last decades, see Lucca-Negro & O’Doherty [139] for a review. This sudden

topology change impacts several industrial applications. It affects leading edge vortices that

result in a poor flight performance (Gursul et al. [66]), or it prohibits operating conditions in

Francis turbines due to the development of large pressure fluctuations (Paschet et al. [10]). In

contrast vortex breakdown may be also beneficial, especially in turbomachinery applications,

to stabilize the flame of burners or to enhance the mixing of species (Paschereit et al. [67]).
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Hydrodynamic instability theory for open flow has shed a new light in this domain with the

concept of absolute/convective spatially developing flows of Huerre & Monkewitz [44]. The

presence of an advective dominant direction on incoming fluctuations leads to two distin-

guished situations. In convectively unstable flows, instability waves are swept away as they

grow and the flow acts as a noise amplifier. In contrast, in absolutely unstable flows, instability

waves invade the entire domain withstanding the advection giving birth to a synchronized

oscillator. This concept applied to the Batchelor parallel vortex profile has demonstrated

that helical instabilities could become absolutely unstable (Delbende et al. [74]). Weakly non

parallel local stability analysis of the spiral vortex breakdown from the velocity profile of the

3-D direct numerical simulation (DNS) of Ruith et al. [57] has led to the interpretation of

the spiral vortex breakdown as an absolute instability, triggered by the wake of the upstream

bubble (Gallaire et al. [75]). This interpretation was further validated by global stability analy-

sis of non-parallel flow were eigenvalues of the 3-D linearized Navier-Stokes (Theofilis [46])

equations around a base flow were carried out, see Meliga et al. [47] and Qadri et al. [80].

Stemming from a Grabowski & Berger vortex, this open flow has become a benchmark model

for disturbance analysis of vortex breakdown, see Vyazmina et al. [79] and Rusak et al. [81].

A bifurcation diagram of this benchmark model based on base flow investigations is reported

by Meliga et al. [45], who highlights a bifurcation point where both single and double helical

modes simultaneously become globally unstable at the instability threshold. The selected

mode is subsequently identified through a weakly nonlinear analysis for the bifurcation

point Re = 71.95 and S = 1.436. Nonlinear analyses of the vortex breakdown at low Reynolds

number using numerical flow simulation focus on the formation of the bubble breakdown,

the description of the flow patterns and the validation of vortex breakdown criterion initially

derived by Squire [69]. These DNSs were performed in several configuration such as pipes by

Lopez [140] or in close container by Escudier & Zehnder [61]. The first study that relaxed the

radial confinement of the vortex breakdown was performed by Ruith et al. [57] with the aim to

describe the linear stability of the first bifurcation state. Ruith et al. [57] have also reported, in

addition, the onset of a low frequency for larger swirl number S = 1.3 and Re = 200 associated

to a pulsant double-helical breakdown mode.

In contrast, studies investigating the nonlinear interactions of subsequent bifurcations were

mainly performed in confined geometries. For example, spherical Couette flow (Wulf et al.

[141]), Rayleigh-Bénard convection (Morris et al. [142] and Egolf et al. [143]) are typical fluid

flow system presenting chaotic regimes. Turning back to swirling flow, Lagrangian chaos of

vortex breakdown in closed containers was investigated by Sotiropoulos et al. [144] aiming

at identifying bassin of attractions of particle trajectories to improve species mixing in swirl

burner applications. Quasi-periodic regime of Eulerian dynamics was reported by Serre &

Bontoux [145] and Lopez [146] and Eulerian chaos was reported by Sorensen & Christensen

[147] in the same configuration.

Confined geometries exacerbate fluctuations of the bulk flow through shear effect of the

boundary layer and favor the system evolution to chaotic regime acting as a consequence of
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reflection and feedback mechanisms, before leading to spatio-temporal chaos and turbulence.

Chaotic regimes in open flows were also reported in bounded geometries, like for instance the

converging-diverging channel flow of Amon et al. [148] among others.

The route to chaos was found to follow three different possible universal scenarii (Newhouse

et al. [149], Feigenbaum [150] and Pomeau & Manneville [151]). The first one is the period

doubling or Feigenbaum scenario where consecutive period doubling transitions are succes-

sively observed until chaos is reached. The second is the Manneville-Pomeau intermitency

regime. The third scenario is the Ruelle-Takens-Newhouse where chaos is observed after the

apparition of a strange attractor with three incommensurate frequencies. In this scenario, the

successive bifurcations yielding from a steady fixed point (so-called T0) solution to chaos pro-

ceed through the following states: a first Hopf bifurcation yields a limit cycle torus T1, followed

by periodic k-period oscillations when the secondary instability sets in with a commensurable

frequency or alternatively a quasiperiodic state with two non commensurable frequencies,

the torus T2. A subsequent bifurcation ca yield a torus T3, which eventually becomes unstable

and yields chaos.

In the present study we investigate the appearance of Eulerian chaos in the open swirling

wake flow in a semi-infinite domain.

The paper is organized as follows: the open geometry of Ruith et al. [57] leading to spiral vortex

breakdown is described together with the governing equations in section 6.2. The numerical

tools used to perform DNS and to study the emerging flow patterns by global stability analysis

around the mean flow and double temporal-azimuthal Fourier decomposition are presented

in section 6.3. The first part of the results explore the instantaneous axial vorticity snapshots

of a specific set of bifurcation parameter (section 6.4), then a bifurcation diagram is presented

(section 6.5) followed by a nonlinear time series analysis in a specific point (section 6.6). This

local approach devoted to chaos theory and describing the flow state is then enriched by the

identification of spatial modes involved and their nonlinear interactions. This part of the

results are presented in section 6.7, before conclusions are drawn.

6.2 Flow configuration

We consider the dynamics of a Grabowsky & Berger [78] vortex, entering a semi-infinite domain

Ω, governed by the incompressible Navier-Stokes equations. This vortex, defined as,

CR (R) = 0, Cθ(R) = SΨ, CZ (R) = 1, on Γi n

Ψ(R <= 1) = R(2−R2), Ψ(R > 1) = 1/R,

(6.1)

is composed of a dimensionless vortex core size, with a prescribed tangential velocity Cθ

assigned by the swirl number S, and uniform dimensionless axial velocity CZ = 1. Here we

have used the reference length scale defined by the vortex core size l and the reference velocity
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scale defined by the axial velocity component C0 so that the fluid motion governed by the

incompressible Navier-Stokes equations write

∂C

∂t
+ (C ·∇)C =−∇P +Re−1∇2C in Ω

∇·C = 0 in Ω,

(6.2)

in dimensionless form, where Re = lC0/ν. This flow configuration is investigated for a constant

swirl number S = 1.095, which restricts our study to the spiral vortex breakdown in contrast

to pure bubble vortex breakdown or double helix vortex breakdown observed respectively at

lower and larger swirl numbers (Ruith et al. [57] and Meliga et al. [45]). Although we focus

on spiral vortex breakdown, this system is observed to reach several dynamical states as the

Reynolds number is increased. A bifurcation analysis is, therefore, performed up to a Reynolds

value of Re = 300, using classical tools to investigate dynamical systems such as nonlinear time

series, attractor cross sections, frequency identification and sensitivity to initial conditions.

This approach conducted in a single monitoring point is then enriched by the identification of

the developing temporal and spatial 2-D axisymmetric modes by performing a global stability

analysis around the mean flow and a double azimuthal-temporal Fourier decomposition of

the direct numerical simulations (DNS).

6.3 Numerical methods

6.3.1 Direct numerical flow simulations

Direct numerical flow simulations (DNS) of the Navier-Stokes equations, eqn. (6.2), are

performed on a 3-D cylindrical domain (fig. 6.1). These equations are completed with the

Figure 6.1 – 3D schematic of the flow configuration.

following boundary conditions: a Grabowsky and Berger vortex eqn. (6.1) at the inlet Γi n , a

free-outflow condition (−PI+Re−1·(∇C))·n = 0 on the external boundary Γext and a convective
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condition ∂t C+Cc ·∂nC = 0 at the outlet Γout . We have fixed the convective velocity equal to

the free-stream velocity Cc = eZ . The vortex breakdown resulting from this flow conditions is,

in addition, known to be very sensitive to radial confinement as experimented by Ruith et al.

[57]. To overcome this issue, Ruith et al. [57] imposed a convective boundary condition on

the external boundary to mimic an infinite radial direction. We have, in contrast, imposed a

ratio of fifty between the vortex core size c and the domain radial length, leading therefore

to a domain size equals to Rmax = 50 and Zmax = 40. In order to assess the absence of any

confinement effects resulting from these choices, we have implemented a second boundary

condition on Γext , a no-slip condition and obtained very similar results, see appendix 6.9.1.

This flow system is solved numerically using the spectral element solver NEK5000 [100]. This

solver is based on a cartesian coordinate system (X ,Y , Z ) and we have chosen to introduce

a second, cylindrical, coordinate system (R,θ, Z ), which is preferably used to study swirling

flows, to present our results. We defined the following convention: both systems are oriented

in the trigonometric direction and share the same axial component Z pointing inside the

domain, along the center axis. In addition, the mesh and the setup parameters are identical

as in Pasche et al. [10]. The mesh contains 11040 hexahedral elements discretized using

Gauss-Lobatto-Legendre (GLL) and Gauss-Legendre (GL) points of polynomial order P10 and

P8 to satisfy the inf-sup condition of the Navier-Stokes equations, and the time step defines a

CFL number of 0.37 (see appendix 6.9.1 for a validation of this CFL choice). The simulations

are initiated with a 3-D flow distribution provided by the inlet Grabowski & Berger vortex, eqn.

(6.1), in the complete computational domain.

6.3.2 Temporal-azimuthal Fourier decomposition

The coherent flow patterns associated to the characteristic frequency of the DNS are extracted

using a double azimuthal-temporal Fourier decomposition. This decomposition is performed

for the selected Reynolds values Re = [200,220,230,250]. The coherent flow fluctuations

Ũ = (C,P ) are therefore obtained by substracting the time-average flow Ū of the instantaneous

flow U yielding to following expression after Fourier decomposition:

Ũ(R,θ, Z , tq ) = U(R,θ, Z , tq )− Ū(R,θ, Z ) =

ℜ
( ∞∑

m=0

1

N

N−1∑
k=0

[
Amq (R, Z )e−iωk tq cos(mθ)+Bmq (R, Z )e−iωk tq sin(mθ)

])
=

=ℜ
(

M−1∑
m=0

1

N

N−1∑
k=0

Ũmq (R, Z )ei (mθ−ωk tq )

)
.

(6.3)

where ωk = kΔω= k2π/N , and N the number of samples. This definition leads to the following

relations ℜ(Ũmq ) = Amqr = Bmqi and ℑ(Ũmq ) = Amqi =−Bmqr . The azimuthal decomposition

is computed on the fly during the DNS using the FFTW package [152] embedded in NEK5000

[100]. At each time step, part of the domain from R = 3 to Z = 30 is interpolated on a cylindrical

distribution of points using the spectral interpolation of NEK5000 with 10−13 accuracy. An
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Azimuthal wave number Boundary conditions

m = 0 cR = cθ = 0, ∂R cZ

m =±1 cZ = 0, ∂R cR = ∂R cθ

m > 1 cR = cθ = cZ = 0

Table 6.1 – Boundary conditions on the axisymmetric axis applied to the disturbances for
different azimuthal wave numbers.

accurate Fourier decomposition of the flow has needed 16 azimuthal points, leading to M = 17

and a time series of N = 320000 samples for cases with low frequency, that represent a dimen-

sionless time of 1600. The frequency spectrum associated to the temporal decomposition is

then computed with the Matlab fast Fourier transform. As the modes are extracted during the

DNS, this analysis can be viewed as an a posteriori description of the flow modes.

6.3.3 Global stability analysis

The small disturbance dynamics brings an a priori description of the coherent flow patterns

by investigating the exponential growth of infinitesimal perturbations. Linear stability analysis

about the time-average flow field Ū = (C̄, P̄ ) of the Navier-Stokes equations are performed. We

take advantage of the geometry and flow symmetry to compute the linear stability analysis

in a 2-D axisymmetric domain Ωa , i.e. a half section of the 3D domain Ω. Infinitesimal

perturbations are therefore decomposed in normal mode expansion with respect to the time t

and the azimuthal coordinate θ as,

Ũ(R,θ, Z , t ) = u(R, Z )exp(i (mθ−ωt ))+ c.c., (6.4)

with m ∈ Z the azimuthal wave number, ω the eigenvalue and c.c. the complex conjugate.

The ensued eigenvalue problem is written in compact form as

(−i (ωr + iωi )N +Lm(C̄)
)

u = 0, in Ω (6.5)

where Lm is the operator for the linearized Navier-Stokes equations of azimuthal wave number

m and N is the singular operator premultiplying the time-derivative. The associated boundary

conditions of eqn. (6.5) are a zero disturbance at the inlet Γi n , a free-outflow on the external

boundary Γext , boundary conditions on Γaxi s summarized in Table 6.1 which depend on the

azimuthal wavenumber (Korhami [103]), while the convective boundary on Γout is converted

to a free-outflow condition Γout without impacting the solution of the eigenvalue problem,

see appendix 6.9.1.
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The global stability analysis is carried out by a finite element method implemented in the

Freefem++ software [101]. The weak form of the eigenvalue problem is derived after being

premultiplyed by the radial coordinate R. The eigenvalue and eigenvectors are computed

using by the implicit restarted Arnoldi method of the ARPACK library [104] with a tolerance of

10−6. The 2-D axisymmetric mesh is made by approximately 400000 Taylor Hood triangular

elements of P2 −P1 shape functions. The half section of the time-average flow from the 3-D

DNS, which is computed on the fly in NEK5000, is interpolated on the 2-D axisymmetric mesh

using the spectral interpolation tool of NEK5000, accurate at 10−13.

6.4 Instantaneous flow

Three-dimensional representations of the vortex flow, materialized by iso-contours of axial

vorticity are displayed in fig. 6.2 and illustrate the time history of the flow patterns observed

at a Reynolds values of Re = 220 and a swirl number of S = 1.095. The presence of a bubble

vortex breakdown at the beginning of the computational domain is always observed, which is

followed by spiral vortices. At the first illustrated time (fig. 6.2a at t = 2278), a single spiral is

observed, which is labeled primary spiral and is characteristic of the spiral vortex breakdown.

This spiral indeed spins in the same direction as the inlet vortex and coils in the opposite

direction, consistently with previous results of Ruith et al. [57]. The time evolution of this

primary spiral shows a vorticity intensity modulation, which becomes stronger at the time

step t = 2289 (fig. 6.2b) than at the later time step t = 2368 (fig. 6.2d).

Furthermore, a second vortical structure is observed for this Reynolds value, which is labeled

downstream spiral and starts to be materialized by vorticity iso-contours for the time step

t = 2330 (fig. 6.2c), around the location Z = 10. This downstream vortex develops separately

from the primary spiral between the time step t = 2330 to t = 2368 and shows thinner and

elongated vorticity iso-contours for the latter time step. In this figure, a third vortical structure

is also observed in the near-wake of the bubble, which is well defined at the time step t = 2341

(fig. 6.2d) and is labeled near-wake spiral. While this vortex spins in this location, it has the

particularity to reattach to the downstream spiral at time t = 2356 (fig. 6.2e) and to detach at

the next illustrated time (fig. 6.2f). These three vortical structures will be later interpreted as

three single helical vortex (m = 1 azimuthal wavenumber) in section 6.7 and not as double

helical modes, which can be observed at larger swirl numbers.
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Figure 6.2 – Time evolution of the swirling flow induced by a Grabowski and Berger vortex for
a swirl number of S = 1.095 and a Reynolds number of Re = 220, materialized by axial vorticity
iso-contours.
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6.5 Bifurcation analysis

A bifurcation diagram for the constant swirl number S = 1.095 and Reynolds numbers until

Re = 300 is displayed in fig. 6.3. This diagram is built by identifying each maximum and

minimum radial velocity of the time serie monitored at the single point (R,θ, Z ) = (0.1,0.0,6.0),

after the system reaches its established state. Using this technique, fixed points are represented

Figure 6.3 – Bifurcation diagram of the min/max temporal series of the radial velocity CR

at (R,θ, Z ) = (0.1,0.0,6.0) (point symbole). The instability threshold of Pasche et al. [10], at
Re = 143.5, is illustrated as a cross symbole.

by a single point, while higher dimensional states have either a finite number or a finite

approximation of an infinite number of points, as a consequence of the finite length of the

time series. In particular, a stable limit cycle (period-1 torus, T1) has two repeated points (one

repeated peak and one repeated trough), a period-2 cycle has four repeated points, a period-k

cycle has 2k repeated points, and quasi-periodic on a m-torus Tm and chaotic regime have

spread points bounded within a range of CR .

At low Reynolds number, the system is attracted toward a fixed point solution, defined as the

base flow of the governing equation, eqn. (6.2) and it occurs for Reynolds value less than

Re = 143.5 as reported by Pasche et al. [10]. A supercritical Hopf bifurcation is then observed

leading to a period-1 torus until a Reynolds value close to Re = 200, and it is characteristic

of the spiral vortex breakdown phenomenon. Above Re = 200, several min/max values are

observed, which means that this system is attracted towards higher dimensional states. Quasi-

periodic and chaotic regimes will be observed, and further investigated in section 6.6. The

ranges of radial velocity CR increase until Re = 230, where the maxima and minima are mixed
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and lead to a dense line of points in the present diagram (fig. 6.3). The system turns back

into a period-1 torus between a Reynolds value of Re = 240 to Re = 255, characterized by two

repeated points, and looses its stability above Re = 255. A second densification of the min/max

values, which characterizes quasi-periodic or chaotic oscillations, is then observed and seems

to persist over larger Reynolds values, although it is not further studied here.

6.6 Nonlinear time series analysis

6.6.1 Nonlinear time series

Nonlinear time series of the tangential velocity monitored at the location (R,θ, Z ) = (0.1,0.0,6.0)

are displayed in fig. 6.4 for several Reynolds values Re = [180,200,205,215,220,230,250,300].

These time series are samples of the dynamical system for suitable time ranges after the

transient phases has died out. The stable limit cycle T1 arising from a supercritical Hopf

bifurcation associated to the spiral vortex breakdown is observed for Re = 180, in fig. 6.4(a).

This periodic oscillation appears with the development of an unstable mode (Ruith et al. [57]

and Gallaire et al. [75]), which saturates by nonlinearity of the governing equations, leading

therefore to a finite amplitude oscillation of the flow. Then the system is attracted towards a

quasi-periodic regime at Re = 200, in fig. 6.4(b), which is observed by the signal modulation of

the time series. Above Re = 205 (fig. 6.4c), a low frequency is, in addition, observed and the

temporal signals start to loose their regular oscillations. At Re = [205,230] only small irregular

fluctuations are observed, while at Re = [215,220] larger bursts are identified. These irregular

oscillations are followed by a synchronization regime, as illustrated at a Reynolds value of

Re = 250 in fig. 6.4(g) which sets in between Re = 230 and Re = 240 and stops before Re = 260.

After this synchronization regime the flow becomes quasi-periodic or chaotic again from

Re = 260 until Re = 300 and apparently keeps this latter state favoring the turbulent transition.
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Figure 6.4 – Discrete temporal Fourier transform of the azimuthal time serie monitored at
(R,θ, Z ) = (0.1,0.0,6.0) for a swirl number of S = 1.095 and several Reynolds numbers, (a)
Re = 180, (b) Re = 200, (c) Re = 205, (d) Re = 215, (e) Re = 220, (f) Re = 230, (g) Re = 250, (h)
Re = 300. The end of each time series use a zoomed scale.
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6.6.2 Sensitivity to initial disturbance

Sensitivity to initial disturbances is investigated to clarify the dynamical state at a Reynolds

value of Re = 205 where a low frequency emerges in the time series, and at Re = [215,220],

which are associated to irregular bursts of the time series. The separation distance ||D||,
assessed by the instantaneous L2-norm of the velocity on the monitoring point (R,θ, Z ) =
(0.1,0.0,6.0), between two flow solutions is therefore computed. These flow solutions are

defined as a reference solution and a disturbed solution, which for the last is initiated by a

random volume disturbance of amplitude 10−8 added to the reference solution. We should

mention that the flow distribution from a restarted flow solution remains invariant in this

setup and the high accuracy of spectral element method of NEK5000 allows us to carry out

such approach.

The time series of the reference and disturbed flows are presented in fig. 6.5 at the Reynolds

value of Re = [215,220]. The separation of the two systems is visible after a time t = 8.2 ·103 for

the Reynolds value of Re = 215 and a time t = 7 ·103 for the Reynolds value of Re = 220.

Figure 6.5 – Time series of the reference flow and the disturbed flow with a random noise of
amplitude 10−8 at the initial time step at a Reynolds value of Re = 215 (a) and Re = 220 (b), at
the location (R,θ, Z ) = (0.1,0.0,6.0).

The separation distance of these signals are displayed in fig. 6.6 at the Reynolds value Re =
[215,220] and also Re = 205. We observe at a Reynolds value of Re = 205 that the separation

distance remains around 10−6 (fig. 6.6a). The system appears therefore as quasi-periodic even

if a low frequency has emerged in the time series (see fig. 6.4c). In contrast, an exponential

separation of the flow solutions is reported at a Reynolds value of Re = 215 and Re = 220 (fig.

6.6b and c). In the former case, a constant exponential coefficient can be extracted, while it

is only approximate in the latter case due to a step change in the curve. Their exponential

growths are close to zero, α= 6.6 ·10−5, but nevertheless positive, which supports that these

systems are tending towards chaotic attractors at the Reynolds numbers Re = [215,220].
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Figure 6.6 – L2-norm of the distance between the reference and disturbed dynamical state
at the location (R,θ, Z ) = (0.1,0.0,6.0) at a Reynolds value of Re = 205 (a), Re = 215 (b) and
Re = 220 (c).

6.6.3 Attractor cross sections

Attractor cross sections of the time series at the location (R,θ, Z ) = (0.1,0.0,6.0) are displayed

in fig. 6.7 for the Reynolds values Re = [180,200,205,215,220,230,250,300]. These cross

sections were obtained by sampling the radial and axial velocity components associated to

the constant tangential velocity component of value Cθ = 0.001. We, therefore, display cross

sections of the phase space, which is useful to define the topological structure of attractors

and is similar to Poincaré section maps, with a double number of points because both crossing

directions are extracted instead of only one direction for a Poincaré section map. Period-

1 oscillations are represented as two points in the attractor cross section that is typically

observed for Reynolds values of Re = 180 and Re = 250, in fig. 6.7(a) and (g) respectively.

The first value is associated to the dynamics of the spiral vortex breakdown and the latter

value corresponds to the frequency synchronization of the system. A quasi-periodic regime

with two incommensurable frequencies is represented by a close path of the attractor cross

section, typically at a Reynolds value of Re = 200 and in a more distorted way at Re = 230,

where sensitivity to initial condition reports a converged solution. At Re = 200, The T2 torus

results from a second supercritical Hopf bifurcation as reported by Pasche et al. [10]. In

contrast, the T2 torus at Re = 230 observed in fig. 6.7(f), which presents complex patterns,

is a consequence of frequency matching of the different vortices as will be discussed in sec.

6.6.4. The chaotic regime identified at Re = [215,220] have dense cross sections (fig. 6.7d and

e) because the correlation dimension of chaotic attractors are not integer anymore, similar to

fractal structures. The same structure of the attractor cross section is observed at Re = 300

(fig. 6.7h), which probably is also chaotic. At Re = 205, a dense attractor cross section is also

observed (fig. 6.7c), we have seen in contrast that the flow is insensitive to initial disturbance

(see fig. 6.6a). These two characteristics let us think that a stable quasi-periodic regime on a

torus T3 is observed.
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Figure 6.7 – Attractor cross section of the velcoity time serie at (R,θ, Z ) = (0.1,0.0,6.0), for
Cθ = 0.001, a swirlnumber of S = 1.095 and several Reynolds numbers, (a) Re = 180, (b)
Re = 200, (c) Re = 205, (d) Re = 215, (e) Re = 220, (f) Re = 230, (g) Re = 250, (h) Re = 300.
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6.6.4 Amplitude Fourier spectrum

Amplitude Fourier spectrum of the time series (fig. 6.4) at the location (R,θ, Z ) = (0.1,0.0,6.0)

and snapshots of the axial vorticity iso-contours for the identical bifurcation parameters are

presented in fig. 6.8. This method is investigated to corroborate the topological structure of

the attractors, observed in the cross sections (fig. 6.7), to the frequency peaks of the amplitude

Fourier spectrum. These frequency identifications are associated to vorticity iso-contours

materializing the flow patterns. At Re = 180 the periodic signal of fundamental frequency

f1 is not purely sinusoidal, its first harmonic appears, therefore, in the frequency spectrum,

labeled a in fig. 6.8(a). The associated vorticity iso-contours displayed in fig. 6.8(b), show

the axisymmetric bubble and a well-defined single spiral spinning in the bubble wake, called

primary spiral.

At Re = 200 (fig. 6.8d) the recirculation bubble starts precessing around an eccentric axis and

a second vortex is observed beside the primary spiral, referred to as the downstream spiral,

previously observed in fig. 6.2. A vorticity iso-contour of value 1.8 materializes this second

spiral, which appears at a downstream location Z = 12 and has a weaker vorticity magnitude

than the primary spiral. The dynamics of the system identified by Fourier amplitude spectrum

is quasi-periodic on a torus T2, with two incommensurable frequencies f1/ f2 = 1.2667. This

dynamics is also observed in the attractor cross section (fig. 6.7b). The quadratic nonlinear

interaction of the primary and downstream spiral generates a frequency of smaller amplitude

labeled b = f1− f2 in fig.6.8(c). The frequency difference between these two spirals means that

they periodically merge and separate, as seen in fig. 6.8(d).

A torus T3 appears at Re = 205 by the development of a third peak in the Fourier amplitude

spectrum, associated to the frequency labeled f3 in fig. 6.8(e). We can, therefore, identify three

incommensurable frequencies f1/ f3 = 1.0294, f1/ f2 = 1.2666 and f2/ f3 = 0.8127 in this quasi-

periodic attractor. Nonlinear interactions between these modes produce different frequencies,

among all we have labeled c = f1− f3 and d = 2 f1− f3. The low frequency modulation observed

in the time series (fig. 6.4c) is associated to the frequency peak labeled c. The snapshot of

vorticity iso-contours shows again the primary spiral and the downstream spiral associated to

the frequency peak f1 and f2. However no clearly visible vortical structure is identified for the

frequency peak f3, see fig. 6.8(f).

The chaotic attractors at Re = [215,220] (fig. 6.8g and i) result from the destabilization of the

torus T3 woven by these three incommensurable frequencies. Quasi-periodicity turns into a

chaotic regime as the second frequency peak f2 becomes closer to the first frequency peak

f1. At Re = 220 (fig. 6.8j) several helical vortices are observed, the primary spiral of strong

amplitude, the downstream spiral that now starts from Z = 6.5 and a near-wake spiral located

behind the bubble at Z = 5, which are phase shifted compared to the primary spiral. These

three vortical structures evolve in time according to the following sequence: while the bubble

and the primary spiral keep spinning at a fixed location, the downstream and near-wake spiral

start growing, attach together, as displayed in fig. 6.2, before being embedded in the primary
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Figure 6.8 – Fast Fourier transform of the velocity time series at (R,θ, Z ) = (0.1,0.0,6.0) for
a swirl number of S = 1.095 and Reynolds numbers, (a, b) Re = 180, (c, d) Re = 200, (e, f)
Re = 205, (g, h) Re = 215, and snapshots of the associated vorticity iso-contours.
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Figure 6.8 (Continued) – Fast Fourier transform of the velocity time series at (R,θ, Z ) =
(0.1,0.0,6.0) for a swirl number of S = 1.095 and Reynolds numbers, (i, j) Re = 220, (k, l)
Re = 230, (m, n) Re = 250, (o, p) Re = 300, and snapshots of the associated vorticity iso-
contours.

132



6.6. Nonlinear time series analysis

vortex cyclically. Movies for each value of bifurcation parameter investigated are available in

the supplementary material.

Three successive Hopf bifurcations attracting the system towards a quasi-periodic regime on a

torus T3 with three incommensurable frequencies can become unstable and lead to a chaotic

regime. This scenario is a typical Ruelle-Takens-Newhouse route to chaos, which already

appeared in several hydrodynamic examples (Gollub & Benson [153], Amon et al. [148], Wulf

et al. [141], Egolf et al. [143] and Kashinath et al. [154], among others). In particular Oteski et

al. [155] report this route to chaos including a stable three frequencies torus T3 in a confined

two-dimensional differential convection case. In this scenario, the onset of the transition from

a torus T3 to a strange attractor is not predictible (Eckmann [156]), only the computation of

the first three maximum Lyapunov exponents can distinguish a stable from an unstable torus

T3. The three largest Lyapunov exponents are equal to zero for a stable quasi-periodic T3 torus,

which is in autonomous dissipative dynamical system (Grebogi et al. [157]), while a least one

Lyapunov exponent must be positive for a chaotic state. In the present study, the Lyapunov

exponents have not been computed due to the required computational time. However, the

transition from the torus T3 observed at Re = 205, which appears to be stable in sight of its

sensitivity to initial condition (fig. 6.6a), to the chaotic regime at Re = 220 is associated to

the frequency migration of the downstream spiral to the primary spiral frequency, which

emphasizes the nonlinear interactions.

The chaotic attractor turns into a torus T2 with two incommensurable frequencies for Re = 230

(fig. 6.8k), as seen in the attractor cross section (fig. 6.7f). This state is indeed made possible

by the fact that the second frequency becomes a subharmonic of f1 and f3 by the relation: f2 =
6 f1 −5 f3. However to obtain the peak density observed in the Fourier amplitude spectrum, a

fourth frequency appears as commensurable with the first and third frequencies f4 = 10 f3−6 f1.

The quasi-periodic regime is, therefore, due to the two incommensurable frequencies f1 and

f3, which govern the flow dynamics and drive the slaved modes of frequency f2 and f4. In

fig. 6.8(k), all the peaks of the Fourier amplitude spectrum are successfully identified by

the use of these four frequencies, see appendix 6.9.2. A snapshot of axial vorticity contours

corresponding to this amplitude Fourier spectrum is displayed in fig. 6.8(l). While several

frequencies appear in this spectrum, we can only identify the vortical structures based on the

result of the previous Reynolds number. The primary spiral has again the strongest vorticity

and the near-wake spiral, in addition, attaches to the bubble crown and to the downstream

spiral continuously at this time step.

The amplitude Fourier spectrum of the synchronization state observed at a Reynolds value of

Re = 250 shows a well-defined peak f1 and its associated harmonic a = 2 f1 (fig. 6.8m). The

four frequencies observed in the quasi-periodic regime at Re = 230 are substituted for f1 at

Re = 250. The vorticity iso-contours, displayed in fig. 6.8(n), show not only a single spiral but

two helical vortices. A primary spiral with a dense iso-contour of value 2.4, starting in the

bubble wake, and a slaved spiral that has a modulated axial vorticity iso-contour of value 2.4.

We can observe in fig. 6.8(n) that these two vortices are not in opposite phase but only slightly
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shifted. This indicates that this regime is not characterized by an m = 2 double helix, as one

could have deduced at first sight from streaklines or iso-surfaces of vorticity, but rather by the

co-existence of two m = 1 modes.

At Re = 300, the system turns into a chaotic regime identified by the dense attractor cross

section (fig. 6.7h), the broad base of amplitude Fourier spectrum peaks and the identification

of three incommensurable frequencies f1, f2 and f3 (fig. 6.8o). The flow patterns displayed in

fig. 6.8(p), show two vortices similar to those observed at the previous Reynolds value, which

are not in opposite phase but rather phase shifted.

6.7 Mode interactions

The nonlinear time series analysis characterizes the attractors of this autonomous dissipative

dynamical system in a local monitoring point as the Reynolds number is increased. This

local dynamics following from a stable attractor can change not only with the bifurcation

parameter but also with the spatial coordinate along the dominant advection direction in

open flows. In our system, where super-critical Hopf bifurcations are the starting point of

new branches, local linear temporal stability analysis characterizes the stability properties of

these branches but incorrectly predicts the frequency and the vortical structure associated to

the new stable branch (Gallaire & Chomaz [72]). Since the dominant advection direction of

the flow causes the failure of this prediction, it should be addressed by evaluating not only

the growth in time but also in space of incoming fluctuations. This turns into the concept of

spatio-temporal stability theory of Huerre & Monkewitz [44], which distinguishes the situation

where advection dominates over growth and where instability waves are swept away while they

grow (convective instability) from the one where growth dominates over advection and some

instability waves withstand the advection and invade the entire domain (absolute instability).

Convective instabilities are qualified as noise amplifiers and absolute instabilities are qualified

as flow oscillators, which both are able to modify attractors along the advection direction.

Typically Gallaire et al. [75] and Qadri et al. [80] identify two absolute regions in spiral vortex

breakdown with two distinct frequencies, one frequency on the recirculation bubble and a

second frequency in the bubble wake.

However, for strongly nonparallel flows, a so-called global stability analysis is preferably used,

instead of a collection of velocity profiles at succesive local streamwise stations. Globally

unstable flows behave, therefore, as flow oscillators, while globally stable are best studied

through the response to harmonic forcing. Therefore several globally unstable modes will

act as coupled flow oscillators and their spatial core, sometimes called wavemaker, can in-

duce different flow regimes along the streamwise direction, similar to a dynamical system

subject to time-delay (Pimenov et al. [158]). Identifying the local frequencies observed in the

amplitude Fourier spectrum as the consequence of global flow patterns is, therefore, essen-

tial to understand the system dynamical regimes. Since the present configuration consists

of a semi-infinite unconfined domain, only purely hydrodynamic instabilities can generate
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nonlinear dynamics. We, therefore, perform a global stability analysis to identify the unstable

eigenmodes. This analysis is viewed as a predictive tool and it is then complemented by a

double azimuthal-temporal Fourier series decomposition, which is viewed as an a posteriori

analysis tool.

6.7.1 Stability analysis

A global stability analysis around the time-averaged flow is performed by solving the eigen-

value problem of eqn. (6.5). We have systematically compared the frequency prediction of the

mean flow for azimuthal wave number m = 0,1,2 against the frequency of the DNS obtained

by discrete Fourier transform of the time series. The results of this comparison are presented

in fig. 6.9. The global stability analysis predicts successfully not only the primary spiral fre-

Figure 6.9 – Growth rate and angular frequency comparison of the 3D fft and the stability
analysis for m = 1, eigemodes of azimuthal wavenumber (m = 0,2) have no correlation with
DNS frequencies.

quency ( f1) but also the frequency of the downstream spiral (fig. 6.9a), which is associated to

the frequency f2 in the amplitude Fourier spectrum of the time series (fig. 6.8). The growth

rates of these eigenmodes displayed in fig. 6.9(b) show an unstable mode associated to the

primary spiral as reported by Gallaire et al. [75], Meliga et al. [45] and Qadri et al. [80]. In

contrast, the second eigenmode appears stable until a Reynolds value of Re ≈ 265. In figure

6.9, only eigenmodes of azimuthal wavenumber m = 1 are represented for the following two

reasons. First, the eigenmodes of azimuthal wavenumber m = 2 have no correlation with the

first harmonic frequency of the amplitude Fourier spectrum (labeled a in fig. 6.8). Second,

while two eigenmodes of the azimuthal wavenumber m = 0 could have the correct structure,

their frequencies differ from those of the DNS (labeled c in fig. 6.8) and they have much larger

damping rates when compared to the stable eigenmode of mode m = 1.

Axial velocity iso-contours of these two m = 1 eigenmodes are presented in fig. 6.10 at a

Reynolds number of Re = 200, normalized with respect to the L2 norm of the semi-inner

product. The primary eigenmode (fig. 6.10a) shows two dissociated helices, a first helix
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Figure 6.10 – Primary and downstream eigenmode axial velocity iso-contour at a Reynolds
value of Re = 200.

at the beginning of the computational domain, which ends at Z = 12, and a second helix

downstream centered at Z = 14. These helices contribute to the flow dynamics at the same

frequency f1. The downstream eigenmode (fig. 6.10b) is centered at Z = 15 and forms a single

helix precessing at the frequency f2 located downstream of the primary eigenmode. These

two eigenmodes appear associated respectively to the primary spiral and the downstream

spiral of the DNS (fig. 6.8d) and as they overlap, strong nonlinear interactions are enabled.

Although the downstream spiral is found stable in the stability analysis, it finally develops and

takes part in the dynamics of the system. This second eigenmode has the same azimuthal

wavenumber as the first eigenmode and we can, therefore, expect an indirect excitation

mechanism to be underpinning this development. Since only single helical eigenmodes are

found unstable in the stability analysis, the system is governed by nonlinear interactions of

single helical modes and the synchronization state observed at Re = 250 is also associated

to the concordance of two single spirals. The chaotic attractor at Re = 215 and Re = 220, has

a third incommensurable frequency that was not found associated to any of the available

eigenmodes since their spatial locations and/or their frequency predictions could not be

correlated with DNS results.

6.7.2 Temporal-azimuthal Fourier series cascade

The dynamics of the spiral vortex breakdown may be suitably described using a double

temporal-azimuthal Fourier expansion. Because the description of the flow patterns appears

as incomplete using global linear stability analysis, we perform indeed a temporal-azimuthal

Fourier series decomposition of the DNS to further investigate the spatially developing modes.

This decomposition is illustrated in fig. 6.11, and was performed for the selected Reynolds

values Re = [200,220,230,250]. The figure 6.11 displays the amplitude Fourier spectrum for
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Figure 6.11 – Temporal-azimutahl Fourier decomposition of the DNS solutions for the Reynolds
value Re = 200 (a), Re = 220 (b), Re = 230 (c) and Re = 250 (d). Amplitude Fourier spectrum for
R = 0.6 along Z location (Z = [0.6,2,3,4,6,8,10,15,20]) with the fifth first azimuthal wavenum-
ber m plotted in parallel with the streamlines of the time-average flow.

a radial value R = 0.6 along several Z stations for the five first azimuthal modes, plotted in

parallel with the streamlines of the time-average flow to visualize the recirculation bubble

position. The azimuthal modes are separated by frequency range, i.e. the low frequencies

represent the azimuthal modes m = 0, the frequencies around f ≈ 0.2 represent the azimuthal

modes m = 1, the frequencies around f ≈ 0.4 represent the azimuthal mode m = 2, etc.

In all the cases illustrated, a strong m = 1 oscillation of the recirculation bubble, in addition to

the primary spiral precession, is observed until Z = 10. The amplitude of these m = 1 modes

then suddenly drops until the end of the domain. This behavior can be correlated to the

first and second helix appearing in the primary eigenmode (fig. 6.10a) where the intensity

of the first helix is stronger than that of the second helix. As we will see later these two

helices composing the primary spiral will be also observed for Reynolds number values of

Re = [220,230,250] (figs. 6.12, 6.13, 6.14 and 6.15).
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At Re = 200 (fig. 6.11a), the peaks associated to the primary spiral and the downstream spiral

are well defined, f1 and f2 respectively. These two modes interact through the quadratic

nonlinearity of the Navier-Stoke equations and produce an axisymmetric pulsation m = 0

(labeled b in fig. 6.8 and 6.8) as observed by Ruith et al. [57] at higher swirl number. This

axisymmetric mode has its highest amplitude at Z = 10 where the first helix of the primary

spiral and the downstream spiral overlap (fig. 6.10) and its starts at Z = 3 meaning that the

downstream spiral impacts the system until the near-wake of the bubble. Moreover, the

quasi-periodicity of the system encompasses the full streamwise length.

The chaotic attractor on which the system is folded at Re = 220 has three incommensurable

frequencies displayed in fig. 6.11(b). The main m = 1 frequency represents the primary

spiral while the downstream spiral associated to f2 has a smaller amplitude than at Re = 200,

although it remains present. In addition, the third incommensurable frequency f3, which

corresponds to the closest peak of the frequency f1 (fig. 6.8i), is mainly active in the same

Z range as the primary spiral, i.e. between Z = 0 to Z = 10 and supports, therefore, the

vortical structure development identified as the near-wake spiral in the DNS (fig. 6.2). The

axisymmetric oscillation of the flow has a larger amplitude than at Re = 200 and its frequency

corresponds to the difference of the primary and near-wake spiral frequency c = f1 − f3.

Moreover, this chaotic regime is kept along an extended Z region, which can be viewed by

dense attractor cross sections at different Z stations (not shown here).

At Re = 230, a quasi-periodic regime on a torus T2 shows several m = 1 frequencies but the

dynamics is governed by the primary and the near-wake spirals f1 and f3, as observed in fig.

6.8(k). We observe that the axisymmetric mode m = 0 has a comparable amplitude in the

near-wake of the recirculation bubble than the azimuthal mode m = 1. This torus T2 starts

to break down as we consider attractor cross sections progressing downstream because the

downstream spiral starts to be more active in this region and, in addition, the amplitude of the

primary spiral drops (not shown), while it is further upstream a sub-harmonic of f1 and f3.

The synchronization regime at a Reynolds value of Re = 250 is made possible by the frequency

match of the primary f1 and near-wake f3 spiral. This synchronization regime occurs only at

Z stations upstream of Z = 10. The downstream spiral emerges downstream of Z = 10, which

turns the torus T1 into a torus T2 (fig. 6.11d). In addition, the synchronized region has a first

harmonic frequency a ≈ 0.4 of amplitude comparable to that of the fundamental frequency f1,

which suggests that its associated double helix super-harmonic mode can be involved in the

nonlinear dynamics (fig. 6.8n).

6.7.3 Temporal-azimuthal Fourier series modes

The modes of the double temporal-azimuthal Fourier series decomposition, extracted using

frequency selection, are displayed as axial velocity iso-contours to provide an overview of

their structures in figs. 6.12, 6.13, 6.14 and 6.15. The juxtaposition of these structures with the

cascade of amplitude Fourier spectra (fig. 6.11), the instability properties of the eigenmodes
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Figure 6.12 – Axial velocity iso-contour of temporal-azimuthal Fourier series modes at Re = 200,
associated to the primary spiral at frequency f1 (a) and the downstream spiral at frequency f2

(b) at an arbitrary selected phase.

issuing from the global stability analysis (fig. 6.9) and the vortical structures identified in the

DNS (fig. 6.8) enables the identification of the patterns, which contribute to the dynamics of

this swirling flow. As previously demonstrated by the global stability analysis, the frequency f1

and f2 correspond to the primary and downstream spiral for all considered Reynolds values.

Moreover, the axial velocity iso-contours of this Fourier series decomposition at a Reynolds

value of Re = 200 (see fig. 6.12a and b) appear similar to the respective eigenmodes obtained

by global linear stability analysis (fig. 6.10), while a different normalization is considered due

to undefined magnitude of eigenmodes. The primary spiral has two single helices (fig. 6.12a),

a first helix at the beginning of the computational domain and a second helix downstream.

This first helix develops on the recirculation bubble and extends in its wake, which already

emphasizes the oscillation of the bubble followed by a single spiral (see fig. 6.8d). The

downstream spiral (fig. 6.12b) has only a single helix, which overlaps with both helices of the

primary spiral.

The consistency of both methods at Re = 200 leads to investigate by Fourier series decom-

position the third incommensurable frequency f3 (the near-wake spiral), which turns the

quasi-periodicity into a chaotic regime in the range of Reynolds values Re = 215 to Re = 220,

while global stability analysis fails to identify this mode. Figure 6.13 displays the primary,

downstream, near-wake spiral and the axisymmetric mode extracted respectively for the fre-

quencies f1, f2, f3 and c. The structure of the primary spiral is conserved, a first single helix

developing on the recirculation bubble and extending in its wake as well as a second helix

emerging downstream (fig. 6.13a). The downstream spiral, which has a smaller amplitude

arises in the middle of the two helices of the primary spiral (fig. 6.13b). The near-wake spiral

develops also on the recirculation bubble and its near-wake, and overlaps with both primary

and downstream spirals (fig. 6.13c). The axisymmetic mode resulting from the nonlinear

interactions of the primary, downstream and near-wake spirals, influences a large zone of the
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Figure 6.13 – Axial velocity iso-contour of temporal-azimuthal Fourier series modes at Re = 220,
associated to the primary spiral at frequency f1 (a), downstream spiral at frequency f2 (b),
near-wake spiral at frequency f3 (c) and the axisymmetric pulsation at frequency c (d) at an
arbitrary selected phase.

flow upstream of Z = 11 (fig. 6.13d).

At a Reynolds value of Re = 230, a T2 torus is observed (fig. 6.7f) and the Fourier modes

associated to this quasi-periodic regime are displayed in fig. 6.14. The axial velocity iso-

contours display the same patterns as for the previous Reynolds values. Two dissociated

helices for the primary spiral (fig. 6.14a), a single downstream helix for the downstream

spiral (fig. 6.14b) and a single helix in the near-wake of the recirculation bubble for the near-

wake spiral (fig. 6.14c). In contrast, the axisymmetric mode (fig. 6.14d) is focused on the

recirculation bubble, which suggests a better phase correlation of the different single helical

modes diminishing nonlinear interactions and yielding, with the strategic repositioning of the

frequencies, a torus T2.

The axial velocity iso-contours of the Fourier series decomposition for the synchronized

regime at a Reynolds value of Re = 250, are displayed in fig. 6.15. The primary spiral (fig.

6.15a), which in this state embeds the near-wake spiral, shows a complex structure with
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Figure 6.14 – Axial velocity iso-contour of temporal-azimuthal Fourier series modes at Re = 230,
associated to the primary spiral at frequency f1 (a), downstream spiral at frequency f2 (b),
near-wake spiral at frequency f3 (c) and the axisymmetric pulsation at frequency c (d) at an
arbitrary selected phase.

several single helices. The strongest helix at the beginning of the domain extends and overlaps

with the second downstream helix, in contrast to Re = 230 and Re = 220 where these helices

are spatially shifted. The downstream spiral migrates further downstream (fig. 6.15b), as

observed in fig. 6.11(d), which is likely to result from the frequency synchronization regime at

the beginning of the domain.

Since the first harmonic of the primary spiral (labeled a) has an amplitude comparable to

that of the fundamental frequency f1 in the cascade of amplitude Fourier spectra (fig. 6.11d),

the mode associated to this harmonic, so-called double helix first harmonic, is displayed in

fig. 6.15(c). This double spiral appears at the beginning of the domain and could, therefore,

contribute to the nonlinear dynamics to form the two vortical structures observed in fig. 6.8(n).
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Figure 6.15 – Axial velocity iso-contour of temporal-azimuthal Fourier series modes at Re = 250,
associated to the primary spiral at frequency f1 (a), downstream sptal at frequency f2 (b),
double helix first harmonic (c) (labeled a in fig. 6.8m) at an arbitrary selected phase.

6.8 Conclusions

The nonlinear dynamics of the unconfined open swirling flow stemming from a Grabowski &

Berger [78] vortex is studied for a fixed swirl number of S = 1.095 and a Reynolds number up to

Re = 300. As the Reynolds number increases, this flow reveals a Ruelle-Takens-Newhouse route

to chaos establishing a chaotic regime at a Reynolds value of Re = 220. A first supercritical

Hopf bifurcation, leading to the spiral vortex breakdown (Ruith et al. [57] and Gallaire et al.

[75]) is encountered at the instability threshold of Re = 143.5 (Meliga et al. [45] and Pasche et

al. [10]), yielding the so-called primary spiral in the present study. A subsequent supercritical

Hopf bifurcation turns the flow into a quasi-periodic regime on a torus T2 at Re = 200 as shwon

by a global stability analysis around the base flow in Pasche et al. [10]. Then a quasi-periodic

regime with three incommensurable frequencies is identified at a Reynolds value of Re = 205.

Sensitivity to initial condition suggests that the present attractor is a stable torus T3, similar to

Oteski et al. [155]. The interpretation of this regime as a stable torus T3 is not in contradiction

with the Ruelle-Takens-Newhouse route to chaos since the latter does not exlude such non

chaotic states (Eckmann [156]).

Frequency identification based on amplitude Fourier spectra show that the first f1 and third f3

incommensurable frequency peaks become close to each other, while the second incommen-

surable frequency peaks f2 remains at a lower frequency. As the Reynolds number is further

increased, these three peaks become closer leading to a stronger axisymmetric mode at low
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frequency (labeled c in fig. 6.8) generated by nonlinear interactions. Hence the potentially

stable torus T3 observed at Re = 205 breaks down yielding a chaotic regime at Reynolds values

from Re = 215 to Re = 220.

Since an unconfined geometry is considered, quasiperiodic or chaotic regime should be

generated by nonlinear interactions of self-sustained instabilities. In fact, the first bifurcation

of the flow associated to the spiral vortex breakdown is a hydrodynamic instability (Gallaire

et al. [75], Meliga et al. [45] and Qadri et al. [80]). Local weakly non parallel stability analysis

and global stability analysis around a fixed point solution successfully predict this instability

threshold, while the prediction from the linearization around the base flow quickly fails to

predict the limit cycle frequency as the Reynolds number is increased (Pasche et al. [10]).

Global stability analysis around the mean flow, in contrast, successfully predicts the frequency

of the spiral vortex breakdown and identifies two of the three incommensurable frequencies

as single helical spiral of azimuthal wave number m = 1. The first frequency f1 is an unstable

eigenmode, the primary spiral, which has two spatial shifted single helices, a first helix on

the recirculation bubble and in its near-wake, and a second downstream helix. The second

frequency f2 is associated to a linearly stable eigenmode, called the downstream spiral, which

solely develops in the wake of the bubble. Hence an excitation mechanism induced by the

advection of fluctuations should occur to lead the downstream spiral to develop its own

oscillation.

In addition, the third incommensurable frequency f3, which is definitely needed to observe

a chaotic regime, fails to be identified as an eigenmode from the global stability analysis.

Moreover, axisymmetric m = 0 or double helical m = 2 modes cannot be associated to cor-

responding frequency or velocity distribution. A double temporal-azimuthal Fourier series

decomposition is, therefore, performed and allows us to extract the flow pattern of these

incommensurable frequencies and to corroborate also the previously identified eigenmodes.

It appears that f3 is a single helical mode developing in the near-wake of the recirculation

bubble, which overlaps with the primary spiral. The successive emergence and the nonlinear

interactions of the primary, downstream and near-wake single spirals, also observed as vortical

structure in the DNS resutls, yields a Ruelle-Takens-Newhouse route to chaos.

A torus T2 with two incommensurable frequencies is observed at a larger Reynolds value of

Re = 230, while three single spirals are identified at the previous Reynolds value of Re = 220.

The following necessary frequency and mode reassortment is observed, the downstream

spiral frequency becomes a sub-harmonic of those two incommensurable frequencies, and

we identify, in addition, a fourth frequency as commensurable to the two driving frequencies.

This attractor is ultimately characterized by two incommensurable frequencies, which are

associated to the primary and near-wake spirals. The spatial location of these spirals appear, as

a consequence, highly correlated to enable this torus T2, while at the chaotic regime Re = 220

these vortical structures are largely uncorrelated.

At a Reynolds value of Re = 250 a synchronized regime appears, formally identified in the
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frequency cascade of amplitude Fourier spectra. We could not determine if this results or

originates from the migration of the downstream spiral associated to the frequency f2 further

downstream. Therefore a torus T1 is observed at the beginning of the domain by frequency

synchronization of the primary and near-wake spiral, which turns into a torus T2 downstream

of Z = 10. Vorticity iso-surfaces of the DNS results exhibits two spirals at Re = 250 (fig. 6.8n),

which contrasts with the single peak of the amplitude Fourier spectrum (fig. 6.8m). We suggest

that these nonlinear structures are a suitable phase and frequency combination of the two

helices of the primary spiral and its double helical super-harmonic mode, associated to the

frequency a = 2 f1. Actually, the amplitude of the first harmonic of the primary spiral a is

comparable to that of its fundamental f1 (see fig. 6.11d) and the double helix first harmonic

overlaps with the first helix of the primary mode at the beginning of the domain (see fig. 6.15c).

Although the double helix first harmonic appears to contribute to the flow dynamics, the origin

of this synchronized state is the development of two single helical modes as demonstrated by

the global stability analysis (see fig. 6.9), as for the other Reynolds values.

Finally, after this synchronization regime, the flow turns into a subsequent chaotic regime at

Re ≈ 300 with three incommensurable frequencies, which is suspected to definitely hold for

larger Reynolds numbers, where the turbulence transition will be further exacerbated.

6.9 Appendix

6.9.1 Validation of the 3D DNS

The 3D direct numerical flow simulations are validated by changing the mesh size, the mesh

topology, the boundaries, the domain dimensions and the time step for a fixed swirl number

S = 1.095 and Reynolds number Re = 200. The convergence criterion is based on the deviation

of the frequency and the amplitude of the radial velocity component of the single helical vortex

flow. These values are monitored at (R,θ, Z ) = (0.1,0.0,6.0) which is located after the bubble,

in the helix. The results of this convergence study is displayed on Table 6.2. The topology of

the mesh is an O-grid type with two different cells arrangements in the center: diamonds cells

that almost preserve the azimuthal symmetry of the problem and square cells. All cells have a

P10 and P8 spectral discretizations with a uniform number of nodes nx x ny x nz = 10 x 10 x 10

and nx x ny x nz = 8 x 8 x 8 for velocities and pressure respectively. The robustness of the

solutions in front of the convective boundary condition on the outlet Γout is investigated by

changing the length of the domain to Zmax = 60 for mesh M2 instead of Zmax = 40. The radial

unconfinement is guaranteed by the invariance of the external boundary conditions. Two

different types were investigated a free-stress boundary and a no-slip boundary, mesh M4.

The CFL number invariance is investigated on mesh M5 and a refined mesh M3 concludes the

convergence analysis. The mesh M1 is the reference mesh for this study.

The time series, the attractor cross section and the Fourier spectrum of the chaotic regime

identified at a Reynolds value of Re = 220 are displayed in fig. 6.16 for the finer discretization
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Case Topology BC on Γext Lz Lr ne CFL 3D (Amp,freq) Eigenvalue

M1 Diamonds Freestress 40 50 11040 0.37 (0.1299,0.1991) (0.01427,1.25009)

M2 Diamonds Freestress 60 50 16320 0.37 (0.1224,0.1991) (0.01454,1.25193)

M3 Diamonds Freestress 40 50 29696 0.44 (0.1284,0.1984) (0.01475,1.25175)

M4 Squares No slip 40 50 12512 0.34 (0.1231,0.1991) -

M5 Diamonds Freestress 40 50 11040 0.18 (0.1267,0.1991) -

Table 6.2 – Convergence of the 3D numerical flow simulations and eigenvalues of mean flow

Figure 6.16 – Time series, attractor cross section and amplitude Fourier spectrum at the
monitoring point (R,θ, Z ) = (0.1,0.0,6.0) and at the Reynolds value of Re = 220 computed on
the finer discretization M3.

M3. The irregular fluctuations of the time series is again observed for this computation.
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6.9.2 Frequency validation

The frequency measured on the Fourier amplitude spectrum and the approximation based

on the mean frequency are reported on Table 6.3. An excellent correspondence is observed.

Note that the b frequency, resulting from the nonlinear interaction of the primary and the

downstream spiral (respectively at f1 and f2) is not observed at this monitoring point for this

Reynolds value.

Frequency Measured Approximation

f1 0.202274 0.202274 = f1

f2 0.152683 0.152492 = 6 f1 −5 f3

f3 0.193977 0.193977 = f3

f4 0.181579 0.181531 = 5/2 f3 −3/2 f1

a 0.40454 0.40454 = 2 f1

b - 0.049782 = f1 − f2

c 0.008296 0.008297 = f1 − f3

d 0.210571 0.210571 = 2 f1 − f3

e 0.185775 0.18568 = 2 f3 − f1

h 0.173377 0.173282 = f4 − f1 + f3

i 0.189876 0.189876 = f1 − ( f3 − f4)

Table 6.3 – Frequency interaction for Re = 230, S = 1.095 at R = 0.2, Z = 6.0 measured and
approximated by the formulas using f1, f2, f3 and f4.
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7.1 Conclusions

The overarching objective of the present research work is the control of the cavitation vortex

rope appearing in the draft tube of Francis turbines at part load operating conditions. This

so-called part load vortex rope induces large pressure fluctuations, which restrict the operating

range close to the best efficiency point of the turbine, while the extension of the operating

range of Francis turbines is thought to be one of the main solutions to balance the electric

consumption and the intermittent electric production arising from the foreseeable massive

introduction of photovoltaic and wind energies in the electric distribution systems.

The control of the part load vortex rope is addressed using an optimal fluid flow control

technique, based on the hydrodynamic instability properties of draft tube flow field. The

main idea is to identify the part load vortex rope as a self-sustained instability, therefore

caught by a global stability analysis, to define an objective function containing the growth

rate of the most unstable eigenvalue as a target for a minimization algorithm. In this control

strategy, the flow distribution is manipulated by an ideal volume force along the radial and

axial components, which is expected to directly translate into an appendage or into a suitable

actuation mechanism. This approach provides, therefore, a systematic and relevant tool

to increase the operation flexibility of Francis turbines, by obtaining a quantifiable target

about the vortex rope and by quenching the original nature of the vortex rope. However, first

and foremost, the idealized uncluttered theoretical framework of fundamental research of

hydrodynamic instability in laminar flows Re = O(102) has to be transposed to include the

inherent complexity of industrial design, embedding in particular turbulence modeling to

reach high Reynolds number flows around Re =O(106).

The control strategy adopted is first developed on an academic benchmark flow, the spiral

vortex breakdown, to assess the feasibility and the validity of our approach. Global stability

analyses around the base flow and the mean flow of the spiral vortex breakdown, issued from

a semi-infinite domain, at a fixed swirl number S = 1.095 and Reynolds value up to Re = 500

are performed. The results confirm the correct frequency prediction of the mean flow stability
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analysis obtained in recent swirling flows studies (Oberleithner et al. [49], Paredes et al. [50],

Tammisola & Juniper [48]). The growth rate of the most unstable eigenvalue of the base and

mean flow is then targeted by an adjoint-based minimization algorithm. The stabilization

of these eigenvalues successfully quenches the self-sustained disturbance (the spiral vortex

breakdown) close to the instability threshold Re = 180 and far away from it Re = 300. In

addition, targeting the eigenvalue growth rate from the base or mean flow results in the same

volume force and stabilized solution while a factor 10 exists between their growth rates at

Re = 180. This result definitely emphasizes the physical significance and practical usefulness

of mean flow stability analysis and related optimal control strategies, in situations where

the eigenvalue growth rate of the mean flow is not neutral, in contrast to the case of the

cylinder wake flow (Barkley [5] and Mantic̃-Lugo et al. [84]). The finite amplitude volume

force results in a small variation of the flow solution with two active zones close to threshold

(Re = 180), while further away from the threshold the optimal force completely changes the

flow distribution by suppressing the flow recirculation bubble. Moreover, we underline the

correct identification by the mean flow based linear sensitivity map of the minimum and

maximum of the nonlinear receptivity regions, both close to the threshold Re = 180 and far

away from it Re = 300. Linear sensitivity maps may therefore be sufficient to develop an

appendage accessing these locations, although their validity cannot be ensured a priori.

The direct numerical flow simulations of the spiral vortex breakdown performed to compute

the mean flow reveals the onset of chaos. A Ruelle-Takens-Newhouse route to chaos is iden-

tified with the successive onset of incommensurable frequencies as the Reynolds number

increases. Chaos, which only appears in nonlinear dynamics with sufficient degrees of free-

dom, results in this unconfined configuration, from interactions of purely hydrodynamic

self-sustained instabilities. Three incommensurable frequencies, as theoretically expected,

are identified by spectral analysis of the chaotic regime, while the global stability analysis

around the mean flow identifies only two out of them, an unstable eigenmode for the main

incommensurable frequency, and a stable eigenmode for the second incommensurable fre-

quency. The third incommensurable frequency is extracted by a temporal-azimuthal Fourier

series decomposition of the unsteady flow distribution. We can question, therefore, the ability

of the stability analysis around the mean flow to identify several unstable eigenmodes as well

as the quantitative meaning of the obtained growth rates. In the present situation, we expect

the transfer of energy from the unstable eigenmode to the stable eigenmode to occur by non-

normality of the global linear evolution operator and to lead to the second incommensurable

frequency.

With our success in addressing the optimal control of the spiral vortex breakdown, we turn

our attention to the control of the part load vortex rope. In this industrial design, complex-

ity reduction is a key feature to apply our minimization procedure. Instead of conducting

an expensive full 3-D optimization, the main part of the algorithm is computed in a 2-D

axisymmetric domain except for the mean flow obtained by successive time-averaging and

azimuthal-averaging of the instantaneous 3-D flow field. This strategy is made possible thanks

to the symmetry properties of the flow that can be caught by stability analysis using an az-
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imuthal Fourier decomposition of the disturbance and thanks to an auxiliary axisymmetric

design of the draft tube, based on a discharge velocity conservation over the cross sections

of the original elbow draft tube, which keeps the frequency and the flow distribution of the

original vortex rope.

The global stability analysis of the part load vortex rope is addressed in this axisymmetric

draft tube. This analysis requires the mean flow, which is computed on the fly during the

URANS simulations of the draft tube flow field at Re = O(106), and turbulence modeling,

which is approximated by a diffusive term multiplied by the mean eddy viscosity extracted

from the URANS simulations. The part load vortex rope is identified as a global unstable mode

of azimuthal wave number m = 1 (single helical mode), whose frequency agrees well with

the flow oscillations, and the eigenmode structure not only coils in space and spins in time

rigorously identically as the vortex rope but also agrees well with the nonlinear disturbance

distribution of the 3-D instantaneous vortex rope. In addition, the vortex rope captured as

an instability in a "viscous framework" (in view of the large turbulent eddy viscosity) is found

insensitive to different turbulence models used in the stability analysis (spatially varying eddy

viscosity and constant eddy viscosity) and therefore suggests that the part load vortex rope is

an inviscid instability. This global stability analysis exhibits the self-sustained character of the

part load vortex rope, which is associated to a flow oscillator and comes from the emergence

of an unstable disturbance out of the mean turbulent flow.

The linear framework offered by the global stability analysis of the part load vortex rope

has allowed us to investigate the mechanism and the origin of the synchronous pressure

fluctuations, a planar wave pulsating at the same frequency as the vortex rope, which can

excite the hydraulic piping system eigenfrequency. This wave is only observed in elbow draft

tube, we investigate it therefore in our axisymmetric draft tube by disturbing the draft tube wall

through an eccentric displacement at selected circular sections. This disturbance defined as an

azimuthal Fourier mode m = 1 is the key to separate the hydrodynamic mode from geometrical

mode by azimuthal Fourier series decomposition of URANS flow solutions and to perform an

asymptotic expansion around the mean turbulent flow to exhibit the generation mechanism

of the synchronous wave. The part load vortex rope linear mode and the wall disturbance

linear mode, obtained in our asymptotic expansion, interact and produce an axisymmetric

pulsating force at the next order composed of their intercrossed Reynolds stresses, exciting

therefore the synchronous wave at the frequency of the vortex rope. In our case the source

is located on the wall disturbance but it is followed by an amplification mechanism in the

axisymmetric elbow.

The mitigation of the pressure fluctuations in Francis turbines by minimizing the growth

rate of the eigenvalue associated to the part load vortex rope is successfully addressed using

the same adjoint-based minimization algorithm as for the spiral vortex breakdown. The

growth rate during the minimization procedure decreases slowly until it suddenly drops

at the ultimate iteration to therefore result in the stabilization of the part load vortex rope.

This evolution contrasts with the case of the spiral vortex breakdown where the growth rate
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decreases smoothly to zero. Our algorithm successfully stabilizes the part load vortex rope by

pushing the fluid downstream in the draft tube center line starting after the recirculation region

of the mean flow and sketches the design of a realistic control appendage. This result brings

a promising solution to control the part load vortex rope by a volume force to increase the

operation flexibility of Francis turbines. Moreover, the mean turbulent flow based sensitivity

maps correctly identify the nonlinear receptivity region of the part load vortex rope. It may

therefore appear sufficient to use the linear sensitivity maps to locate the receptivity region of

the flow to design passive control appendage. An estimation of the control amplitude based

on the linear sensitivity maps is however difficult to assess without computing 3-D solutions.

7.2 Perspectives

This research work investigates first the development of infinitesimal disturbance in swirling

flows in a laminar regime with the spiral vortex breakdown and in a turbulent regime with the

part load vortex rope, second the optimal control of self-sustained instability in both regimes,

and third nonlinear fluid-fluid and fluid-solid interactions.

While the control of self-sustained instabilities is successfully performed by minimizing the

growth rate of the most unstable eigenvalue of the mean flow, the physical significance of this

growth rate still needs to be determined. We believe that it is, more than the measure of the

exponential growth of the disturbance, merely also a measure of the variance between the

linear and nonlinear modes.

Chaotic dynamics occurring from nonlinear interactions of self-sustained instabilities is

observed in the spiral vortex breakdown. Global stability analysis on the mean flow results in

the identification of two out of the three incommensurable frequencies observed in the direct

numerical flow simulation. The question naturally arises if linear stability analysis is able

to predict the growth rate of multiple self-sustained instabilities, while it correctly predicts

the instability properties of a single self-sustained mode in many situations. We may also

speculate how a chaotic state can be reached without having three self-sustained instabilities

corresponding to three incommensurable frequencies.

The origin of the synchronous wave is investigated in the axisymmetric draft tube of a Francis

turbine in the small deformation limit. The transposition to large wall deformation such as

the elbow draft tube needs to be further investigated to obtain the real fluctuating pressure

source location. One major difficulty to assess this location is to perform azimuthal Fourier

series decomposition in evolving section shapes along the draft tube curvilinear axis, ranging

from a circular to a rectangular via an oval section.

As far as flow control is concerned, the optimal volume forces obtained in the case of the two

swirling flow investigated act along the axis center line. An important perspective is therefore

to materialize this volume force by carrying out a shape optimization. This point is made

difficult by the need to take into account the turbulence boundary layer on the control device.
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We propose instead to design an appendage at the tip of the runner cone that will access the

starting point of the distributed force on the axis and will accelerate the flow in the draft tube

center line using either a convergent nozzle repatriating lateral mass flow or water jets from a

conical appendage, or both simultaneously.

We have observed that the part load vortex rope is generated by its linear dynamics, which has

enabled the correct identification of the nonlinear receptivity region of draft tube flow field

by the linear sensitivity maps. Therefore these linear maps may appear sufficient to locate

the receptivity region of the flow to design passive control appendage but caution should be

exercised because the generality of this result is not guaranteed.
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since 2014 

Member of the HYPERBOLE project, Hydropower pants performance and flexible operation 

towards lean integration of new renewable energies, ended Jan 2017 

Reviewer for the 9
th

 international symposium on cavitation (CAV 2015), Dec, 6-10, 2015, 

Lausanne, Switzerland 

 

Publications 
Peer-reviewed journal articles 

Pasche S., Gallaire F., Dreyer M., Farhat M., 2014 -induced spiral vortex 

-014-1784-7. 

Pasche S., Avellan F., Gallaire F., 2017, 

 Fluids Eng., vol. 139, pp. 051102, doi: 10.1115/1.4035640. 

Papers submitted 
Pasche S., Gallaire F., Avellan F., June 
2017, submitted in J. Fluid Mech. 

Pasche S., Avellan F., Gallaire F., 

July 2017, submitted in J. Fluids Eng. 

Pasche S., Avellan F., Gallaire F., Origin of the synchronous pressure fluctuations in the 

draft tube of Francis turbines operating at part load conditions , September 2017, 

submitted in J. Fluids Struct. 

Pasche S., Gallaire F., Avellan F., Onset of chaos in helical vortex breakdown at low 

Reynolds number October 2017, submitted in Phys. Rev. Fluids. 
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Conferences contributed 
Pasche S., Gallaire F.,  

11
th

 European Fluid Mechanics Conference (EFMC11), Seville, Spain, September 13-16, 

2016. 

Pasche S in helical vortex breakdown at low 

Reynolds n
th

 Annual Meeting of the APS Division of Fluid Dynamics, Portland, 

Oregon, USA, November 20-22, 2016. 

Poster sessions 
Pasche S., Gallaire F., Avellan F., Stability analysis and optimal control of a Francis 

turbine vortex rope  Poster session, SCCER-SoE annual conference, University of 

Neuchâtel, Neuchâtel, Switzerland, September 10-11, 2015. 

Pasche S., Gallaire F., Avellan F., Stability analysis and optimal control of a Francis 

turbine vortex rope  Poster session, SCCER-SoE annual conference, HES-SO, Sion, 

Switzerland, September 12-13, 2016. 

Pasche S., Gallaire F., Avellan F., Extension of Francis Turbine Operating Conditions by 

Controlling the Part Load Vortex Rope  Poster session, SCCER-SoE annual conference, 

WSL, Birmensdorf (ZH), Switzerland, September 14-15, 2017. 
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