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Abstract

Hadron beams – approximately 200 MeV protons a nd 400 MeV/u fully stripped carbon ions

– are better suited to treat deep-seated tumours than X ray beams – produced by electrons

accelerated by linear accelerators (linacs) to 5-25 MeV – because they leave the maximum

energy density at the end of their range in matter, in the so-called Bragg peak. This physical

property allows dose depositions that are more conformal to the tumour target and spare

much better the surrounding healthy tissues, so that hadron therapy treatment rooms could

substitute X ray therapy rooms (about 20 000 worldwide) if the needed accelerators could be

made of similar dimensions and costs.

Cyclotrons and synchrotrons are at the heart of today proton and carbon ion therapy centres,

respectively. At the end of 2015, more than 130 000 patients have been treated with proton

beams and almost 20 000 with carbon ions [Particle Therapy Co-Operative Group data, https:

//www.ptcog.ch/index.php/patient-statistics]. High frequency hadron therapy linacs have

been studied in the last 30 years. Their main advantage is represented by their active beam

energy modulation, which permits quick treatments with superior beam quality and novel

dose delivery techniques.

This thesis is the last of many research works on the development of linear accelerators for

hadron therapy. The preliminary design of two linear accelerator facilities, for proton therapy

(TULIP) and carbon ion therapy (CABOTO), was completed. This closed an activity that started

well before the begin of this PhD.

The introductory Chapter will quickly review the rationale of hadron therapy as a treatment

methodology, which has been nicely covered in a number of articles and thesis before. More

space will be dedicated to discuss the advantages of linacs in hadron therapy compared

to state-of-art technologies, and to discuss the differences between cyclinac and all-linac

solutions. Finally, the most important past research activities based on which this thesis

started will be presented. The theory of linear accelerators is not presented, since many books

cover it in detail. Instead, along the different Chapters, short theoretical discussions will be

given when judged necessary to fully explain the choices made.

The second Chapter is the largest of this thesis. It describes the RF design of accelerating

structures performed for the proton and carbon ion therapy facilities later on presented. The
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Abstract

first cavity presented is a 750 MHz IH structure, which represents an ideal continuation of the

recently built 750 MHz CERN RFQ. Both RF efficiency and beam dynamics considerations

will be presented to prove this statement. For beam energies higher than 10 MeV/u, a side

coupled DTL cavity was considered. Both these two accelerating structures require a fairly

low accelerating gradient, and their design is in common between the two projects studied in

this thesis. Finally, for the proton therapy linac, two high-gradient optimized cavities were

considered for beam energies above 70 MeV. A backward travelling wave cavity, magnetically

coupled, which has been built and tested. And a side coupled cavity, which has been 3D

RF designed but not built. For the carbon ion therapy linac, the RF efficiency is the most

important parameter, and the accelerating structure could not be optimized in terms of high

gradient. Thus, for this project, for energies higher than 100 MeV/u a high efficiency side

coupled cavity was considered. As discussed in detail, this is a fundamentally different RF

design from the high gradient one.

A not negligible time of the present thesis was devoted to the development of beam dynamics

codes. Partially, this was motivated by the will to better learn beam dynamics. However, the

linear accelerators studied have substantial differences between each other, and non black-box

tools permit to add features as necessary, adapting to the design needs. To ease the reading,

the discussion of these tools has been put in the Appendix.

After the second Chapter, and ideally the Appendix on beam dynamics, the reader has all the

means to fully comprehend the following Chapters, where the proton and carbon ion linac

designs are eventually presented.

The third Chapter is dedicated to the proton linac design, called TULIP: TUrning LInac for

Protontherapy. TULIP main characteristic is its compactness, which required the study of the

high gradient accelerating structures previously discussed. The Chapter starts with a general

overview of the linac layout, followed by the detailed description of the beam dynamics studies

performed. An error study of quadrupoles misalignment completes the Chapter.

The forth Chapter describes the carbon ion linac design, called CABOTO: CArbon BOoster for

Therapy in Oncology. This Chapter follows the same scheme of the TULIP one. In addition,

given some recent interest towards this technology, and given the similarities with carbon

ions from a linac point of view, a preliminary design of an He therapy facility is discussed. The

Chapter is concluded by a preliminary characterization of hadron therapy linacs costs.

The fifth Chapter presents the experimental activity performed on the backward travelling

wave prototype built. Goal of the test is to study the high-gradient break-down limitation of

S-Band cavities. Such studies were conducted extensively by CLIC (Compact Linear Collider)

on 12 and 30 GHz accelerating structures. TERA Foundation, in collaboration with CLIC,

started a high gradient test on S-Band and C-Band standing wave single RF cells. The present

test profited of the results of these experiments, and it represents the first attempt to study the

high gradient limits of a full accelerating structure operating at 3 GHz. After the description

of the cavity RF tuning, the status of the test is presented, highlighting some interesting
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peculiarities of the design. The Chapter is concluded by the study of dark current capture in

non ultra-relativistic cavities.

Keywords: hadron therapy, linac, RF cavity, high gradient test, beam dynamics, breakdown

rate
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Sintesi

I fasci di adroni - protoni di circa 200 MeV e ioni carbonio completamente strippati di circa 400

MeV/u - sono più indicati nel trattamento di tumori profondi rispetto ai raggi X - prodotti da

elettroni accelerati da acceleratori lineari (linacs) fino a 5-25 MeV - in quanto i primi rilasciano

il massimo della densità di energia alla fine del proprio percorso attraverso la materia, nel

cosiddetto picco di Bragg. Questa proprietà fisica permette deposizioni di dose più conformi

al volume del tumore che si vuole colpire, e permette di diminuire la deposizione di dose

nei tessuti sani circostanti. Per queste ragioni, le sale di trattamento con adroni potrebbero

sostituire le sale di radio terapia, all’incirca 20 000 nel mondo, se gli acceleratori di adroni

potessero essere costruiti in dimensioni e costi simili rispetto agli acceleratori di elettroni.

Ciclotroni e sincrotroni sono gli acceleratori di particelle usati attualmente nei centri di terapia

con, rispettivamente, protoni e ioni carbonio. Alla fine del 2015, piu’ di 150 000 pazienti sono

stati trattati con fasci di protoni e quasi 20 000 con fasci di ioni carbonio [dati da Particle

Therapy Co-Operative Group, https://www.ptcog.ch/index.php/patient-statistics]. I linacs

ad alta frequenza per adronterapia sono stati studiati negli ultimi 30 anni. Il loro principale

vantaggio è rappresentato dalla possibilita’ di variare l’energia del fascio in modo attivo,

permettendo trattamenti veloci con una superiore qualità del fascio e attraverso l’utilizzo di

metodi di trattamento innovativi.

Questa tesi è l’ultima di una serie di lavori di ricerca sullo sviluppo di acceleratori lineari per

adronterapia. È stato completato il disegno preliminare di due centri di terapia, con protoni

(TULIP) e ioni carbonio (CABOTO), basati su acceleratori lineari, concludendo un’attività che

è cominciata ben prima dell’inizio di questa tesi di dottorato.

Il Capitolo introduttivo argomenterà sinteticamente i benefici dell’utilizzo dell’adronterapia

come metodo di trattamento, tema già trattato in dettaglio in molteplici articoli e tesi pre-

cendentemente. Maggiore spazio verrà dedicato alla discussione dei vantaggi dei linac per

adronterapia rispetto alle tecnologie attuali, e al confronto tra i concetti di cyclinac e all-linac

Infine, verranno elencate le più importanti ricerche passate sulla base delle quali questa tesi

è cominciata. La teoria degli acceleratori lineari non sarà affrontata, in quanto molti libri la

affrontano già in dettaglio. Invece, nei capitoli successivi, brevi discussioni teoriche verranno

proposte, qualore ritenuto necessario, per motivare appieno le scelte progettuali proposte.
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Il secondo Capitolo è il più corposo della presente tesi. Descrive il disegno RF delle strutture

acceleranti condotto nel contesto della progettazione dei centri di terapia per protoni e ioni

carbonio discussi in seguito. La prima cavità accelerante presentata è una struttura IH a 750

MHz, che rappresenta una continuazione ideale del RFQ a 750 MHz recentemente construito

al CERN. Verranno presentate motivazioni, sia dal punto di vista RF che di dinamica delle

particelle, per motivare tale asserzione. Per energie maggiori di 10 MeV/u, una cavità DTL è

stata considerata. Sia l’IH che il DTL richiedono, per i progetti in esame, gradienti acceleranti

modesti, e il loro disegno è in comune per i progetti con protoni e ioni carbonio. Infine, per il

linac per protoni, due cavità ottimizzate per alti gradienti sono state considerate per energie

superiori a 70 MeV. Una cavità con propagazione inversa dell’onda elettromagnetica, che è

stata costruita e testata. E una cavità con celle accoppianti, che è stata progetta con disegno

RF 3D, ma non costruita. Per il progetto con ioni carbonio, l’efficienza RF è il parametro

più importante, e dunque le cavità non sono state ottimizzate in termini di alti gradienti

acceleranti. Di conseguenza, per quest’ultimo progetto, per energie maggiori di 100 MeV/u è

stato considerata una cavità con celle accoppianti ad alta efficienza RF. Come verrà discusso,

si tratta di una differenza fondamentale, a livello di disegno RF, rispetto a una cavità ad alto

gradiente.

Un tempo non trascurabile della presente tesi di dottorato è stato dedicato allo sviluppo di

codici usati per il disegno dei linac e per il tracciamento dei fasci di particelle. L’utilizzo di

codici sviluppati ad-hoc è parzialmente motivata dalla volontà di apprendimento. Cionono-

stante, gli acceleratori lineari studiati presentano differenze sostanziali gli uni dagli altri, e

codici sviluppati in proprio permettono di essere modificati e/o di aggiungere funzionalità a

secaonda delle necessità del progetto. Per rendere più snella la lettura della tesi, la discussione

di questi codici è riportata in Appendice.

Alla fine del secondo Capitolo, e idealmente dell’Appendice dedicata ai codici di dinamica del

fascio, il lettore possiede tutti gli strumenti necessari a comprendere i Capitoli tre e quattro,

dove il progetto degli acceleratori lineari per terapia con protoni e ioni carbonio è infine

discusso.

Il terzo Capitolo è dedicato al linac per protoni, chiamato TULIP: TUrnin LInac for Proton-

therapy. La principale caratteristica di TULIP è la sua dimensione compatta, che ha richiesto

lo studio delle cavità ad alto gradiente precedentemente discusse. Il Capitolo inizia con una

panoramica sulla struttura del progetto, seguita da una discussione approfondita degli studi

di dinamica delle particelle effettuati. Uno studio di disallineamento dei quadrupoli completa

il Capitolo.

Il quarto Capitolo descrive il linac per ioni carbonio, chiamato CABOTO: CArbon BOoster for

Therapy in Oncology. Questo Capitolo segue lo stesso schema del precedente dedicato a TULIP.

In aggiunta, visto il recente interesse verso questa tecnologia, e considerate le simulitudini

con un progetto ad ioni carbonio da un punto di vista tecnico, verrà presentato un disegno

preliminare di linac per terapia con ioni elio. Il Capitolo si conclude con una discussione

xii
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preliminare sul costo di linac per adronterapia.

Il quinto Capitolo presenta le attività sperimentali sulla prototipo di cavità con propagazione

inversa dell’onda elettromagnetica. L’obiettivo dell’esperimento è stato lo studio dei limiti in

termini di scariche di elettroni in funzione del gradiente accelerante, per cavità in banda S.

Questi studi sono stati condotti in modo estensivo da CLIC (Compact Linear Collider study)

su strutture acceleranti a 12 e 30 GHz. La Fondazione TERA, in collaborazione con CLIC, ha

iniziato un serie di esperimenti di alto gradiente su celle RF con onda stazionaria in banda S e

C. L’esperimento attuale parte da questi risultati, e rappresenta il primo tentativo di studio

di una struttura accelerante completa operante a 3 GHz in termini di massimo gradiente

accelerante raggiungibile. Dopo la descrizione dell’aggiustamento in frequenza della cavità

prodotta, lo stato dell’esperimento verrà presentato, sottolineando alcuni aspetti interessanti

del disegno proposto. Il Capitolo si conclude con lo studio della cattura di correnti parassite di

elettroni in strutture acceleranti per particelle non ultra-relativistiche.

Keywords: Adroterapia, linac, cavità RF, test ad alto gradientie, dinamica dei fasci di particelle,

breakdown rate

xiii





Contents
Acknowledgements v

Abstract (English/Italiano) vii

List of figures xix

List of tables xxv

Acronyms xxvii

1 Introduction 1

1.1 Physics of hadron therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Longitudinal dose profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Lateral dose profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3 Radiobiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.4 Summary on hadron therapy physics . . . . . . . . . . . . . . . . . . . . . 13

1.2 Rationale of linear accelerators for hadron therapy . . . . . . . . . . . . . . . . . 13

1.2.1 Dose delivery systems for hadron therapy . . . . . . . . . . . . . . . . . . 15

1.2.2 Advantages of linacs for hadron therapy other than dose delivery system 16

1.3 The starting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Comparison between cyclinac and all-linac concepts . . . . . . . . . . . 18

2 RF design of accelerating structures for TULIP and CABOTO 23

2.1 Main codes and assumptions used . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 The high-efficiency 750 MHz IH accelerating structure . . . . . . . . . . . . . . . 28

2.2.1 The choice of low beta section accelerators . . . . . . . . . . . . . . . . . . 28

2.2.2 RF optimization of TM and TE mode DTL cavities . . . . . . . . . . . . . . 32

2.2.3 Regular cell design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.4 Thermal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.5 End-cells design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.6 Dipole kicks and transversally focusing IH cavities . . . . . . . . . . . . . 39

2.3 The high-efficiency 3 GHz DTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Regular cell design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 Criticality and points of strength . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 The high-gradient 3 GHz BTW accelerating structure . . . . . . . . . . . . . . . . 50

xv



Contents

2.4.1 A backward travelling wave accelerator . . . . . . . . . . . . . . . . . . . . 52

2.4.2 Regular cell design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.3 Single cell mechanical studies . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.4 End-cells design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4.5 The final prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4.6 Power recirculation in a TW structure . . . . . . . . . . . . . . . . . . . . . 68

2.5 The high-gradient 3 GHz CCL accelerating structure . . . . . . . . . . . . . . . . 71

2.5.1 Regular cell and quintuplet design . . . . . . . . . . . . . . . . . . . . . . . 71

2.5.2 End-cells design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.5.3 Machinability considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.6 RF comparison between CCL and BTW HG solutions . . . . . . . . . . . . . . . . 77

2.7 The high-efficiency 3 GHz CCL accelerating structure . . . . . . . . . . . . . . . 82

2.7.1 100 MeV/u cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.7.2 430 MeV/u cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.7.3 Summary and some interesting sensitivity considerations . . . . . . . . . 87

2.7.4 Assessment of a different RF coupling . . . . . . . . . . . . . . . . . . . . . 90

3 TULIP: a high-gradient linear

accelerator for proton therapy 93

3.1 General layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.1.1 From 5 to 10 MeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.1.2 From 10 to 70 MeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.1.3 From 70 to 230 MeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2 Beam dynamics in a cyclinac solution . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3 Quadrupole misalignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4 Start-to-end simulation: from 5 MeV to 230 MeV . . . . . . . . . . . . . . . . . . 107

4 CABOTO: a high-efficiency linear accelerator for carbon ion therapy 113

4.1 General layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1.1 From 2.5 MeV/u to 10 MeV/u . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.1.2 From 10 MeV/u to 100 MeV/u . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.1.3 From 100 MeV/u to 430 MeV/u . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2 Quadrupole misalignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3 Start-to-end simulation: from 2.5 MeV/u to 430 MeV/u . . . . . . . . . . . . . . 124

4.4 A He therapy facility based on the CABOTO design . . . . . . . . . . . . . . . . . 127

4.5 Cost estimation of linacs for hadron therapy . . . . . . . . . . . . . . . . . . . . . 127

5 Low and high power measurements of the BTW structure prototype 133

5.1 RF measurements and tuning of the prototype . . . . . . . . . . . . . . . . . . . . 133

5.1.1 Second tuning test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 High power test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2.1 High power test set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2.2 First check - The pulse shape . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xvi



Contents

5.2.3 Conditioning phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2.4 BD identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3 Dark current analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.4 First results of the high gradient test . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.4.1 Remarks on frequency dependence and the Kilpatrick criterion . . . . . 161

6 Conclusions 165

A Beam dynamics and linac design codes used 169

A.1 Linac design code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.2 RF-Track: a minimalistic multipurpose tracking code . . . . . . . . . . . . . . . . 172

A.2.1 Code description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.2.2 Benchmark of RF-Track with other codes . . . . . . . . . . . . . . . . . . . 176

A.2.3 Field map generation and main assumptions . . . . . . . . . . . . . . . . 176

B Selected publications 183

Bibliography 223

Curriculum Vitae 225

xvii





List of Figures
1.1 Cumulative number of hadron therapy centers as a function of time . . . . . . . 2

1.2 Proton therapy centres in Europe and worldwide . . . . . . . . . . . . . . . . . . 2

1.3 Longitudinal dose profile of X-rays, protons and carbon ions . . . . . . . . . . . 4

1.4 Specific energy loss vs relativistic momentum for different ions . . . . . . . . . . 6

1.5 C 6+ dose deposition and Spread Out Bragg Peak (SOPB) . . . . . . . . . . . . . . 7

1.6 2D dose profile of proton, helium, and carbon ion beams . . . . . . . . . . . . . 10

1.7 DNA damages and cell survival curve . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 Fractioning principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.9 RBE vs LET data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.10 Linacs active energy variation timescale . . . . . . . . . . . . . . . . . . . . . . . 15

1.11 Passive and active dose delivery systems . . . . . . . . . . . . . . . . . . . . . . . 16

1.12 Sketch of TULIP all-linac and cyclinac solution . . . . . . . . . . . . . . . . . . . 20

1.13 Sketch of CABOTO all-linac and cyclinac solution . . . . . . . . . . . . . . . . . . 21

2.1 Field analysis of the 10 MeV/u IH RF cell with the metod of Eq. 2.1 . . . . . . . . 25

2.2 Field analysis of the 10 MeV/u IH RF cell with the metod of Eq. 2.2 . . . . . . . . 26

2.3 Field analysis of the 153 MeV/u BTW RF cell with the metod of Eq. 2.2 . . . . . . 27

2.4 Mechaical view of selcted 5 MeV/u cells and cutoff frequencies . . . . . . . . . . 29

2.5 ZTT as a function of the geometric βs for the optimized low β cavities considered. 30

2.6 Q-factor and R’/Q as a function of the geometric βs for the optimized low β

cavities considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Optimum cell gap and radius as a function of the geometric βs for the low β

cavities considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Mechanical comparison between selected 5 MeV/u cells . . . . . . . . . . . . . . 33

2.9 3 GHz DTL structure at 70 MeV/u . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Transverse section of 5 MeV/u cells: CERN RFQ and IH cavity . . . . . . . . . . . 34

2.11 Optimization of an IH cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.12 Results of the 5 MeV/u IH cavity optimization . . . . . . . . . . . . . . . . . . . . 36

2.13 Regular cell designs and assembly view of the IH 750 MHz cavity . . . . . . . . . 37

2.14 Thermo-structural analysis of the 5 MeV/u IH cell . . . . . . . . . . . . . . . . . . 37

2.15 E-field distribution in the IH end-cells . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.16 End-cells 2D optimization result and E-field distribution along the z axis . . . . 38

2.17 End-cells design with the parameters studied in the optimization . . . . . . . . 39

xix



List of Figures

2.18 Single particle tracking through the IH structure . . . . . . . . . . . . . . . . . . . 40

2.19 E-field lines in the 5 MeV/u IH cell and voltages analysis . . . . . . . . . . . . . . 41

2.20 5 MeV/u cavity with "racetrack" drift shape . . . . . . . . . . . . . . . . . . . . . . 42

2.21 Transverse voltage along x axis normalized to the accelerating voltage in the 5

MeV/u IH RF cell with "racetrack" drift shape . . . . . . . . . . . . . . . . . . . . 43

2.22 Racetrack optimization results for the 5 MeV/u cell . . . . . . . . . . . . . . . . . 43

2.23 The 5 MeV/u reference 3 GHz DTL cavity . . . . . . . . . . . . . . . . . . . . . . . 45

2.24 Transverse voltage along x and y axis normalized to the accelerating voltage for

the 15 MeV/u DTL RF cell with symmetric stems . . . . . . . . . . . . . . . . . . 46

2.25 ZTT profile in the DTL linac, for a constant and a tapered bore aperture . . . . . 47

2.26 Thermal analysis of the 10 MeV/u DTL cell, fro different stems geometries. . . . 47

2.27 Filamentation in a DTL solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.28 Beam dynamics in a DTL structure from 5 to 20 MeV/u . . . . . . . . . . . . . . . 51

2.29 Beam dynamics in an IH+DTL structure from 5 to 20 MeV/u . . . . . . . . . . . 51

2.30 The 3 GHz BTW prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.31 Fields distribution in a BTW RF cell . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.32 Results of the optimization of the first BTW cell, with scan of gap and nose cone

angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.33 Geometrical parameters of the optimized HG BTW RF cells for different geomet-

ric β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.34 Main accelerating parameters and field distribution along the BTW structure . 57

2.35 RF assembly methodology of the BTW structure . . . . . . . . . . . . . . . . . . . 58

2.36 Creep results in the nose region for the different cells tested . . . . . . . . . . . . 59

2.37 Example of a tuning simulation performed with HFSS. . . . . . . . . . . . . . . . 60

2.38 Results of the tuning test performed. . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.39 Picture of the tuning test performed for the BTW prototype. . . . . . . . . . . . . 62

2.40 Local Sc enhancement in the end-cell due to the coupling slot . . . . . . . . . . 63

2.41 Input coupler design and final Ez field distribution in the BTW structure . . . . 64

2.42 Output end-cell matching results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.43 Input end-cell matching results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.44 Comparison between S-parameters from HFSS and CATIA models on the full 3D

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.45 Cut view of the BTW prototype mechanical design . . . . . . . . . . . . . . . . . 68

2.46 Thermo-structural analysis of the BTW prototype . . . . . . . . . . . . . . . . . . 69

2.47 Complex Ez field distribution along the BTW structure and in the complex plane 69

2.48 S11 and S22 of the BTW prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.49 3dB hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.50 Complex Mag Electric field distribution in BTW structure connected to 3db hybrid 72

2.51 HG CCL full assembly cut view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.52 Mechanical view of the optimized cells: HG BTW, HG CCL and 30 MV/m CCL . 74

2.53 Geometrical parameters of the optimized HG CCL RF cells for different geometric β 75

2.54 HG CCL end-cells design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xx



List of Figures

2.55 Field distribution along the HG CCL structure . . . . . . . . . . . . . . . . . . . . 76

2.56 S11 as a function of frequency in the HG CCL structure . . . . . . . . . . . . . . . 77

2.57 Cut view with Complex Mag Electric field distribution in the high gradient BTW

and CCL structures at β= 0.38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.58 Thermal analysis comparison between HG BTW and CCL solutions . . . . . . . 80

2.59 Uncoupled HG CCL and HG BTW cells at 230 MeV/u . . . . . . . . . . . . . . . . 81

2.60 TT factor, Q factor and ZTT comparison between HG CCL and BTW linacs . . . 83

2.61 100 MeV/u HE CCL cell optimization . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.62 Sc, E-field and H-field distribution on the nose region . . . . . . . . . . . . . . . 84

2.63 ZTT as a function of the outer corner radius of the cell . . . . . . . . . . . . . . . 85

2.64 Thermo-structural analysis of the 100 MeV/u RF cell for CABOTO . . . . . . . . 86

2.65 430 MeV/u HE CCL cell optimization . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.66 ZTT as a function of the outer corner radius of the cell . . . . . . . . . . . . . . . 88

2.67 430 MeV/u HE CCL cell with 3mm septum thickness optimization . . . . . . . . 88

2.68 Electric coupling of a on-axis coupled cavity . . . . . . . . . . . . . . . . . . . . . 91

2.69 Magnetic coupling of a on-axis coupled cavity . . . . . . . . . . . . . . . . . . . . 92

2.70 E field distribution in the 16 coupling holes solution . . . . . . . . . . . . . . . . 92

3.1 Sketch of TULIP all-linac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2 Beam dynamics in the TULIP IH linac from 5 to 10 MeV/u . . . . . . . . . . . . . 96

3.3 Beam dynamics in the TULIP DTL from 10 to 70 MeV/u . . . . . . . . . . . . . . 98

3.4 Beam dynamics in the TULIP BTW linac at 70 MeV/u constant energy . . . . . . 102

3.5 Beam dynamics in the TULIP BTW linac from 70 to 230 MeV/u . . . . . . . . . . 102

3.6 Beam dynamics in the TULIP with cyclinac solution . . . . . . . . . . . . . . . . 104

3.7 Beam dynamics in the TULIP with all-linac solution . . . . . . . . . . . . . . . . 104

3.8 Energy spread comparison between a cyclinac and a all-linac solution . . . . . 105

3.9 Methodology adopted in the TULIP quadrupole misalignments study . . . . . . 105

3.10 Misalignment study for the IH section of TULIP . . . . . . . . . . . . . . . . . . . 106

3.11 Misalignment study for the DTL section of TULIP . . . . . . . . . . . . . . . . . . 107

3.12 Misalignment study for the BTW section of TULIP . . . . . . . . . . . . . . . . . 107

3.13 TULIP all-linac main accelerating parameters . . . . . . . . . . . . . . . . . . . . 109

3.14 Summary of the beam dynamics in TULIP . . . . . . . . . . . . . . . . . . . . . . 110

3.15 Summary of the beam envelopes in TULIP . . . . . . . . . . . . . . . . . . . . . . 111

4.1 Sketch of CABOTO all-linac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Beam dynamics in the CABOTO IH linac from 5 to 10 MeV/u . . . . . . . . . . . 117

4.3 Preliminary beam tracking in the 10-100 MeV/u section of CABOTO . . . . . . . 119

4.4 Beam dynamics in the TULIPCABOTO DTL from 10 to 100 MeV/u . . . . . . . . 119

4.5 Beam dynamics in the CABOTO CCL at 100 MeV/u constant energy . . . . . . . 121

4.6 Beam dynamics in the CABOTO CCL from 100 to 430 MeV/u . . . . . . . . . . . 123

4.7 Misalignment study for the IH section of CABOTO . . . . . . . . . . . . . . . . . 123

4.8 Misalignment study for the DTL section of CABOTO . . . . . . . . . . . . . . . . 124

4.9 Misalignment study for the CCL section of CABOTO . . . . . . . . . . . . . . . . 124

xxi



List of Figures

4.10 Misalignment sensitivity to a larger bore radius in the CCL section of CABOTO 125

4.11 CABOTO all-linac main accelerating parameters . . . . . . . . . . . . . . . . . . 126

4.12 Summary of the beam dynamics in TULIP . . . . . . . . . . . . . . . . . . . . . . 128

4.13 Summary of the beam envelopes in CABOTO . . . . . . . . . . . . . . . . . . . . 129

4.14 Sketch of the He linac longitudinal dimensions . . . . . . . . . . . . . . . . . . . 129

4.15 He linac main accelerating parameters . . . . . . . . . . . . . . . . . . . . . . . . 130

5.1 BTW prototype disk alignment procedure . . . . . . . . . . . . . . . . . . . . . . 134

5.2 LLRF test and S11 comparison between measured configuration and simulation

design results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3 Scheme of the RF tests performed on the accelerating structure . . . . . . . . . 135

5.4 Electric field pattern along the 1st prototype RF cells, before and after tuning . 136

5.5 Electric field pattern along the 2nd prototype RF cells, before and after tuning . 137

5.6 Input and output S-parameters of the tuned structure . . . . . . . . . . . . . . . 138

5.7 Layout with the main components of the high power test set-up . . . . . . . . . 139

5.8 Layout with the cabling of the Klystron-modulator control system . . . . . . . . 140

5.9 Calibration curves for incident, reflected and transmitted power . . . . . . . . . 141

5.10 Fourier analysis of the acquired pulse shapes . . . . . . . . . . . . . . . . . . . . 142

5.11 Incident, reflected and transmitted pulse in the structure during the conditioning

phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.12 Accelerating gradient and cumulative number of BDs in the structure as a func-

tion of the number of RF pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.13 Summary of CERN TD26CC and KEK TD24R05#4 high gradient tests . . . . . . 145

5.14 Nominal incident (INC) reflected (REF) and transmitted (TRA) RF signals (left)

and upstream FC and downstream FC signals (right) . . . . . . . . . . . . . . . . 146

5.15 BD incident (INC) reflected (REF) and transmitted (TRA) RF signals (left) and

upstream FC and downstream FC signals (right), with comparison with a nom-

inal pulse before the BD event, in case of a strong RF perturbation. 350 ns RF

pulse length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.16 BD incident (INC) reflected (REF) and transmitted (TRA) RF signals (left) and up-

stream FC and downstream FC signals (right), with comparison with a nominal

pulse before the BD event, in case of a weak RF perturbation. 350 ns RF pulse

length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.17 BD incident (INC) reflected (REF) and transmitted (TRA) RF signals (left) and

upstream FC and downstream FC signals (right), with comparison with a nom-

inal pulse before the BD event, in case of a strong RF perturbation. 900 ns RF

pulse length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.18 BD incident (INC) reflected (REF) and transmitted (TRA) RF signals (left) and up-

stream FC and downstream FC signals (right), with comparison with a nominal

pulse before the BD event, in case of a weak RF perturbation. 900 ns RF pulse

length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.19 Comparison between input and output cell dispersion curves . . . . . . . . . . 149

xxii



List of Figures

5.20 Sketch of the BTW prototype BD simulation with HFSS . . . . . . . . . . . . . . . 149

5.21 Simulated total structure reflection as a function of the BD positioning along the

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.22 Simulated total structure reflection as a function of the BD positioning along the

structure for a lossless cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.23 Reflected signal during normal pulses and BD events to the left, and S11 his-

togram on the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.24 CLIC TD26CC structure reflected signal during normal pulses and BD events to

the left, and ratio REF/INC on the right . . . . . . . . . . . . . . . . . . . . . . . . 152

5.25 Sketch explaining the edge method . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.26 Electric field along z in the BTW structure and first harmonic travelling wave . 157

5.27 Proton tracking in a 50 MV/m field . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.28 Comparison between a β= 0.38 electric field for different accelerating gradient 158

5.29 Comparison between a β= 1 electric field for different accelerating gradient . . 159

5.30 Simulation of dark current at the FCs as a function of the accelerating gradient 159

5.31 RF-Track 3D tracking of electrons in the BTW cavity. Electrons in red, and

synchronous proton in green. Blue circles are lost electrons, i.e. electrons that

have hit the cavity walls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.32 Comparison between scaled maximum surface E-field as a function on the

number of RF pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.33 Comparison between scaled maximum surface E-field as a function on the

number of BD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.34 Comparison between scaled maximum modified Poynting vector Sc as a function

on the number of RF pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.35 BD density function as a function of the cumulative number of RF pulses and of

the longitudinal position in the cavity . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.1 10 MeV electron linac preliminary study performed with the code described in

this Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.2 Basic block diagram of subroutine A . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.3 Simplified scheme of RF-Track software architecture . . . . . . . . . . . . . . . . 175

A.4 Blocks view of the approach adopted for benchmarking the codes . . . . . . . . 177

A.5 Sketch of a cartesian mesh over a cylindrical region. Points with EM field are in

blue, NaN in orange. Small green dots are numerical interpolation points, small

red dos are interpolation points which are NaN. . . . . . . . . . . . . . . . . . . . 179

A.6 Sketch to illustrate the derivation of Eq. A.8 . . . . . . . . . . . . . . . . . . . . . 180

A.7 Ratio of area cover by the cartesian mesh over the total circle area . . . . . . . . 181

xxiii





List of Tables
1.1 Carbon ion centers in operation across the world . . . . . . . . . . . . . . . . . . 3

2.1 Design progress status of the RF cavities studied . . . . . . . . . . . . . . . . . . . 24

2.2 Main characteristic of the RF cavities studied . . . . . . . . . . . . . . . . . . . . 24

2.3 Accelerating parameters of the optimized DTL RF cells for different geometric β 45

2.4 Beam dynamics comparison between an IH-DTL and a full DTL solution in the

5 to 20 MeV/u range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Tables summarizing the parameters fixed by the optimization and the accelerat-

ing figures of merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Accelerating parameters of the optimized HG BTW RF cells for different geomet-

ric β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7 Main parameters of the BTW prototype . . . . . . . . . . . . . . . . . . . . . . . . 67

2.8 Accelerating parameters of the optimized HG CCL RF cells for different geometric β 74

2.9 Main geometric and accelerating parameters of β= 0.38 cells . . . . . . . . . . . 78

2.10 Geometric and accelerating parameters of the optimized HE CCL RF cells for

different geometric β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.11 Sensitivity of selected geometric parameters on the ZTT for the 430 MeV/u

CABOTO RF cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1 Key parameters of the all-linac TULIP solution . . . . . . . . . . . . . . . . . . . 95

3.2 TULIP DTL main parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3 TULIP BTW linac main parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4 TULIP all-linac - A summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1 Key parameters of the all-linac CABOTO solution . . . . . . . . . . . . . . . . . . 114

4.2 CABOTO IH section main linac parameters . . . . . . . . . . . . . . . . . . . . . . 117

4.3 CABOTO DTL main parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4 CABOTO CCL main parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.5 CABOTO all-linac - A summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.6 Key parameters of the He linac studied . . . . . . . . . . . . . . . . . . . . . . . . 128

4.7 Cost estimation of the major components of a linac for hadron therapy . . . . . 130

4.8 Cost estimation of linacs for hadron therapy . . . . . . . . . . . . . . . . . . . . . 131

5.1 Initial conditions of the two structures prior to tuning. . . . . . . . . . . . . . . . 135

xxv



List of Tables

5.2 Measured attenuations and maximum power coupled to PXI . . . . . . . . . . . 141

A.1 Summary of the RF-Track get phase space function options . . . . . . . . . . . . 174

A.2 Summary of the RF-Track get transport table function options . . . . . . . . . . 175

A.3 Twiss parameters comparison from the benchmark simulation on a three struc-

tures linac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xxvi



Acronyms

BD BreakDown

BDR BreakDown Rate

BL BaseLine

BTW Backward Travelling Wave

CABOTO CArbon BOster for Therapy in Oncology

CCL Cell Coupled Linac

CTF3 CLIC Test Facility 3

CH Crossbar H-type

DF Duty Factor

DTL Drift Tube Linac

EBIS Electron Beam Ion Source

ECRIS Electron Cyclotron Resonance Ion Source

EM ElectroMagnetic

FC Faraday Cup

FT Fourier Transform

FWHM Full Width Half Maximum

HE High-Efficiency

HFSS High Frequency Structure Simulator

HG High-Gradient

IH Interdigital H-type

IOT Inductive Output Tube

LET Linear Energy Transfer

LIBO LInac BOoster

LLRF Low Level Radio Frequency

OAR Organ At Risk

PMQ Permanent Magnet Quadrupole

PXI PCI eXtensions for Instrumentation

RBE Radio Biological Effectiveness

RF Radio Frequency

RFQ Radio Frequency Quadrupole

RFT RF-Track

SCDTL Side-Coupled Drift Tube Linac

xxvii



Acronyms

SOBP Spread-Out Bragg Peak

SW Standing Wave

TE Transverse Electric

TEM Transverse ElectroMagnetic

TERA TErapia con Radiazioni Adroniche

TM Transverse Magnetic

TULIP TUrning LInac for Protontherapy

TW Travelling Wave

xxviii



1 Introduction

Hadron 1 therapy refers to the treatment of tumours with hadrons. Though different ions,

like He, are under study, the two main ones used in daily treatments are carbon ions and

protons, with the latter taking the bigger part. At the time of writing, May 2017, 74 facilities are

in operation in the world, 11 of which accelerate carbon ions [1].

The treatment of patients with hadrons, in this case protons, was first proposed by Wilson in

1946 [2], and the first patient was treated in 1954 at the Lawrence Berkeley National Laboratory.

Despite these early recognition of the intrinsic physical and radio-biological advantages of

hadrons over other forms of radiation, such as X-rays, the diffusion of hadron therapy centres

was slow. Nevertheless, the number is rapidly increasing in the recent years. In Fig. 1.1 is

reported the cumulative number of proton and carbon ion centres as a function of time.

One can observe that proton centres are growing remarkably faster than carbon ion ones.

This different trend is explained mainly by the lower dimensions and costs of proton centres

compared to carbon ion ones. From a medical point view however, protons and light ions are

fundamentally different, as discussed in Section 1.1.3.

The distribution of proton therapy centres across the world sees an almost even split between

Europe, North America, and Asia (Fig. 1.2 bottom). In Europe, currently Germany leads the

pack. A considerable number of centres is under construction in the UK, and the treatment

rooms distribution across Europe at 2020 is shown in Fig. 1.2 top. Concerning carbon ions

(Table 1.1), Japan was the country that first believed in this technology, and has now 5 centres.

The Italian and Austrian centres are an adaptation of a design study called PIMMS (Proton-Ion

Medical Machine Study), hosted at CERN [3].

Though the boom of the last decade, hadron therapy remains a relatively unknown treatment

methodology to the general public. The three currently major treatment methodologies for

tumour therapy are in fact surgery, chemotherapy and radiotherapy. In the next Section, the

physical and radio-biological rationales of hadron therapy are discussed. Particular effort

is devoted into highlighting the differences between X-rays, protons, and carbon ions for

1non elementary particle made of quarks

1



Chapter 1. Introduction

Figure 1.1 – Cumulative number of hadron therapy centers as a function of time. Elaboration
from PTCOG (Particle Therapy Co-Operative Group) data, updated to February 2017. Planned
facilities are not reported.

Figure 1.2 – Proton therapy centres in Europe at 2020 (top) and worldwide (bottom). Proton
Therapy Congress, London, September 20-21, 2016.
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1.1. Physics of hadron therapy

Table 1.1 – Carbon ion centres in operation across the world [from PTCOG data].

1994 HIMAC Japan
2002 HIBMC Japan
2006 IMP-CAS China
2009 HIT Germany
2010 GHMC Japan
2011 CNAO Italy
2013 SAGA-HIMAT Japan
2014 SPHIC China
2015 i-Rock Kanagava Cancer Center Japan
2015 MIT Germany
2017 MedAustron Austria

treatment purposes.

1.1 Physics of hadron therapy

Hadron therapy, as radiotherapy, aims at delivering a dose to the tumour tissues. The dose D is

measured in Gray (Gy, 1Gy=1J/kg), and defined as:

D = E

m
, (1.1)

where E is the energy deposited in a material volume, and m is the mass of that volume.

The dose deposition, or dose profile, along the path of the radiation, differs for every type of

radiation. However, there is a fundamental difference between hadrons and X-rays. Hadrons

shows a characteristic peak, called Bragg peak, at the end of their path through matter (Fig.

1.3). X-rays instead have an almost decreasing exponential trend. As a result, deep seated

tumours can be targeted by hadrons more precisely, sparing dose to the the surrounding

healthy tissues. The dose distribution is shown in Fig. 1.3. In the following Section the physics

of radiation travelling through matter will be further discussed, in order to highlight the

differences between X-rays, protons and carbon ions, and give the reader the instruments to

understand some important design assumptions adopted in this thesis.

1.1.1 Longitudinal dose profile

X-rays dose profile is driven by two main mechanism, the photoelectric absorption and the

Compton scattering. The photoelectric effect is predominant at low X-rays energies, while

Compton scattering is main interaction mechanism involved in the slowing down of X-rays.

The dose deposition curve has an exponential behaviour. The peak that characterizes the initial

few centimeters of penetration (see Fig. 1.3) is due to the build-up of short range secondary

electrons, produced by the primary photons in the superficial layers of the irradiated tissue.
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Chapter 1. Introduction

Figure 1.3 – Longitudinal dose profile of X-rays, protons and carbon ions. Image from GSI
Helmholtz Centre library, Darmstadt, Germany.

The dose profile of hadrons along their direction of propagation in a medium is defined by

many mechanism, the main one being the inelastic electromagnetic interaction of the ions

with the atomic electrons of the medium. The Bethe-Block expression [4] defines the linear

rate of energy loss for ionization, or stopping power Sp , of a particle travelling through a

medium :

Sp =−dE

d x
=K z2

e f f

Z

A

1

β2

[1

2
· log

(2me c2β2γ2Tmax

I 2

)
−β2− δ

2

]
, (1.2)

where:

• K is a constant equal to 4πNAr 2
e me c2 (K = 0.307MeV g−1cm2);

• z2
e f f is the effective charge of the incident particle, i.e. the charge shielded by the

attached electrons;

• Z
A is the ratio between the atomic number Z and the atomic mass number A express in

[g mol−1] of the medium;

• β and γ are the relativistic factors of the particle;

• I is the ionization potential of the medium;
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1.1. Physics of hadron therapy

• Tmax is the maximum kinetic energy transferred to the free electron in a single collision;

• δ is the density correction to the ionization energy loss.

Eq. 1.2 is a simplified formula, and more complete models have been studied [5]. Typically,

Monte Carlo simulations are used nowadays to simulate the dose deposition curve of a particle

beam through matter.

In particle radiobiology, the stopping power is referred as linear energy transfer (LET), and

given in units of keV per μm of water. This notation will be used throughout this thesis.

An useful, and simplified, formula relates the range in water of a particle beam with its energy

[6]:

R =
∫0

W

(
dE

d x

)−1

dW =R0
A

z2

(
W

mc2

)1.82

, (1.3)

where:

• R0 is a constant equal to 425 cm of water;

• W is the kinetic energy of the particle;

• mc2 is the rest energy.

The accuracy of Eq. 1.3 is better than 5%. Few important figure of merits can be highlighted

from Eq. 1.3 and 1.2. In particular, for non ultra-relativistic hadrons:

• the energy loss is inversely proportional to the particle kinetic energy;

• for a given speed, the energy loss is proportional to the square charge z;

• for a given range, the energy per unit mass W/A is proportional to z1.1/A0.55 (from Eq.

1.3).

In Fig. 1.4 , the linear energy loss of different ions is plotted versus their relativistic momentum.

The increase at low energies is due to the longer time spent by the particles in the proximity

of the atoms of the traversed medium, and so by an enhanced probability to eject electrons

per unit path length. If the x-axis of Fig. 1.4 is inverted, and one takes the dose (see Eq. 1.1)

instead of the LET, one obtains the Bragg peak previously discussed.

As a second remark, the higher is the mass of the ion, and the lower is its speed, the narrower

is the Bragg peak. So for instance, a carbon ion beam has a more localized energy deposition
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Chapter 1. Introduction

Figure 1.4 – Specific energy loss as a function of the relativistic momentum for different ions
[7].

than a proton beam for the same depth of penetration (Fig. 1.3), and a 100 MeV proton beam

has a more localized energy deposition than a 200 MeV one (Fig. 1.5 left). The dose associated

with heavier ions is characterized by a tail that extends after the Bragg peak, which is caused

by the fragmentation of the incoming hadrons. These projectile fragmentation products have

approximately the same velocity of the ion [5] and contribute to the deposition curve with an

unwanted un-localized dose.

The Bragg peak is typically too narrow to fully irradiate longitudinally an average tumour.

In this case, a superposition of many Bragg peak of different energies creates a so-called

spread-out Bragg peak (SOPB), whose result is a constant dose on a given range (Fig. 1.5 right).

Different techniques are used to deliver the correct longitudinal dose, and these are discussed

in Section 1.2. Indeed, one of the advantages of linacs for hadron therapy lies in the dose

distribution that they can rapidly produce over other accelerator technologies.

The highly localized dose of hadrons can be sometimes unwanted, since to an error in the dose

delivery system may correspond a relatively higher damage to sensitive tissues surrounding

the tumour. A recent study [8] suggested that a too precise Bragg peak is too risky, and not

beneficial. If the tumour is close to organs at risk (OAR), the range uncertainty, together with a

too precise dose localization, could eventually be harmful, though methods for controlling

this effect have been developed.

A final remark helps clarifying the difference between light ions. Heavier ions need, in general,

a greater energy per unit mass to reach the same range. As noted above, Eq. 1.3 implies that
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1.1. Physics of hadron therapy

Figure 1.5 – Dose deposition of C 6+ beam at different initial energies (top, courtesy of GSI)
and SOBP example (bottom) [7].
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for a given range the energy per unit mass is proportional to f = z1.1/A0.55. For protons and

helium f is equal to 1.00, for carbon ions to 1.85 and for oxygen ions to 2.15. Since protons

and helium ions have a 32 cm water range for W = 230 MeV/u, to reach the same depth with

carbon (A=12) and oxygen (A=16) ions one needs about 430 MeV/u and 500 MeV/u respectively.

These figures multiplied by A/z give the overall accelerating voltages that the particles have to

experience: protons: 230 MV; helium ions: 460 MV; carbon ions: 860 MV; oxygen ions: 1000

MV. In particular, for carbon ions the overall voltage is 3.7 times larger than for protons. Note

that, for this range, the ratio of the carbon ion and proton momenta is 2.85, smaller than 3.7.

As a result, carbon ions need to be accelerated to about four times the energy per unit mass

of protons to have the same penetration range. From this fundamental physical difference

originate the different design choices adopted in Chapter 3 and 4.

Interestingly, and worth commenting, a fully stripped He ion needs the same energy per unit

mass of a proton to have the same penetration range. So a He ion facility has a factor two

difference with respect to a proton one, and not a factor four, or more exactly 3.7, as in the

case of carbon ions. This is one of the reason why He are attracting the research interest of

many laboratories. A preliminary design of a therapy He linac, though beyond the goal of this

thesis, was studied and is presented in Section 4.4.

1.1.2 Lateral dose profile

While travelling through a medium, both photons and charged particles pencil beams ex-

perience an increase in the transverse size, causing what is called lateral penumbra. Both

the longitudinal and the lateral beam profile concur in determining the dose distribution in

matter, so it is important to highlight the key aspects of this phenomenon.

For photons, which are an indirect ionizing radiation, the beam lateral spreading is due to

Compton scattering, and it does not change the energy of the un-scattered photons. For

charged particles, which are directly ionizing radiations, the energy decreases continuously

due to ionizations and excitations of the encountered atoms and molecules, while the lateral

spread of the pencil beam increases due to the Multiple Coulomb Scattering (MCS), which is

due to collisions with the atomic nuclei and does not change the particle energy. The physics

behind [5] is much more complex and would require a dedicated dissertation.

The penumbra is lower for higher atomic numbers, thus representing an advantage of carbon

ions over protons. Also the penumbra of a penetrating pencil beam is lower at higher energies,

meaning that in the initial trajectory the beam remains more collimated than in the final part.

This is the fundamental of the High Energy Proton Therapy (HEPT) [7], and the rationale of

proton imaging [9] [10].

As shown in Fig. 1.6, the Full Width Half Maximum (FWHM) decreases with the mass number.

The rule of the thumb is that, for a zero width incoming beam, the FWHM decreases as 1/
�

m,

where m is the ion mass. The Montecarlo simulation data of Fig. 1.6 are consistent with
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1.1. Physics of hadron therapy

this rule: for a 15 cm range FWHM = 10, 5.0, 3.0 mm for protons, helium ions and carbon

ions respectively. The longitudinal FWHM of the Bragg peak has a similar behaviour. For a

"conformal" dose distribution carbon ions and helium ions are thus to be preferred to protons.

Since helium accelerators are less expensive than carbon ion accelerators (see Section 4.5),

helium ion beam could become an important type of treatment.

1.1.3 Radiobiology

The previous Chapter discussed briefly the physics of hadron therapy. However, the same

dose delivered to a tissue can cause different damages, or in other words, have a different

radio-biological effectiveness.

The main biological effect of ionizing radiation in living cells is a damage to the DNA. This is

caused either by direct ionization of the DNA molecule, or by indirect effects. As discussed

later, these latter are predominant for protons, but not for carbon ions, and consist in the

formation of reactive oxygen species (ROS) from the interaction of the ionizing radiation with

the water present in the cell.

A variety of damages can occur to the DNA, as summarized in Fig. 1.7 left. After the damage

has occurred, the cell can either repair, mis-repair, or die (apoptosis). The mis-repair itself can

lead to the cell death (lethal mutation) or to a DNA mutation, that is propagated in the cell

daughters.

The direct tumour cell death is the goal of hadron therapy, as well as radiotherapy, and it is

accomplished primarily by double-strand breaks (DBSs) of the DNA. Though also in this case

cells can repair, this is not as likely as for the single-strand breaks (SSBs). There is evidence [11]

that the likelihood of cell death is correlated to the number of incorrectly repaired damages

caused by pairs of DSBs not well isolated from each other.

The response of cells as a function of the dose is referred as survival curve (Fig. 1.7 right). A

simplified, though widely adopted, model for cell survival is the linear-quadratic one:

S = e−αD−βD2
, (1.4)

where S is the surviving fraction, D is the dose, and α and β are the curve parameters that

defines the radio-sensitivity of tissues. The logarithm of the survival fraction is thus not linear

with the dose.

Most of the tumour cells are more sensitive to ionizing radiation that healthy tissue cells.

Though more complex, the reason is mainly reducible to the different speed of division:

cancerous cells, proliferating more rapidly that normal ones, are more sensitive to a given

dose. Thus a steeper curve in Fig. 1.7 right, i.e. a high α
β ratio, characterizes tumour cells.

9
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Figure 1.6 – 2D dose profile of proton (top), helium (middle), and carbon ion (bottom) beams,
for the same penetration depth in water. One can observe the different kinetic energy needed
to reach the same longitudinal position of the Bragg peak, together with the different lateral
spreading and the dose deposited by the tails. Images courtesy of Caterina Cuccagna, TERA
Foundation.
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1.1. Physics of hadron therapy

Figure 1.7 – Sketch of DNA damages produced by ionizing radiation (left) [12] and example of
cell survival curve (right) [13].

Radiotherapy goal of destroying the tumour cells is inherently associated to side-effects to

surrounding tissues. A way to reduce the dose to healthy tissues, thus preserving the same

overall effect on the tumour, is fractioning (Fig. 1.8). Taking advantage of the different slope of

survival fraction, if the same overall dose is divided in many (usually up to forty) fractions, the

same effect on the tumour can be reached with lower side effects on the surrounding tissues.

To quantify the radio-biology effect of radiation, two parameter are useful. The density of

energy deposition along the radiation track is expressed by the Linear Energy Transfer (LET),

and given by the Bethe-Block formula (see Eq. 1.2).

A second parameter, the Relative Biological Effectiveness (RBE), measures the effects of the

irradiation. It is defined as the ratio between the absorbed dose of a reference radiation, which

is usually a Co60 2 MeV gamma photons, and that of the test radiation required to produce the

same biological effect:

RBE = Dphoton

D
|i soe f f ect . (1.5)

For example, a RBE10 indicates the RBE for a 10% survival of the cells. The higher the RBE of a

given radiation, the higher its radio-biological effectiveness.

The RBE depends on many parameters, as discussed in [5], and all the data shows a remarkable

variance [14]. The most important parameter is the LET. It is useful to discuss the dependencies

between these two quantities. RBE is low for low LET (ionization not dense enough, multiple

events are needed to kill the cell) and very high LET. This last result, that may appear counter-

intuitive, is due to the so-called overkilling effect: the dose delivered in the tissue is too high

and does not produce any more harm, so there is a "waste" of dose.
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Figure 1.8 – Fractioning principle: comparison between single fraction effect and 4 fractions
case. Healthy tissue is black, tumour tissue in blue/purple [7].

Given the relatively lo values of LET in most of the range, a constant RBE value equal to 1.1 for

protons is considered by the scientific community [5].

In the last centimetres, high values of RBE are reached with ions heavier than protons, like

carbon ions, making them suitable for treatment of radio-resistant tumours. Though, as

previously discussed, carbon ions have a more concentrated dose deposition curve than

protons, the ultimate rationale of their adoption over protons lies in their greater RBE (Fig.

1.9).

Helium ions are densely ionizing only in the last millimetres of their range and their overall

biological and clinical effects are more similar to the ones of protons than of carbon ions.

However, as discussed above, the intrinsic diameter of a Bragg spot is twice smaller than the

one of protons. For these reasons in the last years many radiation oncologists have been

advocating the use of helium ions for radio sensitive tumours located closely to organs at risk,

which cannot be irradiated without unwanted negative long term effects on the health of the

patient.

It has to be remarked that the use of carbon ions for radio-resistant tumours has been and is

criticized by some radiotherapist because, in their opinion, the high values of RBE of charged

particles over photons, represents at the present stage a drawback. The uncertainty in RBE

can in fact lead to not correct biological dose distributions. Carbon ion therapy has models

to account for the variable RBE, and in particular two models have been developed so far, by

NIRS in Japan, and GSI in Germany.

For these reasons, any research that better defines the RBE of charged ions represents a major

step forward for hadron therapy. In this regard, a recent study proved clinically a variable RBE

for protons [16].
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Figure 1.9 – RBE compared with LET from published experiments on in vitro cell lines [15].

1.1.4 Summary on hadron therapy physics

The physical advantage in the dose distribution of hadron therapy over radiotherapy makes it

a very suitable technology when tumours are closed to OAR, or when treating children and

more generally patients more sensible to side-effects of radiation. Nowadays, a number of

tumours in adults are recommended to be treated with hadron therapy, together with all the

paediatric tumours [5].

As discussed, the biological effect of hadron therapy is similar to conventional X-ray and

electron therapy when using proton beams, and in practically all the range, also helium ions.

Instead it increases by a factor 3-4 in the last centimeters when using heavier particles like

carbon ions. This is the reason why radio-resistant tumours are targeted with these last

particles.

In the following Section, the use of linear accelerators for hadrontherapy is discussed.

1.2 Rationale of linear accelerators for hadron therapy

Cyclotrons, for protons, and synchrotrons, for carbon ions and protons, are the two accelerator

types used in state of art hadron therapy facilities. Cyclotrons in particular proved to be a

very suitable technology for proton therapy facilities, which require beam energies up to

250 MeV, and so do not encounter the ultra relativistic limitations of cyclotron technology.

Moreover, the relatively low beam rigidity permits the use of magnets of reasonable size and
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power consumption. For the same reasons, carbon ion facilities are all based on synchrotron

accelerators.

Present available cyclotrons for proton therapy deliver beams with fixed energy in the range

230-250 MeV. As a consequence, to scan longitudinally the tumour, one needs to reduce the

particles energy, by degrading the beam with passive absorbers. This comes at the cost of

emittance increase and energy straggling (see Section 3.2 for a detailed discussion), with

repercussions on the beam line design and a lower beam quality. In addition, there is a

significant activation of the area, since the beam intensity is reduced by up to 3 orders of

magnitude [17]. Lastly, if the beam degradation occurs close to the patient, secondary particles

may not be fully clean by the beam line, and cause unwanted background dose. Current

cyclotrons for proton therapy are either normal conducting and super conducting, and usually

isochronous, so with a continuous extracted beam. Few more recent models, as the Mevion

S250, are superconducting synchrocyclotrons, with a lower intensity, pulsed beam. These

developments have still a fixed extraction energy, but very interesting repetition rate, of 500

Hz or even 1 kHz in the case of IBA S2C2. The advantage of an high repetition rate is discussed

in Section 1.2.1. The research towards proton cyclotrons capable of varying the energy in the

70-230 MeV range focuses on synchrocyclotrons [18] and movable stripper foil [17]. A notable

research direction is represented by superconducting cyclotrons for carbon ion therapy, as the

IBA C400 project [19], which however did not reach the commercialization stage.

Synchrotrons can vary the extraction energy, but their main drawback lies in the extraction

time, of the order of few seconds. The beam currents are typically lower than the ones

achieved by cyclotrons, particularly isochronous ones, but are still sufficient for hadron

therapy purposes. The losses are lower than in a cyclotron with passive degraders, and so is

the activation of the area and the shielding required. The research in this field focuses mostly

on reducing the footprint and increasing the extraction rate [20].

In this very competitive and fast growing market (see Fig. 1.1), a linac solution could seem un-

reasonable. Nevertheless, as discussed both cyclotrons and synchrotrons present drawbacks,

and these can be overcome by linear accelerators.

The key advantage of linacs lies in the possibility to actively change the output beam energy,

as proposed by TERA Foundation and discussed in [21]. This can be accomplished by varying

electronically the RF amplitude and phase in the last active accelerating structure at a repeti-

tion rate typically of 100 to 200 Hz, though higher values can be considered. At the same time,

the source intensity can be varies at the same repetition rate, so to achieve an energy-intensity

variation from pulse to pulse (Fig. 1.10). These features translate into a quick treatment, with

no activation and no scattering of the beam. In addition, this feature is ideal for treating

moving organs with pencil beam scanning and multi-painting of the tumour volume. In

the following, the different dose delivery systems will be briefly discussed to highlight the

advantages of linac solutions.
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Figure 1.10 – Theoretical time scale with linacs active energy variation [7].

1.2.1 Dose delivery systems for hadron therapy

Currently, more than 90% [5] of the patients have been treated with a passive modulation of

the hadron beam, in order to create the SOBP illustrated in Fig. 1.5 right. A passive modulation

dose delivery system is required to cover the tumour volume when the beam is continuous. As

shown in Fig. 1.11 top, the beam is first scattered to increase its transverse dimension, then

collimated and shaped to the shape of the tumour, and finally filtered to create a SOBP. As

previously discussed, this methods delivers unwanted dose to the patient. A pulsed, variable

energy beam can instead adopt the so-called pencil beam scanning (Fig. 1.11 bottom). In this

method, each pulse is deliver to a well defined sub-volume of the tumour, called voxel. The

transverse position is adjusted by means of two scanning magnets, while the longitudinal one

by varying the beam pulse energy.

Pencil beam scanning is now offered by all state-of-art technologies for both proton and

carbon ion therapy, and is emerging as the main dose delivery modality. However, it can

become problematic if the beam scanning is too slow:

• tumours close to moving organs, for instance the lungs, can be mis-targeted, and the

dose delivered to surrounding tissues;

• the uncertainty in the beam stopping power, previously discussed, can be harmful when

the beam is too precisely directed towards a single volume;

• the time needed to treat a patient can remarkably increase, with consequences on the

patient comfort and on the economical business plan of the facility.

For these reasons, pencil beam scanning only manifests its full benefits when associated with

a high repetition rate, typical of linacs and modern synchrocyclotrons. However, while these

latest have a slow variation of the beam energy, since they still rely on a mechanical energy

degrading system, linacs have a 3D fast scanning feature.
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Figure 1.11 – Illustration of passive and active beam delivery systems [Image from Toshiba,
Japan].

As a final remark, with pencil beam scanning each tumour voxel can be irradiated once (single-

painting), or multiple times (multi-painting). This last technique, as discussed by TERA

Foundation , is easily achievable with linacs in a time comparable with current single-painting

techniques, and permits to correct possible dose errors during the same treatment, limiting it

to less than 3% in case of up to 12 visits per voxels [21].

1.2.2 Advantages of linacs for hadron therapy other than dose delivery system

As discussed, the main rationale of linacs for hadron therapy is their high repetition rate with

active energy variation, that allows quick multi-painting pencil beam scanning and treatment

of moving tumours close to OAR, with a superior beam quality over cyclotrons.

Other two advantages, specifically over carbon ion synchrotrons, are worth mentioning: the

lower power consumption and the higher final beam current.

In a linac the beam is off for the majority of the time. Typically the duty factor (DF), i.e. the

product of the repetition rate times the RF pulse width, is around 0.05%. The DF is a major

design parameter from a technical point of view, as it affects average power consumption,

compactness of a facility, and acceleration efficiency, amongst the others. From the medical

point of view, one wants the highest possible repetition rate, together with a pulse width large

enough to deliver all the dose required for each pulse.
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At the ion source level, one could either choose a continuous source, as an ECRIS (Electron

Cyclotron Resonance Ion Source), and chop the beam, or a pulsed source, as an EBIS (Electron

Beam Ion Source). A recent CERN project is very promising in this regard, with a design goal

of 108 fully stripped C 6+ over a 5 μs long spill and with 180 Hz repetition rate [22]. Associated

with an overall transmission of 30% and assuming to double to repetition rate to 360 Hz with

two sources (see Chapter 4), this would guarantee a final beam intensity of 6.5∗1011C 6+ per

second, so about two order of magnitude larger than what a synchrotron can deliver [23].

At the same time, the power consumption is estimated in few hundreds of kW, thus remarkably

lower than a synchrotron solution (see Section 4.1).

1.3 The starting point

This thesis is the last of many research works on the development of linear accelerators for

hadron therapy. Hereafter, a selected list of the most important works relevant to this thesis is

presented.

Linacs for proton therapy were first proposed in 1991 [24]. This solution was taken up by

TERA Foundation, which in 1994-95 designed in detail a 230 MeV linac for proton therapy [25]

and, in collaboration with CERN and INFN, first proved the feasibility of a 3 GHz accelerating

structure for protons [26] [27]. Since 2001 the activity of TERA Foundation mostly focused on

the so-called cyclinac concept. In this solution a commercial cyclotron accelerates particles

up to tens of MeV, which are then boosted by a linac up to the energies of medical interest, i.e.

70 to 230 MeV in case of protons.

In particular, TERA proposed a compact "single-room facility" proton linac called TULIP, based

on the cyclinac concept, in 2013 [28], followed by a more detailed study in [7]. Interestingly,

TULIP was first proposed a few months earlier than the first "single-room facility", namely the

Mevion S250, treated its first patient, in December 2013. TERA also worked on a carbon ion

cyclinac, presented in [29] and [30].

Following the design of [25], the ENEA group of Frascati, Italy, worked on a all-linac solution,

with a Radio Frequency Quadrupole (RFQ) and a Drift Tube Linac (DTL) system covering the

particle acceleration up to 40-70 MeV [31], to be followed by the Coupled Cavity Linac (CCL)

designed by TERA [26] [27]. All these activities have been described in the review paper of Ref.

[21].

Arguably, one of the most recent breakthrough in the field is represented by the design and

construction of a 750 MHz RFQ by CERN [32]. This solution was specifically designed to inject

particles at 5 MeV into a 3 GHz DTL structure as the one proposed by ENEA. Based on these

developments, A.D.A.M [33], a spin-off company of CERN, is building on CERN premises a

commercial all-linac machine for proton therapy, based on a RFQ-DTL-CCL machine [26]

[27].
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A parallel research effort was carried out by INFN Naples, called ACLIP [34]. Here a 3 GHz

proton accelerating structure similar to the first presented in [26] [27], but at a lower geometric

beta, was built and tested. This project later on was taken up by the Italian private company

ITEL, which is now developing a all-linac solution, called EHRA, in collaboration with INFN

[35].

Concerning carbon ions, in recent years a collaboration between Argonne National Laboratory

and the private company RadiaBeam is working on a all-linac solution [36], adopting the

TW structure designed and presented in this thesis (see Section 2.4.1). The RF methodology

followed in the design of the same structure raised the interest of FERMI (Trieste, Italy) FEL,

for the replacement of the S-band accelerating structure there present [37].

From 2013, TERA launched a high gradient research campaign, in collaboration with the

CLIC study at CERN, to investigate the high gradient limit of S-Band accelerating structures

[38]. Two high gradient single cell tests were performed, for a C-band cell [30] and for an

S-band one [7]. As a follow up results of these tests, the high gradient backward travelling wave

accelerating structure for β= 0.38 presented in Section 2.4.1 was designed built and tested.

This thesis aims at closing the circle by proposing two hadron therapy linac designs. A high

gradient proton linac, that ideally concludes the research activity started in [7], and a high-

efficiency carbon ion linac, which follows [29] [30]. In both cases, a all-linac configuration was

studied, instead of the cyclinac solutions previously considered. Advantages and disadvantages

of an all-linac vs cyclinac solution are discussed in Section 1.3.1.

Given the number of references that can be consulted, the introductory part on the theory

of linear accelerators has been on purpose skipped. Instead, a theoretical discussion will be

presented where this is required for the proper understanding of the work accomplished.

1.3.1 Comparison between cyclinac and all-linac concepts

As discussed, in recent years research works and private companies focused their effort on

hadron therapy linac on all-linac solutions, but a remarkable research effort exploited the

cyclinac solution. This thesis studied two all-linac solutions, for proton and carbon ion

therapy. Hereafter the rationale of the two proposals is discussed, though some more technical

arguments are presented in more detail in the following Chapters.

The cyclinac solution strength comes from the idea of accelerating up to tens of MeV protons

in a commercial cyclotron. This has a number of advantages over linear accelerators, mainly:

• lower complexity, being low beta accelerators often the most critical part of the linac

chain;

• smaller footprint.
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However, cyclotrons are not technically suited to inject particles in a linac. The transverse

emittance of cyclotron beam is too large to fit into the linacs acceptance, at least the one

proposed in [28]. Moreover, and most importantly, the time structure of the beam in the two

machines is inherently different.

As far as the transverse emittances are concerned, the available external sources are very

intense and a 25-30 MeV commercial proton cyclotron accelerates typically 500 μA so that the

output beam can be locally collimated to fit the transverse acceptance of the linac.

The linac longitudinal acceptance poses a more serious problem because a 3 GHz linac with

a synchronous phase of -20°, a classic value, has a phase acceptance of about 0.06 ns every

RF pulse, which has a 0.3 ns period. On this very short time scale, the cyclotron beam is

continuous and, as a result, 10% of the beam is accelerated and 90% is outside the longitudinal

bucket of the linac.

On a larger time scale, to minimize the losses, the beam injected in the cyclotron is made of 5

μs pulses either by chopping the output of the continuous electron cyclotron resonance (ECR)

source or, preferably, by using an intrinsically pulsed Electron Beam Ion Source (EBIS) [39].

The injected proton pulse is about two times longer than 2.5 μs of the accelerated pulse. As

a summary, in the longitudinal phase space, only 5% of the beam is accelerated while 95%

is lost. The kinetic energy of the lost particles depends on the cyclotron output energy and

the specificity of the linac design. For the case study of a 24 MeV output cyclotron beam (see

Section 3.2), losses were present up to 70 MeV proton energies.

Another disadvantage of the cyclinac solution is that the beam dynamics, being heavily in-

fluenced by the longitudinal losses, is unstable and the beam experiences emittance growth.

These aspects are discussed in more details in Section 3.2.

A all-linac solution instead can reach 100 % transmission with a clean beam dynamics, and

thus overcome the above mentioned issues. Linear accelerator chains are used in many labo-

ratories around the world. However, hadron therapy linacs differ from every other application,

being characterized by low current and high repetition rate pulsed beam. In addition, the

highest possible accelerating gradient is desirable, in order to reduce the overall length of

accelerators to be placed in hospital centres. These set of parameters, that can be summarized

in small aperture radii and high gradients, are unique amongst linear accelerators, and thus

call for specific designs driven to higher RF frequencies.

A sketch of the TULIP all-linac solution studied is presented in Fig. 1.12, and compared with

the previously considered cyclinac design. Similarly, the two CABOTO proposals are illustrated

in Fig. 1.13.

19



Chapter 1. Introduction

Figure 1.12 – Sketch of TULIP all-linac (top) and cyclinac solution (bottom). Courtesy of M.
Vaziri - TERA Foundation
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1.3. The starting point

Figure 1.13 – Sketch of CABOTO all-linac (top) and cyclinac solution (bottom). Courtesy of M.
Vaziri and M. Garlasche’ - TERA Foundation
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2 RF design of accelerating structures
for TULIP and CABOTO

This thesis discusses two fairly different designs of linear accelerators for medical applications,

a high-gradient proton linac - TULIP, and a high-efficiency carbon ion linac - CABOTO.

Nevertheless, the two designs share many technologies. In particular, the different accelerating

cavities that form the linac are similar in the two cases. As a consequence, it has been preferred

to discuss the RF design of the accelerating cavities in a this chapter, and to leave the discussion

specific to each design to separate ones.

Hereafter, the RF design of four different accelerating cavities will be presented:

• a 750 MHz high-efficiency (HE) IH cavity;

• a 3 GHz HE DTL cavity;

• a 3 GHz high-gradient (HG) BTW cavity;

• a 3 GHz HG CCL cavity

• a 3 GHz HE CCL cavity.

The status of the four cavities is different: while the 3 GHz HG BTW cavity was fully 3D design,

built and tested (see Chapter 5), the other structures are at an earlier stage. One could divide

the design of a normal conducting accelerating structure in six steps:

• RF design and optimization of regular cells (RC);

• RF power coupling between RC (or field stability);

• end-cells design;

• power couplers and matching with waveguides;

• sensitivity and tuning analysis;
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Chapter 2. RF design of accelerating structures for TULIP and CABOTO

Table 2.1 – Design progress status of the RF cavities studied.

Cavity Regular cells Cells coupling End-cells Power couplers Sensitivity and tuning Mechanical design
750 MHz HE IH Yes No Preliminary No No Preliminary
3 GHz HE DTL Yes No No No No No
3 GHz HG BTW Yes Yes Yes Yes Yes Yes
3 GHz HG CCL Yes Yes Yes Yes No Preliminary
3 GHz HE CCL Yes No No No No No

Table 2.2 – Main characteristic of the RF cavities studied.

Cavity Studied energy range [MeV/u] Acc. Gradient [MV/m] Project Previously studied1

750 MHz HE IH 2.5 to 10 Below 10 TULIP and CABOTO No
3 GHz HE DTL 5 to 70 Below 20 TULIP and CABOTO Yes [31]
3 GHz HG BTW 70 to 230 50 TULIP Started [7]
3 GHz HG CCL 70 to 230 50 TULIP Similar design [7]
3 GHz HE CCL 100 to 430 30 CABOTO Multiple designs

• final mechanical design.

Usually thermal analysis start with the first step, and are eventually verified in the final me-

chanical design on the whole structure. With respect to the steps just listed, the status of the

cavities studied in this thesis in summarized in Table 2.1.

Table 2.2 helps the reader in understanding the basic features of the different structures under

consideration.

2.1 Main codes and assumptions used

Two ElectroMagnetic (EM) codes have been used in the RF design. For Standing Wave (SW)

cavities with cylindrical symmetry, the 2D code Poisson Superfish was used, developed by

the Los Alamos Accelerator Code Group [40]. Being a 2D code, Superfish can simulate only

cavities with cylindrical symmetry, and provides quick results. In this thesis, this code was

used in the preliminary optimization of the accelerating cells of SW cavities.

Since any asymmetries, such as dipole kicks, as well as travelling wave regimes cannot be

simulated with SUPERFISH, the main code used in this thesis is ANSYS HFSS [41]. HFSS is a

3D software that solve Maxwell’s equations in a geometry based on the finite element method

(FEM). The internal mesh is adapted until the simulations converge to the desired accuracy.

Two main solvers have been used:

• eigen mode, which calculates the eigenmode frequencies (or resonances) of a structure

and the fields at those resonant frequencies;

• driven modal, which calculates the modal-based S-parameters, expressed in terms of

the incident and reflected powers of waveguide modes.

1Here the type of design, high-gradient or high-efficiency, and the type of RF cavity, CCL rather than DTL for
instance, is considered. Not the exact energy ranges considered in this thesis.
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2.1. Main codes and assumptions used

Figure 2.1 – Field analysis of the 10 MeV/u IH RF cell (see Section 2.2) with the method
discusses and summarized in Eq. 2.1. E-field along the z axis (top left), integrating functions
cos(kz) and si n(kz) (top right), field as seen by the synchronous particle (bottom). Cell length
in m on the x axis, arbitrary units on the y axis.

In eigenmode the only predefined accelerating parameter set are the frequency and the Quality

factor (Q-factor) of the resonant modes. However, a field calculator tool allows to define

functions of interest in the design of a cavity, starting from the EM field distribution. Hereafter

the most important functions are discussed. able Transit time factor (TT)

The classic description of the TT that is found in most literally books [42]:

T T =
∫L/2
−L/2 E(0, z) · cos(ωt (z)+φ)d z∫L/2

L/2 E(0, z)d z
, (2.1)

is valid for SW cavities, and for TW cavities under very precise conditions. In Eq. 2.1 E(0, z) is

the complex magnitude of the electric field along the z-axis, ω is the angular frequency of the

cavity of length L, and φ is the phase of the field relative to the crest.

It is very common to assume that the particle velocity change in a RF cell is negligible. In this

case, one can integrate Eq. 2.1 in space by substituting ωt ≈ωz/v = 2πz/βc = kz, where k is

the wave number. This assumption has been done in the present thesis.

In SW RF cells, HFSS gives to users the complex number of the EM field distribution with zero

imaginary component. In other words, one can straightforwardly apply Eq. 2.1 with φ= 0 2.

This methodology is presented in Fig. 2.1 for a 10 MeV/u IH RF cell, thus a SW cavity.

2In case the electric field is a 90 deg translated symmetric function, one shall not forget to change cos(ωt )→
cos(ωt +90)= si n(ωt )
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Chapter 2. RF design of accelerating structures for TULIP and CABOTO

Figure 2.2 – Field analysis of the 10 MeV/u IH RF cell (see Section 2.2) with the method
discusses and summarized in Eq. 2.2. Cell length in m on the x axis, arbitrary units on the y
axis.

In case of TW RF cells, one could still work with the complex magnitude E (0, z), but it is much

more convenient, when one has a code that gives the real and the imaginary component of a

field, to work with the complex number E(z). In this case the phase information is hidden in

the complex number, so it is possible to simply rotates the fields by ωt = kz, and apply the

more general formulation:

T T =
∣∣∫E(z)e± j kz d z

∣∣∣∣∫E(z)d z
∣∣ (2.2)

Eq. 2.2 works for both TW (see Fig. 2.3), with a positive exponential in case of backward

travelling waves, and SW cavities (see Fig. 2.2), independently on the z axis origin chosen, thus

is a much more convenient choice to implement in a field calculator as the HFSS one. In case

of SW cavities it does not matter the sign of the exponential. With some arithmetic stretching

one can easily find the trigonometric formulation proposed in Fig. 2.2 and 2.3. Note that in

Fig. 2.3 only the field decomposition at the bottom left is correct, being the cavity analysed a

backward TW one.

Stored energy per unit length We

We = 2ε0

∫
V

E ·E∗ =Wh = 2μ0

∫
V

H ·H∗ (2.3)

One can define the stored energy per unit length We both from the E-field or the H-field, as

the scalar product of complex field by its complex conjugate.
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2.1. Main codes and assumptions used

Figure 2.3 – Field analysis of the 153 MeV/u BTW RF cell (see Section 2.4.1) with the method
discusses and summarized in Eq. 2.2. Cell length in m on the x axis, arbitrary units on the y
axis.

Power flowing through the cavity Pz

Pz =
∫

S
Re(Sz ), (2.4)

with S is the Poynting vector, and the integral is on the surfaces perpendicular to the z-axis.

Shunt impedance per unit length Z

The shunt impedance is defined as the ratio between the longitudinal voltage in a cavity and

the EM power dissipated on the cavity walls [42] [43], and it is usually defined per unit length:

Z = V 2
0

PL
. (2.5)

This the so-called linac definition. In some references there is a factor 2 difference, which is

the so-called circuit definition, but in this thesis Eq. 2.5 will be adopted. One usually works

with an effective shunt impedance Z T T , so considering the voltage seen by the synchronous

particle V0 ·T T . The average power loss P is obtainable from Eq. 2.3 and the Q factor, which is

calculated in HFSS from the cavity resonance.

The energy gain ΔW can be then expressed as:

ΔW =
�

Z T T ·P ·L (2.6)
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Chapter 2. RF design of accelerating structures for TULIP and CABOTO

where ZTT is the effective Shunt impedance of the cavity, P the dissipated peak power and L

the active length.

Modified Poynting vector Sc

Though discussed in [44], most of the RF work done in this thesis is based on the modified

Poynting vector BD theory. Thus, it is convenient to recall this quantity definition here:

Sc =Re{S̄}+ gc · Im{S̄}, (2.7)

where S̄ is the complex Poynting vector, S̄ = Ē × H̄ , and gc is a weighting factor which is only

weakly dependent on the geometrical parameters, and from measurements has been set to

1/6.

All the other accelerating parameters that will be presented in the following are straightfor-

wardly obtainable from the above defined quantities, and are presented in introductory books

of accelerator physics. They are thus not discussed here.

The thermo-structural analysis were performed by importing the HFSS™electromagnetic

field distribution to the thermal and structural packages of ANSYS™.

2.2 The high-efficiency 750 MHz IH accelerating structure

A 750 MHz IH cavity was chosen as first accelerating structure after the 750 MHz RFQ for both

TULIP and CABOTO. This choice was motivated by RF efficiency and beam dynamics consid-

erations. The latest will be discussed in Section 2.3.2, while hereafter the discussion focuses

on the RF design. This Section will first discuss a general optimization of low beta cavities,

highlighting in particular the difference between TE and TM operating modes. Secondly, the

750 MHz IH cavity studied will be presented in detail.

2.2.1 The choice of low beta section accelerators

The choice of the best accelerating structure for a given application is a cumbersome task.

To narrow the possibilities spectrum, it is helpful to fix some constraints. In particular, even

though subjective, it is of the author belief that the bore aperture and the operating frequency

are two interesting parameters to start with. The bore aperture radius decision comes from

beam dynamics considerations, but strongly affects the RF optimization. The scaling [42]:

Z T T ∝√
F r eq. (2.8)

is valid only under the assumption that the bore aperture scales, inversely, with the operating
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2.2. The high-efficiency 750 MHz IH accelerating structure

Figure 2.4 – Transverse section comparison between selected 5 MeV/u cells at 750 MHz. IH
(left), CH (middle) and DTL (right). Cutoff frequencies relative to the fundamental TE11
(bottom).

frequency.

For the same reasons, the cavity operating frequency is another key parameter to choose.

Ideally, one should design a cavity with the operating frequency function of the optimization

process. In real world, the RF power sources are limited and with discrete output frequencies,

and so it is necessary to choose amongst them.

Even if these two parameters are set, the RF designer is left with a not negligible number of

solutions to consider. In particular, one should evaluate the operating mode, TE or TM or

even TEM, together with the type of accelerating structures. For instance, let’s consider a 5

MeV/u regular RF cell. In Fig. 2.4, the dimension of gap optimized cells working at 750 MHz,

but with different operating modes, are reported. The DTL operates in TM010 mode, while IH

cavities in TE111 mode, and CH cavities in TE211 mode. The cut-off frequency of the different

modes relates to the fundamental TE11 as shown in Fig. 2.4 bottom. However, as discussed in

[45], being characterized by a very high capacitive load, the insertion of drift tubes in TE mode

cavities reduce the operating frequency with respect to an empty cavity remarkably more than

in TM mode ones. This explains the transverse size difference between cells operating at the

same frequency and with the same geometric β.
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Chapter 2. RF design of accelerating structures for TULIP and CABOTO

Figure 2.5 – ZTT as a function of the geometric βs for the optimized low β cavities considered.

This short discussion hopefully helped in clarifying some of the challenges of a proper RF

cavity design. Hereafter, the results of the optimization performed are discussed.

The 750 MHz CERN RFQ [32] [46] was chosen as the starting point of TULIP. As far as CABOTO

is concerned, it is assumed that a 750 MHz 0.5 q/m RFQ accelerating carbon ions up to 2.5

MeV/u can be designed based on the same approach.

It has been thus investigated the best solution to be placed afterwards, in the 5 to 70 MeV/u

range. The RF design of this section was mostly driven by the optimization of the ZTT, together

with machinability and thermal constraints. Break-Down limitations are not an issue here,

since the accelerating gradient is relatively low in this part.

Different type of cavities, both TE and TM modes, were studied, at two operating frequencies,

750 MHz, as the RFQ, and 3 GHz, as the final linac sections of both TULIP and CABOTO.

The intermediate frequency of 1.5 GHz was not considered as it has been chosen to have

a single frequency jump in the machine. First, a simplified geometry was considered, with

constant drift tube thickness and stems radius independently on the geometric β. All the

structures were studied by optimizing the cell gap at different geometric βs, from 5 to 70

MeV/u. The bore aperture radius chosen was 2.5 mm, considering the RFQ output emittances

and preliminary beam dynamic considerations. The result of this study is shown in Fig. 2.5.

The very high values of ZTT found are not common in literature, but should not surprise.

Indeed, the very small bore aperture, together with the high operating frequencies, represent

an uniqum amongst linac designs, and are the reason of these results. The dark red curve in
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2.2. The high-efficiency 750 MHz IH accelerating structure

Figure 2.6 – Q-factor (left) and R’/Q (right) as a function of the geometric βs for the low β

cavities considered.

Figure 2.7 – Cell gap (left) and radius (right) as a function of the geometric βs for the low β

cavities considered. In the cell radius graph, the 750 MHz IH design is not reported as the
cavity does not have anymore a round outer wall (see Section 2.2.3)

Fig. 2.5 refers to the optimize IH cavity studied, presented in detail in section 2.2. Section 2.2.2

discusses why a careful optimization of TE cavities can remarkably increase their efficiency,

while instead TM mode cavity have a more straightforward optimization process.

The results of Fig. 2.5 can be further understood by looking at the Quality Factor values,

presented in Fig. 2.6 left. One can notice that TM mode cavities have a significantly higher

Q value. However, they pay a quite high price in terms of concentration of electric field in

the nose region and Transit-Time (TT) factor, being 2π mode cavities. This results in a lower

overall efficiency (Fig. 2.6 right). This difference gets narrower for higher geometric βs, where

the TE cavities lose their advantage.

The accelerating parameters results discussed can be also understood by observing the cell

lengths and radii as a function of the βs for the different cavities (Fig. 2.7).

Promising cavities at 5 MeV/u are the 750 MHz IH and the 750 MHz CH. The 3 GHz DTL cavity,

which is the most efficient choice for higher energies, is too small at 5 MeV/u, and ultimately
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not as efficient. In Fig. 2.8 one can notice the differences in terms of cell length and diameter

of the three solutions.

At 70 MeV/u, the 3 GHz DTL solution reveals to be the better choice. For visual comparison,

this cavity dimensions are shown in Fig. 2.9.

The observation of Fig. 2.5 would led towards the conclusion that an IH cavity is favourable

up to 15 MeV, and a DTL from 15 MeV onwards, even without considering an optimized IH

design. This conclusion is based on a physical argument, and it will always remain unchanged.

However, one of the goal of this work is to present a cost estimation of the facilities. Preliminary

discussions [47] quantifies in one order of magnitude the cost per peak power of a 750 MHz

IOT over a 3 GHz Klystron-modulator.

This difference is largely caused by the high demand of this latter technology working at 3 GHz,

caused by the market of X-ray electron linacs. However, even though it is authors belief that

this price difference will decrease in the future as a consequence of an higher demand of 750

MHz RF power sources, at the present stage the crossing point between a 750 IH solution and

a 3 GHz DTL one has been found at 10 MeV/u. As a consequence, the detailed RF optimization

of the 750 MHz IH cavity stops at this energy. Prior to presenting that, it is helpful to further

discuss the difference between TE and TM mode cavities.

2.2.2 RF optimization of TM and TE mode DTL cavities

In TM mode DTL cavities no current flows through the stems. These have only a structural

and heat dissipation purpose. Concerning ZTT, the thinner the drift tube and the drift stems,

the higher is this parameter. Indeed, if it were possible to build a structure with drift tubes

suspended in the void, this would be beneficial in terms of ZTT. TM mode cavities are constant

gradient structures. In the assumption of constant transit time factor, the voltage gain grows

with the geometric β of the structures, given the increased cell length. Low β TM modes

cavities usually works in 2 π mode, and this mode was considered in the present study. Some

designs considered the use of 4 π mode DTL cavities [48], to further extend their application

to low beta regimes.

TE mode DTL cavities have, on the other hand, current flowing through the stems. Here the

stems and the drift tubes have again a structural and heat dissipation role, but in addition

they have to force the electric field to be parallel to the z axis in the bore aperture region. TE

mode cavities usually work in either dipole magnetic mode - T E110, being called inter-digital

H (IH) - or as RFQs in quadrupole magnetic mode - T E210, being called cross-bar H (CH) . The

current flowing through the stems brings to Ohmic losses that can be minimized increasing

the size of drift tubes and stems. However, this reduces the electric field concentration near

the z axis. Ultimately, a detailed RF optimization is needed to find the optimum ZTT for a

given cell length, taking into consideration machinability and thermal dissipation constraints.

TE mode cavities work in π mode, so they are shorter than TM mode cavities for the same
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2.2. The high-efficiency 750 MHz IH accelerating structure

Figure 2.8 – Mechanical comparison between selected 5 MeV/u cells. Asymmetric view (top),
transverse (middle) and longitudinal section (bottom). 750 MHz IH (left), 750 MHz CH
(middle) and 3 GHz DTL (right)

Figure 2.9 – 3 GHz DTL structure at 70 MeV/u. Asymmetric view (left), transverse (middle) and
longitudinal section (right)
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Figure 2.10 – Transverse section of 5 MeV/u cells. CERN RFQ (left) and IH cavity (right).
Dimensions are in mm

operating frequency and geometric β. A more detailed discussion on the RF optimization of

TE cavities can be found in [45].

2.2.3 Regular cell design

From the preliminary RF optimization summarized in Fig. 2.5, it was already clear that the

750 MHz IH cavity was the best solution in the 5-20 MeV/u regime. The simplified geometry

considered in the first comparison was revised [49]. The main goal of the RF design has been

to maximize the ZTT, while sticking as much as possible to the cavity geometry considered for

the CERN 750 MHz RFQ, to take advantage of the experience gained in the construction of

TE cavities at this very high frequency. Indeed both RFQ and H-mode cavities are constant

voltage structures, with the only difference that a RFQ is a T E210 bunching machine, with

vanes, while a H mode cavity is a T E110 accelerator, and present drift tubes between cells. This

translates in overall comparable dimensions, as shown in Fig. 2.10. In particular the outer

cavity walls have a flat section which as large as the RFQ one, to facilitate power coupling and

tuning. Worth pointing out, this choice penalizes the Q factor: the ideal RF geometry would

be a round one.

Three energies were studied in detail: 2.5, 5 and 10 MeV/u. The 2.5 MeV/u regime was studied,

as previously pointed out, for the CABOTO design, since the 750 MHz 0.5 q/m RFQ under

consideration will likely deliver up to 2.5 MeV/u particles instead of 5 MeV/u.

A multidimensional optimization was carried out, considering gap, drift tube thickness, stem

radius, vane distance from z axis (stem height), as summarized in Fig. 2.11. Stem height refers

to the distance between the z-axis and the point where the stem starts to have a conical a

divergent angle α, which has been chosen equal to 14 deg, as in the 750 MHz RFQ. Parameters

A, B and C were used to reach the desired operating frequency, and they were changed main-

taining a flat surface large enough to allocate power couplers and tuning pins as in the RFQ.
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2.2. The high-efficiency 750 MHz IH accelerating structure

Figure 2.11 – Description of the geometric parameters of the IH cavity studied, and results of
the 5 MeV/u cell optimization (in bold).

This constraint met, it was tried to have an outer geometry as round as possible, ideal for Q

values maximization.

With respect to the 5 MeV/u RF cell, the optimization results are reported in Fig. 2.12. The

optimization was eased by the monotonic behaviour of the ZTT as a function of the drift

thickness. This last parameter is by far the most important one for the design considered. It

has been chosen to consider a value of 2 mm, though a smaller value would have increase

further the ZTT. However, both machining and maximum surface E-field (Fig. 2.12 left)

considerations led towards the above decision. A final design could dare considering a smaller

one, and maximize even further the ZTT (Fig. 2.12 right). For the other parameters, the ZTT

curve shows an optimum (green cells in Fig. 2.12 top table).

The result of this study is a remarkably improved ZTT over previously found values (see dark

red curve in Fig. 2.5). In particular, for the 5 MeV/u cell the ZTT goes from 280 MΩ/m to 410

MΩ/m, with an increase of almost 50%. It is interesting to notice that the improvements does

not come from a higher TT factor, since the gap is unchanged (Fig. 2.7), but from a increased

Q value (Fig. 2.6).

This is the first time these values have been obtained in literature. As previously pointed

out, this is due to the very small bore aperture considered, that allowed for a previously un-

reached high RF frequency. As discussed in Chapter 2.2.6, such aperture is sufficient to get full

transmission of the particles bunched by the RFQ, thanks to the low transverse emittances

and low current.
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Figure 2.12 – Results of the 5 MeV/u IH cavity optimization. The curve optimum is highlighted
in green, if it exists. In the bottom graphs the x-axis values refer to the upper table columns.

The main geometrical and accelerating parameters of the cavities studied are shown in

Fig. 2.13, together with a view of two cells joined together.

2.2.4 Thermal analysis

The 5 MeV/u RF cell was studied, considering a 10 MV/m accelerating gradient, and a 1e-3

duty cycle. Both these two numbers represent a conservative assumption, and in particular

for both TULIP and CABOTO a lower gradient is proposed (see Chapters 3 and 4).

A constant temperature of 22 °C was considered on the outer wall. This simplifies the thermal

study, but it is however a reasonable assumption given that the thermal gradient is driven

mainly by the thermal resistance of the stems. The simulated temperature difference is 1.2 °C,

which corresponds to a maximum temperature induced deformation of 0.5 μm (Fig. 2.14).

As a preliminary conclusion, the 750 MHz IH cavities do not need cooling channels in the

stems and drift tubes at the operating conditions considered for TULIP and CABOTO. It is

worth commenting that cooling channels would require, together with an higher machining

complexity, larger stems and drift tubes, resulting in a lower ZTT. This would turn out in an

higher thermal load per accelerating gradient, that could eventually required an higher cooling

flow. This structure is far from this detrimental loop. Instead, the 3 GHz DTL studied and

discussed in Section 2.3 is on the edge of it.

The CERN 750 MHz RFQ [32] was designed to reach a 5% duty cycle, in view of potential

applications of radioisotopes production. In this regard, a boost up to 10 MeV could be an

interesting further development of such application. The IH was then studied considering
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2.2. The high-efficiency 750 MHz IH accelerating structure

Figure 2.13 – Regular cell designs (left) and assembly view (right) of the IH 750 MHz cavity.
Dimensions in mm and R/Q in Ω/m.

Figure 2.14 – Thermal and structural analysis for the 5 MeV/u IH cell at 10 MV/m accelerating
gradient and 10-3 duty cycle.

a 5% duty cycle. In this case, a maximum temperature of 59.1 °C would be reached, with a

induced deformation of 16.0 μm. In conclusion, this structure would need modifications in

case a 5% duty cycle were needed.

2.2.5 End-cells design

End-cells are probably the most critical part in the design of an H-mode accelerating structure.

The transition from a TE mode to a TM one, due to end-cell walls, forces a strong rupture of the

symmetric chain, which can propagates along many regular cells and decrease significantly the

overall ZTT. Passing from TE to TM translates into the need of increasing the cavity dimension.

Here two different solutions were studied, the first proposed in [50], and the second [51].

For this geometry, the solution of [51] resulted the better choice, as it showed a lower ZTT

decrease with respect to regular cell design. As for the thermal study, only the 5 MeV/u cell

was considered.
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Figure 2.15 – E-field distribution in the IH end-cells with the solution proposed in [50] (bottom)
and the one proposed in [51] (top).

As shown in Fig. 2.15, one end cell plus two regular ones were considered. Indeed, it would

be more correct to refer to the whole geometry as an end cell, given the perturbation to the

symmetric chain that is introduced. As shown in Fig. 2.16 right, the perturbation propagates

till the inner RF cell. The matched frequency was adjusted by changing the outer volume of

the end cell, while its length and gap were adjusted to maximize the ZTT (Fig. 2.17). A gap

equal to approximately one half of the regular one has been found to maximize the ZTT, while

the cell length is slightly increased (Fig. 2.16). Interestingly, as discussed in Section 2.2.6, a

reduced gap in the end cell is helpful for the beam dynamics of the cavity. A maximum value

of 153.7 MΩ/m was found, that if compared with the ZTT of a regular 5 MeV/u cell of 410.2

MΩ/m represents a remarkable 63 % reduction.

Figure 2.16 – End-cells 2D optimization result (left) and E-field distribution along the z axis
(right) in arbitrary units, for the end-cell design of Fig. 2.15 top.
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2.2. The high-efficiency 750 MHz IH accelerating structure

Figure 2.17 – End-cells design with the parameters studied in the optimization (left) and
solution presented in [51]. Dimensions are not in scale.

The acceleration efficiency of an IH structure is thus dependent, amongst the other parameters,

on the number of RF cells. The higher, the less the end cell ZTT reduction affects the overall

efficiency. End cell should be studied also for the 2.5 and the 10 MeV/u RF cells, to obtain

a curve that can be interpolated and used depending on the linac design. If, on first order

approximation, we assume a constant 63 % reduction due to end cells, an IH structure would

have a ZTT reduction, with respect to the single RF cell value, ranging from 63% to zero, in

case of end-cells only and infinite long structure, respectively.

The end cells design here proposed is satisfactory from RF point of view, but it still requires a

mechanical and machinability study. The design adopted in [51] refers to a 200 MHz (and 5

mm bore aperture radius) design. The present design, being a 750 MHz cavity, is a bit more

challenging in that sense and thus require further mechanical studies (Fig. 2.17).

In this regard, a preliminary discussion was held with the responsible of the mechanical design

and assembly of the CERN 750 MHz RFQ. The design here proposed was judged feasible at

this first stage.

2.2.6 Dipole kicks and transversally focusing IH cavities

The understanding of the particles beam dynamics in the complete accelerating structure

influences the RF design of the IH cavity. For this reason, this topic is hereafter discussed.

Given the small bore aperture and thin drift tubes, a not negligible dipole kick component is

present in each RF cell, equal to almost 15 % of the longitudinal component. Indeed, when

the beam was tracked through the structure field map with the RF-Track code (see Appendix

A), it showed a final displacement of about 0.7 mm out of a 2.5 mm bore aperture. This was

clearly a not acceptable result, and it has been corrected in the following way.

In Fig. 2.18 top one can notice the x displacement of a single particle that enters the field

map with no initial displacement and divergence . The particle gets deflected in the first gap,

then drifts away in the drift tubes. In the second gap, the dipole kicks has opposite direction
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Figure 2.18 – Single particle tracking through the IH structure. Dipole kicks reduction (top)
and undulator solution (bottom)

but almost equal magnitude. In fact, a IH cavity is a constant voltage structure, so also the

transverse voltage is constant. This is true at first order approximation, given that the dipole

kick component increases with longer cell lengths. However, so does the beam rigidity. Overall,

the particle divergence gets approximately to zero in the second gap of the structure. Then

in the third gap it picks again a x divergence, which gets cancelled again in the forth gap.

So, travelling through cells, the particle shows a linear displacement with energy, and zero

integrated kick. Solutions proposed in previous works [51] were based on the modification

of the drift tube shape and relative position with respect to the x axis, to reduce the dipole

component. For the IH cavity under study, this presents the disadvantage of reducing the

ZTT with respect to the nominal solution. In addition, particles would still experience a linear

displacement, simply a smaller one (Fig. 2.18 top, red and green curve).

In this work a new solution is proposed. By halving the dipole kicks component in the first
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2.2. The high-efficiency 750 MHz IH accelerating structure

Figure 2.19 – E-field lines in the 5 MeV/u IH cell (left) and transverse voltage along the x axis
normalized to the accelerating voltage in the 5 MeV IH cavity (right).

accelerating gap, also the divergence picked up by the particles is halved. As a consequence,

the second gap, which has a "nominal" dipole kick, over-steers the beam, that has now a

negative divergence. This solution is shown graphically in Fig. 2.18 bottom, which shows the

single particle displacement along the IH structure field map with this solution adopted. The

trajectory of the particles recalls the one of an undulator. Eventually, the last gap must also

have a half dipole kick component, to zero the integrated kick. As pointed out in Section 2.2.5,

ZTT optimized end-cells have gap which is about one half a nominal one, thus resulting in an

approximately halved transverse voltage as well. This is very convenient, since it permits to

efficiently control the beam with minor modifications of the optimum geometry.

The small bore aperture, together with the thin drift tubes and large gaps of the IH cavity,

results in a non negligible dipole kick. Analytically, a dipole kick is represented by a real part of

transverse voltage:

�Vm = T T
∫Lcel l

0
(�E +�βc×�B)d z, (2.9)

which is constant across the bore diameter, as shown in Fig. 2.19. In Eq. 2.9 TT is the transit-

time factor. A dipole kick is typically negligible in DTL solutions, that have thick drift tubes

to allocate the PMQs, and shorter gap to cell length ratios given the 2π mode regime. In

contrast, the RF defocusing, which has 90 degree RF phase shift with respect to the dipole

kick component, is represented in Fig. 2.19 as an imaginary part of the voltage which is linear

along x-axis, the axis on which the stems are placed.
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Figure 2.20 – 5 MeV/u cavity with "racetrack" drift shape.

From the results of Fig. 2.19 one can notice that the transverse kick is equal to about 15 % of

the longitudinal kick per cell, for the 5 MeV/u cell. This contribution increases with the cell

length.

Given this very high value found, a study was carried out to investigate the possibility of

designing a transversally focusing IH cavity. Such a solution would allow to control both

the longitudinal and the transverse beam dynamics in the structure itself, without loosing

accelerating length as with a conventional quadrupole magnets focusing. The strategy adopted

was to modify the drift shape, from a cylindrical one to a "racetrack" one, as shown in Fig. 2.20.

Indeed the geometry considered is not anymore an IH cavity, since the stems are not 180deg

rotated. However, the shape of the drift tubes allows to get a quadrupole focusing in each cell,

like in a RFQ, and this is the purpose of the present study.

Analytically, a quadrupole focusing manifests with a linear real part of the voltage, similar to

the RF defocusing but out of phase as in an RFQ, as shown in Fig. 2.21. It is possible also to

notice a dipolar component along y, together with x, given by the 90deg rotated stems used in

this study (Fig. 2.20).

This solution was studied at 2.5, 5 and 10 MeV/u cells, varying the racetrack eccentricity and

cell gap. In this case in fact, the shorter the gap, the higher the RF quadrupolar focusing.

However, to obtain a strong enough RFQ focusing capable of controlling the particles, the

racetrack design has to be such that the ZTT more than halved, as shown in Fig. 2.22. In

conclusion, this solution was discarded.

From theoretical point of view, the reason why this solution does not work is hereafter ex-

plained.

The EM RF focusing is given, from the Lorentz equation, by:

�F = q(�E +�βcx�B), (2.10)
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2.2. The high-efficiency 750 MHz IH accelerating structure

Figure 2.21 – Transverse voltage along x axis normalized to the accelerating voltage in the 5
MeV/u RF cell with "racetrack" drift shape.

Figure 2.22 – Racetrack optimization results for the 5 MeV/u cell. Integrated focusing strength
[1/m], as defined in Eq. 2.16 (left), and correspondent ZTT decrease (right).
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so along x we have:

Fx = q(Ex +βc ·By + y ′βc ·Bx )≈ q(Ex +βc ·By ). (2.11)

If we compare this equation with the force impressed on particles by a quadrupole, assuming

no fringe fields, we have:

FxQU AD = q(βc ·ByQU AD )= q(βc ·G · r ). (2.12)

By integrating over one cell length and equalizing the two expression we finally get :

∫
Fx =

∫
FxQU AD → (2.13)

Vmx = T T
∫

(Ex +βc ·By )= (βc ·G · r ) ·LC (2.14)

where TT is the transit time factor of the RF cell, so Vmx is the average transverse voltage as

seen by the particle along the x-axis. Finally, we can relate the force acting on a particle by a

quadrupole gradient with the force impressed by a transverse voltage obtaining an equivalent

gradient:

G = Vmx

βc · r ·LC
[

T

m
]. (2.15)

If we integrate Eq. 2.15 over the cell length LC , and to the particle momentum p, we obtain an

equivalent integrated strength:

k ·LC = G ·LC

p
= Vmx

βc · r ·p [
1

m
]. (2.16)

So, as a summary, there is a factor βc between the effect of a magnetic gradient G and a

transverse electric voltage Vmx on a particle trajectory over one cell length. This is the reason

why EM focusing is used only at low energies and in bunching, rather than accelerating,

cavities, like RFQs.

2.3 The high-efficiency 3 GHz DTL

The 3 GHz DTL was very shortly studied from RF point of view, mainly due to lack of time.

However, a working solution of this technology was built and tested by ENEA in Frascati, Italy

[31].

44



2.3. The high-efficiency 3 GHz DTL

Table 2.3 – Accelerating parameters of the optimized DTL RF cells for different geometric β.

Energy [MeV/u] Geometric β Length [mm] Gap [mm] Radius [mm] ZTT [MΩ/m] Q value R/Q [Ω/m] TT factor
5 0.1028 10.281 1.5 31.53 37.3 11422 3266 0.539

10 0.1448 14.482 3.0 32.03 78.2 14913 5247 0.669
15 0.1767 17.667 4.0 31.52 99.2 15713 6316 0.725
30 0.2470 24.695 6.5 30.36 117.0 15812 7400 0.773
50 0.3140 31.399 10.0 30.15 111.0 15892 6986 0.750
70 0.3660 36.603 12.5 29.31 100.5 15046 6681 0.734

Figure 2.23 – The 5 MeV/u reference 3 GHz DTL cavity.

2.3.1 Regular cell design

The 3 GHz DTL appears to be the most efficient choice amongst the solutions studied in

Section 2.2.1 (Fig. 2.5) for energies higher than 15 MeV/u. Nevertheless, the regular cell

simplified geometry considered cannot be adopted as the reference one, due to limitations

coming from structural and RF heat power dissipation. A two stems geometry has been

eventually considered (Fig. 2.23). In [31], a rectangular stem surrounding the drift tube, and

with two internal cooling pipes, was considered. Such modification allows for a sufficient heat

dissipation and mechanical stability, but impacts on the ZTT profile presented in Fig. 2.5.

The geometry of Fig. 2.23 was optimized in terms of ZTT at different RF cell lengths, from 5 to

70 MeV/u, by varying the cell gap (Table 2.3). A more detail optimization was not performed

since, as discussed in Section 2.2.2, DTL cavities have a monotonically increasing ZTT for thin

drift tubes and stems. While too thin drift tubes should be avoided to limit the surface electric

field concentration, too thin stems limit the heat dissipation, and so the gradient and the duty

cycle achievable. In addition, the machining and brazing of thinner pieces is more challenging.

The main geometrical and accelerating parameters of the cells optimized are reported in Fig.

2.3. With respect to the preliminary study of Fig. 2.5, the ZTT reduction is around 25 %.

This solution raises a slight quadrupolar asymmetry, i.e. the RF defocusing is stronger in the
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Figure 2.24 – Transverse voltage along x and y axis normalized to the accelerating voltage for
the 15 MeV/u DTL RF cell with symmetric stems.

plane of the stems (y-plane in Fig. 2.24). The difference has been taken into account in the

beam dynamics design.

For the CABOTO design, following a preliminary particle tracking (see Fig. 4.3), it was decided

to taper the DTL bore aperture from 2.5mm radius at 10 MeV/u, to 1.75mm radius at 100

MeV/u. The optimize RF cells (Fig. 2.3) were not re-optimized, but simply recomputed with the

new bore aperture. The result of this work is summarized in Fig. 2.25. A gain of approximately

12% in ZTT, with respect to the constant 2.5mm design used in TULIP, has been reached.

The DTL studied has too small drift tubes to allocate focusing elements within them. Thus, a

side-coupled DTL (SCDTL) is considered, where the different cavities are magnetically coupled

with a side coupling cell in order to allocate quadrupole magnets between the accelerating

cavities. This is the solution also proposed in [31]. The author did not study a full 3D RF

SCDTL, but only a single RF cell DTL geometry, thus this latter term will be used in the text.

Thermal and structural considerations

From thermal point of view, the 10 MeV/u DTL section is the most critical one. The RF cell

has a simulated ZTT of 78.2 MΩ/m. Considering a 10−3 DF, and the 12 MV/m accelerating

gradient of the TULIP design (see Section 3.1.2), one has a maximum temperature on the

noses of 41 °C (Fig. 2.26 left). In the simulation, the outer wall was kept constant at 22 °C. The

induced mechanical stress and the RF detuning from the geometry deformation were not

studied. However, it is assumed that a 40 °C maximum temperature can be accepted.

If, however, this would not be the case, or if, for brazing easiness, a rectangular stem would

be needed, the RF efficiency of the cavity would be further penalized. In particular, in case

of a rectangular stem, and maintaining the optimized gap of 2.3, the ZTT would decrease of

33%, to 52 MΩ/m. In this case, the resulting maximum temperature, to achieve the same

accelerating gradient, would be 57 °C (Fig. 2.26 middle). So the lower thermal resistance would

not be sufficient to counterbalance the higher thermal load. A drift cooling system would then

be needed (Fig. 2.26 right).
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2.3. The high-efficiency 3 GHz DTL

Figure 2.25 – ZTT profile in the DTL linac, for a constant and a tapered bore aperture.

For TULIP, the 12 MV/m - 10−3 DF study preliminary simulates the design operating conditions.

Thus the design of Fig. 2.26 left is, at this stage, acceptable. For the CABOTO design instead,

an higher DF of 360 Hz is under consideration, in addition to a slightly higher accelerating

gradient of 15 MV/m (see Section 4.1.2). In this later case, rectangular stems with cooling

channels would be required.

This is a good example of how deep the DF and the design voltage of a cavity affect its RF

optimization. If one really wants to reach the limits in a RF design, either in terms of maximum

gradient or maximum efficiency - it does not really matter, both cases shall be at the limit from

thermal point of view - one needs to specify also the DF.

Figure 2.26 – Thermal analysis of the 10 MeV/u DTL cell, fro different stems geometries.
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2.3.2 Criticality and points of strength

During this thesis people raised criticisms towards the feasibility of a 3 GHz DTL linac. The

main concern were the brazing and alignment tolerances of the drift tubes on one side, and

the field stability on another side. None of these arguments was addressed during this thesis.

However, a short discussion on the second point, tuning and field stability, is helpful.

Being 0 mode structures, DTLs are very prone to frequency perturbations. For this reason, post

couplers are inserted in the geometry, and their resonator band is coupled to the main TM01

one [52]. The problem arises when the operating frequency increases: the small dimensions of

the tank makes difficult the tuning of the post couplers themselves. In addition, the bandwidth

of the cavity gets smaller at higher frequencies, thus making more difficult to reach confluence

between the post-couplers and the cavity dispersion curves. As a final note, post couplers

affect the Q factor of the cavity due to surface currents, thus the ZTT of the DTL cavity is lower

than the RF regular cell one. As an example, in CERN Linac4 DTL - a 352.2 MHz H- machine,

working from 3 to 50 MeV - the losses from post couplers lower the ZTT of approximately 2 %

[53]. A full 3D RF and mechanical design should thus further address this topic. However, as

previously mentioned, a working solution of a 3 GHz DTL was presented in [31].

On the other hand, a 3 GHz structure can be powered by klystron-modulator units at the same

frequency. These are worldwide adopted in more than 1000 electron linacs for radiotherapy,

and are thus very cheap RF power sources, when compared to 750 MHz IOTs for instance. The

cost argument is a key aspect of both TULIP and CABOTO, being medical designs, thus it has

been privileged at this stage.

750 MHz IH vs 3 GHz DTL beam dynamics comparison

In Section 2.2.1 it was shown that up to 20 MeV/u, the 750 MHz IH solution is more efficient

than a 3 GHz DTL one from a ZTT point of view. In this section, the beam dynamics of the

two solutions will be discussed. The reader may wonder why this topic is presented in the

RF chapter. The reason is that beam dynamics considerations contributed in defining the

transition energy from the 750 MHz IH to the 3 GHz DTL solution. Thus, in defining the energy,

or geometric β, of the optimized RF cells for the two cases.

To get a fair comparison, here two solutions will be compared: a IH (5 to 10 MeV/u) plus

DTL (10 to 20 MeVu) and a full DTL (5 to 20 MeVu). So it is possible to compare final beam

parameters in similar phase space configurations. A beam of proton was considered in the

present study.

The main aspects that have been compared are:

• particles transmission;

• emittance growth;
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2.3. The high-efficiency 3 GHz DTL

Figure 2.27 – Longitudinal phase space in and out the first 6 accelerating tanks of a DTL
solution, from 5 to 7.7 MeV, with simplified buckets contour in red. The different picture are in
scale.

• overall length and space for diagnostic;

• number of elements;

• power consumption.

Beam transmission was prioritized amongst all others parameters.

The DTL choice reveals to be particularly challenging in the 5 to 10 MeV/u range. The space

between the RFQ and the first DTL module is limited by the longitudinal acceptance of the

beam. This limits the transverse matching of the beam, with repercussion on the emittance

growth. A solution could be the installation of a buncher cavity, that would allow a longer

matching section. A second problem arises from the relatively high accelerating gradient. At 5

MeV, the ratio between active and total length is well below 50 %, since the RF defocusing has

a square dependence with particle momentum [54]:

Δpr =−πeE0T Lr sinφ

cβ2γ2λ
, (2.17)

and so it is necessary to have short accelerating tanks with PMQs in between. As a result,

to accelerate over the same length, the gradient of the full DTL solution must be higher

with respect to the IH-DTL solution. This results in a heavily longitudinally mismatched

beam. Fig. 2.27 shows the longitudinal phase space evolution of the beam in the first six DTL

accelerating structures.
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Table 2.4 – Beam dynamics comparison between an IH-DTL and a full DTL solution in the 5 to
20 MeV/u range.

Parameter IH+DTL DTL
Synch. Phase [deg] -12 (IH) and -20 (DTL) -30 (5 to 10 MeV) and -25 (10 to 20 MeV)

Transmission 100 99.6
Transverse ε growth [%] 7 35

Longitudinal ε growth [%] 53 166
Total length [m] 3.01 2.89

Active length [m] 1.68 1.26
Number of accelerating structures 10 19

Number of PMQ 15 20
Peak power consumption [MW] 0.1 (750 MHz) + 2.0 (3 GHz) 3.7

As one can notice, the beam fits well in the first structure longitudinal bucket (red contour).

However, the combination of high accelerating gradient and long drift sections between the

different DTL tanks led to filamentation, eventually resulting in emittance growth and losses.

An higher synchronous phase would not help, since it will increase the RF defocusing. So

shorter structures would be needed to transversally control the beam, and the accelerating

gradient should be increased to keep the overall length constant. Two solutions could be

followed. One could reduce the accelerating gradient to get a smoother acceleration in the

first sections, but resulting in a longer linac. Alternatively, it would be possible to match the

beam from tank to tank, by designing the DTL such that the synchronous phase and gradient

change adapting to the longitudinal orientation of the beam ellipse. This last proposal would

raise significantly the RF design complexity of such linac.

The two designs are summarized in Table 2.4 and displayed graphically in Fig. 2.28 and 2.29.

The overall dimensions are comparable in the two designs. However, the full DTL solution

shows losses and an higher emittance growth. In addition, there is not space to allocate beam

diagnostic. As a final comment, the full DTL solution require more PMQs and accelerating

structures, so an higher number of brazing and tuning procedures.

2.4 The high-gradient 3 GHz BTW accelerating structure

A high gradient backward travelling wave (BTW) accelerating structure was designed and built

at CERN [55] [56]. The main goal of the study is to define the high gradient limits of S-band

cavities in terms of Break-down Rate (BDR). A Modified Poynting Vector (Sc ) limit was used in

the RF design of the prototype [44]. A picture of the prototype, which is 20 cm long and has a

geometric β of 0.38, is shown in Fig. 2.30.

The RF design and optimization of regular cells started before the begin of this thesis, and it

is presented in [7]. In this work, the RF cells were optimized considering two intra-cell wall

thickness of 1.5mm and 3mm. Following an experimental campaign, the minimum septum

thickness that can withstand the creep-induced deformation during the hydrogen bonding
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Figure 2.28 – Beam 1 σ RMS envelope through a DTL structure from 5 to 20 MeV/u (top) and
ratio of emittance growth with respect to initial (bottom).

Figure 2.29 – Beam 1 σ RMS envelope through the IH+DTL structure from 5 to 20 MeV (top)
and ratio of emittance growth with respect to initial (bottom).
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Figure 2.30 – The 3 GHz BTW prototype.

heat cycle (with a maximum temperature of 1050 °C) was found to be 2 mm.

Following this result, the author re-optimized the RF cells, and completed the 3D RF design

by designing the end-cells couplers. In the following, the optimization of RF cells is thus

presented, being an original work, even though it has been set up in a previous thesis. Instead,

the theory of BTW accelerating cavities is just shortly summarized, in order to allow the reader

to fully understand the choices made. A more complete introduction on the BTW prototype

can be found in [7].

In particular, the choice of the phase advance per RF cell, the choice between a constant-

gradient and a constant-impedance structure, and the group velocity profile along the struc-

ture were decided and motivated in [7], and are not presented here.

2.4.1 A backward travelling wave accelerator

A travelling wave cavity has a number of advantages over a standing wave one. In particular:

• shorter filling time;

• no resonant modes instabilities;

• in general, easier tuning and machining.
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On the other hand, a TW cavity needs two coupling cells, and a part of the RF power is coupled

to an external circuit or a load. Unless a power re-circulator is designed, some of the power is

lost.

The need to adopt "noses" in the RF cell geometry, to enhance the transit-time factor, led

towards the choice of a magnetic coupling between cells, and so of a backward TW rather than

forward TW cavity. When a magnetic coupling is implemented, the dispersion curve of a L1

C1 RF cell coupled through an inductance L2 is given by [42] [48]:

ω= ω0√
2( L2

L1
)(1− cosφ)+1

. (2.18)

where φ is the phase advance per period, ω0 is the resonant frequency of the single RF cell, L2

is the coupling inductance, and L1 is the cell inductance. It is easy to verify from Eq. 2.18 that

ωπ is lower than ω0, so the π mode lies lower in frequency than the 0 mode. As a result, group

velocity and a phase velocity have opposite sign: this is the so-called backward-wave mode.

2.4.2 Regular cell design

The RF cell optimization was driven by the minimization of the quantity:

μ≡ Pw

E 2
a
· Sc

E 2
a
= vg

ω
· Sc /E 2

a

R ′/Q
(2.19)

where Pw is the power dissipated in one cell, Ea is the accelerating gradient, vg is the group

velocity, ω is the angular RF frequency, R ′ is the effective shunt impedance per unit length and

Q is the quality factor per cell. Sc is a Modified Poynting Vector, that has been used as a new

local field to predict the breakdown behaviour of the structure.

Eq. 2.19 equally weights the dissipated power and the modified Poynting vector; thus, mini-

mizing it one obtains for a given power the highest accelerating gradient for a given BDR. The
Sc

E 2
a

threshold was calculated by re-scaling CLIC experimental data to pulse lengths typical of

medical linacs, i.e. 2.5 μs flat-top. CLIC data were rescaled according to Eq. 2.20:

S8
c · t 3

i mpul se

BDR
= const (2.20)

following a research campaign on S-Band and C-band single cavities carried out by TERA

Foundation [38] [30] [7]. From Eq. 2.20 one obtains a limit of 0.7 mA/V for the ratio Sc /E 2
a .

In this particular design, the optimum is found when Sc is minimized simultaneously on the

nose, where the electric field is maximum, and on the coupling holes, where the magnetic
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Figure 2.31 – Electric (left), magnetic (centre) and modified Poynting vector (right) field
distribution in a regular cell section (1/32 azimuthal symmetry).

Table 2.5 – Tables summarizing the parameters fixed by the optimization (left) and the acceler-
ating figures of merit (right).

Fixed geometric parameters Average accelerating parameters
Cell length [mm] 15.82 Geometric β 0.38

Iris thickness [mm] 2 Frequency [GHz] 2.9985
Gap [mm] 7 Q value 7194

Nose cone angle [°] 65 R’/Q [Ω/m] 7394
Bore radius [mm] 2.5 ZTT [MΩ/m] 53.2

Nose inner radius [mm] 1 vg [‰of c] 2.926
Nose outer radius [mm] 2 Es/Ea 3.86

Corner inner radius [mm] 1 Hs/Ea [1/kΩ] 4.64
Corner outer radius [mm] 1 Scnose /E 2

a [1/kΩ] 0.26
Number of cells 12 Schole /E 2

a [1/kΩ] 0.25

field is maximum, as shown in Fig. 2.31. The maximum Sc /E 2
a ratio on the final design is 0.3

mA/V.

At the same time, the design was limited so to have a maximum surface electric field to

accelerating gradient ratio of 4, thus a surface electric field limit of 200 MV/m. The maximum

surface magnetic field to accelerating gradient ratio is instead 5 mA/V, thus a surface magnetic

field limit of 250 kA/m.

The RF cells were optimized considering the gap and the cone angle. The result of the opti-

mization process is summarized in Fig. 2.32 for the first cell. The final geometrical values

chosen, together with the main accelerating figures of merit of the structure, are reported in

Table 2.5.

Regular cells were also optimized at 230 MeV/u, corresponding to a geometric β of 0.596, and

54



2.4. The high-gradient 3 GHz BTW accelerating structure

Figure 2.32 – Results of the optimization of the first BTW cell, with scan of gap and nose cone
angle.

at the intermediate β of 0.49. Two additional RF cells were designed in order to get a better

field map interpolation for the beam dynamics simulations. The main geometrical parameters

along the different cells are shown in Fig. 2.33.

The main accelerating parameters are instead reported in Table 2.6, for RF cells with a constant

3.5 mm coupling holes radius. The group velocity slightly changes between the different

optimized cells due to their differences in length and diameter. The optimized RF cells were

simulated also with a 3.25 mm and a 3 mm coupling holes radius, to obtain a first indication

of whole accelerating structures parameters.

Tapering of the structure

The full structure is composed of 10 regular cells, and 2 coupling cells. In a travelling wave

linac, the RF power is injected into the structure and propagates along it at the group velocity

vg. It is absorbed both by the conductor walls and by the beam, resulting in an attenuation of

the field amplitude. At the end of the structure the power is coupled to a load or a re-circulating

circuit. A low group velocity leads to a high accelerating gradient but at the same time to a

rapid decay of the power. The group velocity can be adjusted by means of cell-to-cell coupling

in the disk-loaded accelerating structure. In particular, the larger the coupling, the higher the

group velocity is. In the present design, a group velocity ranging between 0.4% and 0.2% of c

was chosen as a compromise between acceptable filling time and efficient acceleration of the
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Figure 2.33 – Geometrical parameters of the optimized HG BTW RF cells for different geometric
β.

Table 2.6 – Accelerating parameters of the optimized HG BTW RF cells for different geometric
β. The values refer to cells with 3.5 mm coupling holes radius. 12 RF cells long structures with
the same coupling holes radius tapering have an approximately 4 % increase in ZTT.

Energy [MeV/u] Geometric β TT factor ZTT [MΩ/m] vg [‰of c] Q value R’/Q [Ω/m]
76 0.380 0.90 51.5 3.878 6954 7412

105 0.437 0.91 59.9 3.883 7737 7746
138 0.490 0.91 66.3 3.812 8466 7831
181 0.545 0.91 72.3 3.768 9148 7900
230 0.596 0.90 77.2 3.726 9745 7923

Energy [MeV/u] Geometric β Scn/E2
a[1/kΩ] Scs/E2

a[1/kΩ] Esn/Ea Hsn/Ea [mA/V]
76 0.380 0.27 0.29 3.85 4.94

105 0.437 0.28 0.28 4.00 4.84
138 0.490 0.29 0.26 3.92 4.77
181 0.545 0.29 0.27 3.86 4.74
230 0.596 0.30 0.25 3.79 4.71
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Figure 2.34 – Main accelerating parameters and field distribution along the BTW structure, as
a result of the group velocity tapering chosen.

beam [7].

The tapering has been accomplished by varying linearly the coupling holes radii; the cell

diameter and the radial distance of the coupling holes have been varied to adjust the resonant

frequency. All the other geometrical parameters have been kept constant throughout the

structure, i.e. the regular cells are all identical except for the coupling holes region, and overall

diameter, that is increasing thorough the structure to compensate for the lower inductance

given by the smaller coupling hole radii.

The result of the tapering are summarized in Fig. 2.34, following the analytical formulations

presented in [57]. The choice of a constant gradient maintains a constant electric field dis-

tribution on the noses, and so a constant Sc distribution in this region along the structure.

Instead, the Sc on the coupling holes decreases due to the lower EM density given by the group

velocity profile.

Since each regular cell has a different diameter, in the design of the full structure it was decided

to take the average of two subsequent cells, as graphically explained in Fig. 2.35. This was

done in order to avoid steps in the middle of cells, that would have represented an issue for

the cavity tuning and bonding.

Indeed the brazing joint was places in one fo the corner of each cell. This choice required a
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Figure 2.35 – RF assembly methodology of the BTW structure. Each single RF cell designed has
a different coupling hole radius Rc0x , and thus a different diameter acD0x , with x number of
the cell, from 1 to 11. The final structure has 10 regular cells, with the diameter taken as the
average of two subsequent single RF cells diameters.

last iteration in the RF design, since the outer corner radius of 1mm is present only on one

side of each cell (opposite to what is shown in Fig. 2.35, where the outer corner radius is visible

at both sides of the RF cells).

2.4.3 Single cell mechanical studies

Two mechanical tests were performed on mock-up single cells: a creep test and a tuning one.

These are discussed in the following Sections.

Creep tests

Three joining procedures were considered: H2 bonding, gold brazing and silver brazing. H2

bonding, which is used for CLIC accelerating structures, was the preferred choice, being

cleaner than brazing. However, its heat cycle reaches also the highest temperature, being

thus more critical in terms of creep deformation. In addition, the particular geometry of the

RF cells, with 16 holes at the periphery of the septum thickness, is a disadvantage for the

mechanical stability.

Following mechanical simulations, an experimental campaign investigated the behaviour of

sets of mock-up RF cells with different iris thickness, corresponding to 1.5, 2 and 3 mm. Fig.

2.36 summarizes the results of the creep tests for the 2mm iris thickness, that was eventually

chosen. In the case reported, all the the 20 cells tested underwent an H bonding cycle with

maximum temperature of 1050 °C.

The results reported refer to the nose region of the cell, the one most subjected to the creep
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2.4. The high-gradient 3 GHz BTW accelerating structure

Figure 2.36 – Creep results in the nose region for the different cells tested.

problem. The cells have been positioned both vertically (V mark) and horizontally (H mark) in

the oven. Except for cells number two and eight, which show a considerable deformation, the

average deformation is quite limited. Excluding these two cases, that likely were not carefully

handled, the average axial deformation is 13 μm, while the radial is 6 μm. Both these values

were judged acceptable.

Tuning and sensitivity analysis

An RF sensitivity simulation was performed on the final geometry for the first, the middle and

the end cell of the structure, following the method explained in [7]. The sum of all the frequency

shifts of same sign in case of 10 μm machining error for each geometrical parameter is equal

to -3.3 MHz and +3.5 MHz. It is worth commenting that this represents a very conservative

assumptions, since it implies that all the machining errors shift the frequency in the same

direction. If instead a random generation of the machining errors is considered, a tolerance

of ±10μm corresponds to a frequency shift of 1.2 MHz with a 90% probability. These are the

same results found for the 1.5 mm septum thickness case and presented in [7].

An RF tuning simulation estimated the tuning capability of each cell (Fig. 2.37). Starting with

a 10.5 mm diameter, an ellipsoid was simulated in the RF design of the three regular cells as

above, both inward (frequency increase) and outwards (frequency decrease). In case of a 1

mm deformation perpendicular from to the cavity wall, the frequency shifts are +4 MHz and

-3 MHz in case of four dimple tuners per RF cell.

A final mechanical test was performed to decide the wall thickness for the tuning holes. Two

mock-up cells were produced, containing 19 tuning holes each. Except for two cases with 8mm
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Figure 2.37 – Example of a tuning simulation performed with HFSS, for an inward deformation
case. One can notice that the outer wall deformation does not enhance remarkably the H-field
distribution, which maintains its maximum on the coupling hole.

diameter, all the holes had a 10.5mm diameter, following the RF simulations, but different final

thickness of 1, 1.2 and 1.6mm (Fig. 2.38 top). This last parameter has to allow a sufficient de-

formability of the outer RF cavity walls, but without rupture. The mock-up cells was connected

on the opposite side of the tuning pins to a vacuum pump in the region around the hole under

test. This was then hit with an hammer-tool until rupture or leakage, measured with the

vacuum pump. Some of holes were tested in pulling and some in pushing mode. Finally, a

combination of the two was also tested, in order to simulate an over-tuning to be corrected.

The deformation is reported as a function of the number of hits. One shall not drawn ultimate

conclusions on the curve trends, since being a manual tool, the force impressed in each hit

was subjected to variations. It is worth highlighting that at the end of the test of each holes,

the force applied on the hammer had to be increase significantly to continue the deformation,

due to the material hardening.

The results of the test are summarized in Fig. 2.39 bottom. Twenty different holes were

tested, subdivided into four holes with final wall thickness of 1 mm, four with 1.2 mm, and

twelve with 1.6 mm. It was chosen to adopt the most conservative case of 1.6 mm thickness.

This latter showed a good sensitivity during tuning, having the highest safety margin with

respect to rupture. On average for the 1.6 mm case, the wall broke after 3.5 mm deformation,

either pulling or pushing. In the worst case, the wall broke at 2.5 mm. Since the maximum

needed tuning capability corresponds to a 1 mm deformation, the test results were considered

acceptable. The 1 mm and the 1.2 mm holes tested broke on average at 3 mm and 3.1 mm

deformation, respectively.
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2.4. The high-gradient 3 GHz BTW accelerating structure

Figure 2.38 – Mock-up cell geometry (top) and results of the tuning test performed (bottom).
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Figure 2.39 – Tuning test mock-up cell (top left) and test set-up (top right). Zoom on deformed
and broken pins after the experiment (bottom).
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2.4. The high-gradient 3 GHz BTW accelerating structure

Figure 2.40 – Local Sc enhancement in the end-cell due to the coupling slot.

2.4.4 End-cells design

The input and output power couplers (or end-cells) represent a very delicate part of the

design process. The presence of a slot to allow the RF power to penetrate into the structure

enhances the electromagnetic field distribution and modifies the accelerating parameters

of the coupling cell. Goal of the couplers design is to minimize the power reflections while

perturbing as little as possible the field distribution and the accelerating performance of the

end-cells.

In the BTW structure, magnetically coupled end-cells were designed. In this configuration, a

rectangular waveguide is matched to the end-cell by means of the coupling slot size and of the

coupling cell diameter.

A magnetic coupling introduces asymmetries; in particular, in the end-cells the coupling holes

close to the coupling slot show an enhanced magnetic flux, and as a result also an enhanced

Sc (Fig. 2.40). Interestingly, one could notice in Fig. 2.40 that the Sc does not show a maximum

on the coupling slot, which thus are not a critical part of the design in terms of BDs.
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Figure 2.41 – Input coupler design (top left), mechanical cell (top right) and simulated Ez field
distribution in the BTW structure (bottom).

Since the whole study goal is to push the high gradient limits of S-Band structures, and since

the Sc is the physical quantity chosen to characterize the BDR limit, the results of Fig. 2.40

was judged not acceptable. The magnetic flux enhancement can be straightforwardly reduced

by decreasing the coupling holes radii. Though this solved the Sc enhancement problem, it

causes also a reduction of the group velocity, eventually resulting in a asymmetry in the Ez

field, which increases in case of a lower group velocity.

The solution adopted was to reduce the coupling hole radii closer to the coupling slot, to

compensate for the enhancement of the Sc due to the local increase of the power flow. The

remaining coupling hole radii have been increased to maintain the design group velocity in

the cells (Fig. 2.41 top left). With this solution, the end-cells provide the same acceleration as

the regular cells (Fig. 2.41 bottom), while having an even distribution of Sc.

The output end-cell does not present the same criticality. In fact, the constant-gradient

structure designed involves a tapering of the coupling holes radii to reduce linearly the group
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2.4. The high-gradient 3 GHz BTW accelerating structure

Figure 2.42 – Output end-cell matching results.

velocity [42]:

vg (z)= ωL

Q

1− (z/L)(1−e−2α0L)

(1−e−2α0L)
(2.21)

As a result, the Sc distribution is around 20% lower in the coupling holes of the output cell with

respect to the coupling holes of the input cell. Instead, it remains constant on the coupling

holes throughout the structure, as shown in Fig. 2.34.

The output end-cell design focuses thus only on the matching with the waveguide, in order

to minimize the SW pattern in the structure caused by the reflections from the output cell.

The Ez field in the middle of each RF gap is shown in Fig. 2.42 as a function of the output cell

diameter.

The final step of the 3D design consisted in minimizing the total reflection considering the

whole geometry. This is accomplished, as previously discussed, by varying the coupling slot

aperture and cell diameter of the input end-cell. The total reflection of the cavity is reported

in Fig. 2.43 as a function of the coupling slot dimension and of the of the input cell diameter.

2.4.5 The final prototype

The final step of the RF design consisted in designing the waveguide transition to standard

WR-284, and to check the accuracy of the mechanical drawings. The waveguide transition is a

simple stepwise waveguide. The two transitions face each other, to reduce external dimensions.

A cu view of the prototype, with RF flanges, vacuum flanges and cooling channels is shown in
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Figure 2.43 – Input end-cell matching results.

Fig. 2.45.

The mechanical design can be checked in a laborious way, by double checking all the dimen-

sions of the final drawings, or in a faster way, by importing the 3D mechanical drawing in

HFSS, and verifying that the same result of the HFSS model are obtained. Fig. 2.44 is the

result of this latter method, and it shows the total reflection of the cavity as a function of the

frequency for the original HFSS model and the correspondent mechanical CATIA model, both

with and without waveguide transitions.

Also the numerical convergence of the simulation results with respect to the mesh size was

verified. The most important parameters of the structure are reported in Table. 2.7. The power

recirculation, mentioned in the table, is discussed in Section 2.4.6.

The mechanical design of the prototype was not followed by the author, but it is hereafter

shortly discussed for the sake of completeness.

As discussed, the disks have been bonded in partial hydrogen atmosphere, with a maximum

temperature of the heat cycle of 1050 °C, following the CLIC accelerating structures baseline

fabrication procedure. Waveguide transitions, cooling plates and vacuum flanges are all

brazed to the structure. The coupling slot is part of the end-cells, to avoid brazing in the area

critical for the matching. The end-cells wall have been thicken to increase the robustness

during handling. A cut view of the final prototype is shown in Fig. 2.45.

The thermal analysis was conducted for the completed accelerating structure, considering

the 50 MV/m target accelerating gradient, and different duty factors. The limiting factor

is represented by the thermal induced plastification, and the most sensitive region are the
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Table 2.7 – Main parameters of the BTW prototype.

Wall thickness [mm] 2
Gap [mm] 7

Nose cone angle [deg] 65
Cell length [mm] 15.82

Ea avg design [MV/m] 50
Scnose/Ea2 (first/last) [mA/V] 0.27 0.26
Scholes/Ea2 (first/last) [mA/V] 0.29 0.21

Es/Ea (first/last) 3.85 3.88
Hs/Ea (first/last) [mA/V] 4.94 4.33

Pin (w/o recirculation) [MW] 8.92 20.16
Pout (w/o recirculation) [MW] - 11.24

Q0 (first/last) 6954 7415
R’/Q (first/last) [Ω/m] 7412 7367

R’/Q (first/last) [MΩ/m] 51.5 54.6
vg (first/last) [‰of c] 3.878 2.098

Filling time (w/o recirculation) [ns] 800 (99%) 224

Figure 2.44 – Comparison between S11 from HFSS and CATIA models on the full 3D structure.
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Figure 2.45 – Cut view of the BTW prototype mechanical design. Courtesy of M. Garlasche’
and M. Timmins, CERN.

coupling holes (Fig. 2.46 left). An annealing limit of 25 MPa was considered to exclude risks

of deformation above the elastic limit. This corresponds to a maximum thermal load of 0.75

kW, that for 50 MV/m (see Table 2.7) translates into a maximum duty cycle of 0.075%. This

thermal load corresponds to a limited ΔT of few degree (Fig. 2.46 right), and to an estimated

cell diameters increase of tenths of μm. These are not the limiting factors.

Interestingly, the Ez complex distribution in case of a 5π/6 structure shows a 12 arrows distri-

bution in the complex plane (Fig. 2.47 right), since the first common multiple between 5π/6

and 2π is 10π. This is pretty different from the classic 3 arrows representation, characteristic

of 2π/3 structure.

As a final plot, the input and output reflections of the simulated full geometry are presented in

Fig. 2.48.

2.4.6 Power recirculation in a TW structure

The BTW structure designed has a power transmission ratio of about 3 dB, i.e. half of the input

power is transmitted through the structure and is coupled to either a load or a re-circulating

circuit. A lower Pload /Pi n ratio could have been obtained, but at the price of a longer filling

time. To make an efficient use of TW structures, a passive waveguide component, called 3 dB

hybrid splitter, has to be designed.
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Figure 2.46 – Thermal induced stresses in a regular cells (left) and thermal distribution in the
whole geometry (right). Courtesy of M. Garlasche’, CERN.

Figure 2.47 – Complex Ez field distribution along the BTW structure (left) and in the complex
plane (right).
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Figure 2.48 – S11 and S22 of the BTW prototype.

A 3dB Hybrid is a 4-port passive device. By proper sizing the geometry between the ports,

it is possible to equally split the power entering from port 1 towards port 2 and 3. In this

configuration no power goes towards port 4, and there is a 90◦ phase difference between port

2 and 3 (Fig. 2.49 left).

In the present design, port 1 is connected to the klystron, port 2 to a RF load, port 3 and 4 to

the structure input and output cell, respectively. The power which exits from the structure,

entering port 4 and being equally split between port 2 and 3, makes interference with the

power flowing from port 1. If the phase of the RF power entering ports 1 and 4 is has 90◦ phase

difference, the interference is constructive towards port 3, namely towards the structure, and

destructive towards port 2, the load (Fig. 2.49 right).

Taking into consideration the phase difference between the accelerating structure input

and output, the length of the transition waveguides which connect the 3dB Hybrid to the

accelerating structure can be computed so that there is a 90◦ phase difference between port 1

and port 4. As a result, this design allows for full power recirculation into a TW accelerating

structure.

The power attenuation in S-Band (WR-284) waveguides is around 0.02 dB/m. As a result,

the power attenuation in the 3db hybrid is negligible, being lower than 1 %. However the

drawback of this solution lies in the transverse size of the assembly and in the longer filling

time to reach a flat RF pulse. The field rise time for achieving 99% of the nominal field into the

cavity, considering the 3 dB hybrid, is around 800 ns [58]. The 3db attenuation of the structure

guarantees that, by adopting a 3dB hybrid, no power goes into the load at steady-state. In fact,
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Figure 2.49 – 3dB hybrid with power entering from port 1 (left) and from port 1 and port 4 with
90◦ phase difference (right)

if the structure output power is not exactly 3dB, the recombined powers do not match.

One could consider designing an asymmetric hybrid and match it with a cavity with different

attenuation than 3 dB. In particular, the higher the attenuation of the cavity, and the shorter is

the field rise time of an hybrid-cavity system. While the filling time of the structure increases,

less iterations are needed to the system to reach steady state, eventually resulting in a shorter

transient for the overall system. However, a lower group velocity in a cavity results in a smaller

bandwidth.

A cut transverse view of the structure with the BTW design connected to the hybrid, and with

RF power coming from port 1, is shown in Fig. 2.50. Being the bandwidth of the hybrid larger

than the one of the structure, the first does not affect remarkably the resonance of the cavity.

2.5 The high-gradient 3 GHz CCL accelerating structure

Historically, CCLs have been a preferred solution for proton acceleration above β= 0.3. How-

ever, to the authors knowledge few works addressed the design of 3 GHz high gradient CCL:

one for β= 0.38 [7] and a more recent study for β= 0.6 [10].

Here the full 3D design of an high gradient CCL for β= 0.38 is presented. The very same RF

methodology used in the RF design of the BTW prototype was adopted, so the two structures

are fully comparable in terms of BD limit.

2.5.1 Regular cell and quintuplet design

A CCL regular accelerating cell is not a symmetric part of an infinite chain, like in the TW case,

since in the real full 3D design it has to be matched with the coupling cells. As explained in

[39], the shortest geometry that replicates an infinite chain is the one of a quintuplet, i.e. 3

coupling cells, two of which halved, and 2 regular accelerating cells. With this geometry setup,

71



Chapter 2. RF design of accelerating structures for TULIP and CABOTO

Figure 2.50 – Complex Mag Electric field distribution in BTW structure connected to 3db
hybrid.

it is possible to close the passband and have a structure with the desired operating frequency

and coupling factor.

This last parameter influences the modes separation, so directly affects the number of cells in

the accelerating structure. On the other hand, the higher the coupling factor, the lower the

ZTT due to the decrease in Q factor. As a result, the coupling factor should be chosen taking

into consideration the linac design. In this work, a quintuplet with coupling factor equal to 5%

was designed, in agreement with a previous work of TERA Foundation [39]. A complete work

on coupled cavity structures should always report the coupling factor considered.

The regular cell optimization aimed at being as comparable as possible to the BTW design. It

has been thus decided to design a CCL with the same bore aperture radius of 2.5mm, and the

same septum thickness of 2mm. This last parameter imposed to revisit the mechanical design.

CCL cavities presented in [26] are based on the production of two half-cells, that are eventually

brazed together. However, a wall thickness of 2mm, like in the BTW solution, poses a serious

challenge to the fabrication and brazing with such method, because 1mm walls would be

needed. To overcome this issue, a different assembly concept has been proposed (Fig. 2.51),

which allows to have the full thickness septum in a single piece. A similar design was proposed

in [59].

The design shown in Fig. 2.51 implied a different coupling cell design with respect to more

classic geometries (see Fig. 2.52 right). Since now the coupling cells have to be two accelerating

cells long, it is possible to have a more compact transverse dimension.

The optimization of the accelerating cells was carried out varying the cone angle and the gap,

72



2.5. The high-gradient 3 GHz CCL accelerating structure

Figure 2.51 – HG CCL full assembly cut view.

and respecting the 2.7e-4 A/V limit in Sc that was reached in the BTW design. The quintuplet

was design with a 5% coupling factor, as previously discussed. The Sc distribution reaches a

maximum in the nose region. The coupling slot, that is often a critical part in CCL designs in

terms of field enhancement, has a lower Sc value.

As for the BTW case, regular cells were also optimized at 0.596 and 0.49 geometric β . Two

additional RF cells were designed in order to get a better field map interpolation for the beam

dynamics simulations. The main geometrical parameters along the different cells are shown

in Fig. 2.53.

The main accelerating parameters are instead reported in Fig. 2.8. The quintuplet solution

was studied only for the 0.38 β structure. It has been assumed that to a given coupling factor

k1 corresponds a ZTT reduction independently on the cell geometry or length. This is an

assumption present in Los Alamos Superfish code [40]. For instance, a k1 of 5 % would decrease

the accelerating cell ZTT of 13 % according to Superfish. However, it is worth highlighting that

this is a first order approximation, as the Q factor decrease is also function of the geometry

of the coupling cell. The solution studied with HFSS, having a quite unusual and optimized

coupling cell geometry, has a 7 % reduction of ZTT between the uncoupled and the coupled

solution. In this work, it has been assumed that a similar efficient design would be achievable

also for geometric β greater than 0.38, thus a 7 % reduction factor is considered in Table 2.8.

2.5.2 End-cells design

The infinite chain symmetry rupture caused by the end-cells has been adjusted by varying

the radius of half of the accelerating cell, as shown in Fig. 2.54. In this way, the coupling slot
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Figure 2.52 – Mechanical view of the optimized cells: HG BTW (left), HG CCL (middle) and 30
MV/m CCL (right).

Table 2.8 – Accelerating parameters of the optimized HG CCL RF cells for different geometric
β. The coupling factor Q factor reduction is kept constant and equal to 7%.

Energy [MeV/u] Geometric β TT factor ZTT coupled [MΩ/m] Q value coupled Scnose/E2
a[1/kΩ] Esnose/E2

a

76 0.380 0.86 60.0 9136 0.27 3.86
105 0.437 0.85 71.5 10037 0.29 3.96
138 0.490 0.85 77.4 10850 0.29 3.87
181 0.545 0.84 81.8 11578 0.30 3.88
230 0.596 0.84 85.5 12045 0.30 3.96

geometry is not changed, and so in first order approximation the coupling factor remains

constant. On the other hand, the machining is likely more difficult.

The end cell were first matched considering a "septuplet", as in Fig. 2.54 right, which is the

simplest geometry that replicates a symmetric structure with end cells. In this way is possible

to speed up the computing time. The results have been then validated on the final structure

though, which is composed of 8 regular cells, and 2 end cells. Interestingly, the choice of a 12

cells long structure for the BTW prototype, which has a 5π/6 RF phase advance, permitted

to design an equally long CCL structure, composed of 10 cells, given the π phase advance

between accelerating cells.

A single magnetic coupler was designed, following beam dynamics considerations that are

discussed in Section 3.1.3. The coupling cell can be placed everywhere in the structure. Here,
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Figure 2.53 – Geometrical parameters of the optimized HG CCL RF cells for different geometric
β.

Figure 2.54 – HG CCL end-cells design (left) and "septuplet" view (right).
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Figure 2.55 – Electric field distribution along the HG CCL structure. Ez on axis (red), in the top
coupling cells axis (green) and bottom (blue).

it has been chosen to place it on one of the end-cells. This solution results in a compact

design, having the input waveguide on the same axis of the coupling cells, and it represents an

advantage for the tuning pins and the cooling plates positioning. One can notice, from Fig.

2.51, that the bore aperture in the top coupling cells passes through the coupled waveguide.

From RF point of view, this does not represent an issue, since the bore aperture is too small

to propagate the EM power. A more elegant solution would be to avoid the bore aperture in

the coupling cells, but then it would not be possible to measure with bead-pull methods the

field distribution in the coupling cells. A further study could evaluate the tuning feasibility of

bi-periodic structures without coupling cell bead-pull measurements.

The coupler was optimized, as in the BTW, by adjusting the coupling slot aperture and the

coupling cell diameter to minimize the total reflection, and a value of -40 dB was reached. For

the purposes of the present study, this result was considered acceptable, though a final design

ready for production should aim at -60 dB in the design stage.

The Ez field distribution on the full 3D design is presented in Fig. 2.55

2.5.3 Machinability considerations

The main remarks raised on the proposed mechanical solution concerns the feasibility of

drilling a 2.5mm radius bore aperture through the coupling cell stems. If it was not possible,

the RF design could be quite easily changed by, for instance, reducing the length of the stems,

or in other words by increasing the coupling cells gap. This would result in larger coupling cell
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Figure 2.56 – S11 as a function of frequency in the HG CCL structure.

diameter, so a less compact overall dimension.

2.6 RF comparison between CCL and BTW HG solutions

The comparison between the HG BTW and CCL structures is here discussed. The two designs

share the same maximum Sc /E 2
a ratio, and key geometrical parameters, like bore aperture

and septum thickness. In the CCL case, the limit of Sc /E 2
a is reached on the nose of the CCL,

not on the coupling slot, which is not the most critical part of the design. In the BTW cavity,

as discussed, the maximum of Sc /E 2
a is reached both in the noses and in the coupling holes.

However, the ratio decreases on the coupling holes across the cavity, due to the decrease of

the stored energy per unit length.

The main geometrical and accelerating parameters of the two structures are reported in Table

2.9. Here, a third column contains the data of a CCL cavity studied in [7] and optimized for a

lower gradient of 30 MV/m, according to the same Sc model. It is possible to notice, graphically,

the difference between the three cases in Fig. 2.52. The low gradient case, called BL (Base

Line), has a shorter gap, to maximize the TT factor, and a sharper nose, to concentrate as

much as possible the E field near the z axis. All the cavities have the same bore aperture radius

of 2.5mm.

The result of the comparison study is that the ZTT of the HG CCL solution, even when op-

timized for high gradients, i.e. 50 MV/m, is higher of about 12 % with respect to the BTW

solution with full re-circulation of the power. The BL CCL design, even though was designed

with a larger iris thickness, have much better performances, being 30 % more efficient than

77



Chapter 2. RF design of accelerating structures for TULIP and CABOTO

Table 2.9 – Main geometric and accelerating parameters of β= 0.38 cells. HG BTW (left), HG
CCL (centre), low gradient CCL (right)

Type of structure BTW150 CCL-HG CCL-BL
Phase advance per acc. cell [deg] 150 180 180

Wall thickness septum [mm] 2 2 3
Gap [mm] 7.0 9.0 5.1

Nose con angle [deg] 65 65 25
Number of accelerating cells 12 10 10
Structure active length [mm] 189.9 189.9 189.9

Design acc. gradient Ea=E0*TT factor [MV/m] 50 50 26.3
Max ratio surface E-field to acc. gradient Es/Ea 4 4 6

Max ratio Sc to acc. gradient square Sc/Ea2 [A/V] 2.710−4 2.710−4 7.810−4

Quality factor Q (first/last) 6997/7463 9136 8290
R’/Q [ω/m] (first/last) 7425/7369 6568 8410

ZTT [Mω/m] (first/last) 52.0/55.0 60.0 69.7

the HG BTW, and 16 % more efficient than the HG CCL. Section 2.7.3 discusses the influence

of the different parameters on the overall RF efficiency of a cavity.

Considering the filling time, the CCL structure reaches the nominal accelerating gradient in

around 800 ns, as the BTW structure with a circulator.

A visual comparison of the two full length HG structures is shown in Fig. 2.57. In the Figure,

the BTW is directly matched to waveguides, and not to the 3dB hybrid, which as shown in Fig.

2.50 remarkably improves the transverse dimensions of the cavity. However, such device can

be directly plug into a Klystron and into a load, since the 3dB hybrid protects the klystron from

the cavity reflected power. Instead, SW cavities require the installation of circulators on the

lines to absorb the reflected power. These devices, being ferrite materials, have an attenuation

on the forward power, i.e. the power that goes from the klystron to the cavity, of the order of

-0.3dB, so around 7%, or more. If the main driver of the comparison between HG CCL and

BTW solutions is the power efficiency, this factor has thus to be taken into account. As a final

remark on this topic, circulators needs SF6 atmosphere to prevent sparkling, which instead is

not needed in a 3dB hybrid. One could then consider to avoid the installation of SF6 windows,

being expensive, and simply have vacuum in the BTW solution. This instead would not be

possible in the CCL case.

From a cost point of view, it has to be mentioned that the BTW cavity is much simpler and

needs less components than the CCL one. The machining of RF cells is easier, since the

nose of the coupling cells in the HG CCL design is likely to pose some serious challenges in

the production (see Fig. 2.52, middle). As for vacuum flanges are concerned, a CCL cavity

needs 4 times more than a BTW one, to terminate the coupling cells bore aperture. Similarly,

a CCL cavity needs to tune the coupling cells together with the accelerating ones, thus the

mechanical design has to envisaged more tuning pins, that in turns complicate the design
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Figure 2.57 – Cut view with Complex Mag Electric field distribution in the high gradient BTW
(top) and CCL (bottom) structures at β= 0.38.
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Figure 2.58 – Temperature distribution in the high gradient BTW (right) and CCL (left) struc-
tures for a 50 MV/m gradient and 0.0075 % duty cycle

of the cooling channels. At the same time, the tuning of the cavity is more complex, and

theoretically more prone to errors. No direct experience on CCL cavities tuning was acquired

during this thesis. If one compares the 3 GHz CCL tuning methodology discussed in [39], to

the BTW prototype tuning, this latest is remarkably simpler, and required less than a couple of

hours of work (see Section 5.1). In conclusion, simplicity is a key aspect that should not be

neglected, especially on a commercial design, and the BTW solution has a clear advantage

over the CCL one in this regard. If however one could design a 3 GHz CCL with coupling cells

that do not need to be tuned, the above considerations would not hold anymore.

The two structures were also compared in terms of RF thermal power dissipation. Here the

CCL has two advantages:

• a slightly higher ZTT, which translated into a lower RF power dissipated in the copper

walls for the same accelerating gradient;

• a higher thermal conductivity with respect to the BTW solutions, where the coupling

holes are an obstacle to the power dissipation.

The temperature distribution in the two cases is shown in Fig. 2.58.

Heat transfer in a metal follows Fourier’s law of heat conduction:

�q =−kΔT, (2.22)
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Figure 2.59 – Uncoupled CCL (left) and BTW (right) cells at 230 MeV/u.

with �q heat flux density, k material thermal conductivity, and ΔT temperature gradient. In the

case of a simplified 1D geometry, as a bar, one has a linear dependence with the cross section,

and a inverse dependence with the length between the two extremes. This simple law allows

to discuss more in detail the difference between the BTW and the CCL structure.

The thermal load in the two structure for an equivalent accelerating gradient scales as the ratio

of the shunt impedances, since the length is equal. The CCL cavity design would have then

12% less thermal load to dissipate (Table 2.9). However, the simulated temperature gradient is

lower in the CCL than in the BTW. Since the cell diameters are similar, this is caused by the

reduced cross section given by the coupling holes in the BTW geometry.

If one extends the ZTT comparison up to 230 MeV/u, the results change, as already discussed

with Table 2.8. In particular, a 50 MV/m BTW optimized structure for a 230 MeV/u beam shows

about a ZTT 7 % lower than the CCL solution. The ZTT ratio between the two designs is not

constant due to the difference cell length between the two solutions: the BTW, being shorter,

allows for a higher optimization of TT factor (shorter gap) and nose region (sharper nose cone

angle) at higher energies. The difference can be observed graphically in Fig. 2.59.

Three intermediate energies were studied, corresponding to 105, 138 and 181 MeV/u. The

TT factor, Q factor and the ZTT along the linac for the two high gradient solutions is showed

in Fig. 2.60. The BTW solution has a lower Q factor with respect to the CCL one, but this

difference however gets narrower with the increase of the cell lengths, and so does the ZTT. As

previously motivated at the end of Section 2.5.1, in this comparison a constant 7 % reduction
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of the Q factor was considered for the CCL case from the uncoupled solution studied and the

coupled results presented. If instead one considers a 13 % reduction between the simulated

uncoupled Q factor and the coupled one, as in Superfish and as presented in [7] and [30], the

ZTT difference between the two solution is lower, and it is almost zero at 230 MeV/u.

2.7 The high-efficiency 3 GHz CCL accelerating structure

The choice of a lower accelerating gradient in CABOTO with respect to TULIP opened the

possibility to work on a more aggressive RF design. The absolute limiting quantities, Sc and

maximum Es, adopted for TULIP have been kept constant, and equal to 0.75 MW/mm2 and

200 MV/m. These limits have been fully exploited consistently thorough the linac. In addition

to the smaller bore aperture of 2 mm, this translated into a remarkable increase of the ZTT. In

the following, the RF optimization is discussed, pointing out the most important parameters,

and presenting some scaling laws.

The approach adopted was to optimize the cell gap and cone angle. On the optimized solution

found, a sensitivity analysis on inner and outer nose radius, and inner corner radius was

performed. Three RF cells were optimized, corresponding to 100 MeV/u, 430 MeV/u, and the

intermediate 211 MeV/u, with respect to the relativistic β. Hereafter only the 100 and the 430

MeV/u cases are presented.

In this work, machining limitations of the RF disks were not considered. For instance, fil-

let radius smaller than 1mm were studied, and are presented. As for previously discussed

structures, this is an aspect that needs further studies.

2.7.1 100 MeV/u cell

The 100 MeV/u cell optimization is summarized in Fig. 2.61, where a cut view of the geometry

is also reported.

The optimum that respects the field limits is obtained for a 6mm gap, 10deg cone angle, and

corresponds to 96 MΩ/m.

The sensitivity analysis on inner/outer nose/cone radii showed that a reduction of the inner

nose radius is beneficial both in terms of ZTT, as expected, but also it translates into a lower

Sc /E 2
a peak. The reason of this behaviour can be explained by observing (Fig. 2.62). A smaller

inner nose radius increase the surface E-field peak, but it also distances it from the maximum

of the H-field. Overall, the Sc is actually reduced. This trend is monotonic for Sc, but at the

same time a smaller nose radius increase the maximum surface E-field, which then becomes

the limiting quantity. For the 100 MeV/u cell, the optimum was found for 0.8 mm inner nose

radius, with a 2% increase in ZTT, a 6% decrease in Sc/Ea2, and a 7% increase in Es/Ea over

the initially considered solution with 1 mm inner nose radius.
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2.7. The high-efficiency 3 GHz CCL accelerating structure

Figure 2.60 – TT factor (top), Q factor (middle) and ZTT (bottom) comparison between a CCL
and a BTW high gradient linacs, with CCL values as in Table 2.8 and BTW values as in Table
2.6, considering 12 RF cells per structure.
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Figure 2.61 – 100 MeV/u HE CCL cell optimization, for different cone angle. The optimum ZTT
respecting the Sc/Ea2 constraint correspond to 6mm gap, 10deg cone angle.

Figure 2.62 – Sc, E-field and H-field distribution on the nose region, normalized to the acceler-
ating gradient, in case of a 0.8mm inner nose radius (top) and 1.2mm (bottom).
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2.7. The high-efficiency 3 GHz CCL accelerating structure

Figure 2.63 – ZTT as a function of the outer corner radius of the cell, in absolute values and
percentage difference on the right y-axis. Cut view of the different studied geometries on the
left.

The outer region of an RF cavity, independently on the type, should be rounded. This condition

in fact ensure the maximum of the Q factor for a given cell, and so of the ZTT. However, other

considerations play a role, like tuning capability, machining complexity, and RF coupling

feasibility. The ZTT behaviour as a function of the outer corner radius was studied, and it is

presented in Fig. 2.63. An almost full rounded solution would increase the ZTT of about 5%

with respect to the flat (1mm fillet) geometry. However, the thin septum thickness of 2mm

chosen required the use of the mechanic design explained in Section 2.5.1, which needs an

almost flat outer cavity wall.

On the other hand, one could consider to adopt a thicker septum, and a more classic brazing

procedure as the one proposed in [26]. As presented in Section 2.7.2, for the 430 MeV/u cell

there is a 3 % reduction on ZTT going from 2mm to 3 mm septum, but a gain of 9 % going

from a flat to a round outer cavity wall. In conclusion, two coupled cavities should be studied,

considering the two solutions. The final design should be chosen taking into account the

different machining complexity of the two geometries, as well as the tuning higher complexity

of a round solution.

From a thermo-structural point of view, the 100 MeV/u cell is the most delicate part of the

linac, given the lower ZTT. The RF cell was studied considering an accelerating gradient of

30 MV/m, and a DF of 1∗10−3. These are limit conditions for the RF cell, since the thermal

gradient reaches 20 °C and the thermal-induced deformation a maximum value of 8 μm on

the noses, as shown in Fig. 2.64. On a final design, one shall address whether these values are

acceptable, and if not whether to privilege a lower gradient - lower DF solution, or a larger

septum thickness with then higher power consumptions.

The linearity of heat conduction in metals (see Section 2.6 for discussion) allows to draw some

quick considerations. The ZTT reduction in the 430 MeV/u cell from a 2 mm to a 3 mm septum
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Figure 2.64 – Thermo-structural analysis of the 100 MeV/u RF cell for CABOTO, for a 30 MV/m
accelerating gradient and 1∗10−3 DC. Temperature distribution (left) and thermal-induced
deformation (right).

is almost 3 %. In the 100 MeV/u cell, being shorter, the percent reduction is higher, and it

could be estimated in 5 %, or being conservative in 10 %. The section increase on the other

hand is 50 %. Thus the thermal gradient reduction can be safely estimated in 40 %, with a

maximum temperature for the identical operating conditions of 36 °C instead of 42 °C.

For comparison, the BTW prototype is limited to a thermal gradient of 5 °C, due to the plasti-

cization limit in the coupling holes. A CCL design does not present such a critical feature, and

it is likely to withstand safely higher gradients. A detail mechanical study is however needed

to address the matter.

2.7.2 430 MeV/u cell

The 430 MeV/u cell optimization is summarized in Fig. 2.65, where a cut view of the geometry

is also reported.

The optimum that respects the field limits is obtained for a 15mm gap, 15deg cone angle, and

corresponds to 117 MΩ/m.

As for the 100 MeV/u case, a reduction in the inner cone radius increases the ZTT and decreases

the Sc/Ea2 ratio. In this case, the optimum was found for a 0.4 mm inner nose radius, with

a 4% increase in ZTT, a 7% decrease in Sc/Ea2, and a 16% increase in Es/Ea over the initially

considered solution with 1 mm inner nose radius. With respect to the 100 MeV/u case, it was

possible to push a bit further the optimization since the longer cell length decreases the Es/Ea

ratio, so there is more margin in this regard.

The outer corner radius optimization (Fig. 2.66) showed an higher increase of ZTT for larger

radii with respect to the 100 MeV/u case. This was expected, since longer cells have a larger Q
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2.7. The high-efficiency 3 GHz CCL accelerating structure

Figure 2.65 – 430 MeV/u HE CCL cell optimization, for different cone angle. The optimum ZTT
respecting the Sc/Ea2 constraint correspond to 15mm gap, 15deg cone angle.

factor, and so also the relative gain is larger.

For the 430 MeV/u cell, the behaviour of ZTT as a function of the cell septum was studied. In

fact, to longer cells correspond bigger and so heavier nose regions, while the cavity radius is

usually almost unchanged. So it could happen that the same septum thickness is achievable

at a low energy cell, but not anymore at an higher one. The optimized cell corresponding to

a 3mm septum is reported in Fig. 2.67, together with the ZTT trend as a function of the wall

thickness (left).

2.7.3 Summary and some interesting sensitivity considerations

It is worth here to draw a line and recap the sensitivity of the different solutions studied.

The main geometric and accelerating data of the three optimized RF cells, plus two more

simply interpolated, are reported in Table 2.10. Fixed notable geometrical parameters are the

bore radius (2 mm), the iris thickness (2 mm) and the outer corner radius (1 mm). For the

coupled values of Q factor and ZTT, a 7 % reduction with respect to the uncoupled values was

considered, as discussed in Section 2.5.1.

The results summarize in Table 2.10 represents a 16% increase in average ZTT over a similar

design studied in [7], that considered S-band CCL optimized for 30 MV/m, with a 2 mm iris

thickness, but a 2.5 mm bore aperture radius.
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Figure 2.66 – ZTT as a function of the outer corner radius of the cell. Cut view of the different
studied geometry on the left.

Figure 2.67 – 430 MeV/u HE CCL cell with 3mm septum thickness optimization, for different
cone angle. The optimum ZTT respecting the Sc/Ea2 constraint correspond to 15mm gap,
15deg cone angle. ZTT as a function of the septum thickness of the cell on the right.
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2.7. The high-efficiency 3 GHz CCL accelerating structure

Table 2.10 – Geometric and accelerating parameters of the optimized HE CCL RF cells for
different geometric β.

Energy [MeV/u] Geometric β Length [mm] Gap [mm] ConeA [deg] Rni [mm]
100 0.430 21.47 5.5 5.0 0.8
147 0.504 25.21 7.7 7.5 0.7
211 0.579 28.95 10.0 10.0 0.6
300 0.654 32.70 12.4 12.5 0.5
430 0.729 36.46 15.0 15.0 0.4

Energy [MeV/u] Geometric β TT factor Q value coupled ZTT coupled [MΩ/m] Scn/E2
a[1/kΩ] Esn/E2

a

100 0.430 0.945 9242 91.5 0.78 6.56
147 0.504 0.939 10188 101.1 0.72 6.34
211 0.579 0.930 11007 106.9 0.75 6.30
300 0.654 0.920 11712 111.1 0.72 6.38
430 0.729 0.908 12323 113.2 0.76 6.39

Table 2.11 – Sensitivity of selected geometric parameters on the ZTT for the 430 MeV/u
CABOTO RF cell.

Geometric parameter ZTT variation [%] Geometric variation Normalized variation (ZTT % / Variation %)

Intra-wall thickness 3% 3mm to 2mm (-33%) 0.09
Outer corner radius 9% 1mm to 15mm (+1500%) 0.01

Inner nose radius 4% 1mm to 0.4mm (-60%) 0.07
Bore aperture 14% 2.5mm to 2mm (-20%) 0.7

The previous discussion highlighted that, in a cavity with an optimized nose region, i.e. where

cell gap and cone angle are optimized, four parameters have a major impact on the ZTT. These

are the septum thickness, the outer corner radius, the inner nose radius, and the bore aperture.

In Table 2.11 this sensitivity study is summarized for the 430 MeV/u cell. The ZTT value of an

optimized 430 MeV/u CCL cell with 2.5 mm bore radius is taken from [7].

The most important result of Table 2.11 is that, as pointed out at the beginning of this Chapter,

the bore aperture is the most important parameter that defines the shunt impedance of a

cavity, in the assumption that the nose region has been optimized. After that, the second

most important contribution is the septum thickness. The septum thickness is the most

important geometrical parameter that defines the thermal gradient in a cavity, thus it defines

the maximum DF and thermal gradient achievable. The inner nose radius is another quite

important parameter, and in these simulations relates to the maximum surface fields in the

cavity (see discussion in Section 2.7.2). The outer corner radius, often regarded as an important

parameter in the optimization, is indeed not so important for CCL cavities. First, because is

sensitivity to ZTT is the smallest amongst the parameters considered, but secondly, and most

importantly, because it cannot being solely studied on a uncoupled solution, since it affects

the type of quintuplet that is possible to design.

If one cares for an efficient and quick optimization of a linac, one shall consider just beam

dynamics studies and nose region optimization of the cavities. Thus define a bore radius, that

could also be variable across the linac, and then optimize gap and cone angle of the cavities
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according to the BD field limiting quantities. All the other cell parameters have a good order

of magnitude lower impact on ZTT than what one can obtain working as above. This is the

reason why so much effort has been put into the linac and beam dynamics design of CABOTO.

As a final remark, let’s consider the difference between the TULIP and the CABOTO CCL

optimization. If for instance one compares the 100 MeV/u cell, the HE CCL cell has a coupled

ZTT of 101.1 MΩ/m, while the HG CCL 63.6 MΩ/m. Thus a 37% reduction. However, the HG

CCL has a 2.5 mm bore radius. To compare a equal 2.5 mm bore radius, one could consider the

HE CCL design presented in [7], with an uncoupled ZTT of 77.0 MΩ/m, thus a 17% reduction.

If we normalize this reduction to the maximum gradient achievable, 50 MV/m versus 30

MV/m, one has a normalized variation ZTT [%] over Gradient [%] of 0.25. This number

should be consider as a first order indication, since is based on the results obtained by two

different works, that cannot be fully compared. However, it represents an useful indication of

what occurs when changing the design gradient in a design. This consideration permits to

comment also on the understanding of BD phenomenon in normal conducting cavities. This

research activity is important not only to design compact linacs with previously un-reached

accelerating gradients, but also to optimize the RF cells, so to maximize the ZTT for a given

BD limits.

This Section tried to highlight the number of connexions that lie behind a linac design. As a

final summary, in order of priority one shall:

• define the input beam characteristics to the linac, and the beam dynamics requirement

at the end of it; beam dynamics and RF design are strongly interconnected; one should

look after what a minimum reasonable bore aperture could be, having in mind that one

could consider different active to total linac length, so beam envelopes;

• define the target gradient and BD limits of the linac; this has the second to biggest

impact on the RF design, quite closely to the bore aperture decision;

• with these informations, one shall optimize the cell nose region to maximize the TT

factor;

• eventually, one shall optimize the outer region of the cell, though privileging at this

point other constraints of the design, such as easiness of machining and tuning.

2.7.4 Assessment of a different RF coupling

The 430 MeV/u cell was the perfect candidate to investigate the feasibility of a different RF

coupling between accelerating cells. In fact, being the longest of the linac, a novel solution is

either advantageous here, or it does not work at all for the entire linac.

A on-axis coupling was attempted, both electrically (Fig 2.68), through the bore aperture, and

magnetically (Fig 2.69), through coupling holes like in the BTW structure.
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Figure 2.68 – Electric coupling of a on-axis coupled cavity, for different gap geometries.

The advantage of this solution consists in an higher Q factor of the accelerating cell. However,

this comes at the cost of an equivalent larger RF cell septum thickness (septum). In this

study, maintained fixed to 2 mm the wall septum, 2 mm were considered for the coupling cell,

bringing the total equivalent septum thickness to 6 mm, instead of the 2 mm of the classic

solution.

The electrically coupled solution, as expected, does not have enough coupling. Two other

solutions have been studied, considering a shorter gap with respect to nominal, and larger

bore radius. In addition, the nose region was modified to increase the coupling. Nonetheless,

the coupling factor is approximately 0.05 %, thus not sufficient.

The magnetically coupled solution works a bit better, but it is not comparable with the ref-

erence CCL cell. Two solutions were studied, considering 8 and 16 coupling holes. In both

cases, the coupling factor is almost 0.5 %. This represents a working solution, as shown in Fig.

2.70, and also an interesting one, having a coupled solution ZTT of 109.8 MΩ/m, in contrast to

116.3 MΩ/m of a uncoupled accelerating cell with 1 mm outer corner radius. Nevertheless,

the 0.5 % k1 is one of order of magnitude lower than the reference of 5 %, and too low for a

full structure with stable operating condition. Also, it is not clear how to increase this number,

without having a longer coupling cell, but then also a significant decrease in the coupled ZTT.

As a final remark, though the magnetic coupled solution represents a simplification in the cell

machining, it is disadvantageous from a thermal point of view with respect to the side CCL,

having the same problem in that sense of the BTW solution.
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Figure 2.69 – Magnetic coupling of a on-axis coupled cavity, with 8 holes (left) and 16 holes
(right).

Figure 2.70 – E field distribution in the 16 coupling holes solution.
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3 TULIP: a high-gradient linear
accelerator for proton therapy

This Chapter discusses in detail the design of a proton linac accelerator, named TULIP. As

discussed in Section 1.3, this project was started by TERA Foundation, and proposed in a

cyclinac solution in [7] and [28]. Here the project was studied in a all-linac configuration. The

main goal of the project is to design the most compact possible proton linac for conventional

proton therapy. For this reason, high gradient structures were studied. Mechanically-wise,

one of the linac is supposed to be mounted on a gantry rotating around the patient, to reduce

the space. The focus of this thesis is on the linac design, and this topic was not studied by the

author. The codes used to design the linacs and to perform the beam dynamics simulations

are discussed in Appendix A.

In the present Chapter, as well as in Chapter 4, few linear accelerators technical terms will

be frequently used, hereafter explained. The author refers to tanks for accelerating cavities

composed of more than one RF cell, and to modules for series of cavities connected to the

same RF power source.

3.1 General layout

Conceptually, TULIP (Fig. 3.1) can be split into a low gradient section, that will be placed on

the ground, and a high gradient section that will be mounted on a rotating structure, called

gantry. The footprint of the facility is driven by the rotating structure, that has to allocate,

together with the high gradient linac, also the high energy beam transfer line (HEBT) and the

beam diagnostic. As a result, about 10 meters are available on the ground to install the linacs

that have to boost the particles up to 70 MeV. This length has been fully exploited, in order to

minimize the power consumption for a given energy gain according to Eq. 2.6.

The design is based on a first acceleration up to 10 MeV in 750 MHz structures: the CERN RFQ

[32] [46] and the newly designed Inter digital H mode [IH] cavity (Section 2.2). Particles are

then injected into a 3 GHz linac chain composed of an DTL (Section 2.3) up to 70 MeV, and a

HG BTW (Section 2.4.1) or CCL (Section 2.5) up to 230 MeV. Table 3.1 summarizes the main
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Figure 3.1 – Sketch of TULIP all-linac. In the sketch, one can observe on the ground a represen-
tation of the RFQ (in dark orange) followed by the IH cavity and by the DTL cavities. The HG
BTW linac is hidden by the mechanical frames. The longitudinal dimensions in this artistic
illustration are the ones proposed in the present Chapter.
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Table 3.1 – Key parameters of the all-linac TULIP solution.

Type of structure Output energy [MeV] Active Length [m] Peak power [MW]
750 MHz RFQ 5 2 0.41

750 MHz IH 10 0.9 0.084
3 GHz DTL 70 4.1 11.3

3 GHz HG BTW 70-230 4.4 91.7

parameters of the linac design.

The duty factor of the linac is currently limited by the high gradient section. A typical DF value

of 0.1% would be reachable in both the RFQ, the IH and the DTL, but not in the CCL, due to

the thin septum wall thickness chosen to maximize the ZTT. As a result, a final design should

decide whether to privilege the acceleration efficiency and the linac compactness, but with

a lower DF, or a higher DF but with a lower accelerating gradient or an higher peak power.

The design presented hereafter will be limited by the high gradient section to a 0.01% DF, as

discussed in Section 2.4.5.

The 750 MHz RFQ was not studied by the authors, and it represents the starting point of the

present work. The following three accelerating structures forming TULIP has been studied in

detailed from both RF and beam dynamics point of view. The high gradient BTW structure

was also built and tested.

In the next Sections, the different linacs will be discussed separately. At the end of the Chapter,

the start-to-end simulation will be presented.

3.1.1 From 5 to 10 MeV

Protons are accelerated by the IH structure described in Section 2.2 from 5 to 10 MeV. The

attentive reader may remember from Section 2.2.1 that the ZTT advantage of IH cavities over

the other solutions considered extended well beyond 10 MeV/u. However, at the present stage

the cost per unit power of 750 MHz RF sources, currently only IOTs, is about one order of

magnitude higher than the corresponding cost in case of 3 GHz Klystron-Modulator based

solutions [47]. This difference is largely caused by the high demand of this latter technology

working at 3 GHz, caused by the market of X-ray electron linacs. However, even though is

the authors belief that this price difference will decrease in the future as a consequence of an

higher demand of 750 MHz RF power sources, at the present stage the crossing point between

a 750 IH solution and a 3 GHz DTL one has been found at 10 MeV/u, considering the cost

issue just explained.

To boost protons from 5 MeV to 10 MeV it has been chosen to use just one 100 kW IOT, resulting

in a fairly low gradient of about 5.7 MV/m, and into a 0.9 m long structure. The structure is

1total with losses
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Figure 3.2 – Beam 1 σ RMS envelope through the TULIP IH linac from 5 to 10 MeV (top) and
ratio of emittance growth with respect to initial (bottom).

tapered in length, and composed of 36 drift tubes. The first cell is 20.8 mm long, the last one

28.9 mm long. The average ZTT, taking into consideration the end-cells, is around 350 MΩ/m.

The beam from the RFQ was transversally matched with a triplet quadrupole focusing, and

then accelerated in the IH structure with a constant synchronous phase of -12 deg. A 16 %

margin in the IOT nominal power was kept, to take into account waveguides losses, so 84 kW

are actually dissipated in the cavity walls.

The beam was transversally matched using a triplet focusing (Fig. 3.2 bottom). A relatively

high synchronous phase of -12 deg was chosen only to facilitate the particles injection into

the 3 GHz DTL at 10 MeV. Indeed, a much lower synchronous phase (5 to 10 deg) would have

been needed to accept and control the particle from the RFQ. Due to its higher simplicity and

robustness, a constant synchronous phase solution was adopted rather than the well known

KONUS [60].

Concerning the longitudinal phase space, the Twiss αz parameter of the RFQ beam was

modified from 0 to 0.6 to improve the longitudinal matching. At the present stage, it has been

assumed that this will be achievable with a different RFQ design [61]. Alternatively, one should

consider to install a buncher cavity between the RFQ and the IH structure.

3.1.2 From 10 to 70 MeV

As it was demonstrated in Section 2.2 and 2.3.2, a IH-DTL solution is superior over a DTL from

both an RF and a beam dynamics point of view. However, costs considerations led towards the

96



3.1. General layout

decision of accelerating particles from 10 MeV onwards with a 3 GHz DTL linac.

Three modules tapered in length have been designed, each composed of 9 accelerating tanks.

The number of RF cells per tank goes from 5 in the first module, to 6 and 7 in the second and

last modules respectively. This is done in order to increase the ratio of active acceleration

length over the total length, taking advantage of the lower RF defocusing at higher particle

momentum. The synchronous phase is constant and equal to -20 deg in all the three modules.

A solution with an higher number of RF cells in the first module was studied, but it was not

feasible due to the too strong RF defocusing.

In the first part of this linac section the ratio between active and total length is relatively low.

The space for the PMQs, which are 30 mm long, has to be increased taking into account the

space for the flanges. A minimum space of 70 mm was considered following discussions with

colleagues. The PMQs considered for both TULIP and CABOTO were not designed by the

author, and commercial ones were considered. The maximum gradient and internal diameter

needed are 240 T/m and 8 mm. The proposed designs for TULIP and CABOTO could be

modified if those values were not achievable by standard PMQs.

The main parameters of this linac section are summarized in Table 3.2.

Table 3.2 – TULIP DTL main parameters.

Module
Output Number Act. Act./Tot. Avg. act. Peak Avg. ZTT

energy [MeV] of cells length [m] length gradient [MeV] power [MW] [MΩ/m]
1 20 5 0.78 0.53 13.6 1.9 75
2 40 6 1.31 0.64 16.2 3.7 94
3 70 7 2.05 0.74 15.6 5.7 88

The beam envelopes and emittance growth in this linac section are shown in Fig. 3.3.

Matching from a 750 MHz IH to a 3 GHz DTL

The beam matching between the 750 MHz IH and the 3 GHz DTL is one of the most critical

parts of the project. In the longitudinal phase space there is a reduction of factor 4 in the phase

acceptance, given by frequency increase. Concerning the energy acceptance, there is a factor

2 reduction, given by the square root dependence of λ, as shown in Eq. 3.1:

ωmax =
√

2qE0Tβ3γ3λ

πmc2 (φs cosφs − sinφs) (3.1)

However a factor
√

β3γ3 helps in increasing the energy acceptance, which was one of the

motivation in delaying the jump at 3 GHz from 5 to 10 MeV/u. In particular, going from 5

to 10 MeV, the acceptance for protons increases of a factor 0.22. As a final remark on the

longitudinal acceptance, an higher accelerating gradient E0T would only slightly increase the
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Chapter 3. TULIP: a high-gradient linear accelerator for proton therapy

Figure 3.3 – Beam 1 σ RMS envelope through the TULIP DTL from 10 to 70 MeV (top) and ratio
of emittance growth with respect to initial (bottom).

energy acceptance, given the square root dependence.

In the transverse phase space, the geometric emittance decreases of a factor βγ, so of about

50 % between 5 and 10 MeV. Nevertheless, while the RFQ is a bunching device, and it was

specifically developed to inject particles into a 3 GHz structure, the IH is an accelerating

structure, so it was not obvious at the beginning to be capable of reaching a good transition

and matching at 10 MeV.

A 33 cm long transverse matching section with 4 PMQs was designed to make the transition

from a triplet focusing system, used for the IH structure, to a FODO lattice. The Twiss parame-

ters were matched so to have a phase advance of almost 90 deg in the DTL structures. A full

transmission of the beam is reached, and the transverse emittance growth is well below 5 % at

the end of the linac (Fig. 3.3). In the first linac sections there is a local transverse emittance

growth up to 20 %, due to a residual initial mismatch. This effect cancels out later on.

In this section the PMQs reach the highest design gradients, with a maximum of 240 T/m,

though also in the HG section values are above 230 T/m. However, in this matching section the

beam envelopes are larger due to the triplet - FODO focusing transition. Having a 1 mm RMS

sigma envelope, the quadrupole aperture radius has to be at least 4mm to transmit all particles.

Thus, the PMQs in this section would have a maximum pole tip field of 240∗0.004= 0.96T .
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3.1.3 From 70 to 230 MeV

The protons are eventually accelerated up to 230 MeV in the high gradient linac.

For this section, two accelerating structures were considered, and they were both optimized

in terms of high gradient. These are the BTW structure (Section 2.4.1) and the CCL structure

(section 2.5).

The differences between a BTW and a CCL accelerating structure optimized for high gradient

operations for a geometric β of 0.38 was discussed in Section 2.6. The conclusion of this com-

parison is an advantage of the CCL solution in terms of ZTT, and thermal power dissipation,

thus maximum DF achievable. Considering the filling time, the CCL solution is comparable to

the BTW solution when a RF circulator is installed.

Following the considerations of Section 2.6, the authors consider the BTW and the CCL solu-

tions are ultimately even. However, we will review two designs, based on the two technologies,

but comparable in length and number of elements. Before presenting the high gradient linac

beam dynamics design, in the following Section we will review the theory of an energy varying

beam line.

Maximizing the energy acceptance of a beam line

TULIP is based on the idea of varying the output beam energy in the range of what is needed

for patient treatment. In case of protons, to reach the conventional range of penetration in

water equivalent tissues, one needs proton ranging from 70 to 230 MeV. For cost and simplicity

considerations, it has been decided to design a line with permanent magnets (PMQ), still

reaching full transmission at all energies.

In the following, we derive the condition to maximize the energy acceptance of a beam line

composed of permanent quadrupole, for a given lattice geometry. One can start from the basic

beam dynamics equations that can be found in general particle accelerators book [43] [42].

The normalize transverse acceptance of a linac is given by:

An = βγ

β+
·Rbor e

2, (3.2)

withβ+ maximum of the Twiss beta parameter, and Rbor e bore aperture radius. For a given bore

aperture Rbor e , the linac transmission can be maximized by minimizing the Twiss betas. Also

one can notice that the acceptance increases with the beam energy βγ, because the geometric

emittance shrinks. This is valid under the assumption that the normalized emittance remains

constant.

It is convenient to express the Twiss betas β± in terms of phase advance. The FODO theory,
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Chapter 3. TULIP: a high-gradient linear accelerator for proton therapy

even though not entirely correct when describing a linac, works well enough. The maximum

and minimum Twiss beta over a FODO cell are then given by:

β± = 2L
(1± sin(μ/2)

sin(μ)
(3.3)

Where L is the FODO length and μ is the transverse phase advance per cell.

In case of a magnetic line with PMQs, the transverse phase advance and the Twiss βs seen by

the beam vary with the output energy.

In a round beam, as the RFQ output, we have εx ≈ εy , so the geometric dimension of the beam

is given by A =π ·R2 =π · (εxβx +εyβy ). The beam size is minimized in case of phase advance

of 90 deg, as one can verify by plugging Eq. 3.3 in the above expression. Having however a

varying phase advance as a function of the energy, one needs to find the best compromise that

maximize the acceptance in the range of energy of interest.

The optimum is found when the phase advance is 90 deg at the minimum beam line energy,

and then decreases as the beam energy increases. The decrease has to be such that:

β+Emi n

β+Emax

= (βγ)Emi n

(βγ)Emax
(3.4)

which simply means that the beam envelope must have the same dimension in the two

extreme cases at the end of the line. Since the β+ and the βγ curves as a function of the final

beam energy have a positive second order derivative, the worst conditions are found at the

two extremes.

From Eq. 3.4, it is clear that the larger the momentum difference between the two energies that

have to be transmitted through the beam line, the larger has to be its transverse acceptance.

So CABOTO (Section 4), where the beam has to be varied between 100 and 430 MeV/u, needs

an higher transverse acceptance than TULIP, for a given beam emittance.

In conclusion, one shall follow these steps in the lattice design:

• match transversally the beam for a 90 deg phase advance at the linac minimum energy

section, in order to minimize the emittance growth;

• maximize the cumulative transmission at the minimum and maximum linac energy;

the transmission in all other cases lies in between these two results;

• if there are losses, reduce the FODO length, or increase the beam aperture.
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The high gradient BTW linac

A 18 accelerating structures linac was designed. The target gradient is 40 MV/m. The linac is

approximately 6.2 m long, and accelerates the particles up to 230 MeV. The gradient chosen

does not fully exploit the limit at which the structure has been designed (50 MV/m) to maintain

a safety margin in terms of BDR. In addition, the compactness goal of the structure was already

reached with a 40 MV/m gradient. Finally, this 20 % reduction in gradient translates into a 36

% reduction in RF thermal load into the structure, allowing a higher duty cycle of 0.01 %. The

synchronous phase is -15 deg in all the accelerating structures, that are all composed of 12 RF

cells. The ZTT increases for the higher energies cavities, and so does their length. Interestingly,

it has been possible to have an almost constant accelerating gradient throughout the different

cavities with an approximately constant peak power consumption per cavity of 5 MW.

The main parameters of this linac section are summarized in Table 3.3.

Table 3.3 – TULIP BTW linac main parameters.

Cavity
Output Act. Avg. act. Peak Avg. ZTT

energy [MeV] length [m] gradient [MeV] power [MW] [MΩ/m]
1 76.9 0.187 37.5 5.06 52
2 84.2 0.195 38.0 5.12 55
3 91.7 0.203 37.7 5.07 57
4 99.4 0.210 37.7 5.08 59
5 107.4 0.218 37.7 5.08 61
6 115.7 0.225 37.7 5.05 63
7 124.3 0.231 37.7 5.05 65
8 133.1 0.239 37.7 5.11 67
9 142.1 0.246 37.6 5.08 68

10 151.3 0.258 37.6 5.12 70
11 160.8 0.258 37.6 5.10 71
12 170.5 0.265 37.5 5.10 73
13 180.4 0.270 37.4 5.12 74
14 190.5 0.276 37.4 5.13 75
15 200.8 0.282 37.2 5.13 76
16 211.2 0.287 37.1 5.15 77
17 221.8 0.293 36.9 5.12 78
18 232.5 0.298 36.8 5.10 79

Varying the phase and amplitude of the RF power in each accelerating structure allows for

a smooth variation of the final energy. For this reason, a single coupler solution has been

studied (see Section 2.6).

The emittances and beam envelopes are shown in Fig. 3.4 and 3.5 for the two extreme cases of

no acceleration and full acceleration, respectively.

The matching section between the DTL and the BTW linac was considerably easier than the

10 MeV transition. The solution proposed here comprises 4 PMQs and a buncher cavity to

improve the longitudinal matching. This is just a temporary solution, given that the MEBT, as

shown in Fig. 1.12, is much longer and involves also dipoles. This part has not been studied
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Chapter 3. TULIP: a high-gradient linear accelerator for proton therapy

Figure 3.4 – Beam 1 σ RMS envelope through the TULIP BTW linac with no acceleration after
70 MeV (top) and ratio of emittance growth with respect to initial (bottom).

Figure 3.5 – Beam 1 σ RMS envelope through the TULIP BTW linac with full acceleration up to
230 MeV (top) and ratio of emittance growth with respect to initial (bottom).
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yet since the mechanical design has yet to be finalized.

The high gradient CCL linac and comparison with the BTW one

The design above presented reaches full transmission of the particles between 70 and 230 MeV,

but is however quite at the limit in terms of maximum Twiss beta. All the BTW accelerating

structures are 12 cells long. This means that it is possible to obtain an exactly equivalent CCL

design, composed of 18 accelerating structures, 10 cells long.

As a result, the difference between the two solutions translates in a different peak power

consumption, accordingly to ZTT difference reported in Fig. 2.60. This difference is about 7 %

at 70 MeV and gets null at 230 MeV.

3.2 Beam dynamics in a cyclinac solution

This section discusses the first design of a all-linac solution for the TULIP project. As men-

tioned, the majority of the studies carried out in the past focused instead on a cyclinac solution.

Here a detailed beam dynamics study of this concept is presented, in order to point out the

major differences.

The 11th accelerating structure of the DTL linac accepts as input particles at 24 MeV. It has

been supposed to replace the previous linac section with a commercial 24 MeV cyclotron.

This would result in a bigger transverse emittance, and a continuous beam for the 3 GHz RF

frequency, as discussed in Section 2.3.2. The transverse emittance can be collimated, however

the beam cannot be chopped at 3 GHz. As a result, the beam will be lost in the linac section,

with losses that are proportional to the ratio synchronous phase - 360 deg . This situation has

been simulated, and the results are presented in Fig. 3.6 and 3.7

The losses are concentrated in the first 3 m of this design, causing strong material activations

in all the area. However, here we would like to draw the reader attention on the emittance

growth. While the transverse one is "controlled" by the linac acceptance, so it does not grow

uncontrolled, the longitudinal phase space is heavily influenced.

These two aspects reflect into an higher complexity and costs of the beam transport line from

the linac output to the patient. The increase in normalized transverse emittance requires

bigger magnets aperture, therefore eventually costs. On the other hand, the increased longitu-

dinal emittance results in a strongly variable energy spread as a function of the beam output

energy. This impacts on the design of the magnetic channel, which needs a high momentum

acceptance to control the dispersion.

In Fig. 3.8 one can notice the difference just explained. The transverse Twiss parameters are

instead comparable in magnitude for the two solutions.
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Chapter 3. TULIP: a high-gradient linear accelerator for proton therapy

Figure 3.6 – Beam 1 σ RMS envelope through a cyclinac TULIP solution with no acceleration
after 70 MeV (top) and ratio of emittance growth with respect to initial (bottom)

Figure 3.7 – Beam 1 σ RMS envelope through a cyclinac TULIP solution with full acceleration
up to 230 MeV (top) and ratio of emittance growth with respect to initial (bottom)
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3.3. Quadrupole misalignments

Figure 3.8 – Beam output energy spread in TULIP all-linac and cyclinac as a function of the
final kinetic energy

Figure 3.9 – Methodology adopted in the TULIP quadrupole misalignments study.

3.3 Quadrupole misalignments

The tolerance to quadrupole misalignments has been studied considering the three linac

sections separately, in order to untangle possible criticality and to highlight the more sensitive

areas. So, for example, the CCL results referred to the misalignment of the CCL quadrupoles

only, assuming the previous quadrupoles correctly aligned. On the other hand, the IH results

refer to the analysis up to the beginning of the DTL linac. In total, the misaligned quadrupoles

are 7 for the IH section, 31 for the DTL section, and 19 for the CCL section. The methodology

adopted is summarized in Fig. 3.9.

The quadrupoles were misaligned with an x/y translation first, and then with an x/y rotation.

Following the CLIC methodology, the quadrupoles are rotated around the longitudinal mid

point. Lastly, the tolerances in terms of quadrupole gradients were also studied. The misalign-
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Chapter 3. TULIP: a high-gradient linear accelerator for proton therapy

Figure 3.10 – Transverse and rotational quadrupole misalignment study for the IH section of
TULIP. Gradient tolerances to the right.

ment follows a Gaussian distribution, and the results are presented as a function of the σx/y

and σx ′/y ′ considered. For simplicity, the σ along x and y were considered equal. Lastly, the

quadrupoles gradient was also studied.

The analysis followed a Monte-Carlo approach, with 100 simulations (N) for each experiment.

For each σ, the correspondence final mean expected value E [x] and percent relative standard

deviation PRSD as error bar are presented:

E [x]=
∑N

i=1 xi

N
, (3.5)

σ2 =
∑N

i=1(xi )2− (E [x])2

N
, (3.6)

PRSD = 100 ·
�
σ2

�
N ·E [x]

2, (3.7)

The studied variable is the final beam transmission, in percent. The final emittance is not

presented since it is biased by the losses. The results are presented in Fig. 3.10 3.11 3.12 for the

three linac sections.

The most sensitive section is the DTL one (Fig. 3.11). This was somehow expected, given

the efforts put in the matching section between the 750 MHz IH and the 3 GHz DTL part,

discussed in Section 3.1.2. If one considers a 95% total transmission as a threshold, and

under the assumption of a Gaussian distribution of the quadrupole misalignments, one would

need a transverse misalignment smaller than 0.035 mm for the IH quadrupoles, of 0.02 mm

for the DTL one, and of 0.035 mm for the CCL one. These are very strict requirements, and

are a consequence of the design proposed, that intentionally explored the limits in terms of

maximum gradient and compactness.

2In Monte Carlo analysis, the error goes with the square root inverse of the number of experiments.
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Figure 3.11 – Transverse and rotational quadrupole misalignment study for the DTL section of
TULIP. Gradient tolerances to the right.

Figure 3.12 – Transverse and rotational quadrupole misalignment study for the CCL section of
TULIP, when all the accelerating cavities are at the nominal voltage. Gradient tolerances to the
right.

A way to ease these requirements would be to increase the matching section between IH and

DTL, adopting one or more buncher cavities. Or one would need to increase the linac bore

apertures.

Alternatively, one should consider the installation of beam positioning monitors (BPM) and

steering magnets (SM) along the linac. The number and location of these should be decided

following, for example, the procedure discussed in [62] for CERN Linac4.

3.4 Start-to-end simulation: from 5 MeV to 230 MeV

The first all-linac solution of the TULIP project has been presented.

The beam dynamics linac design features full transmission and minimized emittance growth,

and it has been accomplished with full tracking of the particles from the RFQ output till 230

MeV, using RF EM field maps for the accelerating structures computed with HFSS. This is

unique for such a long linac. The effort is justified by the peculiar cavities considered, that

as we discussed, show di-polar components, asymmetries and travelling wave regimes that

cannot be simulated with standard tracking codes. This is the reason why the novel tracking

code RF-Track has been developed explicitly for this project (see Appendix A).

Fig. 3.13 shows the main linac design parameters. A graphical way of reporting this data was
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used, with the aim of having a fast-to-read and complete source of information. It is worth

commenting again a few characteristic of the design. The linac is composed by a IH 0.9 m long

cavity, followed by a DTL, a buncher cavity, and the high gradient CCL/BTW. The accelerating

gradient step is clearly observable in Fig. 3.13 top left. A similar way to discuss this difference

is by considering Fig. 3.13 bottom left. Here a key characteristic of this design is reported, i.e.

the peak power consumption distribution along the linac. The combination of high gradient

and lower ZTT, given by the high gradient RF optimization, leads to a major concentration of

the peak power installed, approximately 90% of the total, in the high gradient section. The

first part of the linac, up to the buncher cavity, was optimized in terms of ZTT. In Fig. 3.13 top

right, one can notice the ZTT trend along the structures. In particular, the DTL ZTT optimum

saturates well before 70 MeV, due to the RF cells getting too long. As a last piece of information,

the RF cell length and diameter is reported in Fig. 3.13 bottom right. This is another way to

present the ZTT behaviour of the linac. The DTL section, being 2π mode, gets too long towards

the end of the linac, and so it looses in ZTT. Interestingly, the resonant mode for the optimum

ZTT is obtained mostly by varying the gap, while the overall cell diameter is approximately

constant throughout the linac.

Table 3.4 summarizes similar information in a more common numeric form.

The linac dissipated power, rather than the total RF power to be installed. This choice is

motivated by the uncertainty on the exact power losses occurring across the RF network

between klystron and accelerating structures. For instance, as discussed in Section 2.4.6, there

could be a significant decrease in the waveguide losses whether a BTW solution were chosen

upon a CCL one. If, however, one is interested in an estimation of the total installed RF peak

power, one could increase the values of Table 3.4 of a factor 10%, being optimistic, or 20%,

being more conservative. In this latter case, one should account for approximately 125 MW RF

peak power for the TULIP project. The only exception is the RFQ, where the total installed

power is reported, being a design already finalized and not studied by the author.

Table 3.4 – TULIP all-linac - A summary.

Linac Operating Output Avg. Synch. Act. Tot. Cum. Avg.ZTT Peak Power
Section Freq. [MHz] En. [MeV] Grad. [MV/m] Phase [deg] Length [m] Length [m] [MΩ/m] [MW]

RFQ 750 5 2.6 15 (final) 2 2 38 0.43

IH 750 10 5.7 12 0.9 3.3 350 0.084
DTL 2998.5 70 15.5 20 4.1 9.8 86 11.3

BTW-CCL 2998.5 70-230 37.7 15 4.4 17.5 68 91.7

The beam dynamic design is summarized in Fig. 3.14 for the two extreme cases of no accel-

eration and full acceleration. One can notice the beating in the beam envelopes, especially

after the IH-DTL transition. This part was explained in detail in the previous Sections, but

as a reminder, the two critical aspects were introduced by the abrupt change in accelerating

gradient, observable by the longitudinal phase advance increase (green curve), and by the

change in operating frequency, from 750 MHz to 3 GHz.

3total with losses
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Figure 3.13 – TULIP all-linac main accelerating parameters.

Continuing on along the linac, one can observe the difference final beam envelopes, in the

two cases of no acceleration and full acceleration. As discussed in Section 3.1.3, an optimized

line should have the same beam envelopes in this two extreme cases. However, some residual

mismatch a the beginning of the line, together with a transverse phase advance too high, thus

penalizing for the no acceleration case, are the reasons of this difference. Nonetheless, the

main goals of the project, i.e. full transmission and emittance growth control in a compact

proton linac, have been achieved.

Finally, Fig. 3.15 shows the classic representation of the transverse and longitudinal envelopes

mirrored around the centre. The case of no acceleration after 70 MeV is easily recognizable

by the growth of σz - in green colour in the plot - as soon as the particles are not accelerated

anymore.
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Figure 3.14 – Beam 1 σ RMS envelope through the TULIP all-linac solution and ratio of emit-
tance growth with respect to initial. No acceleration after 70 MeV (top) and full acceleration
up to 230 MeV (bottom).
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3.4. Start-to-end simulation: from 5 MeV to 230 MeV

Figure 3.15 – The 70 MeV (top) and 230 MeV (bottom) beam envelopes along TULIP all-linac.
1 RMS σx (red), σy (blue) and σz (green).
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4 CABOTO: a high-efficiency linear
accelerator for carbon ion therapy

CABOTO differs substantially from TULIP. Not just because of type of particles accelerated,

carbon ions instead of protons, but mostly because of what this choice implies in terms of

design.

To obtain the same equivalent penetration in water-equivalent tissue of a 230 MeV proton

beam, one needs a 430 MeV/u carbon ion beam, according to Eq. 1.3.

To this difference, one shall add the difference in q/m. In the best case scenario, a ion source

is capable of delivering fully stripped carbon ions, thus having a 0.5 q/m. In other words,

it is four time more challenging, in terms of either accelerating gradient, linac length or a

combination of the two, to accelerate carbon ions with respect to protons for the same tissue

penetration.

If one would simply take the TULIP design, and maintain the same overall dimensions, one

would need a 4 times higher accelerating gradient. Neglecting for the moment BD and thermal

limitations, such design would result in a total peak power 16 times higher than the TULIP

one, due to the square dependence between gradient and power. This is clearly not feasible: in

case of carbon ion linac for hadron therapy, one cannot design a realistic facility with compact

footprint. For this reason, CABOTO is a combination of longer linacs and lower accelerating

gradients with respect to TULIP.

The lower accelerating gradients permitted to increase the linac efficiency. To achieve this goal,

two main directions were followed. First of all, a more aggressive optimization of the nose

cell region, with benefits for TT and ZTT. Second of all, the linac design aimed at a reduced

bore aperture, though always maintaining a 100% transmission as first goal. As discussed in

Section 2.7.3, the bore aperture reduction is the most effective way to increase the ZTT.

A new idea from TERA Foundation and Prof. Amaldi proposes the use of He. In this case, there

would be only a factor 0.5 q/m of difference between He and proton beams. In fact, from

Eq. 1.3, one can notice that the stopping power is the same between He and protons. An

adaptation of the CABOTO design in view of an He facility is discussed in Section 4.4.
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Figure 4.1 – Sketch of CABOTO all-linac. In the sketch, one can observe the separation in
two branches of the proposed design. The CCL linac section is updated with the number of
cavities and with the longitudinal dimensions proposed in the present Chapter. Instead the
section from the RFQ to the DTL at 100 MeV/u is not up to date.

Table 4.1 – Key parameters of the all-linac CABOTO solution.

Type of structure Output energy [MeV/u] Active Length [m] Peak power [MW]
750 MHz RFQ 2.5 ND ND

750 MHz IH 10 2.5 0.257
3 GHz DTL 100 11.7 26.3
3 GHz CCL 100-430 23.1 189.1

The C-11 acceleration, of interest in different projects arising worldwide [63], has not been

studied, but it would be possible. In fact, to maintain the synchronous acceleration of the

beam, one could reduce the accelerating gradient of around 8%, according to the ratio of q/m
6/12
6/11 = 11/12.

4.1 General layout

The general layout of CABOTO is shown in Fig. 4.1. Not all the dimensions are up to date with

the design proposed in this thesis, but Fig. 4.1 helps in discussing the general layout.

To reduce the footprint, the linac is split into two branches of equal length. The ion sources,

RFQ, IH (Section 2.2) and DTL (Section 2.3) shall form one branch, and the CCL (Section 2.7)

the other one. Table 4.1 summarizes the main parameters of the linac design.
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The bottleneck is represented by the CCL section, that has to boost C6+ from 100 MeV/u to

430 MeV/u, thus an energy gain of 660 MeV. For this Section, an average accelerating gradient

of 30 MV/m was chosen, following power consumption considerations that will be discussed

further on.

This choice results in an approximately 30 m long CCL section, which then represents the

target for the other branch. Given that ion sources, RFQ and IH cavities are more driven by

beam dynamics and power consumption optimization, the length constraint reflects mostly

in the accelerating gradient of the DTL linac, resulting in an average value of 15 MV/m. As

discussed in Section 2.3.1, this higher gradient with respect to TULIP, together with a possible

higher DF, likely will call for a drift cooling system design.

As a final comment, the 100 MeV/u bend was chosen on purpose. In fact, modulation of the

beam energy should start at this level, which is equivalent to the 70 MeV of protons, as one

can verify from Eq. 1.3. This is convenient, since the beam momentum will change just after

the 180 deg bend, thus there dipoles and quadrupoles can have a static field.

In conclusion, the CABOTO design is composed of three sections, that have been studied by

the author:

• four 750 MHz IH cavities, from 2.5 MeV/u to 10 Mev/u;

• a 3 GHz DTL, from 10 MeV/u to 100 MeV/u;

• a 3 GHz HE CCL, from 100 MeV/u to 430 MeV/u.

Prior to the IH cavities, it has been assumed that a 750 MHz RFQ will deliver 2.5 MeV/u C6+

beam with similar emittance with respect to the proton RFQ [32], after a discussion with one

of the designer of the proton RFQ [61]. The project of a 750 MHz 1/2 q/m RFQ is currently

under study by the same group at CERN.

Each of these sections is discussed separately in the following.

Main advantages of CABOTO over synchrotron based C ions solutions

Current carbon ion therapy facilities worldwide are only based on synchrotrons. The absolute

winning technology for proton therapy, cyclotrons, so far failed in dealing with the higher

momentum needed by carbon ions for medical purposes. Probably the best known effort in

this regard, IBA C400 [19], is under study since many years, but prototypes have not been

delivered yet.

Together with the fast energy modulation advantage discussed in Section 1.2, a carbon ion

linac would have two other main advantages over a synchrotron.
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The first one is the final beam current. Final of 6∗ 1010C 6+ per second, which is around

two order of magnitude higher that what you get in a synchrotron. This advantage could

be exploited in two ways: one could simply propose a machine with an higher current, thus

capable of delivering an higher dose and so likely advantageous from a medical point of

view. Alternatively, one could collimate the beam output even further, so to reach a current

equivalent to state-of-art synchrotron solutions. In return, this would allow to decrease even

further the bore aperture, so ultimately the RF power consumption of the facility.

The second advantage is the average power. Here a comparison between the particle accelera-

tor power is proposed. CABOTO has total peak power of approximately 240 MW. Assuming

a 1∗103 DF, one would have an average power of 240 kW. For comparison, the MedAustron

synchrotron has an average power during an high energy extraction of approximately of 700

kW for quadrupoles, sextupoles and correctors, and of 1000 kW for the dipoles [64]. In addition,

the power required by the injection linac is not counted here. As a final remark, since linacs

have a faster treatment time over synchrotrons, also their average energy consumption per

treatment is lower.

4.1.1 From 2.5 MeV/u to 10 MeV/u

For the linac design described this section, the experience gained in the corresponding TULIP

part was very valuable.

Here, a total of 15 MeV energy gain is needed, while in TULIP just 5 MeV were required. To fill

this gap, it has been decided to consider three 100 kW IOTs, and to increase the active length

by a factor 3. In fact, from Eq. 2.6, to a factor three increase in the energy gain, it corresponds,

for the same shunt impedance, a factor 32 increase in the product of the dissipated power

times the cavity length.

Another possible solution is to increase the shunt impedance, but this would have been only

possible by reducing the bore aperture, since the IH cavity has been already optimized in

terms of ZTT.

The initial, straightforward, choice of considering three IH cavities, with the same gradient

and length as the TULIP IH cavity, did not guarantee the full transmission of the beam, due to

the RF defocusing inverse dependence on the particle momentum. So the first IH cavity was

actually split into two cavities, both considered to be powered by the same IOT.

In summary, the design proposed comprise four IH cavities, as reported in Table 4.2.

There is a little lower margin, in terms of peak power, with respect to the TULIP design.

This because the total active length of the 4 cavities is not exactly three time the TULIP IH

cavity length, so this was compensated with a slightly higher accelerating gradient and power

consumption. Also, higher synchronous phases were chosen here with respect to TULIP (12

deg). Rationales of this choice is discussed afterwards.
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4.1. General layout

Table 4.2 – CABOTO IH section main linac parameters.

Cavity
Output Number Act. Avg. act. Synch. Peak Avg. ZTT

energy [MeV] of cells length [m] gradient [MeV] phase [deg] power [MW] [MΩ/m]
1 3.75 20 0.33 7.6 8 39 487
2 5 20 0.38 6.7 18 40 432
3 7.5 36 0.82 6.4 18 90 372
4 10 36 0.98 5.3 16 88 316

Figure 4.2 – Beam 1 σ RMS envelope through the CABOTO IH linac from 2.5 to 10 MeV/u (top)
and ratio of emittance growth with respect to initial (bottom).

As discussed in Section 2.2.5, the overall efficiency of an IH cavity is a function, amongst the

other parameters, of the number of RF cells. In particular, the higher is this number, the closer

is the overall ZTT to the regular cell one, since the effects of end-cells are less important. Cavity

1 and 2 would need a specific RF design with an RF coupler between the two to reduce the RF

losses, as in many IH cavities worldwide. The RF design did not reach this level of detail, and

this topic is left open to further studies.

The beam dynamics study of the IH cavities were driven by the main goal of reaching a

full beam transmission, together with a minimized emittance growth. The design was also

influenced by the 10 MeV/u change from a 750 MHz linac to a 3 GHz one, as for the TULIP

design. A longitudinally convergent beam is in fact needed at the output of the 750 MHz IH

cavities to allow the design of a matching section without adopting buncher cavities.

A fairly low synchronous phase of 8 deg was chosen for the first IH cavity. This helped the

longitudinal matching and limited the RF defocusing, allowing an higher degree of freedom in

the following cavities settings.
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Chapter 4. CABOTO: a high-efficiency linear accelerator for carbon ion therapy

Cavities 2, 3 and 4 have a synchronous phase of 18, 18, and 16 deg respectively. Here the triplet

focusing adopted in the TULIP IH cavity was abandoned for an asymmetric focusing. This

choice allows to match in a shorter length the transverse phase space to the FODO acceptance

of the DTL. As for the TULIP design, the matching section between the IH cavities and the

DTL structures is the crucial point of the beam dynamics design. The 16 deg choice for the

last cavity is motivated by the fact that the beam is already longitudinally convergent at the

exit of the third cavity. A lower synchronous phase, thus a lower RF defocusing, allows a less

transversally divergent beam, easing the matching to the FODO lattice of the DTL.

The matching sections are all composed of 3 quadrupoles. As for the TULIP design, a maximum

quadrupole gradient of 240 T/m was considered.

The beam envelopes and emittances of this section are summarized in Fig. 4.2. One could

notice a bit of asymmetry in the triplet focusing. This was found to help in decreasing the

longitudinal space for a triplet focusing to a FODO focusing transition. With respect to the

TULIP matching at 10 MeV, the CABOTO case is a bit more difficult, since the 0.5 charge over

mass of each nucleon decreases the energy acceptance as shown in Eq. 3.1.

4.1.2 From 10 MeV/u to 100 MeV/u

Like the IH cavity, also the DTL section could not be improved from RF point of view, being

already optimized in terms of ZTT. The choice then was to consider a constant number of 8

RF cells per structure, with a 90 deg transverse phase advance, so to have a beam envelope

reduction with the particles momentum. For comparison, the choice adopted in the TULIP

project, were dimensions are the main issue, was to increase the number of RF cells in the

DTL modules at higher energies, so to increase the active to total length ratio, and so to reduce

the overall dimensions. In TULIP the number of cells per DTL tank varied from 5, at 10 MeV/u,

to 7 at 70 MeV/u (see Table 3.2). As discussed with Eq. 2.17, the lower q/m permits to have

longer structures at 10 MeV/u in CABOTO.

The resulting beam envelope, simulated with the code discussed in Appendix A.1, is decreasing

(Fig. 4.3). This tapered bore aperture has been applied to the RF design, though applying a

constant conservative coefficient throughout the linac. A gain of approximately 12% in ZTT,

with respect to the constant 2.5mm design used in TULIP, has been reached (Fig. 2.25).

The gain in ZTT is considerable. However, it acts on a linac section that accounts for approx-

imately 15% of the total peak power of the project, as shown in Table 4.5. The full benefits

of the bore aperture reduction will be evident in the following CCL section, from 100 to 430

MeV/u.

For this section, a constant synchronous phase of 18 deg was chosen. The linac is composed

of 50 accelerating structures, hereafter grouped in 5 modules in Table 4.3.

In order to obtain a 90 deg phase advance in this section, the quadrupole strength is higher
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4.1. General layout

Figure 4.3 – Preliminary beam tracking in the 10-100 MeV/u section of CABOTO performed
with the code presented in Section A.1.

Figure 4.4 – Beam 1 σ RMS envelope through the CABOTO DTL from 10 to 100 MeV/u (top)
and ratio of emittance growth with respect to initial (bottom).
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Chapter 4. CABOTO: a high-efficiency linear accelerator for carbon ion therapy

Table 4.3 – CABOTO DTL main parameters.

Module
Output Act. Act./Tot. Avg. act. Peak Avg. ZTT

energy [MeV] length [m] length gradient [MeV] power [MW] [MΩ/m]
1 20.0 1.39 0.60 15.2 3.1 102
2 34.7 1.88 0.66 16.4 4.1 125
3 53.7 2.37 0.72 16.9 5.1 132
4 76.1 2.83 0.73 16.6 6.3 124
5 100.3 3.25 0.75 15.7 7.7 104

than in the TULIP project given the 0.5 q/m ratio. To be consistent with the pole tip field limits

of TULIP (1 T), all the quadrupoles from this section onwards had to be enlarged, from 3mm

to 4.5mm. This change increased the filamentation problem highlighted in Section 2.3.2.

A quite substantial beating occurs along the linac, which is due to the asymmetries introduced

by the IH focusing and short matching section, that did not manage to fully match the beam.

This could be solved by a longer transverse matching section, that would in return required

one or more buncher cavities. The goal of full transmission of particles and controlled emit-

tance growth is however reached. The beam envelopes and emittances of this section are

summarized in Fig. 4.4.

4.1.3 From 100 MeV/u to 430 MeV/u

The CCL section consists of 64 cavities, all of which are composed of 12 RF cells. It was not

possible to adopt an higher number of cells with the 100% transmission goal. Interestingly, a

constant 12 RF cells design is also proposed for the TULIP HG section. There the accelerating

gradient is higher, but at the same time, the FODO momentum acceptance is lower.

In this section, it has been chosen to consider a constant gradient throughout the linac. This

has the advantage of fully exploiting the field limitations, and so to have the most compact size

for the given design. However, given the ZTT behaviour as a function of the cavities geometric

β and the different length of the cavities, it results also in a variable power consumption in each

tank. One could either size the power sources for the highest peak power cavity, and reduce the

output power in the other sections. Or it could adopt RF power sources with variable output

power. Lastly, one could change the design, adopting a constant power consumption per

cavity, and so a lower gradient in the cavities with the lowest Z T T ·L product. Thus eventually

a longer linac.

In this latter case, it has been computed a linac with total length of 31.4 m and peak power

consumption of 177 MW. In the case of a constant gradient, a total length of 29.5 m and a

peak power consumption of 189 MW. The design here proposed is this second option, thus

a a 6 % shorter linac with a 6 % higher power consumption. The solution of increasing the

number of cell can not be pursued due to the beam dynamics limitations discussed above.

Once a final decision will be taken on the RF power sources to use, and a precise estimation
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4.2. Quadrupole misalignments

Figure 4.5 – Beam 1 σ RMS envelope through the CABOTO CCL with no acceleration after 100
MeV/u (top) and ratio of emittance growth with respect to initial (bottom).

of the power losses in the RF connections between klystrons and accelerating structures, it

will be possible to further refine the design. At the present stage, it has been considered two

group the 64 cavities into 32 modules of two cavities each. The peak power consumption of

the modules range from 5.2 MW to 6.5 MW.

The synchronous phase is constant and equal to 15 deg. The emittances and beam envelopes

are shown in Fig. 4.5 and 4.6 for the two extreme cases of no acceleration and full acceleration,

respectively.

The main parameters of this linac section are summarized in Table 4.4.

A buncher cavity was placed in the matching section between the DTL and the CCL linacs. As

for TULIP, this does not represent a final solution, but it was necessary to control the beam

that otherwise would have been to large to fit into the longitudinal acceptance of the CCL

cavities. A 2.2 m long matching section was designed, composed of 6 PMQ including the final

DTL and the initial CCL ones. This could well represent a reasonable final solution in terms

of overall length, even though the presence of a dipole would call for dispersion suppressors,

and so a re-design of the proposed layout.

4.2 Quadrupole misalignments

The quadrupole misalignment study for CABOTO followed the methodology discussed in

Section 3.3. The obvious difference with respect to TULIP lies in the linacs length and number
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Chapter 4. CABOTO: a high-efficiency linear accelerator for carbon ion therapy

Table 4.4 – CABOTO CCL main parameters.

Cavity
Output Act. Avg. act. Peak Avg. ZTT

energy [MeV] length [m] gradient [MeV] power [MW] [MΩ/m]
1 107.9 0.524 30.3 5.2 93
2 115.8 0.539 30.3 5.2 95
3 123.9 0.555 30.2 5.3 96
4 132.2 0.571 30.0 5.3 98
5 140.7 0.586 30.3 5.3 99
6 149.4 0.601 30.0 5.4 101
7 158.4 0.615 30.1 5.5 102
8 167.5 0.629 30.2 5.6 103
9 176.9 0.643 30.2 5.6 104

10 186.4 0.656 30.1 5.6 105
11 196.1 0.670 30.0 5.7 106
12 205.9 0.682 29.9 5.7 107
13 215.9 0.694 29.8 5.8 107
14 226.0 0.706 29.8 5.8 108
15 236.3 0.718 29.8 5.9 109
16 246.8 0.729 29.8 6.0 109
17 257.5 0.740 29.8 6.0 110
18 268.3 0.751 29.8 6.0 110
19 279.2 0.760 29.7 6.1 111
20 290.2 0.771 29.7 6.1 111
21 301.3 0.781 29.6 6.1 111
22 312.6 0.790 29.5 6.1 112
23 323.9 0.799 29.4 6.2 112
24 335.3 0.808 29.4 6.2 112
25 346.9 0.817 29.4 6.3 112
26 358.7 0.826 29.4 6.4 112
27 370.5 0.834 29.4 6.4 113
28 382.4 0.842 29.4 6.4 113
29 394.5 0.850 29.4 6.5 113
30 406.6 0.857 29.3 6.5 113
31 418.8 0.864 29.2 6.5 113
32 431.0 0.872 29.1 6.5 113
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4.2. Quadrupole misalignments

Figure 4.6 – Beam 1 σ RMS envelope through the CABOTO CCL with full acceleration up to
430 MeV/u (top) and ratio of emittance growth with respect to initial (bottom).

Figure 4.7 – Transverse and rotational quadrupole misalignment study for the IH section of
CABOTO. Gradient tolerances to the right.

of quadrupoles. For comparison, the proposed TULIP design has 55 quadrupoles, while the

CABOTO one has 136 quadrupoles. The misaligned quadrupoles are 17 for the IH section, 56

for the DTL section, and 81 for the CCL section. The results are presented in Fig. 4.7 4.8 4.9 for

the three linac sections, respectively.

As in TULIP, the most sensitive section is the DTL one (Fig. 4.8), though this time also the IH

and the CCL sections have tight tolerances. With 95% total transmission as a threshold, and

under the assumption of a Gaussian distribution of the quadrupole misalignments, one would

need a transverse misalignment smaller than 0.02 mm for both the IH, the DTL and the CCL

quadrupoles.

Previously discussed in Section 4.1.2, CABOTO features a tapered bore radius from 2.5mm

to 2mm in the DTL linac, and a 2mm bore radius in the CCL section. This is different with
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Chapter 4. CABOTO: a high-efficiency linear accelerator for carbon ion therapy

Figure 4.8 – Transverse and rotational quadrupole misalignment study for the DTL section of
CABOTO. Gradient tolerances to the right.

Figure 4.9 – Transverse and rotational quadrupole misalignment study for the CCL section of
CABOTO, when all the accelerating cavities are at the nominal voltage. Gradient tolerances to
the right.

respect to TULIP, where a constant bore radius was considered, and it is justified by the longer

footprint at disposal for the facility, and by the need to maximize the ZTT. However, as just

shown, CABOTO has even stricter quadrupole tolerances that TULIP, and this represents a

cost, if not a technological issue. Further to what presented, the CCL section of CABOTO was

then studied considering a 2.5mm bore radius for the accelerating structures. This choice

would relax the quadrupole tolerances, at the price of a lower ZTT of about 14% (see Table

2.11). However, this larger bore aperture would allow to relax the misalignment quadrupole

tolerances, of approximately a factor 0.5, from 0.02 mm to 0.03 mm. A more detailed study

shall start from these initial sensitivity assessments to propose a final design, taking into

consideration technological limitations and costs optimization.

4.3 Start-to-end simulation: from 2.5 MeV/u to 430 MeV/u

The first all-linac solution of the CABOTO project has been presented.

The beam dynamics linac design features full transmission and minimized emittance growth,

and it has been accomplished with full tracking of the particles from the RFQ output till 430

MeV/u, using RF EM field maps for the accelerating structures computed with HFSS. This is

unique for such a long linac.
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4.3. Start-to-end simulation: from 2.5 MeV/u to 430 MeV/u

Figure 4.10 – Transverse quadrupole misalignment study for the CCL section of CABOTO for a
2mm and for a 2.5mm bore radius.

Fig. 4.11 shows the main linac design parameters. A graphical way of presenting this data

was used, with the aim of having a fast-to-read and complete source of information. It is

worth commenting again a few characteristic of the design. The linac is composed by 4 IH

cavities, followed by a DTL, a buncher cavity, and the CCL. The accelerating gradient step is

clearly observable in Fig. 4.11 top left. A similar way to discuss this difference is by considering

Fig. 4.11 bottom left. Here a key characteristic of this design is reported, i.e. the peak power

consumption distribution along the linac. The combination of high gradient and lower ZTT,

given by the high gradient RF optimization, leads to a major concentration of the peak power

installed, approximately 90% of the total, in the CCL section.

The first part of the linac, up to the buncher cavity, was optimized in terms of ZTT. In Fig.

4.11 top right, one can notice the ZTT trend along the structures. In particular, the DTL ZTT

optimum saturates well before 70 MeV, due to the RF cells getting too long. As a last piece

of information, the RF cell length and diameter is reported in Fig. 4.11 bottom right. This

is another way to discuss the ZTT behaviour of the linac. The DTL section, being 2π mode,

gets too long towards the end of the linac, and so it looses in ZTT. Interestingly, the resonant

frequency of RF cells with the optimum ZTT is obtained mostly by varying the gap, while the

cell diameter is approximately constant throughout the linac.

Table 4.5 summarizes this information in a more common numeric form.

As for the TULIP project, the linac dissipated power is reported, rather than the total RF
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Chapter 4. CABOTO: a high-efficiency linear accelerator for carbon ion therapy

Figure 4.11 – CABOTO all-linac main accelerating parameters.

Table 4.5 – CABOTO all-linac - A summary.

Linac Operating Output Avg. Synch. Act. Tot. Cum. Avg.ZTT Peak Power
Section Freq. [MHz] En. [MeV] Grad. [MV/m] Phase [deg] Length [m] Length [m] [MΩ/m] [MW]

RFQ 750 2.5 ND ND ND ND ND ND
IH 750 10 6.5 12 2.51 3.6 402 0.257

DTL 2998.5 100 16.2 18 11.7 20.7 117 26.4
BTW-CCL 2998.5 100-430 29.7 15 23.1 53.3 107 189.1

power to be installed. The motivations of this choice are presented in Section 3.4. Assuming

a probably conservative 20% losses in the RF network between klystrons and accelerating

structures, one should account for approximately 260 MW RF peak power for the CABOTO

project.

The beam dynamic design is summarized in Fig. 4.12 for the two extreme cases of no accel-

eration in the CCL section and full acceleration. Here, a number of facts can be discussed.

First of all, one should notice the beating in the beam envelopes, especially after the IH-DTL

transition. This part was explained in detail in the previous sections, but as a reminder, the

two critical aspects were represented the abrupt change in accelerating gradient, observable

by the longitudinal phase advance increase (green curve), and by the change in operating

frequency, from 750 MHz to 3 GHz.

Continuing on along the linac, one could notice the difference final beam envelopes, in the

two cases of no acceleration in the CCL and full acceleration. As discussed in Section 3.1.3,

an optimized line should have the same beam envelopes in this two extreme cases. However,

some residual mismatch at the beginning of the line, together with too high transverse phase

126



4.4. A He therapy facility based on the CABOTO design

advance, penalizes the CCL no acceleration case, and this are the reasons of this difference.

Nonetheless, the main goals of the design, i.e. full transmission and emittance growth control

in a compact proton linac, have been achieved.

Finally, Fig. 4.13 shows the classic representation of the transverse and longitudinal envelopes

mirrored around the centre. The case of no acceleration after 100 MeV/u is easily recognizable

by the growth of σz - in green colour in the plot - as soon as the particles are not accelerated

anymore.

4.4 A He therapy facility based on the CABOTO design

Recent raising interest towards using He [65] for radiotherapy is motivated by the lower final

energy with respect to carbon ions, and by the higher RBE of He with respect to protons. Thus

a solution in between the two extremes, cheaper than carbon ion therapy but more effective

towards radio-resistant tumors than proton therapy. He beams have been proposed for atrial

fibrillation since they show a lower later spreading than proton beams, while at the same time

avoiding the longitudinal tail of carbon ion beams.

From a technological point of view, a linac solution for a He therapy facility would be still

applicable. Here the work done for CABOTO is adapted to provide a first general layout design

of a He linac for medical purposes.

The main difference from CABOTO lies in the energy modulation range, that is 100-430 MeV/u

for C 6+ and 70-230 MeV/u for He2+ to obtain the same penetration in water equivalent tissues

(see Eq. 1.3). Thus, the CABOTO design was adapted, with a DTL section up to 70 MeV/u, and

a CCL section covering the 70-230 MeV/u branch. The general layout is summarized in Table

4.6 and the overall linac length is sketched in Fig. 4.14.

For the CCL linac it was chosen to propose again a 30 MV/m average accelerating gradient.

This choice, as for CABOTO, fixed the accelerating gradient of the DTL linac, that corresponds

then to 15 MV/m, in order to equally divide the total length into two branches to minimize the

footprint. The IH cavities layout was not changed. It would be then possible to remain below

120 MW of dissipated peak power. As for TULIP and CABOTO, it has been chosen to present

the main linac parameters in the graphic form of Fig. 4.15.

The beam has not been tracked through the linacs, bt it is safe to assume that the same general

parameters - synchronous phase, maximum quadrupole strength - still holds for this design.

4.5 Cost estimation of linacs for hadron therapy

The present Section aims at giving an approximate estimation of the cost of a linac for hadron

therapy. In Table 4.7, some numbers collected by the author during this thesis are reported.

For the klystron-modulators and IOTs, very helpful were a report from ESS [66] and [47].
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Chapter 4. CABOTO: a high-efficiency linear accelerator for carbon ion therapy

Figure 4.12 – Beam 1 σ RMS envelope through the CABOTO all-linac solution and ratio of
emittance growth with respect to initial. No acceleration after 100 MeV/u (top) and full
acceleration up to 430 MeV/u (bottom).

Table 4.6 – Key parameters of the He linac studied.

Type of structure Output energy [MeV/u] Active Length [m] Peak power [MW]
750 MHz RFQ 2.5 ND ND

750 MHz IH 10 2.5 0.3
3 GHz DTL 70 7.6 16.6
3 GHz CCL 70-230 11.2 103.1
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4.5. Cost estimation of linacs for hadron therapy

Figure 4.13 – The 100 MeV/u (top) and 430 MeV/u (bottom) beam envelopes along CABOTO
all-linac. 1 RMS σx (red), σy (blue) and σz (green).

Figure 4.14 – Sketch of the He linac longitudinal dimensions.
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Figure 4.15 – He linac main accelerating parameters.

Table 4.7 – Cost estimation of the major components of a linac for hadron therapy.

Component Cost
3 GHz Klystron-Modulators 0.05 M€/MW-RF

750 MHz IOTs 1 M€/MW-RF
750 MHz CERN RFQ 1 M€/unit

BTW accelerating structure 0.075 M€/unit

The cost of the CERN proton 750 MHz RFQ was indicated by M. Vretenar at the Linac16

conference and lately confirmed [67] and comprises also subsidiary equipments as vacuum

pumps and cooling, and also the IOTs cost. Lastly, the BTW prototype was paid approximately

75 k€, considering material, disks machining, tuning pins, waveguides, flanges, brazing, and

baking [68]. These number were considered as the unitary price for the different accelerating

structures, clearly simplifying the problem. From one side this is an overestimation, since

the production of similar cavities will lower the unitary price. On the other hand, many

accelerating structures could be more expensive, being longer or with an higher number of RF

cells with respect to the BTW prototype, that is 12 RF cells, 189 mm long. Concerning PMQs,

their cost can be estimated in 2 k€ each, for the aperture and strength of interest in the present

designs [23]. Thus their contribution on the total price is of the second order. The cost of ion

sources, vacuum and cooling system was not addressed.

Table 4.8 is everything but a comprehensive cost analysis of hadron therapy facilities, which

was not the goal of this thesis. However, it may help the reader interested in getting a first

1total with 20% losses
2total with losses
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Table 4.8 – Cost estimation of linacs for hadron therapy.

TULIP CABOTO He Linac
Component Quantity Cost Quantity Cost Quantity Cost

3 GHz RF power1 125 MW 6.3 M€ 260 MW 13.0 M€ 145 MW 7.3 M€

750 MHz RF power2 100 (IH only) kW 0.1 M€ 300 (IH only) kW 0.3 M€ as for CABOTO 0.3 M€

Linac structures 46 3.5 M€ 122 9.2 M€ 83 6.2 M€

RFQ 1 1 M€ 2 (approx. doubled) 2 M€ as for CABOTO 2 M€

Total 10.9 M€ 24.5 M€ 15.8 M€

order of magnitude of the costs. Also, it allows to draw some important considerations. First

and foremost, as multiple times highlighted throughout the different Chapters, the RF power

sources are the most expensive component in this kind of facilities. Their contribution to the

overall cost is typically approximately 50 %, but it can gets significantly higher if high gradient

designs are chosen, so in the TULIP facility for instance. As a second remark, the total cost

of IOTs, though their unitary cost is higher than the 3 GHz klystron-modulators one, does

not represent a major contribution overall. One could then decide to privilege the physics

arguments, particularly the beam dynamic advantages (see Section 2.3.2), of a 750 MHz IH

solution to higher energies than 10 MeV/u. It is in fact here reminded that it was chosen to

present a design with a 3 GHz DTL starting at 10 MeV/u, for both TULIP and CABOTO, only as

a result of cost considerations.
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5 Low and high power measurements of
the BTW structure prototype

This Chapter discusses the experimental results of this thesis, which are all related to the

high-power test of BTW prototype described in Section 2.4. The Chapter starts with the cavity

tuning description, followed by the high gradient test set up and data analysis. Section 5.3

presents the study on dark current capture in accelerating cavities for non ultra relativistic

particles.

5.1 RF measurements and tuning of the prototype

Low power RF measurements were performed on the structure prior to bonding, in order

to verify that the prototype was within the tuning range. The disks were aligned thanks to a

V-shape support whereas azimuthal alignment was performed using the tuning holes as seen

in Fig. 5.1. The structure was well within the tuning range, having a total reflection of -23.6 dB

(Fig. 5.2 bottom). This value refers to a frequency of 2.9982 GHz to take into consideration the

lower temperature in the laboratory with respect to the design temperature.

The stack of disks was joined by diffusion bonding in a partial hydrogen atmosphere following

the CLIC baseline fabrication procedure. The fabrication technique was chosen so that the

high-gradient test results can be most easily compared to the structures tested in the CLIC

high-gradient program. After the structure was assembled by brazing the cooling blocks and

vacuum tubes and input waveguides, it was returned to CERN for the final tuning. A summary

of the measurements performed on the prototype is shown in Fig. 5.3.

The tuning was performed in a 22 °C temperature control clean room, with the goal of tuning

the structure at a operating temperature of 32 °C at 2.9985 GHz under vacuum. Even though

the prototype is not supposed to accelerate any particle, the desired phase advance of 150± 1.5

degrees was reached. Thus this cavity could accelerate particles with an average input-output

β of 0.38.

All 12 cells (10 regular and 2 coupling cells) of the structure were adjusted in frequency by

pulling or pushing up to 4 tuning pins in each cell. As discussed in Section 2.4.3, each RF cells
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Figure 5.1 – BTW prototype disk alignment procedure (left and middle) and aligned disks
without input waveguides (right).

Figure 5.2 – LLRF test (top) and S11 comparison between measured configuration and simula-
tion design results (bottom) [69].
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5.1. RF measurements and tuning of the prototype

Figure 5.3 – Scheme of the RF tests performed on the accelerating structure (AS).

Table 5.1 – Initial conditions of the two structures prior to tuning.

Avg. RF phase advance [deg] Standard deviation [deg] Total cavity reflection [dB]
1st structure -148.7 7.7 -21.2

2nd structure -149.4 2.8 -23.6

have a tuning range of ± 3 MHz with a 1mm deformation of all the four tuning pins. However,

the deformation could be larger, if needed. Eventually, the frequency of the output coupling

cell was increased by 2.2 MHz, the frequency of the 10 regular cells was increased between 0.1

and 0.8 MHz (average 0.3 MHz, std 0.2 MHz), while the frequency of the input coupling cell

was decreased by 0.6 MHz. Thus, except for the output coupler, the RF tuning and sensitivity

analysis was probably too conservative. The whole process lasted a couple of hours.

Fig. 5.4 shows the electric field pattern along the structure, together with the S11 parameters

in the complex plane and the RF phase advance per cell before and after tuning. The six arrows

configuration of the tuned solution differs from the 12 arrows of Fig. 2.47 because the phase

advance difference between cells doubles due to forward and backward path of the signal. So

the S11 signals have a doubled phase advance of 5π/3 instead of 5π/6, and thus a 6 arrows

symmetry.

5.1.1 Second tuning test

The second BTW prototype was tuned in April 2017. This second structure showed a very good

field pattern prior to tuning, and it needed very little effort to be brought to the goal tuned

conditions. For comparison, the RF phase advance per cell and the total cavity reflection for

the two structures prior to tuning are reported in Table 5.1.

A probable reason of the different initial condition between the two prototype lies in the choice

of the brazing material for the tuning pin. For the first cavity, an alloy with a too low melting

point was chosen, resulting in many defected pins after the structure bonding. These pins
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Figure 5.4 – Electric field pattern along the 1st prototype RF cells, before (in red) and after
tuning (in blue). Top left: in the complex plane; top right: in phase advance per cell; bottom:
in magnitude.
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Figure 5.5 – Electric field pattern along the 2nd prototype RF cells, before (in red) and after
tuning (in blue). Top left: in the complex plane; top right: in phase advance per cell; bottom:
in magnitude.
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Chapter 5. Low and high power measurements of the BTW structure prototype

Figure 5.6 – Input (left) and output (right) S-parameters of the two tuned structures, measured
at a temperature of 23°C in a dry nitrogen atmosphere, and comparison with the HFSS values
simulated in vacuum.

had to be re-brazed to the cavity, and it cannot be excluded that this process slightly modified

the outer volume of the RF cells. This issue did not occur on the second prototype, where a

ceramic brazing was adopted.

The results of the tuning test are very encouraging. RF designers of future similar structures

could either chose to relax the mechanical tolerances, or to tighten them slightly and adopt a

tuning-free solution, as in some recent CLIC cavities. A cost-analysis should address this topic

in detail, not forgetting that these conclusions refer to a 12 RF cells solution: longer cavity are

more demanding also for tuning, and one shall take this into account.

For the two tuned structures, the S11 and S22 parameters are compared with the HFSS simu-

lated values in Fig. 5.6. The small frequency shift that is possible to notice at the resonances is

due to the different tuning temperature with respect to the design one.

5.2 High power test

5.2.1 High power test set-up

The high power test started in November 2016. The prototype is installed in the CLIC Test

Facility 3 (CTF3). It is connected to a 43 MW klystron via WR284 waveguides. The 3 dB re-

circulator designed and discussed in Section 2.4.6 was not built, thus the structure is directly

connected to the klystron. As a result, approximately 20 MW at the structure input are needed

to reach a 50 MV/m accelerating gradient (see Table 2.7). The waveguides are equipped with a

circulator to protect the klystron from the reflected power, and from design a maximum power

of approximately 35 MW is available in the bunker, so more than what is needed by the cavity

to reach the nominal gradient.

The layout of the test set-up is sketched in Fig. 5.7. The structure is connected to an ion pump

and to a dedicated chiller unit that can adjust the cooling water temperature. The load is

connected to the main CTF3 cooling circuit with water flowing at 32 °C.
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Figure 5.7 – Layout with the main components of the high power test set-up.

The interlock system is composed of four interlocks: two flow-meters on the structure and on

the load cooling water, one pressure-meter, and one temperature-meter attached to the load.

The bunker and the klystron-modulator are equipped with independent interlocks, which

ensure the personal safety (none can enter the bunker while in operation) and the machine

safety. In case of any of these interlocks, the system stops the operations.

The acquisition and control system is based on National Instrument electronics, and it is

largely a direct adaptation of the Xbox-2 test stand configuration [70]. Two Faraday cups

(FC) are attached at both ends of the prototype, for breakdown detection and dark current

measurements. The incident and reflected power are measured on the input bidirectional

coupler, while the output one measure the transmitted power. Amplitude and phase of these 3

GHz signals are down-mixed to 62.5 MHz and digitize in 250 Msps analog-to-digital converter

(ADCs). At the present stage, the data analysis is based on these five signals: 3 RF, incident,

reflected and transmitted power, and 2 FC currents.

The control system of the Klystron-modulator unit is composed of two interlocks, two "en-

ablers", and three signals. Some of the signals exiting the PCI eXtensions for Instrumentation

(PXI) crate, being 5V, need to be converted to 24V before reaching the Klystron control unit.

The cabling set-up is summarized in Fig. 5.8.

The Klystron control unit is equipped with two interlocks, "Authorization RF" and "Modulator

Inhibit", that both need to be released in order to authorize the PXI to send RF power. The PXI

itself is equipped with two "enablers", "RF ON" and "RF OFF". Lastly, the modulator receives

the triggering signals from the PXI.

The RF pulse reaches the 400W Solid State Power Amplifier (SSPA) in a dedicated RF cable. Two
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Figure 5.8 – Layout with the cabling of the Klystron-modulator control system.

transistor-transistor logic (TTL) cables are needed for the SSPA, an RF pulse that triggers the

device before the real RF signal arrives, and a 5V enabler that maintains the SSPA in operational

stage.

The incident, reflected and transmitted power signals have been calibrated. The measured

attenuations along the three lines are summarized in Fig. 5.2. The bidirectional couplers,

being already installed in the waveguides line, have not been measured during this test. It was

assumed that the measurement performed before their installation is reliable [71].

The maximum incident and reflected power during the test will be around 20 MW, that can be

more conveniently express in dBm, so the dB power ratio referenced to 1 mW of power:

Y [dBm]= 10log10
X [mW ]

1[mW ]
(5.1)

where X is the power in mW, and Y the correspondent power in dBm. The maximum incident

and reflected power will be thus 103 dBm, while the transmitted one will be only one half of

it, i.e. 100 dBm. The bidirectional couplers, cables and coaxial couplers attenuations must

ensure that an acceptable power reaches the PXI crate, which should not however exceeds

a couple of Ws, corresponding to a couple of dBms, in order not to damage the electronic

circuits. This is the reason why on all line a -10 dB attenuators were added, and on the power

reflected line a further -6 dB was positioned. The -0.2 dB "Additional attenuator" present in

the power incident line refers to a high pass filter, which was placed to clean the incident

signal from higher harmonics that were disturbing the acquired signal.

The calibration curves have been fitted with a 2nd order polynomial function, with zero

intercept (Fig. 5.9), and the obtained values have been used in the Labview code to relate the

mV signals read by the PXI crate into MW RF power.
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Table 5.2 – Measured attenuations and maximum power coupled to PXI.

Max input power 103 103 100

Measured attenuations [dB]
Bidirectional coupler -61.60 -54.00 -60.02

RF cables -12.75 -12.45 -12.77
10 dB attenuator -9.92 -9.98 -10.10

Additional attenuator -0.20 -6.01 Not present

Total attenuation up to the coaxial coupler -84.57 -82.48 -82.89

Attenuation through the coaxial coupler 0.00 -0.02 -0.04
Total attenuation up to the power meter -84.57 -82.50 -82.93

Coaxial coupler attenuation towards the PXI -19.22 -19.44 -19.10
Max output power coupled to the PXI -0.79 1.08 -1.99

Figure 5.9 – Calibration curves for incident, reflected and transmitted power.
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Figure 5.10 – Incident pulse shape in the time domain, corresponding sine waves, FT in the
S11 frequency range, measured S11 and S12 of the structure.

5.2.2 First check - The pulse shape

The measured reflected and transmitted pulses can be double checked by multiplying the

S11 and S12 parameters to the Fourier Transform (FT) of the incident pulse shape. Goal of

this method is to verify that both the acquisition algorithm, and the prototype, are working

according to the design.

Any real signal can be represented by a series of sinusoidal wave signals, of different amplitudes,

phases and frequencies (Fig. 5.10, first two plots). The Fourier transform of the sinusoidal

signal (Fig. 5.10, third plot) can then be multiplied by the S11 and S12 parameters (Fig. 5.10,

forth plot), to obtain, in this case, an estimated reflected and transmitted signals respectively.

These signals have then to be transformed back to the time domain.

The result of this analysis (Fig. 5.11) is a fairly good agreement between the acquired measured

signals and the simulated one. Thus, in first order approximation, both the cavity and the

acquisition electronics are working according to the design.

5.2.3 Conditioning phase

The structure started the conditioning process in December 2016. At the moment of writing,

the conditioning is continuing. During this phase, a BDR limit of 3e-5 bpp was considered,
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Figure 5.11 – Measured incident, reflected and transmitted pulse in the structure during the
conditioning phase, and comparison with the reflected and transmitted signals reconstructed
with FT.

which for a cavity 0.2 m long corresponds to 6e-6 bpp/m.

The number of BD allowed during a treatment session is debatable. One could argue that less

than 1 BD has to be accepted for a whole treatment composed of many different sessions.

On the other hand, since BDs very likely will end-up in a missed spot, one could argue that

an higher number of BD can be accepted, provided that the missed spot is corrected in a

subsequent treatment. However, if the goal of less than 1 BD is considered, assuming an

average treatment [7], one ends up with a BDR limit of 3.4e-6 bpp. On the 4.4 m HG linac (see

Section 3) of TULIP, this limit corresponds to 7.7e-7 bpp/m. Thus, for the 0.2 m long prototype

under test, a BDR limit of 1.5e-7 bpp when the conditioning will be completed. Nevertheless,

it is reminded that the structure has been designed for an higher BDR of 1e-6 bpp/m [7].

There is an increasing evidence that the conditioning of structures is proportional to the

number of RF pulses, rather than the number of BDs [72], so an high BDR threshold during

the conditioning process is not beneficial, but instead risky for the structure since it could

over-damage the cavity walls without improving the high-gradient performances.

For comparison, in the conditioning phase X-box structures presented in [72] cumulated

around 3e8 pulses. Concerning the TERA high gradient test program [38], the S-band single

cell cavity collected [30] around 5.5e7 pulses, and the C-band single cell cavity [7] around 5e7

pulses. For this latter case the author claimed that the conditioning was likely incomplete.

The current test should verify whether there is a frequency dependence in the conditioning,

since the BTW prototype is the first S-Band cavity tested at this level of gradient.

The conditioning status of the structure is shown in Fig. 5.12. After a first run at 350 ns RF

pulse length, during which the cavity reached the target accelerating gradient of 50 MV/m, at
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Figure 5.12 – Accelerating gradient and cumulative number of BDs in the structure as a
function of the number of RF pulses. Blue dots falling below the main envelope are due to
power ramping after a BD event.

the beginning of April 2017 the RF pulse length was increased to 900 ns, with a few days of

conditioning at 600 ns prior to that. This longer pulse length, which ensures a flat-top profile

of the transmitted power in the cavity, is being tested at higher accelerating gradients than 50

MV/m. At the moment of writing, the cavity reached approximately 52 MV/m, and it is still

ramping. The conditioning process is not yet finished at the moment of writing.

So far, the BTW prototype showed a conditioning speed slightly lower than the one showed by

CLIC and KEK cavities, though consistent with those values (Fig. 5.13). In fact, those cavities

have a design RF pulse length of 250 ns, and they ended the first conditioning run with a

50 ns pulse length in around 1e8 number of pulses. The BTW prototype finished the first

conditioning stage with a 350 ns pulse length at approximately 1.3e8 pulses. However, the

design pulse length for this cavity is 2.5 μs, thus a factor 7 difference, instead of the factor 5

of CLIC cavities, that, in conclusion, started their conditioning at a more challenging pulse

length.

The vacuum pressure in the cavity showed a decrease in time, from approximately 2e-8 at

the beginning of the test to approximately 4e-9 in April 2017. While the cavity was baked,the

power load was not, and this is the main reason of this trend.

5.2.4 BD identification

A BD manifests with a modification of the reflected and transmitted signals with respect to a

nominal pulse. At the same time, one can observe deviations in the FC signals. As discussed in

detail in the next Section, the BTW prototype peculiar RF design reflects into a variable RF
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Figure 5.13 – Summary of CERN TD26CC and KEK TD24R05#4 high gradient tests [72].

signals behaviour as a function of the BD location in the cavity. Instead, the BDs are always

easily detected by FCs, and in the experiment so far all the events have been recorded in this

way.

To convince the reader, three cases of the 350 ns RF pulse length run are presented hereafter.

First, an example of nominal RF and FC signals is shown in Fig. 5.14. The upstream FC, i.e.

the FC positioned at the RF input coupler side, records a larger signals thanks to the dark

current preferred capture direction, which is discussed in Section 5.3. At the same time, one

can notice the triangular shape of the transmitted signal. With an approximately 200 ns filling

time, the 350 ns RF pulse length used in the first stage of the conditioning does not allow to

reach a stable flat-top.

As a second example, a BD event is shown in Fig. 5.15. One can notice that both the RF and

the FC signals show a significant deviation with respect to a normal pulse shape. The reflected

signal during the BD matches, in amplitude, the incident signal, while the transmitted one

drops. This is a classic behaviour during a BD. However, for many events recorded during

the BTW prototype test, the RF signals do not show such a clear trend (Fig. 5.16). In this last

example, the BD is occurring towards the end of the RF pulse. While it is clearly noticeable

from the FC signals, it is hardly to do so by observing the RF signals.

One could argue that the RF response of the cavity is driven by the localization of the BD along
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Figure 5.14 – Nominal incident (INC) reflected (REF) and transmitted (TRA) RF signals (left)
and upstream FC and downstream FC signals (right).

Figure 5.15 – BD incident (INC) reflected (REF) and transmitted (TRA) RF signals (left) and
upstream FC and downstream FC signals (right), with comparison with a nominal pulse before
the BD event, for a RF pulse length of 350 ns. In this case study, the RF signals show a clear
deviation from nominal ones during the BD.
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Figure 5.16 – BD incident (INC) reflected (REF) and transmitted (TRA) RF signals (left) and
upstream FC and downstream FC signals (right), with comparison with a nominal pulse before
the BD event, for a RF pulse length of 350 ns. In this case study, the RF reflected signal does
not show a clear deviation from nominal one during the BD.

the RF pulse. In particular, to early BDs correspond large reflected signals, and vice-versa

for late BDs. This is surely a major factor, but a preliminary analysis of BDs during the 900

ns RF pulse length conditioning phase revealed that the phenomenon can not be explained

purely in this way. In Fig. 5.17, a clear BD is presented, where the reflected signal matches the

incident one. In this case, the BD is occurring at the end of the RF pulse, and approximately in

the middle of the cavity (see Section 5.2.4). Fig. 5.18 shows instead the example of a BD where

the reflected signal is approximately one half of the incident one. This case has been chosen

because the BD localization in time is very close to the previous case. This time however, the

there is a 3 dB ratio between the reflected and the incident signal.

In the next Section, an attempt to characterize these observations will be presented, together

with a discussion on the longitudinal positioning of BD across the cavity with the so-called

edge method.

BD positioning in the structure

HFSS has been used with the goal of simulating BD in different regions of the structure. Since

the Sc field has a maximum on the noses and on the coupling holes, those parts of the cavity

were considered. The BD have been simulated by obstructing a certain volume of the geometry,

either a coupling holes, or the gap region. The results are hereafter presented and discussed.

The dispersion curves for the input and output cells of the BTW prototype are shown in

Figure 5.19, together with the dispersion curves in case one coupling hole of the RF cell is

obstructed. One can notice that in both curves, for the simulated BD case the operating

frequency is outside the passband. So, from theory, there should be total reflection in case of a

BD obstructing completely a coupling hole, independently on its location along the structure.

However, as shown in Fig. 5.21, this is not entirely the case on a whole structure (see Fig. 5.20).
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Figure 5.17 – BD incident (INC) reflected (REF) and transmitted (TRA) RF signals (left) and
upstream FC and downstream FC signals (right), with comparison with a nominal pulse before
the BD event, for a RF pulse length of 900 ns. In this case study, the RF signals show a clear
deviation from nominal ones during the BD.

Figure 5.18 – BD incident (INC) reflected (REF) and transmitted (TRA) RF signals (left) and
upstream FC and downstream FC signals (right), with comparison with a nominal pulse before
the BD event, for a RF pulse length of 900 ns. In this case study, the BD REF signal has a lover
magnitude with respect to the previous case.
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Figure 5.19 – Comparison between input and output cell dispersion curves. Reference case
and BD simulation by obstructing one RF cell coupling hole.

Nevertheless, on the single RF cell, the effect is slightly worst for the input cell case, that has

the larger group velocity and bandwidth. So one should expect a larger reflection if the BD

occurs in a coupling hole at the input rather than towards the structure output. This difference

is however not observable when simulating the whole cavity geometry, as hereafter discussed.

HFSS simulations performed on the cavity 3D geometry (Fig. 5.20) highlighted the reflection

difference between BD simulated on the noses and on the coupling holes, as shown in Fig.

5.21. In particular, the S11 is much higher when the BD happens on a RF gap, rather than on

a coupling holes. A second remark concerns the reflection as a function of the BD position

across the cavity: the closer is the BD to the output, the lower is the reflection. There is a

pretty linear behaviour of the reflection as a function of the BD position across the regular cells

Figure 5.20 – Sketch of the BTW prototype simulated with HFSS. Example of BD simulation in
the top hole of the 11th iris (left) and in the 11th cell nose region (right).
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Chapter 5. Low and high power measurements of the BTW structure prototype

Figure 5.21 – Simulated total structure reflection as a function of the BD positioning along the
structure: on the coupling holes (top left), on the noses (top right) and summary (bottom).
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Figure 5.22 – Simulated total structure reflection as a function of the BD positioning along the
structure in case of lossless cavity walls.

(green curves in Fig. 5.21 top). This linear trend is entirely due to the power attenuation, while

the different group velocity across the RF cells is too low to influence in this regard. In fact, if

the BDs in the cavity are simulated considering lossless RF surfaces, the reflection results are

the same regardless the longitudinal positioning across the cavity, as shown in Fig. 5.22.

End-cells deserve a dedicated discussion. Since they represent a deviation from a regular

tapered cavity, also a BD occurring there shows non-linear behaviours (red curves in Fig. 5.21

top). Quite peculiar is the response of the input cell: it shows a quite low reflection if the BD

occurs on the coupling hole close to the waveguide slot, which has the smallest radius (see

Section 2.4.4), while having a greater than linear response in case the BD occurs on the bottom

coupling hole.

The simulation results presented in Fig. 5.21 would allow to differentiate between BD hap-

pening on the noses and on the coupling holes along the structure, simply by observing the

S11 parameter. However, measured results do not show such a well defined distinction, so the

longitudinal positioning is not achievable with this method.

One could think of differentiating the BD occurring on the cavity noses from those occurring

on the coupling holes. There is in fact, from Fig. 5.21 bottom, a quite defined difference in

terms of total reflection. The observation of the reflected signal as a function of the number of

RF pulses would hint that this is the case (Fig. 5.23 left). While the general trend is upward

because of the ramp of the incident power, it is possible to notice a clustering of reflected
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Figure 5.23 – Reflected signal during normal pulses (blue) and BD events (red) to the left, and
S11 histogram on the right.

Figure 5.24 – CLIC TD26CC structure reflected signal during normal pulses (blue) and BD
events (red) to the left, and reflected power histogram on the right. Data are not scaled.
Courtesy of Theodoros Argyropoulos, CERN.

signals on the bottom part of the range, and on the upper part of it. In particular, for many

BDs the reflected signal does not change with respect to the normal pulses. This distribution

is more clear in a histogram plot of reflected signal divided by the input one, in dB (Fig. 5.23

right).

For comparison, one could consider the CLIC TD26cc cavity. This is an E-coupled cavity, which

presents the maximum of Sc and E-field on the walls close to the beam axis. The reflected

distribution in this structure is shown in Fig. 5.24. It is evident a more uniform distribution of

the reflected power, that in case of a BD is always higher than during a regular pulse.

One should however bare in mind that the positioning of the BD along the RF pulse length has

as well an impact on the reflected signal, as highlighted in the previous Section. In particular,

all those BDs occurring towards the end of the pulse length will show a maximum peak
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reflection as the one of a nominal pulse, because of the initial peak in the reflection pulse

shape.

In addition, one could argue whether it is possible to detect BDs occurring on the coupling

holes. In fact, it is not straightforward that in those cases the discharged electrons can reach

the FCs, considering that they should travel from the coupling holes to the bore region, and

eventually out of the cavity.

At the end of the high gradient test, it will thus be very interesting to open the cavity and study

the internal surfaces, to clarify whether BDs occurred on the coupling holes, thus confirming

the Sc model, and how BDs distributed across the cavity.

Longitudinal positioning

CLIC study developed several methods to longitudinally locate the BDs in their cavities. One

of these can be applied to the BTW prototype, though with some cautions. The BTW prototype

and the CLIC cavities in fact have some major differences. Firstly and most importantly, CLIC

structures are electrically coupled, with the Sc distribution having a maximum near the bore

aperture. They also do not present nose cones near the bore aperture, thus there are not major

obstacles to electron discharges flowing to the Faraday Cups. In addition, the group velocity

is reasonably high, being, on average between input and output cell, approximately 1.2% of

the speed of light. The BTW prototype instead is a magnetically coupled cavity with nose

cones. The Sc distribution, as discussed in Section 2.4.2, has a maximum on the noses and on

the coupling holes. Thus, BD are likely to occur on the noses all along the cavity with equal

probability, but also on the coupling holes of the cavity. The probability of a BD occurring on a

coupling holes should decrease along the structure, given the decrease of Sc as discussed in

2.4.2. As shown later, the RF response of the cavity is different whether the BD is located on

the noses or on the coupling holes. Finally, the group velocity is remarkably lower than the

CLIC cavities, with an average between input and output cell of approximately 0.3% of the

speed of light.

The longitudinal positioning of BDs along a cavity is achievable with the so-called edge method

(Fig. 5.25).

When a BD is detected, its reflected and transmitted signals are compared with the those the

pulse before the BD. Since a BD manifests with a modification of the reflected and transmitted

signals, it is possible to retrieve the times, along the two pulses, at which the BD occurs.

Eventually, depending on the time difference between the reflected and the transmitted

pulses, one can locate the BD along the z-axis of the cavity. As previously discussed, in the

BTW cavity test many BD cases the reflected, as well as the transmitted, power is very little

perturbed, thus the exact localization in time of the BD is uncertain (see Fig. 5.16). This

problem affects remarkably the longitudinal BD localization during short RF pulse lengths,

while already for the 900 ns run the precision increases.
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Figure 5.25 – Sketch explaining the edge method [73].

The very same methodology can be applied to the FC signals. A third method investigates the

phase of the reflected power. In case of 2π/3 cavities, the phase can only be a multiple of π/3.

However, the 5π/6 RF phase advance of the BTW prototype makes this method difficult to

apply (see Fig. 2.47).

5.3 Dark current analysis

At the moment of writing, to the author knowledge the problem of electrons dynamics in a non

ultra-relativistic proton accelerator has not been addressed. Here an attempt to characterize

the problem is presented.

Theoretically, the problem does not have an analytical solution. Considering simply the Ez

component of the EM field, one can find the kinetic energy of the particle by integrating along

z the Equation:

dW = eEz (z, t )d z. (5.2)

In case of a backward travelling wave, the z component of the electric field can be rewritten as:

Ez (z, t )= E ·ei (−kz−ωt+φ). (5.3)

Since the electron β can vary in the range 0 to 1, the most correct way to integrate Eq. 5.2 is

in time rather than in space. Defining βc the velocity of the electron, and remembering that
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k =ω/vph , where vph is the phase velocity of the wave, one has:

Ez (z, t )= E ·eiωt (− βc+vph
vph

+φ)
. (5.4)

One shall not forget that k =ω/vph holds only for a single harmonic wave, or in case of an RF

cell where the particle velocity change over the gap is negligible. This is clearly not the case.

Anyhow, for a single harmonic wave, the energy gain of an electron in a travelling wave E-field

along one direction can be obtained integrating:

dW = eE ·eiωt (− βc+vph
vph

+φ) ·βc ·d t , (5.5)

which is not analytically solvable, given that :

β=

√√√√√ (1+ dW
E0

)2−1

1+ dW
E0

. (5.6)

In case of relativistic structures, where the phase velocity vph matches the speed of light, the

problem is simpler, and an analytical solution exists as discussed in [74]. For field-emitted

electrons with near zero initial momenta the condition for axial capture and cumulative

acceleration is then given simply by [75]:

Ec = 1.6/λ, (5.7)

thus having a theoretical capture gradient for S-band relativistic structures of 16 MV/m, and of

64 MV/m for X-band ones. Eq. 5.7 is very simple because, in β= 1 accelerators, as soon as the

electrons gain enough momentum to move at the speed of light, they then move synchronously

with the wave. The dependence with the accelerator frequency is also straightforward, by

remembering Eq. 5.2.

Since it was not possible to find an analytical solution of the problem, hereafter is discussed a

numerical approach to it.

The motion of a bunch of electrons in a cavity designed for β < 1 particles was simulated

considering three levels of accuracy:

• first a single harmonic β= 0.38 wave, with 1D motion;

• secondly, the Ez component of the BTW prototype, with 1D motion;
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• lastly, RF-Track was deployed, and the real 3D EM field map was adopted, performing a

3D tracking.

In both the three cases, an initial distribution of 12 electrons with zero initial momentum was

considered uniformly distributed along the z-axis of the cavity, thus one electron at the middle

of each RF gap.

For the first two cases, the algorithm is bases on the integration in time of the particle kinetic

energy gain:

dW = eEz (z, t )βc ·d t . (5.8)

An integration step of 0.1 ps was chosen. In such way, a relativistic electron would travel a

maximum of 0.3 mm in a time step. Further refinements of the integration step did not change

the simulation results.

It is clear that the first two methods cannot have enough details to correctly describe the

physics of the phenomenon. In fact, while the electron tracking along the z component

can be well simulated, they completely neglect any 3D motion, and so any loss of electrons

except for those which exit the longitudinal boundaries. They are thus methods useful only to

understand the basic physics.

Hereafter, four cases are discussed. The tracking of electrons and protons in a single harmonic

β= 0.38 3 GHz travelling wave, and in the z component of the BTW prototype electric field.

For comparison, the case of β= 1 is also presented. This can be obtained by stretching the

β= 0.38 E-fields. The Ez field in the 4 cases is shown in Fig. 5.26.

The motion of a synchronous particle is the same, on average, in the two cases, provided that

the average effective accelerating gradient is the same. The motion of a synchronous proton

was simulated in Fig. 5.27.

If electrons are tracked, the two field descriptions do not lead anymore to the same results.

The β= 0.38 and the β= 1 cases are reported in Fig. 5.28 and 5.29, respectively. A simulation

time of 1.8 μs was chosen, being this a bit higher than the time needed by the synchronous

proton to cross the cavity.

In the simulations of the β= 0.38 structure, the motion is remarkably more chaotic. In the

single harmonic approximation, the electrons get eventually capture by the 0 deg bucket, and

move with the phase velocity of the wave, oscillating around the equilibrium, and moving

with the same velocity of the synchronous proton (green line in Fig. 5.28 bottom right). In the

real Ez field component, the combination of gaps and drift spaces do not allow such capture,

resulting into a incoherent motion. In other words, an equilibrium condition does not exist in

this case, and this because the electrons have a too high momentum gain to remain trapped
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5.3. Dark current analysis

Figure 5.26 – Electric field along z in the BTW structure (top) and first harmonic travelling
wave (bottom); for β= 0.38 (left) and β= 1 (right).

Figure 5.27 – Proton tracking in a 50 MV/m field, BTW structure Ez field (left) and single
harmonic TW (right).
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Chapter 5. Low and high power measurements of the BTW structure prototype

Figure 5.28 – Comparison between a β= 0.38 electric field for different accelerating gradient.
BTW structure Ez field (top, as in Fig. 5.26 top left)) and single harmonic TW (bottom, as in Fig.
5.26 bottom left)). Electrons in red, and β= 0.38 synchronous proton in green.

into the linac longitudinal bucket.

Instead, if a β= 1 Ez field is considered, the capture condition manifests in a clearer way (Fig.

5.29), in agreement with Eq. 5.7.

It is possible to simulate the dark current capture at the two Faraday cups by recording the

number of electrons crossing the boundaries of the field map. An attempt in this sense is

shown in Fig. 5.30. In this case however the electrons cannot be lost on the cavity walls, so

eventually they will either exit the boundaries or remain in the field map infinitely. For this

reason the graphs in Fig. 5.30 do not show a notable difference in the mean signal. Thus a 3D

motion is eventually necessary to attempt to simulate the problem.

RF-Track was used to perform the full 3D simulations of the electron distribution considered

so far, thus 12 electrons with zero initial momentum uniformly distributed along the z-axis of

the cavity To higher electric fields correspond higher electron losses on the cavity walls, and

this result is shown in Fig. 5.31

It is interesting to comment that a zero-momentum electron distribution on the z-axis should

not, theoretically, display a 3D motion in a ideal cavity, as on the z-axis of such a cavity only

the z component of the electric field is present. However, a field map exported from a electro-

magnetic code shows some degrees of noise such that on the z-axis transverse components of

the electromagnetic fields are present. This, together with the low rest energy of the electrons,

explains their 3D motion.

As a second remark, one could notice that the electrons pattern in the 3D case does not entirely

correspond to the 1D case, for those electrons not lost on the cavity walls. This respects the
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5.3. Dark current analysis

Figure 5.29 – Comparison between a β = 1 electric field for different accelerating gradient.
BTW structure stretched Ez field (top, as in Fig. 5.26 top right)) and single harmonic TW
(bottom, as in Fig. 5.26 bottom right)). Electrons in red, and β= 0.38 proton in green.

Figure 5.30 – Simulation of dark current at the FCs as a function of the accelerating gradient,
considering the BTW structure Ez component. In blue the simulated electrons crossing the left-
hand boundary (correspondent to the upstream FC), in red the ones crossing the right-hand
boundary (correspondent to the downstream FC).

Figure 5.31 – RF-Track 3D tracking of electrons in the BTW cavity. Electrons in red, and
synchronous proton in green. Blue circles are lost electrons, i.e. electrons that have hit the
cavity walls.
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Chapter 5. Low and high power measurements of the BTW structure prototype

Panofsky-Wenzel theorem 1 since for electrons motion the paraxial assumption does not hold.

In conclusions, electron longitudinal motion is affected by their transverse position in the

cavity.

There was not time to implement a complete simulation, involving the Fowler-Nordheim

[76] dependence of the dark current emission on the surface electric field and on the cavity

geometry, considering thus a more realistic initial distribution of the electrons. This activity is

left to future works on the subject.

5.4 First results of the high gradient test

At the end of May 2017, the structure accumulated 1.8e8 pulses. As explained in Section 5.2.3,

this quantity defines the level of conditioning of a cavity, and for this structure the process is

not finished yet. It is thus not possible to present a reliable BDR scaling law at this stage, and

future works shall have a final word on the behaviour of this prototype.

However, it is still possible to draw some preliminary conclusions. The BTW prototype has a

design maximum surface electric field Es of 200 MV/m, as the CLIC cavities. In Fig. 5.32 top,

this quantity is compared as a function of the number of RF pulses, adopting the scaling law

proposed in [72]:

E 30 ·τ5

BDR
= const (5.9)

If, instead, a power of 3 is considered for the pulse length, as proposed in [30], one obtains the

curves of Fig. 5.32 middle. Finally, one could simply compare Es without any scaling law, as

proposed in Fig. 5.32 bottom. So far, it seems that the best scaling law which describes the

conditioning status of X-band and S-band cavities is:

E 30 ·τ3

BDR
= const . (5.10)

On the other hand, as highlighted in Section 5.2.3, the number of BD does not seem to define

the conditioning level of the cavity. When one compares the surface electric field of CLIC

cavities and the S-band prototype, scaled as above, as a function of the cumulative number of

BD, the three cavities show different behaviours (Fig. 5.33).

The three cavities can also be compared in terms of a scaled modified Poynting vector Sc. This

1The Panofsky-Wenzel theorem states that, in a cavity, to a transverse variation of the longitudinal kick must
correspond a transverse deflection kick. This is valid only under the assumption of 1D motion along the cavity.
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has been done considering the law proposed in [30] [7]:

Sc8 ·τ3

BDR
= const , (5.11)

which has been used in the RF design of the cavity, and a more classic scaling law with power

15 for Sc and 5 for τ. These results are presented in Fig. 5.34, top and bottom respectively.

One could conclude that the maximum surface electric field is the field quantity that better

describes the high gradient limits of the three cavities. However, it has to be reminded that Es

is similar, while Sc is different for the three accelerating structures. Thus only when the BTW

prototype will be fully conditioned it will be possible to study in detail the scaling law that

relates the BD limits of normal conducting X-band and S-band cavities.

As a final remark, the structure was designed considering as limiting quantities the maximum

surface electric field, 200 MV/m, and the maximum modified Poynting vector Sc. This last

quantity was rescaled from CLIC data according to the law proposed in [30] [7], though also

a more classic scaling law with power 15 for Sc and 5 for τ was considered, giving similar

results. CLIC data were rescaled considering a Sc of 4 MW/mm2, with a pulse length τ of

200 ns, corresponding to an estimated BDR of 10-6. The pulse length considered for the BTW

prototype was 2500 ns. Thus an Sc limit of 1.55 MW/mm2 for the BTW prototype. However,

later on in the design stage a maximum value of 0.75 MW/mm2 was reached on the noses

and coupling holes of the cavity, as a result of the optimization process and of the 200 MV/m

surface electric field limit.

If then Eq. 5.11 is applied to the current 350 ns run, considering a nominal Sc of 0.75 MW/mm2,

one would obtain, for a fully conditioned cavity, a BDR of 8.3 ·10−12 bpp/m. This seems, at the

present stage, a challenging goal, since the BDR should decrease of approximately 6 order of

magnitude from the present values.

So far the cavity did not developed any major hot spot. Assuming that the edge method

(Section 5.2.4) provides a first order longitudinal localization of the BD in the structure, the

number of BD as a function of their position and their time is reported in Fig. 5.35.

5.4.1 Remarks on frequency dependence and the Kilpatrick criterion

It is interesting to go back to the Kilpatrick criterion [77], and to draw some considerations on

the BD frequency dependence. Though developed in an era before clean vacuum system were

common, this law is still widely considered. In the Boyd formulation [78], it can be expressed

as:

f [M H z]= 1.64 ·E 2
K e−8.5/EK , (5.12)
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Chapter 5. Low and high power measurements of the BTW structure prototype

Figure 5.32 – Comparison between scaled maximum surface E-field of reference CLIC cavities
and the BTW prototype. Reference power of 5 for the pulse length (top) and proposed in [30]
and [7] power of 3 (middle). Non-scaled maximum surface electric field on the bottom.
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5.4. First results of the high gradient test

Figure 5.33 – Comparison between scaled maximum surface E-field of reference CLIC cavities
and the BTW prototype as a function of the number of BD.

Figure 5.34 – Comparison between scaled modified Poynting vector Sc of reference CLIC
cavities and the BTW prototype. Power of 3 for the pulse length (top), as proposed in [30] and
[7], and reference power of 5 (bottom).
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Chapter 5. Low and high power measurements of the BTW structure prototype

Figure 5.35 – BD density function as a function of the cumulative number of RF pulses and of
the longitudinal position in the cavity.

where f is the cavity frequency, and EK is the peak surface E-field limit for BD-free operation,

expressed in MV/m. Thus, according to the Kilpatrick criterion, the cavity frequency defines

the maximum gradient achievable. The pulse length is somehow considered with the bravery

factor b. This is often introduced, considering as peak surface E-field the quantity Es = bEK .

The bravery factor b is higher in case of low RF pulse length, and typically a value of 2 is chosen

in case of pulse length lower than 1 ms. Interestingly, with a bravery factor of 2, a 12 GHz

cavity has a Kilpatrick limit of 200 MV/m. However, a 3 GHz cavity would then have a limit

of approximately 100 MV/m, which has been shown not to be the case. For those bounded

to the Kilpatrick criterion, the BTW prototype has a bravery factor of 4. In conclusion, so far

this experiment is confirming that, in the 3 to 12 GHz range, the BDR does not depend on

the operating frequency. The main outcome of this experiment will be to define which is the

defining BDR field quantity at 3 GHz, whether the maximum surface electric field, or rather

the modified poynting vector Sc.
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6 Conclusions

The goal of this thesis has been the design of two hadron therapy facilities based on linear

accelerators.

The first project, called TULIP, explores the compactness limits of proton therapy linacs.

The physical advantage of proton therapy over radiotherapy, discussed in the introductory

Chapter, would lead towards the replacement of X-ray therapy machines by proton therapy

ones. However, radiotherapy linacs are simpler, smaller and cheaper to build and operate.

Ultimately, this economical advantage makes a large scale swap between the two technologies

unrealistic at the present time.

TULIP is the attempt to design a proton therapy linac as compact as possible, and so as close

as possible to a radiotherapy linac, in order to fit into already existing hospital buildings, and

thus save on infrastructural costs. This idea has been widely appreciated by the market, as

compact cyclotron-based proton therapy single-room facilities are now booming. For the

first time, the TULIP design presented in this thesis permits to understand advantages and

technical challenges of a compact linear accelerator solution for proton therapy.

Similar from a technical point of view, but fundamentally different in the main design guide-

lines, the second design studied in this thesis is a carbon ion therapy linac, called CABOTO.

The use of carbon ion in radiotherapy oncology is motivated by their higher radio-biological

effectiveness - RBE - in treating radio-resistant tumours. The downside is that they possess an

higher mass per unit charge than protons, so carbon ion linacs are bigger, and more expensive.

Specifically, carbon ions require twice as much momentum than protons to travel the same

distance through matter, and twice as much accelerating voltage, in the most favourable case

of fully stripped ions. Thus, a factor four lies between the overall voltage gain per nucleon of a

carbon ion therapy linac over a proton one. Compactness is not anymore a wise option, since

it would rocket the installation and power consumption costs. The CABOTO design explores

thus a compromise between longer linacs and lower accelerating gradients.

As for TULIP, this is the first time that a linear accelerator solution is studied for carbon ion
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therapy. Due to their higher costs and complexity, carbon ion therapy facilities are mostly

public research centres. Few companies provide the accelerator technology, that so far is

based only on synchrotron machines. The CABOTO linear accelerator proposed in this thesis

has a number of advantages over them, particularly a lower power consumption, an higher

output beam current and a quicker treatment time.

TULIP, discussed in Chapter three, can be summarized by a low gradient linac section, com-

posed by a 750 MHz RFQ followed by an IH cavity operating at the same frequency. From 10

MeV up to 70 MeV, a 3 GHz DTL is considered. These three linacs are approximately 10 m long,

and placed on the ground. The high gradient linac, the most characteristic part of the project,

is foreseen to be mounted on a mechanical structure rotating around the patient, called gantry.

The proposed TULIP design has a footprint of approximately 200 m2, with an RF peak power

installed of 125 MW and an estimated cost of 10.9 M€ for the accelerator part.

CABOTO, presented in Chapter four, is characterized by two linac sections of equal length,

joined by a 180 deg bend beam line. The first section is composed, as in TULIP, by an RFQ

followed by an IH cavity and by a DTL linac. The final energy of this section is 100 MeV/u.

The second section is formed by an RF efficiency optimized CCL cavity, with a smaller bore

radius with respect to TULIP. This, amongst others, permitted to decrease the power needs

of the linac, which has been discussed being a key issue in a carbon ion linac. The proposed

CABOTO design has a footprint of approximately 600 m2, with an RF peak power installed of

260 MW and an estimated cost of 24.5 M€ for the accelerator part.

For both projects, new accelerating cavities have been designed, as discussed in Chapter two.

Notably, two cavities captured most of the efforts, and were studied in greater detail. A 750

MHz IH cavity covering the 5 to 10 MeV range in TULIP, and 2.5 MeV/u to 10 MeV/u in CABOTO.

This solution represents an ideal continuation, both from RF and beam dynamics point of

view, to the CERN 750 MHz RFQ recently built and tested. It has been demonstrated that

previously considered 3 GHz DTL solutions have a lower RF efficiency and beam acceptance,

and an higher emittance growth. The 750 MHz IH solution was studied in detail from RF

point of view, but it lacks a final mechanical design. A second cavity was instead built and

tested: an high gradient 3 GHz backward travelling wave structure. The main goal of this

prototype is to explore the BD limits of S-Band cavities, and it represents the completion

of long-lasting collaboration between TERA Foundation and CLIC, aimed at redefining the

maximum accelerating gradient reachable in medical linacs. The cavity is in fact being tested

at a gradient more than twice what has been reached in previously tested cavities at the

same frequency. Described in the same Chapter are a 3 GHz DTL solution, already built by

colleagues in Frascati, Italy, and a high efficiency CCL operating at 3 GHz, for the CABOTO

project. The number of RF cavities considered, operating at different frequencies, accelerating

gradients, EM modes and bore apertures, permitted to end the Chapter with some, hopefully

interesting, sensitivity considerations of RF normal conducting cavities design parameters.

The 3 GHz backward travelling wave cavity testing, presented in Chapter five, is ongoing. At
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the time of writing, May 2017, the cavity is still in the conditioning phase. The structure is

behaving quite closely to X-band CLIC and KEK high gradient cavities in terms of conditioning

speed, and it has reached the target gradient of 50 MV/m, first at an initial pulse length of 350

ns, and more recently at a longer pulse of 900 ns. The cavity took approximately 10 weeks,

24/7, of RF pulsing at 25 Hz to reach for the first time the 50 MV/m at 350 ns.

In the last months of the thesis, some effort has been dedicated to the understanding of dark

current capture in accelerator for non-ultra-relativistic particles. While for β= 1 cavities a very

simple relationship defines the relationship between accelerating gradient and dark current

capture, this is not the case anymore for cavities where the geometric β is lower than one. It

was discussed that an EM field map representation of the accelerating cavity and a particle

tracking code are both necessary to numerically solve the problem.

Almost all the beam dynamic simulations of this thesis have been performed using a novel

tracking code, called RF-Track. Many peculiarities of the projects considered called for the de-

velopment of a new tracking tool, as discussed in Appendix A. The start-to-end tracking of the

beam through TULIP and CABOTO, considering EM field maps for all the accelerating cavities,

is one of the biggest effort of this thesis. Especially for low-β cavities, any EM asymmetry can

remarkably impact on the beam dynamics, thus their understanding and correction is of key

importance to achieve a continuous beam tracking. In the CABOTO project for instance, the

beam was generated at 2.5 MeV/u and it was tracked until 430 MeV/u, through more than 100

accelerating cavities - and relative focusing systems and matching sections - in a 50 m long

lattice.

At the end of this thesis, the reader should have gained a deeper understanding of the use

of linear accelerators for hadron therapy. Together with the main design parameters, this

work presented a cost estimation of a proton and a carbon ion therapy linac, and it can be

considered as a first conceptual design report of full linear solutions in hadron therapy.

Future activities in this field should concentrate on the integration of the linacs with other

components, as the ion source, the beam diagnostic and dose delivery system. Amongst

others, open topics to be further studied are the beam pulse to pulse stability, both in current

and in energy, the experimental verification of the active energy variation principle, and the

final beam line design with magnets capable of following the beam energy variation at the

linacs repetition rate, or close to it.
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A Beam dynamics and linac design
codes used

A significant amount of time during this thesis was devoted to the development of beam

dynamics codes and linac design codes. This choice was driven by the will to get deeper

insight the physics of accelerators, and to improve programming skills. However, it is also

justified by the thesis project, where linacs are studied:

• with different phase advance: π-mode for IH and CCL, 5/6π-mode for BTW, 2π-mode

for DTL;

• with tapered (IH and DTL) or constant (CCL and BTW) cell length per accelerating

structure;

• with cylindrical symmetry (CCL and BTW) or with dipole asymmetries (IH and DTL);

• constant gradient (DTL, BTW and CCL) or constant voltage (IH) structures.

• with different q/m ratios: 1 for protons and 0.5 for fully stripped carbon ions and helium

ions.

Many codes are already available, but they are often specific, and different ones should have

been considered for different parts of the thesis. For beam dynamics studies, in particular, one

can distinguish, in order of complexity, between:

• 2D codes, like Linac [79], which assume a cylindrical symmetry of the cavities;

• 3D codes with SW representation of the EM field, like TraceWin [80];

• 3D codes with complex field map representation, as ASTRA [81] and GPT [82].

It has been thus decided to write two codes. A linac design code, that can work with all types of

linacs considered in this thesis, regardless their peculiarities, listed above. This code performs
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Figure A.1 – 10 MeV electron linac preliminary study performed with the code described in
this Section.

also an analytical 2D tracking to get, quickly, a beam dynamics preliminary study and validate

the proposed linac layout.

A second code, called RF-Track, was not developed by the author, who participated in the

benchmark phase and debugging phase. This latter code perform 3D tracking of particles

through complex field maps, and it was used for the start-to-end simulations described in

Chapters 3 and 4.

A.1 Linac design code

A linac design code was written by the author. The purpose was to get a deeper insight of the

physics, but also to develop a tool capable of being adaptable to the variety of linac structures

that have been considered. This code was used for all the linacs presented in this thesis, to

define the lattice and get a preliminary estimation of the beam dynamics constraint. At the

present stage RF-Track accepts only a field-map representation of accelerating structures.

Thus it is more convenient to have a first design based on ZTT and TT profiles together with

an analytical tracking, which can then be validated and further optimized with RF-Track

The same tool was used also in quick studies of electron linacs as a side activity [83] (Fig. A.1).

The tool developed has two main subroutines. Subroutines A designs the linac, starting from

the interpolated ZTT and TT factor profiles along the structure. Given a certain energy gain

goal, one can fix the gradient, or voltage, and have structures length and input power as a

dependent parameter, or vice versa.

In case of periodic structures, the code compute the energy gain over one structure to find the

average ZTT and TT factor, and then iterates until convergence in β. In case of quasi-periodic

structures, this is done cell by cell.

One can also chose to design a constant voltage rather than a constant gradient structure. Ion
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A.1. Linac design code

Figure A.2 – Basic block diagram of subroutine A.

species are of course easily changeable.

Phase slippage algorithm was not implemented for periodic structures. However, relatively

short structures composed the linacs under consideration, thus making a phase slippage

routine not necessary. It is worth point out that from the design obtained by this code, EM

field maps are generated, and particles are tracked through them with RF-Track. If the results,

as the energy gain per structure, correspond between the two codes, this represents the

confirmation of a correct design. This was the case for all the linacs studied in the present

thesis.

The main algorithm of subroutine A is summarized in Fig. A.2

Subroutines B performs an analytical tracking with transfer matrices, and it serves as a basis to

judge whether the linac layout has a sufficient acceptance with respect to the beam emittance.

Drifts, quadrupoles and accelerating structures can be simulated. The first two elements are

straightforward, and reported in every basic accelerator book. For accelerating structures, the

formulation proposed in [84] is used:

Macc =
(

1 0
k
β̄γ

1

)
(A.1)

All the physics is concentrated in the divergence element M21, and k is given by:

k =−πqEaLt an(φs)

m0c2(β̄γ)2λ
, (A.2)
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where E a is the accelerating gradient, L the structure length, φs the synchronous phase, m0c2

the rest energy, β̄γ the average particle momentum through the cavity, and λ the wavelength.

The subroutines computes the gradients of a FODO cell composed of the elements of the linac.

For instance, the first quadrupole, drift and accelerating structures are replicated to form a

FODO cell. This is then done for the second quadrupole, drift and accelerating structure, and

so on and so forth.

If accelerating gradients and lengths are the same throughout the linac, a constant phase

advance corresponds to constant Twiss βs , independently on the elements considered. In this

case, every element is matched to its neighbours, and one can perform an analytical tracking

using the calculated quadrupole strength obtaining a smooth envelope.

However, if either the accelerating gradients, or the structure and drift tube lengths change,

each FODO has a different Twiss βs in case of a constant betatron phase advance. This happens

also if the RF phase advance changes across the linac. In these cases, each cell is mismatched

with the previous and the next one, and it is necessary to average between neighbours FODO

cells.

Subroutines B could be improved in case of high gradient and stepwise change in FODO cell

length (for instance, an abrupt change in the number of RF cells between one accelerating

structure and the next one). Reference codes, such as [79] and [80] have a better mismatch

correction algorithm in this sense. However, it was deliberately decided to spend a limited

amount of time on this code, since its scope was just to have a preliminary tracking, prior to

the final, and reference one, with RF-Track.

A.2 RF-Track: a minimalistic multipurpose tracking code

RF-Track code development started in the framework of the TULIP project [85]. The rationales

of this choice lies in the peculiarities of the project, mainly:

• TW accelerating structures were considered, and the goal of start-to-end simulations

called for a code capable of dealing with such EM field distribution and evolution in

time;

• as discussed in Section 3.1.3, the project rest on the shoulders of a main assumption: to

vary the final beam energy by changing the RF EM field in the accelerating structures.

This requires, at a simulation level, a significant code flexibility, so it was thought that a

in-house code could better adapt to the needs of the project, and to add new features as

necessary.

It is worth commenting that RF-Track went much further than its original goals, and it has

been so far used to study anti-matter, electron sources, electron gun [86], and dark current
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capture (see Section 5.3).

A.2.1 Code description

A TW cavity complicates the particle tracking. In both TW and SW cavities the EM field

oscillates according to:

A(x, t )= A(x) ·e−iωt , (A.3)

where ω is the angular RF frequency, and A(x) is the complex number spatial distribution of

either the electric or the magnetic field. Electric and magnetic field are 90 deg out of phase

with respect to each other.

SW cavities are somehow simpler from a beam tracking point of view, since the spatial dis-

tribution A(x) is in this case the complex magnitude of the field. In TW cavities instead, the

electromagnetic field has a translational component±kx, with k wave number, and the± sign

depends whether the wave propagates forward or backward. Thus a complex representation

of the EM field is needed.

Very few codes are capable of dealing with TW structures, and to the author knowledge,

the most frequently-used ones are ASTRA [81] and GPT [82]. The tracking can also be ac-

complished with SW codes by superimposing two SW patterns of different frequency [87].

Nevertheless, the need to work with TW field maps and to perform matchings and transmis-

sion optimizations, dynamically varying the RF input power as well as the lattice optics (see

Section 3.1.3), called for development of a new tracking code: RF-Track.

After the benchmark phase [86] [85], RF-Track has been used to track particles start-to-end, i.e.

the beam distribution has not been regenerated, from the RFQ output up to the final energies

of TULIP and CABOTO.

This approach, based on accelerating structures EM field maps, is more time consuming than

an analytical tracking. In the latter, the field is generated with cylindrical symmetry from Bessel

expansion of the average electric field on z axis and the transit-time factor profile along the

linac. However, as discussed in Section 2.2.6 for the IH dipolar components, and in Section 2.3

for the DTL quadrupolar asymmetries, the linacs are not always perfectly symmetric structures.

The field map approach allowed to correctly take into consideration these aspects.

RF-Track can input and combine the 3D phasor maps of both electric and magnetic fields, in

order to represent an RF field in all its complexity, as 3D solvers such as HFSS [41] generate.

RF-Track performs full 6D transport and maintains the proper time of each particle. This

allows computing the correct timing of the RF fields felt by each particle. Thanks to this

strategic choice, the code is not bounded by the notion of “bunch” or “reference particle”
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Table A.1 – Summary of the RF-Track get phase space function options [91].

%x horiz. position at S mm %X horiz. position at t = t0 mm
%y vert. position at S mm %Y vert. position at t = t0 mm

%xp horiz. angle mrad %t proper time mm/c
%yp vert. angle mrad %dt delay t − t0 mm/c
%Vx velocity c %Z -%dt * %Vz mm
%Vy velocity c %S S + %Z mm
%Vz velocity c %deg@f deg @ f GHz deg
%Px momentum MeV/c %d relative momentum per mille
%Py momentum MeV/c %pt (%E-E0)/P0c per mille
%Pz momentum MeV/c %P total momentum MeV/c
%px %Px/P0 mrad %E total energy MeV
%py %Py/P0 mrad %K kinetic energy MeV
%pz %Pz/P0 mrad %m rest mass MeV
%N Particles # %Q charge e+

and can track continuous beams consistently. It implements exact transfer maps for drifts,

quadrupoles and sector bends in both the transverse plane and the longitudinal planes, with

the exception of the quadrupole longitudinal map, which features a second- order expansion

of the path length to take into account the particle’s incoming position and angles. The

approximated solution of the longitudinal quadrupole map (already better than the standard

“drift-like” map adopted by many codes) does not undermine the tracking accuracy, because

each element can be integrated in an arbitrary number of steps, recovering accuracy whenever

a second order tracking is not sufficient.

The code is written in modern, fast, parallel C++ that exploits multi-core CPUs. Its fast

computational core is accessible by the user through a SWIG Octave interface [88] [89], which

permits to write complex, yet readable and concise, simulation scripts that can directly benefit

from a large number of optimization toolboxes already existing for Octave. An analogous

interface toward Python [90] exists, for those who prefer this language to Octave.

The Octave-Phyton user interface represents probably the biggest advantage of RF-Track. The

initial and tracked particles phase space can be retrieved with two functions, get phase space

(see Table A.1) and get transport table (see Table A.2). The first one permits to extract physics

information of each particle in the bunch, while the second function has a pre-set number of

options which calculate the average beam properties.

The tracking can be carried out integrating the beam motion in space, or in time. This last

option is very convenient and can deal with very low, or even zero, momentum particles.

Space charge interactions can also be simulated. The very common assumption of �B << �E is

not present in RF-Track, which computes the electromagnetic interaction between each pair

of particles.

The basic architecture of RF-Track is shown in Fig. A.3.
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Table A.2 – Summary of the RF-Track get transport table function options [91].

%sigma x|xp|y|yp|t|P Std(#) various
%sigma xxx|yyp|tP Cov(#,#) various

%mean x|xp|y|yp|t|P|K|E Mean(#) various
%alpha x|y|z Twiss 1
%beta x|y|z Twiss see below

%rmax envelope mm
%emitt x|y|z RMS emittance see below

%S position mm
%N transmission percent

βx [mm/mr ad ] εx = εx,g eomβr elγr el [mm.mr ad ] εx,g eom =σxσx ′ σx =
√
εx,g eomβx [mm]

βy [mm/mr ad ] εy = εy,g eomβr elγr el [mm.mr ad ] εy,g eom =σyσy ′ σy =
√
εy,g eomβy [mm]

βz [mm] εz = εz,g eomβr elγr el [mm.per mi l ] εz,g eom =σzσθ σz =
√
εz,g eomβz [mm]

Figure A.3 – Simplified scheme of RF-Track software architecture.

175



Appendix A. Beam dynamics and linac design codes used

A.2.2 Benchmark of RF-Track with other codes

RF-Track was benchmarked in the following cases [86]:

• ELENA Transfer line, antiprotons simulation with 100 keV kinetic energy, comparison

with PTC code;

• 750 MHz CERN RFQ, protons from 40 keV to 5 MeV, comparison with TRAVEL;

• Lead ions source for CERN Linac3;

• CCL cavities in the framework of the TULIP project.

In this Section, one of the first benchmarks performed, on a short SW linac for protons, is

presented.

A CCL was considered for the validation study of RF-Track, given the lack of tracking codes

capable of accepting travelling wave accelerating structures. Nevertheless, since a standing

wave (SW) regime is a particular case of a TW regime, the results are not limited to the

first case only. The codes used for the benchmark are Linac [79] and TraceWin [80]. While

LINAC demands as an input the shunt impedance (ZTT) and transit-time (TT) factor of

the accelerating structures on the z-axis, and then computes the field distribution with a

Bessel function expansion, TraceWin, like RF- Track, allows to directly entering a field map

distribution computed in 3D. For comparability with RF-track, this last option was used in

TraceWin. It must be noticed that TraceWin accepts only maps of real numbers, which can

only represent standing wave structures, whereas RF- Track directly accepts maps of complex

numbers.

The 2D electromagnetic code Superfish [40] was used to generate the electromagnetic field

maps, and a short linac made of three accelerating structures embedded in a FODO lattice

was considered in the benchmark. The steps followed in the study are summarized in Fig. A.4.

The three codes agree, both in terms of transmission and phase space distribution of the

particles, as reported in Table A.3. The αx has the biggest deviation, because the beam is at

the waist at the end of the simulation. More in general, the codes agree remarkably well in

the longitudinal phase space and in the overall transmission. A bit less well in the transverse

phase space, especially TraceWin with respect to the other two.

A.2.3 Field map generation and main assumptions

The EM field distribution in a whole accelerating structure can be fully generated with an EM

code. However, such solution would raise significantly the computational time.

All the physics is fortunately contain in a single regular RF cell, or in a set of RF cells, that

replicate an infinite periodic chain of cells. This under the assumption of a full 3D design
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Figure A.4 – Blocks view of the approach adopted for benchmarking the codes.

Table A.3 – Twiss parameters comparison from the benchmark simulation on a three structures
linac.

RF-Track Linac TraceWin Diff. RFT-Linac [%] Diff. RFT-TraceWin [%] Diff. Linac-TraceWin [%]

N 2185 2118 2081 -3 % -5 % -2 %
αx -0.207 0.124 -0.695 -160 % 236 % -658 %

βx[mm/pi/mrad] 1.669 1.640 1.381 -2 % -17 % -16 %
εx(Norm,RMS)[pi.mm.mrad] 0.380 0.328 0.488 -14 % 29 % 49 %

αy -0.416 -0.289 -0.484 -31 % 16 % 68 %
βy[mm/pi/mrad] 0.275 0.255 0.237 -7 % -14 % -7 %

εy(Norm,RMS)[pi.mm.mrad] 0.549 0.468 0.577 -15 % -5 % 23 %
αz 2.886 2.773 2.801 -4 % -3 % 1 %

βz[deg/pi/MeV] 274.4 264.4 267.4 -4 % -3 % 1 %
εz(Norm,RMS)[pi.deg.MeV] 3760 3576 3688 -5 % -2 % 3 %
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where the end-cells are properly matched the regular cells, so there are not standing wave

patterns trapped in the cavity.

Periodic and quasi-periodic structures require a different approach, and are hereafter dis-

cussed separately. Periodic structure refers to cavities where all the RF cells have equal length,

while quasi-periodic indicates structures tapered in length.

This case is the simplest of the two. Given the RF phase advance per cell φ, one can compute

the field in the n-th cell by:

En = E0 ·e−i nφ, (A.4)

with n integer number, and so quickly create a n-th cells structure field map. The E-fields

and H-fields have then to be normalized, and scaled to the average accelerating gradient

computed with the code discussed in Section A.1. The convention adopted with RF-Track is to

express the E-field in [V/m] and H-field in [A/m].

The single RF cell can be either simulated with an EM code, or more simply, one can inter-

polate it from a set of different β cells that cover the different geometric β of the linac. This

last approach permits to change reasonably quickly a linac, without running additional EM

simulations.

Quasi-periodic structures are a bit more complex, since there the RF cell length is not constant

anymore. So the EM field maps have to be stretched following the variable cell length Lc . Since

RF-Track, as many tracking codes, accepts only a constant mesh, a second interpolation is

needed in this case to produce a ready to use field map.

It is worth commenting that a certain degree of dipolar component can be present in end-cells.

The approach above described does not consider them. While one could always simulate a

full 3D geometry, and get the field map from there, a quicker solution would be in this case

to superimpose the end-cells dipole component of the EM field to the symmetric field map

discussed above. How to distinguished a dipolar component in a field map was discussed in

Section 2.2.6.

The codes can work with both cartesian and cylindrical coordinates. This latter capability was

introduce after realizing that, on a cylindrical bore radius, a cartesian mesh underestimates the

real aperture. In fact, if HFSS is enquired about the EM field in a region outside the simulation

geometry, it returns a not-a-number (NaN) for that point. So if one selects a cartesian mesh,

with edge equal to the radius of the bore aperture, one would get something similar to the

graphic example of Fig. A.5, where a five points mesh is shown.

Since at every time step, or space step, RF-Track interpolates the field at the edges of the cube

that surrounds the particle position, if one of the edges is a NaN, also the interpolation result

is a NaN, and so the particle is recognized as lost. So, depending on the transverse mesh size
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Figure A.5 – Sketch of a cartesian mesh over a cylindrical region. Points with EM field are in
blue, NaN in orange. Small green dots are numerical interpolation points, small red dos are
interpolation points which are NaN.

adopted, with such solution one could loose a considerable amount of transverse acceptance.

Hereafter this is derived in more detail. The mesh size is assumed isotropic along the two

transverse dimensions x and y. The condition to have a not-NaN for the EM field is:

√
(Nx d)2+ (Ny d)2 <=R, (A.5)

with Nx and Ny integer numbers of grid points along the two dimensions, d grid size, and R

bore aperture radius.

The minimum value of the grid size d that permits to have a not-NaN result, except for the

(0,0) coordinate, is then:

d <= R�
2

. (A.6)

The biggest square internal to the aperture is instead:

N ·d <= R�
2

. (A.7)

However, there could be space for two, or even more, additional squares, provided that Eq. A.5

is respected.

A better way to study the problem is the following. Let’s consider the sketch of Fig. A.6 left. To

use the most of the space available, a square grid of edge d must be placed as in the image,
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Figure A.6 – Sketch to illustrate the derivation of Eq. A.8 (left) and visual example (right).

and the length X must be such that X =Nx d . From basic trigonometric equation, one then

find that:

Nx = R

d
cos

(
d

R

)
(A.8)

So the number of points that can be fit in the cylindrical geometry (and so the filling percentage

of a square grid in a cylindrical geometry) depends on 1. the cylinder radius and on the inverse

of the mesh size, but 2. there is also a fluctuation term given by the cos
( d

R

)
. The first conclusion

is intuitive: the smaller the mesh size, the more points will fit into a given geometry. The

second conclusion is less straightforward: it come from the fact that the mesh squares have a

discrete area, which fits into the available cylindrical one in discrete steps.

The filling percentage of a square grid in a cylindrical geometry was simulated with a code,

and is reported in Fig. A.7, which shows the ratio of area cover by the mesh over the total

circle area, as a function of mesh size d and radius R . As expected, the fluctuations smooth for

higher R/d ratios, since this term becomes predominant in Eq. A.8.

First simulations run during the PhD considered a 0.5mm mesh size over a 2.5mm bore

aperture radius. So the first results, later on corrected, were underestimating the transverse

acceptance of the linacs of approximately 25%.

A final remark concerns the symmetry condition of each cell. One should pay attention

that both the longitudinal EM distribution and the transverse one have the same phase

advance. For instance, the symmetry condition in a IH cavity is respected when two RF cells

are simulated together. If only one is used in Eq. A.4, the longitudinal EM field distribution

is correctly generated, but the dipole kicks point all in the same direction. One shall not try

to trick this problem by changing the sign of the transverse electric field components. In this

case in fact, while the dipole kicks would be correctly oriented, the RF defocusing would not

be (see Section 2.2.6). This was a mistake made by the author at the beginning of the work,

and it resulted in wrong results to be corrected. A good lesson, better not to play without a full

understanding of the physics behind.

With this Chapter ends the introductory part of this thesis. After the introduction on hadron

therapy, Chapter 2 discussed the RF designs carried out in this thesis, while this Chapter
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Figure A.7 – Ratio of area cover by a cartesian mesh over a total circle area, as a function of
mesh size d and circle radius R

presented the beam dynamic codes that were developed and used. Hereafter, these two

ingredients are put together to study a high-gradient proton therapy linac - TULIP - and an

high efficiency carbon ion therapy linac - CABOTO. Chapter 3 starts with the TULIP project.
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• S. Benedetti, U. Amaldi, A. Grudiev and A. Latina, Design of a proton travelling wave

linac with a novel tracking code, In Proc. of IPAC15 Conference, Richmond (VA), USA

(2015).

• S. Benedetti, T. Argyropoulos, C. Blanc Gutierrez, N. Catalan Lasheras, A. Degiovanni, D.

Esperante Pereira, M. Garlasche’, J. Giner Navarro, A. Grudiev, G. Mcmonagle, A. Solodko,

M. Timmins, R. Wegner and W. Wuensch, Fabrication and testing of a novel S-Band

backward travelling wave accelerating structure for proton therapy linacs, In Proc. of

LINAC16 Conference, East Lansing (MI), USA (2016).

• S. Benedetti, A. Grudiev and A. Latina, Design of a 750 MHz IH structure for medical

applications, In Proc. of LINAC16 Conference, East Lansing (MI), USA (2016).

• S. Benedetti, A. Grudiev and A. Latina, High gradient linac for proton therapy, Physical

Review Accelerators and Beams 20, 040101, April 2017.

The last publication, High gradient linac for proton therapy, was highlighted on APS Physics,

MedicalPhysicsWeb and Superconductor Week (link not available).
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RF DESIGN OF A NOVEL S-BAND BACKWARD TRAVELLING WAVE 
LINAC FOR PROTON THERAPY 
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The electromagnetic coupling between cells has been 

accomplished magnetically by means of magnetic 
coupling holes at the periphery of the cells. Nose cones 
are added to enhance the electric field near the axis and 
thus the transit time factor for the low beta structure. The 
regular cell geometry is shown in Fig. 1.  

 

Figure 1: Regular cell design; 3D model (left) and copper 
piece (right) used in the creep test. 

A local field quantity which predicts the high gradient 
performance of an accelerating structure is the modified 
Poynting vector , defined in [3]. It has a limiting value 
of about 4MW/mm2 at a pulse length of 200 ns and for a 
breakdown rate (BDR) of 10-6 bpp/m (BDs per pulse per 
meter). This limit is used in the design of the linac (which 
is approximately 6 m long) in order to have less than one 
BD per treatment session. By re-scaling these data to the 
pulse length typical of medical linacs, i.e. 2.5 flat-top, 
a limit quantity of   where  is the average 
accelerating gradient  lower than 7·10-4 A/V has been 
found. 

The goal of the regular cell design has been to 
minimize the value of  and at the same time the amount 
of RF power for a given accelerating field, i.e. the 
quantity:  

 

 

(1) 

where  is the angular RF frequency,  is the effective 
shunt impedance per unit length and  is the quality 
factor of the cell. Eq. (1) equally weights the dissipated 
power and the modified Poynting vector; thus, 
minimizing  one obtains for a given power the highest 
accelerating gradient with a low BD risk. 

The optimum is found when Eq. (1) is minimized 
simultaneously on the nose, where the electric field is 
maximum, and on the coupling slot, where the magnetic 
field is maximum, as shown in Fig. 2. 

A parametric study has been performed varying the cell 
gap, cone angle and phase advance per cell. The thickness 
of the iris has been carefully studied as well. The thinner 
the iris, the higher the shunt impedance is, but also the 
lower the mechanical resistance of the structure and the  

  
 ___________________________________________  
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possibility of evacuating the heat from the nose to the 
outer walls of the structure which are water cooled.  

Particular effort has been dedicated to the sensitivity 
analysis and the study of the tuning methodology. The 
tolerances specified in the mechanical drawings would, 
from simulations, give no more than ±5 MHz of 
frequency shift per cell. This possible error will be 
adjusted by means of 4 dimple tuners. The tuning 
capability obtained from simulations and mechanical tests 
on copper cells is higher than 6 MHz per cell, well 
beyond the tuning needs also in the worst case scenario. 

 

Figure 2: Electric (left), magnetic (centre) and modified 
Poynting vector (right) field distribution in a regular cell 
section (1/32 azimuthal symmetry). 

 
In a travelling wave linac, the RF power is injected into 

the structure and propagates along it at the group velocity 

vg. It is absorbed both by the conductor walls and by the 
beam, resulting in an attenuation of the field amplitude. 
At the end of the structure the power is coupled to a load 
or a re-circulating circuit.  

A low group velocity leads to a high accelerating 
gradient but at the same time to a rapid decay of the 
power. 

- - -

-

 with the group velocity 
ranging between 0.4% and 0.2% of c as a compromise 
between acceptable filling time and efficient acceleration 
of the beam (Fig. 3). 

 

Figure 3: Input and output cells group velocity and filling 
time of the structure as a function of the ratio between 
output and input powers. 

 
The input and output power couplers (or end-cells) 

represent a very delicate part of the design process. The 
presence of a slot to allow the RF power to penetrate into 
the structure enhances the electromagnetic field 
distribution and modifies the accelerating parameters of 
the coupling cell. The goal of the couplers design is to 
minimize the power reflections while perturbing as little 
as possible the field distribution and the accelerating 
performance of the end-cells. 

The power coupling is made magnetically via a single 
slot, the area of which together with the coupling cell 
diameter is chosen for matching. The coupling holes 
radius in the input cell has been reduced in the coupling 
holes closer to the coupling slot, to compensate for the 
enhancement of the Sc due to the local increase of the 
power flow. The remaining coupling holes have been 
resized to maintain the design group velocity in the cells 
(Fig. 4 left), and as a result the end-cells provide the same 
acceleration as the regular cells (Fig. 4 right). 

  

Eventually, an even distribution of the modified 
Poynting vector on all the accelerating structure noses and 
coupling holes has been reached, as shown in Fig. 5, and 
the limit of  lower than 7·10-4 A/V has been widely 
respected.  

 

Figure 5: Modified Poynting vector normalized to the 
average accelerating gradient squared distribution on the 
structure noses and coupling holes. Red colour 
corresponds to 3·10-4  A/V. 
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Figure 6 shows (top) the frequency distribution of the 
resonating peak and (bottom) the phase advance per cell, 
which is equal to 150° at the chosen operating frequency. 
A reflection lower than 50 dB was reached at the resonant 
frequency of 2.9985 GHz. 

 

 
Figure 6: Input (red) and output (brown) couplers 
matching (top) and phase advance per cell (bottom) 
versus frequency. 

 
The most important parameters of the backward TW 

accelerating structure (bwTW) are summarized in the first 
column of Table 1. The second column refers to a SW 
CCL (Coupled Cavity Linac) structure which has been 
previously designed for the TULIP project [4]. That 
structure has been optimized to maximize the shunt 
impedance, which is larger also thanks to the greater 
phase advance, but cannot withstand the same maximum 
gradients of the bwTW structure. 

 

   

 
  

   

   

   

  

end-cells [mm]   

 
  

 6997/7463 8290 

   

 
  

-
 

  

 

-  
  

 -  -  

-

 
  

 
  

 
A novel high gradient S-band accelerating structure for 

a proton therapy linac has been designed in collaboration 
between TERA and CLIC. The unique feature of such 
design is the capability of reaching an accelerating 
gradient never reached so far in equivalent structures.  

In June 2014 the tender for the mechanical pieces has 
been launched. The final assembly of the prototype will 
start in autumn 2014, with the final goal of testing the 
structure at high power in 2015. 

 
The authors are very grateful to the CERN KT group 

for having funded the accelerating structure prototype 
construction and test. 
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DESIGN OF A PROTON TRAVELLING WAVE LINAC  
WITH A NOVEL TRACKING CODE 

S. Benedetti#, TERA, Novara, Italy and EPFL, Lausanne, Switzerland 
A. Grudiev, A. Latina, CERN, Geneva, Switzerland 

U. Amaldi, TERA, Novara, Italy 

Abstract 
A non-relativistic proton linac based on high gradient 

backward travelling wave accelerating structures was 
designed using a novel dedicated 3D particle tracking 
code. Together with the specific RF design approach 
adopted, the choice of a 2.9985 GHz backward travelling 
wave (BTW) structure with 150° RF phase advance per 
cell was driven by the goal of reaching an accelerating 
gradient of 50 MV/m, which is more than twice that 
achieved so far.  

This choice dictated the need to develop a new code for 
tracking charged particles through travelling wave 
structures which were never used before in proton linacs. 
Nevertheless, the new code has the capability of tracking 
particles through any kind of accelerating structure, given 
its real and imaginary electromagnetic field map. This 
project opens a completely new field in the design of 
compact linacs for proton therapy, possibly leading to 
cost-effective and widespread single room facilities for 
cancer treatment.  

INTRODUCTION 
A collaboration between TERA Foundation and CLIC 

was established to study a novel linear accelerator for 
proton therapy. The main goal of the collaboration is to 
transfer the knowledge acquired by the CLIC group, 
mostly in terms of RF design, high-gradient limitations 
and linac optimization, to a medical linac. 

Funds of the Knowledge Transfer group of CERN 
permitted the construction of a prototype based on the 
design discussed in [1]. High power RF test of this 
accelerating structure is under preparation at the present 
time, to validate its capability to reach the maximum 
accelerating gradient of 50 MV/m. 

A backward travelling wave linac was never used for 
accelerating protons. Moreover, a medical linac has a 
certain number of peculiarities with respect to high 
energy physics linacs, as for instance the need to vary the 
kinetic energy of particles over a wide range to reach 
tumour tissues at different depth into the patient body. So 
it was decided to develop a completely new tracking 
code, called RF-Track. The main features of such code 
will be discussed in the present paper, together with the 
results of the benchmark study and a preliminary BTW 
linac design. 

RF-TRACK 
In order to evaluate and maximise the transmission 

through backward-travelling accelerating structures, a 
new ad-hoc tracking code was developed: RF-Track. The 

decision to develop a new code was motivated by the 
need to perform accurate tracking of continuous, 
unbunched, inherently relativistic beams of protons or 
ions (with beta = ~0.35 for the protons, even less for the 
ions), through 3D field maps of BTW structures. No code 
in our knowledge featured the required flexibility and had 
the capability to handle real and imaginary field maps of 
travelling-wave RF structures (forward or backward).  

RF-Track can input and combine the 3D phasor maps 
of both electric and magnetic fields, in order to represent 
an RF field in all its complexity, as 3D solvers such as 
HFSS [2] generate. This possibility allows the accurate 
representation of (backward) travelling-wave structures, 
differently from most of the codes, which can only input 
static field maps or can only simulate standing wave 
structures (and require to overlap two standing waves to 
mimic a travelling wave). 

RF-Track performs full 6D transport and maintains the 
proper time of each particle. This allows computing the 
correct timing of the RF fields felt by each particle. It 
must be noticed that, thanks to this strategic choice, the 
code is not bounded by the notion of “bunch” or 
“reference particle” and can track continuous beams 
consistently. It implements exact transfer maps for drifts, 
quadrupoles and sector bends in both the transverse plane 
and the longitudinal planes, with the exception of the 
quadrupole longitudinal map, which features a second-
order expansion of the path length to take into account the 
particle’s incoming position and angles. The 
approximated solution of the longitudinal quadrupole map 
(already better than the standard “drift-like” map adopted 
by many codes) doesn’t undermine the tracking accuracy, 
because each element can be integrated in an arbitrary 
number of steps, recovering accuracy whenever a second-
order tracking is not sufficient. 

 
Figure 1: Simplified scheme of RF-track software 
architecture. 

The code is written in modern, fast, parallel C++ that 
exploits multi-core CPUs. Its fast computational core is 
accessible by the user through a powerful SWIG Octave 
interface [3,4], which permits to write complex, yet 
readable and concise, simulation scripts that can directly 
benefit from a large number of optimization toolboxes  ___________________________________________  
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already existing for Octave. An analogous interface 
toward Python [5] has also been created, for those who 
prefer this language to Octave. A simplified scheme of 
RF-Track architecture is shown in Fig. 1. 

CODE BENCHMARKING 
A Side Coupling Linac (SCL) was considered for the 

validation study of RF-Track, given the lack of tracking 
codes capable of accepting travelling wave accelerating 
structures. Nevertheless, since a standing wave (SW) 
regime is a particular case of a TW regime, the results are 
not limited to the first case only. The codes used for the 
benchmark are LINAC [6] and TraceWin [7]. While 
LINAC demands as an input the shunt impedance (ZTT) 
and transit-time (TT) factor of the accelerating structures 
on the z-axis, and then computes the field distribution 
with a Bessel function expansion, TraceWin, like RF-
Track, allows to directly entering a field map distribution 
computed in 3D. For coherence with RF-track, this last 
option was used in TraceWin. It must be noticed that 
TraceWin accepts only maps of real numbers, which can 
only represent standing wave structures, whereas RF-
Track directly accepts maps of complex numbers. 

The 2D electromagnetic code Superfish [8] was used to 
generate the electromagnetic field maps, and a short linac 
made of three accelerating structures embedded in a 
FODO lattice was considered in the benchmark. The steps 
followed in the study are summarized in Fig. 2. 

 
Figure 2: Blocks view of the approach adopted for 
benchmarking the codes. 

The results of the benchmark showed that the three 
codes agree, both in terms of transmission and phase 
space distribution of the particles [9]. 

LINAC DESIGN 
The linac design was carried out with two dedicated 

tools: a Matlab code was developed for setting the 
accelerating structure lengths, then RF-Track was used 
for optimising the FODO lattice design, maximising the 
transmission and validating the design. 

Accelerating Structures Design 
A simplified model was adopted to generate the 

electromagnetic 3D field maps of the different structures. 
Regular cells for five different betas of the structure were 
designed with the 3D electromagnetic code HFSS, in 
order to compute the shunt impedance and transit-time 

factor profiles of the linac. This RF design was carried 
out with the same goals and constraints as the reference 
0.38 beta prototype. For this reason the different 
structures of the linac are equivalent in terms of 
maximum accelerating gradient and Breakdown (BD) 
behaviour. 

Starting from these data, a Matlab code was written to 
compute the accelerating structure lengths, the final 
energy at the end of each structure, and the average beta 
per structure. Inputs to this program are the initial energy, 
the minimum final energy of the linac, the RF power per 
accelerating structure, the synchronous phase, and the 
average axial electric field. The code was written for a 
5pi/6 phase advance linac, but it is fully parameterized 
and can be easily adapted to other designs. 

A compact 18 accelerating structures linac was chosen, 
with a constant number of 12 cells per structure, and a full 
recirculation of the power was considered. A synchronous 
phase of 20 degrees was chosen. The attenuation in the 
3dB-hybrid and in the waveguides was taken into account 
by means of a 10% losses coefficient in the klystrons 
power. Given the power attenuation in standard S-band 
waveguides of 0.02 dB/meter, this would lead to the 
possibility of installing up to 20 m long waveguides. The 
linac layout is presented in Fig. 3. 

3D Field Maps Generation 
With the average betas computed, HFSS regular cell 

design for each of the 18 structures was made. Only one 
cell per structure was modelled to save computational 
time. Afterwards, the generated field maps were 
converted into the whole accelerating structure field 
maps. This approach cannot take into account the effects 
introduced by couplers. This aspect will be addressed in 
the future. 

Lattice Design 
A round beam has the maximum acceptance with a 

phase advance of 90° per focusing period. Keeping this as 
a fixed parameter, the gradient  of the Permanent 
Magnetic Quadrupoles (PMQ) that will form the FODO-
like lattice focusing the beam could be easily computed 
with the equation: 

where  is the phase advance per cell,  are the 
relativistic factors,  is the length of the quadrupoles and 

 is the length between them.  
It must be noticed that, in this particular project, Eq. 1 

does not apply in a straightforward way, because: 
 the linac lattice is not a regular FODO; 
 the relativistic  is not constant. 

The first bullet comes from the fact that the accelerating 
structure lengths increase along the linac, following the 
increase of particles relativistic beta. As a result, so do the 
distances between quadrupoles. The second bullet comes 
from the peculiarity of this project, where the kinetic 
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Figure 3: Basic layout of the linac. Transverse and longitudinal dimensions are in scale [m]. 

 
energy of the beam has to vary depending of the depth of 
the tumour tissues to be treated. This is achieved by 
turning on and off the last active accelerating structures 
(see Chapter 1 of [10]). In addition, Eq. 1 does not take 
into consideration the RF defocusing introduced by the 
accelerating cavities. This contribution is not negligible 
and has to be counteracted through an increase of the 
quadrupoles strength with respect to the ideal value of a 
FODO lattice.  

The goal of the FODO optimization is to find the 
gradient that maximizes the transmission at all the 
different energies. The simplified approach of Eq. 1 led to 
a good particles envelope for minimum and maximum 
energy, while for intermediate energies the FODO could 
be optimized (Fig. 4). A second method, consisting in 
zeroing the second derivative of the phase advance for the 
minimum energy, brought to similar results. The optimum 
will be reached numerically through an algorithm of RF-
Track currently under preparation.  

 
Figure 4: Kinetic energy along the structure S (left) and 
beta function (right) for 70 MeV (top), 152 MeV (middle) 
and 236 MeV (bottom) protons. 

PRELIMINARY TRACKING RESULTS 
Tracking of a bunch of particles was performed with 

typical input parameters and the results are presented in 
Fig. 5 for the transverse phase-space and in Fig. 6 for the 
longitudinal phase-space. In case of on-crest acceleration, 
one can notice the presence of particle tails, which are 
formed by particles outside the longitudinal buckets. 

 
Figure 5: Transverse phase-space representation at the 
beginning (blue) and at the end (red) of the linac. 

 
Figure 6: Longitudinal phase-space representation for -
20° (left) and 0° (right) input phase. Input (blue) and 
output (red) particles.  

The fraction of transported particles was evaluated 
using RF-Track on the preliminary design here presented. 

 
Figure 7: Particles transmission as a function of the final 
energy of the beam. 

Figure 7 clearly shows that the design is not yet optimal, 
since the transmission varies as a function of the energy. 
In a medical linac instead, one wants to get a transmission 
as constant as possible throughout the structure. Such 
optimization will have to take into consideration the 
Twiss parameters profile, as well as the emittance growth. 
Space-charge is not an issue due to the very low currents 
(below mA peak) needed for tumour treatment. 

SUMMARY AND FUTURE STEPS 
A new tracking code, called RF-Track, was developed 

to design a novel non-relativistic proton linac based on 
BTW accelerating structures. The main code 
characteristics and the successful benchmark were 
discussed in this paper. The linac accelerating structures 
were designed and a first lattice was studied and 
presented. A careful optimisation of the transmission is 
ongoing. 
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FABRICATION AND TESTING OF A NOVEL S-BAND BACKWARD 

TRAVELLING WAVE ACCELERATING STRUCTURE FOR PROTON 

THERAPY LINACS 

  

 

 

 

 

 

 

 

 

 

 

 

 

The mechanical design had to face a number of 

challenges, from the required micron-precision tolerances, 

to the slenderness of the inter-cell wall with respect to the 

feature both for machining and for the bonding/brazing 

steps. Inter-cell wall thickness remarkably affects the 

accelerating efficiency of a cavity, so it has to be chosen 

the minimum possible. A series of high-temperature creep 

tests was thus carried out. More precisely, an experimental 

campaign was performed to define the minimum septum 

thickness that can withstand the creep-induced 

deformation during the hydrogen bonding heat cycle (with 

a maximum temperature of 1050 °C). A value of 2 mm was 

eventually chosen for the septum thickness. A machining 

test was also performed  with a prototype cell being 

produced in order to validate the following series. 

 

Tuning of the structure is made by four dimple tuners per 

RF cell (Fig.1 left). The number and size of the tuners was 

determined by an RF sensitivity and tuning analysis. The 

dimple tuners have a diameter of 10.5 mm, and wall 

thickness of 1.6 mm. This last parameter has to allow 

enough deformation of the cavity outer walls to produce a 

tuning effect, but without rupture. A series of numerical 

calculations and tests was also carried out on geometries 

with different diameter/wall thickness ratio, in order to find 

the best compromise between allowable tuning volume and 

safety in terms of possible rupture of the copper wall. 

A weakly coupled thermo-structural analysis on the full 

structure was performed by importing the HFSS® 

electromagnetic field distribution to the thermal and 

structural packages of ANSYS® (Fig. 2).  

The heat dissipation is limited by the peculiar RF design 

[3], which has 16 coupling holes in each RF cell outer 

region. As a result, the temperature distribution in the 

structure is mainly driven by this thermal resistance. Four 

cooling plates were designed. To prevent plastic 

deformation, a maximum thermal load of 0.75 kW is 

allowed, which corresponds to a duty cycle of about 0.075 

10-3 at a maximum gradient 50 MV/m. Further 

developments could consider a thicker septum, at the price 

or reduced rf performance, in case a higher duty cycle is 

required.  
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The full structure design is presented in Fig. 3. It is 

possible to notice the details of the cooling plates and 

pipes, dimple tuners and waveguides transition to standard 

WR284.  

 

 

Once the ultra-precision machined disks arrived at 

CERN, they underwent visual and metrological inspection 

to check the presence of eventual surface defects and 

compliance with the nominal values indicated in the 

drawings (Fig. 4).  

 

 

A low power RF test was performed on the structure 

prior to bonding, in order to verify that the prototype was 

within the tuning range. The stack of disks was joined by 

diffusion bonding in a partial hydrogen atmosphere 

following the CLIC baseline fabrication procedure. The 

fabrication technique was chosen so that the high-gradient 

test results can be most easily compared to the structures 

tested in the CLIC high-gradient program. The axial 

alignment of the disks was ensured thanks to a precise V-

shape support whereas azimuthal alignment was performed 

using the tuning holes as seen in Fig. 5. 

After the structure was assembled by brazing the cooling 

blocks and vacuum tubes and input waveguides, it was 

returned to CERN for the final tuning. A summary of the 

tests performed on the prototype is shown in Fig. 6. 
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All 12 cells (10 regular and 2 coupling cells) of the 

structure were adjusted in frequency by pulling or pushing 

up to 4 tuning pins in each cell. The available tuning range 

per cell is about ±3 MHz. Bead-pull measurements were 

used to determine the electric field profile along the axis. 

The standing wave pattern was minimised and the desired 

phase advance of 150±1.5 ° for regular cells was adjusted 

for the operating frequency of 2.9985 GHz under vacuum 

at a temperature of 32 °. The frequency of the output 

coupling cell was increased by 2.2 MHz, the frequency of 

the 10 regular cells was increased between 0.1 and 

0.8 MHz (average 0.3 MHz, std 0.2 MHz) while the 

frequency of the input coupling cell was decreased by 

0.6 MHz. Fig. 7 shows the electric field pattern along the 

structure and Fig. 8 the measured S-Parameters after 

tuning. 

 

 

A high power test of the prototype is under preparation 

using a bunker and infrastructure of the CLIC Test Facility 

(CTF3) to evaluate its breakdown performance. An S-band 

klystron unit is connected to the accelerating structure, 

located in the CTF2 bunker room, via WR284 waveguides 

(Fig. 9).  

To ensure the ultra-high vacuum in the structure, below 

10-8 mbar, an ion pump is installed next to the prototype 

through an RF pumping. In addition, a vacuum leak test of 

the prototype has been made in situ at the testing place. 

The control and acquisition system are based on 

National Instrument electronics, a largely direct copy of 

the configuration of the Xbox-2 test stand [4]. The 

structure is equipped with a complete experimental set-up 

for breakdown diagnostics. Two Faraday cups are attached 

to both ends of the prototype for breakdown detection and 

dark current measurements. Incident, reflected and 

transmitted RF power is extracted by bi-directional 

couplers inserted before and after the structure. The 

amplitude and phase of these 3 GHz signals will be 

processed by down-mixing to 62.5 MHz and digitizing in 

250 Msps ADCs. The analysis of these signals will allow 

the longitudinal localization of vacuum arcs in the structure 

[5]. 

 

 

A 3 GHz Backward Travelling Wave (BTW) 

accelerating structure with geometric beta of 0.38 was 

recently designed and built at CERN. The main goal of the 

project is to investigate the accelerating gradient limits of 

the S-band regime. In this paper, the mechanical design, 

fabrication and tuning of the prototype is discussed, 

together with the high power test set-up. The prototype is 

currently installed in CLIC CTF2. The start of high 

gradient testing is imminent. 

 

The authors are very grateful to the CERN KT group for 

having funded the accelerating structure prototype 

construction and supplied important test equipment. 
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DESIGN OF A 750 MHZ IH STRUCTURE FOR MEDICAL APPLICATIONS 
S. Benedetti#, CERN, Geneva and EPFL, Lausanne, Switzerland 

A. Grudiev, A. Latina, CERN, Geneva, Switzerland 

Abstract 
Low velocity particles are critical in every hadron 
accelerator chain. While RFQs nicely cover the first 
MeV/u range, providing both acceleration and bunching, 
energies higher than few MeV/u require different 
structures, depending on the specific application. In the 
framework of the TULIP project [1], a 750 MHz IH 
structure was designed, in order to cover the 5-10 MeV/u 
range. The relatively high operating frequency and small 
bore aperture radius led the choice towards TE mode 
structures over more classic DTLs. Hereafter, the RF 
regular cell and end cell optimization is presented. An 
innovative solution to compensate dipole kicks is 
discussed, together with the beam dynamics and the 
matching with the 5 MeV 750 MHz CERN RFQ [2]. This 
structure was specifically designed for medical 
applications with a duty cycle of about 1 ‰, but can easily 
adapted to duty cycles up to 5 %, typical of PET isotopes 
production in hospitals.  

INTRODUCTION 
R&D developments in low beta linear accelerators 

sparked in the last two decades. Alvarez drift tube linacs 
(DTL) are usually the preferred solution after the RFQ for 
pulsed operation. An alternative to DTLs are H-mode 
linacs, operating in the TE110 mode – inter-digital H (IH), 
or in TE210 mode – cross-bar H (CH), as RFQs. Different 
hybrid solutions – quasi-Alvarez DTL, H-mode linac with 
PMQ focusing – were studied [3,4]. Ultimately, the choice 
of the best accelerating structure depends on the 
application. Medical linear accelerators are characterized 
by pulsed, low current beam, and have thus a small 
aperture radius. In addition, a high accelerating gradient is 
desirable, in order to reduce the overall length of 
accelerators that have as a final target medical rooms in 
hospital. This set of parameters – small aperture and high 
gradient – is unique amongst low beta accelerators, and 
thus call for a specific design.  

COMPARISON BETWEEN STRUCTURES 
The 5 MeV 750 MHz CERN proton RFQ represented 

the starting point of this study. From preliminary beam 
dynamics considerations, it was decided to use accelerating 
structures with 2.5 mm aperture radius. The operating 
frequencies considered were 750 MHz, as the RFQ, and 3 
GHz, as the high-beta accelerating structures already 
designed [5]. The intermediate harmonics were not 
considered.  

RF regular cells with a simplified geometry were 
optimized in terms of Shunt Impedance (ZTT), considering 
both DTL and H-mode cavities at the two different 
frequencies, when applicable (Fig. 1). The results obtained 
clearly showed the advantage of IH-mode structures in the 
5 to 20 MeV/u range. As we will discuss in the following 
section, the optimization of IH structures is more complex 
than the optimization of DTL cavities, for which the gap is 
the most important parameter. As a result, a detailed cavity 
optimization remarkably increased the ZTT of the 750 
MHz IH solution considered (dark red curve in Fig. 1). 

Figure 1: ZTT comparison between different RF cavities. 

REGULAR CELL DESIGN 
The optimization of TE cavities is more challenging with 

respect to TM mode ones because of the current flowing in 
the conductor walls. A DTL RF cell has its ZTT optimum 
for a given gap, and for stem radius and drift tube thickness 
the smallest possible. This is not, in absolute terms, the 
case for IH cavities. For instance, a large stem radius is 
beneficial because it reduces the Ohmic losses, but it also 
affects the gap region electric field, thus reducing the ZTT.  
A careful RF optimization was carried out in order to 
maximize the ZTT, for a cell length of 2 corresponding 
to 2.5, 5 and 10 MeV. 

Figure 2: Comparison between the 5 MeV 750 MHz RFQ 
cell cross section and the IH one. 
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Figure 3: Geometric and main parameters comparison between IH optimized regular cells (left) and structure assembly 
view (right). Dimensions are in mm, and R upon Q in /m. 

The 2.5 MeV regime was investigated in the perspective 
of further projects with carbon ions. As shown in Fig. 2, 
the transverse dimension is close to the one of the 750 MHz 
RFQ. The RF design indeed followed also the goal of 
having a geometry which is close to the one of the RFQ, in 
order to maximize the experience gained at CERN in terms 
of brazing – assembly, and tuning, of structures in these 
regimes of beta and frequency. The main accelerating and 
geometric parameters of the optimized cells, together with 
a view of the structure is reported in Fig. 3. 

A thermal and deformation analysis was performed on 
the optimum geometries found, considering an 
accelerating gradient of 10 MV/m and a duty cycle typical 
of medical applications, i.e. 10-3 (Fig. 4). It is demonstrated 
that, at such low DC, cooling of drift tubes is not necessary 
thanks to the high ZTT. The simulated temperature 
difference is 1.2 deg, and the maximum temperature 
induced deformation is 0.5 m. 

Figure 4: Thermal and deformation analysis for the 5 MeV 
cell at 10 MV/m accelerating gradient and 10-3 duty cycle. 

END CELL DESIGN 
End-cells are probably the most critical part in the design 

of an H-mode accelerating structure. The transition from a 
TE mode to a TM one, due to end-cell walls, forces a strong 
rupture of the symmetric chain, which can propagates 
along many regular cells and decrease significantly the 
overall ZTT. Passing from TE to TM translates into the 
need of increasing the cavity dimension. The solution 
adopted is the one presented in [4], though another study 
proposes a different approach [6]. In this regard, the RF 
design was completed, but a mechanical study is necessary 

before validating the proposed solution. The ZTT decrease 
in the end cells is higher than 50%, thus making this design, 
as all H-mode cavities, efficient only if the structure is long 
enough to make the end-cells effect on the overall 
efficiency negligible. 

DIPOLE KICKS 
Electrical coupling between drift stems induces a dipole 

kick component along the stems direction. This effect is a 
consequence of the small aperture dimension and drift gap, 
and is not notable in standard low frequency DTLs. While 
RF defocusing manifests with an imaginary linear 
component of the transverse voltage over one cell at 
different transverse axis, dipole kicks are given by the 
constant real part of the same voltage, as shown in Fig. 5. 
The slight asymmetry in Fig. 5 comes from higher order 
terms, sextupoles or octupoles.  

Compensation of dipole kicks is usually achieved by 
modifying the shape of the drift tube, as proposed in [4]. 
However, authors realized that a simpler solution can be 
adopted, which is presented in the next section.  

Figure 5: Dipole kicks in a regular cell with drift stems 90 
deg rotated. 

BEAM DYNAMICS 
An accelerating structure approximately 0.9 meter long, 

length tapered, was designed. The beam dynamics was 
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studied considering the structure field map with the code 
RF-Track [7]. The structure design was driven by the goal 
of boosting particles from 5 to 10 MeV, assuming as RF 
power source one 100 kW 750 MHz IOT. For comparison, 
in the RFQ four 100 kW IOTs are needed. As a result, a 
750 MHz RFQ + IH-structure solution would require 500 
kW to accelerate protons up to 10 MeV.  

Dipole kicks act linearly on particles, thanks to the 
constant voltage of the IH structures (blue curve in Fig. 6 
top). So a compensation as the one proposed in [4] would 
act as the red or green curve in Fig. 6 top. However, if the 
kick in the input cell could be reduced, the beam will 
experience a trajectory similar to the one of a particle in an 
undulator, because dipole kicks have opposite direction in 
every gap crossed by the synchronous particle. Quite 
interestingly, a reduced gap, typical of optimum end-cells 
design, gives reduced dipole component very close to what 
is required. In conclusion, the authors have efficiently 
controlled the beam in simulations simply by a careful 
design of the end-cells (blue curve in Fig. 6 bottom). The 
last cell of the structure must also have a reduced dipole 
component, in order to have zero integrated kick. 

Figure 6: Single particle x-displacement along the IH 
structure. Transverse component reduced (top) and end-
cells compensation (bottom) solutions. 

Full beam tracking was then performed, using a triplet 
focusing between the RFQ output and the IH structure (Fig. 
7). The transverse emittance is preserved, while the 
longitudinal one increases about 50%. It was verified that 
a modification of the longitudinal phase space at the RFQ 
output could reduce the longitudinal emittance growth 
down to 20%. 

Though not presented in this paper, it was chosen to 
accelerate particles from 10 MeV onwards through 3 GHz 
DTL structures. A relatively high synchronous phase of 20 
deg was chosen for the IH structure in order to facilitate the 
longitudinal matching to the downstream 3 GHz linac 
acceptance. The transverse matching had to be slightly 
penalized in order to reach full transmission. However, in 

the same 5 to 10 MeV energy range, a solution based on 3 
GHz DTL, as the one proposed and tested in [8], was 
studied, and it gives worst performances both in terms of 
transmission and emittance growth.  

Figure 7: Particles 3D envelopes (1 rms), transmission and 
kinetic energy from RFQ output to 20 MeV. 

SUMMARY  
An IH accelerating structure was designed to boost 

protons from 5 to 10 MeV. This solution represents an ideal 
continuation of the 750 MHz CERN RFQ to higher beam 
energies for medical applications, remarkably improving 
current designs based on high-frequency DTL structures, 
both from RF and beam dynamics point of view. The 
longitudinal and transverse matching with a subsequent 3 
GHz DTL linac at 10 MeV was studied, and a beam 
dynamics design from 5 to 20 MeV is presented in this 
paper.  
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High gradient linac for proton therapy
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Proposed for the first time almost 30 years ago, the research on radio frequency linacs for hadron therapy
experienced a sparkling interest in the past decade. The different projects found a common ground on a
relatively high rf operating frequency of 3 GHz, taking advantage of the availability of affordable and
reliable commercial klystrons at this frequency. This article presents for the first time the design of a proton
therapy linac, called TULIP all-linac, from the source up to 230 MeV. In the first part, we will review the
rationale of linacs for hadron therapy. We then divided this paper in two main sections: first, we will discuss
the rf design of the different accelerating structures that compose TULIP; second, we will present the beam
dynamics design of the different linac sections.

DOI: 10.1103/PhysRevAccelBeams.20.040101

I. INTRODUCTION

Hadron therapy refers to the treatment of tumors with
hadrons. Though different ions, like He, are under study, the
two main ones used in daily treatments are carbon ions and
protons, with the latter taking the bigger part. At the time of
writing, November 2016, 71 facilities are in operation in the
world, ten of which can accelerate also carbon ions [1].
Cyclotrons, for protons, and synchrotrons, for carbon

ions and protons, are the two accelerator types used in the
above-mentioned facilities. Cyclotrons in particular proved
to be a very suitable technology for proton therapy
facilities, which require beam energies up to 250 MeV,
and so do not encounter the ultrarelativistic limitations of
cyclotron technology. Moreover, the relatively low beam
rigidity permits the use of magnets of reasonable size and
power consumption.
In this very competitive and fast growing market, a linac

solution could seem unreasonable. Nevertheless, both
cyclotrons and synchrotrons present drawbacks that linear
accelerators easily overcome. Cyclotrons main drawback is
represented by the fixed beam extraction energy. As a
result, to target the tumor at different depths into the patient
body, movable absorbers are placed in the beam transport
line to passively reduce the beam energy. This causes the
loss of more than 99% of the beam and the activation of the
area. In addition, the beam gets scattered and secondary
particles may travel towards the patient. Synchrotrons on

the other hand enable the tuning of the extracted beam
energy actively. This takes about 1 s, resulting in long
treatment time of an average volume tumor, with reper-
cussion on the patient comfort and the number of patients
treated per day, so ultimately on the economical sustain-
ability of the facility. So, ultimately, on the economical
sustainability of the facility.
The key advantage of linacs lies in the possibility to

actively change the output beam energy, as proposed by
TERA Foundation and discussed in [2]. This can be
accomplished by varying electronically the rf amplitude
and phase in the last active accelerating structure at a
repetition rate typically of 100 to 200 Hz. These features
translate into a quick treatment, with no activation and no
scattering of the beam.
Linacs for proton therapy were first proposed in 1991

[3]. This solution was taken up by TERA Foundation,
which in 1994–1995 designed in detail a 230 MeV linac for
proton therapy [4] and, in collaboration with CERN and
INFN, first proved the feasibility of a 3 GHz accelerating
structure for protons [5,6]. Since 2001 the activity of TERA
Foundation mostly focused on the so-called cyclinac
concept. In this solution a commercial cyclotron accelerates
particles up to tens of MeV, which are then boosted by a
linac up to the energies of medical interest, i.e. 70 to
230 MeV in the case of protons.
Following the design of Ref. [4], the ENEA (Italian

national agency for new technologies, energy and sustain-
able economic development) group of Frascati, Italy,
worked on an all-linac solution, with an rf quadrupole
(RFQ) and a drift tube linac (DTL) system covering the
particle acceleration up to 40–70 MeV [7], to be followed
by the coupled cavity linac (CCL) designed by TERA [5,6].
All these activities have been described in the review paper
of Ref. [2].
Arguably, one of the most recent breakthroughs in the

field is represented by the 750 MHz CERN RFQ [8]. This
solution was specifically designed to inject particles at
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5 MeV into a 3 GHz DTL structure as the one proposed by
ENEA. Based on these developments, A.D.A.M [9], a spin-
off company of CERN, is building on CERN premises a
commercial all-linac machine for proton therapy, based on
a RFQ-DTL complex and a CCL solution [5,6].

II. THE TULIP ALL-LINAC SOLUTION

All the developments on linacs for proton therapy pre-
viously listed are focusedon efficient acceleration and control
of the beam. In recent years however, the footprint has
became increasingly important, since proton therapy facilities
have as a final goal the installation in hospital buildings,
where dimensions are an issue. As a result, the number of
centers with just one treatment room is growing [1].
TERA Foundation first proposed a single-room facility

based on a cyclinac concept in 2013 [10], called TULIP
(TUrning LInac for Proton therapy). The idea consists in
having a commercial cyclotron on the floor, which injects
into a linac mounted on a rotating structure around the
patient (Fig. 1).
To make this structure shorter, TERA launched a high

gradient research campaign, in collaboration with the CLIC
group at CERN, to investigate the high gradient limit of
S-Band accelerating structures [11–13]. Based on the results
of these tests, a high gradient backward traveling wave
accelerating structure for β ¼ 0.38 was built and is under-
going testing [14,15]. This development allowedone to almost
halve the length of the linac that has to be mounted on the
rotating structure, saving size, weight and ultimately costs.
In the past two years, the authors started to work on a

all-linac solution for TULIP, taking advantage of the devel-
opment of the high frequencyCERNRFQ.Hereafter, wewill
review in detail the first full design of TULIP all-linac.

A. Comparison between cyclinac and all-linac concepts

The cyclinac solution strength comes from the idea of
accelerating up to tens of MeV protons in a commercial
cyclotron. This has a number of advantages over linear
accelerators, mainly: (i) lower complexity, being low beta

accelerators often the most critical part of the linac chain;
(ii) smaller footprint.
However, cyclotrons are not technically suited to inject

particles in a linac. The transverse emittance of cyclotron
beam is too large to fit into the linacs acceptance, at least
the one proposed in [10]. Moreover, and most importantly,
the time structure of the beam in the two machines is
inherently different.
As far as the transverse emittances are concerned, the

available external sources are very intense and a
25–30 MeV commercial proton cyclotron accelerates
typically 500 μA so that the output beam can be locally
collimated to fit the transverse acceptance of the linac.
The linac longitudinal acceptance poses a more serious

problem because a 3 GHz linac with a synchronous phase
of −20, a classic value, has a phase acceptance of about
0.06 ns every rf pulse, which has a 0.3 ns period. On this
very short time scale, the cyclotron beam is continuous and,
as a result, 10% of the beam is accelerated and 90% is
outside the longitudinal bucket of the linac.
On a larger time scale, to minimize the losses the beam

injected in the cyclotron is made of 5 μs pulses either by
chopping the output of the continuous electron cyclotron
resonance source or, preferably, by using an intrinsically
pulsed electron beam ion source [16]. The injected proton
pulse is about 2 times longer than 2.5 μs of the accelerated
pulse. As a summary, in the longitudinal phase space, only
5% of the beam is accelerated while 95% is lost.
Another disadvantage of the cyclinac solution is that the

beam dynamics, being heavily influenced by the longi-
tudinal losses, is unstable and the beam experiences
emittance growth. These aspects are discussed in more
detail in Sec. V E.

FIG. 1. Sketch of TULIP cyclinac solution (courtesy of TERA
Foundation).

FIG. 2. Sketch of TULIP all-linac solution (courtesy of
Mohammad Vaziri—TERA Foundation).
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An all-linac solution instead can reach 100% trans-
mission with a clean beam dynamics, and thus overcome
the above-mentioned issues. Linear accelerator chains are
used in many laboratories around the world. However,
hadron therapy linacs differ from every other application,
being characterized by low current and pulsed beam. In
addition, the highest possible accelerating gradient is
desirable, in order to reduce the overall length of accel-
erators to be placed in hospital centers. These set of
parameters, small aperture radius and high gradient are
unique amongst linear accelerators, and thus call for a
specific design. A sketch of the TULIP all-linac solution
studied is presented in Fig. 2.

III. GENERAL LAYOUT

The design is based on a first acceleration up to 10 MeV
in 750 MHz structures: the CERN RFQ [8,17] and a newly
designed interdigital H mode (IH) cavity. Particles are then
injected into a 3 GHz linac chain composed of a DTL, made
of many side-coupled modules, up to 70 MeV, and a CCL
up to 230 MeV. Table I summarizes the main parameters of
the linac design.
The duty factor (DF) of the linac is currently limited by

the high gradient section. A typical DF value of 0.05%
would be reachable in both the RFQ, the IH and the DTL,
but not in the CCL, due to the thin intracell wall thickness
chosen to maximize the effective shunt impedance (ZTT).
As a result, a final design should decide whether to
privilege the acceleration efficiency and the linac compact-
ness, but with a lower DF, or a higher DF but with a lower
accelerating gradient or a higher peak power. The design
presented hereafter will be limited by the high gradient
section to a 0.01% DF, as discussed in Sec. V D 2.
The 750 MHz RFQ was not studied by the authors,

and it represents the starting point of the present work.
The following three accelerating structures forming
TULIP have been studied in detail from both rf and beam
dynamics points of view. The high gradient (HG) backward
traveling wave (BTW) structure was also built and tested.
In the next section we start by presenting the rf design of
the cavities.

IV. RF DESIGN

Conceptually, TULIP can be split into a low gradient
section, which will be placed on the ground, and a high

gradient section that will be mounted on a rotating
structure, called gantry. The footprint of the facility is
driven by the rotating structure, which has to allocate,
together with the high gradient linac, also the high energy
beam transfer line (HEBT) and the beam diagnostic. As a
result, about ten meters are available on the ground
to install the linacs that have to boost the particles up to
70 MeV. This length has been fully exploited, in order to
minimize the power consumption for a given energy gain:

ΔW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTT · P · L

p
; ð1Þ

where ZTT is the effective shunt impedance of the linac, P
is the dissipated peak power and L is the linac active length.
In the following, the different accelerating structures

will be revised. Particular attention will be given to the
750 MHz IH and to the 3 GHz HG BTW structures, which
were studied by the authors.

A. The low beta section accelerators

With the 750 MHz RFQ as a starting point, the authors
investigated the best solution to be placed afterwards, in the
5 to 70 MeV=u range. The rf design of this section was
mostly driven by the optimization of the ZTT, together with
machinability and thermal constraints. Breakdown (BD)
limitations are not an issue here, since as previously
discussed the accelerating gradient of this section is
relatively low.
Different types of cavities, both TE and TMmodes, were

considered, at two operating frequencies, 750 MHz and
3 GHz. A simplified geometry was considered, with
constant drift tube thickness and stems radius independ-
ently on the geometric β. All the structures were studied by
optimizing the cell gap at different geometric βs, from 5 to
70 MeV=u. The bore aperture radius chosen was 2.5 mm,
from preliminary beam dynamics considerations. The result
of this study is shown in Fig. 3. The very high values of

FIG. 3. ZTT as a function of the geometric βs for the cavities
considered.

TABLE I. Key parameters of the all-linac TULIP solution.

Type of structure
Output energy

[MeV]
Active

length [m]
Peak power

[MW]

750 MHz RFQ 5 2 0.4
750 MHz IH 10 0.9 0.1
3 GHz SCDTL 70 4.1 13
3 GHz HG BTW 70–230 4.4 108
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ZTT found are not common in literature, but should not
surprise. Indeed, the very small bore aperture, together with
the high operating frequencies, represent a uniqum amongst
linac designs, and are the reason of these results.
The results of Fig. 3 can be further understood by

looking at the quality factor (Q) values, presented in
Fig. 4. One can notice that TM mode cavities have a
significantly higher Q value. However, they pay a quite
high price in terms of concentration of electric field in the
nose region and transit-time (TT) factor, being 2π mode
cavities. This results in a lower overall efficiency (Fig. 5).
This difference gets narrower for higher geometric βs,
where the TE cavities lose their advantage.

1. rf optimization of TM and TE mode DTL cavities

In TM mode DTL cavities no current flows through the
stems. These have only a structural and heat dissipation
purpose. Concerning ZTT, the thinner the drift tube and the
drift stems, the higher is this parameter. Indeed, if it were
possible to build a structure with drift tubes suspended in

the void, this would be beneficial in terms of ZTT. TM
mode cavities are constant gradient structures. In the
assumption of constant transit time factor, the voltage gain
grows with the geometric β of the structures, given the
increased cell length. Low β TM mode cavities usually
works in 2π mode, and this mode was considered in the
present study.
TE mode DTL cavities have, on the other hand, current

flowing through the stems. Here the stems and the drift
tubes have again a structural and heat dissipation role, but
in addition they have to force the electric field to be parallel
to the z axis in the bore aperture region. TE mode cavities
usually work in either dipole magnetic mode—TE110,
being called interdigital H (IH)—or as RFQs in quadrupole
magnetic mode—TE210, being called cross-bar H (CH).
The current flowing through the stems brings to Ohmic
losses that can be minimized increasing the size of drift
tubes and stems. However, this reduces the electric field
concentration near the z axis. Ultimately, a detailed rf
optimization is needed to find the optimum ZTT for a given
cell length, taking into consideration machinability and
thermal dissipation constraints. A more detailed discussion
on the rf optimization of TE cavities can be found in [18].
TE mode cavities work in π mode, so they are shorter than
TM mode cavities for the same operating frequency and
geometric β.

FIG. 4. Q-factor as a function of the geometric βs for the
cavities considered.

FIG. 5. R’=Q as a function of the geometric βs for the cavities
considered.

FIG. 6. Comparison between selected 5 MeV=u cells. Asym-
metric view (top), transverse (middle) and longitudinal section
(bottom). 750 MHz IH (left), 750 MHz CH (middle) and 3 GHz
DTL (right).
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With respect to the results presented in Fig. 3, the three
most promising cavities at 5 MeV=u are the 750 MHz IH,
the 750 MHz CH and the 3 GHz DTL, as shown in Fig. 6.
One can clearly notice the differences in terms of cell length
and diameter of the three solutions.
At 70 MeV=u, the 3 GHz DTL solution reveals to be the

better choice. For visual comparison, the cavity dimensions
are shown in Fig. 7.

B. 750 MHz IH structure

From the preliminary rf optimization summarized in
Fig. 3, it was quite clear that the 750MHz IH cavity was the
best solution in the 5–20 MeV=u regime. The simplified
geometry considered in the first comparison was revised
[19]. The main goal of the rf design has been to maximize
the ZTT, while sticking as much as possible to the cavity

geometry considered for the CERN 750 MHz RFQ, to take
advantage of the experience gained in the construction of
TE cavities at this very high frequency. Indeed both RFQ
and H-mode cavities are constant voltage structures, with
the only difference that a RFQ is a TE210 bunching
machine, with vanes, while a H mode cavity is a TE110

accelerator, and present drift tubes between cells. This
translates in overall comparable dimensions, as shown
in Fig. 8.
Three energies were studied in detail: 2.5, 5 and

10 MeV=u. The 2.5 MeV=u regime was studied to verify
performances and feasibility of this solution in view of
further developments of carbon ion projects, where an RFQ
would most likely deliver up to 2.5 MeV=u particles
instead of 5 MeV=u. A multidimensional optimization
was carried out, considering gap, drift tube thickness, stem
radius, and vane distance from z axis. The result of this
study is a remarkably improved ZTTover previously found
values (see dark red curve in Fig. 3). It is interesting to
notice that the improvements do not come from a higher TT
factor, since the gap is unchanged, but from an increased Q
value (Fig. 4).
This is the first time these values have been obtained in

literature. As previously pointed out, this is due to the very
small bore aperture considered, which allowed for a
previously unreached high rf frequency. As discussed in
Sec. V B, such aperture is sufficient to get full transmission
of the particles bunched by the RFQ, thanks to the trans-
verse emittances of this machine, and to the absence of
space charge.
The main geometrical and accelerating parameters of the

cavities studied are shown in Fig. 9, together with a view of
two cells joined together.
The thermostructural analysis was performed by import-

ing the HFSS™ electromagnetic field distribution to the
thermal and structural packages of ANSYS™. The results
showed that this structure, thanks to the high ZTT and low
operating gradient, does not need a cooling channel in the
case of a DF up to 10−3.

FIG. 7. 3 GHz DTL structure at 70 MeV=u. Asymmetric view
(left), transverse (middle) and longitudinal section (right).

FIG. 8. Transverse section of 5 MeV=u cells. CERN high
frequency RFQ (left) and IH (right). Dimensions are in mm.

FIG. 9. Regular cell design (left) and assembly view (right) of the IH 750 MHz cavity.
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1. Dipole kicks and transversally focusing IH cavities

The small bore aperture, together with the thin drift tubes
and large gaps of the IH cavity result in a non-negligible
dipole kick. Analytically, a dipole kick is represented by a
real part of transverse voltage:

~Vm ¼ TT
Z

Lcell

0

ð~Eþ ~βc × ~BÞdz; ð2Þ

which is constant across the bore diameter, as shown in
Fig. 10. In Eq. (2) TT is the transit-time factor. A dipole
kick is typically negligible in DTL solutions that have thick
drift tubes to allocate the permanent magnet quadrupoles
(PMQs), and shorter gap to cell length ratios given the 2π
mode regime. In contrast, the rf defocusing, which has
90 degree rf phase shift with respect to the dipole kick
component, is represented in Fig. 10 as an imaginary part of
the voltage which is linear along the x axis, the axis on
which the stems are placed.
From the results of Fig. 10 one can notice that the

transverse kick is equal to about 15% of the longitudinal
kick per cell, for the 5 MeV=u cell. This contribution
increases with the cell length. All these effects have been
taken into account in the beam dynamics studies (Sec. V B).

C. 3 GHz SCDTL

The regular cell simplified geometry considered in
Sec. IVA cannot be adopted as the reference one, due to
limitations coming from structural and rf heat power
dissipation considerations. A two stems geometry has been
eventually considered (Fig. 11), as proposed in [7]. Such
modification allows for a sufficient heat dissipation and
mechanical stability, but heavily impacts on the ZTT profile
presented in Fig. 3. The reduction is around 25%.
This solution raises a slight quadrupolar asymmetry,

i.e. the rf defocusing is stronger in the plane of the stems
(y-plane in Fig. 12). The difference has been taken into
account in the beam dynamics design.

The tuning and field stabilization of a TMmode structure
operating in 2π mode at this frequency is without doubt
very challenging. This issue has not been addressed yet by
the authors. However, Picardi et al. presented a working
solution in [7].
The advantage of such a solution comes from the

possibility of using 3 GHz klystrons, worldwide adopted

FIG. 10. Transverse voltage along the x axis normalized to the
accelerating voltage in the 5 MeV IH cavity.

FIG. 11. The 5 MeV reference 3 GHz DTL cavity.

FIG. 12. Transverse voltage along the x and the y axis
normalized to the accelerating voltage for the 15 MeV DTL rf
cell with symmetric stems.
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in more than 1000 electron linacs for radiotherapy, and thus
very cheap rf power source.
In the present work, the rf optimization of 3 GHz DTL

cavities with the simplified geometry of Fig. 11 was
performed, from 5 to 70 MeV.

D. 3 GHz high gradient BTW structure

A high gradient backward traveling wave (BTW) accel-
erating structure was designed and built at CERN [14,15].
The main goal of the project is to define the high gradient
limits of S-band cavities in terms of breakdown rate (BDR).
In the design of the prototype a modified Poynting vector
(Sc) limit was used [20]. A picture of the prototype, which
is 20 cm long and has a geometric β of 0.38, is shown
in Fig. 13.
The BTW structure is a constant gradient magnetically

coupled traveling wave cavity, with a low group velocity
ranging from 0.4% and 0.2% of the speed of light. There
are 12 equal length rf cells, ten regular plus two end cells.
The phase advance per rf cell is 5

6
π. The rf optimization was

driven by the minimization of the quantity,

μ≡ Pw

E2
a
·
Sc
E2
a
¼ vg

ω
·
Sc=E2

a

R0=Q
; ð3Þ

where Pw is the power dissipated in one cell, Ea is the
accelerating gradient, vg is the group velocity, ω is the
angular rf frequency, R0 is the effective shunt impedance
per unit length and Q is the quality factor per cell. Sc is a
modified Poynting vector that has been used as a new local
field to predict the breakdown behavior of the structure.
The minimization of Eq. (3) leads to the maximization

of the ZTT for a given limit of Sc
E2
a
. The threshold

was calculated by rescaling CLIC experimental data
(4 MW=mm2, 200 ns) to pulse lengths typical of medical
linacs, i.e. 2.5 μs flattop. CLIC data were rescaled accord-
ing to Eq. (4):

S8c · t3impulse

BDR
¼ const ð4Þ

following a research campaign on S-band and C-band
single cavities carried out by TERA Foundation [11,12,21].
An Sc limiting value of 1.55 MW=mm2 is obtained.
In this particular design, the optimum is found when Sc

is minimized simultaneously on the nose, where the electric
field is maximum, and on the coupling slot, where the
magnetic field is maximum, as shown in Fig. 14.
The structure was mechanically designed at CERN, as

well as built, following the CLIC baseline fabrication
procedure for high gradient X-band accelerating cavities.
The tuning was done at CERN as well. The prototype
reached the nominal phase advance between adjacent cells,
and total reflection of −60 dB. Currently the prototype is
installed in the test area under the high power test.

1. Power recirculation in a TW structure

The BTW structure designed has a power transmission
ratio of about 3 dB, i.e. half of the input power is
transmitted through the structure and is coupled to either
a load or a recirculating circuit. A lower Pload=Pin ratio
could have been obtained, but at the price of a longer filling
time. To make an efficient use of TW structures, a passive
waveguide component, called 3 dB hybrid splitter, has to
be used.
A 3 dB hybrid is a four-port passive device. By proper

sizing the geometry between the ports, it is possible to
equally split the power entering from port 1 towards ports 2
and 3. In this configuration no power goes towards port 4,
and there is a 90° phase difference between ports 2 and
3 (Fig. 15).
In the present design, port 1 is connected to the klystron,

port 2 to an rf load, ports 3 and 4 to the structure input and
output cell, respectively. The power which exits from the
structure, entering port 4 and being equally split between
ports 2 and 3, makes interference with the power flowing
from port 1. If the phase of the rf power entering ports 1 and
4 has 90° phase difference, the interference is constructiveFIG. 13. The 3 GHz BTW prototype.

FIG. 14. Electric (left), magnetic (center) and modified Poynt-
ing vector (right) field distribution in a regular cell section (1=32
azimuthal symmetry).
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towards port 3, namely towards the structure, and destruc-
tive towards port 2, the load (Fig. 16).
Taking into consideration the phase difference between

the accelerating structure input and output, the length of the
transition waveguides which connect the 3 dB hybrid to the
accelerating structure can be computed so that there is a 90°
phase difference between port 1 and port 4. As a result, this
design allows for full power recirculation into a TW
accelerating structure.
The power attenuation in S-band (WR-284) waveguides

is around 0.02 dB=m. As a result, the power attenuation in
the 3 db hybrid is negligible, being lower than 1%.
However the drawback of this solution lies in the transverse
size of the assembly and in the longer filling time of a factor
4 with respect to the solution without recirculator [22].
A cut transverse view of the structure with the BTW design
connected to the hybrid, and with rf power coming from
port 1, is shown in Fig. 17.

E. 3 GHz high gradient CCL and comparison
with the high gradient BTW

Historically, CCLs have been a preferred solution for
proton acceleration above β ¼ 0.3 or higher. However, to
the authors’ knowledge few works addressed the design of
3 GHz CCL above 40 MV=m accelerating gradients: one
for β ¼ 0.38 [11] and a more recent study for β ¼ 0.6 [23].
The design presented in [12] has been revised, and is

here presented, with a few novelties. The very same rf
design methodology described in Sec. IV D has been
followed, in order to compare the standing wave (SW)
solution to the TW one.
The main results are summarized in Table II. The BTW

and CCL designs are fully comparable in terms of maxi-
mum of the Sc=E2

a ratio, but also in terms of key
geometrical parameters, like bore aperture and septum
thickness. In the CCL case, the limit of Sc=E2

a is reached
on the nose of the CCL, not on the coupling slot, which is a
critical part but not the most critical one in this design.
The mechanical design of the CCL cavities in [5] is

based on the production of two half cells that are eventually
brazed together. However, a wall thickness of 2 mm, like in
the BTW solution, poses a serious challenge to the
fabrication and brazing with such a method, because
1 mm walls would be needed. To overcome this issue, a
different assembly concept has been proposed [Fig. 18
(middle)].

FIG. 15. 3 dB hybrid with power entering from port 1.

FIG. 16. 3 dB hybrid with power entering from port 1 and port
4 with 90° phase difference.

FIG. 17. Complex mag electric field distribution in BTW
structure connected to the 3 db hybrid.
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The result of the comparison study is that the ZTT of the
CCL solution, even when optimized for high gradients, i.e.
50 MV=m, is higher by about 13% with respect to the
BTW solution with full recirculation of the power. For
comparison, the last column of the table reports the case of
a CCL optimized in terms of ZTT [12]. The maximum
gradient here reachable, adopting the Sc model, is
30 MV=m. It is possible to notice, graphically, the differ-
ence in the nose shape in Fig. 18. The low gradient case,
called base line (BL), has a shorter gap, to maximize the TT
factor, and a sharper nose, to concentrate as much as
possible the E field near the z axis.
The 3 GHz CCL structure design has a 5% coupling

factor, in agreement with a previous designed structure
[16], but differs quite substantially in the coupling cell
design, pieces manufacturing, and input coupler. The
coupling cell design followed the goals of being easy to
machine and compact in the transverse dimension.
Another novelty of this design is represented by the

single coupler solution adopted. This allows individual
power and phase control of each accelerating structure,

which as discussed in Sec. V D 1 is a key feature of the
TULIP project. A structure made of ten cells, 20 cm long,
so exactly identical to the BTW prototype built, was
designed and matched to the waveguides. A visual com-
parison of the solution is shown in Fig. 19.
The two structures were also compared in terms of rf

thermal power dissipation. Here the CCL has two advan-
tages: (i) a slightly higher ZTT, which translated into a

TABLE II. Main geometric and accelerating parameters of β ¼ 0.38 cells. HG BTW (left), HG CCL (center), low gradient CCL
(right).

Type of structure BTW150 SCL-HG SCL-BL

Phase advance per accelerating cell [deg] 150 180 180
Wall thickness septum [mm] 2 2 3
Gap [mm] 7.0 9.0 5.1
Nose con angle [deg] 65 65 25
Number of accelerating cells 12 10 10
Structure active length [mm] 189.9 189.9 189.9
Design accelerating gradient Ea ¼ E0 � TT factor [MV=m] 50 50 26.3
Max ratio surface E-field to accelerating gradient Es=Ea 4 4 6
Max ratio Sc to accelerating gradient square Sc=Ea2 [A=V] 2.7 × 10−4 2.7 × 10−4 7.8 × 10−4

Quality factor Q (first/last) 6997=7463 9136 8290
R’=Q [Ω=m] (first/last) 7425=7369 6568 8410
ZTT [MΩ=m] (first/last) 52.0=55.0 60.0 69.7

FIG. 18. Mechanical view of the optimized cells.

FIG. 19. Cut view with complex mag electric field distribution
in the high gradient BTW (top) and CCL (bottom) structures
at β ¼ 0.38.
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lower rf power dissipated in the copper walls for the same
accelerating gradient; (ii) a higher thermal conductivity
with respect to the BTW solutions, where the coupling
holes are an obstacle to the power dissipation.
The temperature distributions in the two cases are shown

in Fig. 20.

1. rf comparison between BTW and CCL structures for
a 3 GHz high gradient linac from 70 to 230 MeV=u

The differences between a BTW and a CCL accelerating
structure optimized for high gradient operations for a
geometric β of 0.38 was discussed in Sec. IV E. The

conclusion of this comparison is an advantage of the CCL
solution in terms of ZTT, and thermal power dissipation,
thus maximum DF achievable. Considering the filling time,
the CCL solution takes longer to reach the nominal
accelerating gradient with respect to the BTW solution
even if a recirculator is installed.
However, if one extends the comparison up to

230 MeV=u, the results change. In particular, a 50 MV=m
BTWoptimized structure shows about the same ZTT as the
CCL solution. The reason for this behavior comes from the
difference cell length between the two solutions: the BTW,
being shorter, allows for a higher optimization of TT factor
(shorter gap) and nose region (sharper nose cone angle) at
higher energies. The difference can be observed graphically
in Fig. 21.
Three intermediate energies were studied, corresponding

to 105, 138 and 181 MeV=u. The TT factor, Q factor and
the ZTT along the linac for the two high gradient solutions
are shown in Fig. 22. One can notice that the BTW can
optimize better the TT factor and the nose region, but shows
a lower Q factor with respect to the CCL. This difference

FIG. 20. Temperature distribution in the high gradient BTW
(top) and CCL (bottom) structures for a 50 MV=m gradient and
0.0075% DF.

FIG. 21. Uncoupled CCL (left) and BTW (right) cells at
230 MeV=u.

FIG. 22. TT factor (top) and ZTT (bottom) comparison between
a CCL and BTW high gradient linacs.
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however gets narrower with the increase of the cell lengths,
and so does the ZTT.

V. BEAM DYNAMICS STUDY

In this section, we review the beam dynamics design of
the different linac sections.
The starting point of the beam dynamics design was the

5 MeV output beam from the CERN 750 MHz RFQ
(Fig. 23), here simulated with the code RF-TRACK [24].
The beam emittances are relatively low, with a

normalized rms transverse emittance in both planes of
0.027 pi.mm.mrad, and in the longitudinal plane of
0.015 pi.deg.MeV. These values permitted us to consider
the very small bore aperture of 2.5 mm used in the IH,
DTL and CCL-BTW structures.
The goal of the beam dynamics design was delivering to

the high energy beam transfer (HEBT) line beam between
70 and 230 MeV, with full transmission and the lowest
possible normalized emittance growth. Both of these goals
have been accomplished.
We will start by briefly presenting the tracking code

developed for this purpose, RF-TRACK.

A. A new particle tracking code: RF-TRACK

The TULIP all-linac project started with the study of the
high gradient BTW linac [25]. ATW cavity complicates the
particle tracking. In fact, in SW cavities the electromagnetic
(EM) field oscillates according to

Aðx; tÞ ¼ AðxÞ · e−iωt; ð5Þ

where ω is the angular rf frequency, and AðxÞ is the
complex magnitude spatial distribution of either the electric
or the magnetic field. The electric and the magnetic field
are 90 deg rotated with respect to each other.
In the TW case, a translational component of the field

makes it not space independent:

Aðx; tÞ ¼ A · eiðkx−ωtÞ; ð6Þ

where k is the wave number. A negative kx component
characterizes a backward traveling wave.
Very few codes are capable of dealing with TW

structures, since in this case both the real and the imaginary
components of the field are necessary. To our knowledge,
the most frequently used codes are ASTRA [26] and GPT
[27]. The tracking can also be accomplished with SW codes
by superimposing two SW patterns of different frequency
[28]. Nevertheless, the need to work with TW field maps
and to perform matchings and transmission optimizations,
dynamically varying the rf input power as well as the lattice
optics (see Sec. V D 1), called for development of a new
tracking code: RF-TRACK. In addition, an in-house devel-
oped tool rather than a black-box tool, allowed us to add
new features as necessary.
After the benchmark phase [24,25], RF-TRACK has been

used to track particles start to end, i.e. the beam distribution
has not been regenerated, from the RFQ output up to
230 MeV.
This approach, based on accelerating structure EM field

maps, is more time consuming than an analytical tracking. In
the latter, the field is generated with cylindrical symmetry
from Bessel expansion of the average electric field on the z
axis and the transit-time factor profile along the linac.
However, as discussed in Sec. IV B 1 for the IH dipolar
components, and in Sec. IV C for the side coupled drift tube
linac (SCDTL) quadrupolar asymmetries, the linacs are not
always perfectly symmetric structures. The field map
approach allowed us to correctly take into consideration
these aspects.

B. From 5 to 10 MeV

Protons are accelerated by the IH structure described in
Sec. IV B from 5 to 10 MeV. The attentive reader may
remember from Sec. IVA that the ZTT advantage of IH
cavities over the other solutions considered extended well
beyond 10 MeV=u. However, at the present stage the cost
per unit power of 750 MHz rf sources, currently only
inductive output tubes (IOTs), is about 1 order of magni-
tude higher than the corresponding cost in the case of
3 GHz klystron-modulator based solutions [29]. This
difference is largely caused by the high demand of this
latter technology working at 3 GHz, caused by the market
of x-ray electron linacs. However, even though it is the
authors’ belief that this price difference will decrease in the
future as a consequence of a higher demand of 750 MHz rf
power sources, at the present stage the crossing point
between a 750 IH solution and a 3 GHz DTL one has been
found at 10 MeV=u.
To boost protons from 5 to 10 MeV it has been chosen to

use just one 100 kW IOT, resulting in a fairly low gradient
of about 5.7 MV=m, and in a 0.9 m long structure. The
structure is tapered in length, and composed of 36 drift
tubes. The first cell is 20.8 mm long, the last one 28.9 mm
long. The average ZTT, taking into consideration the endFIG. 23. Phase space of the beam at the RFQ output.
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cells, is around 350 MΩ=m. The beam from the RFQ was
transversally matched with a triplet quadrupole focusing,
and then accelerated in the IH structure with a constant
synchronous phase of −12 deg. A 16% margin in the IOT
nominal power was kept, to take into account waveguide
losses, so 84 kWare actually dissipated by the cavity walls.
Given the small bore aperture and thin drift tubes, a not

negligible dipole kick component is present, equal to
almost 15% of the longitudinal component, as discussed
in Sec. IV B 1. Indeed, when the beam was tracked through
the structure field map with RF-TRACK, it showed a final
displacement of about 0.7 mm out of a 2.5 mm bore
aperture. This was clearly not acceptable, and it has been
corrected in the following way.
In Fig. 24 (top) one can notice the x displacement of a

single particle that enters the field map with no initial
displacement and divergence. The particle gets deflected in
the first gap, then drifts away in the drift tubes. In the
second gap, the dipole kicks have opposite direction but
almost equal magnitude. In fact, a IH cavity is a constant
voltage structure, so also the transverse voltage is constant.
This is true at first order approximation, given that the
dipole kick component increases with longer cell lengths.
However, so does the beam rigidity. Overall, the particle
divergence gets approximately to zero in the second gap of
the structure. Then in the third gap it picks again an x
divergence, which gets canceled again in the fourth gap. So,

traveling through cells, the particle shows a linear dis-
placement with energy, and zero integrated kick. Solutions
proposed in previous works [30] were based on the
modification of the drift tube shape and relative position
with respect to the x axis, to reduce the dipole component.
For the IH cavity under study, this presents the disadvant-
age of reducing the ZTT with respect to the nominal
solution. In addition, particles would still experience a
linear displacement, simply a smaller one [Fig. 24 (top), red
and green curve].
In this work a new solution is proposed. By halving the

dipole kicks component in the first accelerating gap, also
the divergence picked up by the particles is halved. As a
consequence, the second gap, which has a “nominal” dipole
kick, oversteers the beam, which has now a negative
divergence. This solution is shown graphically in Fig. 24
(bottom), which shows the single particle displacement
along the IH structure field map with this solution adopted.
The trajectory of the particles recalls the one of an
undulator. Eventually, the last gap must also have a half
dipole kick component, to zero the integrated kick.
The beam was transversally matched using a triplet

focusing [Fig. 25 (bottom)]. A relatively high synchronous
phase of −12 deg was chosen only to facilitate the particles
injection into the 3 GHz DTL at 10 MeV. Indeed, a much
lower synchronous phase (5 to 10 deg) would have been
needed to accept and control the particle from the RFQ. The
constant synchronous phase solution was adopted rather
than the well-known KONUS [31] in view of its higher
simplicity and robustness.
Concerning the longitudinal phase space, the Twiss αz

parameter of the RFQ beam was modified from 0 to 0.6 to
improve the longitudinal matching. At the present stage, it
has been assumed that this will be achievable with a
different RFQ design [32]. Alternatively, one should
consider to install a buncher cavity between the RFQ
and the IH structure.

FIG. 24. Single particle tracking through the IH structure.
Dipole kicks reduction (top) and undulator solution (bottom).

FIG. 25. Beam 1σ rms envelope through the IH structure from 5
to 10 MeV (top) and ratio of emittance growth with respect to
initial (bottom).
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1. 750 MHz IH vs 3 GHz DTL beam
dynamics comparison

In Sec. IVA it was shown that up to 20 MeV=u, the
750 MHz IH solution is more efficient than a 3 GHz DTL
one from an rf efficiency point of view. In this section, the
beam dynamics of the two solutions will be discussed. To
get a fair comparison, here a IH (5 to 10 MeV) plus DTL
(10 to 20 MeV) and full DTL (5 to 20 MeV) solutions will
be compared. In such a way, it is possible to compare final
beam parameters in similar phase space configurations.
The main aspects that have been compared are (i) par-

ticles transmission; (ii) emittance growth; (iii) overall
length and space for diagnostic; (iv) number of elements;
and (v) power consumption.
The authors decided to prioritize amongst all other

parameters the beam transmission.
The SCDTL choice reveals to be particularly challenging

in the 5 to 10 MeV range. Together with machinability and
tuning considerations, and not forgetting the rf efficiency
already mentioned, the beam dynamics also represents an
issue. The space between the RFQ and the first SCDTL
module is limited by the longitudinal acceptance of the
beam. This limits the transverse matching of the beam, with
repercussion on the emittance growth. A solution could be
the installation of a buncher cavity, which would allow a
longer matching section. A second problem arises from the
relatively high accelerating gradient. At 5 MeV, the ratio
between active and total length is well below 50%, since the
rf defocusing has a square dependence with particle
momentum [33]:

Δpr ¼ −
πeE0TLr sinϕ

cβ2γ2λ
; ð7Þ

and so it is necessary to have short accelerating tanks with
PMQs in between. As a result, to accelerate over the same
length, the gradient of the full DTL solution must be higher
with respect to the IH-DTL solution. This results in a
heavily longitudinally mismatched beam. Figure 28 shows
the longitudinal phase space evolution of the beam in the
first six DTL accelerating structures. As one can notice, the
beam fits well in the first structure longitudinal bucket (red

contour). However, the combination of high accelerating
gradient and long drift sections between the different DTL
tanks led to filamentation, eventually resulting in emittance
growth and losses.
A higher synchronous phase would not help, since it will

increase the rf defocusing. So shorter structures would be
needed to transversally control the beam, and the accel-
erating gradient should be increased to keep the overall
length constant. Two solutions could be followed. One
could reduce the accelerating gradient to get a smoother
acceleration in the first sections, but resulting in a longer
linac. Alternatively, it would be possible to match the beam
from tank to tank, by designing the DTL such that both the
synchronous phase and the gradient adapt to the longi-
tudinal orientation of the beam ellipse. This last proposal
would raise significantly the rf design complexity of
such linac.
The two designs are summarized in Table III and

displayed graphically in Figs. 26 and 27. The overall
dimensions are comparable in the two designs. However,
the full DTL solution shows losses and a higher emittance
growth. In addition, there is not space to allocate beam
diagnostic. As a final comment, the full DTL solution
requires more PMQs and accelerating structures, so a
higher number of brazing and tuning procedures.

FIG. 26. Beam 1σ rms envelope through a DTL structure from
5 to 20 MeV (top) and ratio of emittance growth with respect to
initial (bottom).

TABLE III. Beam dynamics comparison between a IH-DTL and a full DTL solution in the 5 to 20 MeV=u range.

Parameter IHþ DTL DTL

Synchronous phase [deg] −12 (IH) and −20 (SCDTL) −30 (5 to 10 MeV) and −25 (10 to 20 MeV)
Transmission 100 99.6
Transverse ϵ growth [%] 7 35
Longitudinal ϵ growth [%] 53 166
Total length [m] 3.01 2.89
Active length [m] 1.68 1.26
Number of accelerating structures 10 19
Number of PMQ 15 20
Peak power consumption [MW] 0.1ð750 MHzÞ þ 2.0ð3 GHzÞ 3.7ð3 GHzÞ
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C. From 10 to 70 MeV

As it was demonstrated in Secs. IV B and V B 1, a
IH-DTL solution is superior over a DTL from both an rf
and a beam dynamics point of view. However, cost
considerations led towards the decision of accelerating
particles from 10 MeV onwards with a 3 GHz DTL linac.
The rf design has been discussed in Sec. IV C. Three

modules tapered in length have been designed, each
composed of nine accelerating tanks. The number of cells
per tank goes from five in the first module, to six and seven
in the second and last modules respectively. This in order to

increase the ratio of active acceleration length over the total,
taking advantage of the lower rf defocusing at higher
particle momentum. The synchronous phase is constant and
equal to −20 deg in all three modules. A solution with a
higher number of cells in the first module was studied, but it
was not feasible due to the too strong rf defocusing.
The main parameters of this linac section are summa-

rized in Table IV.
The beam envelopes and emittance growth in this linac

section are shown in Fig. 29.

1. Matching between a 750 MHz IH to a 3 GHz DTL

The beam matching between the 750 MHz IH and the
3 GHz DTL is one of the most critical parts of the project.
In the longitudinal phase space there is a reduction of a
factor 4 in the phase acceptance, given by frequency
increase. Concerning the energy acceptance, there is a
factor 2 reduction, given by the square root dependence of
λ, as shown in Eq. (8):

ωmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qE0Tβ3γ3λ

πmc2
ðϕs cosϕs − sinϕsÞ

s
: ð8Þ

However a factor
ffiffiffiffiffiffiffiffiffi
β3γ3

p
helps in increasing the energy

acceptance, which was one of the motivations in delaying
the jump at 3 GHz from 5 to 10 MeV=u. In particular,
going from 5 to 10 MeV, the acceptance for protons
increases by a factor 0.22.
In the transverse phase space, the geometric emittance

decreases by a factor βγ, so by about 50% between 5 and
10 MeV. Nevertheless, while the RFQ is a bunching device,
and it was specifically developed to inject particles into a
3 GHz structure, the IH is an accelerating structure, so it
was not obvious at the beginning to be capable of reaching
a good transition and matching at 10 MeV.
A 33 cm long transverse matching section with four

PMQs was designed to make the transition from a triplet
focusing system, used for the IH structure, to a FODO
lattice. The Twiss parameters were matched to have a phase
advance of almost 90 deg in the SCDTL structures. A full
transmission of the beam is reached, and the transverse
emittance growth is well below 5% at the end of the linac
(Fig. 29). In the first linac sections there is a local transverse
emittance growth up to 20%, due to a residual initial
mismatch. This effect cancels out due to the acceleration of
the beam.

FIG. 28. Longitudinal phase space in and out the first six
accelerating tanks of a DTL solution, from 5 to 7.7 MeV, with
simplified buckets contour in red. The different pictures
are in scale.

TABLE IV. SCDTL main parameters.

Module
Output

Energy [MeV]
Number
of cells

Active
length [m]

Ratio Active/Total
Length

Average active
Gradient [MV/m]

Peak Power
[MW]

Average ZTT
[MΩ=m]

1 20 5 0.78 0.53 13.6 1.9 75
2 40 6 1.31 0.64 16.2 3.7 94
3 70 7 2.05 0.74 15.6 5.7 88

FIG. 27. Beam 1σ rms envelope through the IHþ DTL
structure from 5 to 20 MeV (top) and ratio of emittance growth
with respect to initial (bottom).
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D. From 70 to 230 MeV

The protons are eventually accelerated up to 230 MeV in
the high gradient linac. Following the considerations of
Sec. IV E 1, the authors consider the BTW and the CCL
solutions are ultimately even. However, we will review two
designs, based on the two technologies, but comparable in
length and number of elements. Before presenting the high
gradient linac beam dynamics design, in the following
section we review the theory of an energy varying beam line.

1. Maximizing the energy acceptance of a beam line

As the other 3 GHZ TERA linacs, the focusing is
achieved by PMQs. The energy is varied by adjusting
the powers and the phases of the rf pulses produced by the
klystrons. In the case of protons, to reach the conventional
range of penetration in water equivalent tissues, one needs
protons ranging from 70 to 230 MeV.
In the following, we derive the condition to maximize the

energy acceptance of a beam line composed of PMQs, for a
given lattice geometry. One can start from the basic beam
dynamics equations that can be found in the general particle
accelerators books [34,35].
The normalized transverse acceptance of a linac is

given by

An ¼
βγ

βþ
· Rbore

2: ð9Þ

For a given bore aperture, the linac transmission can be
maximized by minimizing the Twiss betas. Also one can
notice that the acceptance increases with the beam energy,
because the geometric emittance shrinks. This is valid under
the assumption that the normalized emittance remains
constant.
It is convenient to express the Twiss beta in terms of

phase advance. The FODO theory, even though not entirely
correct when describing a linac, works well enough:

β� ¼ 2L
1� sinðμ=2Þ

sinðμÞ ð10Þ

where L is the FODO length and μ is the transverse phase
advance per cell.
In the case of a magnetic line with PMQs, the transverse

phase advance and the Twiss βs seen by the beam vary with
the output energy.
In a round beam, as the RFQ output, we have ϵx ≈ ϵy, so

the geometric dimension of the beam is given by
A ¼ π · R2 ¼ π · ðϵxβx þ ϵyβyÞ. The beam size is mini-
mized in the case of phase advance of 90 deg, as one
can verify by plugging Eq. (10) in the above expression,
and take the derivative. Having however a varying phase
advance as a function of the energy, one needs to find the
best compromise that maximizes the acceptance in the
range of energy of interest.
The optimum is found when the phase advance is 90 deg

at the minimum beam line energy, and then decreases as the
beam energy increases. The decrease has to be such that

βþEmin

βþEmax

¼ ðβγÞEmin

ðβγÞEmax
ð11Þ

which simply means that the beam envelope must have the
same dimension in the two extreme cases at the end of
the line. Since the βþ and the βγ curves as a function of the
final beam energy have a positive second order derivative,
the worst conditions are found at the two extremes.
In conclusion, one shall follow these steps in the lattice

design: (i) match transversally the beam for a 90 deg phase
advance at the linac minimum energy section, in order to
minimize the emittance growth; (ii) maximize the cumu-
lative transmission at the minimum and maximum linac
energy; the transmission in all other cases lies in between
these two results; (iii) if there are losses, reduce the FODO
length, or increase the beam aperture.

2. The high gradient BTW linac

An 18 accelerating structures linac was designed. The
target gradient is 40 MV=m, with maximum values of Sc
and of the surface electric field equal to 0.48 MW=mm2

and 160 MV=m, respectively. The linac is approximately
6.2 m long, and accelerates the particles up to 230 MeV.
The gradient chosen does not fully exploit the limit at
which the structure has been designed (50 MV=m) to
maintain a safety margin in terms of BDR. In addition,
the compactness goal of the structure was already reached
with a 40 MV=m gradient. Finally, this 20% reduction in
gradient translates into a 36% reduction in rf thermal load
into the structure, allowing a higher DF of 0.01%. The
synchronous phase is −15 deg in all the accelerating
structures.

FIG. 29. Beam 1σ rms envelope through the DTL structure
from 10 to 70 MeV (top) and ratio of emittance growth with
respect to initial (bottom).
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Varying the phase and amplitude of the rf power in each
accelerating structure allows for a smooth variation of the
final energy. For this reason, a single coupler solution has
been studied (see Sec. IV E).
The emittances and beam envelopes are shown in

Figs. 30 and 31 for the two extreme cases of no acceleration
and full acceleration, respectively.
The matching section between the SCDTL and the BTW

linac is considerably easier than the 10 MeV transition. The
solution proposed here comprises four PMQs and a
buncher cavity to improve the longitudinal matching.
This is just a temporary solution, given that the medium
energy beam transfer line (MEBT), as shown in Fig. 2, is
much longer and involves also dipoles. This part has not
been studied yet since the mechanical design has yet to be
finalized.

3. The high gradient CCL linac and
comparison with the BTW one

The design presented above reaches full transmission of
the particles between 70 and 230 MeV, but is however quite
at the limit in terms of maximum Twiss beta. All the BTW
accelerating structures are 12 cells long. This means that it
is possible to obtain an exactly equivalent CCL design,
composed of 18 accelerating structures, ten cells long.
As a result, the different between the two solutions

translates in a different peak power consumption, accord-
ingly to ZTT difference reported in Fig. 22. This difference
is about 7% at 70 MeV and gets null at 230 MeV.

E. Beam dynamics in a cyclinac solution

This article discusses the first design of an all-linac
solution for the TULIP project. As mentioned, the majority
of the studies carried out in the past focused instead on a
cyclinac solution. Here a detailed beam dynamics study of
this concept is presented, in order to point out the major
differences.

FIG. 30. Beam 1σ rms envelope through the HG BTW linac
with no acceleration after 70 MeV (top) and ratio of emittance
growth with respect to initial (bottom).

FIG. 31. Beam 1σ rms envelope through the HG BTW linac
with full acceleration up to 230 MeV (top) and ratio of emittance
growth with respect to initial (bottom).

FIG. 32. Beam 1σ rms envelope through a cyclinac TULIP
solution with no acceleration after 70 MeV (top) and ratio of
emittance growth with respect to initial (bottom).

FIG. 33. Beam 1σ rms envelope through a cyclinac TULIP
solution with full acceleration up to 230 MeV (top) and ratio of
emittance growth with respect to initial (bottom).
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The 11th accelerating structure of the SCDTL linac
accepts as input particles at 24 MeV. It has been supposed
to replace the previous linac section with a commercial
24 MeV cyclotron. This would result in a bigger transverse
emittance, and a continuous beam for the 3 GHz rf
frequency, as discussed in Sec. V B 1. The transverse
emittance can be collimated, however the beam cannot
be chopped at 3 GHz. As a result, the beam will be lost in
the linac section, with losses that are proportional to the
ratio synchronous phase −360 deg. This situation has been
simulated, and the results are presented in Figs. 32 and 33.

The losses are concentrated in the first 3 m of this
design, causing activation of the copper structure and
surrounding materials. However, here we would like to
draw the reader’s attention to the emittance growth.
While the transverse one is “controlled” by the linac
acceptance, so it does not grow uncontrolled, the longi-
tudinal phase space is heavily influenced.
These two aspects reflect into a higher complexity and

costs of the beam transport line from the linac output to the
patient. The increase in normalized transverse emittance
requires bigger magnets aperture, therefore eventually
costs. On the other hand, the increased longitudinal
emittance results in a more variable energy spread as a
function of the beam output energy. This impacts on the
design of the magnetic channel, which needs a higher
momentum acceptance to control the dispersion.
In Fig. 34 one can notice the difference just explained.

The transverse Twiss parameters are instead comparable in
magnitude for the two solutions.

VI. SUMMARY

A all-linac solution of the TULIP project has been
presented. In this paper we first discussed the rf design
of the different accelerating structures composing the
linac chain. Particular attention has been devoted to two
novel accelerating structures studied in detailed by the
authors: a 750 MHz IH structure, and a BTW high
gradient structure. A 0.38β BTW prototype has been

FIG. 34. Beam output energy spread in TULIP all-linac and
cyclinac as a function of the final kinetic energy.

FIG. 35. TULIP all-linac main accelerating parameters.
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built and is under test at CERN. The average target
accelerating gradient in the structure is 50 MV=m,
with a corresponding maximum surface electric field
of 200 MV=m, and modified Poynting vector Sc of
0.75 MW=mm2.
The beam dynamics linac design features full trans-

mission and minimized emittance growth, and it has been
accomplished with full tracking of the particles from the
RFQ output up to 230 MeV, using rf EM field maps for the
accelerating structures computed with HFSS. This is a
uniqum for such a long linac. The effort is justified by the
peculiar cavities considered that, as discussed, show dipolar
components, asymmetries and traveling wave regimes that

cannot be simulated with standard tracking codes. This is
the reason why the novel tracking code RF-TRACK has been
developed explicitly for this project.
The TULIP all-linac solution with the main design

parameters are summarized in Fig. 35 and Table V.
Figure 35 top left and bottom left show clearly the division
of the two sections of the project: a fairly low gradient and
high efficiency section up to 70 MeV, placed on the ground,
and a high gradient section that will be mounted on the
gantry.
The beam dynamic design is summarized in Figs. 36 and

37 for the two extreme cases of no acceleration and full
acceleration.

FIG. 36. Beam 1σ rms envelope through the TULIP all-linac
solution and ratio of emittance growth with respect to initial. No
acceleration after 70 MeV (top) and full acceleration up to
230 MeV (bottom).

FIG. 37. The 70 MeV (top) and 230 MeV (bottom) beam
envelopes along TULIP all-linac. 1 rms σx (red), σy (blue)
and σz (green).

TABLE V. TULIP all-linac—A summary.

Linac
section

Operating
frequency [MHz]

Output energy
[MeV]

Average gradient
[MV=m]

Synchronous
phase [deg]

Active
length [m]

Cumulative
Length [m]

Average ZTT
[MΩ=m]

Peak power
[MW]

RFQ 750 5 2.6 15 (final) 2 2 38 0.4
IH 750 10 5.7 12 0.9 3.3 350 0.1
DTL 2998.5 70 15.5 20 4.1 9.8 86 13
BTW-CCL 2998.5 70–230 37.7 15 4.4 17.5 68 108
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