
On the Unfairness of Blockchain

Rachid Guerraoui1 and Jingjing Wang1

École Polytechnique Fédérale de Lausanne, IC, Station 14, CH-1015, Lausanne,
Switzerland

firstname.lastname@epfl.ch

Abstract. The success of Bitcoin largely relies on the perception of a
fair underlying peer-to-peer protocol: blockchain. Fairness here essen-
tially means that the reward (in bitcoins) given to any participant that
helps maintain the consistency of the protocol by mining, is proportional
to the computational power devoted by that participant to the mining
task. Without such perception of fairness, honest miners might be dis-
incentivized to maintain the protocol, leaving the space for dishonest
miners to reach a majority and jeopardize the consistency of the entire
system.
We prove, in this paper, that blockchain is actually unfair, even in a
distributed system of only two honest miners. In a realistic setting where
message delivery is not instantaneous, the ratio between the (expected)
number of blocks committed by two miners is at least exponential in the
product of the message delay and the difference between the two miners’
hashrates. To obtain our result, we model the growth of blockchain, which
may be of independent interest. We also apply our result to explain recent
empirical observations and vulnerabilities.

1 Introduction

At the heart of the celebrated Bitcoin currency and payment system [1, 2, 3] lies
a distributed protocol called blockchain, now considered of independent interest
[4]. Essentially, this protocol maintains a distributed data structure, also called
the blockchain, made of a series of transaction blocks, and updated by specific
nodes called miners. To update a blockchain, a minerM devotes computational
resources into a task called “proof-of-work” [5] in order to mine a block. Each
block mined by M includes an extra coinbase transaction to reward M’s com-
putational effort with bitcoins [6]. The computational power of any miner is
characterized by a hashrate, λ, meaning that, on average, it takes 1

λ units of
time to mine a block. Once a block is mined, the block is propagated to the
other miners. Roughly speaking, the block is said to be committed when it is
delivered to all miners.

The success of Bitcoin relies on the perception of fairness [7]: in short, the
reward of a given honest minerM is proportional toM’s hashrate [8, 9]. Fairness
in this sense is crucial, for otherwise (i.e., if the reward of an honest miner
were lower than its fair proportion), honest miners could be disincentivized and
stop maintaining the blockchain, leaving the space for dishonest miners (the

proportion of which could then grow to a majority) to jeopardize the correct
functioning of the entire system [10].

We prove in this paper that Bitcoin blockchain is actually unfair. The fun-
damental reason is simple: blockchain is a distributed protocol, meaning that
message delivery is not instantaneous. We show that with non-nil message de-
lays, in a distributed system of two honest miners, M1 and M2 with hashrates
λ1 and λ2, respectively, and message delay u between them, if λ1 > λ2, then
M1 can commit many more blocks than M2 in expectation. The ratio between
the expected number of blocks committed by M1 and M2 is lower bounded

by eλ1uλ1

eλ2uλ2
, which is exponential in the product of the message delay and the

difference between the hashrates of M1 and M2.
To establish our lower bound, we go beyond most previous theoretical analy-

ses of blockchain that take communication delays into account, typically assum-
ing a delay rate (the percentage of miners receiving a certain message) [11], or
dividing time into discrete steps (which may be viewed as an approximation of
continuous time) [8, 12]. We rather model time in a continuous way to relate
hashrates to communication delays, and model exactly how the blockchain grows
in time (which may be of independent interest). We construct our proof of the
lower bound in two steps: we first establish (1) the unfairness per se, and then
(2) the exponential advantage. The key to our proof is the probability distribu-
tion of when the blockchain grows so that the blockchain includes k blocks for
any k ∈ Z+. We show that the miner with a higher hashrate can grow its chain
earlier for any k with a higher probability, implying unfairness, as the first step.
In the second step, we extract the exponential term from the fact that no block
is mined during some message delay u.

Our result on unfairness of blockchain among honest miners has several appli-
cations. For instance, our result explains disproportionate rewards reported via
empirical experiments on blockchain [13, 14]. It also implies a trade-off between
the speed to mine a block and the fairness of committed blocks in blockchain
as well as its variants (such as Bitcoin-NG [13], and GHOST [15]1): namely, the
legitimate temptation to increase the throughput of blockchain by reducing its
mining time can however cause even more unfairness. Our result can also help
extend previous results on the benefits of selfish miners (which are dishonest,
deviating from the mining algorithm to maximize their rewards). Indeed, Eyal
and Sirer [11] (and follow-up work [16, 9]) showed that a selfish miner M’s re-
ward can be more than its fair share if the proportion α ofM’s hashrate, among
all hashrates, passes the threshold th = 1

3 (which is a sufficient condition). Their
result assumed, however, no message delay. In a setting with message delays, we
show a lower bound L such that, for selfish mining to be feasible, it is necessary
that th > L, where L is a function of u, λ1 and λ2. (For reasonable message de-
lays measured for the Bitcoin blockchain implementation [17], L > 1

3 .) Another
application of our result is the unfairness of blockchain in the context of two
clusters of miners with some negligible message delay within each cluster and a
larger message delay between the two clusters. In this case, we show that even

1 In the case of two honest miners, GHOST is equivalent to Bitcoin blockchain [15].

between two miners with the same hashrate, blockchain can favor a miner M
with an advantage that is exponential in the product of M’s hashrate and the
message delay, if M is closer to the cluster of miners with higher hashrates.

The rest of the paper is organized as follows. Section 2 recalls the basic
blockchain scheme and mining algorithm. Section 3 presents our main result.
Section 4 and Section 5 present applications of our result. Section 6 discusses
related work. To improve the readability of the paper, we defer some proofs to
the appendix.

2 Model

2.1 Miners

We establish our main result in a system of m = 2 processes, called miners, de-
notedM1 andM2. (A miner is sometimes also denotedM orM∗.) Both follow
the algorithm assigned to them, and none crashes. The two miners interact by
exchanging messages. Communication channels do not modify, inject, duplicate
or lose messages. Between the two miners, the delay on message transmission is
denoted u.

We consider the classical mining scheme of [18, 6] in which a (block) chain is
a series of blocks starting from a genesis block G (the initial block in any chain).
Let C = CB0(= G), CB1, CB2, . . . , CBl, l ≥ 1 be any chain of length l. As in
Garay et al.’s analysis of the Bitcoin backbone algorithm [8], as well as Eyal and
Sirer’s analysis of selfish mining [11], we define the length of a chain as the total
number of blocks in a chain. For each j ∈ {1, 2, . . . , l}, CBj has reference hC,j−1
to CBj−1. Reference hC,j−1 = H(CBj−1) is the hash of the previous block where
H is a hash function agreed on by all miners. The hash hC,l of the last block is
sometimes called the hash of the chain C, and is simply denoted hC .

Every miner M stores a chain C as a local variable. (M’s chain denotes the
value of M’s local variable C.) Two miners might have two different chains. For
each minerM, a chain that is different fromM’s C is called an alternative chain
(in M’s perspective). The mining scheme maintains and updates M’s chain C.

Algorithm 1 depicts the basic mining scheme, which, for pedagogical reasons,
is a simplified variant of the algorithm of [18, 6]: after a chain is updated, the
original mining algorithm exchanges the data and inventories of newly created
blocks [19] (for performance reasons), while Algorithm 1 sends the whole new
chain. The two algorithms are equivalent for the purpose of establishing our re-
sults. Before Algorithm 1 starts, every miner assigns C to a chain of length 0
(which only contains G), and all miners agree on a difficulty level d for finding
a preimage of H (which we explain later). In addition, we assume that M has
access to an infinite number of blocks (denoted by a pool Π of blocks in Algo-
rithm 1); in other words, we assume that, at any point in time, M has a block
to append.

If task SolvePuzzle (defined in Algorithm 1) returns a chain C of length
l at M, then M ignores any alternative chain C∗ of length l that could be

Algorithm 1 Mining algorithm

1: Upon an update of C: (1) fetch a block B ∈ Π; (2) create a special string tx that
includes an identifier ofM; (3) run task SolvePuzzle(C, B, tx) (and stop previous
SolvePuzzle task if any).

2: Task SolvePuzzle(C, B, tx):
- Increment a counter N until N satisfies

H(hC ||B||tx||N) < d.

- Assign CB := hC ||B||tx||N and C := C, CB.
- Send C to every other miner.

3: Upon receiving an alternative chain C∗: if C∗ is longer than C, then assign C := C∗,
and send C to every other miner.

received later. We say that M extends M’s chain to length l to mean that M
updates C such that its length becomes l. If M updates C after the return of
task SolvePuzzle, we say that M creates a new block on Cold, the old chain
of length l − 1; we also index this new block by l and say that M creates the
lth block. If M updates C, due to the reception of an alternative chain C∗ from
some miner M∗, we say that M adopts M∗’s chain C∗ (or sometimes simply
C∗). When M creates a new block CB, CB includes a string tx that identifies
M, and a reference hC to M’s chain C; thus each block is unique.2 We say that
a block CB is committed when every miner’s chain includes CB; we say thatM
commits CB if M has created CB and CB is committed.

2.2 Mining as a Poisson process

Task SolvePuzzle(C, ∗, ∗) is the proof-of-work used in the classic Bitcoin imple-
mentation [5]. Performing such task is called mining, or more specifically mining
on chain C. We model mining as a Poisson process.3 For any miner Mi, for any
string s, the time to find N such that H(s||N) < d can be modelled as a con-
tinuous random variable Xi,s. For the same minerMi, any two different strings
s1 and s2, Xi,s1 and Xi,s2 are independently and identically distributed with an
exponential distribution. Let Xi be the random variable for the common dis-
tribution. Xi has an exponential distribution: the cumulative density function
of Xi is Fi(x) = P (Xi ≤ x) = 1 − e−λix, x ≥ 0, and the probability density
function is fi(x) = λie

−λix, x ≥ 0, where parameter λi is called the hashrate of
Mi. Intuitively, the hashrate implies that, for anyMi, it takes 1

λ i
units of time

on average to find an appropriate N .

2 In the classic Bitcoin implementation [2], string tx is actually the coinbase transac-
tion that creates and pays bitcoins to an address of M. Although two miners may
use the same address to receive bitcoins, for the sake of establishing our results, we
assume tx to be unique for each miner. This is not a restriction on our main result.

3 Decker and Wattenhofer’s experiment [17] on blockchain supported such a model,
as we discuss in Section 6. The model was also adopted in the analysis of selfish
mining [11, 9].

We assume, w.l.o.g., that compared with the time spent on mining and com-
munication, other tasks at a miner take negligible time. We define the sequence
of time instants at which a new block is created (by any miner) as the mining
process. If there is only one miner with hashrate λ1, mining is a Poisson process
with rate λ1. If u = 0 and there are m miners with hashrates λ1, λ2, . . . , λm, then
mining is also a Poisson process with rate λ =

∑m
i=1 λi. Intuitively, a new block

is created every 1
λ units of time on average. Rate λ depends on the difficulty level

d. In the classic Bitcoin implementation [18, 6], d is selected such that 1
λ = 600

seconds.4

3 Unfairness of Blockchain

We establish here our main result. We prove the unfairness of blockchain in the
case of two honest miners,M1 andM2: ifM1 has a higher hashrate thanM2,
then in expectation, M1 can commit many more blocks than M2, in a way
disproportionate to their hashrates, formalized in Theorem 1. Consider any a ∈
Z+, let Ci,a beMi’s chain whenMi extendsMi’s chain to length a for i ∈ {1, 2}.
Denoted by Ni,a, the random variable for the number of blocks committed by
Mi in C1,a and C2,a, i.e., the number of blocks created by Mi which both C1,a
and C2,a include.

Theorem 1 (Ratio of probabilities of committed blocks). If λ1 > λ2,
then

E(N1,a)

E(N2,a)
≥ eλ1u

eλ2u
· λ1
λ2

>
λ1
λ2
.

Proof outline of Theorem 1 To prove Theorem 1, by the linearity of expectation,
we examine the expectation of the event thatMi creates CB asMi’s kth block
for k ∈ Z+ (and later commits CB) for each i ∈ {1, 2}, the probability of which
depends on when the two miners’ chains grow to k − 1. To this end, we show a
fundamental unfairness property on the growth of the blockchain (Section 3.2).
We then show unfairness on the success probability in committing CB as the kth
block and hence unfairness on the expected number of committed blocks (Section
3.3). To formalize the growth of the blockchain and the success probability, we
first introduce some definitions and terminologies in Section 3.1 below.

3.1 Definitions and terminologies

We model here with random variables the growth (in length) of the blockchain
as well as the events of success of both miners.

4 As the computational power of CPUs increases, the value of d is changed from time
to time such that 1

λ
= C = 600 seconds always holds [6]. As the relation 1

λ
= C is

always true for the same constant C, in this paper, we consider hashrates λ1, . . . , λm
as constants.

Definition 1 (Growth in length of the blockchain). For each minerMi, i ∈
{1, 2}, let {τk,i|k = 1, 2, . . .} be the sequence of time instants such that at τk,i,
Mi extends Mi’s chain to length k. W.l.o.g., we define τ0,i = 0 (i.e., the two
miners start at the same time 0).

As defined in Definition 1 and illustrated in Figure 1a, each of the two miners
maintains a local chain which grows in length by one. When a miner has a chain
of length k − 1, we say that the miner starts its kth round. For Mi, the kth
round is thus [τk−1,i, τk,i]. At τk−1,i, Mi starts mining a new block. We denote
by Xk−1,i the random variable of the time which Mi spends on mining when
Mi is alone (without a second miner sending an alternative chain). Two miners
can have different chains. Given length a, it is unknown whether two miners
have the same chain or not. However, if they have the same kth block CB in
their chains respectively when a ≥ k, the kth block remains there. We define
the success probability pk,i,a according to which miner mines CB in Definition
2, illustrated in Figure 1b. A prerequisite of pk,i,a > 0 is that Mi completes
its mining at the kth round (even with the other miner), which we denote by
Wk ∈ {0, i}. When Wk = 0, both miners complete their mining at the kth round,
as defined in Definition 3, and can commit one of the two blocks mined later.

(a) Growth of blockchain in length (b) Block k

Fig. 1: Definitions and terminologies

Definition 2 (Success of the kth block). Consider any a ∈ Z+, let Ci,a be
Mi’s chain when Mi extends Mi’s chain to length a for i ∈ {1, 2}. For any
k ∈ Z+, a ≥ k, we define pk,i,a, the probability of the event that (1) Mi creates
CB at the kth round, and (2) both C1,a and C2,a have CB.

Definition 3 (Creation of the kth block). For each miner Mi, i ∈ {1, 2},
let Wk = i if M3−i adopts the alternative chain (in M3−i’s perspective) from
Mi at the end of the kth round, and Wk = 0 when both miners create their kth
blocks respectively and fork the blockchain.

3.2 Unfairness on the growth of the blockchain

We first determine the probability distribution of when the kth round ends (i.e.,
the blockchain grows to length k) in Lemma 1 and then present a property of
this probability distribution in Lemma 2.

It is important to know when the blockchain grows to a certain length k
at the two miners, since the difference (in time) at the two miners can give
one of them a head start. The calculation of probability distribution is actually
straightforward. For each k = 1, 2, . . ., consider τk = (τk,1, τk,2). Suppose that
the probability distribution of τk−1 is known. As illustrated in Figure 2, there are
three possibilities of how the blockchain grows to k: (a) that the blockchain forks;
(b) that M1 mines a block and M2 receives this block before mining one; (c)
thatM2 mines a block andM1 receives this block before mining one. Since the
probability distribution of Xk−1,1, Xk−1,2 is known, the probability distribution
of δk = τk+1 − τk can be calculated as well as τk+1. The base case where k = 0
is simpler: τ0 = (0, 0) is assumed and thus τ1 = δ0. As a result, the probability
distribution of τk includes a recursive equation Dk, which can be evaluated to a
function of s, t alone if λ1, λ2, u are specified. The expression Pr(τk = (s, t)) in
Lemma 1 represents the following probability: Pr(s ≤ τk,1 ≤ s + ds, t ≤ τk,2 ≤
t+ dt) where ds and dt are the infinitesimals.5 The full proofs of Lemma 1 and
Lemma 2 follow from the calculation above and are deferred to the appendix.

(a) Wk = 0 (b) Wk = 1 (c) Wk = 2

Fig. 2: Three possibilities of round k

Lemma 1 (The growth of the blockchain). For s > 0, t > 0, let D0(s, t) = 1
and for each k = 1, 2, . . ., let

Dk(s, t) = λ1λ2

∫
|y−z|<u,
0<y<s,
0<z<t

Dk−1(y, z)dydz

+ λ1

∫
y−z=−u,
0<y<s,
0<z<t

Dk−1(y, z)dy

+ λ2

∫
y−z=u,
0<y<s,
0<z<t

Dk−1(y, z)dz.

5 The probability distribution of τk cannot be expressed by a cumulative distribution
function because the random variable τk− τk−1 is of mixed type: neither continuous
nor discrete.

Then the probability of τk is

Pr(τk = (s, t)) =
0 |s− t| > u;

λ1λ2e
−λ1s−λ2tDk−1(s, t)dsdt |s− t| < u;

λ1e
−λ1s−λ2tDk−1(s, t)ds s− t = −u;

λ2e
−λ1s−λ2tDk−1(s, t)dt s− t = u.

Lemma 2. For s > 0, t > 0, |s − t| ≤ u and u > 0, let Dk(s, t) be defined as
in Lemma 1. If λ1 > λ2 and s > t, s > u, then Dk(s, t) < Dk(t, s),∀k ∈ Z+; if
u > s > t, then Dk(s, t) = Dk(t, s),∀k ∈ Z+.

Lemma 2 implies a property of τk: for any length k, the probability that
the miner with a higher hashrate has a chain of length k earlier than the other
is higher, which is the intuition behind the proof of inequality in Theorem 1.
Lemma 1 can be easily extended to any number of miners. A result similar to
Lemma 2 follows: for any number of miners, between any two miners, for any
length k, the probability that the miner with a higher computational power has
a chain of length k earlier than the other is higher.

3.3 Unfairness on the success of the kth block

We prove Theorem 1 by showing a lower bound on the ratio between the success
probability pk,i,a of Mi in committing Mi’s kth block, for i ∈ {1, 2}.

Since Wk is the random variable that captures whether, at the end of the
kth round, some miner adopts a chain from the other and if so, whose chain
is adopted, then the event defined for pk,i,a is equivalent to the union of the
following two events: (S1) Wk = i, and (S2) Wk = 0, . . . ,Wj−1 = 0,Wj = i. We
thus have the success probability pk,i,a, for each i ∈ {1, 2}:

pk,i,a = Pr(Wk = i) +

a∑
j=k+1

Pr(Wk = 0, . . . ,Wj−1 = 0,Wj = i).

We determine a lower bound for each of the two possibilities (S1) and (S2) in
Lemma 3 by (1) determining Pr(Wk = i) and Pr(Wk = 0, . . . ,Wj−1 = 0,Wj =
i) based on Lemma 1 and (2) applying the inequality in Lemma 2. The intuition
behind the exponential term in Lemma 3 is that (1) at round k when a block is
committed, there is a gap of u (the message delay) between τk,1 and τk,2, when
the two miners end round k respectively, and (2) by the Poisson process, the
probability of a block created during the gap is exponential in u. The full proof
of Lemma 3 is deferred to the appendix for the space limitation.

Lemma 3. For any j, k, a ∈ Z+ and a ≥ k + 1, if λ1 > λ2, then

Pr(Wk = 1)

Pr(Wk = 2)
>
eλ1u

eλ2u
· λ1
λ2
, ∀k ≥ 2;

Pr(Wk = 1)

Pr(Wk = 2)
=
eλ1u

eλ2u
· λ1
λ2
, k = 1;

(1)

and

∀j, k + 1 ≤ j ≤ a,
Pr(Wk = 0, . . . ,Wj−1 = 0,Wj = 1)

Pr(Wk = 0, . . . ,Wj−1 = 0,Wj = 2)
≥ eλ1u

eλ2u
· λ1
λ2
.

(2)

Following Lemma 3, we sketch the proof of Theorem 1 here. Let nk,i,a be
the random variable of whether Mi creates Mi’s kth block and both C1,a and
C2,a include the kth block. Then as defined in Theorem 1, Ni,a =

∑a
k=1 nk,i,a.

Since E(Ni,a) =
∑a
k=1 pk,i,a, then if ∀k ∈ Z+, a ≥ k,

pk,1,a
pk,2,a

is lower bounded by

eλ1u

eλ2u
· λ1

λ2
, then

E(N1,a)
E(N2,a)

is lower bounded by the same. We remark that the lower

bound is supported by the inequality between Dk(s, t) and Dk(t, s) in Lemma

2, implying that the lower bound eλ1u

eλ2u
· λ1

λ2
is not yet tight.

Trade-off between the mining speed and fairness. Theorem 1 highlights the
fragility of tentative implementations that would reduce the time spent on mining
(today set to 600 seconds on average) to improve the throughput of transactions
[20, 21]. Recall from Section 2 that this would reduce the difficulty level, which
would in turn increase every miner’s hashrate proportionally. As a result, fairness
could be further undermined: the proportional increase of λ1 and λ2 results in

a larger gap in the exponential factor eλ1u

eλ2u
, which highlights a trade-off between

the speed to mine a block and the fairness of blockchain.

Extension to any number of miners. Similar to Lemma 1 and Lemma 2, Equa-
tion 1 in Lemma 3 can be easily extended to any number of miners. In other
words, for any number of miners, if we only compare the probability of a miner
committing its block immediately between two miners, then the ratio between
the two probabilities is also greater than the ratio between hashrates and at least
exponential in delay u. Yet it is unclear whether Equation 2 can be extended to
any number of miners, which can be a future direction of our work.

4 Application to Selfish Mining

We show here how our result can be used to generalize one of the main results in
selfish mining [11]. Selfish mining is an attack for a minority of miners to commit
more blocks in expectation than its fair share. In a model of two miners, one
selfish and one honest, with message delay u = 0, Eyal and Sirer [11] showed
that, it is sufficient for α > 1

3 , th to launch selfish mining.6 We generalize

6 Eyal and Sirer [11] showed a lower bound (on α) as a function of parameter γ
which represents the percentage of miners in the honest majority M1 that adopt
the selfish minority M2’s chain, and did not consider exact message delay u. The
sufficient condition in [11] is obtained when γ = 0, which implies u = 0.

the threshold th to a realistic setting with u > 0.7 We first recall below the
selfish mining algorithm and some of its results from [11]. For the classic Bitcoin
blockchain implementation, we show that blockchain is not as vulnerable as
previously believed against selfish mining.

4.1 Selfish mining

We recall the main idea underlying the selfish mining algorithm below, assuming
a selfish minerM2 and an honest minerM1. (More details can be found in [11].)
When both M1 and M2 mine on chain C and M2 succeeds in creating a block
CB on C,M2 continues to mine on Cmi = C, CB (instead of sending Cmi toM1

as in Algorithm 1). Then M2 maintains two chains Cmi and Cma locally. The
latter is initialized to C. Miner M2 updates Cmi when it creates a new block on
Cmi; M2 updates Cma when M1 sends an alternative chain. The goal of M2 is
to commit all blocks created byM2 on Cmi (those blocks of Cmi after prefix C).
There are two scenarios where M2 commits by sending Cmi to M1:

1. After an update of Cma, Cmi and Cma have the same length but differ at the
last block (denoted event E1), and nowM2 creates a new block on Cmi and
updates Cmi; and

2. After an update of Cma, Cmi has exactly one more block than Cma (denoted
event E2).

The state machine of selfish mining is illustrated in Figure 3, where k, k ≥
0, k ∈ Z in each state represents that Cmi is k-block longer than Cma at M2

and 0′ is the resulting state of commit in E2. Then N2 and N1, the expected
numbers of blocks which M2 and M1 commit respectively, can be calculated
from the state machine in terms of α. Let R0 = N2/(N1 + N2). The threshold
th is the solution α∗ to R0(α) = α.

Fig. 3: State machine of selfish mining without message delay

7 Here parameter γ as in [11] is set to 0. If we consider γ and u as two parameters
of the lower bound, then when u > 0, for all γ, the case where γ = 0 requires the
highest computational power th from the selfish minority and as a result, α > th is
again a sufficient condition to launch selfish mining.

4.2 Upper bound on the number of committed blocks

Let R be the proportion of the expected number of blocks committed by M2

among all committed blocks. We show that R is upper bounded in Theorem 2 in
a realistic setting where u > 0. The key is that due to non-zero message delays,
when Ej , j ∈ {1, 2} occurs, M2 only tries to commit by sending Cmi. There are
several possibilities followingM2’s sending Cmi:M2 commits and thenM2 has
additional 2u units of time as a head start, or M2 fails. The state machine of
selfish mining thus changes. In Figure 4, N2u represents how many blocks M2

can find during 2u, ρ1 and ρ2 represent upper bounds on the probability of M2

committing Cmi. The full proof of Theorem 2 is deferred to the appendix for
space limitation.

Fig. 4: State machine of selfish mining with message delay (k ∈ Z+)

Theorem 2. Let M1 and M2 be two miners with hashrates λ1 and λ2 respec-
tively. Let α = λ2

λ1+λ2
and

U =
2P1ρ1(1− α) + 2P2ρ2(1− α) + Pk>2ρ2(1− α)

2P1(1− α) + 2P2(1− α) + P0(1− α) + Pk>2(1− α) + P2(1− ρ2)(1− α)

where ρ1 = αe−2λ1u + α(1 − e−2λ1u)r2, ρ2 = e−2λ1u + (1 − e−2λ1u)[α + (1 −
α)(1 − e−2λ2u)r2] and r2 = 1

r+1 , r = eλ1u

eλ2u
· λ1

λ2
and P0′ and Pk, k ≥ 0, k ∈ Z are

the probabilities of each state in the state machine of Figure 4.
If λ1 > λ2 and U > α, then R ≤ U .

4.3 Lower bound on the threshold

We are now ready to find a lower bound on the threshold assuming message
delay u > 0. Recall that the threshold should be the solution to R(α) = α.
According to Theorem 2, since the relative number of blocks committed by the
selfish miner is upper bounded by U , the solution L to U(α) = α is a lower
bound on the threshold.

Table 1: Lower bound on the threshold
u 1 10 20 100

L 0.334 0.339 0.343 0.371

U(L) 0.33418 0.33999 0.34361 0.37087

Assuming λ = 1
600 , and u = 1, 10, 20, 100 (where the units of time are sec-

onds), which are taken from the classic Bitcoin implementation [18, 6, 17], we
show the numeric calculation of L in Table 1, which is greater than 1

3 . In ad-
dition, for small u > 0 such that Pr[N2u = k],∀k ∈ Z+ is negligible, L > 1

3 is
always true in theory. In either way, we obtain that L > 1

3 = th, suggesting that
with reasonable message delay u > 0, blockchain is not as unfair as previously
believed when some dishonest miner performs selfish mining.

5 Application to Clusters of Miners

We consider in our main result (Theorem 1) two miners with message delay u.
We now consider a model of m > 2 miners that can be divided into two sets S1

and S2 such that (1) within S1 or S2, there is no message delay, and (2) between
every miner in S1 and every miner in S2, there is message delay u.

Corollary 1 below is obtained from Theorem 1. While Theorem 1 shows that,
in the case of two miners, a miner with a higher hashrate has an exponential
advantage over the other, Corollary 1 shows that in a system of more than two
miners, between two miners with the same hashrate, one miner can still have
an exponential advantage over the other as long as the former one is very close
(such that the message delay is 0) to some other miner with a high hashrate.

Corollary 1 (Lower bound with more than two miners). Let M1 ∈ S1

and M2 ∈ S2 be any two miners with the same hashrate λ0. Assume message
delay u between S1 and S2. Suppose that the sum of all miners’ hashrates in
S1 is m1λ0 and that of S2 is m2λ0. Recall that for i ∈ {1, 2}, Ni,a denotes the
number of blocks committed byMi before the end of round a. AssumingM1 and
M2 start with the same chain at the same time, if m1 > m2, then

E(N1,a)

E(N2,a)
≥ em1λ0u

em2λ0u
> 1.

6 Related Work

6.1 Theoretical analyses of blockchain

Satoshi Nakamoto [18] was credited for the proposal of Bitcoin and its underlying
distributed protocol, blockchain. With the popularity of Bitcoin, a lot of work
has been devoted to formalizing blockchain and verifying its claimed properties

[8, 22, 12, 23]. We discuss below some approches, and contrast our main result
with the properties obtained from previous theoretical analyses.

Garay et al. [8] proposed the q-bounded synchronous setting to model blockchain.
Given that the mining algorithm increments a counter to find the preimage of
some hash function, this q-bounded synchronous setting assumes that, in each
round, any miner can increment at most q times the counter [8]. 8 Pass et al.
[12] studied blockchain in an asynchronous network where message delays can
be arbitrary. Both Garay et al. [8], as well as Pass et al. [12] verified the chain
quality property, in their models respectively, considering dishonest miners. The
(µ, `)-chain quality property identifies an upper bound on the proportion of dis-
honest miners’ committed blocks among any ` consecutive blocks for some `
[8, 12]. This property differs from our notion of fairness, in that ours considers
the proportion of the expected number of committed blocks. (Later Pass and Shi
[23] strengthened chain quality property as fairness and used the term, eventual
fairness, for our notion of fairness.) Pass et al. [8], as well as Garay et al. [12],
derived chain quality property with µ higher than the proportion of dishonest
miners’ hashrates, which thus does not imply the (un)fairness of blockchain (as
considered in this paper).

Kosba et al. [22] proposed a cryptographic model of blockchain, assuming
ideal functionality [22]; i.e., they assumed that blockchain satisfies certain ide-
alized properties, which do not fit our analysis here.

6.2 Unfairness of blockchain

We are the first to theoretically prove the unfairness of blockchain among honest
miners. Previous work either observed the unfairness (among honest miners) via
simulation [13, 14], or proposed attacks to break fairness (with dishonest miners)
[11, 16, 24, 9].

Lewenberg et al. [14], as well as Eyal et al. [13], simulated blockchain (among
honest miners), and observed indeed that some miner’s reward can be lower
than its fair share; yet neither work provided a theoretical explanation of such
unfairness. Both presented an exponentially descending curve for the proportion
of the victim’s committed blocks with increasing speed to mine a block [13, 14],
which our Theorem 1 explains. To mitigate the fairness issue, Lewenberg et al.
[14] and Eyal et al. [13] proposed alternatives. However, both alternatives rely
on blockchain and thus still suffer from the unfairness we highlight in this pa-
per.9 Lewenberg et al. [25] presented a formula on the proportion of one miner’s
committed blocks between two miners and omitted the proof. To compare with,

8 This setting neglects the variable relation between mining and time, e.g., when a
message is delayed, a miner may have more time (more increments) to mine a block.

9 Lewenberg et al. [14] proposed inclusive blockchain as an alternative, which stores all
possible blockchains in a directed acyclic graph, and then still observed dispropor-
tionate rewards among honest miners. Eyal et al. [13] proposed Bitcoin-NG, where a
leader (a special miner that is entitled to include transaction blocks) is elected based
on blockchain (and its companion mining algorithm); the leader election could still
suffer from the unfairness of blockchain as shown in this paper.

we model the growth of blockchain, which can be extended to any number of
miners and may be of independent interest, and prove our result based on the
model of growth, independently from [25].

Eyal and Sirer [11] proposed a very interesting attack, called selfish min-
ing, for a minority of miners to commit more blocks in expectation than its
fair share. (Sapirshtein et al. [9], as well as Gervais et al. [16] and Nayak et al.
[26], optimized selfish mining.) Such unfairness resulting from selfish (dishonest)
miners does not imply our result. Assuming no message delay, Eyal and Sirer
[11] determined a threshold th on the proportion α of the minority’s hashrate
for selfish mining to be feasible, while Sapirshtein et al. [9] established a lower
threshold by optimizing selfish mining for each value of α. As an application of
our main result, we extend Eyal and Sirer’s threshold in a model with message
delays. In Section 4, we show that the classic Bitcoin blockchain implementa-
tion can tolerate selfish mining more than previously believed: under reasonable
message delays, a threshold for selfish mining to be feasible is greater than th.
Sapirshtein et al. [9] additionally showed that, assuming message delays, any
miner can commit more blocks by being dishonest, but did not study the effect
of message delays on selfish mining. Unlike previous work, Gervais et al. [16]
modelled selfish mining with Markov Decision Processes parameterized by the
stale block rate (which intuitively captures message delays as well as hashrates)
yet did not provide a threshold. Nayak et al. [26] composed network-level at-
tacks (eclipse attacks) with generalized selfish mining, which however focused
on isolating miners instead of concrete message delays.

Heilman et al. [24] presented eclipse attacks on Bitcoin, which enforce some
miners to connect only to an attacker (which may control multiple miners). As
these honest miners are fed with selected transactions and blocks, a dishonest
miner’s reward can be higher than its fair proportion [24]. Eclipse attacks can
also increase message delays [17, 24], and can then transform Theorem 1 into an
attack against the miner with a low hashrate.

In addition, to address unfairness resulting from dishonest miners, Pass and
Shi [23] proposed fruitchain, which mines another data structure called fruits, as
well as blocks. They proved that the proportion of dishonest miners’ committed
fruits is upper bounded by their proportional hashrate and in this sense, is fair
[23]. Since fruitchain takes a different approach from the blockchain considered
in this paper, our result and theirs are incomparable.

6.3 Message delays in blockchain

Our assumptions on message delays (level of seconds in Section 4) as well as our
model of mining (as a Poisson process throughout the paper) have already been
discussed in the literature.

Our assumptions on message delays are justified by the study of Decker and
Wattenhofer [17], as well as Croman et al. [20], on block propagation delays in
Bitcoin network. Decker and Wattenhofer [17] showed that in 2013, the median
time for a node (not necessarily a miner) to receive a block is 6.5 seconds, whilst
the mean is 12.6 seconds [17]. Croman et al. [20] repeated the measurement of

block propagation in 2014 and 2015, and found a median time of 8.7 seconds.
Our model of mining is justified by Decker and Wattenhofer [17]’s measurement
on the probability of the time to create a block in the Bitcoin network. The
measured distribution fits the exponential distribution [17], which justifies the
mining Poisson process widely used in this paper, as well as in the literature
[2, 11, 9].

Assuming message delays, Natoli and Gramoli [27] observed a blockchain
anomaly, which can be considered as an extreme case of our Theorem 1. The
classic Bitcoin implementation stipulates a value k = 6 such that, if an hon-
est miner M’s chain has at least k blocks after a certain block CB, then M
considers CB confirmed. Natoli and Gramoli [27] exhibited an attack that only
delays messages (arbitrarily) in a system of two miners, against any k: as long
as the attacker’s hashrate is higher than M, for any k, a confirmed block can
be later removed from M’s chain. Theorem 1 explains such anomaly: with the
message delay approaching infinity, an attacker commits almost all blocks with
a high probability, while M commits (or confirms) nearly none. In this sense,
our unfairness result can be viewed as a generalization of the observation of [27].

7 Concluding Remarks

In this paper, we show that Bitcoin blockchain is actually unfair. We prove that
even in a distributed system of two honest miners, under non-instantaneous mes-
sage delivery, the expected number of committed blocks between two miners is
lower bounded by a function exponential in the product of the message delay and
the difference between the two miners’ hashrates. Possible future work includes
quantifying the unfairness of blockchain in a distributed system Ω of more than
two honest miners. In a realistic scenario, as suggested by Lemma 1 and Lemma
2, the miner M with the highest hashrate starts a round earlier than any other
miner (in expectation) and thus blockchain must have a head start in Ω. Yet it
is not clear whether the proportion of the expected number of committed blocks
is also exponential in the product of the difference between hashrates and the
message delay.

Acknowledgement

This work has been supported in part by the European ERC Grant 339539 -
AOC

Bibliography

[1] “100+ companies that accept bitcoins as payment,” Online, 2015,
http://www.ebay.com/gds/100-Companies-That-Accept-Bitcoins-As-
Payment-/10000000206483242/g.html.

[2] Bitcoin community, “Bitcoin,” Januray 2016, https://en.bitcoin.it/wiki/
Bitcoin.

[3] J. Davidson, “No, big companies aren’t really accepting bitcoin,” Online,
2015, http://time.com/money/3658361/dell-microsoft-expedia-bitcoin/.

[4] R. McMillan, “IBM bets on bitcoin ledger,” February 2016, https://www.
wsj.com/articles/ibm-bets-on-bitcoin-ledger-1455598864.

[5] Bitcoin community, “Proof of work,” May 2016, https://en.bitcoin.it/wiki/
Proof of work.

[6] ——, “Protocol rules,” October 2016, https://en.bitcoin.it/wiki/Protocol
rules.

[7] E. Felten, “Bitcoin research in princeton cs,” Online, november 2013, https:
//freedom-to-tinker.com/2013/11/29/bitcoin-research-in-princeton-cs/.

[8] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications,” in EUROCRYPT 2015, E. Oswald and M. Fis-
chlin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 281–
310.

[9] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in bitcoin,” CoRR, vol. abs/1507.06183, 2015. [Online]. Available:
https://arxiv.org/abs/1507.06183

[10] Bitcoin community, “Majority attack,” July 2015, https://en.bitcoin.it/
wiki/Majority attack.

[11] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnera-
ble,” in FC 2014, N. Christin and R. Safavi-Naini, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 436–454.

[12] R. Pass, L. Seeman, and abhi shelat, “Analysis of the blockchain protocol
in asynchronous networks,” Cryptology ePrint Archive, Report 2016/454,
2016, http://eprint.iacr.org/2016/454.

[13] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse, “Bitcoin-ng: A scalable
blockchain protocol,” in NSDI 2016. USENIX Association, 2016, pp. 45–59.

[14] Y. Lewenberg, Y. Sompolinsky, and A. Zohar, “Inclusive block chain pro-
tocols,” in FC 2015, R. Böhme and T. Okamoto, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 528–547.

[15] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing in
bitcoin,” in FC 2015, pp. 507–527.

[16] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Cap-
kun, “On the security and performance of proof of work blockchains,” in
CCS 2016. New York, NY, USA: ACM, 2016, pp. 3–16.

[17] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in IEEE P2P 2013, 2013, pp. 1–10.

http://www.ebay.com/gds/100-Companies
https://en.bitcoin.it/wiki/Bitcoin
https://en.bitcoin.it/wiki/Bitcoin
http://time.com/money/3658361/dell-microsoft-expedia-bitcoin/
https://www.wsj.com/articles/ibm-bets-on-bitcoin-ledger-1455598864
https://www.wsj.com/articles/ibm-bets-on-bitcoin-ledger-1455598864
https://en.bitcoin.it/wiki/Proof_of_work
https://en.bitcoin.it/wiki/Proof_of_work
https://en.bitcoin.it/wiki/Protocol_rules
https://en.bitcoin.it/wiki/Protocol_rules
https://freedom-to-tinker.com/2013/11/29/bitcoin-research-in-princeton-cs/
https://freedom-to-tinker.com/2013/11/29/bitcoin-research-in-princeton-cs/
https://arxiv.org/abs/1507.06183
https://en.bitcoin.it/wiki/Majority_attack
https://en.bitcoin.it/wiki/Majority_attack
http://eprint.iacr.org/2016/454

[18] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008, https:
//bitcoin.org/bitcoin.pdf.

[19] Bitcoin community, “Block chain download,” January 2016, https://en.
bitcoin.it/wiki/Block chain download.

[20] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller,
P. Saxena, E. Shi, E. Gün Sirer, D. Song, and R. Wattenhofer, “On scaling
decentralized blockchains,” in FC 2016, J. Clark, S. Meiklejohn, P. Y. Ryan,
D. Wallach, M. Brenner, and K. Rohloff, Eds., 2016, pp. 106–125.

[21] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work vs. bft
replication,” in iNetSec 2015, J. Camenisch and D. Kesdoğan, Eds. Cham:
Springer International Publishing, 2015, pp. 112–125.

[22] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts,”
in SP 2016, 2016, pp. 839–858.

[23] R. Pass and E. Shi, “Fruitchains: A fair blockchain,” Cryptology ePrint
Archive, Report 2016/916, 2016, http://eprint.iacr.org/2016/916.

[24] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in SEC 2015. Berkeley, CA, USA: USENIX
Association, 2015, pp. 129–144.

[25] Y. Lewenberg, Y. Bachrach, Y. Sompolinsky, A. Zohar, and J. S. Rosen-
schein, “Bitcoin mining pools: A cooperative game theoretic analysis,” ser.
AAMAS 2015. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, 2015, pp. 919–927.

[26] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Generalizing
selfish mining and combining with an eclipse attack,” in EuroS&P 2016,
2016, pp. 305–320.

[27] C. Natoli and V. Gramoli, “The blockchain anomaly,” in NCA 2016, 2016,
pp. 310–317.

A Proof of Lemma 1

According to the mining algorithm, there is a recurrence relation between τk and
τk−1. Using Wk, the recurrence relation between τk and τk−1 can be written as
follows:

τk,1 =

{
τk−1,1 +X1 if Wk 6= 2,

τk−1,2 +X2 + u otherwise.
(3)

τk,2 =

{
τk−1,2 +X2 if Wk 6= 1,

τk−1,1 +X1 + u otherwise.
(4)

We prove the statement of Lemma 1 by induction. We first prove for the
base case where k = 1. According to the mining algorithm, |τ1,1 − τ1,2| ≤ u;
thus Pr(τ1 = (s, t)) = 0 when |s − t| > u. When |s − t| < u, W1 = 0; thus by

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://en.bitcoin.it/wiki/Block_chain_download
https://en.bitcoin.it/wiki/Block_chain_download
http://eprint.iacr.org/2016/916

Equations (3) and (4), and τ0 = (0, 0),

Pr(τ1 = (s, t)) = Pr(X1 = s,X2 = t)

= Pr(X1 = s) · Pr(X2 = t)

= f1(s)f2(t)dsdt

= λ1λ2e
−λ1s−λ2tD0(s, t)dsdt.

When s− t = −u, W1 6= 2; thus by Equations (3) and (4), and τ0 = (0, 0),

Pr(τ1 = (s, t)) = Pr(X1 = s,X2 ≥ t)
= Pr(X1 = s) · Pr(X2 ≥ t)

= f1(s)ds

∫ ∞
t

f2(x)dt

= λ1e
−λ1s−λ2tD0(s, t)ds.

Similarly, when s−t = u, W1 6= 1; thus by Equations (3) and (4), and τ0 = (0, 0),

Pr(τ1 = (s, t)) = Pr(X1 ≥ s,X2 = t)

= Pr(X1 ≥ s) · Pr(X2 = t)

= f2(t)dt

∫ ∞
s

f2(x)ds

= λ2e
−λ1s−λ2tD0(s, t)dt.

As a result, the statement is true for the base case where k = 1.
Now assuming that the statement is true for an arbitrary k ∈ Z+, we prove

the statement is true for k + 1. Then for τk+1 = (s, t), according to the mining
algorithm, |s − t| ≤ u; thus Pr(τk+1 = (s, t)) = 0 when |s − t| > u. When
|s− t| ≤ u, we calculate probability Pr(τk+1) using our assumption on Pr(τk):

Pr(τk+1 = (s, t))

=

∫
|y−z|<u,
0<y<s,
0<z<t

Pr(τk+1 = (s, t)|τk = (y, z)) · Pr(τk = (y, z))

+

∫
y−z=−u,
0<y<s,
0<z<t

Pr(τk+1 = (s, t)|τk = (y, z)) · Pr(τk = (y, z))

+

∫
y−z=u,
0<y<s,
0<z<t

Pr(τk+1 = (s, t)|τk = (y, z)) · Pr(τk = (y, z))

(5)

where the equality is justified by the following: for any event E, any random
variable Y , any area A ⊆ R and any function f such that Pr(Y ∈ A) =∫
y∈A f(y)dy = 1,

Pr(E) = Pr(E, Y ∈ A) =

∫
y∈A

Pr(E|Y = y)f(y)dy.

The probability distribution for Pr(τk) can be replaced following the assumption
on k.

The rest calculates Pr(τk+1 = (s, t)|τk = (y, z)). When |s− t| < u, we have

Pr(τk+1 = (s, t)|τk = (y, z))

=Pr(X1 = s− y,X2 = t− z)
=λ1λ2e

−λ1(s−y)−λ2(t−z)dsdt;

(6)

hence, when |s− t| < u, we substitute Equation (6) in Equation (5) and obtain

Pr(τk+1 = (s, t))

=λ1λ2e
−λ1s−λ2tDk(s, t)dsdt.

For the other two cases, we can calculate Pr(τk+1 = (s, t)|τk = (y, z)):

Pr(τk+1 = (s, t)|τk = (y, z)) ={
λ1e
−λ1(s−y)−λ2(t−z)ds when s− t = −u;

λ2e
−λ1(s−y)−λ2(t−z)dt when s− t = u;

and Pr(τk+1 = (s, t)) (similarly to the case where |s− t| < u):

Pr(τk+1 = (s, t)) ={
λ1e
−λ1s−λ2tDk(s, t)ds when s− t = −u;

λ2e
−λ1s−λ2tDk(s, t)dt when s− t = u.

Thus the statement for k + 1 is proved based on the assumption for k. As a
result, the statement of Lemma 1 is true for any k ∈ Z+.

B Proof of Lemma 2

We prove the statement by induction. For k = 1, we expand D1(s, t):

D1(s, t) =λ1λ2

∫
|y−z|<u,
0<y<s,
0<z<t

dydz + λ1

∫
y−z=−u,
0<y<s,
0<z<t

dy

+ λ2

∫
y−z=u,
0<y<s,
0<z<t

dz

=λ1λ2

∫ s

0

∫ min(t,y+u)

max(0,y−u)
dzdy

+ λ1I(t ≥ u) ·
∫ min(s,t−u)

0

dy

+ λ2I(s ≥ u) ·
∫ min(t,s−u)

0

dz

=λ1λ2[st+ I(s ≥ u)(su− 1

2
u2 − 1

2
s2)

+ I(t ≥ u)(tu− 1

2
u2 − 1

2
t2)]

+ λ1I(t ≥ u)(t− u) + λ2I(s ≥ u)(s− u)

where I(P) is the indicator of whether a predicate P is true or not, and the last
equality comes from the fact that |s− t| ≤ u. Therefore, the difference between
D1(s, t) and D1(t, s) is:

D1(s, t)−D1(t, s)

=[λ1I(t ≥ u)(t− u) + λ2I(s ≥ u)(s− u)]

− [λ1I(s ≥ u)(s− u) + λ2I(t ≥ u)(t− u)]

=(λ1 − λ2)[I(t ≥ u)(t− u)− I(s ≥ u)(s− u)]

Since s > t, there are only three cases for the possible values of I(t ≥ u) and
I(s ≥ u): (1) I(t ≥ u) = 1, I(s ≥ u) = 1; (2) I(t ≥ u) = 0, I(s ≥ u) = 1
and (3) I(t ≥ u) = 0 and I(s ≥ u) = 0. For case (1), D1(s, t) − D1(t, s) =
(λ1 − λ2)(t− s) < 0; for case (2), D1(s, t)−D1(t, s) = (λ1 − λ2)(u− s) < 0; for
case (3), D1(s, t) −D1(t, s) = (λ1 − λ2) · 0 = 0. Thus the statement is true for
k = 1.

Now assume that the statement is true for an arbitrary k ≥ 1. Then for k+1,
by Lemma 1, the difference between Dk+1(s, t) and Dk+1(t, s) is:

Dk+1(s, t)−Dk+1(t, s)

=λ1λ2(

∫
|y−z|<u,
0<y<s,
0<z<t

Dk(y, z)dydz −
∫
|y−z|<u,
0<y<s,
0<z<t

Dk(y, z)dydz)

+ (λ1

∫
y−z=−u,
0<y<s,
0<z<t

Dk(y, z)dy − λ2
∫
y−z=u,
0<y<s,
0<z<t

Dk(y, z)dz

+ λ2

∫
y−z=u,
0<y<s,
0<z<t

Dk(y, z)dz − λ1
∫
y−z=−u,
0<y<s,
0<z<t

Dk(y, z)dy)

,∆1 +∆2;

where after some simplification,

∆1 = λ1λ2

∫
|y−z|<u,t<y<s,0<z<t

[Dk(y, z)−Dk(z, y)]dydz;

∆2 = −
∫
z−y=u,t<z<s,0<y<t

[λ1Dk(y, z)− λ2Dk(z, y)]dy.

Recall our assumption that the statement is true for k, i.e., Dk(y, z)−Dk(z, y) <
0 if λ1 > λ2, y > z and y > u and Dk(y, z)−Dk(z, y) = 0 if λ1 > λ2, u > y > z.
Then ∆1 < 0 if s > t and s > u and ∆1 = 0 if u > s > t. Moreover, if s < u,
∆2 = 0; otherwise, if s > u, s > t and λ1 > λ2, then ∆2 < 0. Thus, based on the
assumption for k, the statement for k + 1 is proved. Since we prove the result
by induction, we can safely conclude that the statement of Lemma 2 is true for
any k ∈ Z+.

C Proof of Lemma 3

We first prove the correctness of Equation (1). Before proving Equation (1), we
calculate Pr(Wk = 1). It is easy to calculate the probability of the event Wk = 1
conditioned on some given τk−1.

Pr(Wk = 1|τk−1 = (s, t))

=Pr(τk−1,1 +Xk−1,1 ≤ τk−1,2 +Xk−1,2 + u and

τk−1,1 +Xk−1,1 + u < τk−1,2 +Xk−1,2|τk−1 = (s, t))

=Pr(s+Xk−1,1 + u < t+Xk−1,2)

=
λ1

λ1 + λ2
· e−λ2(u+s−t), if u+ s− t ≥ 0

where the last equality comes from the fact that Xk−1,i, i ∈ {1, 2},∀k ≥ 2 has
a common distribution Xi. When k = 1, τk−1 = (0, 0) and thus Pr(Wk = 1) =

λ1

λ1+λ2
· e−λ2u. When k ≥ 2, the probability distribution of τk is considered, and

then by Lemma 1,

Pr(Wk = 1)

=

∫
s−t=−u,
s>0,t>0

Pr(Wk = 1|τk−1 = (s, t)) · Pr(τk−1 = (s, t))

+

∫
s−t=u,
s>0,t>0

Pr(Wk = 1|τk−1 = (s, t)) · Pr(τk−1 = (s, t))

+

∫
|s−t|<u,
s>0,t>0

Pr(Wk = 1|τk−1 = (s, t)) · Pr(τk−1 = (s, t))

=
λ1

λ1 + λ2
e−λ2u·

[

∫
|s−t|<u,
s>0,t>0

e−s(λ1+λ2) · λ1λ2Dk−2(s, t)dsdt

+

∫
s−t=−u,
s>0,t>0

e−s(λ1+λ2) · λ1Dk−2(s, t)ds

+

∫
s−t=u,
s>0,t>0

e−s(λ1+λ2) · λ2Dk−2(s, t)dt].

By symmetry, we can have similar formulas (when k = 1 and when k ≥ 2) for
Pr(Wk = 2).

We then verify the correctness of Equation (1). For k = 1, by the formulas
of Pr(Wk = 1) and Pr(Wk = 2), it is easy to verify the correctness of Equation
(1). For k ≥ 2, let

∆1 =

∫
|s−t|<u,
s>0,t>0

e−s(λ1+λ2) · λ1λ2Dk−2(s, t)dsdt

−
∫
|s−t|<u,
s>0,t>0

e−t(λ1+λ2) · λ1λ2Dk−2(s, t)dsdt,

∆2 =[

∫
s−t=−u,
s>0,t>0

e−s(λ1+λ2) · λ1Dk−2(s, t)ds

+

∫
s−t=u,
s>0,t>0

e−s(λ1+λ2) · λ2Dk−2(s, t)dt]

− [

∫
s−t=−u,
s>0,t>0

e−t(λ1+λ2) · λ1Dk−2(s, t)ds

+

∫
s−t=u,
s>0,t>0

e−t(λ1+λ2) · λ2Dk−2(s, t)dt].

Then by the formula of Pr(Wk = 1), k ≥ 2 and that of Pr(Wk = 2), k ≥ 2 (by
symmetry), we have

λ1 + λ2
λ1

eλ2uPr(Wk = 1)− λ1 + λ2
λ2

eλ1uPr(Wk = 2)

=∆1 +∆2,∀k ≥ 2.

Clearly, if ∆1 + ∆2 > 0, then Equation (1) is correct for k ≥ 2. After some
simplification, we obtain the following equations.

∆1 =λ1λ2 ·
∫
|s−t|<u,
s>t,s>0,t>0

[e−s(λ1+λ2) − e−t(λ1+λ2)]

· [Dk−2(s, t)−Dk−2(t, s)]dsdt;

∆2 =

∫
t−s=−u,
s>0,t>0

[e−s(λ1+λ2) − e−t(λ1+λ2)]

· [λ2Dk−2(s, t)− λ1Dk−2(t, s)]dt.

Since by Lemma 2, ∆1 ≥ 0 and ∆2 > 0, Equation (1) is also correct for k ≥ 2.
As a result, the correctness of Equation (1) holds for any k ∈ Z+.

Next we prove the correctness of Equation (2). Before proving Equation (2),
we calculate Pr(Wk = 0, . . . , Wj−1 = 0,Wj = 1) by calculating the probability
of τk, . . . , τj−1, τj falling into the specific ranges which satisfy the event F1 that
Wk = 0, . . . ,Wj−1 = 0,Wj = 1. Let |tix,1 − tix,2| < u, k ≤ ix ≤ j − 1, ix ∈ Z+

and tj,1 − tj,2 = −u. Since according to the mining algorithm, for any j,

Pr(τj = (tj,1, tj,2)|
τk = (tk,1, tk,2), . . . , τj−1 = (tj−1,1, tj−1,2))

=Pr(τj = (tj,1, tj,2)|τj−1 = (tj−1,1, tj−1,2)),

therefore, we have

p ,Pr(τk = (tk,1, tk,2), . . . , τj = (tj,1, tj,2))

=Pr(τk = (tk,1, tk,2))

·
j−1∏
ix=k

Pr(τix+1 = (tix+1,1, tix+1,2)|τix = (tix,1, tix,2))

By Lemma 1 and the fact that random variables Xk,i, Xk+1,i, . . . , Xj−1,i, i ∈
{1, 2} are identically distributed with common distribution Xi, after some sim-
plification, we have

p =λ1(λ1λ2)j−ke−λ1tj,1−λ2tj,2

·Dk−1(tk,1, tk,2)

j−1∏
ix=k

dtix,1dtix,2 · dtj,1.

Then the probability of the event F1 is

Pr(F1) =

∫
tj,1−tj,2=−u,
tj,1>0,
tj,2>0

k∏
ix=j−1

∫
|tix,1−tix,2|<u,
0<tix,1<tix+1,1,
0<tix,2<tix+1,2

p.

Then after some simplification,

Pr(F1) = λ1(λ1λ2)j−ke−λ2u∆1,

where

∆1 =

∫
tj,1−tj,2=−u,
tj,1>0,
tj,2>0

k∏
ix=j−1

∫
|tix,1−tix,2|<u,
0<tix,1<tix+1,1,
0<tix,2<tix+1,2

e−tj,1(λ1+λ2)

·Dk−1(tk,1, tk,2)

j−1∏
ix=k

dtix,1dtix,2 · dtj,1.

Similarly, for Wk = 0, . . . ,Wj−1 = 0,Wj = 2 denoted event F2, Pr(F2) =
λ2(λ1λ2)j−ke−λ1u∆2, where

∆2 =

∫
tj,2−tj,1=−u,
tj,1>0,
tj,2>0

k∏
ix=j−1

∫
|tix,1−tix,2|<u,
0<tix,1<tix+1,1,
0<tix,2<tix+1,2

e−tj,2(λ1+λ2)

·Dk−1(tk,1, tk,2)

j−1∏
ix=k

dtix,1dtix,2 · dtj,2.

We then verify the correctness of Equation (2). For any b > 0, let

Ω1 =

∫
|tj−1,1−tj−1,2|<u,
0<tj−1,1<b,
0<tj−1,2<b+u

k∏
ix=j−2

∫
|tix,1−tix,2|<u,
0<tix,1<tix+1,1,
0<tix,2<tix+1,2

Dk−1(tk,1, tk,2)

j−1∏
ix=k

dtix,1dtix,2

Ω2 =

∫
|tj−1,1−tj−1,2|<u,
0<tj−1,1<b+u,
0<tj−1,2<b

k∏
ix=j−2

∫
|tix,1−tix,2|<u,
0<tix,1<tix+1,1,
0<tix,2<tix+1,2

Dk−1(tk,1, tk,2)

j−1∏
ix=k

dtix,1dtix,2.

Then we have

λ1 + λ2
λ1

eλ2uPr(F1)− λ1 + λ2
λ2

eλ1uPr(F2)

=(λ1λ2)j−k(∆1 −∆2)

=(λ1λ2)j−k
∫
b>0

e−b(λ1+λ2)(Ω1 −Ω2)db,

where after some simplification,

Ω1 −Ω2

=

∫
|tj−1,1−tj−1,2|<u,
0<tj−1,1<b,
b<tj−1,2<b+u

k∏
ix=j−2

∫
|tix,1−tix,2|<u,
0<tix,1<tix+1,1,
tix+1,1<tix,2<tix+1,2

[Dk−1(tk,1, tk,2)−Dk−1(tk,2, tk,1)]

j−1∏
ix=k

dtix,1dtix,2

Since by Lemma 2, Ω1 −Ω2 ≥ 0, therefore Equation (2) is correct.

D Proof of Theorem 2

As a first step to prove Theorem 2, we generalize Theorem 1. In general, the
two miners may start at arbitrary time instants T1 and T2 respectively. Then
with a similar proof to that of Lemma 3, we can generalize Lemma 3 as well as
Theorem 1 to arbitrary T1, T2 > 0 in Corollary 2.10

Corollary 2. Following Definitions 1, 2 and 3, except for τ0 = (T1, T2) for some
T1, T2 > 0 here, for any j ∈ Z+ and a ≥ k + 1, if λ1 > λ2, then

pk,1,a
pk,2,a

> r, ∀k ≥ 2, where r =
eλ1u

eλ2u
· λ1
λ2
.

For i ∈ {1, 2}, denote by pk,i,∞ the success probability pk,i,a when a goes to
infinity. For k = 1, if λ1 > λ2 and |T1 − T2| ≤ u, then

pk,1,∞
pk,2,∞

≥ Pr(Wk = 1) + [1− Pr(Wk = 1)− Pr(Wk = 2)] · r1
Pr(Wk = 2) + [1− Pr(Wk = 1)− Pr(Wk = 2)] · r2

,

where r1 =
r

1 + r
, r2 =

1

1 + r
, and Pr(Wk = 1) =

λ1
λ1 + λ2

· e−λ2(u+T1−T2),

P r(Wk = 2) =
λ2

λ1 + λ2
· e−λ1(u+T2−T1).

Corollary 2 also covers the case where some miner, for example,M1 crashes
and later recovers at time T1. By the stationary property of the Poisson process,
M1 andM2 can be considered as starting with the same chain at different time
instants: T1 and T2 for some T2 < T1 such that |T1 − T2| < u. As a result,
Corollary 2 shows the unfairness of blockchain among honest miners in general,
regardless of crashes. Following Corollary 2, we expand the expression and restate
Theorem 2 as follows.

10 We delay any message msg (that may arrive before a miner has started) to arrive
after the receiver of msg starts.

Theorem 3. Consider the selfish mining algorithm in [11] with M1, the set of
honest miners and M2, the pool of selfish miners. W.l.o.g., M1 and M2 are
two miners with hashrates λ1 and λ2 respectively. Let

U =
2P1ρ1(1− α) + 2P2ρ2(1− α) + Pk>2ρ2(1− α)

2P1(1− α) + 2P2(1− α) + P0(1− α) + Pk>2(1− α) + P2(1− ρ2)(1− α)

where ρ1 = αe−2λ1u +α(1− e−2λ1u)r2, and ρ2 = e−2λ1u + (1− e−2λ1u)[α+ (1−
α)(1 − e−2λ2u)r2] with α = λ2

λ1+λ2
, r1 defined in Corollary 2, and P1, P2, Pk>2

are one solution to the following equations:

αP0 = [(1− ρ1) + ρ1e
−λ2·2u]P0′ + [(1− ρ2)(1− α) + ρ2(1− α)e−λ2·2u]P2

P1 = αP0 + ρ1e
−λ2·2uλ2 · 2uP0′ + ρ2(1− α)e−λ2·2uλ2 · 2uP2

∀k ≥ 2, Pk = αPk−1 + (1− α)Pk+1

+ ρ2(1− α)(e−λ2·2u (λ2 · 2u)k

k!
)P2 + ρ1(e−λ2·2u (λ2 · 2u)k

k!
)P0′

P0′ = (1− α)P1.

Now to prove Theorem 3, we upper bound the probability pj of M2 com-
mitting Cmi conditioned on Ej in Lemma 4. (In contrast, Eyal and Sirer [11]
calculated exact formula p1 = α and p2 = 1 assuming u = 0.) Then we count
N2 and N1, and prove Theorem 3.

Lemma 4. Given message delay u > 0, for j ∈ {1, 2}, pj ≤ ρj with ρj defined
in Theorem 3.

Proof. For j ∈ {1, 2}, let p∗j be the probability of M2’s commit conditioned on
Ej after which M2 behaves as an honest miner. We first prove an upper bound
on p∗j and then show that pj ≤ p∗j so that the upper bound on p∗j is also an
upper bound on pj .

First we establish an upper bound on p∗1. If M2 commits given E1, then
M2 has created a new block CB on Cmi and committed CB. Define 0 as the
time when M1 sends Cma. Then conditioned on E1, M1 and M2 start with
blockchains of the same length at time T1 = 0 and T2 = u respectively, and p∗1
is the success probability p1,2,∞ (defined in Corollary 2) for the first block CB
which may be created by M2. Then Corollary 2 applies to p∗1 = p1,2,∞. As the
sum of p1,2,∞ and p1,1,∞ is 1, it is easy to verify that p∗1 ≤ ρ1.

We then prove an upper bound on p∗2. If M2 commits given E2, then M2

commits the last block of Cmi. As event E2 is an update of Cma, then to M1,
between whenM1 sends this Cma and whenM1 receives Cmi, there are 2u units
of time. As a result, for M2, to commit (the last block of) Cmi is equivalent to
the union of the following two events: (1) M1 has not created a block on Cma
during these 2u units of time, i.e., before Cmi arrives (denoted event Ea); and
(2) M1 has created a block on Cma before Cmi arrives (denoted Eb) but M2

manages to create a new block CB on Cmi and commit CB. Conditioned on E2,
the probabilities of Ea and Eb are e−2λ1u and 1− e−2λ1u respectively. Define 0

as the time whenM2 sends Cmi. Conditioned on Eb as well as E2, suppose that
M1 creates a block on Cma at some time T1,−u < T1 < u. In this case, then
M1 and M2 are two miners starting with blockchains of the same length at
time T1 and T2 = 0 respectively. As a result, p∗2 = e−2λ1u + (1− e−2λ1u) · p1,2,∞
(with p1,2,∞ defined in Corollary 2). To have an upper bound on p∗2, we assume
T1 = u. Then by Corollary 2, we can similarly verify that p∗2 ≤ ρ2.

Finally, we show that pj ≤ p∗j , j ∈ {1, 2}. Clearly, to show the inequality, we
focus on how selfishM2 deviates from the mining algorithm: whenM2 believes
M1 to have adopted M2’s chain Cmi, M2 keeps some newly created block(s)
private. However, such deviation allows M1 to have more time in creating new
blocks, which decreases the probability that M1 adopts M2’s (possibly longer)
chain. In other words, pj ≤ p∗j . As a result, an upper bound on p∗j , which we
derive above, is also an upper bound on pj .

Proof (Proof of Theorem 3). If M1 has created a new block before Cmi arrives,
then we say that M1 and M2 enter a competition (in committing the blocks
they have just created respectively). Recall that after event Ej , M1 and M2

might enter a competition which ends at some point whereM1 andM2 start to
mine on some same chain C. We first show that to have an upper bound U > α,
we can neglect the expected number of additional blocks (created during the
competition and) committed in C. Let CB be the last block of Cmi when Ej
occurs (no matter whether j ∈ {1, 2}). If any additional block created byM2 is
committed in C, then CB is also committed. Thus by Lemma 4, the probability
ofM2 committing any additional block conditioned on E1 is upper bounded by
ρ1, while the probability of M2 committing any additional block conditioned
on E2 is upper bounded by γ2 = (ρ2 − e−2λ1u) 1

1−e−2λ1u
where 1 − e−2λ1u is

the probability of M1 and M2 entering a competition conditioned on E2. As
a result, by the linearity of expectation, after event E1, the proportion of the
expected number of these additional blocks created by M2 is no more than
ρ1. Conditioned on E2, if Ea (defined in the proof of Lemma 4, as well as Eb)
occurs, then neither miner creates any additional block; if Eb occurs, then the
proportion of the expected number of these additional blocks created by M2 is
no more than γ2. Therefore, since ρ1 < α, γ2 < α and U > α, we can neglect
these additional blocks when calculating an upper bound on R.

Therefore, we count N2 and N1 as follows. Let Pk, k ∈ Z+ be the probability
of the event Sk that Cmi is k blocks longer than Cma. Let P0′ be the probability
of the event S0′ that Cmi and Cma have the same length but are different. Let
P0 be the probability of the event S0 that Cmi and Cma are the same. Then

N1 = P0′ · (1−p1) ·2+P2 · (1−α)(1−p2) ·3+Pk>2 · (1−α)(1−p2)+P0 · (1−α),

N2 = P0′ · p1 · 2 + P2 · (1− α)p2 · 2 + Pk>2 · (1− α)p2.

Combined with Lemma 4, we obtain

N2

N1 +N2
≤ U

Probabilities P0′ and Pk, k ≥ 0 are calculated below. The state machine of
selfish mining with message delay is illustrated in Figure 4. The state machine in
Figure 4 does not include the intermediary states during a commit as the blocks
created during a commit are not counted as explained above. (It is also due to the
fact that the fraction N2

N1+N2
relies only on the relative values of the probability of

each state and thus there is no need to cover all states.) Clearly, the probabilities
of two state transitions, state S0′ to state 0 and state S2 to state S0, are adjusted
according to Lemma 4. In addition, when M2 succeeds in committing Cmi, M2

has additionally 2u units of time in mining. We thus define N2u as the random
variable that represents the number of blocks M2 may find in this time period,
and then there are possibilities of additional state transitions: state 0′ to state

k and state 2 to state k, for k ∈ Z+. Since Pr[N2u = k] = e−λ2·2u (λ2·2u)k
k! for

k ≥ 0, it is easy to verify that the equations listed in Theorem 3 correspond to
Figure 4 and P0′ and Pk, k ≥ 0 are one solution to those equations.

	On the Unfairness of Blockchain

