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Abstract— In this paper we address the problem of design
of a LTI observer with guaranteed stability, requiring only col-
lective observability, strong connectivity of the communication
network, and invertibility of the state transition matrix. We also
provide simulation results where the asymptotic performance
of the proposed observer is similar to that of time varying
distributed Kalman filtering.

I. INTRODUCTION

A. Motivation

Spawned by recent advances in wireless sensor networks
(WSNs) and distributed sensing, there has been a flurry of
activity on the topic of distributed state estimation, see for
example [1]–[3] and the references therein. Distributed state
estimation and control has a wide range of applications,
from network localization to environmental monitoring and
formation control of vehicles (see [4]–[6] for an introduction
to these topics).

One of the most studied family of distributed estima-
tion algorithms are distributed kalman filters, which extend
the theory of Kalman filtering to the distributed setting.
Among the many works on this subject are [7]–[15]. We
will describe these works in detail in Section III. All of
the methods require that the estimation error covariances
computed locally are also exchanged among agents, which
increases the amount of data needed to communicate. The
issue of bandwidth efficiency is of paramount importance
in practical applications, since lower bandwidth translates
into lower energy consumption and therefore increased
operational autonomy. Moreover, since on these methods the
estimates have time-varying dynamics, it is difficult to obtain
beforehand a convergence rate of the estimation errors.

Those two issues, the need for exchanging covariances
and the unknown convergence rate, do not occur for dis-
tributed Luenberger observers, also named distributed linear
time-invariant (LTI) observers, or distributed fixed gain
observers, where the dynamics of the estimation errors is
linear time-invariant. Distributed Luenberger observers has
been the object of many recent studies [16]–[21], described
in detail in Section. However, all of these works have strong
assumptions on the kind of dynamical system considered, or
the number of communications at each time step. Most of
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those works can only guarantee stability of the observer if
the norm of the state transition matrix is below a certain
value.

As of the writing of this paper, and to the best of the
authors’ knowledge a single work [22] provides a LTI
distributed observer that guarantees ultimate boundedness
of the estimation error for any LTI discrete-time system sat-
isfying only collective observability. However, the method
of that paper might suffer from shortcomings in terms of
performance as will be mentioned briefly in Section III and
will be seen in the Illustrative Example section.

Borrowing from the theory in [10], in this paper we
present an alternative design of a distributed Luenberger
observer with guaranteed stability, which requires only
collective observability, with asymptotic behavior similar to
[10], as will be seen in the Illustrative Example section.
However, in contrast with the method in [10], since the
method in this paper is time-invariant, there is no need for
exchanging covariances, which reduces the communication
bandwidth burden, and we can obtain an a-priori known
convergence rate of the estimation errors.

B. Paper structure

The paper is structured as follows. The next section,
Section II, will describe rigorously the problem at hand and
the required assumptions. Section III provides a literature
survey on distributed estimation. Next, Section IV describes
the estimation algorithm, the design method and the main
theorem of this paper, the proof of ultimate boundedness of
the estimation errors. In order to illustrate the performance
of the algorithm in comparison with other works in the
literature Section V shows the results of the application
of the estimation algorithms in an academic illustrative
example. Finally, Section VI provides the conclusions of
the paper and possible future works.

C. Notation

Throughout this paper we will use the symbol ⊗ for
the Kronecker product. The symbol ‖ · ‖ represents the
L2 norm. The notation | · | represents the cardinality of
a set. The notation b·c represents the floor operator, or
the rounding down to the closest lower integer, and ρ(·)
the spectral radius of a square matrix. IM represents an
M ×M identity matrix, and 1 represents a N × 1 vector
with ones in every entry. When clear from the context
the superscript of a variable, e.g. xi, refers to the node
index of that variable where i ∈ {1, . . . , N} := N .
The operator row(·) represents the operator defined by
row(Xi) := [X1, . . . , XN ], the operator col(·) represents



the column operator, i.e. col(Xi) := row(XiT )T and the
operator diag(Xi) results in a block diagonal matrix whose
diagonal elements are X1, . . . , XN .

II. PROBLEM DEFINITION

Consider the autonomous dynamical system

xt+1 = Axt + wt (1)

where xt ∈ Rn and wt ∈ Rn denote the state vector and
the state noise vector, respectively, at time step t, and A is
a matrix of appropriate dimensions.

The state vector is observed by a set of sensor nodes
N , with cardinality N = |N |. The measurement equation
associated to the generic node i ∈ N is defined as

yit = Cixt + vit (2)

where yit ∈ Rmi and vit ∈ Rmi denote the observation vector
and the observation noise vector, respectively, considered at
time t, and Ci is a matrix of appropriate dimensions. The
overall network can be described by the pair (N ,A) where
A ⊆ N ×N is the set of node pairs denoting the directed
connections between the nodes. We denote by N i the set of
in-neighbors of i, i.e., N i := {j : (j, i) ∈ A}. Some basic
assumptions on observability of the system and intensity of
the disturbances follow.

Assumption A1 The system is collectively observable, i.e.
the pair (A,C) is observable where C := col(Ci).

Note that we only assume global observability and not
local observability, i.e. we do not assume that the pair
(A,Ci) is observable for any i ∈ N .

Assumption A2 The dynamics matrix A is invertible.

Remark As is shown in the appendix B of [22], assumption
A2 is mild since we can design a stable estimator by only
estimating the modes of the state associated with the non-
zero eigenvalues, since all the other modes will vanish over
time.

Since in this paper we aim to guarantee ultimate bound-
edness of the estimation error at every node we require the
following assumption on the magnitude of the disturbances

Assumption A3 The L2 norm of the disturbances satisfy

‖wt‖ ≤ εw, ‖vit‖ ≤ εvi , i ∈ N ,

for some constants εw > 0 and εvi > 0.

The following assumption describes the communication
limitations among sensors.

Assumption A4 At each time step the nodes are allowed
to communicate once according to the network structure
defined by A.

In this paper we consider a matrix Π whose component
(i, j) is equal to πi,j , where πi,j = 0 if (i, j) /∈ A, which is
termed the consensus matrix and is assumed to satisfy the
following standard assumptions:

Assumption A5 The consensus matrix Π is doubly stochas-
tic and primitive 1.

Remark Note that if the graph is bidirectional, i.e. if
(i, j) ∈ A implies (j, i) ∈ A, then Assumption A5 can
be satisfied by designing Π with Metropolis local-degree
weights [23].

It can be shown (Theorem 3 of [24]) that it is possible
to compute a consensus matrix satisfying A5 if and only if
the network is strongly connected, i.e. for every two nodes
i and j there is a path from i to j and from j to i.

If the network is not strongly connected, it is still possible
to use the results of this paper to design a distributed
estimator, using some of the methods in [22], given that
all source components, strongly connected subsets of the
network with no incoming edges from the rest of the network,
are collectively observable.

Considering assumptions A1-A5 this paper addresses
the problem of distributed state estimation, i.e. each node
reconstructs locally the state of the global system (1), as x̂it,
with estimation error, xt − x̂it , converging to an ultimate
bound proportional to the magnitude of the disturbances,
εw > 0 and εvi , i ∈ N .

III. RELATED WORKS

In what follows we give a very brief survey of the state
of the art in distributed estimation. The reader is referred
to [2] for a recent literature survey of this subject and to
[1] for an overview of the technical details associated with
consensus-based distributed estimation.

A. Distributed Kalman filtering

One of the standard methods in state estimation for linear
systems is Kalman filtering, where the covariance of the
state estimation error is computed at each time and the
observer gain is computed based on that covariance. In
the distributed setting, in general, the computation of an
approximation of the estimation error covariance at each
node involves the communication of the covariances among
nodes.

A seminal work in distributed Kalman filtering is [7].
The key technique used involves writing the Kalman filter
equations in information form, i.e. in terms of the inverse of
the covariance matrix, termed the information matrix. The
latter is then computed as the average of local information
matrices and the global measurement is computed as the av-
eraging of linear transformations of the local measurements.

A further development in distributed Kalman filter ap-
pears in [8], where it is shown how to compute the optimal
gain matrix of a linear observer given that at each time an
agent communicates with a limited set of neighbours. How-
ever, it is also shown that the computation of this optimal
gain requires data from the neighbours of the neighbours,

1A doubly stochastic matrix is a square matrix of nonnegative real
numbers, whose rows and columns sum to 1. A primitive matrix is a
nonnegative square matrix A such that there exists a positive integer k
such that all elements of Ak are strictly positive



which requires two communication cycles. In addition the
work in [8] provides a simplified, more tractable, version the
distributed kalman filter with stability guarantees, but which
requires local observability, i.e. the state of the system can be
observed by each sensor individually. The work in [9] builds
on the results in [8] to tackle the problem of simultaneous
state estimation and tracking.

Strong theoretical guarantees on stability of the dis-
tributed consensus based Kalman filter, without requiring
local observability or an infinite number of communications
at each step, are available in [10] the authors summarize the
different consensus-based approximations of a Kalman filter
in a distributed setting: consensus on information, consensus
on measurements, and an hybrid version. The work [10]
also provides a stability proof of the hybrid version of the
distributed Kalman filter given only local observability. An
extension of this work to the case of the extended Kalman
filter is given in [11], [12]. Some of the technical details of
the Theorems in [11] are provided in [25].

A different perspective on distributed Kalman filtering,
which makes use of distributed matrix inversion algorithms,
is given in [13], [14], where the authors describe a version
of the distributed Kalman filter in the consensus on measure-
ments form, as described in [10], where the computations
are scalable with the number of nodes. This is achieved
by estimating only local states at each node, and not the
full state. Furthermore, the authors discuss how to take
advantage of the sparseness of the dynamics and observation
matrices, so that only local communications are required.
For this purpose they propose a distributed matrix inversion
algorithm, the distributed iterate collapse inversion (DICI),
for covariance inversion, assuming that the dynamics matrix
is a banded matrix.

Distributed Kalman filtering can be cast as fusion of
several estimators at each time step using a particular
fusion method. A survey on different fusion rules which
provide stable observers is given in [15], which provides a
state fusion approach to distributed Kalman filtering instead
of a consensus-based approach. The paper also derives a
stability condition which guarantees that the covariance of
the estimates is uniformly upper bounded on all the sensor
nodes where the estimator is running. Two fusion methods
(denoted covariance and ellipsoidal intersection) that satisfy
the stability condition are proposed.

It is worth mentioning that all the mentioned methods
in this sub-subsection involve, in one form or another,
transmitting the covariance of the estimation error at each
node. In order to avoid communicating covariances among
nodes, to save bandwidth, one could use distributed LTI
observers, or distributed Luenberger observers.

B. LTI Observers

The concept of distributed Luenberger observers is devel-
oped in [16], which studies the network tracking capacity of
distributed Luenberger observers, i.e., distributed estimators
with fixed innovation gain, which communicate only once
between agents between measurements. Given a set of

sensors and a communication network among them, the
network tracking capacity is the maximum vector induced
2 − norm of the dynamics matrix of an observed system
such that it is possible to compute a fixed gain matrix for a
distributed observer with guaranteed ultimate boundedness
of the estimation error. The authors study observers which
depend only on one parameter to provide an analytical lower
bound on the network tracking capacity, and show that
this lower bound is always greater than one for strongly
connected communication graphs. On the other hand, when
multiple iterations are allowed between measurements, in
[17] the authors show that it is possible to design distributed
estimators with fixed innovation gain, which are stable if
enough iterations of the consensus algorithm are performed.
Namely, if the number of iterations are greater or equal to
the primitivity index of the consensus matrix.

Following the same framework of [16] the authors in
[18]–[21] provide variations of the distributed Kalman filter
algorithms, with consensus on pseudo-innovations, and an-
alyze their stability. One of the main assumptions on those
papers is that the 2-norm of the dynamics matrix of the
system dynamics is smaller or equal to the network tracking
capacity defined in [16].

In contrast to the previously mentioned works in dis-
tributed LTI observers which assume a bound on the 2-
norm of the state transition matrix the work in [22] provides
a method of designing stable distributed LTI observers
with very mild assumptions, which are weaker than strong
connectivity of the network. Specifically it is only required
that all source components, strongly connected subsets of
the network with no incoming edges from the rest of the
network, are collectively observable. Since in that paper it
is proposed that the gains of all the observers except one
are chosen randomly, it is apparent that this method might
not be competitive in terms of performance, i.e. convergence
rate and ultimate estimation error bound.

In order to design a distributed LTI observer which
matches as close as possible the asymptotic performance
of a distributed Kalman filter, in this paper we follow the
estimation method and the theory in [10]. To obtain a
distributed LTI observer from the method in [10], we provide
a method of computing time invariant information matrices
to each node that guarantee stability of the observer.

IV. MAIN RESULT

A. Algorithm

In what follows, to simplify the notation, we will omit
the time index t. For this purpose, for a time-varying vector
xt, when omitting the time index t we will use the notation
x+ to refer to xt+1.

The algorithm proposed in this paper has the following
form:

x̂i+ = A
(
Ωi
)−1

∑
j∈N

πi,jΩ̄ix̂j + CiT
(
Ri
)−1

yi

 , (3)



where Ωi, and Ω̄i are appropriately chosen positive definite
matrices of size n × n, where n is the size of the state x,
and Ri is a positive definite matrix of size mi×mi, where
mi is the size of the measurement yi.

This observer algorithm is similar to the distributed
Kalman filter with consensus on information given in [10].
However, in this work we consider that the matrices Ωi, and
Ω̄i are fixed in time.

To follow closely the principles of Kalman filtering, if vi

is a zero mean Gaussian noise with known covariance, the
matrix Ri should be set equal to the covariance of vi.

The main problem that we address in this paper is how
to compute matrices Ωi, and Ω̄i. The design method is
described in the next subsection.

B. Design

The design process is as follows. We first choose the
parameter 0 < β̃ < 1 and define the matrix

Si := CiT
(
Ri
)−1

Ci,

With these two parameters we compute the matrix

Ω̃i :=

k̄−1∑
τ=0

β̃τ
(
A−τ

)∑
j∈N

πi,jτ Sj

A−τ ,

where πi,jτ is the element i, j of the matrix Πτ , and k̄ :=
k + n where k is the primitivity index of Π, i.e. the
lowest integer such that Πk is strictly positive, and n is the
dimension of the state. It can be seen that, from collective
observability and the fact that Πk is strictly positive, Ω̃i is
positive definite

Then we may compute matrix Ω̄i as

Ω̄i := β̃
(
A−1

)
Ω̃iA−1 (4)

Finally we can compute Ωi as follows

Ωi := Si +
∑
j∈N

πi,jΩ̄j (5)

The motivation for this choice of matrices Ωi, and Ω̄i

is given in the proof of stability presented in the next
subsection.

C. Main Theorem

We now present the main result of this paper.

Theorem 1 Consider the distributed LTI observer (3), with
matrices Ωi, and Ω̄i computed as in (4)-(5). Then, given
assumptions A1-A5, the estimation errors x̂i−x, i ∈ N are
ultimately bounded with ultimate bounds on ‖x̂i−x‖, i ∈ N
proportional to the bounds on the magnitude of the noise
εw > 0 and εvi , i ∈ N .

Proof 1 We first consider the noiseless case

x+ = Ax

yi = Cix

Defining the estimation error as ηi := x̂i − x one has
from (3) that

ηi+ = A
(
Ωi
)−1

∑
j∈N

πi,jΩ̄ix̂j + Six− Ωix


= A

(
Ωi
)−1

∑
j∈N

πi,jΩ̄iηj

 ,

where the last equality comes from (5). We can then
establish the following relation.

Ωi = Si +
∑
j∈N

πi,jΩ̄j

= Si +

k̄∑
τ=1

β̃τ
(
A−τ

)∑
j∈N

πi,jτ Sj

A−τ

= Ω̃i + β̃k̄
(
A−k̄

)∑
j∈N

πi,j
k̄
Sj

A−k̄

≥ Ω̃i,

where, on the last inequality, we used the fact that the system
is collectively observable and πi,j

k̄
> 0 for all i, j ∈ N , and

thus β̃k̄
(
A−k̄

)(∑
j∈N π

i,j

k̄
Sj
)
A−k̄ is positive definite.

Defining the local cost as Li := ηiT Ω̄iηi one has, using
the fact that Ωi ≥ Ω̃i and (4)-(5), and using Lemma 2 of
[25]

Li+ =

= β̃

∑
j∈N

πi,jΩ̄iηj

T (
Ωi
)−1

Ω̃i
(
Ωi
)−1

∑
j∈N

πi,jΩ̄iηj


≤ β̃

∑
j∈N

πi,jΩ̄iηj

T (
Ωi
)−1

Ωi
(
Ωi
)−1

∑
j∈N

πi,jΩ̄iηj


≤ β̃

∑
j∈N

πi,jΩ̄iηj

T ∑
j∈N

πi,jΩ̄j

−1∑
j∈N

πi,jΩ̄iηj


≤ β̃

∑
j∈N

πi,jηjT Ω̄iηj = β̃
∑
j∈N

πi,jηjT Ω̄iηj .

In vector form, defining L := col
(
Li
)

one has

L+ ≤ β̃ΠL,

where the inequality is interpreted element-wise.
Finally, defining the Lyapunov function

V :=
∑
i∈N
Li = 1TL,

one has

V+ = 1TL+ ≤ β̃1TΠL = β̃1TL = β̃V,



Since the Lyapunov function decreases at each step,
we have that the estimation errors for the noiseless case
converge to zero.

Since for the noiseless case the estimation errors converge
asymptotically to zero, from classical results on LTI systems
the Theorem follows.

V. ILLUSTRATIVE EXAMPLE

In this section we will test the performance of the
algorithm proposed in this paper on an academic example
and compare to other methods in the literature, namely the
scalar gain observer in [16], illustrating the performance
of an algorithm that requires a bound on the L2 norm
of the state transition matrix, the distributed Kalman filter
with consensus on information (and not on measurements)
algorithm in [10], and the method in [22]. In the algorithm
proposed in this paper the parameter choice for β̃ was 0.7.

We will consider a network of 11 nodes. The dynamical
system considered is the following. The state transition
matrix is defined as A := diag

(
Ai
)

with

Ai := λ

[
cos (φi) − sin (φi)
sin (φi) cos (φi)

]
for each i ∈ N , where φi ranges uniformly from 0.01π2 at
i = 1 to 0.1π2 at i = N and λ will be defined later.

Defining the basis vector ei which is a row vector with 1
at position i and zero at every other position, the observation
matrices are defined as

Ci :=

[
eiT − e(i+1)T

e(i−1)T − eiT
]
⊗ I2,

except at i = 1, where we replace i− 1 by N , and i = N ,
where we define CN := eNT ⊗ I2. It can be observed that
from this choice of state transition and observation matrices
we have collective observability but not local observability
at each node, thus we require distributed observers to
reconstruct the state.

The process and measurement noises are generated ran-
domly with a Gaussian distribution. The covariances of the
noises were Q = 100I2N and Ri = 10−4Imi . The initial
state is also randomly generated with a Gaussian distribution
with covariance P0 = 1010I2N .

The communication network considered was an undi-
rected circular network, i.e. the neighbor set at each node
is defined as N i := {i − 1, i + 1} except at node i = 1
where it is N i := {N, 2}, and at node i = N where it is
N i := {N − 1, 1}.

In what follow we will compare the different algorithms
in terms of the norm of the global estimation, i.e. of
‖ col

(
x̂i − x

)
‖. To remove the randomness effect of a

single simulation run, we perform 50 runs and plot the
average. In the following plots we will present the results
of the scalar gain observer in [16] in red, the distributed
Kalman filter in [10] in green, the method in [22] in blue,
and the algorithm of this paper in magenta.

For reference we also plot the norm of the stacked state
vector ‖1⊗ I2Nx‖ =

√
N‖x‖ in black.

The results for λ = 0.9 are shown in Figure 1 and a zoom
of this plot is shown in Figure 2 and the results for λ = 1.05
are shown in Figure 3.
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Fig. 1. Norms of global estimation errors for λ = 0.9
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Fig. 2. Zoom of Figure 1 showing ultimate bounds of estimation error

From Figures 1 and 2 one can observe that all estimators
remain stable. However, the observer from [22] has worse
convergence rates and worse ultimate boundedness than the
state. This is not surprising since the observer gains on all
the nodes except one are assigned randomly. We can also
note that the ultimate bound of the estimation error of the
observer proposed in this paper is worse but close to the
ultimate bound observed for the method in [10]. Figure 2
also shows a ultimate lower ultimate bound for the algorithm
in [16] possibly due to the fact that in [16], unlike the other
works considered here, the measurements yi are exchanged
at each time.

From Figure 3 one can see that since the norm of the
state transition matrix is greater than the bound required
for stability on [16] the method in that paper is unstable
for this case, although with an increase rate lower than that
of the state. Also, one can observe that, as expected, the
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Fig. 3. Norms of global estimation errors for λ = 1.05

observer designed with the method in [22] is stable, but
has a very low convergence rate when compared to the
other stable methods. Finally one can see that the asymptotic
performance of the method of this paper is comparable to
that of the method in [10].

VI. CONCLUSION

In this paper we provided a design of a LTI observer with
guaranteed stability, which only requires collective observ-
ability, strong connectivity of the communication network,
and invertibility of the dynamics matrix. On simulation
results of an illustrative example it was observed that the
asymptotic performance is similar to that of [10].

Following up on this work, possible future topics of
research include optimizing the selection of the parameter β̃,
design plug and play procedures for adding and removing
sensors, since we have a-priori known convergence rates
one can consider using progressive quantizers to exchange
messages as in [26], or derive other design methods of
distributed LTI observers.
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