
Optical second harmonic generation from
nanostructured graphene: a full wave approach

BRUNO MAJÉRUS,1,2 JÉRÉMY BUTET,1,* GABRIEL D.
BERNASCONI,1RAZIMAN THOTTUNGAL VALAPU,1 MICHAËL
LOBET,2,3 LUC HENRARD,2 AND OLIVER J. F. MARTIN1

1Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne
(EPFL), 1015 Lausanne, Switzerland
2Department of Physics, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
3John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street,
Cambridge, MA 02138, USA
*jeremy.butet@epfl.ch

Abstract: Optical second harmonic generation (SHG) from nanostructured graphene has been
studied in the framework of classical electromagnetism using a surface integral equation method.
Single disks and dimers are considered, demonstrating that the nonlinear conversion is enhanced
when a localized surface plasmon resonance is excited at either the fundamental or second
harmonic frequency. The proposed approach, beyond the electric dipole approximation used in
the quantum description, reveals that SHG from graphene nanostructures with centrosymmetric
shapes is possible when retardation effects and the excitation of high plasmonic modes at the
second harmonic frequency are taken into account. Several SHG effects similar to those arising in
metallic nanostructures, such as the silencing of the nonlinear emission and the design of double
resonant nanostructures, are also reported. Finally, it is shown that the SHG from graphene disk
dimers is very sensitive to a relative vertical displacement of the disks, opening new possibilities
for the design of nonlinear plasmonic nanorulers.
© 2017 Optical Society of America

OCIS codes: (190.2620) Harmonic generation and mixing; (250.5403) Plasmonics; (160.4236) Nanomaterials.

References and links
1. R. W. Boyd, Nonlinear Optics (Academic, 2008).
2. Y.R. Shen, The Principles of Nonlinear Optics (Wiley-Blackwell, 2002).
3. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photon. 3, 737–748 (2012).
4. J. B. Khurgin and G. Sun, “Plasmonic enhancement of the third order nonlinear optical phenomena: Figures of merit,”

Opt. Express 21(22), 27460–27480 (2013).
5. J. Butet, P.-F. Brevet, and O. J. F. Martin, “Optical Second Harmonic Generation in Plasmonic Nanostructures: From

Fundamental Principles to Advanced Applications,” ACS Nano, 9(11), 10545–10562 (2015)
6. J. Butet and O. J. F. Martin, “Nonlinear plasmonic nanorulers,” ACS Nano 8(5), 4931–4939 (2014).
7. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene Photonics and Optoelectronics,” Nat. Photon. 3,

611–622 (2010).
8. Q. Bao and K. P. Loh, “Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices,” ACS Nano, 6(5),

3677–3694 (2012).
9. P. Pantazis, J. Maloney, D.Wu, S. E. Fraser, P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic

generating (SHG) nanoprobes for in vivo imaging,” PNAS 107(33), 14535–14540 (2010).
10. E. Garmire, “Nonlinear optics in daily life,” Opt. Express 21(25), 30532–44 (2013).
11. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer 2007).
12. M. I. Stockman, “Nanoplasmonics: The physics behind the applications,” Phys. Today 64(2), 39–44. (2011).
13. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin and B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science

308(5728), 1607-1609 (2005).
14. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. G. De Abajo, “Plasmons in nearly touching metallic nanoparticles:

singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
15. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I.Stockman, “Plasmon Hybridization in Nanoparticle Dimers,”

Nano Lett. 4(5), 899-903 (2004).
16. K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double

resonant plasmonic antennae,” Opt. Express 20(12), 12860–12865 (2012).
17. Z. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25(28), 3840–3856 (2013).

                                                                                                 Vol. 25, No. 22 | 30 Oct 2017 | OPTICS EXPRESS 27015

#306155 https://doi.org/10.1364/OE.25.027015
Journal © 2017 Received 31 Aug 2017; revised 8 Oct 2017; accepted 8 Oct 2017; published 20 Oct 2017

https://crossmark.crossref.org/dialog/?doi=10.1364/OE.25.027015&domain=pdf&date_stamp=2017-11-09


18. J. Butet and O. J. F. Martin, “Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures,”
Opt. Express 22(24), 29693 (2014).

19. M. Celebrano, X. Wu, M. Baselli, S. Gromann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B.
Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced
second harmonic generation,” Nature Nanotech. 10(5), 412–417 (2015).

20. B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz,X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen,
“Doubling the Efficiency of Third Harmonic Generation by Positioning ITO Nanocrystals into the Hot-Spot of
Plasmonic Gap-Antennas,” Nano Lett. 14(5), 2867–2872 (2014).

21. H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a
single semiconductor nanoparticle coupled to a plasmonic antenna,” Nature Nanotech . 9(4), 290–294 (2014).

22. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,”
Chem. Rev. 111(6), 3913–3961 (2011).

23. G. D. Bernasconi, J. Butet, and O. J. F. Martin, “Mode analysis of second-harmonic generation in plasmonic
nanostructures,” J. Opt. Soc. Am. B 33(4), 768 (2016).

24. E. H. Hwang and S. D. Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys.
Rev. B 75(20), 205418 (2007).

25. F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter
Interactions,” Nano Lett. 11(8), 3370–3377 (2011).

26. F. J. G. de Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics, 1(3), 135–152 (2014).
27. H. Yan, F. Xia, Z. Li, and P. Avouris, “Plasmonics of coupled graphene micro-structures,” New J. Phys. 14(12),

125001 (2012).
28. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J.

G. de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano,
14(3), 2388–2395 (2013).

29. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. De Abajo, P. Nordlander, X. Zhu, and N. J.Halas,
“Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).

30. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared
plasmonic devices using graphene/insulator stacks,” Nature Nanotech., 7(5), 330–334 (2012).

31. F. Ramirez, B. Liu, and S. Shen, “Extreme blueshift of surface plasmon resonance frequency in graphene nanodisk
stacks,” J. Quant. Spectrosc. Radiat. Transf. 158, 27–35 (2015).

32. G. Rosolen and B. Maes, “Asymmetric and connected graphene dimers for a tunable plasmonic response,” Phys. Rev.
B , 92(20), 205405 (2015).

33. S. Thongrattanasiri, A. Manjavacas, and F. J. G. De Abajo, “Quantum finite-size effects in graphene plasmons,” ACS
Nano, 6(2), 1766–1775 (2012)

34. W. Wang, P. Apell, and J. Kinaret, “Edge plasmons in graphene nanostructures,” Phys. Rev. B 84(8), 085423 (2011).
35. A. Manjavacas, P. Nordlander, and F. J. G. de Abajo, “Plasmon Blockade in Nanostructured Graphene,” ACS Nano

6(2), 1724–1731 (2012).
36. S. Thongrattanasiri and F. J. G. de Abajo, “Optical field enhancement by strong plasmon interaction in graphene

nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
37. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. De Abajo, “Graphene plasmon

waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012)
38. Z. Wang, T. Li, K. Almdal, N. Asger Mortensen, S. Xiao and S. Ndoni, “Experimental demonstration of graphene

plasmons working close to the near-infrared window," Opt. Lett. 41(22), 5345 (2016).
39. S. A. Mikhailov, “Non-linear electromagnetic response of graphene,” EPL 79(2), 27002 (2007).
40. J. D. Cox, M. R. Singh, M. a. Anton, and F. Carreño, “Plasmonic control of nonlinear two-photon absorption in

graphene nanocomposites,” J. Phys. Condens. Matter 25(38), 385302 (2013).
41. J. D. Cox and F. J. G. de Abajo, “Electrically tunable nonlinear plasmonics in graphene nanoislands,” Nature Comm.

5, 5725 (2014).
42. J. D. Cox and F. J. G. de Abajo, “Plasmon-Enhanced Nonlinear Wave Mixing in Nanostructured Graphene,” ACS

Photonics, 2(2), 306–312 (2015).
43. J. D. Cox, I. Silveiro, and F. J. G. de Abajo, “Quantum Effects in the Nonlinear Response of Graphene Plasmons,”

ACS Nano, 10(2), 1995–2003 (2016).
44. M. T. Manzoni, I. Silveiro, F. J. G. de Abajo, and D. E. Chang, “Second-order quantum nonlinear optical processes in

single graphene nanostructures and arrays,” New J. Phys. 17(8), 83031 (2015).
45. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of

graphene,” Phys. Rev. Lett. 105(9), 1–4. (2010).
46. S. A. Mikhailov,“Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor

two-dimensional electron systems,” Phys. Rev. B 84(4), 045432 (2011).
47. M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. G. de Abajo, and M. D. Lukin, “Single-photon nonlinear optics with

graphene plasmons,” Phys. Rev. Lett. 111(24), 247401 (2013).
48. M. Jablan and D. E. Chang, “Multiplasmon Absorption in Graphene,” Phys. Rev. Lett. 114(23), 236801 (2015).
49. D. A. Smirnova, I. V. Shadrivov, A. E. Miroshnichenko, A. I. Smirnov, and Y. S. Kivshar, “Second-harmonic

generation by a graphene nanoparticle,” Phys. Rev. B 90(3), 035412 (2014).

                                                                                                 Vol. 25, No. 22 | 30 Oct 2017 | OPTICS EXPRESS 27016



50. M. Lobet, M. Sarrazin, F. Cecchet, N. Reckinger, A. Vlad, J. F. Colomer, and D. Lis,“Probing Graphene Chi(2) Using
a Gold Photon Sieve,” Nano Lett. 16(1), 48–54 (2016).

51. J. D. Cox, A. Marini, and F. J. G. de Abajo, “Plasmon-assisted high-harmonic generation in graphene,” Nature Comm.
8, 14380 (2017).

52. T. O. Wehling, A. Huber, A. I. Lichtenstein, and M. I. Katsnelson, “Probing of valley polarization in graphene via
optical second-harmonic generation,” Phys. Rev. B 91(4), 041404 (2015).

53. L. E. Golub and S. A. Tarasenko, “Valley polarization induced second harmonic generation in graphene,” Phys. Rev.
B 90(20), 201402 (2014).

54. C. Forestiere, A. Capretti, and G. Miano, “Surface integral method for second harmonic generation in metal
nanoparticles including both local-surface and nonlocal-bulk sources,” J. Opt. Soc. Am. B 30(9), 2355 (2013).

55. T. V. Raziman, W. R. C. Somerville, O. J. F. Martin, and E. C. Le Ru, “Accuracy of surface integral equation matrix
elements in plasmonic calculations,” J. Opt. Soc. Am. B 32(3), 485(2015).

56. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity
nanostructures,” J. Opt. Soc. Am. A 26(4), 732 (2009).

57. V. a. Margulis, E. E. Muryumin, and E. a. Gaiduk, “Optical second-harmonic generation from two-dimensional
hexagonal crystals with broken space inversion symmetry,” J. Phys. Condens. Matter 25(19), 195302 (2013).

58. Y. Q. An, J. E. Rowe, D. B. Dougherty, J. U. Lee, and A. C. Diebold, “Optical second-harmonic generation induced
by electric current in graphene on Si and SiC substrates,” Phys. Rev. B 89(11), 115310 (2014).

59. J. D. Cox, R. Yu, and F. J. G. de Abajo, “Analytical description of the nonlinear plasmonic response in nanographene,”
Phys. Rev. B 96(4), 045442 (2017).

60. J. L.Cheng, N.Vermeulen, and J. E. Sipe, “Second order optical nonlinearity of graphene due to electric quadrupole
and magnetic dipole effects,” Sci. Rep. 7, 43843 (2017).

61. J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L.i Ivchenko, B.
Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev,
“Terahertz Radiation Driven Chiral Edge Currents in Graphene,” Phys. Rev. Lett. 107(27), 276601 (2011).

62. T. Heinz, Nonlinear Surface Electromagnetic Phenomena (Ponath and Stegeman, 1991)
63. J. Butet, B. Gallinet, K. Thyagarajan, and O. J. F. Martin, “Second-harmonic generation from periodic arrays of

arbitrary shape plasmonic nanostructures: a surface inteigral approach,” J. Opt. Soc. Am. B 30(11), 2970 (2013).
64. L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” EPJB, 56(4), 281–284

(2007).
65. L. A. Falkovsky, “Optical properties of graphene,” J. Phys.: Conf. Ser. 129(11), 12004 (2008).
66. T. Christensen, W. Wang, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Classical and quantum plasmonics in

graphene nanodisks: Role of edge states," Phys. Rev. B 90(24), 241414 (2014).
67. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-Harmonic Rayleigh Scattering from a Sphere of

Centrosymmetric Material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
68. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric

material: small-particle limit,” J. Opt. Soc. Am. B 21(7), 1328–1347 (2004).
69. T. V. Raziman and O. J. F. Martin, “Does the real part contain all the physical information?,” J. Opt. 18(9), 95002

(2016).
70. J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A. Dereux, and A. Bouhelier, “Silencing and

enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20(10), 10498 (2012).
71. Y. Q. An, F. Nelson, J. U. Lee, and A. C. Diebold, “Enhanced Optical Second-Harmonic Generation from the

Current-Biased Graphene/SiO 2 /Si(001) Structure,” Nano Lett. 13(5), 2104–2109 (2013).

1. Introduction

Second-harmonic generation (SHG) is the nonlinear optical process corresponding to the
conversion of two photons of an incident beam into a new photon at twice the fundamental
frequency [1, 2]. The conversion rate for nonlinear optical phenomena is usually very low
and a high intensity incident beam is consequently required to achieve a substantial nonlinear
conversion. Although such a high intensity can be obtained with pulsed laser systems, researchers
continue to seek new materials supporting strong nonlinear effects at low pump intensity [3–5],
that would increase efficiencies of the devices and enable applications employing nonlinear
optical phenomena, such as nanorulers [6], optoelectronics [7, 8], biological sensing [9] and
signal processing [10].
Over the last decades, plasmonics has become an interesting field to design nonlinear

nanostructures, giving birth to the field of nonlinear plasmonics [3]. Localized surface plasmons
resonances (LSPR) correspond to the collective oscillations of the conduction electrons taking
place in metallic nanoparticles [11]. LSPR dramatically increase the near-field intensity as they
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confine the electromagnetic field into sub-wavelength regions [12]. Furthermore, dimers of these
nanoparticles enhance even more the field intensity between them, due to the coupling between the
LSPR supported by each nanoparticle [13–15]. The field enhancement induced by LSPR has been
widely used to enhance the nonlinear response of metallic nanostructures [16–21]. In addition,
due to the small size of the nanoparticles compared to the wavelength, the paradigm of phase
matching is transformed into mode matching [16,19]. Indeed, the LSPR frequency depends on
the size, the shape and the composition of the nanoparticles but also on the surrounding medium
and the potential coupling between plasmonic modes of non touching nanoparticles [12,22]. As a
consequence, the resonance frequency of LSPR can be adjusted to match either the fundamental or
the second harmonic frequency. When both the fundamental and the second harmonic frequencies
correspond to LSPRs, the nonlinear response is significantly enhanced by this doubly resonant
configuration [16,19,23]. However, the plasmon resonance of noble metal nanoparticles is hardly
controllable after fabrication and it is then difficult to tune it in order to dynamically control their
nonlinear response [8].
Recently, graphene has emerged as an interesting material for new developments in linear

[8, 24–38] and nonlinear plasmonics [39–50]. The electromagnetic response of this 2D material
is tunable by applying a gate voltage, resulting in a modification of the plasmon frequency in the
near infrared range [8, 24–26]. Moreover, graphene can sustain plasmons with relatively long
lifetimes [25,26] and has a highly nonlinear response due to its linear dispersion relation [39,43].
In particular, nanostructured graphene, obtained by etching extended graphene with electron or
focused ion beam [27–29], sustains LSPR with a level of confinement unattainable using metallic
nanoparticles. The linear response of such nanostructured graphene has been widely studied both
classically and quantum-mechanically [27–33, 36] while the nonlinear response of structures
like nanotriangles and nanodisks of a few dozens nanometers has been mainly evaluated using
quantum-mechanical calculation [40–44]. Studying larger nanostructures with this approach
becomes challenging numerically due to the large number of involved electrons and a quantum
description is not necessary as the quantum effects tends to vanish as the nanostructure size
increases. Indeed, it was recently shown that the quantum effects in the nonlinear response of
graphene nanostructures are negligible for nanostructures with typical dimensions larger than 40
nm [43]. In this study, J.D. Cox et al compared quantum simulations with classical ones in the
electric dipole approximation. However, full-wave calculations of the nonlinear response are still
lacking in the literature, despite their importance for large nanostructures and their demonstrated
suitability in the linear regime.

SHG from graphene is often neglected due to the centrosymmetry of the crystal [41–43]. This
argument is only valid in the electric dipolar approximation and for local dynamical conductivity.
At local surface plasmon resonance, high local field and gradient lead to high multipolar response,
as predicted for graphene [51]. The effect of the non-local conductivity of graphene on its second
order optical response has been predicted [44]. Another source of SHG response of graphene is
related to its very peculiar electronic structure and to the symmetry breaking associated with the
valley polarization [52, 53]. SHG response is also expected for nanostructured systems for which
the symmetry is locally broken at the edge.

In this article, the linear and the second harmonic (SH) responses of a single graphene nanodisk
with a 100 nm diameter, as well as nanodimers composed of the same two graphene nanodisks,
are investigated using a surface integral equations formalism (SIE). For each nanostructure, the
linear response is considered first, in order to confirm the suitability of the SIE for computing the
optical response of nanostructured graphene and then the SHG is discussed in details. The main
goal of this study is to investigate the SHG from nanostructured graphene beyond the electric
dipole approximation, although a quantum description is not conducted in this case, since it was
emphasized that full-wave computations are in general required to accurately describe the SHG
from centrosymmetric nanostructures [54].
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2. Numerical method

2.1. Surface integral equations methods for the linear and second harmonic responses

The linear optical response of graphene nanostructures is computed using a SIE formulation
considering a plane wave excitation. The typical triangle mesh used here for graphene is 30 nm2,
corresponding to approximately 1200 carbon atoms, and the thickness of the graphene particle is
set to 0.5 nm. It was shown in the linear regime that this thickness is small enough to mimic
a single graphene layer [25]. The dielectric constants for graphene at the fundamental and
SH frequencies are evaluated as described in the next section. The surface integrations have
been performed with an optimized approach in order to improve the numerical accuracy [55].
This improvement was mandatory due to the very short distance between triangles, a direct
consequence of the ultra-thin thickness of the meshes with respect to the average triangle size.
The convergence of the computations has been carefully assessed .

For SHG computations, the linear surface currents, which are expanded on Rao-Wilton-Glisson
(RWG) basis functions [56], are used for the computation of the fundamental electric field inside
the graphene layer in order to evaluate the surface SH polarization. This approach does not take
into account the edge terminations. However, it was shown that classical computations agree
better with the optical response of graphene nanostructures with arm-chair edges than with
zig-zag edges [36]. For the SHG, a SH polarization vector is associated to each mesh triangle.
The nonlinear polarization is computed considering the component χ(2)nnn of the surface tensor,
where n denotes the normal to the surface mesh triangles. In this case, the SH sources standing
on the top and bottom surfaces of the graphene nanodisks cancel out in the electric dipole
approximation, as expected for a centrosymmetric material. Furthermore, the triangles on the
disk edges reproduce the SHG induced by the centrosymmetry breaking at the edges. Although
values for the tensor elements of the second order nonlinear susceptibility of graphene are only
sparsely reported so far, recent studies seems to confirm the validity of this approximation in the
case of graphene [50,57, 58]. Furthermore, the implementation of all the tensor elements in the
SIE formalism, which is straightforward, is not mandatory to assess the multipolar nature of the
second harmonic wave. Moreover, the frequency dependence for χ(2)nnn which is set to 1 in the
present work, is not considered here, allowing to obtain qualitative results [54].
The combination of a quantum evaluation of the nonlinear susceptibility with a full-wave

evaluation of the radiation properties is probably the best method for a complete description of
the SHG from nanostructured graphene, although this complete description is beyond the scope
of this article [59,60]. For example, it will be interesting to investigate the influence of both chiral
edge currents [61] and valley polarization [52,53] on the SHG from nanostructured graphene,
although the comparison between the SHG induced by graphene edges and valley polarization is
beyond the scope of the present study. The SH surface currents are obtained by solving the SIE
formulation taking into account the nonlinear polarization and enforcing the boundary conditions
at the nanostructure surfaces [62]. Similarly to the linear surface currents, the SH surface currents
are expanded on RWG basis functions. The expanding coefficients are found by applying the
method of moments with Galerkin’s testing [56]. A Poggio-Miller-Chang-Harrington-Wu-Tai
formulation is used to ensure accurate solutions even at resonant conditions [56]. The SH electric
field is then deduced from the SH surface currents using a two-term subtraction method for the
evaluation of the Green’s functions [63].
The eigenmodes are found by seeking for the eigenvectors of the SIE matrix associated to

vanishing eigenvalues without any external excitation [23]. This is practically done by scanning
the complex frequency plane and computing the eigenvalues of the SIE matrix. When the complex
frequency corresponds to an eigenfrequency, the eigenvalue vanishes and the corresponding
eigenvector is then associated to an eigenmode.
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2.2. Dielectric function of graphene

The permittivity of graphene has been calculated within the random-phase approximation (RPA).
In this model, the conductivity of graphene is given by the Kubo formula [25, 64, 65]:

σk(ω) =
2ie2kBT

π~2(ω + iτ−1)
ln

(
2 cosh

(
EF

2kBT

))
+

e2

4~

[
G (ω/2) − 4ω

iπ

∫ +∞

0
dΩ

G(Ω) − G (ω/2)
ω2 − 4Ω2

]
(1)

where

G(ω) = sinh (~ω/kBT)
cosh (EF/kBT) + cosh (~ω/kBT) . (2)

The first and second terms in Eq. (1) correspond respectively to intraband and interband electronic
transitions. Typical values are used for the calculation of this equation [25,36]: a Fermi energy of
EF = 0.4 eV, a relaxation time τ such that ~τ−1 = 1.6 meV and a temperature of T = 300 K. The
electron charge is e, ~ is the reduced planck constant, ω is the frequency and kB is the Boltzman
constant. The first term in Eq. (1) dominates for an energy much smaller than 2EF and can be
reduced to a Drude-like conductivity proportional to the square root of the charge carrier density
n, when EF � kbT . As interband transitions become non-negligible for energy close to 2EF ,
one has to consider this term since the calculation of the SHG requires the permittivity at twice
the frequency, which can be close to the Fermi energy.
Furthermore, a third term has been added to the conductivity to take into account the

contribution of the edge electron states, resulting from the finite nature of the nanostructures. For
nanodisks, this term has been calculated as [66]:

σE (ω) =
16ie2

π~

ω

ωR

lmax,nmax∑
l,n

l + 1
β5
ln

fln,0

1 −
(
ω+iη
βlnωR

) . (3)

Here, βln is the nth zero of the Bessel function of order l, lmax = 100 and nmax = 20 are
convergence parameters, ωR = vF/R with R the disk radius, η = 1/τ and fln,0 is the difference
between the Fermi function at zero energy and at energy equal to ~ωRβln. When the disk radius
is larger than 50 nm, this term becomes quite small. For energies lower than EF/2, the relative
difference between the conductivity of extended graphene and of 50 nm radius graphene disks is
less than a percent and this contribution is negligible. However, the conductivity of extended
graphene becomes smaller for energies closer to EF and the relative difference increases. Thus,
this term has been taken into account in this work, although it does produce only a negligible
modification of the computed spectra, with a maximum relative redshift of the order of one
percent. The resulting conductivity is then σ(ω) = σk(ω) + σE (ω) and the relative permittivity
of graphene is [25]:

ε(ω) = εb + i
σ(ω)
ε0ωt

, (4)

where t is the thickness of graphene, which has been fixed at 0.5 nm in the present work. This value
assures that computation converges properly. εb is the relative permittivity of the surrounding
medium, hence εb = 1 in vacuum. In this article, the spectra are evaluated for energies ranging
from 0.05 to 0.32 eV. Both real and imaginary parts of graphene permittivity are plotted in Fig.
1(a), top panel, for this energy range.
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Fig. 1. (a) Top panel: Relative permittivity of a graphene nanodisk, obtained using the RPA
with EF = 0.4 eV, ~τ−1 = 1.6 meV, T = 300 K, R = 50 nm, εb = 1 and t = 0.5 nm. Middle
panel: Scattering by a 100 nm diameter graphene nanodisk (logarithmic scale) as a function
of the incident electromagnetic wave energy. Bottom panel: SH intensity emitted by the
same nanodisk (logarithmic scale) as a function of the incident electromagnetic wave energy.
(b) The three eigenmodes found between 0.1 and 0.32 eV corresponding respectively to: a
dipolar mode, a quadrupolar mode, and an octupolar mode. Red and blue colors correspond
to positive and negative surface charges whereas white represent a neutral surface charges.

3. Results and discussion

3.1. Single graphene disk

For all computations reported in this article the nanodisk diameter is fixed to d = 100 nm. The
incident plane wave is propagating perpendicularly to the disk. In both cases (linear regime and
SHG) the scattered intensity is integrated over a sphere of radius R = 50 µm. The scattering
cross-section from a single graphene nanodisk is considered first (Fig. 1(a), middle panel). The
scattering spectrum reveals two peaks, one at 0.153 eV and one at 0.307 eV. It was demonstrated
that, if only the Drude-like conductivity of graphene is considered (first term of Eq. (1) when
EF � kbT), the resonance frequency ωd of the dipolar mode for a single nanodisk of suspended
graphene (without substrate), depends on its diameter and the Fermi energy and is given
by [28, 29]:

~ωd =
e

2π

(
12.5EF

ε0d

)
. (5)

Contrary to noble metals, the properties of graphene give the possibility to tune the resonance
frequency of the dipolar mode by applying a gate voltage, which modifies the Fermi energy.
Though a full study of the influence of the Fermi energy is not conducted here, we note that this
effect allows the tuning of the linear and nonlinear response of nanoparticles after fabrication.
For a 100 nm diameter disk and a Fermi energy of 0.4 eV, Eq. (5) gives an resonant energy at
0.151 eV. The maximum of the first peak in the scattered field spectrum occurs at 0.153 eV,
indicating that this resonance corresponds to the dipolar mode. This observation is confirmed
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Fig. 2. Schematic representation of the graphene dimers characterized by a gap distance g
and vertical shift h.

by the eigenmode analysis (Fig. 1(b)) in excellent agreement with Eq. (5). The small difference
is attributed to the modification of the conductivity caused by the interband transition and the
electronic edge states, which are not considered in Eq. (5). A second resonance is observed at
0.307 eV (see eigenmode on Fig. 1(b)). A multipolar analysis reveals that this mode corresponds
to an octupole (data not shown).
Now, we turn our attention to the SHG from the same graphene nanodisk (Fig. 1(a), bottom

panel). In this case, the spectrum reveals three peaks. The two highest peaks in the SH spectrum
correspond to a resonant excitation of the graphene nanostructures at the pump wavelength
at respectively 0.153 and 0.308 eV. Indeed, these peaks are at the same energies as the peaks
observed in the scattering spectrum and correspond to the resonant excitation of the dipolar and
octupolar modes, respectively. However, a third peak is observed at 0.102 eV. The eigenmode
analysis shows that a quadrupolar mode exists at 0.203 eV. This mode does not contribute to the
linear scattering spectrum due to its symmetry and the normal incidence of the wave but explains
the peak at low energy observed in the SH spectrum: an incident beam at 0.102 eV is converted
into a SH wave at 0.204 eV, the resonant energy of the quadrupolar mode.

The observation of a quadrupolar emission is characteristic of the SHG from centrosymmetric
nano-objects [67, 68]. Indeed, the SHG is forbidden in centrosymmetric media only in the
electric dipole approximation, and the description of the SH wave must include high order modes.
Furthermore, in the case of the graphene nanostructures studied here, the thickness is much
smaller than the incident wavelength, meaning that the retardation effects are negligible at the
pump excitation stage. In this case, the nonlinear sources distributed over the top and bottom mesh
surfaces indeed cancel out each other and do not contribute to the far-field radiation. At the same
time, this limitation does not stand for the SH sources located at the graphene edges, allowing for
the generation of SH light. Due to its parity, the spatial distribution of the SH sources cannot
induce a dipolar moment along the direction of polarization, but can indeed excite quadrupolar
and other SH modes with even parity. This explains why there is no peak in the SHG spectrum at
0.153/2 eV .

3.2. Dimers of graphene nanodisks

In this section, dimers composed of graphene nanodisks with gap distances g and vertical shifts h
are considered, Fig. 2(a). The z-axis is defined perpendicular to the graphene plane and the x-axis
and y-axis are defined respectively parallel and perpendicular to the dimer axis when there is no
vertical shift. Then g is measured along x and h along z. The incident wave is propagating along
the z-axis and is polarized along the x-axis. The case of the dimer with different gap distances
but without vertical shift (h = 0 nm) is considered first (Fig. 3 and 4).

Three peaks are observed in the scattering spectra (Fig. 3(a), top panel). The two peaks at low
energy blueshift as the gap distance increases. On the contrary, the spectral position of the highest
energy peak is only slightly influenced by the gap distance. Here, the eigenmode analysis reveals
two bonding and two anti-bonding modes. Bonding modes and anti-bonding modes correspond
to modes with the charges of the two discs in the gap having respectively the opposite and the
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Fig. 3. (a) Dimer of graphene disks. Top panel: Scattered field intensity shown in logarithmic
scale; inset: zoom at the resonance of the dipolar mode; Middle panel: Enhancement of
the intensity of the field between the two disks shown in logarithmic scale; Bottom panel:
Second harmonic intensity shown in linear scale ; inset: zoom at the resonance of the dipolar
mode - as function of the incident wave energy for a dimer of 100 nm diameter graphene
disks with gap distances ranging from g = 2 nm to 640 nm. (b) The first four eigenmodes of
a dimer with a gap distance of 2 nm, revealed by the eigenmode analysis are shown. Red and
blue colors correspond to positive and negative surface charges whereas white represent a
neutral surface charges.

same signs. The dipolar and quadrupolar bonding modes correspond to the two modes at low
energy observed in the spectra, while the two anti-bonding modes are not observed (Fig. 3(b)).
Interestingly, the scattering intensity does not decrease significantly with the gap distance for the
dipolar mode (inset Fig. 3(a)).

Nonlinear optical processes require high field intensity to be substantial. It is well known that
due to the coupling between the LSPR, the near field intensity is enhanced in the nanogap. The
spectra for the field intensity enhancement (the ratio between the field intensity at the considered
point and the incident field intensity) evaluated at the center of the nanogap for different gap
distances (Fig. 3(a), middle panel), clearly indicate that there are other modes between 0.2 eV
and 0.3 eV, not visible in the far-field linear response.
These modes are identified by plotting the imaginary part of the charge distributions at the

peak frequency (Fig. 4(a)). Indeed, when a resonant system is excited at its eigenmode frequency,
its response is 90◦ out of phase relatively to the excitation [69]. In the frequency domain, this
phase relation translates to complex valued quantities (field and charges oscillations for example)
where the argument of the complex number gives the phase difference between the excitation and
the considered physical quantity. The imaginary part thus gives the resonant part of the system
response [69].The first two modes at low energy have already been identified as the bonding
dipolar and bonding quadrupolar modes. The bonding dipolar mode permits to enhance the
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intensity in the nanogap by up to seven orders of magnitude, in agreement with computations
done with a finite element method [36]. The other modes also have a bonding nature, but between
higher order modes. Their bonding nature results in the adequate symmetry for these modes being
excited by an incident planewave at normal incidence. It is worth mentioning that an anti-bonding
nature results in the adequate symmetry for SH emission. Interestingly, for the last peak at 0.305
eV, the real part of the charge distribution appears to be different than the imaginary part, (Fig.
4(a)) indicating that two eigenmodes spectrally overlap at this energy.

For all the observed modes, the near-field enhancement increases as the distance between the
graphene nanodisks decreases. However, the SHG spectra indicate that SHG induced by the
fundamental dipolar mode increases slowly with the gap distance (Fig. 3(a), bottom panel). This
behavior is explained by the silencing of the SHG emitted from the gap due to the symmetry of
the nonlinear sources. The same effect has been recently reported in the case of dimers composed
of gold nanorods [70]. Indeed, the SH sources standing at each side of the nanogap oscillate out
of phase, as evidenced by the longitudinal components (along the x-axis) of the SH near-field
distribution (Fig. 4(b)). As a consequence, the SH waves coming from each side of the nanogap
tend to annihilate each other in the far-field, suppressing a high contribution to far-field SH
intensity. This silencing effect increases as the distance between the nanodisks, i.e. between
the out-of-phase SH sources, decreases. This tends to compensate the fundamental intensity
enhancement occurring in the gap, resulting in an attenuation of the SHG. To conclude this
analysis of the SHG from graphene dimer with different gap distances, it is worth noting the
steep increase in the SH intensity from the graphene dimer with a gap of 80 nm. It occurs when
the bonding dipolar mode is resonantly excited at the fundamental frequency and is due to the
resonant excitation of a second mode at the SH frequency, around 0.3 eV resulting in a doubly
resonant configuration [16, 19, 23].

3.3. Influence of a vertical shift on the SHG from graphene dimers

To overcome the limitation in the SHG yield due to the silencing effect, it is necessary to reduce
the destructive interference between the SH field coming from the nonlinear sources at each side
of the nanogap. One simple way to achieve this is to vertically shift, i.e. along the propagation
direction z of the incident wave, one of the nanodisks relatively to the other one (see Fig. 2).
The spectra for the scattering, near-field enhancement and SHG are shown for vertical shifts

h ranging from 0 nm to 40 nm (Fig. 5(a)) with a constant horizontal gap distance of 2 nm. As
the vertical shift increases, the effect on the scattering and the enhancement of the fundamental
electric field between both nanodisks is similar to the effect of an increase of the distance between
the two nanodisks (Fig. 3(a)): for the bonding dipolar mode observed at low energy, a blueshift is
observed as the vertical shift increases and the intensity increases slightly. However, the field
enhancement in the nanogap decreases quickly when the vertical shift increases.
On the other hand, the SH intensity in the far-field first increases with the vertical shift, as

expected from the symmetry breaking, but then decreases because the coupling between the two
graphene nanodisks vanishes. The maximum occurs for a vertical shift close to 20 nm. In Fig.
5(b), the near-field intensity at the fundamental and the second harmonic frequencies are plotted
for a graphene dimer without vertical shift (left panels) and for a dimer with a vertical shift h =
20 nm (right panels).
The near-field maps do not show a large influence of the vertical shift, even though there is a

slight symmetry breaking in the SH near-field intensity, not present in the fundamental intensity
distribution. The effect of the vertical shift is obvious when looking at the emission pattern of the
dimer (Fig. 5(b), bottom panel). Without vertical shift, the dimer does not emit SH waves along
the x-axis but only along the y-direction. The symmetry breaking induced by the vertical shift
clearly enables the SHG along the dimer axis with an intensity approximately 6.2 times higher
than the intensity along the y-axis, which is not enhanced by the vertical shift.
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Fig. 4. (a) Normalized imaginary part (five firsts) and real part (last) of the charge distribution
at the graphene nanodimer surface evaluated at the energy of each peak observed in Fig.
3(b). Positive charges and negative charges are respectively represented in red and blue. (b)
Real part of the longitudinal component of the SH electric field for a 100 nm diameter disk
dimer with a gap distance of 2 nm at 0.136 eV.

The maximum of SH intensity is plotted as a function of the vertical shift in Fig. 5(c). Although
a small vertical shift of 1 or 2 nm already dramatically enhances the SH intensity in the near-field
(on Fig. 5(c), left panel, the intensity is taken 1 nm away from the edge of a disk), the symmetry
breaking is not high enough to stop the destructive interference occurring in the far-field (Fig. 5(c)
right panel). A vertical shift as high as 20 nm is required to maximize the SHG in the far-field.
Indeed, the symmetry breaking along with a strong enhancement of the near-field intensity allows
an improvement in the yield of the SHG. For a gap distance of 2 nm, the vertical shift permits to
enhance the SHG up to a factor 10. This phenomenon can be used to determine the vertical shift
between two adjacent graphene nanodisks, with a resolution close to 1 nm. This high resolution
is directly related to the limited thickness of the graphene layer.

4. Conclusion

In conclusion, full wave calculations of the SH response of graphene disks have been performed
using a surface integral equation method. These results confirm that the nonlinear conversion
is enhanced when a LSPR is excited at either the fundamental or second harmonic frequency.
The role played by the different plasmonic modes has been determined, in connection with their
symmetry properties, using an eigenmode analysis. In the case of dimers, silencing of the SHG
has been observed and the influence of the symmetry breaking induced by a vertical shift of one
of the disks has been investigated in details. Especially, it was pointed out that the far-field SH
intensity reaches a maximal value for a vertical shift of 20 nm. This optimal geometry results
from the competition between fundamental intensity enhancement and symmetry breaking. It
can be noted that a non-normal incidence would have some effects. Firstly, the coupling between
the pump wave and the graphene nanostructures would change as well as the field enhancement
would decreases. Secondly, the symmetry would be broken and the selection rules for the SHG
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Fig. 5. (a) Response as a function of the incident energy for a dimer of two 100 nm diameter
graphene disks with a constant lateral distance g = 2 nm and different vertical shifts ranging
from h = 0 to 40 nm. Top panel: Scattered field intensity shown in logarithmic scale; inset:
zoom at the resonance of the dipolar mode; Middle panel: Intensity enhancement in the gap
shown in logarithmic scale; Bottom panel: SH intensity shown in linear scale; inset: zoom at
the resonance of the dipolar mode. (b) Comparison between a dimer composed of two 100
nm graphene nanodisks with a gap distance g = 2 nm (left column) and the same dimer with
an additional vertical shift (h = 20 nm; right column) at 0.135 eV. Top panel: Maps of the
fundamental near-field intensity shown in logarithmic scale; Middle panels: SH near field
intensity shown in logarithmic scale; Bottom panels: SH emission pattern. Maps are taken in
the middle of the vertical shift. (c) SHG from a dimer composed of two 100 nm graphene
nanodisks with a gap distance g = 2 nm as a function of the vertical shift h between the
disks. Left panel: near-field intensity in the middle of the gap in the xy plane and next to the
top or bottom disk; Right panel: far-field intensity.

would be different. Other methods for breaking the symmetry in nanostructured graphene have
been reported in the literature. For example, it is possible to control the charge doping in each
disk [32], and it is anticipated – on the basis of the results reported in this article – that this
method is promising for the dynamic control of the nonlinear optical conversion down to the
nanoscale [71]. Furthermore, it will be interesting to investigate the influence of both chiral edge
currents [61] and valley polarization [52, 53] on the SHG from nanostructured graphene.
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