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ABSTRACT: In this study, we propose a simple shake-flask method to produce micron-
size colloidosomes from a liquid−liquid interface functionalized with a gold nanoparticle
(AuNP) film. A step-by-step extraction process of an organic phase partially miscible with
water led to the formation of raspberry-like structures covered and protected by a gold
nanofilm. The distinctive feature of the prepared colloidosomes is a very thin shell
consisting of small AuNPs of 12 or 38 nm in diameter instead of several hundred
nanometers reported previously. The interesting and remarkable property of the proposed
approach is their reversibility: the colloidosomes may be easily transformed back to a
nanofilm state simply by adding pure organic solvent. The obtained colloidosomes have a
broadband absorbance spectrum, which makes them of great interest in applications such
as photothermal therapy, surface-enhanced Raman spectroscopy studies, and microreactor
vesicles for interfacial electrocatalysis.

■ INTRODUCTION

Colloidosomes were introduced in 2002 as microcontainers
similar to vesicles but obtained in Pickering emulsions, i.e.,
emulsions stabilized by solid particles.1 Because they have
attracted great interest,2−9 their possible applications ranged
from drug delivery4 and photothermal therapy systems7 to
effective light absorbers based on the so-called “black gold”6 and
surface-enhanced Raman spectroscopy (SERS) platform
because of the concentration of analyte molecules and small
interparticle distances between separate nanoparticles in a
colloidosome.8,9

Usually, the preparation of colloidosomes takes place by the
self-assembly of nano or microparticles at an interface of two
immiscible or partially miscible liquids, followed by the
formation and stabilization of the colloids after vigorous
shaking. Such liquid−liquid systems may consist of water and
oil, where self-assembly and stabilization occurs by the
reduction of the interfacial energy due to the adsorption of
nanoparticles1,3,4 or at the interface of water-in-water emulsions
by using aqueous phase-separated polymer solutions.2 The
assembly process at the liquid−liquid interface has several
advantages: defect-free pristine nature (facilitating reprodu-
cibly), self-healing and self-restoring properties (allowing
correction of assembly errors), mechanical plasticity (can be
deformed in any direction), and possibility to create both 2D
and 3D structures.10−13 The latter allowed the implementation
of electrochemically driven self-assembly at liquid−liquid
interfaces.14 The topic of particle self-assembly at various
fluid−fluid interfaces has been recently reviewed by Binks.15

Very recently, water−oil systems with low interfacial tension,
such as water−nitromethane (MeNO2)

13 and water−propylene
carbonate,16 have been shown to facilitate gold nanoparticle

(AuNP) assembly at a liquid−liquid interface. The combination
of these latest works with the previous studies on
tetrathiafulvalene (TTF)-promoted self-assembly of citrate-
covered AuNPs (citrate@AuNPs)12 have been used here to
produce colloidosomes. In a nut shell, TTF undergoes
oxidation to TTF+ on the surface of AuNPs. Because of the
strong affinity between gold and sulfur atoms in TTF and TTF+

molecules, citrate is substituted as the ligand on the
nanoparticle surface with TTF. At the same time, π−π-
interactions between TTF and TTF+ provide a force that keeps
neighboring nanoparticles together within the film, preventing
irreversible aggregation. Therefore, the use of TTF−AuNP
nanofilms is promising for colloidosome preparation.
Herein, we describe a simple way to produce colloidosomes

with a size ranging from submicron (∼0.5 μm) up to 20 μm
decorated with AuNPs in a raspberry-like manner. These
raspberry colloidosomes are formed with a shake-flask method
from citrate@AuNPs and do not require complex functional-
ization of AuNPs.

■ EXPERIMENTAL METHODS
Chemicals. Tetrachloroauric acid (HAuCl4, 99.9%) and TTF were

received from Aldrich. Citrate trisodium dihydrate (Na3C6H5O7·
2H2O) was purchased from Fluka. Silver nitrate (AgNO3) was bought
from Chempur and ascorbic acid (C6H8O6) from Riedel-de-Haen̈.
MeNO2 was purchased from Sigma-Aldrich. All chemicals were used as
received without further purification. In all experiments, Millipore
water (18.2 MΩ cm) was used.
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Synthesis of AuNPs and Their Characterization. Suspensions
of AuNPs with various mean diameters were prepared using the seed-
mediated growth method.17 Seed particles for this method were
synthesized by a commonly used Turkevich method.18,19 Details on
the procedure are given in ref 13.
The obtained colloidal solutions of AuNPs were characterized by

UV−vis−nearIR spectroscopy using a standard Cary 8453 (Agilent)
spectrophotometer with a 10 mm quartz cell. Also, all other UV−vis−
nearIR measurements were carried out with this equipment. UV−vis−
nearIR spectra were recorded in total transmittance (or extinction
conditions). As we cannot differentiate between the absorbed and the
scattered light by the colloidosomes, the transmission spectra were
converted to the extinction spectra as follows: Ex = −log10 T, where T
is the transmittance of light through the cuvette. The background
signal of water was subtracted from all the recorded spectra. The
measured extinction is given in arbitrary units (a.u.).
Mean diameter and concentration of nanoparticles in the prepared

solution were determined as described by Haiss and co-workers20

based on the absorbance spectrum and were equal to 2 × 109 particles
μL−1 for 12 nm particles and 3 × 108 particles μL−1 for 38 nm
particles, respectively. According to TEM investigation the mean
particle sizes and distributions were 12 ± 1 and 35 ± 5 nm. Details on
all necessary calculations are given in refs 11 and 20.
Scanning electron microscopy (SEM) images were recorded using

Merlyn (Zeiss, Germany) or Teneo (FEI, Czech Republic) micro-
scopes equipped with a field emission electron source (so-called, FE-
SEM) operating at 3−5 kV with secondary electron (SE2) or InLense
detectors. Energy-dispersive X-ray spectroscopy (EDX) was acquired
with a silicon drift detector X-Max 80 (Oxford Instruments, UK)
installed in a Merlyn microscope and by using INCA software package.
Confocal fluorescence images were recorded by a confocal laser

scanning microscopy technique on a laser scanning confocal
microscope (LSM 510, Zeiss). This microscope was operated at the
laser excitation wavelength of 458 nm and 10% of the maximal
intensity with the low-pass filter at 470 nm (LP 470), the pinhole was
600 μm. Fluorescent Coumarin 314 dye was chosen as the only oil-
soluble dye, which can be excited with the selected wavelength. This
dye was used to visually separate oil droplets from the water medium.
The concentration of the dye was as low as 1 μM in the initial 1 mL
droplet of MeNO2.

■ RESULTS AND DISCUSSION
Raspberry-Like Colloidosome Formation. The first

stage of the colloidosome preparation process was the
formation of a AuNP film or a nanofilm adsorbed at a
liquid−liquid interface. As shown previously, a nanofilm can be
prepared at interfaces of high interfacial tension, such as water−
1,2-dichloroethane, in the presence of TTF.12 The role of TTF
in this process is reducing the charge of AuNPs and preventing
irreversible nanoparticle aggregation due to π−π-bonding
between TTF molecules attached to the gold surface. The
same strategy was recently applied to prepare nanofilms at the
MeNO2−water interface.

13

The second stage included the addition of water to extract
the organic solvent that is partially miscible with water. Because
of the relatively high solubility of MeNO2 in water, this
extraction process decreased rapidly the volume of the organic
phase, finally leading to disintegration of the organic phase into
small droplets covered with AuNPs. This process is schemati-
cally represented in Scheme 1.
As MeNO2 solubility in water was reported to be between 10

and 12 wt %,21,22 1 mL MeNO2 can be fully extracted to the
aqueous phase by ca. 9.5 mL of water. This process was carried
out in a step-by-step manner to highlight the volume changes of
the organic phase during this stage (Figure 1A). At the first
step, 4 mL of aqueous citrate@AuNPs with a mean diameter of
38 nm was added to 1 mL of 1 mM TTF solution in MeNO2

(Figure 1A(i)). The flask was vigorously shaken and the
suspension was left to settle into a single drop of the organic
phase covered by a nanofilm (Figure 1A(ii)). Then, the top
aqueous phase was substituted with fresh water, vigorously
shaken, and left to settle. The repetition of the step for several

Scheme 1. Schematic Representation of the Colloidosome
Formation Based on the Two Step Processa

aAt the first stage, AuNPs form a nanofilm on a macroscopic droplet
of the organic phase. At the second stage, subsequent extraction leads
to one droplet to break apart into many micron-sized colloidosomes.

Figure 1. Colloidosome formation by subsequent extraction of the
organic solvent to water and shrinking droplet covered by a nanofilm
of AuNPs. (A) Step-by-step formation of colloidosomes from a bulk
MeNO2 droplet covered with a hexagonal close-packed monolayer of
38 nm AuNPs by a subsequent extraction process. (i) Initial solution
mixture of two liquids (AuNPs at the top, MeNO2 with TTF at the
bottom). (ii−vi) Subsequent shrinking of the MeNO2 droplet volume.
Numbers under each photo represent removed (“−“) and added (“+”)
amount of water. Also, the calculated volumes of the remaining
MeNO2 droplets are given for each picture. (vi,vii) Formed
colloidosomes are visible only by the scattering of a laser beam. (B)
A full recovery to a nanofilm state from colloidosomes after the
addition of 0.1 mL of pure MeNO2 solvent.
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times leads to significant reduction of the organic phase volume
(Figure 1A(iii)−(v)). Figure 1A also depicts volumes of
removed solution, added water, and remaining MeNO2 in the
droplet at each step. The latter was calculated by taking into
account the values for solubility of MeNO2 in water as 10.4 wt
% and water in MeNO2 as 1.6 wt %,21 and assuming the
densities of MeNO2 saturated water as 1.002 g/mL and water
saturated MeNO2 as 1.130 g/mL (molar fraction weighted
average of the densitites of the pure compounds at 20 °C). At
the end, when colloidosomes were formed, the MeNO2 droplet
disappeared forming a new “invisible” for a naked eye colloid
solution (Figure 1A(vi)), whose presence can be visualized by
Tyndall scattering (Figure 1A(vii)). To obtain colloidosomes
from 12 nm AuNPs with the same surface coverage as that from
38 nm AuNPs, at the first step, only 1 mL of the initial 12 nm
AuNP solution was used and another 3 mL of pure water was
added.
Interestingly, the colloidosomes obtained with the present

procedure possess a remarkable property. Thus, colloidosomes
may be fully recovered back to the initial nanofilm state after
the addition of a small volume (100 μL) of pure MeNO2
solution (Figure 1B). As reported in several papers,12,13,16 the
formation of a nanofilm here involves charging of AuNPs by
TTF molecules and substitution of citrate ligands to form TTF-
covered AuNPs (TTF@AuNPs). During this process part of
TTF+, TTF2

+, and other charge-shared complexes of TTF are
easily partitioned to and stay in the aqueous phase. TTF also
plays an important role in linking the nanoparticles together in
the nanofilm and giving the freedom for nanoparticles to slide
relative to each other upon shaking, because of the unique π−π
interactions between the TTF molecules.13 The latter provides
the so-called self-healing nature of a nanofilm consisting of
TTF@AuNPs and allows the nanoparticle film rearrangement
upon shaking or ultrasonication.13

Arrangement of Gold Nanoparticles on the Surface of
Colloidosomes. Upon complete extraction of the organic
solvent to the aqueous phase, both colloidosomes and solid
particles of a compound originally dissolved in the organic
phase (like TTF) may be formed, depending on the conditions.
We prepared SEM samples of colloidosomes and investigated
the morphology and arrangement of the AuNPs in the nanofilm
on the surface of colloidosomes (Figure 2). Colloidosomes of
two AuNPs of diameters 12 and 38 nm were prepared with
higher TTF concentration (2 mM instead of 1 mM) to form a
solid TTF support for a thin and brittle nanofilm.
SEM investigation showed that colloidosomes were covered

with densely packed islands of a single nanoparticle thickness in
both cases. Some of these islands were fully immersed (“sunk”)
in the TTF matrix during the drying process by capillary forces
(Figure 2A). Oppositely, if the TTF amount is reduced down
to 10 μM, hollow shells consisting of nanoparticles were
observed (Figure 2B). Such hollow shells collapsed upon SEM
sample preparation, highlighting that TTF is essential to act as
a binder and support for the fragile films when the solvent is
removed. Finally, in the absence of AuNPs, solid particles of
TTF could be prepared, as described below.
This feature of a single particle thickness for the present TTF

system and the small size of the used AuNPs are unique and
different from previously reported methods on AuNP assembly.
For instance, the slow extraction process that leads to
nanoparticle macrostructures23 or multilayer rigid shells of
larger nanoparticles in the case of butanol−water system6 or
octanol−water system.24 Notably, thin films of a small size

(below 10 nm) consisting of Fe3O4 nanoparticles or CdTe
quantum dots functionalized with interfacial stabilizing agents
were previously obtained and used to form colloidosomes.3

Surprisingly, SEM studies revealed that some solid spherical
particles were not covered by AuNPs at all. Further chemical
analysis with EDX confirmed that these bare particles consisted
of TTF because of the presence of sulfur and the absence of
gold atoms (Figure S1 in the Supporting Information).
Oppositely, data recorded from colloidosomal area contained
both sulfur and gold in considerable amounts. Thus, under
extraction conditions TTF molecules solidified in TTF spheres
rather than a more typical rod-like morphology,25−27 when the
extraction of the organic phase to water was completed. This
happened because of very low solubility of TTF in the water
phase and confinement conditions from the interface between
water and MeNO2. Finally, the formation of TTF spheres
without a nanofilm can be explained by insufficient interfacial
concentration of AuNPs in comparison with largely increased
surface area upon transformation of macroscopic droplets into
colloidosomes. Additionally, this shows that the same technique
can be used to prepare micron-sized particles of any material
soluble in the organic phase but insoluble in the aqueous phase.

Optical Properties of Raspberry-Like Colloidosomes.
Figure 3A shows optical properties of the obtained
colloidosomes made of 12 and 38 nm AuNPs. The UV−vis
spectra (straight blue and orange lines) are significantly
different from the spectra of the initial solutions (dotted lines
of the same colors). Instead of the distinguishable plasmon
peaks, as for example, in the case of a gold nanofilm,13 we
observed a continuous absorption over the entire range of
wavelengths (from 400 to 1100 nm). Most likely, the
multiplicity of the obtained colloidosome diameters leads to
heavily overlapped spectra of individual-sized colloidosomes,

Figure 2. Morphology of colloidosomes (CS) obtained after the
extraction process at the water−MeNO2 interface. (A) Colloidosomes
formed with AuNPs of two mean diameters 12 and 38 nm and larger
TTF concentration (2 mM) to visualize the nanofilm structure at the
surface. (B) Colloidosomes prepared with 38 nm AuNPs and low TTF
content (10 μM) with a hollow shell structure.

Langmuir Article

DOI: 10.1021/acs.langmuir.7b03532
Langmuir 2018, 34, 2758−2763

2760

http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.7b03532/suppl_file/la7b03532_si_001.pdf
http://dx.doi.org/10.1021/acs.langmuir.7b03532


and therefore, the solution has a dark color. The latter is clearly
demonstrated by confocal fluorescence microscopy observa-
tions (Figure 3B). Fully (red arrow) and not completely (blue
arrow) formed colloidosomes were present at the same time,
and they had size ranging from ca. 2 to 20 μm, whereas
according to electron microscopy investigation their size may
be down to 0.5 μm in a dry state. Also, on the basis of confocal
images we calculated the mean diameter of the colloidosomes,
which equals to 4 ± 2 and 4.2 ± 1.5 μm in the cases of 12 and
38 nm AuNPs, respectively. A detailed description of a confocal
microscopy study, images of each channel, and statistical
distribution of the colloidosome diameter are given in section 2
of the Supporting Information.
Also, we carried out a blank experiment, where only bare

TTF spheres were obtained in the absence AuNPs (red line in
Figure 3A). These TTF spheres display some extinction of
light, but the addition of AuNPs significantly reduces the
transmission of light through the sample, and this effect is
enhanced for larger NPs. Nevertheless, the presence of TTF
molecules has a minor effect on the UV−vis spectra of
colloidosomes as the extinction is three to five times smaller
than that for AuNP-containing colloidosomes. Furthermore, we
carried out UV−vis−NIR measurements of TTF in MeNO2
and TTF+ in water obtained by the extraction of ions to the

aqueous phase from MeNO2 (section 3 of Supporting
Information), which showed that both TTF and TTF+ in the
form of solutions did not have strong absorbance around 1000
nm. According to these two experiments, the appearance of the
peak at ∼1000 nm, when the particles are formed, is not fully
understood and requires further investigation.
Finally, we propose a route to avoid the formation or

minimize the amount of such empty TTF spheres and increase
the colloidosome formation. We increased the initial
concentration of AuNPs in the nanofilm by five times. Figure
4A demonstrates experiments with one hexagonal close-packed

monolayer of nanoparticles and five monolayers of 38 nm
AuNPs. In the case of higher nanoparticle loading, the final
solution of colloidosomes looked denser and significantly
darker than the diluted one (lesser AuNP content). The latter
was confirmed by recording the UV−vis spectra from the
obtained samples, showing minimal transmission of light
though the sample (Figure 4B).

■ CONCLUSIONS
In summary, we have developed a simple and facile shake-flask
approach to obtain colloidosomes covered by AuNPs, ranging
from 0.5 to 20 μm. The latter was achieved by the extraction of
the organic phase partially soluble in water that led to a
significant decrease of the organic phase volume and eventual
disintegration of the droplet to form micrometer-sized colloids.
The remarkable property of the present approach is its
reversibility: the obtained colloidosomes were easily changed
from colloidosomes back to the nanofilm state by adding a pure
organic solvent. Combined with the previous works on redox

Figure 3. Optical properties of colloidosomes (CS) prepared from one
hexagonal close-packed monolayer of 12 and 38 nm AuNPs. (A)
Comparison of UV−vis−NIR spectra of colloidosome solution right
after the formation and initial spectra of citrate@AuNPs. (B) Confocal
fluorescence microscopy of colloidosomes made from 38 nm AuNPs
shows fully formed (red arrows) and not completely (blue arrows)
formed colloidosomes. Scale bar is 20 μm.

Figure 4. Significant increase of colloidosome (CS) color intensity
with increasing AuNPs content by five times. (A) (i) Photo of two
flasks: the left one contains colloidosomes obtained from a nanofilm
with AuNP coverage of ca. one monolayer, the right one contains
colloidosomes obtained from a nanofilm of five AuNP monolayers.
(ii,iii) Photos of two flasks show Tyndall scattering from
colloidosomes with dimmed ambient light. (B) Corresponding UV−
vis spectra of the colloidosomes obtained with 1 and 5 ML of AuNP
coverage.
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electrocatalysis,28−30 it opens novel opportunities to use such
colloidosomes as a biphasic microreactor platform for redox
reactions between redox couples in both phases with ion and
electron permittivity across the nanofilm. For example, when
used as microreactors, these colloidosomes may be turned back
into a single bulk droplet for convenient analyses. Besides that
the obtained colloidosomes showed a broadband absorbance
spectrum and linked with the present relatively easy ways to
form colloidosomes may be of interest in applications such as
SERS and photothermal therapy. Finally, the present approach
may be used to concentrate organic soluble compounds (e.g.,
with a similar approach used in ref 31) and to obtain spherical
solid particles of molecules soluble in the organic phase and
insoluble in water because of the interfacial confinement, as we
have demonstrated for TTF.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.lang-
muir.7b03532.

EDX investigation of colloidosomes, details on confocal
microscopy studies, colloidosome size distribution, UV-
Vis spectra of TTF and TTF+ (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: Hubert.Girault@epfl.ch. Fax: (+)41 (0)21 693 36 67.
Homepage: lepa.epfl.ch.

ORCID
Evgeny Smirnov: 0000-0001-7930-7758
Pekka Peljo: 0000-0002-1229-2261
Hubert H. Girault: 0000-0001-5573-5774
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.

Funding
We would like to acknowledge financial support from Swiss
National Science Foundation, Ambizione Energy, grant 160553
and EPFL.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
Authors acknowledge help of Samuel Terrettaz (LCPPM,
EPFL) with confocal fluorescence microscopy.

■ ABBREVIATIONS
TTF, tetrathiafulvalene; MeNO2, nitromethane; SERS, surface-
enhanced Raman spectroscopy; AuNP, gold nanoparticle; SEM,
scanning electron microscopy; EDX, energy-dispersive X-ray
spectroscopy; CS, colloidosomes.

■ REFERENCES
(1) Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.;
Bausch, A. R.; Weitz, D. A. Colloidosomes: Selectively Permeable
Capsules Composed of Colloidal Particles. Science 2002, 298, 1006−
1009.

(2) Poortinga, A. T. Microcapsules from Self-Assembled Colloidal
Particles Using Aqueous Phase-Separated Polymer Solutions.
Langmuir 2008, 24, 1644−1647.
(3) Duan, H.; Wang, D.; Sobal, N. S.; Giersig, M.; Kurth, D. G.;
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