
Fully Quantized Distributed Gradient Descent

Frederik Kunstner

Supervisors: Prof. Martin Jaggi, Dr. Sebastian Stich

Abstract

In major distributed optimization system, the main bottleneck is often the communication between
the different machines. To reduce the time dedicated to communications, some heuristics have been
developed to reduce the precision of the messages sent and have been shown to produce good results
in practice, and Alistarh et al. [2016] introduced the quantization framework to analyze theoretically
the effects of lossy compression on the convergence rate of gradient descent algorithms. This works
identifies an issue in one of the proofs in Alistarh et al. [2016] and provides a new approach to reduce
the error introduced by low-precision updates.

Contents
1 Introduction 2

2 Background on Convex optimization 2
2.1 Problem definition . 2
2.2 Gradient methods . 3
2.3 Stochastic Variance Reduced Gradient . 4

3 Previous Work on Quantization 7
3.1 Distributed Problem Definition . 8
3.2 Quantization Paradigm . 8
3.3 Earlier results . 9
3.4 Issue for fully quantized method in distributed setting . 10

4 Main Contribution 11
4.1 Distributed Quantized GD Algorithm . 12
4.2 Convergence proof . 12
4.3 Experiment . 17

5 Conclusion 18

Appendix 21

A QSVRG and the Computation-Communication Tradeoff 21
A.1 Quantized SVRG algorithm . 21
A.2 Convergence analysis . 22

B Tricks 27

1

1 Introduction
Many optimization problems can be cast as the minimization of a convex function f : RD → R that can
be written as a sum over convex functions f1, ..., fN , i.e.,

x∗ = arg min
x

1
N

N∑
n=1

fn(x).

In Machine Learning, each function fn is the error corresponding to the nth sample in a training set,
and a classical algorithm to solve this optimization problem is Gradient Descent. Due to the increasing
amount of data, the whole training may not fit on a single machine and has to be distributed across
multiple nodes to be solved. This creates additional communication between the nodes, which is often the
major bottleneck of those systems. This issue has recently been getting more attention, especially from
industry, with projects to build systems better adapted to big scale problem Chilimbi et al. [2014], Seide
et al. [2014], Strom [2015].

The most closely related line of work is 1-Bit SGD [Seide et al., 2014], which showed experimentally
that sending only the sign of each coordinate instead of the full gradients still allowed convergence in some
settings. To provide theoretical guarantees on those type of heuristics, Alistarh et al. [2016] introduced
the quantization framework which enables the study of the lossy compression of gradient exchanges.

This works identifies an issue in one of the proofs in Alistarh et al. [2016] and provides a new approach
to reduce the error introduced by low-precision updates. Our main contribution is the introduction and
analysis of a feedback mechanism to correct the error made by the previous quantization, solving the issue
and enabling fully quantized algorithms to achieve linear convergence.

This report is structured as follow:

Section 2 gives an overview of gradient descent algorithms for convex problems and the methods used
to improve on the computation cost of those algorithms, at the loss of some precision.

Section 3 presents the distributed challenges of the problem and the quantization framework of Alistarh
et al. [2016]. We discuss here the issues found in their proof and how it affects the results.

Section 4 introduces our main contribution and its analysis.

Section 5 summarizes our results and discuss possible research directions to improve on our early results.

Furthermore, Appendix 1 presents an idea on how to balance the computation and communication cost of
gradient descent methods to achieve a desired accuracy and Appendix 2 list some useful properties of
convex functions used throughout the proofs in this report.

2 Background on Convex optimization
Before diving in our main contribution, this section defines the basic optimization problem in a non
distributed setting, introduces the notation and gives a quick overview of useful properties and classical
methods to solve this problem. A more complete review of the convex optimization methods used here as
building blocks can be found in Bubeck [2015], especially sections 4 & 6.

Readers familiar with convex optimization and randomness based methods such as Stochastic Gradient
Descent (SGD) and Stochastic Variance Reduced Gradient (SVRG) can feel free to skip this section once
past the notation introduction.

2.1 Problem definition
Problem Definition Many optimization problems in Machine Learning can be cast as the minimization
of a convex function f : RD → R that can be written as a sum over convex functions f1, ..., fN , i.e.,

x∗ = arg min
x

1
N

N∑
n=1

fn(x).

In Machine Learning terminology, each function fn is the error corresponding to the nth sample in a
collection of N samples used to train a model. Some examples of this very general formulation include the
Generalized Linear Model family, such as Linear and Logistic Regression, and SVMs.

2

While convexity is needed to ensure convergence to the global minimum, methods developed for those
simple models can also work for non-convex models such as neural networks. As most models in Supervised
Learning can be cast as a sum of a cost function over samples, improvements on those basic methods can
have a big impact for practitioners.

First order Methods The main idea behind gradient based is to iteratively update an estimate of the
parameters by following the negative of the gradient. Given an estimate of parameters at step k, xk and
an estimate of the gradient at xk, gk, the update is

xk+1 = xk − γkgk,

where γk is a step-size controlling how much we can move per iteration. The step-size depends on the
quality of the gradient estimate and on the quality of linear approximation of the gradient at that point.

Function Properties In order to derive convergence rates for optimization methods on this problem,
it is useful to make additional assumptions on f such as β-smoothness and α-strong convexity.

Definition 1 (β-smoothness).
We say that a function f : RD → R is β-smooth if its gradient is β-Lipschitz continuous;

‖∇f(x)−∇f(y)‖2 ≤ β ‖x− y‖2
, ∀x, y ∈ RD.

An equivalent condition on f is that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ β

2 ‖x− y‖
2
, ∀x, y ∈ RD.

Definition 2 (α-strong convexity).
We say that a function f : RD → R is α-strongly convex if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ α

2 ‖x− y‖
2
, ∀x, y ∈ RD.

A perhaps more helpful way to view those properties is that they are bounds on the rate of change of
a twice differentiable function f . If f is α-strongly convex and β-smooth, then the eigenvalues λd, d ∈ [D]
of the Hessian of f , ∇2f , are bounded between 0 ≤ α ≤ λd ≤ β.

Thinking about those properties in one dimension is helpful to get a grasp on their effect. If the second
derivative is always smaller than β, this gives a way to control the step-size; if β is small, the second
derivative is small and thus the gradient is not changing quickly, meaning we can trust the direction of
the gradient and take big steps. On the other hand, if the second derivative is always bigger than α, this
ensures that the function is curving fast enough so that we are actually making progress.

As some algorithms we build upon, such as Stochastic Variance Reduced Gradient (SVRG, Johnson
and Zhang [2013]), require α-strong convexity, we consider both assumptions for our developments to allow
for an easier comparison. Our main contribution, however, can work under only the β-smooth condition
with minimal changes to the proof, and is thus more general than presented here.

2.2 Gradient methods
Gradient Descent The simplest algorithm of this family uses the full, exact gradient as the gradient
estimate; gk = ∇f(xk). The convergence rate of Gradient Descent (GD) is a classical result in the literature,
so the details of the proof will not be presented here, but Section 3 of Bubeck [2015] can be of use to
readers unfamiliar with proofs using β-smoothness and α-strong convexity as a building block.

Theorem 3 (Convergence rate of GD (Bubeck [2015], Thm 3.10)).
Let f : RD → R be a α-strongly convex and β-smooth function, and κ = β

α be the condition number

3

of the problem. Gradient Descent with a constant step-size of γ = 1
L satisfies

f(yk)− f∗ ≤ (1− κ−1)(f(y0)− f∗).

Stochastic Gradient Descent One of the main issues of GD is that it is expensive to compute the
whole gradient, especially when the number of samples grows. The idea behind stochastic gradient descent
is to use a single sample selected uniformly at random to compute the gradient estimate instead of
computing the whole gradient. This method still makes progress in expectation, as the expected stochastic
gradient is still the full gradient, and is much faster to compute; O(1) in terms of the size of the training
set, compared to O(N) for GD.

However, this procedure introduces noise in the gradient estimate, which makes convergence more
difficult. For traditional gradient descent, the gradient estimate at the global minimum is 0 and the
estimated parameters stop changing, allowing convergence. For stochastic gradient descent, while the
expectation of the gradient estimate at the global minimum is 0, the actual stochastic gradients might not
be. Therefore, if a constant step size is used, SGD does not converge, unless the global minimum for f
is also a minimum for all individual samples fn, n ∈ [N]. It is possible to enable convergence by using a
decreasing step-size γk of order O(1/k) such that γkgk goes to zero over time, but this change hurts the
convergence rate. For strongly convex functions, SGD has a convergence rate of O(1/k) instead of O(e−k)
for traditional GD (See Bubeck [2015], Thm 6.2).

In practice however, it is often observed that SGD with a constant step-size is very competitive with
GD in the early iterations and can exhibit close to linear convergence rate before reaching a plateau. This
phenomenon is made explicit in Nedic and Bertsekas [2000] (Proposition 2.4) which shows that with a
constant step-size, the error at step k can be decomposed in two terms; one depending on the distance
between the initial estimate of the parameters x0 to the optimal point x∗ and decreasing linearly with k,
and another depending on a bound on the second moment of the stochastic gradient E

[
‖gk‖2

]
and which

does not decrease with k.
Hence, if the stochastic gradients exhibit low variance compared to the current distance to the optimum,

it is possible to get good approximate solutions using constant step-size SGD at a fraction of the cost of
GD. However, when we get closer to the optimum and the second moment of the stochastic variance is on
a order of magnitude similar to the distance to the optimal point, progress becomes more difficult. We
call this phenomenon the Noise Barrier of SGD, and it is a concept that we will encounter later on when
studying quantization based methods.

A common optimization of SGD interesting to our case is the use of mini-batches to reduce the variance
of the gradient estimate. Instead of using a single sample to estimate the gradient, an average of B samples
is used. This increases the computation cost and reduces the second moment of the stochastic gradient
by a factor of B, allowing a trade-off between computational complexity and accuracy of the gradient
estimate. A similar trade-off will be shown between the communication cost and the accuracy of the
gradient estimate in quantization base methods.

Variance Reduction Techniques Multiple solutions to the Noise Barrier have been developed over
the years to combine the linear convergence rate of GD to the cheap cost of stochastic gradient updates.
Stochastic Averaged Gradient (SAG) [Le Roux et al., 2017] is one of the earliest technique, which relies on
remembering the gradient for every samples and averaging them to reduce the variance while still only
computing the gradient for one sample per iteration. The approach used as a building block in this work is
Stochastic Variance Reduced Gradient (SVRG) [Johnson and Zhang, 2013], which instead of storing O(N)
gradients requires the computation of the full gradient periodically to use as a weighting term for the
stochastic gradients to reduce the variance. For the sake of completeness, it is worth mentioning SAGA
[Defazio and Bach, 2014], based on the ideas of SAG and SVRG, and Stochastic Dual Coordinate Ascent
(SDCA) [Shalev-Shwarts and Zhang, 2013], based on a primal-dual approach.

2.3 Stochastic Variance Reduced Gradient
The SVRG algorithm works in epochs; big iterations consisting of lots of smaller iterations. Contrary to
the deep learning literature, epoch in this context does not mean one full pass through the data but simply
some specified numbers of iterations. Letting yk be the parameter estimate at the start of epoch k, SVRG

4

stores the gradient at that starting point to weight the stochastic gradient. During an epoch, consisting of
T iterations, an intermediate estimate of the parameters, xt, t ∈ [T], are used. x0 is initialized at yk, and
the gradient estimate used to update xt is based on a stochastic part, using the gradient for a sample n
selected uniformly at random from [N], and a deterministic part, based on the full gradient at yk;

gt = ∇fn(xt)−∇fn(yk) +∇f(yk).

After T iterations, the parameter estimate for the next epoch is set at yk+1 = 1
T

∑T
t=1 xt. The full

procedure is described in Algorithm 1.
Like SGD, the gradient estimate gt is unbiased; in expectation over the sample selection, E [gt] is

equal to the gradient at xt. However, unlike SGD, if the epoch starts at the global minimum x∗, then the
gradient estimate is not only 0 in expectation but also for every choice of n, meaning that the procedure
is stable at the minimum.

Algorithm 1: One epoch of SVRG
Parameters: a step size γ and number of iterations per epoch T
Requires: the epoch parameter estimate yk
Result: the next epoch parameter estimate yk+1
Let Gk = ∇f(yk)
and x0 = yk
for t ∈ [1, T] do

Compute the gradient estimate gt = ∇fit(xt)−∇fit(yk) +Gk, where it ∼ U [1, N]
Update the iteration parameter estimate xt+1 = xt − γgt

end
Update the next epoch parameter estimate yk+1 = 1

T

∑T
t=1 xt

As the proof of convergence of SVRG will be used as a building block for the quantized version,
it is worth going through it now as the proof are not that contrived. The following derivation is a
slight generalization of Theorem 6.5 in Bubeck [2015] to make some of the result easily reusable for the
quantization framework. The first step is to see that using the full gradient at the start of the epoch
makes it possible to bound the second moment of gt with the optimality gap of xt, f(xt)− f∗, and the
optimality gap of yk, f(yk)− f∗.

Lemma 4 (SVRG - Second moment bound of the gradient estimate (Bubeck [2015], First part of
Thm 6.5)).
Let f be the average of N β-smooth functions f1, ..., fN . The gradient estimate used in SVRG,
gt = ∇fn(xt)−∇fn(yk)+∇f(yk) with n selected uniformly at random, has a second moment bounded
by

En
[
‖gt‖2

]
≤ 4β(f(xt)− f∗ + f(yk)− f∗).

Proof: The following steps suffice to show the result.

En
[
‖gt‖2

]
= En

[
‖∇fn(xt)−∇fn(yk) +∇f(yk)‖2

]
,

(1)= En
[
‖∇fn(xt)−∇fn(x∗) +∇fn(x∗)−∇fn(yk) +∇f(yk)‖2

]
,

(2)
≤ 2En

[
‖∇fn(xt)−∇fn(x∗)‖2

]
+ 2En

[
‖∇fn(yk)−∇fn(x∗)−∇f(yk)‖2

]
,

(3)
≤ 2En

[
‖∇fn(xt)−∇fn(x∗)‖2

]
+ 2En

[
‖∇fn(yk)−∇fn(x∗)‖2

]
,

(4)
≤ 4β(f(xt)− f∗ + f(yk)− f∗).

• In (1), we simply add and subtract ∇fn(x∗).

5

• In (2), we use the fact that ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2.

• In (3), we use the fact that En [∇fn(yk)−∇fn(x∗)] = ∇f(yk) − ∇f(x∗) = ∇f(yk) and the
standard fact that E

[
‖x− E [x]‖2

]
≤ E

[
‖x‖2

]
.

• In (4), we use the fact that En
[
‖∇fn(x)−∇fn(x∗)‖2

]
≤ 2β(f(x)− f∗). This is a more general

version of the fact that ‖∇f(x)‖2 ≤ 2β(f(x)−f∗) (See Trick 20), which can be found in Bubeck
[2015], Lemma 6.4.

The next step is to show that it is sufficient for the second moment of the gradient estimate to be
bounded by such an expression to enable linear convergence if we set the next epoch parameter estimate
to be yk+1 = 1

T

∑T
t=1 xt.

Theorem 5 (SVRG - Progress per epoch (Bubeck [2015], Second part of Thm 6.5)).
Let f be be a α-strongly convex function and gt an unbiased gradient estimate with second moment
bound E

[
‖gt‖2

]
≤ Cβ(f(xt)− f∗ + f(yk)− f∗) for some constant C. Then, SVRG with step size γ

and epoch length T satisfies

Eyk+1 [f(yk+1)− f∗] ≤
(

2
αTγ(2− γCβ) + γCβ

2− γCβ

)
(f(yk)− f∗).

Proof: We will analyze how the distance from the optimum point evolves through iterations within
a fixed epoch. We have that

‖xt+1 − x∗‖2 = ‖xt − γgt − x∗‖2 = ‖xt − x∗‖2 − 2γ〈gt, xt − x∗〉+ γ2 ‖gt‖2
.

We can now use our assumptions on gt to simplify the expression;

Egt

[
‖xt+1 − x∗‖2

] (1)
≤ ‖xt − x∗‖2 − 2γ(f(xt)− f∗) + γ2Egt

[
‖gt‖2

]
,

(2)
≤ ‖xt − x∗‖2 − 2γ(f(xt)− f∗) + γ2Cβ(f(xt)− f∗ + f(yk)− f∗),

Where (1) comes from the unbiasedness of gt, as 〈Egt
[gt] , xt − x∗〉 = 〈∇f(xt), xt − x∗〉 which, from

convexity, is lower bounded by f(xt)− f∗, and (2) is the simple application of the second moment
bound of gt. We can apply this inequality recursively on ‖xt − x∗‖2 to get

Eg0,...,gT −1

[
‖xT − x∗‖2

]
≤ ‖x0 − x∗‖2

+ (γ2Cβ − 2γ)
T−1∑
t=0

Eg0,...,gT −1 [f(xt)− f∗]

+ Tγ2Cβ(f(yk)− f∗).

As the left hand side is non negative, this inequality implies that

(2γ − γ2Cβ) 1
T

T−1∑
t=0

Eg0,...,gT −1 [f(xt)− f∗] ≤
1
T
‖x0 − x∗‖2 + γ2Cβ(f(yk)− f∗).

Using the convexity of f and the definitions of x0 and yk+1, we have the following relations; that ,

6

leading to

(2γ − γ2Cβ)Eyk+1|yk
[f(yk+1)− f∗] (1)= (2γ − γ2Cβ)Eg0,...,gT −1

[
f(1
T

T−1∑
t=0

xt)− f∗
]

(2)
≤ (2γ − γ2Cβ) 1

T

T−1∑
t=0

Eg0,...,gT −1 [f(xt)− f∗] ,

≤ 1
T
‖x0 − x∗‖2 + γ2Cβ(f(yk)− f∗),

(3)
≤ 1
T
‖x0 − x∗‖2 + γ2Cβ(f(yk)− f∗),

(4)
≤
(

2
Tα

+ γ2Cβ

)
(f(yk)− f∗).

Where

• (1) follows from yk+1 = 1
T

∑T−1
t=0 xt,

• (2) uses the convexity of f to have f(1
T

∑T−1
t=0 xt) ≤ 1

T

∑T−1
t=0 f(xt),

• (3) uses the definition of x0 := yk,

• (4) uses the α-strong convexity of f to have ‖yk − x∗‖2 ≤ 2
α (f(yk)− f∗).

Moving the constants to the right hand side finally leads to

Eg0,...,gT −1 [f(yk+1)− f∗] ≤
(

2
Tαγ(2− γCβ) + γCβ

2− γCβ

)
(f(yk)− f∗).

The combination of Lemma 4 with Theorem 5 directly shows that SVRG (Algorithm 1) with a correct
choice of step-size and epoch length can achieve linear convergence. To make the expression found in
Theorem 5 independent of α, β and C, it is useful to set γ = O(1/Cβ) and T = O(1/αγ). Introducing a
new parameter η to control the scaling of the step-size and epoch length, γ and T can be rewritten as

γ = η

Cβ
and T = 2

γα
= 2C

η

β

α
,

leading to the following theorem.

Theorem 6 (SVRG - Choice of step-size).
Let f1, ..., fM be β-smooth convex functions and f = 1

M

∑M
m=1 fm(x) be α-stronlgy convex. Then,

SVRG (Algorithm 1) with γ = η
Cβ , T = 2C

η
β
α for some scaling parameter η satisfies

E [f(yK)− f∗] ≤
(

1 + η

2− η

)K
(f(y0)− f∗).

Hence, η ≤ 1
5 leads to a decrease of at least 2

3 in optimality gap at each epoch.

3 Previous Work on Quantization
This section introduces the problem in its distributed setting and the quantization approach introduced in
Alistarh et al. [2016] and Zhang et al. [2016]. As our main contribution builds closely upon the work of
Alistarh et al. [2016], we restate here some of their results for clarity.

When the data required to compute f is too large, or simply to be able to compute f in parallel, it has
to be distributed among multiple machines such that a machine m can compute fn for some set of samples,
but not others. The traditional GD procedure can be trivially parallelized, with each machine computing
the gradient for its samples and sharing it with the other machines. The issue with this approach is that
the time required to communicate the gradients, especially for high-dimension problems, is often much

7

greater than the time required to compute them, making the communication a major bottleneck. This
issue has recently been getting more attention, especially from industry, with projects to build systems
better adapted to big scale problem [Chilimbi et al., 2014, Seide et al., 2014, Strom, 2015].

The most closely related line of work is 1-Bit SGD [Seide et al., 2014], which showed experimentally
that sending only the sign of each coordinate instead of the full gradients still allowed convergence in
some settings. The quantization framework by Alistarh et al. [2016] enables the study of algorithms that
can use lossy compression of gradients for communication efficiency and still benefit from theoretically
proven convergence rates.

The distributed system under consideration is synchronous and distributed, meaning that the machines
wait on each other before updating the parameters, and that the update of the parameters is done by
all machine in parallel instead of centralized on a single machine. The study of asynchronous system is
another interesting possibility to speed up training on large datasets, as it enables machine to continuously
work, without having to stop and wait for the other machines to have transmitted their updates. However,
asynchronous updates introduce a problem; between the time gradient is computed and applied, the
estimate of the parameters might have changed and the gradient no longer match the current estimate.
This does not prevent such algorithms to work in practice (see Dean et al. [2012]), but makes the derivation
of convergence rate more difficult - see for example Tsitsiklis et al. [1986]. To keep the focus of this work
on the analysis of quantization, only synchronized systems are considered here.

3.1 Distributed Problem Definition
The data required to compute the cost function for the samples, fn, n ∈ [N] is now distributed across M
machines. For simplicity, assume that [N] can be partitioned in M sets,M1, ...,MM , of equal cardinality
and consider the following formulation of the optimization problem,

f(x) = 1
M

M∑
m=1

fm(x), where fm(x) = M

N

∑
n∈Mm

fn(x).

A single machine m can no longer compute a gradient estimate for f , but only for the samples it has
access to, fm. In order to compute an overall gradient estimate, each machine m computes a local gradient
estimate g(m)

k and sends it to every other machine. After this communication step, each machine can
compute the gradient estimate gk = 1

M

∑M
m=1 g

(m)
k and apply the gradient step, xk+1 = xk − γkxk.

3.2 Quantization Paradigm
The main bottleneck in this procedure is the transfer of the local gradient estimates. The idea behind
quantization is to transfer a low precision version of these local gradient estimates through a random,
lossy compression scheme, thus greatly reducing the communication cost.

To still enable convergence, a quantization operator Q : RD → RD is required to be unbiased,
EQ [Q(x)] = x, and have a bounded variance blowup, EQ

[
‖Q(x)− x‖2

]
≤ b ‖x‖2, for some value b depen-

ding on the lossiness of the compression scheme and perhaps other properties, such as the dimensionality
of x, but independent of the selection of x. To reduce communication costs, those quantized gradients
should have other properties such as sparsity or nice encoding schemes allowing their communication in
few bits. Alistarh et al. [2016] give an example of such a quantization operator (Section 3.2) which, paired
with a compression scheme (Appendix A.3), satisfies the necessary convergence properties and has short
representations.

Definition 7 (Quantization operator with s levels, Qs (Alistarh et al. [2016], Section 3.2)).
Let Qs(x) : RD → RD be a quantization operator defined as

[Qs(x)]d = ‖x‖ · sign(xd) · ξd(x, s),

where

ξd(x, s) =
[

bs|xd|/‖x‖c
s with probability 1− s |xd|

‖x‖ +
⌊
s |xd|
‖x‖

⌋
,

bs|xd|/‖x‖c+1
s otherwise.

]

8

For s = 1, this quantization scheme reduces to probabilistically rounding up or down each coordinate to
the endpoints of the interval [0, ‖g‖], with probabilities proportional to the magnitude of the coordinate,
and adding the sign information. For s > 1, the interval [0, ‖g‖] is first partitioned into s equal parts, and
for each coordinate a similar rounding is made as for the case when s = 1, but in a smaller interval. The
following properties have been shown to hold in Alistarh et al. [2016] for s-levels quantization operator.

Lemma 8 (Variance blowup bound of the s-levels quantization operator Qs (Alistarh et al. [2016],
Lemma 3.4)).
The variance of the quantization operator with s levels is bounded by

EQs

[
‖Qs(x)− x‖2

]
≤ min(D/s2,

√
D/s) ‖x‖2

Lemma 9 (Communication cost of the s-levels quantization operator Qs (Alistarh et al. [2016],
Theorem 3.5)).
There exists an encoding scheme so that, in expectation, the number of bits needed to communicate
Qs(x), x ∈ RD, is upper bounded by

F +
(

1 + o(1)
2

(
log
(

1 + s2(1 + min(D/s2,
√
D/s)

D

)
+ 1
)

+ 2
)
D,

where F is the number of bits required to transfer the norm of x. .

In the theory, the convergence proofs for Gradient Descent related algorithms make the implicit assumption
that we can transmit numbers with infinite precision, whereas in practice we only transmit F = 32 or
F = 64 bits float approximations. It is however sufficient to enable a convergence up to a precision of ε
if F = O(log(1/ε), such that the optimality gap guaranteed by theory hold by a multiplicative error of
1 + poly(ε).

When not using quantization however, the number of bits per message is of the order of O(FD), where
F is the precision of the floating points and D the number of dimensions. Quantization has the added
benefit of separating the error made by the floating point approximation and the compression. Taking
s =
√
D levels, we can transmit only O(F +D) bits per message at the cost of a variance blowup of 2. This

makes it possible to achieve the information theoretical lower bound on the communication complexity
of convex optimization within ε-precision of Ω(D(logD + log(1/ε))) [Tsitsiklis and Luo, 1987]. A more
precise development of this argument is made in Alistarh et al. [2016].

3.3 Earlier results
Given Lemma 8 and the previous discussion on SGD, it is easy to see that SGD coupled with quantization
still works, although the step-size should to be reduced to account for the reduction in accuracy due to
quantization. The more interesting use of quantization is in conjunction with SVRG to achieve linear
rate.

As a first step, we can focus on quantizing only the stochastic gradients part of the communication.
The synchronization step at the start of each epoch is still required to compute the gradient at yk to
anchor the stochastic gradients, but the exchange of the stochastic gradient, which represent the vast
majority of the communication of SVRG, can now be quantized. This procedure is shown in more details
in Algorithm 2.

Given Theorem 5, we only need to show that the second moment of the gradient estimate can be
bounded in a similar fashion as in Lemma 4. To make the analysis slightly easier notation wise, the
following derivation considers a simplified version where only one machine sends a quantized stochastic
gradient in each iteration. The analysis is still valid when each machine contributes a sample, as the result
is only a reduction in the variance of the gradient estimate.

Lemma 10 (Second moment bound of gt in QSVRG, (Alistarh et al. [2016], Thm XX)).
Let f be the average of N β-smooth function f1, ..., fN . The gradient estimate for quantized SVRG

9

with s levels, gt = Qs(∇fn(xt) − ∇fn(yk) + ∇f(yk)) with n selected uniformly at random, has a
second moment bounded by

E
[
‖gt‖2

]
≤

(
1 +
√
D

s

)
4β(f(xt)− f∗ + f(yk)− f∗).

Proof: The proof is straightforward given Lemmas 4 and 8;

E
[
‖gt‖2

]
= E

[
‖Qs(∇fit(xt)−∇fit(yk) +∇f(yk))‖2

]
,

(1)
≤

(
1 +
√
D

s

)
E
[
‖∇fit(xt)−∇fit(yk) +∇f(yk)‖2

]
,

(2)
≤

(
1 +
√
D

s

)
4β(f(xt)− f∗ + f(yk)− f∗).

Where (1) is direct application of Lemma 8 and (2) a direct application of Lemma 4

Algorithm 2: One epoch of QSVRG, Alistarh et al. [2016]
Parameters: A step size γ ∈ R+ and an epoch length T ∈ N.
Requires: estimate of the parameter at the start of the current epoch yk.
Result: estimate of the parameter at the end of the current epoch yk+1.

Compute the gradient at yk:
Each machine m compute G(m)

k = ∇fm(yk) and send it to every other machine.
Once each message has been received, compute Gk = 1

M

∑M
m=1 G

(m)
k ≡ ∇f(yk).

Let x0 = yk.

for t ∈ [1, T] do
Compute the gradient estimate, gt:

Each machine m chooses a sample im uniformly at random from the samples it holds.
Send g(m)

t = Qs(∇fim(xt)−∇fim(yk) +Gk) to every other machine.
Once each message has been received, compute gt = 1

M

∑M
m=1 g

(m)
t .

Apply the gradient step:
Let xt+1 = xt − γgt.

end

Compute the epoch estimate yk:
Let yk+1 = 1

T

∑T
t=1 xt.

3.4 Issue for fully quantized method in distributed setting
The previous sections shows that quantization can be used on the stochastic gradients and introduces
a controllable increase in the second moment of the gradient estimates. However, the setup described
still requires the communication of the full precision at the start of the epoch to weight the stochastic
gradients down. Under the assumption that QSVRG is only performed on one machine at a time, for
the same reason as we analyze only one sample contribution for Lemma 10, and thus assuming that the
gradient estimate is of the form

Qs

∇fn(xt)−∇fn(yk) + Qs(∇f(yk))︸ ︷︷ ︸
Epoch Gradient (one machine)

 ,

10

Alistarh et al. [2016], [Version 3 on Arxiv], concluded that fully quantized SVRG (with quantized epoch
gradients) converges linearly. Their proof works1 for this setting but oversees the fact that in a distributed
setting, the computation of the epoch gradient is also distributed and the gradient estimate is of the form

Qs

∇fn(xt)−∇fn(yk) + 1
M

M∑
m=1

Qs(∇fm(yk))︸ ︷︷ ︸
Epoch Gradient (M machines)

 .

In this form, the analysis provided in Alistarh et al. [2016] can no longer be applied.
To see why this is an issue, consider the epoch gradient on one machine when the epoch starts at the

solution, such that ∇f(yk) = 0. In this setting, the quantization of the gradient will also output 0, and
the quantized epoch gradient will be correct. In the multiple machine setting, however, this is no longer
guaranteed to be the case. Consider this example in two dimensions with two machines where the gradient
at the solution for the first machine and second machine are

∇f1(x∗) =
[

1
1

]
,∇f2(x∗) =

[
−1
−1

]
.

The gradient of f is obviously 0, but using a one-level quantization operator on these gradient, the
following quantization is possible

Q1(∇f1(x∗)) =
√

2
[

1
0

]
, Q1(∇f2(x∗)) =

√
2
[

0
−1

]
,

leading to an non-zero epoch gradient estimate. To deal with this issue and get a fully quantized distributed
algorithm with linear convergence rate, we introduce new techniques to control the variance introduced by
the quantization in the next section.

4 Main Contribution
In order to solve the Noise Barrier introduced by quantization, we present here a way to reduce the
variance of the gradient estimate using only quantized communications. To introduce our contribution,
consider the simpler problem of trying to communicate a vector x from one machine to another using only
the exchange of quantized vectors. For notation purposes, we will denote by Qb a quantization operator
with variance blowup bound b (see Lemma 8). The simplest methods would be to send K independent
quantizations of x, x1, ..., xK , and use their average as an estimate of x, leading to a sublinear convergence
rate of O(1/K),

x̂ = 1
K

K∑
k=1

xk, E
[
‖x̂− x‖2

]
≤ 1
K

E
[
‖Qb(x)− x‖2

]
≤ b

K
E
[
‖x‖2

]
.

Given a precise enough quantization, say b < 1, we could however come up with a better scheme giving
more progress per bit. Consider the following iterative scheme where, starting at some x0, we send the
quantized difference of the current iterate estimate and x instead, and the iterative is updated with this
difference such that

xt+1 = xt +Qb(x− xt).

Following Lemma 8, this scheme allows linear convergence if b < 1 as

E
[
‖xT − x‖2

]
= E

[
‖xT−1 +Qb(x− xT−1)− x‖2

]
≤ bE

[
‖xT−1 − x‖2

]
≤ bTE

[
‖x0 − x‖2

]
.

While the quantization method introduced in Alistarh et al. [2016] could possibly be improved in
terms of the constants involved, their scheme is asymptotically optimal in that if we were able to make

1For the sake of completeness, a smaller issue with the analysis is that the epoch gradient are transmitted only once
at the start of the epoch. The errors made during each iteration are therefore not independent since they all rely on the
same slightly wrong approximation of the epoch gradient. This problem can however be easily fixed by sending a fresh
quantization of the epoch gradient at each iteration, which only changes the communication cost by a factor of 2.

11

more progress than mentioned above, up to multiplicative constants, this would violate the lower bound
on the communication complexity of convex optimization [Tsitsiklis and Luo, 1987]. As a sanity check,
observe that running a more precise quantization scheme is more efficient than running multiple less
precise quantization schemes. In terms of precision, running one Q 1

16
update is equivalent to running two

Q 1
4
update. However, in terms of communication cost, the more precise option wins. Using Lemma 8,

we see that b = 1/16 is equivalent to s = 4
√
D and b = 1/4 is equivalent to s = 2

√
D. Using 9, we see

that the precise update has a cost of F + log(
√

18)D, and the two low-precision updates have a cost of
2F + log(6)D > F + log(

√
18)D.

This scheme is illustrated here with a fixed x, but the goal is to use it to approximate the gradient of
each machine in distributed gradient descent. Instead of transmitting a quantization of the gradient at
machine m, only the difference between the current estimate of the gradient at machine m and the true
gradient is quantized and sent. Hand-waving a bit; assuming the method stabilizes at some point, the
difference between the gradient estimate of machine m and its true gradient will shrink, and the variance
introduced by quantization will also go down, allowing convergence. We make this idea more rigorous in
the next section.

4.1 Distributed Quantized GD Algorithm
Our main contribution is a Distributed Gradient Descent algorithm which only transfers quantized vectors
and still achieves linear convergence rate. We start with a GD based method to avoid dealing with
stochasticity as a start, but our method can be extended to work with SVRG, as shown in [Appendix XX].

For simplicity, assume that, at the start of the algorithm, we are given an initial point y0 and each
machine knows the exact value of the gradient of each other machine, stored in a variable G(0,m) =
∇fm(y0). At the start of iteration k, all machines know yk and have an estimate of the gradient of every
machine at iteration k − 1 stored in G(m)

k−1. The gradient estimates for each machine will be updated by
sending a quantization of bounded variance blowup b, Qb, of the difference between the gradient at step
yk and the gradient estimate at iteration k − 1;

G
(m)
k = G

(m)
k−1 +Qb(∇fm(yk)−G(m)

k−1).

The gradient estimate for each machine are then averaged to produce the gradient estimate at step k;

gk = 1
M

M∑
m=1

G
(m)
k = 1

M

M∑
m=1

G
(m)
k−1 +Qb(∇fm(yk)−G(m)

k−1).

The procedure is explained in details in Algorithm 3.
The convergence of this algorithm is not obvious from the previous example, as the target was a fixed

point whereas we are now trying to approximate the gradient, which is changing at each iteration. We
will show that if the quantization is sufficiently precise, i.e., b is sufficiently small, then the estimation of
the gradient for each machine "catches up" with the changing gradient fast enough to still enable linear
convergence. We call this variant Quantized Distributed Gradient Descent with Feedback (QDGD-F) and
refer to the case where only the quantized gradients are sent as QDGD.

4.2 Convergence proof
The key insight of the per-machine update rule defined above is that it is possible to bound the second
moment of the gradient estimate by a term depending on the true gradient at the current point and isolate
the error related to quantization. The error of the previous iterations carry over to the current one, but
those get slightly corrected over time such that the error made in the early iterations vanish at a linear
rate depending on the quantization precision b.

Lemma 11 (Second moment bound for the gradient estimate in QDGD-F).
Let f be the average of M β-smooth convex functions, f1, ..., fM , and Qb a quantization operator
with a variance blowup bound of b. Then, the gradient estimate used in QDGD-F,

gk = 1
M

M∑
m=1

G
(m)
k , G

(m)
k = G

(m)
k−1 +Qb(∇fm(xk)−G(m)

k−1),

12

Algorithm 3: One iteration of Quantized Distributed Gradient Descent with Feedback (QDGD-F)
Parameters: A step size γ ∈ R+.
Requires:
• An estimate of the parameter at the start of the current step xk,

• An estimate of the gradient of each machine at the previous step, G(m)
k−1, m ∈ [M].

Result:

• An estimate of the parameter at the end of the next step xk+1,

• An estimate of the gradient of each machine at the current step, G(m)
k , m ∈ [M].

Estimate the gradients for every machine at yk:
Each machine m computes

∆G(m)
k = Qb(∇fm(xk)−G(m)

k−1)
and send it to every other machine.
Once each message has been received, compute the machines gradient estimate,

G
(m)
k = G

(m)
k−1 + ∆G(m)

k , m ∈ [M].
Apply the gradient step:

Let xk+1 = xk − γ 1
M

∑M
m=1 G

(m)
k .

where G(m)
0 is initialized with ∇fm(x0), has a second moment bounded by

E
[
‖gk‖2

]
≤ ‖∇f(xk)‖2 + 4β

k−1∑
j=0

bk−j(f(yj)− f∗) + b

k∑
j=1

bk−j(f(yj)− f∗)

 .
The proof is based on variance blowup bound of the quantization and uses a technique similar as the

SVRG proof to bound the difference between gradients by the optimality gap at those points.

Proof:

Separating E
[
‖gk‖2

]
into the norm of the gradient and the approximation error

As a first step, we can separate the second moment of gk a term depending on the magnitude of the
true gradient at xk and the approximation error of the quantization procedure,

E
[
‖gk‖2

] (1)= E
[
‖gk −∇f(xk) +∇f(xk)‖2

]
,

(2)= ‖∇f(xk)‖2 + E
[
‖gk −∇f(xk)‖2

]
,

where (1) simply adds and remove the gradient at xk and (2) uses Trick 19. To make the analysis
easier, we can on the second moment of the approximation of each machine individually using the
following rough upper bound

E
[
‖gk −∇f(xk)‖2

]
= E

∥∥∥∥∥ 1
M

M∑
m=1

G
(m)
k − 1

M

M∑
m=1
∇fm(xk)

∥∥∥∥∥
2 ,

(3)
≤ 1
M

M∑
m=1

E
[∥∥∥G(m)

k −∇fm(xk)
∥∥∥2
]
,

13

where (3) uses Trick 22. Using the second moment bound of the quantization operator, we get

E
[∥∥∥G(m)

k −∇fm(xk)
∥∥∥2
]

(4)= E
[∥∥∥G(m)

k−1 +Qb(∇fm(xk)−G(m)
k−1)−∇fm(xk)

∥∥∥2
]
,

(5)
≤ bE

[∥∥∥G(m)
k−1 −∇fm(xk)

∥∥∥2
]
,

where (4) simply expands the definition of G(m)
k and (5) uses Lemma 8. We can also make explicit

the variance depending on the approximation done during the previous iteration as

E
[∥∥∥G(m)

k−1 −∇fm(xk)
∥∥∥2
]

(6)= E
[∥∥∥G(m)

k−1 −∇fm(xk−1) +∇fm(xk−1)−∇fm(xk)
∥∥∥2
]
,

(7)
≤ E

[∥∥∥G(m)
k−1 −∇fm(xk−1)

∥∥∥2
]

+ ‖∇fm(xk−1)−∇fm(xk)‖2
,

where (6) adds and remove the gradient of machine m at xk−1 and (7) uses Trick 19.

Full expression
Applying the previous steps recursively, we get the following formulation for the second moment;

E
[
‖gk‖2

]
≤ ‖∇f(xk)‖2 + 1

M

M∑
m=1

k−1∑
k=0

bk+1 ‖∇fm(xk−k)−∇fm(xk−k−1)‖2
.

Relation to the optimality gap
We can relate the difference in gradients to the value of the function at those points;

1
M

M∑
m=1
‖∇fm(yk)−∇fm(yk−1)‖2 (8)= Em∼Unif[M]

[
‖∇fm(yk)−∇fm(yk−1)‖2

]
,

(9)= Em
[
‖∇fm(yk)−∇fm(x∗) +∇fm(x∗)−∇fm(yk−1‖2

]
,

(10)
≤ 2Em

[
‖∇fm(yk)−∇fm(x∗)‖2

]
+ 2Em

[
‖∇fm(yk−1)−∇fm(x∗)‖2

]
,

(11)
≤ 4β [f(yk)− f∗ + f(yk−1)− f∗]

(8) interprets the average over the M machines as an expectation over m, taking uniformly at random.
(9) then adds and remove the gradient of fm at the optimal point of f , (10) separates the norm using
Trick 22 and (11) uses Trick 21 to relate

Final expression
Plugging this back in the bound we had, we get

E
[
‖gk‖2

]
≤ ‖∇f(xk)‖2 + 4β

k−1∑
j=0

bk−j(f(yj)− f∗) + b

k∑
j=1

bk−j(f(yj)− f∗)

 .

Given this bound, we can show that under some conditions on the precision b, the convergence rate of
QDGD deteriotates, when compared to GD, but stays linear.

Theorem 12 (Convergence of QDGD).
Let f , the average of M β-smooth convex functions, f1, ..., fM , be an α-strongly convex function
and Qb be a quantization operator with a variance blowup bound of b. Using the following gradient

14

estimate

gk = 1
M

M∑
m=1

G
(m)
k , G

(m)
k = G

(m)
k−1 +Qb(∇fm(xk)−G(m)

k−1,

where G(m
0) is initialized with ∇fm(x0) and applying iteratively the update

xk+1 = xk − γgk

with a step-size γ = 1
β lead to a linear convergence rate if b < 4

13κ+1 , such that

E [f(xk)− f∗] ≤ ck(f(x0)− f∗),

Where c = 1
2 (
√

(1− κ−1 + 3b)2 + b(1 + κ−1) + (1− κ−1 + 3b)).

Proof:

Bounding the optimality gap
For notation simplicity, we introduce h(x) = f(x) − f∗ for the optimality gap at x. Using the
β-smoothness of f , we can upper bound the error gap at xk by

f(xk+1) ≤ f(xk)− γ〈∇f(xk), gk〉+ γ2 β

2 ‖gk‖
2
.

Taking the expectation with respect to all random variables and applying the previous inequality to
the inequality gap, we get

E [h(xk+1)] ≤ E
[
h(xk)− γ ‖∇f(xk)‖2 + γ2 β

2 ‖gk‖
2
]
.

Using Lemma 11, we can upper bound the second moment of gk to get

E [h(xk+1)] ≤ E [h(xk)]− γ ‖∇f(xk)‖2

+ γ2 β

2

‖∇f(xk)‖2 + 4β

k−1∑
j=0

bk−jh(xj) + b

k∑
j=1

bk−jh(xj)

 .

Grouping the terms in ‖∇f(xk)‖2 and assuming that 0 ≤ γ ≤ 1
β (such that β

2 γ
2 − γ is negative), we

can use the lower bound ‖∇f(xk)‖2 ≥ 2µh(xk) (see Trick 21) to get

E [h(xk+1)] ≤ E
[
h(xk) +

(
βγ2 − 2γ

)
µh(xk)

]
+ 2γ2β2E

k−1∑
j=0

bk−jh(xj) + b

k∑
j=1

bk−jh(xj)

 .
To simplify the expression, set γ = 1

β and use κ = β
µ to denote the maximum condition number of f .

This allows us to rewrite the previous expression as

E [h(xk+1)] ≤ E

(1− κ−1)h(xk) + 2

k−1∑
j=0

bk−jh(xj) + b

k∑
j=1

bk−jh(xj)

 .
Proving linear convergence
To show that the optimality gap decreases linearly with k, we will perform a proof by induction;
assuming that the optimality decreases by a factor of c < 1 at each iteration 1, ..., k − 1, then
it decreases by a factor of c again at iteration k. It is easy to see that the base case holds for
(1 − κ−1) ≤ c ≤ 1; as we start with the correct gradient in memory, no quantization variance is
introduced into the mix and the first step is simply a gradient descent step. We will now show that if
it holds for 1, ..., k − 1, then it also holds for k.

15

Finding the constraints on c

Assuming that E [h(xk)] ≤ cE [h(xk−1)], we can rewrite the bound as

E [h(xk+1)] ≤

(1− κ−1)ckh(x0) + 2

k−1∑
j=0

bk−jcjh(x0) + b

k∑
j=1

bk−jcjh(x0)

 ,

(1)=

(1− κ−1) + 2
ck

k−1∑
j=0

bk−jcj + b

k∑
j=1

bk−jcj

 ckh(x0),

(2)=

(1− κ−1) + 2b
k

ck

k−1∑
j=0

(c
b

)j
+ b

k∑
j=1

(c
b

)j ckh(x0),

where (1) puts h(x0)ck in evidence and (2) puts bk in evidence in the inner sum. We can simplify the
summation terms as follow;

bk

ck

k−1∑
j=0

(c
b

)j
+ b

k∑
j=1

(c
b

)j (3)= bk

ck

[(
c
b

)k − 1
c
b − 1 + b

c

b

(
c
b

)k − 1
c
b − 1

]
,

(4)= bk

ck

((c
b

)k
− 1
)
c+ 1
c
b − 1 ,

(5)=
(

1− bk

ck

)
1 + c
c
b − 1 ,

where (3) uses
∑k−1
j=0 a

j = 1−ak

1−a and
∑k
j=1 a

j = a 1−ak

1−a , (4) groups the terms in
((

c
b

)k − 1
)
and (5)

simplifies the powers of k. Assuming that 0 < b < c, 1− bk

ck is upper-bounded and converges to 1 and
we have that

E [h(xk+1)] ≤
(

(1− κ−1) + 2 1 + c
c
b − 1

)
ckh(x0).

Hence, as long as there exists 0 < b < (1− κ−1) ≤ c < 1, such that (1− κ−1) + 2 1+c
c
b−1 ≤ c, we can

have linear convergence with rate c. This constraint can be made more explicit when rewritten as a
quadratic function,

−c2 + c(1− κ−1 + 3b) + b(1 + κ−1) ≤ 0.

As the constraint is concave in c, it is satisfied when

c ≤ 1
2((1− κ−1 + 3b)−

√
(1− κ−1 + 3b)2 + b(1 + κ−1))

or

c ≥ 1
2((1− κ−1 + 3b) +

√
(1− κ−1 + 3b)2 + b(1 + κ−1)).

A small development shows that the upper bound on c is not possible as it conflicts with 1− κ−1 ≤ c,
while the lower bound implies 1 − κ−1 ≤ c. Taking b = 0, i.e., without quantization introducing
variance and the machine gradients being transmitted exactly, the lower bound reduces to c ≥ 1−κ−1.
To ensure convergence, we must have that

1 > c ≥ 1
2(
√

(1− κ−1 + 3b)2 + b(1 + κ−1) + (1− κ−1 + 3b)).

Shifting the focus on a bound on b

This means that linear convergence is possible if

1
2(
√

(1− κ−1 + 3b)2 + b(1 + κ−1) + (1− κ−1 + 3b)) < 1,

16

with a rate of c = 1
2 ((1 − κ−1 + 3b) +

√
(1− κ−1 + 3b)2 + b(1 + κ−1)). To conclude the proof, the

more concise representation can be obtained through the following steps;

1
2(
√

(1− κ−1 + 3b)2 + b(1 + κ−1) + (1− κ−1 + 3b)) < 1,

←→
√

(1− κ−1 + 3b)2 + b(1 + κ−1) < 1 + κ−1 − 3b,
←→ (1− κ−1 + 3b)2 + b(1 + κ−1) < (1 + κ−1 − 3b)2,

←→ 4(3b− κ−1) + b(1 + κ−1) < 0,
←→ b(13 + κ−1) < 4κ−1,

←→ b(13κ+ 1) < 4,

←→ b <
4

13κ+ 1 .

Assuming a constant condition number, this results makes it possible to match the information theoretical
lower bound of Ω(D(logD + log(1/ε))) bits of communication to achieve ε-accurate results.

Comparing quantized and vanilla Gradient Descent It is not trivial to compare directly the
improvement per bit transmitted between traditional Gradient Descent and Quantized Gradient Descent
as, for simplicity, the theoretical bounds assume that the gradients are transmitted exactly in GD and
that the norm of the gradient is transmitted exactly if QDGD is implemented using the quantization and
compression scheme of Alistarh et al. [2016]. However, assuming that the error induced by the floating
point precision with F = 64 bits of precision is negligible, which should hold in the early iterations of
the algorithm, Consider a problem with a condition number of κ = 200 in D = 100 dimensions. An
update of GD needs to transmit F · · ·D = 3200 bits and leads to a multiplicative decrease of at least
1− κ−1 = 0.995. An update of QDGD with parameters b = η 4

13κ+1 , η = 0.12 using the quantization and
compression scheme of Alistarh et al. [2016] with s =

√
D/b (see Lemma 8) needs to transmits less than

800 bits (see Lemma 9) and the previous theorem shows that the multiplicative decrease is at most 0.996.
As we can do 4 updates of QDGD for at most the same communication cost of one update of GD, at
equal communication cost, QDGD is more efficient than GD as the multiplicative decrease of 4 steps of
QDGD is 0.9964 < 0.985 < 0.995. For clarity, those results are summarized in Table 1.

Comparison of multiplicative error reduction of quantized vs. traditional GD.

Error reduction Communication Cost
DGD ≤ 0.995 3200
QDGD-F ≤ 0.996 <800
QDGD-F (4 steps) ≤ 0.9964 ≤ 0.985 <3200

Assumption on the problem: κ = 200, D = 100, F = 32.

Table 1: Multiplicative error reduction of quantized vs. traditional GD. Results for Distributed
Gradient Descent (DGD) and Quantized Distributed Gradient Descent with Feedback (QDGD-F), under
the assumption that the problem has a condition number of κ = 200 in D = 100 dimensions, that the
error induced by the floating point precision with F = 32 is negligible and that the quantization and
compression scheme of Alistarh et al. [2016] is used.

4.3 Experiment
To confirm the theoretical results, we try DGD, QDGD and QDGD-F using 2 machines on the RCV1
dataset Lewis et al. [2004]. We use the LYRL2004 split, using the first 23149 samples to train a linear
regression to identify the largest class present in the dataset, CCAT, encoded as +1, where other classes are
encoded as 0. We compute the smoothness constant of the problem, β, and add a λ = β/99-weighted L2

2η = 0.1 was picked arbitrarily for the sake of this example and might not be optimal.

17

Figure 1: Progress per iteration of DGD, QDGD and QDGD-F. All three methods perform
similarly, but QDGD suffers from the Noise Barrier problem and is not able to converge to the global
optimum, as made clear by the zoom on the last 100 iterations.

regularization term in order to ensure that κ < 200 and use b = 1
2

4
13·200+1 as the quantization precision

for both QDGD and QDGD-F. This problem is too simple to be representative of a real-world machine
learning pipeline, but it does illustrate the two main points discussed in this work:

• QDGD suffers from the Noise Barrier problem, and QDGD-F fixes that problem, as illustrated in
Figure 1. As the problem is relatively simple, DGD, QDGD and QDGD-F all perform well, but
QDGD can not converge to the optimum due to noise, as made clear by the zoom on the last 100
iterations.

• Quantized methods are more communication efficient than traditional gradient descent, as illustrated
in Figure 2, where the quantized methods use an order of magnitude less bits than traditional
gradient descent.

5 Conclusion
This work shows that quantization can be used to reduce the communication cost of gradients exchanges in
distributed gradient descent systems and that the feedback mechanism can be used as a variance reduction
technique for quantization approaches, making it possible to achieve linear convergence in this setting and
asymptotically approach the information theoretic limit of communication optimal convex optimization.

An interesting question for future research raised by those results is the trade-off between the
communication cost and the accuracy of the gradient update. As illustrated in Theorem 12, quantization
can be applied to reduce the communication cost of the gradient update at the cost of some loss in
convergence rate. As discussed in the earlier sections, stochastic gradient updates make it possible to
decrease the computation cost of a gradient update at the cost of a reduction in the accuracy of the
gradient updates. Given those communication-accuracy and computation-accuracy trade-offs, it should be
possible to have an algorithm that can adapt to the relative cost of communication over computation in a
distributed system while keeping a desired level of accuracy. As a first step towards this idea, we show in
Appendix A that it is possible to adapt our quantization with feedback approach to SVRG

Many other questions are still open on this topic, such as the optimality of the quantization and
compression scheme introduced in Alistarh et al. [2016]. While our results for the communication costs

18

Figure 2: Progress per (expected) number of transmitted bits. The number of expected bits is
computed using Lemmas 8 and 9. The obvious observation is that the quantized versions of gradient
descent use an order of magnitude less communication to achieve similar results as the unquantized
version.

rely on those schemes, our convergence results only assume a bounded variance blowup and can thus be
applied to other quantization schemes with possibly other desirable properties such as sparsity.

Our convergence analysis assumes that the system starts with the knowledge of the correct gradients
for each machines to make the analysis of the convergence rate easier. However, we observed that this
might not be necessary in practice and whether this assumption is necessary in theory is an interesting
question as the feedback mechanism might be able to cope with some initial error given enough precision.

The focus of this work has been on gradient descent methods, but those results could be adapted to
work in coordinate-descent (CD) methods. In distributed CD settings, the data is typically distributed
over multiple machines by features, such that each machine knows some part of every samples instead
of everything about a subset of them. However, this makes it difficult to compute the gradient on one
machine, as it depends on features unavailable on the current machine. In this setting, Mannari [2017]
studied the effect of quantization on the transfer of the information required to compute the gradient
on one machine, but the analysis must be tailored to a specific cost function, and it is not yet known
how to achieve a linear convergence rate with quantization in this setting. It is possible that our feedback
mechanism and its analysis can be applied to this setting. It should also be possible to adapt our full
gradient methods to work on blocks of coordinates instead to get parts of the benefits of coordinate
descent methods.

19

References
D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communication-optimal stochastic
gradient descent, with applications to training neural networks (version 3 on arxiv). 2016.

S. Bubeck. Convex optimization: Algorithms and complexity. 2015.

T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project Adam: Building an Efficient and
Scalable Depp Learning Training System. 2014.

J. Dean, G. S. Corrado, R. Monda, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior,
P. Tucker, K. Yang, and A. Y. Ng. Large Scale Distributed Deep Networks. 2012.

A. Defazio and F. Bach. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
Convex Composite Objectives. 2014.

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction.
2013.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence
rate for finite training sets. 2017.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A New Benchmark Collection for Text Categorization
Research. 2004.

M. Mannari. Faster Coordinate Descent for Machine Learning through Limited Precision Operations.
2017.

A. Nedic and D. Bertsekas. Convergence Rate of Incremental Subgradient Algorithms. 2000.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-Bit Stochastic Gradient Descent and its Application to
Data-Parallel Distributed Training of Speech DNNs. 2014.

S. Shalev-Shwarts and T. Zhang. Stochastic Dual Coordinate Ascent Methods for Regularized Loss
Minimization. 2013.

N. Strom. Scalable Distributed DNN Training Using Commodity GPU Cloud Computing. 2015.

J. N. Tsitsiklis and Z.-Q. Luo. Communication Complexity of Convex Optimization. 1987.

J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed Asynchronous Deterministic and Stochastic
Gradient Optimization Algorithms. 1986.

H. Zhang, J. Li, K. Kara, D. Alistarh, H. Liu, and C. Zhang. The ZipML Framework for Training Models
with End-to-End Low Precision: The Cans, the Cannots, and a Little Bit of Deep Learning. 2016.

20

Appendix
A QSVRG and the Computation-Communication Tradeoff
Using Quantized MiniBatch GD as an example, the noise barrier depends on the variance of the gradient
estimate will depend on the variance introduced by the quantization operation and the variance introduced
by the selection of the samples to compute the gradient from. This means that it is possible to decrease
the precision of the quantization while increasing the size of the mini-batches to counteract the increase in
variance, and still conserve the same bound on the variance of the gradient estimate. This should makes
it possible to trade computation accuracy for computational accuracy and tune the parameters of the
algorithm to adapt to the architecture of the system it is running on, depending on the relative cost in
time of computation vs. communication.

In order to find an algorithm with such properties that still achieves linear convergence, we show
here that it is possible to combine the feedback mechanism introduced to deal with the variance of the
quantization with the variance reduction mechanism for SGD, SVRG. While we do not provide a full
analysis of the computation-communication tradeoff, it should be possible to extend our results by simply
considering different quantization precision and minibatch sizes for the inner iterations of the QSVRG
algorithm.

A.1 Quantized SVRG algorithm
We assume that, at the start of the algorithm, we are given an initial point y0 and each machine knows the
exact value of the gradient of each other machine, stored in a variable G(0,m) = ∇fm(y0). At the start of
iteration k, all machine know yk and have an estimate of the gradient of every machine at iteration k − 1
stored in G(k − 1,m). Starting with x(k)

0 = yk, we will do a SVRG update with a gradient estimate of the
form g

(k)
t = Gs(t, k) +Ge(t, k), where Gs is the stochastic gradient estimate and Ge is the epoch gradient

estimate. Gs is taken from a sample uniformly at random,

Gs(t, k) = Q1(∇fit(x
(k)
t)−∇fit(yk)), it ∼ U [1, N].

In order to approximate the epoch gradient for yk without without having to transmit it in full precision,
we will only send a b-quantization of the difference from the previous gradient estimate G(k − 1,m), with
0 < b < 1;

G(k,m) = G(k − 1,m) +Qb(∇fm(yk)−G(k − 1,m)).

b < 1 is needed to ensure that we indeed make progress, and b > 0 simply means that we are not
transmitting the gradient with full precision. As G(k,m) is only an approximation of the epoch gradient,
using it without modification for multiple iterations would bias the gradient estimate. To avoid this
problem, we send a small correction term at each iteration to randomize the epoch gradient estimate

Ge(t, k) = 1
M

M∑
m=1

Ge(t, k,m), Ge(t, k,m) = G(k,m) +Q1(∇fm(yk)−G(k,m)).

This yields the following gradient estimate at step t;

g
(k)
t = Q1(∇fit(x

(k)
t)−∇fit(yk))︸ ︷︷ ︸

Stochastic Gradient

+ 1
M

M∑
m=1

G(k,m) +Q1(∇fm(yk)−G(k,m))︸ ︷︷ ︸
Randomized Quantized Epoch Gradient Estimate

.

Sub-optimality of this procedure
The information sent at each iteration is an approximation of the difference between our epoch gradient
estimate and the true gradient ∇fm(yk). While we need it to make sure the epoch gradient estimates
are independent across iterations, we could also use them to refine our estimate of the epoch gradient by
replacing G(k,m) by G(k,m) +Q1(∇fm(yk)−G(k,m)) after each iteration.

While this could be used to avoid having to transmit the b-quantization of the epoch gradient difference
at the start of the epoch, or at least reduce the required precision, we chose not to analyze this scheme as
its analysis is more cumbersome and notation heavy. It might be however an interesting optimization

21

to do in practice; assuming our scheme achieves linear convergence, using the additional information
transmitted at each epoch should improve the constant in the convergence rate.

A.2 Convergence analysis
We will apply the following steps:

• Bound the variance of the gradient estimate, E
[∥∥∥g(k)

t

∥∥∥2
]
(Theorem 16)

– Separate the stochastic gradient variance from the epoch gradient estimate variance (Lemma
13)

– Apply the SVRG analysis (Lemma 4) to the stochastic gradient variance.
– Relate the variance of the epoch gradient estimate at iteration t to the variance of the epoch

gradient estimate at the start of the epoch (Lemma 14).
– Relate the variance of the epoch gradient estimate at the start of the epoch to the variance of

the epoch gradient estimate of previous epochs (Lemma 15).

A.2.1 Bound for the variance of the gradient estimate

Lemma 13 (Separation of stochastic and epoch variance).

E
g

(k)
t

[
‖gt‖2

]
≤ EGs(t,k)

[
‖Gs(t, k) +∇f(yk)‖2

]
+ EGe(t,k)

[
‖∇f(yk) +Ge(t, k)‖2

]
.

Proof: The following operations show how to separate the variance.

E
g

(k)
t

[
‖gt‖2

]
= EGs(t,k),Ge(t,k)

[
‖Gs(t, k) +Ge(t, k)‖2

]
,

(1)= EGs(t,k),Ge(t,k)

[
‖Gs(t, k) +∇f(yk)−∇f(yk) +Ge(t, k)‖2

]
,

(2)= EGs(t,k)

[
‖Gs(t, k) +∇f(yk)‖2

]
+ EGe(t,k)

[
‖−∇f(yk) +Ge(t, k)‖2

]
,

− 2EGs(t,k),Ge(t,k) [〈Gs(t, k) +∇f(yk),−∇f(yk) +Ge(t, k)〉] ,
(3)
≤ EGs(t,k)

[
‖Gs(t, k) +∇f(yk)‖2

]
+ EGe(t,k)

[
‖∇f(yk) +Ge(t, k)‖2

]
.

In (1), we add and remove the true gradient at yk, (2) expands the norm and (3) uses the fact that
the expectation of the Ge(t, k) is ∇f(yk) to eliminate the dot product.

Lemma 14 (Relation of the epoch gradient estimate at iteration t to the gradient estimate at the
start of the epoch).

EGe(t,k)

[
‖∇f(yk)−Ge(t, k)‖2

]
≤ Em,G(k,m)

[
‖∇fm(yk)−G(k,m)‖2

]
.

22

Proof: This relation is easy using Lemma 8 for Q1;

EGe(t,k)

[
‖∇f(yk)−Ge(t, k)‖2

] (1)= EGe(t,k,1),...,Ge(t,k,M)

∥∥∥∥∥ 1
M

M∑
m=1
∇fm(yk)−Ge(t, k,m)

∥∥∥∥∥
2 ,

(2)
≤ Em,Ge(t,k,m) [‖∇fm(yk)−Ge(t, k,m)‖ 2] ,
(3)= Em,G(t,k,m)

[
‖∇fm(yk)−G(k,m)−Q1(∇fm(yk)−G(k,m))‖2

]
,

(4)
≤ Em,G(k,m)

[
‖∇fm(yk)−G(k,m)‖2

]
.

(1) expands the definition of G(t, k), (2) uses Trick 22 to transform the sum into an expectation, (3)
expands the definition of G(t, k,m) and (4) applies Lemma 8.

Lemma 15 (Relation of the epoch gradient estimate at current epoch to previous epochs).

E
[
‖∇fm(yk)−G(k,m)‖2

]
≤ 4β

k−1∑
j=0

bk−jf(yj)− f∗ + b

k∑
j=1

bk−jf(yj)− f∗
 .

Proof:

Em,G(k,m)

[
‖∇fm(yk)−G(k,m)‖2

] (1)= Em,Qb

[
‖∇fm(yk)− g(k − 1,m)−Qb(∇fm(yk)−G(k − 1,m)‖2

]
,

(2)
≤ bEm [‖∇fm(yk)−G(k − 1,m)‖] ,
(3)= bEm [‖∇fm(yk)−∇fm(yk−1) +∇fm(yk−1)−G(k − 1,m)‖] ,
(4)= bEm

[
‖∇fm(yk)−∇fm(yk−1‖2

]
+ bEm

[
‖∇fm(yk−1)−G(k − 1,m)‖2

]
,

(1) expands the definition of G(k,m), (2) applies Lemma 8, (3) adds and remove the true gradient at
the previous epoch, (4) uses Trick 19.

We can relate the difference in gradients to the value of the function at those points;

Em
[
‖∇fm(yk)−∇fm(yk−1)‖2

] (1)= Em
[
‖∇fm(yk)−∇fm(x∗) +∇fm(x∗)−∇fm(yk−1‖2

]
,

(2)= 2Em
[
‖∇fm(yk)−∇fm(x∗)‖2

]
+ 2Em

[
‖∇fm(yk−1)−∇fm(x∗)‖2

]
,

(3)= 4β [f(yk)− f∗ + f(yk−1)− f∗]

(1) adds and remove the gradient of fm at the optimal point of f , (2) separates the norm using Trick
22 and (3) uses Trick 21.

Plugging this back in the bound we had, we get

Em,G(k,m)

[
‖∇fm(yk)−G(k,m)‖2

]
≤ b4β [f(yk)− f∗ + f(yk−1)− f∗] ,

+ bEm,G(k−1,m)

[
‖∇fm(yk−1)−G(k − 1,m)‖2

]
.

And applying the same steps recursively to reach G(0,m) gives us

E
[
‖∇fm(yk)−G(k,m)‖2

]
≤ 4β

k−1∑
j=0

bk−j(f(yj)− f∗) + b

k∑
j=1

bk−j(f(yj)− f∗)

 .

23

A rough upper bound on the sum on the right, ignoring constants, is bk(
∑k
j=0 b

−jf(yj) − f∗, hence if
the sequence f(yk)− f∗ decreases at a linear rate of b, having f(yk)− f∗ ≤ bk(f(yk)− f∗), the variance
decreases at a rate of kbk, which leads
Direct application the previous lemmas gives us

Theorem 16 (Bound of the variance of gt for the current procedure).

E
[
‖gt‖2

]
≤ 12β(f(xt)− f∗ + f(yk)− f∗) + 4β

k−1∑
j=0

bk−j(f(yj)− f∗) + b

k∑
j=1

bk−j(f(yj)− f∗)

 .
The main implication of this theorem is that if the quantization precision b < 1 and the error of the
sequence yk decreases quickly enough, the variance of the gradient estimate converges to 0.

A.2.2 Recursive error formulation

We are now ready to do some heavy lifting on this formula and prove the following theorem.

Theorem 17.
Assuming that γ = η

β , T = 2
γα with η ≤ 1/6, we have the following recursive relation

h(yk+1) ≤ 1 + 12η
2− 12ηh(yk) + 4η

2− 12η

k−1∑
j=0

bk−jh(yj) + b

k∑
j=1

bk−jh(yj)

 .

Proof:

Step 1: Link ‖xt+1 − x∗‖2 to the variance of the gradient estimate
Starting from the definition of xT+1, we can use the unbiasedness of the gradient estimate abd plug
in our bound for the variance to get the following relation. For the sake of space we use h(x) as a
shortcut for f(x)− f∗.

E
x

(k)
T +1|x

(k)
T

[∥∥∥x(k)
T+1 − x

∗
∥∥∥2
]

(1)= E
g

(k)
T

[∥∥∥x(k)
T − γg

(k)
T − x

∗
∥∥∥2
]
,

(2)= E
g

(k)
T

[∥∥∥x(k)
T − x

∗
∥∥∥2
− 2γ〈g(k)

T , x
(k)
T − x

∗〉+ γ2
∥∥∥g(k)
T

∥∥∥2
]
,

(3)
≤
∥∥∥x(k)

T − x
∗
∥∥∥2
− 2γ〈∇f(x(k)

T), x(k)
T − x

∗〉+ 12βγ2(h(xt) + h(yk)),

+ 4βγ2

k−1∑
j=0

bk−jh(yj) + b

k∑
j=1

bk−jh(yj)

 ,
(4)
≤
∥∥∥x(k)

T − x
∗
∥∥∥2
− 2γh(x(k)

T) + 12βγ2(h(xt) + h(yk)),

+ 4βγ2

k−1∑
j=0

bk−jh(yj) + b

k∑
j=1

bk−jh(yj)

 ,
(5)
≤
∥∥∥x(k)

T − x
∗
∥∥∥2

+ (12βγ2 − 2γ)h(x(k)
T) + 12βγ2(h(yk)),

+ 4βγ2

k−1∑
j=0

bk−jh(yj) + b

k∑
j=1

bk−jh(yj)

 .
(1) expands the definition of x(k)

T+1, (2) expands the norm using ‖a+ b‖2 = ‖a‖+ ‖b‖+ 2〈a, b〉, (3)
uses the unbiasedness of the gradient estimate and the bound on the variance derived in Thm 16, (4)

24

uses 〈∇f(x(k)
T), x(k)

T − x∗〉 ≥ h(x(k)
T) and (5) groups the terms in h(x(k)

T).
We can repeat the process to link x(k)

T+1 to x(k)
1 ;

E
x

(k)
T +1|x

(k)
1

[∥∥∥x(k)
T+1 − x

∗
∥∥∥2
]

(1)
≤
∥∥∥x(k)

1 − x∗
∥∥∥2

+ (12βγ2 − 2γ)
T∑
t=1

h(x(k)
T) + 12βTγ2(h(yk)),

+ 4βTγ2

k−1∑
j=0

bk−jh(yj) + b

k∑
j=1

bk−jh(yj)

 ,
(2)
≤ 2
α
h(x(k)

1) + (12βγ2 − 2γ)
T∑
t=1

h(x(k)
T) + 12βTγ2(h(yk)),

+ 4βTγ2

k−1∑
j=0

bk−jh(yj) + b

k∑
j=1

bk−jh(yj)

 ,
0

(3)
≤ 2
Tα

h(x(k)
1) + (12βγ2 − 2γ) 1

T

T∑
t=1

h(x(k)
T) + 12βγ2(h(yk)),

+ 4βγ2

k−1∑
j=0

bk−jh(yj) + b

k∑
j=1

bk−jh(yj)

 ,
(1) applies the previous steps repeatedly and (2) uses the fact that ‖x− x∗‖2 ≤ 2

α (f(x)− f∗). (3)
uses the fact that the norm on the left hand side is necessarily positive to bound the right hand side
as positive and divides by T .

To simplify the notation, we will assume that the parameters T and γ are linked; bigger iterations
will need more averaged samples to get an accurate answer. Building from our knowledge of SVRG,
choosing T = 2

γα and γ = η
β , where η controls the length of the step size and iterations per epoch,

works nicely. Defining x(k)
1 := yk and moving the term dependent on the average error during epoch

k + 1, we get

(2− 12η) 1
T

T∑
t=1

h(x(k)
T) ≤ (1 + 12η)h(yk) + 4η

k−1∑
j=0

bk−jh(yj) + b

k∑
j=1

bk−jh(yj)

 .
Assuming that η < 1/6, the left hand side is still positive and we can use the convexity of h to get∑T

t=1 h(x(k)
T) ≥ h(

∑T
t=1 x

(k)
T). Defining yk+1 =

∑T
t=1 x

(k)
T as the average of the iterates during epoch

k + 1, we get

h(yk+1) ≤ 1 + 12η
2− 12ηh(yk) + 4η

2− 12η

k−1∑
j=0

bk−jh(yj) + b

k∑
j=1

bk−jh(yj)

 .

A.2.3 Linear convergence proof for some parameters

The recursive expression obtained as an upper bound for the error at step yk+1, depending on all
previous error, might seem messy at first. However, we can still show linear convergence under some set
of parameters. While the proof of the following theorem might not seem very illuminating on the true
behavior of QSVRG with quantized gradients, it is a useful first step in understanding the relationship
between parameters.

Theorem 18.
With b = 1/2 and η = 1/48, we have linear convergence of QSVRG with quantized gradients;

E [f(yk)− f∗] ≤ 0.9k(f(y0)− f∗).

25

Proof: The expression we found in Theorem 17 for the error at step yk+1 is

h(yk+1) ≤ 1
2− 12η

(1 + 12η)h(yk) + 4η

k−1∑
j=0

bk−jh(yj) + b

k∑
j=1

bk−jh(yj)

 .

Replacing the constants b = 1/2 and η = 1/48,

h(yk+1) ≤ 1
7

5h(yk) + 1
3

k−1∑
j=0

1
2k−j h(yj) + 1

2

k∑
j=1

1
2vh(yj)

 .

For the first step, it is easy to see that we have h(y1) ≤ 5
7h(y0); as we assume we start with the exact

epoch gradient in memory, there is no variance induced by the quantization of the epoch gradients
yet, and we have the same convergence rate as QSVRG without quantization of epoch gradients.

For the subsequent steps however, the variance of the epoch gradients starts to play a role. For
the second step, a bit of torturing gives us

h(y2) ≤ 5
7h(y1) + 1

21

(
1
2h(y0) + 1

2h(y1)
)
,

= 5
7

(
5
7 + 1

15

(
1
2 + 1

2
5
7

))
h(y0),

= 5
7

(
5
7 + 1

15
6
7

)
h(y0),

= 5
7

(
5
7 +

2
5
7

)
h(y0),

≤ 5
7

6
7h(y0).

So we can see that the performance is degrading due to the added error. However, there is a limit to
this degradation, which depends on the parameters b, η and the best convergence rate achievable.
For our specific choice of parameters, this limit happens to be (slightly below) 6/7. To show this, we
will proceed by induction.

Assume that for all 0 ≤ j ≤ k, we have that h(yj) ≤ (6/7)jh(y0). then, h(yk+1) ≤ (6/7)k+1h(y0).
As we have already shown the base cases to illustrate the degradation of the convergence rate, we
only need to show that it holds for k + 1 > 2 given the previous steps;

h(yk+1)
(1)
≤ 5

7h(yk) + 1
21

1
2k

k−1∑
j=0

2jh(yj) + 1
2

k∑
j=1

2h(yj)

 ,

(2)= 5
7

(
6
7

)k
h(y0) + 1

21
1
2k

k−1∑
j=0

(
26

7

)j
+ 1

2

k∑
j=1

(
26

7

)jh(y0),

Where (1) just develops from Theorem 17 and (2) applies the assumption that h(yj) ≤
(6

7
)j
h(y0). In

order for the recurrence to hold for yk+1, we need to have that

1
21

1
2k

k−1∑
j=0

(
26

7

)j
+ 1

2

k∑
j=1

(
26

7

)j ≤ 1
7

(
6
7

)k
.

26

To show this, take the following steps;

1
21

1
2k

k−1∑
j=0

(
26

7

)j
+ 1

2

k∑
j=1

(
26

7

)j (1)= 1
21

1
2k

((
2 6

7
)k − 1

2 6
7 − 1

+ 6
7

(
2 6

7
)k − 1

2 6
7 − 1

)
,

(2)= 1
21

1
2k

(
6
7 + 1

2 6
7 − 1

((
26

7

)k
− 1
))

,

(3)= 1
21

1
2k
(6

7
)k
(

6
7 + 1

2 6
7 − 1

((
26

7

)k
− 1
))(

6
7

)k
,

(4)= 1
21

(
6
7 + 1

2 6
7 − 1

(
1− 1

2k
(6

7
)k
))(

6
7

)k
,

Where (1) uses
∑k−1
j=0 x

j = 1−xk

1−x to simplify, (2) groups terms, (3) puts
(6

7
)k in evidence and (4)

simplifies the powers of k. It is now easy to see that the convergence holds if the fraction before the(6
7
)k are lower than 1

7 . As k grows, this term will tend to, and is bounded by,

1
21

6
7 + 1

2 6
7 − 1

= 13
105 ≤

1
7 .

Concluding the proof.

While the previous proof does not shed much light on the behavior of QSVRG with quantized epoch
gradients, it is sufficient to show that under the specified parameters, we achieve linear convergence.

B Tricks
This section shows some of the well known inequalities used in multiple proofs in this report.

Trick 19.
Let x̄ = E [x] and c be a constant.

E
[
‖x− x̄+ c‖2

]
= E

[
‖x− x̄‖2

]
+ ‖c‖2

.

Trick 20.
Let f be a L-smooth, µ-strongly convex function and f∗ be the value of f at the global minimum. We
have that

2µ(f(x)− f∗) ≤ ‖∇f(x)‖2 ≤ 2L(f(x)− f∗).

Trick 21 ((Bubeck [2015], Lemma 6.4)).

Ei
[
‖∇fi(x)−∇fi(x∗)‖2

]
≤ 2L(f(x)− f∗)

Trick 22. ∥∥∥∥∥
N∑
n=1

xn

∥∥∥∥∥
2

≤ N
N∑
n=1
‖xn‖2

.

∥∥∥∥∥ 1
N

N∑
n=1

xn

∥∥∥∥∥
2

≤ 1
N

N∑
n=1
‖xn‖2 ≤ En∼U [1,N]

[
‖xn‖2

]
.

27

	Introduction
	Background on Convex optimization
	Problem definition
	Gradient methods
	Stochastic Variance Reduced Gradient

	Previous Work on Quantization
	Distributed Problem Definition
	Quantization Paradigm
	Earlier results
	Issue for fully quantized method in distributed setting

	Main Contribution
	Distributed Quantized GD Algorithm
	Convergence proof
	Experiment

	Conclusion
	Appendix
	QSVRG and the Computation-Communication Tradeoff
	Quantized SVRG algorithm
	Convergence analysis

	Tricks

