
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. W. Zwaenepoel, président du jury
Prof. A. Argyraki, directrice de thèse

Prof. G. Pierre, rapporteur
Prof. A. Wolf, rapporteur

Prof. E. Bugnion, rapporteur

THÈSE NO 8243 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 1ER FÉVRIER 2018

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE D'ARCHITECTURE DES RÉSEAUX

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS 

Suisse
2018

PAR

Georgios IOANNIDIS





Science bestowed immense new powers

on man and at the same time created

conditions which were largely beyond

his comprehension and still more

beyond his control.

Winston Churchill

address at MIT, 1949

To my parents and my sister.

For endlessly supplying me with courage and optimism since day #0.





Acknowledgments
No words may accurately portray my current thoughts, as I feel overwhelmed with mixed

emotions, just if I were standing at a crossroads. A long and eventful journey is coming to an

end, but a new, promising one, is lying ahead. As I am concluding my thesis, I would like to

thank a few people who have, in their own way, contributed to this work.

First and foremost, this dissertation would not have been materialized without the continuous

support of my thesis advisor, professor Katerina Argyraki. If I could summarize her core

principles in one phrase, that would be: Katerina will vow to transform a graduate student

into a fully fledged, independent researcher. She would always allow me room to expand and

experiment with my own ideas, guide me on coming up with my proposals and interpreting

the experimental results, as well as suggest considering alternative approaches when an

experiment would run into an apparent dead-end. At the same time, Katerina had been

repeatedly available whenever I would run into trouble. Ever heard of the “advisor’s aura”?

This is exactly the feeling I would experience during my meetings with Katerina, as even five

minutes would be enough to imbue me with inspiration and confidence to move on. Katerina,

it has been an honor and a privilege to work with you, and I would like to wholeheartedly

thank you for your guidance and for believing in this work.

Another significant moment in this journey was working with professor Guillaume Pierre in

Rennes, France. Guillaume welcomed me and facilitated my integration within the Myriads

team, where I had the opportunity to work for eight months. He would happily voice his views

on my work, allowing me nevertheless to settle with my own, final decisions. Furthermore,

he is a remarkably pleasant person to communicate with; we have shared during the past

three years countless discussions on a broad spectrum of topics, ranging from scientific

advancements to everyday stories. Guillaume, I would like to thank you very much for all your

support.

I would also like to individually thank the rest of my jury committee members, professors

Edouard Bugnion, Alexander L. Wolf and Willy Zwaenepoel. Ed was the first senior scientist

I worked with, after joining Katerina’s lab, bringing valuable experience straight from the

industry. I had the opportunity to collaborate with Alex during the HARNESS European

project, where his guidance and comments facilitated the integration of my work within the

big picture. Willy, the president of my jury committee, aided the smooth procedure of my oral

examination by alleviating any anxiety that I would naturally have.

Furthermore, I would like to acknowledge two more collaborators: Dr. (José) Gabriel de

Figueiredo Coutinho, and Dr. Mark Stillwell, both affiliated with Imperial College London.

i



Acknowledgments

Gabriel, Mark, I would like to express my true thanks for facilitating the deployment of real

applications on the cloud, a process that was neither trivial nor, at times, straightforward. You

were always available when issues would arise, promptly responding even late at night.

My colleagues from the Network Architecture Laboratory have also formed an influential

element across my entire PhD journey. Ovidiu, we have shared the same office for the past six

years, as well as our struggles and our endeavors, and I am very glad to have met you. Mihai,

you tremendously facilitated my integration within the lab team and significantly aided my

initial presentations with your valuable feedback and advice. Pavlo, you have significantly

reduced my stress levels with your calm and positive energy. Dimitri, I am very happy to

have shared all these interesting conversations with you, including the classic “����� vs ���”

arguments. Jonas, your experience was essential and fundamental during our work on real,

Top-of-Rack switches. Luis and Georgia, you have tremendously helped me in managing my

anxiety during the past months, as I was writing my thesis, with our diverse discussions.

Of course, I could not neglect my friends within the Greek community. A big thanks to all of

you – you know who you are – for all the moments that we have shared. Although I cannot

delve into details and individually address everyone, as this chapter would exceed the size

of the rest of the thesis, I would like to specifically acknowledge one dear friend: Matt, you

had been always around for anyone in need of your help or just to chat and your tremendous

positive vibe is truly inspiring!

Even if it has been more than six years since I moved to Switzerland, I have to mention two

people back in Greece, with whom I am maintaining very close ties: Lykourgos and Athanasia.

Both played their own role in facilitating my first and last year, respectively, of my PhD journey.

“Lyk,” I feel exalted to have been maintaining a strong friendship with you for more than

a decade and your encouragement was fundamental during my initial year in Switzerland.

Athanasia, your continuous inspiration and support during the last months was indispensable,

while I was writing my thesis and preparing my presentation, as you enormously galvanized

me in enduring this long and arduous process. I owe you my sincere gratitude for all the

optimism you have imbued me with.

Finally, none of this would had happened without the never-ending support and encourage-

ment of my parents and my sister Anna. They were literally the first to believe in me and would

steadily encourage me, in spite of any difficulties I would come across. Mother, Father and

Anna, I would like to genuinely express to you my eternal indebtedness and affirm that I feel

blessed to have you in my life.

Lausanne, December 2017 George Ioannidis

ii



Abstract
Cloud computing has been experiencing sharp development over the last years, leading to

an increased demand for application migration to the cloud. Cloud providers, in an effort

to attract more customers and earn their confidence, offer to tenants the illusion of an iso-

lated network, exposing familiar abstractions. At the same time, creating this illusion poses

challenging problems for the providers, as one tenant’s traffic may interfere with another’s in

complicated, unpredictable ways.

First, new challenges have arisen in administering access-control rules (ACLs). On the one

hand, installing ACLs at the server is incompatible with bare-metal support and introduces

unnecessary performance overhead. On the other hand, offloading the most popular ACLs on

the limited hardware memory in Top-of-Rack (ToR) switches should not be conducted naïvely,

as the existence of wildcard rules presents inter-rule dependencies that must be respected.

Second, tenants’ demands have evolved beyond requesting hardware resources; for instance,

tenants may require bandwidth provisions between their resources or optimized access to a

specific cloud service, e.g., a Mail server or a Database. Cloud providers have not adequately

adapted to these expanding demands, therefore elevating hardware resources to “first class

citizens,” as non-hardware constraints are not considered during resource allocation, instead

they are applied afterwards.

In this thesis we propose two architectures that facilitate cloud providers in managing their

shared network resources in a flexible way. First, we demonstrate virtual flow tables, a ToR

architecture that handles ACLs using a two-level memory hierarchy. The most popular ACLs

are stored in the limited hardware memory, respecting any dependencies between wildcard

rules, while the ToR’s supervisor engine maintains access to the entire ACL rule-set. Second,

we present a two-tiered architecture for scheduling cloud resources, consisting of a resource-

agnostic scheduling layer and a resource-specific enforcement layer. Network resources and

constraints are taken into consideration during resource scheduling, instead of afterwards,

while resource provisioning, as well as general network-management policies, are delegated

to the resource-specific tier.

Key words: caching, cloud architecture, flexibility, network virtualization, scheduling, wildcard

rules

iii





Résumé
Le cloud computing a connu un fort développement au cours des dernières années, entraînant

une demande accrue pour la migration d’applications vers le cloud. Les fournisseurs de ser-

vices cloud, dans le but d’attirer plus de clients et gagner leur confiance, offrent aux locataires

l’illusion d’un réseau isolé, exposant des abstractions familières. Dans le même temps, créer

cette illusion pose des problèmes difficiles pour les fournisseurs de services cloud, car le trafic

d’un locataire peut interférer avec celui d’un autre de manière compliquée et imprévisible.

Tout d’abord, de nouveaux défis sont apparus dans l’administration des règles de contrôle d’ac-

cès (ACLs). D’une part, l’installation des ACLs sur le serveur est incompatible avec le soutien

de “bare-metal” et entraîne des pertes de performances inutiles. D’autre part, le déchargement

des ACLs les plus populaires sur la mémoire matérielle limitée dans les commutateurs du

Top-of-Rack (ToR) ne doit pas être effectué naïvement, car l’existence des règles génériques

présente des dépendances entre règles qui doivent être respectées.

Deuxièmement, les demandes des locataires ont évolué au-delà de la simple demande de

ressources matérielles ; par exemple, les locataires peuvent nécessiter des dispositions de

bande passante entre leurs ressources ou un accès optimisé à un service de cloud spécifique,

par exemple un serveur de messagerie électronique ou une base de données. Les fournisseurs

de services cloud ne se sont pas adaptés de manière adéquate à ces exigences croissantes,

élevant ainsi les ressources matérielles aux “citoyens de première classe”, car les contraintes

non matérielles ne sont pas prises en compte lors de la planification des ressources.

Dans cette thèse, nous proposons deux architectures qui facilitent les fournisseurs de services

cloud dans la gestion de leurs ressources réseau partagées de manière flexible. Premièrement,

nous démontrons des tables des règles virtuel, une architecture du ToR qui gère les ACLs

en utilisant une hiérarchie de mémoire à deux niveaux. Les ACLs les plus populaires sont

stockées dans la mémoire matérielle limitée, en respectant les dépendances entre les règles

génériques, tandis que le moteur de supervision du ToR conserve l’accès à toutes des règles.

Deuxièmement, nous présentons une architecture à deux niveaux pour la planification des

ressources du cloud, constituée d’une couche de planification des ressources agnostique et

d’une couche d’application des ressources spécifique. Les ressources réseau et les contraintes

sont prises en compte lors de la planification des ressources, et non plus après, tandis que le

provisionnement des ressources, ainsi que les politiques générales de gestion du réseau, sont

déléguées au niveau spécifique à la ressource.

Mots clefs : architecture cloud, flexibilité, mise en cache, planification du placement, règles

v



Résumé

génériques, virtualization des réseaux

vi



Contents
Acknowledgments i

Abstract (English/Français) iii

Contents ix

List of Figures xi

List of Tables xiii

List of Algorithms xv

Listings xvii

1 Introduction 1

1.1 Managing Shared Flow Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scheduling Shared Network Resources . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5

2.1 Flow-Rule Forwarding in Software-Defined Networking . . . . . . . . . . . . . . 5

2.1.1 Packet Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Cache Management for Flow Rules . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Our Approach in Facilitating Caching Overlapping Rules . . . . . . . . . 7

2.2 Scheduling Cloud Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Bandwidth Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Resource Oversubscription . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Enforcing Bandwidth Fairness . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 Our Approach in Facilitating Cloud Resource Scheduling . . . . . . . . . 11

3 Managing Shared Flow Tables 13

3.1 Virtual Flow Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Abstraction and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 The Challenge of Overlapping Rules . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Cache Management for Overlapping Rules . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 The Software Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



Contents

3.2.2 Rule Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Baseline Algorithm: Least Recently Used . . . . . . . . . . . . . . . . . . . 25

3.2.4 An Implementable Algorithm: Most Heavily Used . . . . . . . . . . . . . . 26

3.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Packet traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Creating a synthetic overlapping rule set . . . . . . . . . . . . . . . . . . . 30

3.3.3 Independent variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.4 Dependent variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Scheduling Shared Network Resources 47

4.1 Two-Tiered Resource Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 The Network Infrastructure Resource Manager . . . . . . . . . . . . . . . . . . . 48

4.2.1 Modeling Network Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2 Exposing Virtual Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.3 Bandwidth Reservations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.4 Latency Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.5 Oversubscription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.6 Fair Sharing of the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.3 Scenario 1: Scheduling with Bandwidth Reservations . . . . . . . . . . . . 62

4.3.4 Scenario 2: Scheduling with Latency Constraints . . . . . . . . . . . . . . 66

4.3.5 Scenario 3: Scheduling with Oversubscription . . . . . . . . . . . . . . . . 68

4.3.6 Scenario 4: Enforcing Fairness . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Conclusions 77

A Flow Rule Definitions and Notations 79

A.1 Flow Rule Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.2 Flow Rule Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.3 Rule Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.4 Flow Rule Hyperspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.5 Overlapping Flow Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.5.1 Directly Overlapping Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.5.2 Indirectly Overlapping Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B Packet Classifier Node Definition 83

Bibliography 94

viii



Contents

Curriculum Vitae 95

ix





List of Figures
3.1 Virtual Flow Table abstraction (top) and underlying memory hierarchy (bottom) 14

3.2 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Ingress bytes handled by the software table versus the hardware table size . . . 36

3.4 Ingress bytes handled by the software table versus the maximum rules in a

classifier partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Ingress bytes handled by the software table versus the memory allocation factor

of the partitioning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Ingress bytes handled by the software table versus the history factor of the MHU

policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Flow rule replacement rate versus the hardware table size . . . . . . . . . . . . . 39

3.8 Flow rule replacement rate versus the maximum rules in a classifier partition . 40

3.9 Flow rule replacement rate versus the memory allocation factor of the partition-

ing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.10 Flow rule replacement rate versus the history factor of the MHU policy . . . . . 41

3.11 Individually cached flow rules versus the hardware table size . . . . . . . . . . . 42

3.12 Individually cached flow rules versus the maximum rules in a classifier partition 43

3.13 Individually cached flow rules versus the memory allocation factor of the parti-

tioning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.14 Individually cached flow rules versus the history factor of the MHU policy . . . 44

3.15 Replication rate of flow rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Two-tiered architecture to facilitate scheduling shared network resources . . . 48

4.2 Example of a simple “star” LAN topology . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Grid’5000 network backbone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 AdPredictor worker throughput over time . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 AdPredictor execution time over link capacity . . . . . . . . . . . . . . . . . . . . 64

4.6 AdPredictor execution time over cluster placement . . . . . . . . . . . . . . . . . 65

4.7 WikiBench request miss rate, no latency constraints, based on originating cluster 67

4.8 WikiBench request Round-Trip-Time distribution, based on latency constraints 68

4.9 AdPredictor worker throughput over time; single tenant . . . . . . . . . . . . . . 70

4.10 AdPredictor “shuffle” traffic throughput over concurrently admitted tenants . . 70

4.11 AdPredictor execution time over concurrently admitted tenants . . . . . . . . . 71

4.12 Link utilization over concurrently admitted tenants . . . . . . . . . . . . . . . . . 71

xi



List of Figures

4.13 AdPredictor “shuffle” throughput with bandwidth oversubscription, N = 3 tenants 72

4.14 Enforcing fairness on ����� applications . . . . . . . . . . . . . . . . . . . . . . . 74

xii



List of Tables
3.1 Characteristics of packet traces; original and accelerated versions . . . . . . . . 30

3.2 Independent variables used in virtual flow tables evaluation scenarios . . . . . 33

4.1 Cluster specifications within Grid’5000 . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Round-Trip-Time of two batches of 100 requests to the wikipedia server . . . . 61

4.3 Size of Danish and English wikipedia dumps of 2016-08-01 . . . . . . . . . . . . 62

A.1 Notations used in flow rule related context . . . . . . . . . . . . . . . . . . . . . . 79

xiii





List of Algorithms
3.1 Recursive partitioning of the flow rule hyperspace . . . . . . . . . . . . . . . . . . 21

3.2 Detect directly overlapping rules within a given leaf node . . . . . . . . . . . . . . 23

3.3 Detect indirectly overlapping rules within a given leaf node . . . . . . . . . . . . . 24

3.4 “Least Recently Used” replacement policy . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 “Most Heavily Used” replacement policy . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Evaluation of virtual flow tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Generating a synthetic overlapping rule set from a packet trace . . . . . . . . . . 32

4.1 Exposing end-to-end bandwidth to the scheduler . . . . . . . . . . . . . . . . . . 52

4.2 Creating a new bandwidth reservation . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Exposing end-to-end latency to the scheduler . . . . . . . . . . . . . . . . . . . . . 54

4.4 Dynamic bandwidth oversubscription . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Fair sharing of the network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xv





Listings
4.1 Internal representation of network links in figure 4.2 . . . . . . . . . . . . . . . . 49

4.2 Virtual paths exposed to the scheduler in figure 4.2 . . . . . . . . . . . . . . . . . 50

4.3 Scheduling with bandwidth resources example . . . . . . . . . . . . . . . . . . . 51

4.4 Scheduling with latency constraints example . . . . . . . . . . . . . . . . . . . . 53

B.1 Partial definition of the ��������	 class . . . . . . . . . . . . . . . . . . . . . . . 83

xvii





1 Introduction

A key goal of modern cloud providers is to offer to each of their tenants the illusion of an

isolated network that is under the tenant’s control, e.g., by exposing to the tenants abstractions

like layer-2 broadcast domains, IP subnets, or security groups. This illusion makes it easier for

tenants to replicate their physical network organization in the cloud and manage it with the

same familiar processes. At the same time, creating this illusion poses challenging problems

for the cloud providers, as one tenant’s traffic may interfere with another’s in complicated,

unpredictable ways.

In this thesis, we propose two mechanisms that are meant to help cloud providers manage

shared network resources in ways that are compatible with the above goal. In particular,

we propose: (i) a mechanism for managing shared flow tables in packet switches; and (ii) a

mechanism for managing the throughput and latency experienced by different tenants sharing

the same network links.

1.1 Managing Shared Flow Tables

Flow tables in packet switches are an ideal place for storing access-control rules (ACLs), i.e.,

rules that specify which source and destination addresses/ports are allowed to exchange traffic.

ACLs are the main mechanism offered to cloud tenants for controlling their communications,

and they enable tenants to enforce policies that in a physical network would be enforced by

traditional stateful firewalls. Today, cloud providers typically install ACLs at the server, within

the operating system (OS) that hosts the tenant virtual machines (VMs) or containers. This

approach is convenient, because it does not require any changes to network devices, which

are typically hard to reprogram. This convenience, however, comes at the cost of significant

disadvantages:

• Incompatibility with bare-metal support (where the cloud provider offers tenants access

to physical machines): For security reasons, ACLs must be installed at an entity outside

the one being governed. For instance, if a rule specifies that tenant X must not send any

1



Chapter 1. Introduction

traffic to tenant Y , it does not make sense to let tenant X itself enforce this rule. Hence,

when tenants are given access to servers, ACLs must be installed somewhere outside the

server.

• Unnecessary performance overhead: Compute virtualization platforms are designed

to avoid host-OS involvement as much as possible, and installing ACLs within the host

OS violates this mentality. Bypassing the host OS with single-root I/O virtualization

(SR-IOV) [45] and offloading the implementation of network abstractions elsewhere has

tremendous potential for performance improvement [12, 44].

Instead, we propose installing ACLs at the Top-of-Rack switch (ToR). Others have taken similar

approaches: FasTrak also installs ACLs at the ToR, but only for a few flows selected by the guest

OS [44]. In contrast, our mechanism does it for all traffic and without any changes to the guest

OS, which leads to very different technical challenges. Amazon and Microsoft also install ACLs

outside the server, but at the network interface card (NIC) as opposed to the ToR [62, 21]. In

contrast, our mechanism does not require proprietary hardware, but only software changes at

the ToR.

The challenge we face is that a typical ToR lacks the amount of data-path memory necessary

to store any significant number of ACLs. This is a fundamental limitation related to the ASIC

manufacturing process, which is unlikely to disappear in the near future [41]. To address this

challenge, we propose a ToR architecture that exports the abstraction of a virtual flow table,

which fits orders of magnitude more ACLs than the ToR’s data-path memory (the physical flow

table). We provide this abstraction through a simple, two-level memory hierarchy, where the

ToR’s (fast but small) data-path memory acts as a cache for a much larger and slower backing

store accessible from the ToR’s supervisor engine. However, naïve caching in the presence

of ACLs with wildcards leads to incorrect forwarding behavior. Hence, this thesis focuses on

caching algorithms that support ACLs with wildcards while maintaining correct forwarding

behavior.

1.2 Scheduling Shared Network Resources

Today, cloud providers do not typically provide their tenants with bandwidth or latency guar-

antees for their intra-cloud communications. For instance, today, a cloud tenant can request

and obtain a certain number of virtual machines (VMs) or containers with certain process-

ing/memory/storage resources; the same tenant, however, cannot request that the network

paths between these compute nodes have certain bandwidth and/or latency properties.

The challenge we face is that cloud providers not only need to schedule many different

resource types, but that these types keep evolving, e.g., cloud providers are now starting to

offer processing on FPGAs, GPGPUs, scrubbing boxes, etc. Hence, we need a scheduling

solution that seamlessly and flexibly integrates not only network resources, but also new

resource types. To address this challenge, we propose a two-tiered scheduling architecture

2



1.3. Contributions

that consists of two layers: (i) resource-agnostic scheduling, which makes scheduling decisions

without having any semantic information about specific resource types; (ii) resource-specific

enforcement, which consists of multiple infrastructure resource managers, each one handling a

specific resource type, and which implements the scheduling decisions made by the resource-

agnostic scheduler. This thesis focuses on the network infrastructure resource manager, which

communicates to the resource-agnostic scheduler the availability of network resources and

implements the scheduler’s decisions that pertain to these resources.

1.3 Contributions

After presenting related work in Chapter 2, this thesis makes two contributions:

1. In Chapter 3, we present a switch architecture that exposes the abstraction of a virtual

flow table, which fits orders of magnitude more rules than the switch’s physical flow

table. We provide this abstraction through a simple, two-level memory hierarchy, where

the switch’s (fast but small) data-path memory acts as a cache for a much larger and

slower backing store accessible from the ToR’s supervisor engine. We focus on the

particular challenge of caching rules with wildcards, because naïve caching of such rules

leads to incorrect forwarding behavior. We formulate the problem of choosing which

wildcard rules to cache in the data-path and show that it is NP-hard. Then we propose a

simple, practical caching algorithm, called Most Heavily Used, which favors the caching

of rules that recently matched the most amount of traffic. We show—through extensive

simulations—that, given realistic data-path memory sizes and realistic data-center

traffic, our algorithm results in 5% miss rate (i.e., 95% of the traffic stays in the data-

path).

2. In Chapter 4, we present a two-tiered architecture for scheduling cloud resources, con-

sisting of a resource-agnostic scheduling layer, which makes scheduling decisions with-

out any semantic information about specific resource types, and a resource-specific

enforcement layer, which enforces the scheduler’s decisions. We focus on the network

infrastructure resource manager, which enforces scheduling decisions that pertain to

network resources. We show—through extensive experiments on an educational cloud

platform—that a cloud provider can use our mechanism to (a) provide bandwidth and

latency guarantees to cloud tenants sharing the same network links; and (b) implement

useful, general network-management policies, like oversubscription and fair network

sharing.

We present our conclusions in Chapter 5.

3





2 Related Work

In this chapter, we present the fundamental background concepts on two research fields that

have motivated our work, as well as notable related advancements and research proposals. In

particular, section §2.1 illustrates current approaches on flow-rule forwarding in Software-

Defined Networking, while section §2.2 exhibits the state-of-the-art practices on scheduling

cloud resources.

These research fields have been a major focus of our work on adding flexibility in multi-tenant

networks, as we will thoroughly show in chapters 3 and 4.

2.1 Flow-Rule Forwarding in Software-Defined Networking

Software-Defined Networking (SDN) [27] has recently enabled the dynamic management

of a network by decoupling the control plane from the forwarding plane. Protocols such as

OpenFlow [35] have popularized the use of flow-rule forwarding in Internet routers.

In this section, we highlight the related work that has been conducted on the following SDN-

affiliated fields:

1. Packet Classification (section §2.1.1), algorithms matching ingress packets arriving at a

switch with internally stored flow rules.

2. Cache Management for Flow Rules (section §2.1.2), the challenge of storing and main-

taining the entire traffic flow rule-set, given the slower processing speed in the control-

plane and the limited memory in the data-plane.

2.1.1 Packet Classification

Packet classification is the procedure of matching ingress packets at an Internet router with

a flow rule. In this section, we present the fundamental background and related work in

hardware- and software-based classification algorithms.

5



Chapter 2. Related Work

Hardware-based Classification

Packet classification within the hardware is typically conducted by storing flow rules within

Ternary Content-Addressable Memory (TCAM), capable of conducting packet classification at

Gigabit rate [69], as the lookup time is executed in amortized constant time (e.g., 1.25 ns [4]).

Although packet classification within a TCAM offers significant advantages, fully replacing

software-based classification with TCAM-based solutions may be cost-prohibitive, as a typical

TCAM chip may cost 4−5 times more than a SRAM chip [34].

In this thesis, the terms “TCAM” and “hardware memory” will be used interchangeably.

Software-based Classification

Software-based packet classification, which has been extensively studied in the literature [24],

is an elaborate problem, as two competing bottlenecks have to be simultaneously addressed:

(i) worst-case time complexity, i.e., the required time to match an ingress packet to the ap-

propriate rule; and (ii) worst-case storage complexity, i.e., the required memory to store all

flow rules within the memory. The simplest packet classification algorithm is to conduct a

linear search through the entire flow rule-set, a process which would only be feasible for a

relatively small rule-set, as the lookup time complexity grows linearly with the number of

installed traffic rules.

To address the aforementioned challenges in packet classification with bigger rule-sets, a

plethora of partitioning heuristics have been proposed, such as HiCuts [25, 26], HyperCuts [54]

and EffiCuts [60]. The core mechanism of this class of algorithms is the division of the entire

flow rule space into smaller partitions, in order to facilitate quicker rule lookups.

2.1.2 Cache Management for Flow Rules

Cache management for flow rules is the problem of choosing an appropriate subset of the

entire traffic rule-set to be cached in the limited hardware memory within the edge switches. In

this section, we present the related work that has been conducted by the academic community

on this field and highlight the potential challenges.

DevoFlow [10] exposes the scalability limitations of the OpenFlow flow setup rate. The authors

propose utilizing wildcard rules at the edge switches to handle all ingress “microflows” by

default and invoke the controller only when “elephant” flows are detected. Although this

approach limits the number of specific, exact-match rules installed in egress switches, this

work assumes enough available memory at the edge switches to install the necessary wildcard

rules which will handle the ingress traffic, while preserving the network’s forwarding policy

semantics.

vCRIB [42] and DIFANE [70] both partition the hyperspace of the traffic rules, respectively repli-

6



2.1. Flow-Rule Forwarding in Software-Defined Networking

cating or partitioning rules as necessary. Dependencies between wildcard rules are resolved

by treating the generated partitions as the atomic units, as they are proactively distributed

across multiple devices in their entirety. In vCRIB, only ingress packets matching the installed

partitions at a given edge switch are promptly handled, while the rest are redirected to other

devices. In DIFANE, the first ingress packets of a network flow arriving at an edge switch

are always redirected to the authoritative switch responsible for the partition containing the

network flow, until the respective rules are cached at the edge switch. Nevertheless, both

papers assume that there are enough switches available with adequate aggregate memory to

store the entire rule-set.

CAB [67] also divides the rule-set hyperspace into smaller partitions, replicating rules as nec-

essary, and initially keeping all generated partitions within the controller. When a new ingress

packet arrives at an edge switch, the entire corresponding partition is installed, including

the appropriate rule matching the ingress packet. Similarly, when a traffic rule expires, the

entire corresponding partitions are removed. Since partitions are treated as atomic units, any

dependency issues between rules are resolved by caching at the edge switch all wildcard rules

within a given partition. Nevertheless, this approach is likely to bring in the TCAM mutually

independent rule subsets, potentially polluting the limited hardware memory with flow rules

that will apply to little or no traffic at all.

CacheFlow [29] offloads the entire rule-set on the guest OS within the switch, while updat-

ing periodically the limited switch TCAM with the subset of the “heaviest” rules, including

high-priority dependent rules. To avoid polluting the hardware with numerous low-weight,

high-priority rules that would handle little traffic, CacheFlow abstracts long chains of such

dependent rules by introducing “cover” rules, redirecting microflows to the switch guest OS.

Nonetheless, this approach assumes that it is feasible to truncate long dependency chains,

replacing them with a few rules; this hypothesis may not be scalable in bigger data-centers or

Internet Service Providers, where complex dependencies within a bigger traffic rule-set may

arise.

2.1.3 Our Approach in Facilitating Caching Overlapping Rules

In this dissertation, we address the challenge of caching wildcard rules from a different

perspective. In particular:

1. We do not assume that we have adequate aggregate hardware memory available within

the data-plane switches to store the necessary traffic rules (DevoFlow, vCRIB, DIFANE).

Instead, we concentrate on picking a rule subset to be cached in the switch TCAM.

2. We do not insert unnecessary rules into the limited hardware memory. This sets our work

apart from CAB, where entire coarse-grained partitions are being inserted in the TCAM.

Instead, we conduct an analysis to detect dependencies between wildcard flows, which

are subsequently taken into consideration to maintain correct forwarding semantics. In

7



Chapter 2. Related Work

particular, when a rule R is inserted in the TCAM, we also insert all higher-priority rules

that overlap with R; conversely, when a rule R is evicted from the TCAM, we also evict

all lower-priority rules that overlap with R.

3. We do not make any assumptions on the dependency patterns between traffic rules

(CacheFlow). Instead, we are utilizing software-based classification algorithms (§2.1.1)

to break rule dependencies by partitioning the rule hyperspace.

We thoroughly present our work on this problem in chapter 3.

2.2 Scheduling Cloud Resources

Cloud Computing, the universal access to a shared pool of configurable computing resources [36],

has been experiencing sharp development over the last years, leading to an increased demand

for application migration to the cloud [50].

In this section we highlight the related work that has been conducted on the following fields

affiliated with Cloud Computing:

1. Bandwidth Provisioning (section §2.2.1), offering minimum bandwidth guarantees to

end-users, in addition to hardware-related performance guarantees.

2. Resource Oversubscription (section §2.2.2), the policy of allocating resources to end-

users beyond the nominal capacity of the cloud infrastructure, in order to achieve higher

resource utilization.

3. Enforcing Bandwidth Fairness (section §2.2.3), which ensures proper and “fair” band-

width allocation across different tenants.

2.2.1 Bandwidth Provisioning

Recent growth in Cloud Computing has led cloud providers to offer increased resource and

performance guarantees to potential tenants, such as CPUs, Virtual Machines or storage

capacity, in an effort to attract more customers and earn their confidence. Nevertheless, cloud

providers still fail to adequately provision network guarantees, such as assured bandwidth or

tail latency thresholds. Notable state-of-the-art examples include:

• Amazon Web Services (AWS) provide “Enhanced Networking” [1, 2]. It does not directly

address the tenants’ needs, as tenants have to specify placement groups [3], thus in-

dicating more constraints than the ones they really need. In a sense, tenants provide

themselves the solution to the scheduler, whereas the scheduler should determine it

on its own. Furthermore, there is no concrete quantification of the expected network

8



2.2. Scheduling Cloud Resources

performance; instead, CPU performance is used to provide the end-user a performance

estimation.

• Google Cloud Platform lists only the egress throughput caps that the tenant will experi-

ence [18], without providing any minimum guarantees during scheduling.

• Microsoft Azure offers a “Virtual Network” [40] to inter-connect scheduled resources, as

well as bandwidth-optimization support [38, 39]. In spite of this, network provisioning

is not taken into consideration during resource scheduling, but instead afterwards.

• The OpenStack “kilo” scheduler [46] may accept an �������������	
�� parameter,

exposed to the tenant, so that the end-user may schedule their resources to a faster

cluster. Notwithstanding the availability zones, users are essentially required to provide

a hint to the scheduler, instead of simply stating their networking demands.

The absence of network resources or constraints during scheduling could seriously hinder the

predictability of the infrastructure’s performance, thus also the performance of tenant applica-

tions. For instance, concurrent batch applications, e.g., MapReduce applications, deployed by

multiple tenants could introduce network congestion resulting in mutual underperformance.

Furthermore, in such an environment, it would be infeasible to offer any latency guarantees

to tenants deploying latency-sensitive applications, e.g., Memcached.

To address the aforementioned challenges, significant research has been conducted over

the past years in an effort to provide minimum bandwidth guarantees and respect latency

constraints.

OpenStack Neutron

OpenStack Neutron [47] provides “networking-as-a-service” to end-users, by presenting a

networking management framework. Examples of services provided by Neutron include:

(i) custom network topology or VLAN specification; (ii) floating IP address allocation, allow-

ing dynamic resource reallocation across the cloud infrastructure in case of system failure;

(iii) Quality of Service (QoS) functionalities aimed to fulfill Service-Level-Agreements (SLA)

with end-users, such as egress bandwidth rate limiters; and (iv) exposing advanced features

“as-a-service,” such as firewalls or load balancers. Furthermore, Neutron offers a wide range of

plugins to facilitate its deployment by seamlessly integrating in real and virtual switches, such

as Open vSwitch [16] and Cisco Nexus 1000V [8].

Academic Research

The authors in [71] show that the decision of satisfying a heterogeneous bandwidth request in

the cloud is a NP-complete problem and propose a Virtual Machine (VM) allocation heuristic.

GARA [15] exposes both hardware and network resources to the scheduler as abstract re-

sources. GateKeeper [51] proposes an admission control mechanism that provides minimum

9



Chapter 2. Related Work

bandwidth guarantees to tenants, albeit without enforcing bandwidth allocation on “band-

width abusive” applications. SecondNet [23] implements a scalable bandwidth allocation

algorithm by representing the scheduling problem as a weighted bipartite graph and executing

min-cost network flow matching.

Proteus [66] provides predictable performance and cost guarantees by profiling the tenant

applications and letting tenants choose their bandwidth caps based on the proposed cost

models. Cicada [33] measures the application’s traffic, provides feedback to the tenant and

may accordingly update the resource placement. The authors in [17] approach the problem

from the perspective of VM migration and propose a sequence planning heuristic that re-

spects application bandwidth demands. CloudMirror [32] abstracts bandwidth reservation

requests by allowing tenants to specify bandwidth requirements between different application

components.

2.2.2 Resource Oversubscription

Resource oversubscription is the practice of reserving more resources on a cloud platform

than nominally available, on the grounds that tenants are not expected to continuously utilize

their requested resources to their full extent. Underutilized resources tend to incur higher

maintenance costs within a given time interval, therefore cloud providers share a natural

incentive to increase resource utilization, potentially beyond their nominal capacities.

Sponge [68] proposes a CPU oversubscription mechanism for Virtual Machines (VMs) with

respect to minimizing the potential impact on application performance. The authors in [56]

demonstrate that reserving more resources than nominally available does not necessarily

violate the Service-Level-Agreement (SLA) with the end-users, while the authors in [59]

present a thorough analysis on over-provisioning techniques of CPU and network resources.

2.2.3 Enforcing Bandwidth Fairness

Cloud providers, in an effort to achieve high network link utilization and to earn the end-users’

confidence, are modeling TCP-like behavior in multi-tenant networks during bandwidth

allocation, either at a virtual machine level or tenant level. Therefore, enforcing fairness has

been extensively studied in the bibliography.

Seawall [53] proposes a hypervisor-deployed mechanism that imposes per-source fair band-

width allocation. EyeQ [28] abstracts the data-center as an extensive switch, applying band-

width sharing policies at an end-to-end level. FairCloud [48] enforces proportional sharing on

congested links across different tenants, so that tenants may not take advantage of specific

communication patterns. Spiderweb [30] redistributes bandwidth between tenants according

to their demands and payments. ElasticSwitch [49] provides minimum bandwidth guarantees

and dynamically adjusts VM-to-VM bandwidth throttling based on the congestion level of the

network.

10



2.2. Scheduling Cloud Resources

2.2.4 Our Approach in Facilitating Cloud Resource Scheduling

In this dissertation, we propose a flexible cloud platform to facilitate the implementation and

the deployment of: (i) bandwidth provisioning; (ii) resource oversubscription; and (iii) enforc-

ing bandwidth fairness. We have designed our platform based on two fundamental principles:

1. Flexibility: cloud administrators should be able to seamlessly integrate new resources

and network-management mechanisms in our platform.

2. Abstraction: our architecture should conceal the low-level implementation details from

the scheduler and the tenants. On the other hand, any features interacting with tenants

should be exposed in a user-friendly way, oriented around the tenant demands.

We thoroughly present our approach in chapter 4.

11





3 Managing Shared Flow Tables

In this chapter, we present our solution for managing shared flow tables in multi-tenant

environments. As stated in the introduction, we propose installing access control rules in

packet switches—whereas today they are typically installed in servers, which is incompatible

with bare metal support and yields unnecessary performance overhead. The place to store

rules in packet switches is the data-path memory, which, however, is typically too small

for storing all the rules necessary in a multi-tenant environment. We address this by using

data-path memory as a cache for a larger, but slow state store. The technical challenge we

focus on is that caching rules that include wildcards leads to incorrect forwarding behavior, if

done naïvely. We show that the problem of identifying the best rules to cache is NP-hard and

propose a simple, implementable algorithm to solve it. We evaluate our algorithm through

extensive simulations and real traffic traces. All formal definitions and notations used in this

chapter are summarized in appendix A.

3.1 Virtual Flow Tables

3.1.1 Abstraction and Implementation

Consider a Top-of-Rack (ToR) switch with a physical flow table that fits T access rules; we say

that the switch exposes (to a network operator or SDN controller) the abstraction of a virtual

flow table (VFT) if, from the network operator/controller’s point of view, the switch can store

N � T access rules. The top picture in Figure 3.1 illustrates the abstraction.

We implement the VFT abstraction with a simple, two-layer memory hierarchy:

1. A software table, located outside the switch’s data-path and accessible only by the

switch’s local control plane (typically a set of processes running on a CPU located in the

same chassis as the data-path), which fits N access rules.

2. A hardware table, accessible by the switch’s data-path (typically a switching ASIC), which

fits T � N access rules. This is the same as the switch’s physical flow table; we use the

13



Chapter 3. Managing Shared Flow Tables

term “hardware” instead of “physical” to differentiate from the software table.

The software table is the authoritative table that stores all the access rules installed on the

switch by the network operator or SDN controller. The hardware table acts as a cache for the

software table, and we refer to access rules that are stored in the hardware table as “cached

rules.” The bottom picture in Figure 3.1 illustrates our two-layer memory hierarchy.

Software Table
Guest OS, Large Memory, Slow Rule Access

Hardware Table
ASIC, Small Memory, Fast Rule Access

Virtual Flow Table

Large Memory
Fast Rule Access

Figure 3.1 – Virtual Flow Table abstraction (top) and underlying memory hierarchy (bottom)

Caching is managed by the cache manager: a process running on the switch’s local control

plane, which periodically polls the hardware table, computes a weight for each rule in that

table that reflects the rule’s recent popularity, and replaces lighter rules with heavier rules.

The switch’s data-path handles all the traffic that can be served from the hardware table and

passes the rest to the switch’s local control plane. More specifically: When a new packet arrives

at the data-path, a lookup is performed in the hardware table. If the lookup returns an action

other than “forward to the local control plane,” the packet stays in the data-path until it is

dropped or forwarded. Otherwise, the packet is tagged with ingress port number and passed

to the switch’s local control plane, where a lookup is performed in the software table. Since

the software flow table is authoritative, every lookup returns either a “drop” or a “forward”

action. If the latter, the packet is tagged with the proper egress port number and passed back

to the switch’s data-path, which removes all tags and forwards the packet through the specified

egress port. Figure 3.2 illustrates this interaction between data-path and local control plane.

14



3.1. Virtual Flow Tables

Top-of-Rack
Switch

Forwarding
Threads

Cache
Manager

ASIC

Flow TableSoftware

N entries

Flow TableHardware

T � N entries

In flow
table?

Rule
exists?

In flow
table?

Drop

Ingress
Ports

Egress
Ports

Data-path

Supervisor

Controller

Yes

No

Yes
Yes

No
NoCompare hardware

and software
flow statistics

Consult Authoritative
Tables

Poll statistics,
insert/remove

rules

Packets

Rules

Figure 3.2 – System architecture

We have implemented a prototype that exports the VFT abstraction on a switch consisting of a

Broadcom Trident+ switching ASIC coupled with a NetLogic XLP MIPS processor [14]. This

dissertation, however, does not focus on the prototype implementation, but rather on the

design of the VFT abstraction and, in particular, the challenge of handling overlapping rules,

which is described next. The numbers we present in the rest of this chapter were obtained from

a C++-based simulator, where both the hardware and software flow tables are implemented as

Standard Template Library unordered (hash) tables.

3.1.2 The Challenge of Overlapping Rules

The presence of overlapping rules introduces profound challenges in managing cached rules

with respect to maintaining correct forwarding behavior.

To demonstrate our argument, we start with a simple example of overlapping rules, which allow

all traffic from ��������������	 to ���	�������
 except ICMP traffic, which is dropped.

15



Chapter 3. Managing Shared Flow Tables

1 ������ ��	
��	
��
��� � ������ �
��

��� � ������ ��� � ������� �����

2 ������ ��	
��	
��
��� � ������ �
��

��� � ������ ���� � ������� � ��

These rules overlap in the sense that an ingress packet P may match both of them; this is why a

priority is specified for each rule, indicating which rule should be preferred in case of multiple

matches.

Throughout this thesis, we assume that two overlapping rules never share the same priority.

Typically, more general rules are assigned lower priorities than a more specific rule. In the

above example, the first rule (R1), which allows all traffic between the specified prefixes, would

be allocated a low priority than the second rule (R2), which blocks all ICMP traffic between

the same specified prefixes.

We say that “rule R1 is lower-overlapping relative to R2,” or “R2 is higher-overlapping relative

to R1,” and we write R1 < R2, when R1 and R2 overlap and R1 has lower priority than R2. In this

case, when a packet matches both rules, only the actions of R2 are triggered.

Overlapping rules pose a challenge in our context, because careless caching of such rules

leads to incorrect forwarding behavior. In the above example, if the first rule was cached in

the hardware table but the second rule was not, an ICMP packet matching both rules would

be allowed (whereas the correct behavior would have been to block it). Hence, if we insert the

first rule in the cache, we must also insert the second one. Conversely, if we evict the second

rule from the cache, we must also evict the second one.

In general, to maintain correct forwarding behavior, we must ensure that, for each cached rule

R, there is no higher-overlapping rule that is not cached. This is equivalent to the following

principles:

• When we insert a rule R in the hardware table, we must also insert all higher-overlapping

rules Rh > R.

• When we evict a rule R from the hardware table, we must also evict all lower-overlapping

rules Rl < R.

In case of “chain overlaps,” we must follow these principles recursively. For example, consider

the following 2-tuple rules:

1 ������ ��
��

��� � ������ !�


�	 � ��������� "�#"

2 ������ ��


�	 � ������ !�
��	

��� � ��������� � ��$�

3 ������ ��
�%�

��� � ������ !�


�	 � ��������� ���

While R1 > R2 and R2 > R3, R1 and R3 do not overlap. Nevertheless, if we insert R3 in the hard-

ware table, we must also insert R2 (so that packet ������������ �����	����
 triggers R2,

not R3), and, recursively, we must also insert R1 (so that packet ����������� �����	����


triggers R1, not R2).

16



3.1. Virtual Flow Tables

Problem Statement

Consider a set of N rules RN = {R1,R2, . . . ,RN } and a hardware table of size T ≤ N . We

assign to each rule Ri a benefit metric bi ∈ R≥0. We want to choose a subset of the rules

RT ⊆RN ,s.t.|RT | ≤ T to cache in the hardware table, such that we maximize the aggregate

benefit of the cached rules and maintain correct forwarding behavior.

To formally state the problem, we represent the set of rules RN as a directed acyclic graph

G = (V , A), where:

• For each rule Ri there is a vertex ui ∈V , and there are no other vertices in V .

• For each Ri < R j there is an arc (i , j ) ∈ A, and there are no other arcs in A.

We must solve the following optimization problem:

maximize:
N∑

i=1
bi xi

subject to:
N∑

i=1
xi ≤ T

and xi ∈ {0,1}

and xi ≤ x j ∀(i , j ) ∈ A

In other words, we must choose at most T vertices from G , such that we maximize their

aggregate benefit, on the condition that: if we choose a vertex ui , we must also choose any

vertex u j that is reachable from ui .

Complexity

We now show that our optimization problem is NP-hard, by reducing the NP-hard 0-1 knapsack

problem [9] to an instance of our optimization problem.

We consider M ∈N+ items. Each item yi has weight wi ∈N+ and benefit value bi ∈ R+. The

0-1 knapsack problem is the following optimization problem:

maximize:
M∑

i=1
bi xi

subject to:
M∑

i=1
wi xi ≤ T

and xi ∈ {0,1}

Furthermore, consider an instance of the original overlapping rules problem, with the follow-

17



Chapter 3. Managing Shared Flow Tables

ing constraints for a directed acyclic graph G = (V , A):

C1. b j = 0 ∀u j ∈ V : ∃(i , j ) ∈ A. Every vertex with an incoming arc has a zero benefit value.

Vertices with no incoming arcs will be hereinafter referred to as “root vertices.”

C2. No vertex uk exists that can be reached from two different vertices (ui ,u j ), i 
= j , with

bi > 0 and b j > 0, i.e., from two different root vertices.

We may reduce the 0-1 knapsack problem to the aforementioned instance of our original

problem as follows:

1. Each item yi , i = 1,2, . . . , M is mapped to a root vertex u j ∈ V with the same positive

benefit value bi = b j > 0.

2. The weight wi of item yi is mapped to the wi −1 vertices uk ∈V that are reachable from

the root vertex u j .

We may intuitively view the reduction as follows. Each item yi of the knapsack problem with

a benefit value bi > 0 and weight wi > 0 is mapped to a rule Ri so that: (i) rule Ri bears the

same benefit value bi ; (ii) there are no lower-overlapping rules with respect to Ri ; and (iii) if

and only if Ri is inserted in the hardware flow table, this will trigger the insertion of wi −1

higher-overlapping rules with respect to Ri , bearing zero-benefit values.

Furthermore, there are no inherent dependencies within the knapsack problem parameters,

due to the aforementioned constraints imposed on graph G . In particular:

• Constraint (C1) guarantees that no root vertex is reachable from another root vertex.

This assures that the inclusion of a knapsack item yi will not necessarily enforce the

inclusion of a different item y j , j 
= i .

• Constraint (C2) guarantees that no vertex will be “double-counted,” because two dif-

ferent root vertices have been included. This assures that the weights w of different

knapsack items are independent of each other.

Conclusion

To summarize, overlapping rules pose a challenge in our context, because: (i) they introduce

constraints as to which subset of rules we can insert in or evict from the hardware table in

order to maintain correct forwarding behavior; and (ii) choosing the optimal subset of rules to

cache in the hardware table is an NP-hard problem. In section §3.2, we present two heuristics

that address this challenge.

18



3.2. Cache Management for Overlapping Rules

3.2 Cache Management for Overlapping Rules

3.2.1 The Software Table

The software table provides the same lookup interface as the hardware table: lookup by

multiple keys and multiple key ranges, e.g., “{IP source address 128.178.50.0/24, port number

0–1024}”. However, unlike the hardware table, which is typically stored in ternary CAM (TCAM),

hence benefits from hardware support that performs such lookup in O (1), the software table is

stored in plain DRAM. Hence, special care must be taken to ensure good lookup performance.

We organize and search the software table as proposed in HiCuts [24], which we briefly

introduced in §2.1.1: First, we partition the flow rule space. Second, we create the packet

classifier structure, a directed acyclic graph where each leaf node corresponds to a generated

partition. When a packet P is looked up, we retrieve the corresponding leaf node of the

classifier, where a linear search is subsequently run to select the highest-priority flow rule that

matches with P . At the same time, the software table embeds information that enables us to

quickly detect rule overlaps. We provide further details in the following sub-sections.

To simplify description, we assume proactive rule management, where the software table is

pre-populated with all the rules needed for correct forwarding behavior. Adapting our system

to reactive rule management (where the software table is populated at run time by an SDN

controller) would be straightforward.

We also assume that, given any rule R in the software table and the set of its higher-overlapping

rules RH , the set {R}∪RH fits in the hardware table. If this is not the case, then the hardware

table is too small to provide correct forwarding behavior.

Partitioning the Flow Rule Hyperspace

We recursively apply the HiCut algorithm [24] on the entire d-dimensional rule hyperspaceUd ,

containing a set of M rules RM = {R1,R2, . . . ,RM }, in order to limit the dependencies between

overlapping rules. We call RM the original rule set. Algorithm 3.1 illustrates the process in

detail, where we provide:

1. Two arguments:

(a) a d-dimensional hyperspace Sd ⊆Ud .

(b) a set RS of n ≤ M rules {R1,R2, . . . ,Rn}, contained in Sd .

On the initial call of the algorithm we provide Sd =Ud and RS =RM .

2. Two configurable parameters:

(a) �����, the maximum rules that may be contained in a single partition. If a partition

has at most ����� rules, the algorithm stops.

19



Chapter 3. Managing Shared Flow Tables

(b) �����, the “space factor,” indicating how much memory should be allocated

during partitioning.

The algorithm may be summarized as follows: First, we decide the dimension Fc of Sd that we

should partition; we call Fc the “cut dimension.” Second, we compute the number of parti-

tions that should be generated. We subsequently distribute the rules in RS to the respective

partitions they conflict with; we say that a rule R conflicts with a partition covering a subspace

Sd
P ⊆Sd if R ∈Sd

P . Rules that conflict with multiple partitions are promptly replicated. Finally,

we apply recursively the partitioning algorithm on each generated partition.

If a partition is found to contain at most ���	
 rules, it is no further partitioned. We call

this partition a leaf partition or leaf node and store the rule set RS in its corresponding data

structure. We provide details on the data structure in subsequent paragraphs.

To find the “cut dimension” Fc , we utilize the following heuristic: First, we simulate a series

of partitions across every dimension Fi of Sd . We stop partitioning a dimension Fi when we

have allocated at least ����� ·n memory, in terms of the number of partitions and rules that

would be generated. Second, for each dimension Fi we find the partition conflicting with

the most rules; we define this number of conflicts as the “local maximum” of Fi . Finally, we

choose the dimension Fc with the smallest “local maximum.”

Since rules covering multiple partitions are replicated, the partitioning algorithm generates a

set of N ≥ M rules RN ⊇RM , which is defined as the union of the rule sets that stored in each

leaf partition. The set RN is called the partitioned rule set, which is the rule set that we store

in the software table.

Creating the Packet Classifier

The packet classifier is a data structure which we create during the partitioning of the entire

flow rule hyperspace Ud , as we previously described. We represent the classifier as a directed

acyclic graph (DAG) G = (V , A), which is recursively constructed as follows:

1. A vertex u0 ∈V is added to represent the entire flow rule hyperspaceUd . Vertex u0 is the

“root” of G .

2. An instance of the partitioning algorithm is run on vertex u = u0.

3. Each time the partitioning algorithm generates a new partition p, we add a new vertex

v ∈V to represent p and a new arc (u, v) ∈ A. Let VP ⊂V denote the set of all vertices v

added during this step, in this instance of the partitioning algorithm.

4. If VP =�, the algorithm stops. Otherwise, step (2) is recursively called ∀u ∈VP .

We utilize the aforementioned process to create the linked data structure, where each node of

20



3.2. Cache Management for Overlapping Rules

Algorithm 3.1: Recursive partitioning of the flow rule hyperspace

Data: d-dimensional hyperspace Sd

Data: Set of rules RS contained in Sd

Data: �����: maximum number of rules to store in a partition
Data: ���	
: space factor
Result: Recursively partition Sd until each leaf node has at most ����� rules

1 Function ����������Sd , RS	 :
2 n ←|RS |
3 if n ≤ ����� then 
� ��� � � ���� ���� �


4 store RS in this partition
5 return

6 forall dimensions of Sd do 
� �������� ������������ �


7 ����← min(4,
�

n) 
� ������� ������ �� ��������� �


8 	���← interval [a,b) of current dimension
9 ����← false

10 while not ���� do
11 cut 	��� in ���� equal intervals
12 �����← ���� 
� ������ �������� �


13 forall generated partitions do
14 
����
��← number of rules in RS that conflict with this partition
15 �����←�����+
����
��

16 if �����< ����n	 then ����← 2 ·���� 
� �������� ������������ �


17 else ����← true

18 ��
	���	�← max
{

����
��

}

19 ���← dimension with the min
{
��
	���	�

}

� ��� �������� �


20 partition ���, committing the respective simulation, generating ���� partitions
21 forall generated partitions do
22 Sd

P ← sub-space of this partition, with “narrower” ��� 
� Sd
P ⊂Sd �


23 RP ← replicate all rules
{
R ∈Sd |R ∈Sd

P

}

� ����������� ���� �� �


24 ����������Sd
P , RP	 
� �������� ������������ �


25 return

26 Function ����n	 : int :
27 return ���	
 ·n 
� ���� ������ �������� �


21



Chapter 3. Managing Shared Flow Tables

the classifier corresponds to a vertex of the generated DAG. We present the definition of the

node class in listing B.1, which stores the following information:

1. ��������	, representing the d-dimensional hyperspace Sd covered by the node. Each

dimension is represented by a left-closed, right-open interval [a,b).

2. �
���������, representing the dimension along which the non-leaf node has been

partitioned based on the HiCut algorithm. It is set to �������������� in leaf nodes.

3. �����������, a map holding the pointers to the child nodes, if any. The key k of the

map corresponds to the left bound of that child’s interval [ac ,bc ), across dimension

�
���������; therefore, k = ac .

4. ������, a vector maintaining pointers to all flow rules contained in that particular

node’s hyperspace. This container may be optionally left empty in non-leaf nodes to

preserve memory.

We illustrate a detailed example of our data structure in appendix B.

Detecting Direct and Indirect Rule Overlaps

After the packet classifier structure has been created, we detect all rule overlaps within each

leaf node of the classifier. As stated above, each leaf node stores:

• The subspaceSd of the rule set it covers. Since leaf nodes represent the final partitioning

of the entire rule set hyperspace Ud ⊇ Sd , the subspace intersection of any two leaf

nodes is always the empty set.

• A vector with pointers1 to the flow rules contained in the leaf node’s hyperspaceSd . Flow

rules covering multiple partitions have been already replicated across the respective leaf

nodes.

As a result, each leaf node maintains the sole ownership of its contained flow rules and no cross-

leaf node dependencies exist between rules. Therefore, we may execute our pre-processing

algorithms to detect rule dependencies independently on each leaf node, containing at most

����� N rules.

We subsequently detect the potential dependencies between rules independently within each

leaf node. Each flow rule Ri holds two vectors, called ��� and ���, which are initially empty.

We will populate ��� with pointers2 to all other flows R j that are directly or indirectly higher-

overlapping3 with Ri . In a similar way, we will populate ��� with pointers to all lower-priority

directly or indirectly overlapping flows.

1 C++14 �����������	
�� to indicate “permanent” ownership.
2 C++14 ���������	
�� to indicate “temporal” ownership, acquired only when necessary.
3 Refer to appendix A.5 for the formal definitions of “directly overlapping” and “indirectly overlapping.”

22



3.2. Cache Management for Overlapping Rules

Direct Overlaps We initially detect the direct overlaps with a simple algorithm (Algorithm 3.2),

running4 in O
(
(�����)2d

)
. We consider every pair of flow rules and intersect their respective

hyperspaces to determine whether they overlap or not.

Algorithm 3.2: Detect directly overlapping rules within a given leaf node

Data: vector �����n� of n rules
Result: vector ��	��i � with directly higher-overlapping rules relative to �����i �, ∀i ∈ [1,n]
Result: vector �
��i � with directly lower-overlapping rules relative to �����i �, ∀i ∈ [1,n]

1 for i = 1 to n do
2 Ri ← �����i �
3 for j = i +1 to n do
4 R j ← ����� j �
5 if R1 ∩R2 
= � then �� ��	
�� �
	���� �

 ���
���� ����� ��

6 if Ri > R j then �� Ri ��� ����
	 �	��	��� ��

7 append Ri to ��	�� j �
8 append R j to �
��i �

9 else �� R j ��� ����
	 �	��	��� ��

10 append Ri to �
�� j �
11 append R j to ��	��i �

Indirect Overlaps We subsequently compute the indirectly overlapping rules relative to

each rule within a given leaf node (Algorithm 3.3).

First, we create a directed acyclic graph G = (V , A), where:

• For each rule Ri in the given leaf node there is a vertex ui ∈ V and there are no other

vertices in V .

• For each Ri < R j there is an arc (i , j ) ∈ A, and there are no other arcs in A.

Second, we execute the following steps for every vertex ui ∈V :

1. We run the Depth-first search (DFS) algorithm with ui as the start vertex.

2. For all visited vertices u j ∈ V , the respective rules R j are added to vector ���� of Ri ,

if not already present. As a result, vector ���� will contain all directly or indirectly

higher-overlapping rules with respect to Ri .

We follow a similar approach to populate the ��� vector of each rule Ri with all indirectly

lower-overlapping rules relatively to Ri . To do that, we inverse the arcs of G and execute DFS

4 Subsequent Algorithm 3.3 runs in O
(
�����

2)
, thus we did not optimize the time complexity of Algorithm 3.2.

23



Chapter 3. Managing Shared Flow Tables

on every vertex, as previously. As a result, the time complexity of detecting indirect overlaps

within a single leaf node is O
(
�����2

)
.

Algorithm 3.3: Detect indirectly overlapping rules within a given leaf node

Data: vector �����n� of n rules
Data: vectors ��	� and �
�, already populated from Algorithm 3.2.
Result: append to ��	��i � all indirectly higher-overlapping rules relative to �����i �, ∀i ∈ [1,n]
Result: append to �
��i � all indirectly lower-overlapping rules relative to �����i �, ∀i ∈ [1,n]

1 G(V , A) ← empty directed graph
2 for i = 1 to n do add ui ∈V �� �		 
������ ��

3 for i = 1 to n do �� �		 ��� ��

4 forall rules R j ∈ ��	��i� do add (i , j ) ∈ A

5 foreach ui ∈V do �� ���	 ��	������ ��������
��������� ��

6 run DFS on ui

7 forall visited vertices u j ∈V do
8 add rule R j in ��	��i �, if not already present

9 mark all vertices as not visited �� �� ��� ��������� ���� ���������� ��� ��

10 invert every arc a ∈ A
11 foreach ui ∈V do �� ���	 ��	������ �������
��������� ��

12 run DFS on ui

13 forall visited vertices u j ∈V do
14 add rule R j in �
��i �, if not already present

15 mark all vertices as not visited

Packet Lookup on the Software Table

When a packet P is looked up at the software table, we first locate the corresponding leaf node

of the classifier and then find the highest-priority flow rule that matches P .

Leaf node search By definition, each leaf node covers a specific partition of the entire d-

dimensional flow rule hyperspace. Therefore, a packet P will be always contained in the

subspace of exactly one leaf node, regardless whether a matching rule exists or not. As we

have already stated, each non-leaf node stores: (i) the dimension it has been partitioned along

(���	��������); and (ii) its child nodes in an ordered map (���	�������). As a result,

when a packet is looked up on a non-leaf node, a binary search5 matches the packet header

corresponding to ���	�������� with the child node which also contains P . This process is

repeated recursively until we reach a leaf node and runs in O (d) [26].

5 C++14 �������������	
�����

24



3.2. Cache Management for Overlapping Rules

Flow rule search After P is matched with a leaf node, we conduct a linear search on all flow

rules contained in the leaf node, stored in vector �������. Let set Rm denote all rules that

match6 with P . If Rm 
= �, then we trigger the forwarding actions of the rule with the highest

priority in Rm . This process runs in O (�����).

Otherwise, if Rm =�, no matching rule exists and a default, policy-specific action is triggered,

e.g., to drop P or to forward P to the controller. We assume in this dissertation that a matching

rule always exists for every packet P that is looked up on the software table.

3.2.2 Rule Replacement

Let T and N be the number of rules that fit in the hardware and the software table, respectively,

with T � N , RT the set of rules that are cached in the hardware table at a given time, with

|RT | ≤ T , and RN ⊇ RT the entire rule-set, with |RN | ≤ N , which is always stored in the

software table.

The cache manager periodically runs a rule replacement algorithm that performs two tasks:

1. it picks a set of rules R I ⊆ RN to insert in the hardware table, where |R I | ≤ T and

R I ∩RT =� (no rules in R I are currently cached);

2. if the hardware table is full, it picks a set of rules RE ⊆RT to evict from the hardware

table, where RE ∩R I = � (no point in evicting a rule that will be inserted), so that

|(RT \RE )∪R I | = |RT |− |RE |+ |R I | ≤ T .

The goal of the rule replacement algorithm is to maximize the number of bytes that will be

handled by the data-path (i.e., the number of bytes contained in packets that will match a

cached rule) over the next update interval. There are two reasons why the algorithm is not

optimal: First, to be optimal, it would require advance knowledge of all the new packets that

will arrive until the next run of the algorithm. Second, even if it did have such knowledge, it

would need to solve an NP-hard problem, as we have already discussed in section §3.1.2.

Hence, we have developed two algorithms, a non-implementable one that acts as our baseline

(§3.2.3) and an implementable one (§3.2.4). Both algorithms make educated guesses on the

ideal sets R I and RE by leveraging the anticipated packet locality based on recent history.

3.2.3 Baseline Algorithm: Least Recently Used

Our baseline algorithm (Algorithm 3.4) follows a “least recently used” (LRU) replacement

policy. It runs every time a new packet P arrives. In the following description,

• R is the rule that matches P , which is found either in the hardware or the software table

6 appendix A.3

25



Chapter 3. Managing Shared Flow Tables

as part of the forwarding process;

• L is a linked list of all the cached rules and RLRU is the rule at the back of L.

The algorithm performs the following tasks:

1. Identifies the set of rules RH that are higher-overlapping relative to R.

2. If R 
∈ L (the matched rule is not already cached), the algorithm needs to insert R and all

the rules in RH \L in the hardware table.

If there is not enough space in the hardware table, the algorithm evicts enough cached

rules to make space, as follows:

(a) Moves all the rules in RH ∩L to the front of L.

(b) Identifies the set of rules RL ⊆ L that are lower-priority overlapping relative to

RLRU . Then it evicts RLRU
7 and all the rules in RL , both from the hardware table

and the L.

(c) Repeats step (2b) as many times as necessary.

After enough space has been made, the algorithm inserts R and all the rules in RH \L in

the hardware table and the L.

3. Moves R and all the rules in RH to the front of L.

The reason this algorithm is not implementable is that it potentially triggers hardware-table

evictions and insertions every time a new packet arrives. In state-of-the-art switches, evict-

ing and inserting rules from the hardware table are costly operations that can take several

microseconds, whereas new packets arrive at the granularity of nanoseconds.

Still, we implemented this algorithm because LRU is arguably the most successful cache

replacement policy, and we need to compare to it any implementable algorithm we propose.

3.2.4 An Implementable Algorithm: Most Heavily Used

Our implementable algorithm (Algorithm 3.5) follows a “most heavily used” (MHU) policy. It

runs every tu time units, where tu is a configurable parameter called the update interval. In

the following description,

• b ∈R≥0 is a benefit metric assigned to a given rule R, initialized at b = 0;

• ������� is the aggregate size, in bytes, of all packets that have been matched with a

given rule R over the last update interval, in either the hardware or the software table;

7 Due to step (2a), RLRU 
∈RH . We assume |{R}∪RH | ≤ T (see §3.2.1).

26



3.2. Cache Management for Overlapping Rules

Algorithm 3.4: “Least Recently Used” replacement policy

Data: Size T of hardware table
Data: Set RT of cached rules in the hardware table
Data: Linked list L of all cached rules RT

Data: Packet P with a matching rule R
Result: Insert in RT rule R and higher-overlapping rules relative to R

1 RH ← higher-overlapping rules relative to R
2 forall rules in RH ∩L do move rule to front of L

3 if R 
∈ L then R I ← {R}∪ (RH \L) �� R ��� ����	
 �� ���
��	 ����	 ��

4 else R I ←�
5 while |L|+ |R I | > T do �� ��� 	����� ����	 �� ���	�� R I ��

6 RLRU ← rule at the back of L
7 RL ← lower-overlapping rules in Lwith respect to RLRU

8 evict all the rules in {RLRU }∪RL from L and RT

9 insert all the rules in R I at the front of L and in RT

• h f ∈ [0,1) is the history factor of the MHU policy, representing the weight allocated on

the previous value of b when computing its new value.

The algorithm performs the following tasks:

1. Updates the benefit value of all the rules in RN as follows:

bnew = h f ·bol d + (1−h f ) ·�������

2. Sorts8 all rules in RN by decreasing benefit value b.

3. Constructs the set of “chosen” rules RC , which represents the next “snapshot” of the

entire hardware table, as follows:

(a) Determines the rule R ∈ (RN \RC ) with the highest benefit value b > 0.

(b) Identifies the set of rules RH that are higher-overlapping relative to R.

(c) If this set fits in the remaining hardware memory, i.e., if |{R}∪RH ∪RC | ≤ T , adds

R and all the rules in RH \ RC to RC . Otherwise, R is no longer considered for

insertion.

(d) Repeats steps (3a) through (3c) as many times as necessary, until |RC | = T or no

other rules in RN \RC have a positive benefit value.

4. Determines the set of rules R I = RC \ RT that will be inserted in the hardware table.

The remaining rules in RC ∩RT are already present in the hardware table and will be

protected from potential eviction.

8 C++14 ���������

27



Chapter 3. Managing Shared Flow Tables

5. If there is not enough space in the hardware table, the algorithm evicts9 enough cached

rules to make space, as follows:

(a) A random rule R ∈RT \RC is chosen.

(b) Identifies the set of rules RL that are lower-overlapping relative to R.

(c) Then it evicts R and all the rules in RL from the hardware table (rule set RT ).

(d) Repeats steps (5a) through (5c) as many times as necessary.

6. After enough space has been made, inserts all the rules in R I in the hardware table.

Algorithm 3.5: “Most Heavily Used” replacement policy

Data: Size T of hardware table
Data: Set RT of cached rules in the hardware table
Data: Set RN of rules stored in the software table
Data: Benefit value b of every rule
Data: ����� bytes handled by every rule in last update interval tu

Data: MHU history factor hf ∈ [0,1)
Result: Update RT with “most heavily used” rules in RN

1 forall rules in RN do b ← hf ·b + (1−hf ) · �����

2 sort all the rules in RN by decreasing value b

3 RC ←� �� ������	
 ���� ��

4 for R = front of RN to back of RN do
5 if |RC | = T then break �� 	� ���� �������� ������ ��

6 else if b = 0 then break �� ���� �� ��� ���� ���� ���� ��	���� ��

7 else if R 
∈RC then �� ��� ��� 	�� ���	 �����	 ��� ��

8 RH ← rules overlapping with R, with a higher priority
9 Rtemp ← {R}∪ (RH \RC ) �� R �	� 	�	������	 ���������������	� ��

10 if |Rtemp |+ |RC | ≤ T then �� �� ���� ����� �� �	���� Rtemp ��

11 RC ←Rtemp ∪RC

12 R I ←RC \RT �� �����	 �	� 	�	������� ��

13 while |RT |+ |R I | > T do �� 	�� �	���� ������ �� �	���� R I ��

14 R ← random rule in RT \RC �� ������� ��� 	�� �����	 ��

15 RL ← lower-overlapping rules in RT , with respect to R
16 evict all the rules in {R}∪RL from RT

17 insert all the rules in R I to RT

9 Initially, we would straightforwardly evict all the rules in RT \ RC from the hardware table. However, in
experimental scenarios where RC was consistently smaller than the entire hardware table (|RC | < T ), multiple
rules were unnecessarily being evicted, inflating the rule replacement rate. This resulted from the good locality of
our packet traces (§3.3.1), therefore less than T rules would have a positive benefit value b. The replacement rate
of the LRU policy would outperform the MHU replacement rate in these scenarios.

28



3.3. Experimental Evaluation

3.3 Experimental Evaluation

In this section we present the experimental evaluation of our virtual flow tables architecture,

which we conducted according to the following methodology:

1. We obtained two data center packet traces T1 and T2 for the purposes of simulating

the behavior of our platform in a real environment. We present these traces in section

§3.3.1.

2. For each of the aforementioned packet traces, we generated a synthetic overlapping rule

set RM of M rules, which we call the original rule set. We describe this procedure in

section §3.3.2.

3. We selected a set X of independent variables that we varied in our benchmarks and

the set Y of dependent variables that we measured to evaluate the performance of our

platform. We present these variables in sections §3.3.3 and §3.3.4, respectively.

4. For each distinctive independent variable set X, we followed the following steps (Algo-

rithm 3.6):

(a) We selected the Ti = T1 packet trace and the respective original rule set RM we

had generated in step (2).

(b) We populated the software table with the original rule set RM .

(c) We structured the software table as we have described in §3.2.1, by partitioning

the U2 space and creating the packet classifier data structure.

(d) The partitioning algorithm generated a new rule set RN ⊇ RM of N ≥ M rules,

which we call the partitioned rule set. The software table was at this point popu-

lated with RN .

(e) We selected the LRU replacement policy to be executed concurrently with step

(4f).

(f) We executed a benchmark by feeding the packet trace Ti to the hardware table.

Every ingress packet was looked up at the hardware table and, if no matching rule

was found, was also looked up at the software table.

(g) All dependent variables in Y were measured during the execution of the bench-

mark, in step (4f).

(h) Steps (4e) through (4g) were executed again, using the MHU policy.

(i) Steps (4a) through (4h) were executed again, using Ti = T2 as the packet trace.

We illustrate our experimental results in section §3.3.5. We conducted all benchmarks on a

single, isolated Dell Poweredge C6220, bearing an Intel Xeon E5-2660 CPU.

For the purposes of this evaluation, we worked within the 2-dimensional space U2 = {source

IP address, destination IP address}. Adapting our evaluation to higher dimensions would be

29



Chapter 3. Managing Shared Flow Tables

straightforward. Furthermore, we assume that there are no “rule timeouts” and the update

interval of the MHU policy is always configured at tu = 1s.

Algorithm 3.6: Evaluation of virtual flow tables

Data: 2-dimensional space U2 = {source IP address, destination IP address}
Data: Set of packet traces T = {T 1, T 2}
Data: Set of replacement policies P = {LRU, MHU}
Data: Set of independent variables X
Result: Set of dependent variables Y

1 foreach T i ∈T do
2 generate original overlapping rule set RM = ���������T i� 	
 �������� ��� 
	

3 populate software table with RM

4 configure partitioning algorithm ��������� with X 	
 �������� ��� 
	

5 run partitioning algorithm ����������U2, RM�

6 for ������ ∈P do
7 feed T i to the hardware table
8 obtain measurements for each y ∈Y

3.3.1 Packet traces

For the purposes of our evaluation, we have chosen to deploy data-sets from two university

campus data centers that have been presented and analyzed in [7]. In particular, we have

selected the packet traces EDU1 and EDU2, due to the dense locality characteristics they

exhibit, as the number of active flows within a one second interval does not exceed 500 in 90%

of the time. These packet traces are publicly available at [6], and will hereinafter be referred

to as UNI1 and UNI2, respectively. For the purposes of our evaluation scenarios we have

accelerated both traces by a factor of 100. We illustrate the characteristics of the original and

the accelerated packet packets in Table 3.1

Characteristic
Original Accelerated

UNI1 UNI2 UNI1 UNI2

Packets per second 4688 10428 4.7 ·105 1.04 ·106

Throughput (Mbit/sec) 26.2 63.8 2.6 ·103 6.4 ·103

Duration (sec) 3914 9480 39.1 94.8

Table 3.1 – Characteristics of packet traces; original and accelerated versions

3.3.2 Creating a synthetic overlapping rule set

We have generated a synthetic set RM of overlapping rules for each of the two packet traces

UNI1 and UNI2, by executing the following steps (Algorithm 3.7):

30



3.3. Experimental Evaluation

1. Each packet generates a single rule R with the same source and destination IP address

pair, hereinafter denoted as {srcIP,dstIP}

2. Each generated rule has a 33% chance of being:

(a) An exact match rule {srcIP/32,dstIP/32}.

(b) A wildcard rule {srcIP/24,dstIP/24}.

(c) A wildcard rule {srcIP/16,dstIP/16}.

3. A priority is assigned to each generated flow rule. Exact match rules are assigned

the highest priorities, followed by the /24 wildcard rules and subsequently by the /16

wildcard rules, which are assigned the lowest priorities.

4. Finally, any duplicate rules are purged.

This methodology ensures that:

• Every packet will be matched to at least one rule, since a rule R is generated for every

packet, unless R already exists.

• The dense locality characteristics of the traces will result in generating overlapping rules,

e.g., packets P1 : 1.1.1.1 → 2.2.2.2 and P2 : 1.1.5.5 → 2.2.6.6 may result in generating rules

R1 : 1.1.1.1/32 → 2.2.2.2/32 and R2 : 1.1.0.0/16 → 2.2.0.0/16, which are overlapping rules.

• The more specific rules will bear a higher preference than the more generic rules, thus

avoiding redundancies, e.g., rule R1 : 1.1.1.1/32 → 2.2.2.2/32 will have a higher prefer-

ence than R2 : 1.1.0.0/16 → 2.2.0.0/16, otherwise no ingress packet would ever match

with R1.

We generated two synthetic rule-sets RM from traces UNI1 and UNI2, with 8,994 and 11,210

rules, respectively.

3.3.3 Independent variables

We have selected the following independent variables, hereinafter referred to as parameters,

to evaluate our platform:

1. The size T of the hardware table, hereinafter referred to as ����. This represents the

total rule space in the TCAM memory.

2. The ����� parameter of the partitioning Algorithm 3.1, i.e., the maximum number of

flow rules in a classifier leaf node.

3. The 	
��� parameter of the partitioning Algorithm 3.1, i.e., the memory allocation

factor.

31



Chapter 3. Managing Shared Flow Tables

Algorithm 3.7: Generating a synthetic overlapping rule set from a packet trace

Data: A packet trace T
Result: Set of overlapping rules RN

1 open T for reading
2 while not at the end of T do
3 read next packet P ∈ T
4 extract �������= (srcIP,dstIP) from P
5 if ������� has not been processed yet then �� ���� �� �	 
��	 ���	��	� �� ��

6 generate random integer k ∈ [1,3]
7 switch k do �� ��� ���������� �� �	��	. . . ��

8 case 1 do ����← 32 �� . . . �� 	���� ����
 ��	 ��

9 case 2 do ����← 24 �� . . . � ������� ��� ��	 ��

10 case 3 do ����← 16 �� . . . � � ������� ��� ��	 ��

11 generate R with ������� and ����

12 if R 
∈RN then add R to RN �� ��� ����	�� ��� �	�	��	 �
	 ���	 R ��

13 close T

14 ���	��
�← 0 �� ���	 ����	 �	���	� 
��
	 ������ ��

15 foreach mi ∈ {32,24,16} do �� 	���� ��	� ���� �������� ���� ��

16 foreach R ∈RN with ���� = mi do
17 assign ���	��
� to R
18 ���	��
�← ���	��
�+1

4. The h f parameter of the Most Heavily Used replacement policy (Algorithm 3.5), i.e., the

history factor, hereinafter referred to as 
�����. As anticipated, we have benchmarked

only the Most Heavily Used policy when varying this independent variable.

As we have already stated, set X= {
����,����
,�����,
�����

}
is provided as an argument

to Algorithm 3.6. We have executed this Algorithm under four use-cases, each time vary-

ing a different parameter xi ∈X, while keeping constant the value of the other parameters

x j ∈X, j 
= i (Table 3.2). In detail:

• The constant value of ���� is being set to 1024, which is a realistic configuration given

the memory capacity of contemporary TCAMs (§2.1.1).

• The constant value of ����
 is set to 10, as it creates relatively few dependencies while

at the same time demanding a memory footprint that our hardware can provide. Never-

theless, when the ����� parameter is being varied, for high values of ����� we would

run out of memory, thus ����
 is set to 50 in these experiments.

• The constant value of ����� is set to 2. We have empirically found, as presented in

§3.3.5, to be a near-optimal trade-off between memory allocation and execution time.

32



3.3. Experimental Evaluation

• The constant value of ������� is set to 0.5 to equally weight both the observed bytes in

the last update interval and the previous benefit value of each flow rule.

Varied parameter
Fixed parameters

��	
 ����� ��	� �������

��	
 – 10 2 0.5
����� 1024 – 2 0.5
��	� 1024 50 – 0.5
������� 1024 10 2 –

Table 3.2 – Independent variables used in virtual flow tables evaluation scenarios

3.3.4 Dependent variables

We have evaluated our platform in terms of:

I. Efficiency: how much data is handled within the data-path and how many operations

are needed, on average.

II. Memory consumption: how the memory demands of our platform are affected based on

the configuration of the partition Algorithm 3.1.

To quantify the efficiency and the memory consumption of our platform, we have measured

the following dependent variables, hereinafter referred to as metrics:

1. Byte Miss Rate: the percentage of the ingress bytes that has been handled by the soft-

ware pipeline, calculated as:

Byte Miss Rate = Ingress bytes handled by software table

Total ingress bytes
·100%

An efficient rule replacement policy is expected to produce a low byte miss rate, as a

larger proportion of the ingress bytes ends up being matched with a rule stored in the

hardware table and, therefore, forwarded at line rate.

2. Replacement Rate: the number of rules that have been evicted from the hardware

table, on average, over the nominal duration of the packet trace, as dictated by the

replacement policy that is being employed, calculated as:

Replacement Rate = Number of evicted rules from the hardware table

Nominal duration of the packet trace

The nominal duration of a packet trace (Table 3.1) is defined as:

Nominal duration = Timestamp of last packet−Timestamp of first packet

33



Chapter 3. Managing Shared Flow Tables

A replacement policy producing a formidable replacement rate would be unpractical

to be deployed on a real switch due to hardware limitations and energy consumption

issues. Therefore, a lower replacement rate is desirable.

3. Individual Caching: the number of distinct rules from the partitioned rule set RN

that have been inserted in the hardware table at least once, at any time during the

experiment’s execution, as a fraction of the number of original rules in RM , calculated

as:

Individual Caching =
∣∣{R ∈RN | R has been cached at least one time in the past

}∣∣

|RM |

4. Replication Rate: the number of rules in the partitioned rule set RN stored in the

software table, over the number of rules in the original rule set RM , calculated as:

Replication Rate = |RN |
|RM |

Metrics 1 – 2 evaluate our platform in terms of efficiency, while metrics 3 – 4 evaluate our

platform in terms of memory consumption.

3.3.5 Results

In this section we present the results of our evaluation benchmarks, organized by the measured

metrics y ∈Y.

Byte Miss Rate

We present the byte miss rate when measured against:

• the ���� parameter, in Figure 3.3;

• the ����� parameter, in Figure 3.4;

• the 	
��� parameter, in Figure 3.5;

• the MHU ��	��� parameter, in Figure 3.6.

���� parameter The miss rate exhibits the anticipated behavior. Fewer bytes are handled

by the software table as we increase the value of ����, due to having more available memory

in the hardware table. As a result, more rules are stored concurrently in the hardware table,

resulting in fewer packets being redirected to the software table.

34



3.3. Experimental Evaluation

����� parameter The performance of the MHU policy is directly dependent on the �����

parameter. In particular, higher ����� values lead to coarse-grained partitioning of the U2

plane, resulting in more rules per leaf partition and thus more dependencies between rules.

Therefore, a rule that is being brought into the hardware table will tend to bring more higher-

overlapping rules with it, effectively increasing its memory footprint. Consequently, less rules

with a high benefit value may be stored, increasing the byte miss rate, as more packets are

being redirected to the software table.

On the other hand, the LRU policy is virtually unaffected by the ����� parameter. This

behavior is anticipated, as the LRU policy is triggered on every ingress packet, therefore always

inserting in the hardware table the same sequence of flow rules. Although the cached rule

sets may be bigger, the relatively big TCAM size (Table 3.2) prevents the eviction of active flow

rules.

���	
 parameter The memory factor only affects the internal structure and the depth of

the packet classifier tree, but does not influence how cross-rule dependencies are mitigated or

how rules are replaced in the hardware table. Therefore, it does not affect our metric, which

we have also verified empirically.

������ parameter We have classified the miss rate into three types, depending on the

status of the matching rule in the software table, at the time of the packet lookup:

1. Mandatory bytes: the matching flow rule has never been inserted in the hardware table

at any point in the past and this is the first time a packet matches this flow rule. This

type is not shown in our results, as it was less than 1% and thus not meaningful.

2. Cold bytes: the matching flow rule has never been inserted in the hardware table at any

point in the past, but has been matched by at least one packet. The LRU policy never

produces this type, as every flow matched with an ingress packet is immediately cached

in the hardware table.

3. Evicted bytes: the matching flow rule had been inserted in the hardware table at some

point in the past, but was eventually evicted.

The total byte miss rate tends to decrease as we increase the MHU history factor. In particular,

by allocating more weight to the previous benefit value of a flow rule at the expense of the

observed traffic, flow rules tend to stay cached for longer intervals in the hardware table.

Consequently, our traces, which exhibit strong locality characteristics, take advantage of the

prolonged preservation of flow rules within the hardware table.

Regarding the specific miss types, we observe that as we increase the history factor:

35



Chapter 3. Managing Shared Flow Tables

 0%
 5%

 10%
 15%
 20%
 25%
 30%
 35%
 40%
 45%
 50%

10 100 1k 10k

B
y
te

 m
is

s 
ra

te

Hardware table size (entries)

Least Recently Used
Most Heavily Used

(a) “UNI1” packet trace

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

10 100 1k 10k

B
y
te

 m
is

s 
ra

te

Hardware table size (entries)

Least Recently Used
Most Heavily Used

(b) “UNI2” packet trace

Figure 3.3 – Byte miss rate versus ����

• there are less evicted miss bytes, since flows tend to stay longer in the hardware table;

• there are more cold miss bytes, since flows need to stay active for a longer time to get

eventually inserted in the hardware table.

Overall, the impact of the decrease in evicted miss bytes is much more substantial, leading to

an overall decrease in the byte miss rate.

Replacement Rate

We present the rule replacement rate when measured against:

• the ���� parameter, in Figure 3.7;

• the ����� parameter, in Figure 3.8;

• the 	
��� parameter, in Figure 3.9;

• the MHU ��	��� parameter, in Figure 3.10.

General observations We observe that the replacement rate of the LRU policy is substan-

tially higher than the respective replacement rate of the MHU policy, even up to 5 orders

36



3.3. Experimental Evaluation

 0%
 2%
 4%
 6%
 8%

 10%
 12%
 14%
 16%
 18%

10 100 1k

B
y
te

 m
is

s 
ra

te

Maximum rules per partition

Least Recently Used
Most Heavily Used

(a) “UNI1” packet trace

 0%

 5%

 10%

 15%

 20%

 25%

10 100 1k

B
y
te

 m
is

s 
ra

te

Maximum rules per partition

Least Recently Used
Most Heavily Used

(b) “UNI2” packet trace

Figure 3.4 – Byte miss rate versus �����

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 1  1.5  2  2.5  3  3.5  4

B
y
te

 m
is

s 
ra

te

Memory allocation factor

Least Recently Used
Most Heavily Used

(a) “UNI1” packet trace

 0%
 2%
 4%
 6%
 8%

 10%
 12%
 14%
 16%

 1  1.5  2  2.5  3  3.5  4

B
y
te

 m
is

s 
ra

te

Memory allocation factor

Least Recently Used
Most Heavily Used

(b) “UNI2” packet trace

Figure 3.5 – Byte miss rate versus ���	


37



Chapter 3. Managing Shared Flow Tables

 0%
 2%
 4%
 6%
 8%

 10%
 12%
 14%
 16%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
y
te

 m
is

s 
ra

te

MHU history factor

Evicted bytes Cold bytes

(a) “UNI1” packet trace

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
y
te

 m
is

s 
ra

te

MHU history factor

Evicted bytes Cold bytes

(b) “UNI2” packet trace

Figure 3.6 – Byte miss rate versus �������

of magnitude for small sizes of the hardware table. This behavior is attributed to the fact

that the LRU policy is triggered on every packet miss, which may produce more than 100k

(theoretical) updates per second. For comparison, when evaluating our earlier prototype10

we had measured the average latency between ASIC updates at 300μs [14], translating to

approximately 3,333 updates per second; the LRU policy would not be feasible.

��	
 parameter We observe in Figure 3.7 that when we employ the LRU replacement policy

on a relatively small hardware table, e.g., with ��	
= 10 entries, the algorithm is constantly

updating the hardware table in order to keep the traffic within the data-path. The replacement

rate tends to drop as we increase the value of ��	
, due to having more available memory in

the hardware table, resulting in less lookup misses; as a result, fewer rules are evicted.

On the other hand, the MHU policy is triggered every tu = 1s, therefore no more than M =
��	
 entries may be replaced within a second, regardless of the packet lookup rate at the

hardware table. We observe an initial increase of the replacement rate as we allocate more

memory to the hardware table; this is a direct consequence of our replacement policy, which

replaces approximately the entire hardware table when limited hardware memory is available.

Nevertheless, the replacement rate tends to eventually stabilize, due to having abundant

memory for the current “working set” in a given update interval tu .

10 We have briefly described the relation between this prototype and our current work in section §3.1.1.

38



3.3. Experimental Evaluation

1 

10 

100 

1k

10k

100k

1M

10 100 1k 10k

R
ep

la
ce

m
en

ts
 /

 s
ec

Hardware table size (entries)

Least Recently Used
Most Heavily Used

(a) “UNI1” packet trace

1 

10 

100 

1k

10k

100k

1M

10M

10 100 1k 10k

R
ep

la
ce

m
en

ts
 /

 s
ec

Hardware table size (entries)

Least Recently Used
Most Heavily Used

(b) “UNI2” packet trace

Figure 3.7 – Replacement rate versus ����

����� parameter Lower values of the ����� parameter tend to produce more fine-grained

partitions of the U2 space, with less overlaps between traffic rules. On the other hand, higher

values tend to produce more coarse-grained partitions with more complex dependencies. This

directly affects the LRU algorithm, which brings into the hardware table a larger overlapping

rule set, on average. On the other hand, the MHU policy is virtually unaffected, as it is primarily

constrained by the size T of the hardware table.

	
��� parameter The memory factor only affects the internal structure and the depth of

the packet classifier tree, but does not influence how cross-rule dependencies are mitigated or

how rules are replaced in the hardware table. Therefore, it does not affect our metric, which

we have also verified empirically.

��	��� parameter The replacement rate tends to decrease linearly as we increase the

MHU history factor. This is the anticipated behavior, as a higher history factor allocates more

weight to the previous benefit value of a flow rule at the expense of the observed traffic in the

last update interval tu . As a result, there is a lower incentive to evict existing flows from the

hardware table, unless a flow remains “inactive” for a longer period of time. Furthermore,

newer flows must exhibit substantially higher handled traffic within the same time interval to

be assigned a higher benefit value and, thus, qualify to be cached in the hardware table.

39



Chapter 3. Managing Shared Flow Tables

100 

1k

10k

100k

1M

10 100 1k

R
ep

la
ce

m
en

ts
 /

 s
ec

Maximum rules per partition

Least Recently Used
Most Heavily Used

(a) “UNI1” packet trace

100 

1k

10k

100k

1M

10 100 1k

R
ep

la
ce

m
en

ts
 /

 s
ec

Maximum rules per partition

Least Recently Used
Most Heavily Used

(b) “UNI2” packet trace

Figure 3.8 – Replacement rate versus �����

100 

1k

10k

100k

 1  1.5  2  2.5  3  3.5  4

R
ep

la
ce

m
en

ts
 /

 s
ec

Memory allocation factor

Least Recently Used
Most Heavily Used

(a) “UNI1” packet trace

100 

1k

10k

100k

1M

 1  1.5  2  2.5  3  3.5  4

R
ep

la
ce

m
en

ts
 /

 s
ec

Memory allocation factor

Least Recently Used
Most Heavily Used

(b) “UNI2” packet trace

Figure 3.9 – Replacement rate versus ���	


40



3.3. Experimental Evaluation

0 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

R
ep

la
ce

m
en

ts
 /

 s
ec

MHU history factor

UNI1 trace
UNI2 trace

Figure 3.10 – Replacement rate versus �������

Individually Cached Flow Entries

We present the fraction of individually cached rules when measured against:

• the ��	
 parameter, in Figure 3.11;

• the ����� parameter, in Figure 3.12;

• the ��	� parameter, in Figure 3.13;

• the MHU ������� parameter, in Figure 3.14.

General observations We observe that the LRU policy almost always caches the same num-

ber of individual rules. This is the expected behavior, as the LRU always brings in the hardware

table the corresponding rule R that matches an ingress packet. Any minor variations occur

from the resulting dependencies between rules, as the LRU also brings any higher-overlapping

rules relative to R.

��	
 parameter The MHU policy gradually caches more individual rules as we allocate

more memory in the hardware table, until the hardware table is big enough to match the

respective metric reported by the LRU. As a result, the MHU avoids polluting the limited

hardware memory with numerous low-benefit rules with few matching ingress packets. On

the other hand, the LRU does not apply such optimizations and always inserts the same

number of rules.

����� parameter Increasing the ����� value generates more coarse-grained partitions, pro-

ducing larger dependent rule sets. As a result, a rule R tends to bring more higher-overlapping

rules in the hardware table (Figure 3.8). Nevertheless, coarse-grained partitions reduce rule

replication, therefore fewer individual rules end up being inserted in the hardware table.

41



Chapter 3. Managing Shared Flow Tables

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 100 1k 10k

C
ac

h
ed

 /
 O

ri
gi

n
al

 r
u
le

s

Hardware table size (entries)

Least Recently Used
Most Heavily Used

(a) “UNI1” packet trace

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10 100 1k 10k

C
ac

h
ed

 /
 O

ri
gi

n
al

 r
u
le

s

Hardware table size (entries)

Least Recently Used
Most Heavily Used

(b) “UNI2” packet trace

Figure 3.11 – Cached rules versus ����

����� parameter The memory factor only affects the internal structure and the depth of

the packet classifier tree, but does not influence rule replication, how cross-rule dependencies

are mitigated or how rules are replaced in the hardware table. Therefore, it does not affect our

metric, which we have also verified empirically.

�	��
�� parameter Our results are consistent with our previous findings in Figure 3.10.

When increasing the history factor, flow rules tend to stay longer in the hardware table,

therefore less individual rules are cached.

Flow Rule Replication Rate

We present the rule replication rate when measured against:

• the 	��� parameter, in Figure 3.15a;

• the ����� parameter, in Figure 3.15b.

	��� parameter Increasing the 	��� value generates more coarse-grained partitions,

therefore reducing the number of rules that conflict with multiple partitions. The number of

42



3.3. Experimental Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 100 1k

C
ac

h
ed

 /
 O

ri
gi

n
al

 r
u
le

s

Maximum rules per partition

Least Recently Used
Most Heavily Used

(a) “UNI1” packet trace

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10 100 1k

C
ac

h
ed

 /
 O

ri
gi

n
al

 r
u
le

s

Maximum rules per partition

Least Recently Used
Most Heavily Used

(b) “UNI2” packet trace

Figure 3.12 – Cached rules versus �����

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  1.5  2  2.5  3  3.5  4

C
ac

h
ed

 /
 O

ri
gi

n
al

 r
u
le

s

Memory allocation factor

Least Recently Used
Most Heavily Used

(a) “UNI1” packet trace

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  1.5  2  2.5  3  3.5  4

C
ac

h
ed

 /
 O

ri
gi

n
al

 r
u
le

s

Memory allocation factor

Least Recently Used
Most Heavily Used

(b) “UNI2” packet trace

Figure 3.13 – Cached rules versus ���	


43



Chapter 3. Managing Shared Flow Tables

 0.2
 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

C
ac

h
ed

 /
 O

ri
gi

n
al

 r
u
le

s

MHU history factor

UNI1 trace
UNI2 trace

Figure 3.14 – Cached rules versus �������

leaf partitions tends to remain constant for ��	��≥ 100.

�
��parameter Increasing the memory allocation factor results in creating a tree structure

with longer “width” and shorter “height.” As a result, the partition algorithm on a given node

tends to create more child partitions, therefore wildcard rules will conflict with more partitions.

Since we are producing ��� and ��� wildcard rules, the effect of the �
�� parameter is

observed when partitioning a relatively large rule set, such as the rule-set we created from the

UNI2 packet trace.

3.4 Summary

In this chapter, we proposed a switch architecture that exposes the abstraction of a virtual flow

table, which fits significantly more rules than the switch’s physical flow table. We implemented

this abstraction with a simple, two-layer memory hierarchy: a software table, located off the

data-path and accessible by the switch’s supervisor engine; and a much smaller but faster

hardware table, located on the data-path, and acting as a cache for the software table. The

challenge we focused on is the caching of overlapping rules, e.g., “admit all traffic from X” and

“drop all ICMP traffic from X”; if we cache the former but not the latter, then the switch will

admit all traffic from X, which is incorrect forwarding behavior. Even if we know exactly what

traffic will arrive at the switch in the future, identifying which rules to cache such that we

maintain correct forwarding behavior and maximize the amount of traffic that stays inside

the data-path is NP-hard; we showed it by mapping a simpler version of this problem to the

0-1 knapsack problem. On the positive side, we showed that there exists at least one simple

heuristic that works well in practice: an algorithm that caches groups of overlapping rules,

favoring the caching of groups that recently matches large amounts of traffic. Given realistic

data-path memory sizes and realistic traffic, our algorithm achieved hit rate 95% in terms of

the fraction of received traffic that stayed within the data-path.

44



3.4. Summary

 0

 1

 2

 3

 4

 5

 6

 10  100  1000

P
ar

ti
ti

on
ed

 /
 O

ri
gi

n
al

 r
u
le

s

Maximum rules per partition

UNI1 trace
UNI2 trace

(a) versus �����

 0

 1

 2

 3

 4

 5

 6

 7

 1  1.5  2  2.5  3  3.5  4

P
ar

ti
ti

on
ed

 /
 O

ri
gi

n
al

 r
u
le

s

Memory allocation factor

UNI1 trace
UNI2 trace

(b) versus ���	


Figure 3.15 – Replication rate of flow rules

45





4 Scheduling Shared Network Resources

In this chapter, we present our solution for scheduling shared network resources. As stated

in the introduction, we seek a solution that integrates seamlessly with the scheduling of

other resources and enables cloud providers to easily incorporate new resource types in their

infrastructure. We address this by making the computation of scheduling decisions resource-

agnostic and relegating it to a general-purpose constraint solver, and the enforcement of

scheduling decisions resource-specific and relegating it to special managers—one per resource

type. We focus on the manager for network resources and propose simple ways to enforce

bandwidth reservations and latency constraints. We evaluate our solution through extensive

experiments on an educational cloud platform.

4.1 Two-Tiered Resource Scheduling

We propose a two-tiered resource-scheduling architecture that consists of the following layers:

1. Resource-agnostic scheduling takes as input (i) the set of available resources (e.g., num-

ber of available processing cores, available bandwidth between two servers) and (ii) the

set of resource requests made by users for these resources, and it makes a “scheduling

decision,” i.e., decides if, and to what extent, it can satisfy each request. This layer has

no semantic information about specific resource types.

2. Resource-specific enforcement takes as input the scheduling decision made by the

resource-agnostic scheduler and tries to implement it; it also communicates back to the

resource-agnostic scheduler the set of available resources, abstracting away resource-

specific details (e.g., where a processing core is physically located, or which network

links carry traffic between two servers). This layer consists of multiple infrastructure

resource managers (IRMs), each one handling a specific resource type.

Figure 4.1 illustrates this architecture.

47



Chapter 4. Scheduling Shared Network Resources

Hardware
Resources

· · · Network
Resources

Resource-Agnostic Scheduler

Users

Submit Requests Feedback

Resource
Provisioning Feedback

Resource
Scheduling

Tier

Resource
Enforcement

Tier

Resource Managers

Figure 4.1 – Two-tiered architecture to facilitate scheduling shared network resources

This thesis focuses on resource-specific enforcement and, in particular, the design and imple-

mentation of the network infrastructure resource manager (IRM-NET), which handles network

resources. For evaluation purposes, we deployed our IRM-NET implementation together with

the resource-agnostic scheduler and other IRMs implemented in the context of the HARNESS

European project [11]—an effort in which the author of this thesis participated actively.

4.2 The Network Infrastructure Resource Manager

IRM-NET plays two roles:

1. It communicates with the resource-agnostic scheduler: IRM-NET tells the scheduler

what is the available bandwidth (§4.2.3) and latency (§4.2.4) between each pair of

compute nodes, and it enforces the scheduler’s bandwidth-reservation decisions.

2. It implements the cloud provider’s general network-management policies, e.g., over-

subscription of network links/paths when tenants are not anticipated to fully use their

bandwidth reservations concurrently (§4.2.5), or fair sharing of the network between

different tenants (§4.2.6).

We assume a single path between each pair of compute nodes (and, consequently, represent

network topology as an undirected tree). However, our design and implementation can be

easily extended to the more realistic scenario of multiple paths.

48



4.2. The Network Infrastructure Resource Manager

4.2.1 Modeling Network Links

IRM-NET maintains a complete picture of the cloud network topology, including all network

links, their endpoints, and attributes. Each network link is modeled as a compound resource,

represented with a syntax, where the following information is maintained: (i) the link’s

endpoints, defined as the identifiers of the corresponding hardware components, such as a

compute node or a switch; (ii) the maximum capacity of the link, in Mbits/second; (iii) the

available bandwidth of the link, defined as the difference between the link’s capacity and the

bandwidth being currently consumed, in Mbits per second; and (iv) the latency between the

two end-points, in milliseconds.

As an example, consider the simple “star” LAN, illustrated in figure 4.2. Three compute nodes

are connected through a common switch via 1 Gbit Ethernet links and three bandwidth-

intensive applications are running between the three nodes, consuming 425, 475 and 375

Mbit/sec, respectively.

425 Mbit/sec

375 Mbit/sec 475 Mbit/sec

1000 Mbit/sec

Figure 4.2 – Example of a simple “star” LAN topology

Listing 4.1 illustrates how the network links in figure 4.2 are modeled. We may identify for

each link: (i) the attribute, indicating the maximum bandwidth capacity of the link;

and (ii) the attribute, reporting how much available bandwidth may be scheduled

through the link. For example, there are two flows over the link – ,

thus the available bandwidth is 1000−425−375 = 200 Mbit/sec.

Listing 4.1 – Internal representation of network links in figure 4.2

1

2

3

4

5

49



Chapter 4. Scheduling Shared Network Resources

6 ����������	�
 �

7 ��������
 �����

8 ��������
 �����

9 ����������
 ���

10 �

11 ��

12 �

13 ������
 �������

14 �� �����
 �� !����" �����

15 ���#���
 ����������

16 ����������	�
 �

17 ��������
 ���$�

18 ��������
 �����

19 ����������
 ���

20 �

21 ��

22 �

23 ������
 �������

24 �� �����
 �� !����" ��%��

25 ���#���
 ����������

26 ����������	�
 �

27 ��������
 �����

28 ��������
 �����

29 ����������
 �$�

30 �

31 �

32 &

4.2.2 Exposing Virtual Paths

IRM-NET hides the network topology from the resource-agnostic scheduler, exposing only

the virtual end-to-end paths between each pair of compute nodes. We use a similar ����

syntax to represent virtual paths, where the �����	�
� attribute corresponds to the maximum

available bandwidth that may be scheduled on this path and the ��
��� attribute represents

the corresponding end-to-end latency.

For example, listing 4.2 illustrates the end-to-end Virtual Paths exposed to the scheduler in

figure 4.2.

Listing 4.2 – Virtual paths exposed to the scheduler in figure 4.2

1 '����	� ( )

2 �

3 ������
 �'����

4 �� �����
 �� !����" �����

5 ���#���
 �� !����" �����

6 ����������	�
 �

50



4.2. The Network Infrastructure Resource Manager

7 ���������	 
���

8 �����������	 �



9 �

10 ��

11 �

12 ������	 �������

13 ��������	 �������� ������

14 ����!���	 �������� ������

15 �"����#���$�	 �

16 ���������	 
����

17 �����������	 �



18 �

19 ��

20 �

21 ������	 �������

22 ��������	 �������� ���%��

23 ����!���	 �������� ������

24 �"����#���$�	 �

25 ���������	 
�%&�

26 �����������	 �'


27 �

28 �

29 (

4.2.3 Bandwidth Reservations

In this section, we present how tenants may schedule shared network resources with band-

width reservations in the cloud through our proposed two-tiered platform. In particular, our

platform supports heterogeneous resource requests, and tenants may submit their requests

for network resources concurrently with their hardware resource requests.

Listing 4.3 illustrates an example scheduling with bandwidth reservations. A tenant requests

two containers with 1 core per container and 100 Mbit/sec available bandwidth between the

two containers.

Listing 4.3 – Scheduling with bandwidth resources example

1 � �"))��������	 *

2 �

3 �+�����	 �!
��

4 ������	 �,��������

5 �"����#���$�	 �

6 �����$�	 �

7 �

8 ��

9 �

10 �+�����	 �!���

51



Chapter 4. Scheduling Shared Network Resources

11 ������� ���	
����

12 ������������� �

13 �������� �

14 �

15 �

16 �

17 ������� ������

18 ������������� �

19 �����	��� ����

20 ��������� ����

21 ����� ���
�� ���

22 �

23 �

24 !�

As we have stated in §4.2.2, IRM-NET hides the network topology from the scheduler, exposing

only the end-to-end virtual paths between compute nodes. Algorithm 4.1 specifies how IRM-

NET computes the ��������� attribute of each virtual path—in summary, by monitoring all

the links that compose the path and picking the least available bandwidth reported by any

one of them. IRM-NET then fills a matrix with the available bandwidth of all the virtual paths

and provides it to the scheduler.

Algorithm 4.1: Exposing end-to-end bandwidth to the scheduler

Data: Set of virtual paths P= {P1,P2, . . .} between each pair of compute nodes
Result: Expose the available end-to-end bandwidth of each path in P to the scheduler

1 ���←∞ 	
 ��������� � ���������� ���� 
	

2 foreach path P ∈P do
3 foreach link l ∈ P do
4 b ← available bandwidth of link l
5 if b <��� then 	
 l �� ��� ��������� ���������� ���� � P 
	

6 ���← b

7 if ���< 0 then ���← 0 	
 ���������� ������ �� ��������� �� ������ 
	

8 expose to the scheduler ��� available bandwidth for path P

When the scheduler decides on a new bandwidth reservation of b Mbit/sec between two

containers C1 and C2, IRM-NET iterates over the links composing the path between C1 and C2

and deducts b from their respective ��������� attributes, as illustrated in algorithm 4.2. The

inverse process, i.e., adding b, is applied when the scheduler releases a bandwidth reservation.

IRM-NET executes algorithm 4.1 after every new or released bandwidth reservation, as any

reservation/release may affect the available bandwidth of multiple paths. To enforce the

bandwidth reservation, our implementation uses the linux �� tool to throttle traffic egressing

C1 and destined for C2 to b Mbit/sec and vice-versa.

52



4.2. The Network Infrastructure Resource Manager

Algorithm 4.2: Creating a new bandwidth reservation

Data: Container C1 scheduled on compute node N1

Data: Container C2 scheduled on compute node N2 
= N1

Data: Path P between compute nodes N1 and N2

Data: Bandwidth reservation b
Result: Reserve bandwidth b on path P

1 forall links l ∈ P do
2 reduce available bandwidth of l by b

3 run algorithm 4.1
4 throttle egress traffic C1 →C2 on container C1 to b
5 throttle egress traffic C2 →C1 on container C2 to b

By default, the egress traffic on the allocated containers is throttled to a default minimum of

10 Mbit/sec, by virtue of a default, low-priority rule installed by the �� tool. Therefore, basic

connectivity is allowed even in the absence of bandwidth reservations and higher-priority rules

installed through algorithm 4.2 may allow a higher throughput. Nevertheless, this bandwidth

is not guaranteed, as no reservation is being registered and the aforementioned algorithms

are not executed.

4.2.4 Latency Constraints

In this section, we present how tenants may schedule shared network resources with latency

constraints in the cloud through our proposed two-tiered platform. Listing 4.4 illustrates an

example of scheduling with latency constraints. A tenant requests two containers with 1 core

per container, with the constraint that the end-to-end latency between the two containers

must not exceed 2 milliseconds. Latency constraints are specified in a �������	��� list, which

is separate from the 
������	�� list, as latency is not a resource that can be reserved, but a

constraint that needs to be honored.

Listing 4.4 – Scheduling with latency constraints example

1 � ��������	�
�� �

2 �

3 ������� �����

4 ������� �����	
���

5 �����	������� �

6 �������� �

7 �

8 ��

9 �

10 ������� �����

11 ������� �����	
���

12 �����	������� �

13 �������� �

53



Chapter 4. Scheduling Shared Network Resources

14 �

15 �

16 ��

17 �����	
���	�� �

18 �

19 ����
��� �����

20 ���
��	� �����

21 �����	
���	����� � ����

22 ���	����� ���

23 �

24 ��

As we have stated in §4.2.2, IRM-NET communicates to the scheduler the end-to-end latency

of each virtual path through the ������� attribute. Algorithm 4.3 specifies how IRM-NET

computes this attribute—in summary by adding the latencies of the links that compose the

given path. IRM-NET then fills a proximity matrix with the latencies of all the virtual paths

and provides it to the scheduler.

Algorithm 4.3: Exposing end-to-end latency to the scheduler

Data: Set of virtual paths P= {P1,P2, . . .} between each pair of compute nodes
Result: Expose the end-to-end latency of each path in P to the scheduler

1 foreach path P ∈P do
2 ���← 0 �	 
��� ������� 	�

3 foreach link l ∈ P do
4 d ← end-to-end latency of link l
5 ���← ���+d

6 expose to the scheduler ��� end-to-end latency for path P

4.2.5 Oversubscription

In this section, we describe a general network-management policy supported by IRM-NET,

bandwidth oversubscription.

Static Oversubscription

One approach to oversubscription is to introduce a global oversubscription factor α ∈ (0,1]

and substitute line 2 in algorithm 4.2 with “reduce available bandwidth of link l by α ·b”. This

approach ensures that: (i) more bandwidth reservations may be scheduled over the same

network link, by reserving less bandwidth than actually requested; (ii) tenants are always

guaranteed a fraction of their requested bandwidth; and (iii) tenants may still use the entire

bandwidth they requested, if it is available.

54



4.2. The Network Infrastructure Resource Manager

This approach is simple to implement, but has an important shortcoming: a single over-

subscription factor is unlikely to fit all applications; for instance, a smaller factor (more

tenants) would be more suitable in a cluster with low-throughput applications, whereas a

higher oversubscription factor (less tenants) would be more suitable in a different cluster with

high-throughput applications.

Dynamic Oversubscription

An alternative approach is to measure the bandwidth that is actually consumed on each link

and report that to the scheduler—as opposed to reporting the bandwidth that is theoretically

available based on the active reservations. Algorithm 4.4 specifies how this works. In summary:

1. Bandwidth reservations are conducted exactly as described in §4.2.3; no oversubscrip-

tion factor is used.

2. A new, periodical bandwidth-measurement mechanism is added that is repeated every

5 seconds and described in the next steps.

3. For every bandwidth resource B that has been allocated between any two containers,

the actual consumed bandwidth M is measured over a period of 3 seconds.

4. A minimum threshold of T = 10 Mbit/sec is always guaranteed, if the consumed band-

width is measured lower than T .

5. The difference D = B −M is calculated between the allocated (nominal) bandwidth B

and the measured (actual) bandwidth M .

6. This difference D is added to every link within the corresponding virtual path, represent-

ing that more bandwidth is now available for reservation. If D < 0, it will be subtracted,

instead, representing that less bandwidth is available for reservation.

7. Bandwidth throttling on the scheduled containers is never affected at any point.

A few notes regarding the aforementioned algorithm:

• The difference D = B −M between the nominal (B) and the measured (M) bandwidth

of a bandwidth reservation is expected to be positive during the first iteration, i.e., to

consume less than the requested bandwidth.

• The ��������� attribute of a network link may report a negative value. This may occur

if, for example, multiple tenants have been oversubscribed on a link and an application

exhibits a sudden bandwidth burst. A negative ��������� value on a link indicates that

bandwidth oversubscription is currently taking place on that link.

55



Chapter 4. Scheduling Shared Network Resources

Algorithm 4.4: Dynamic bandwidth oversubscription

Data: Set of virtual paths P= {P1,P2, . . .} between each pair of compute nodes
Data: Threshold T of minimum guaranteed bandwidth
Result: Measure bandwidth consumptions and update available bandwidth

1 forall reserved bandwidth resources B do �� B� ������	 
������� ��

2 (C1,C2) ← container end-points of bandwidth reservation
3 P ← virtual path ∈P between C1 ↔C2

4 M ← measured bandwidth between C1 ↔C2

5 if M < T then M ← T �� � 	��� T 
������� �� ��������� ��

6 D ← B −M �� ���������� 
����� �������� ��� ������	 ��

7 foreach link l ∈ P do
8 ���������← ���������+D �� D ��� 
� ������� ��

9 run algorithm 4.1 to update the end-to-end available bandwidth of all paths in P

• The end-to-end available bandwidth exposed to the scheduler is always non-negative,

even if a network link reports negative available bandwidth, as already illustrated in

algorithm 4.1.

4.2.6 Fair Sharing of the Network

In this section, we describe another general network-management policy supported by IRM-

NET, fair sharing of the network.

To demonstrate flexibility in supporting different network-management policies, IRM-NET

supports proportional bandwidth sharing at the link level, as proposed in FairCloud [48].

When a cloud provider offers proportional bandwidth sharing, tenants do not make bandwidth

requests; IRM-NET allocates bandwidth to tenants as specified in Algorithm 4.5.

This is a simple algorithm—just a proof-of-concept—but it can be extended relatively easily

to provide more sophisticated policies, such as: (i) Tenants requesting a desired minimum

bandwidth between their resources; if a path had surplus bandwidth, then less bandwidth

would be allocated to a virtual path, otherwise either the current scheme would be enforced

or the request would be rejected, depending on the policy of the cloud provider. (ii) Tenants

specifying their own weights WX and WY to indicate the importance of each requested path;

line 6 in algorithm 4.5 would change to WX
NX

+ WY
NY

.

4.3 Experimental Evaluation

In this section, we report four cloud deployment scenarios using shared network resources,

which are currently not supported by traditional cloud computing platforms:

56



4.3. Experimental Evaluation

Algorithm 4.5: Fair sharing of the network

Data: Network links of cloud platform
Data: Set of virtual paths P= {P1,P2, . . .} between each pair of compute nodes
Result: Determine bandwidth to be allocated to each virtual path

1 forall network links l do
2 ���l ← 0 �� ������� ��	 
� ��� ������� ��

3 foreach path in {PX−Y ∈P | l ∈ PX−Y } do �� �� ���� 
� ���� l ��

4 NX ← number of containers X is communicating with over l
5 NY ← number of containers Y is communicating with over l

6 WPX−Y ,l ←
1

NX
+ 1

NY
�� ������ 
� ��� ��� 
� ���� l ��

7 ���l ← ���l +WPX−Y ,l

8 forall virtual paths PX−Y do
9 ���←∞ �� �������� 
� �
�������� ���� ��

10 foreach link l ∈ PX−Y do
11 C ← capacity of link l

12 B l ←C · WPX−Y ,l

���l
�� �������� ��
���� �
 PX−Y 
� ���� l ��

13 if B l <��� then �� l �� ��� �
������ �
�������� ���� 
� PX−Y ��

14 ���← B

15 throttle egress traffic X → Y on container X to ���

16 throttle egress traffic Y → X on container Y to ���

1. Scheduling with Bandwidth Reservations: (section §4.3.3) This scenario exhibits the

advantages of resource-agnostic scheduling when deploying distributed applications

on the cloud. In this case, tenants may reserve bandwidth during resource scheduling,

which impacts where the requested containers will be assigned.

2. Scheduling with Latency Constraints: (section §4.3.4) This scenario demonstrates the

benefits of resource-agnostic scheduling when deploying latency-sensitive applications

on the cloud. In this scenario, tenants may designate end-to-end latency constraints

during resource scheduling, which influences where jobs will be deployed.

3. Scheduling with Oversubscription: (section §4.3.5) This scenario illustrates the ad-

vantages of bandwidth oversubscription when deploying distributed applications on

a multi-tenant cloud platform. In this scenario, multiple tenants are concurrently re-

questing bandwidth on a congested platform, which will affect how many tenants will

be admitted, as well as the performance experienced by the end-users.

4. Enforcing Fairness: (section §4.3.6) This scenario presents the benefit of added flex-

ibility by integrating a bandwidth management mechanism to enforce proper band-

width allocation across different tenants. In this scenario, two tenants are deploying a

57



Chapter 4. Scheduling Shared Network Resources

bandwidth-intensive application over a common network link and their performances

will be benchmarked in the presence and in the absence of the mechanism described in

section §4.2.6.

4.3.1 Testbed

We have deployed our platform on Grid’50001, which provides:

• A large-scale research testbed with over 1000 nodes, allowing us to experiment with

realistic multi-tenant scenarios.

• Node grouping in homogeneous, isolated clusters spread out across 9 different sites

within France, as shown in Figure 4.3 [22].

• A core network interconnecting the various clusters together, used concurrently by

multiple tenants.

Therefore, Grid’5000 enables us to experiment with variable network conditions (inter- and

intra-site connections respectively) without needing to simulate them.

Figure 4.3 – Grid’5000 network backbone

Table 4.1 lists the hardware specifications of the clusters which we have been used to conduct

our experiments in this chapter.

4.3.2 Applications

In this section we present the applications which we have used in our evaluation scenarios to

benchmark the performance and the benefits of our platform:

1. AdPredictor, used in the scenarios presented in sections §4.3.3 and §4.3.5.

1http://www.grid5000.fr

58



4.3. Experimental Evaluation

Location Cluster Model Nodes CPU Cores Threads RAM Network
Rennes paravance Dell Pow-

eredge
R630

72 Intel
Xeon E5-
2630v3

16 32 128 GiB 10
Gigabit
Ethernet

Rennes paranoia Dell Pow-
eredge
C6220

8 Intel
Xeon E5-
2660v2

20 40 128 GiB 10
Gigabit
Ethernet

Nantes econome Dell Pow-
eredge
C6220

22 Intel
Xeon
E5-2660

16 32 64 GiB 10
Gigabit
Ethernet

Table 4.1 – Cluster specifications within Grid’5000

2. WikiBench, used in the scenario presented in §4.3.4.

3. iperf, used in the scenario presented in §4.3.6.

AdPredictor

AdPredictor [20] is a machine learning algorithm from a class of contemporary industrial-

oriented applications, commonly known as recommender systems, addressed to end-users

utilizing on-line services. For instance, one such service is Last.fm [31], a free online music

catalog that recommends related music and events based on user interests. Similar such ser-

vices include Google [19] and Bing [37], two commercial on-line search engines that produce

commercial product recommendations to end-users, based on the end users’ queries. In

recommender systems, items or services are paired with end-users and, due to the constant,

overwhelming data generation, such computations are usually deployed in large, distributed

data-centers.

For the purposes of our evaluation, we have used a hadoop-based version of the AdPredic-

tor algorithm to serve as an example of a large-scale distributed application that may be

deployed on a cloud platform. AdPredictor processes session logs from commercial search

engines to predict the click-through rate of commercial advertisements. We have deployed

this implementation using hadoop version �����.

Dependent variables We have evaluated the performance of AdPredictor by measuring the

following dependent variables: (hereinafter: metrics)

1. Execution time: the total time needed to execute the application, not measuring the

required time needed to upload the data-set to the Hadoop Distributed File System

(HDFS).

2. Throughput: the throughput of a worker container, over time, measured every 100

milliseconds (§4.3.3) or every 1 second (§4.3.5). This traffic may be categorized either as:

(i) HDFS traffic, resulting from I/O operations between the map-reduce tasks and the

59



Chapter 4. Scheduling Shared Network Resources

local hard disk; or (ii) shuffle traffic, resulting from data being transferred between map

and reduce tasks. This metric will also be referred to as the instantaneous throughput.

Data-set We have utilized session logs of a web search engine [55] to evaluate the perfor-

mance of AdPredictor. This data-set contains approximately 150 million training instances

(9.9 GiB), derived from interactions between end-users and the search engine.

WikiBench

WikiBench [61] is a framework designed to benchmark web-hosting systems, such as appli-

cation servers or cloud computing platforms. This framework is deployed on client-server

architectures and operates as follows:

• The system being evaluated, hereinafter called the wikipedia server, is hosting Medi-

aWiki [64], a real major web application.

• The wikipedia server is modeling a real data center server, as an actual database dump

of a wikipedia website [63] has been deployed on the MediaWiki application.

• A real data-set is utilized to benchmark the system, by replaying traces addressed to

����������	
� [57]. The WikiBench framework is deployed on each client and is tasked

to replay the access trace by sending each request to the designated wikipedia server

and evaluate the system performance, as described further below.

Dependent variables The WikiBench framework evaluates the performance on the system

by measuring the following dependent variables (hereinafter: metrics) on the client side:

1. Miss rate: the percentage of the requests that were skipped by the benchmark. The

WikiBench benchmark is observing the timestamp differences between consecutive

requests, skipping intermediate requests as necessary.

Example: let R1, R2 and R3 denote three consecutive requests of a single client, with

respective original timestamps t1 < t2 < t3. Let Δt1 denote the time required to complete

the request R1. If t2 − t1 < Δt1 < t3 − t1, then the request R2 will be skipped and the

benchmark shall proceed directly to request R3. In order to respect the timestamp

differences, the benchmark shall stall for Δts seconds, so that Δt1 +Δts = t3 − t1.

2. RTT: the Round-Trip-Time between issuing a request and receiving a successful re-

sponse, including the payload. Only responses returning �� ��� �� are filtered, as

they usually bear a noticeable payload compared to responses such as �� ��� �	�

�	��� or �� ��� �	��� ��
��������, therefore exhibiting a higher RTT due to the

increased transmission delay on the wikipedia server side.

60



4.3. Experimental Evaluation

Bottleneck challenges To successfully evaluate our system, we had to overcome a series of

challenges to verify that the performance bottleneck would be the network, instead of I/O

operations. In particular, we identified an I/O bottleneck when issuing a page request to our

wikipedia server for the first time, where the Round-Trip-Time (RTT) was measured 1 – 2

orders of magnitude higher than subsequent requests to the same page. This indicated that

a bottleneck was existing during an access request to the MySQL database, which was lifted

when the page was subsequently cached by the database.

In order to properly identify this bottleneck, we set up the English wikipedia dump on our

server and issued, from a single client, requests addressed to various pages hosted the server.

Two batches of 100 requests each were issued for each page using the linux �� benchmarking

tool, with a maximum of 10 requests running concurrently within a single batch. The requests’

RTTs were measured during the process. The second batch of 100 requests was issued after

the first one had been fully completed to measure whether the MySQL caching had an impact

on the RTT.

Batch
RTT (msec)

50% 80% 90% 100%

First 160 328 18,169 19,893
Second 159 315 342 373

Table 4.2 – Round-Trip-Time of two batches of 100 requests to the wikipedia server

Table 4.2 presents our measurements on the requests issued to retrieve page ������	
�
��.

During the first batch, the 90% and 100% RTTs2 were measured about 55 – 60 times higher

than the corresponding 80% RTT. Nevertheless, there was no such discrepancy during the

second batch, where the maximum RTT was comparable to the 80% RTT of the first batch. This

clearly indicates that during the second batch, the requested page had been cached within the

MySQL database, which significantly improved the RTT time.

Only, after applying a series of MySQL optimizations were we able to shift the bottleneck from

the MySQL database to the network. These optimizations included: (i) file caching, which

stores the rendered HTML pages to files on the local disk; (ii) page compression, so that the

requested page may be sent faster to the network; (iii) disabling page-view counters and

running MediaWiki on “miser” mode. Under these circumstances, the throughput rate was

measured as high as 909 Mbit/sec, on a 1 Gbit link, indicating that the requested pages were

being transferred essentially at line rate. Therefore, we decided to address this challenge by

permanently caching all pages on the local hard disk, which effectively resulted in completely

bypassing the MySQL database.

2 we are referring to the corresponding data-points of the cumulative distribution function

61



Chapter 4. Scheduling Shared Network Resources

Server configuration We have hosted the Danish wikipedia dump of August 01, 2016 [65] on

MediaWiki ������, running on our wikipedia server. We have chosen the Danish dump due to

its considerable smaller size compared to the respective English dump. Table 4.3 lists the size

of the aforementioned wikipedia dump files. As previously mentioned, the MySQL database is

effectively bypassed, in order to eliminate any I/O bottlenecks, by caching all articles directly

on the hard disk.

Language Compressed Uncompressed Articles

Danish 243 MiB 1.03 GiB ≈ 210,000
English 12.2 GiB 54.2 GiB ≈ 5,200,000

Table 4.3 – Size of ����	
������	��������, containing the 2016-08-01 wikipedia dumps

Client data-set We have selected the September 2007 wikipedia access traces [58] to bench-

mark our system. These traces contain approximately 2.4 billion requests, corresponding to

10% of all user requests addressed to wikipedia during that month. From these requests we

have isolated the 311,013 requests addressed specifically to the Danish wikipedia articles,

under �������������, but not other pages such as talk pages. These requests will be

collectively hereinafter referred to as the wikipedia trace, which will be replayed from the

clients, addressed to our wikipedia server.

In addition, we have “sped up” our wikipedia trace in order to simulate a realistic workload

on the server side. In particular, the original timestamps of the isolated requests to the

Danish wikipedia span across a period of 12 calendar days (from 2007-09-19 to 2007-09-30),

generating an average workload of 0.3 requests per second. We would obtain no meaningful

measurements under this rate, since the WikiBench framework, which would send the client

requests, observes the timestamp difference between two consecutive requests. Therefore, we

have mapped the timestamps of the danish requests to the timestamps of the first 311,013

requests in the packet trace, which span over 10.3 minutes, effectively “speeding up” our trace

to an average of 502.6 requests per second.

iperf

���� [13] is a cross-platform benchmarking tool used to measure the maximum attainable

bandwidth on an IP network. When an ���� application is deployed, a single container is be

utilized as the server, hosting the ���� daemon, while the rest are be used as clients, opening

and maintaining TCP ���� sessions issued to the ���� server.

4.3.3 Scenario 1: Scheduling with Bandwidth Reservations

In this section, we are exploring the scenario where a single tenant is deploying a bandwidth-

sensitive distributed application on the cloud.

62



4.3. Experimental Evaluation

Experimental setup Our setup consists of 8 physical compute nodes; 4 nodes located in the

paranoia cluster, and 4 nodes in the econome cluster. We have already presented the hardware

specifications in Table 4.1. We have selected these two clusters as: (i) the physical compute

nodes possess virtually identical hardware characteristics; (ii) the two clusters are located

in different sites (Rennes and Nantes), which introduces a natural inter-cluster bandwidth

bottleneck of approximately 200 Mbps. While both clusters offer gigabit connectivity, we

have emulated bandwidth congestion within the econome cluster, using the linux �� tool, in

order to evaluate the impact of bandwidth reservations on resource scheduling. Therefore, we

have imposed a bandwidth threshold of 500 Mbit/sec on every physical machine within the

aforementioned cluster. We assume that our platform is aware of the network conditions on

each cluster.

Tenant request A single tenant is submitting an AdPredictor application request to the cloud

platform with the following characteristics:

• Three containers are being requested, each one will host a single hadoop DataNode and

a single TaskTracker. These containers will be referred to as the worker containers.

• Each worker container will host 10 concurrent map tasks and 2 reduce tasks. There-

fore, 12 cores are requested for each worker. This ensures that no two workers will be

scheduled on the same physical compute node, as there is no node with 24 cores.

• An extra container is also requested, which will host a single hadoop NameNode and a

single JobTracker. This container will be referred to as the master container, for which a

single core is requested. The position of the master container is not expected to affect

the execution of the job, therefore we will assume for the rest of the scenario that it is

always allocated on an available node in the paranoia cluster.

Data-set The entire data-set, as described in §4.3.2, has been used in this scenario.

Worker throughput In order to evaluate the bandwidth requirements of the AdPredictor

application, we first measured the instantaneous throughput between two worker containers

during its execution, while deployed on the paranoia cluster, i.e., in a cluster offering gigabit

connectivity. Figure 4.4 reports our measurements on one of the three worker containers. We

may observe a constant throughput of approximately 200 Mbit/sec to the hard disk at the

conclusion of the experiment, as well as 1 Gbit/sec traffic bursts throughout the experiment

as a result of the data being “shuffled” between the map and the reduce taks.

Link capacity Following our observations in figure 4.4, we would expect to observe degra-

dation on the execution time, should AdPredictor run on a link with a lower capacity than

63



Chapter 4. Scheduling Shared Network Resources

1 

10 

100 

1k

10k

0 50 100 150 200 250

T
h

ro
u

g
h

p
u

t 
(M

b
it
 /

 s
e

c
)

Elapsed time (sec)

HDFS traffic
Shuffle traffic

Figure 4.4 – AdPredictor worker throughput over time

200 Mbit/sec. To validate our intuition, we subsequently measured the execution time while

varying the underlying link capacity between all worker containers. To achieve that, we de-

ployed AdPredictor on the paranoia cluster and used the linux �� tool to simulate a lower link

capacity between all worker containers. Figure 4.5 illustrates the results of our measurements,

where we have detected a “knee” point at a link capacity of ∼ 80−200 Mbit/sec. All executions

running on links slower than 80 Mbit/sec showed a severe increase in their execution time,

being consistent with our measurements in figure 4.4. On the contrary, no execution running

on links faster than 200 Mbit/sec exhibited any improvement compared to the execution

running 200 Mbit/sec links.

 100

 1000

 10000

 100000

 1  10  100  1000  10000

E
xe

cu
tio

n 
tim

e 
(s

ec
)

Link Capacity (Mbit / sec)

Job wall time
Map duration

Reduce duration

Figure 4.5 – AdPredictor execution time over link capacity

Scheduling without bandwidth reservations Our main evaluation scenario consists of a

tenant submitting a job request for 3 container workers, as previously described, without

providing any bandwidth reservations. This experiment has been repeated 20 times. Figure 4.6

64



4.3. Experimental Evaluation

reports the measured execution time as a function of the final placement of the container

workers. There are 4 different placements of the 3 worker containers, labeled as A – B, with

A denoting the number of containers scheduled in the paranoia cluster and B denoting the

number of containers scheduled in the econome cluster. Over 20 experiments, there was an

approximately equal probability for a container to be scheduled in either cluster. Also visible,

the duration of the individual map and reduce phases, as well as the standard deviation of all

iterations that resulted in the given placement.

It is evident that scheduling without bandwidth reservations may affect the performance of

bandwidth-sensitive distributed applications. The execution time of AdPredictor exhibits a

gradual improvement (lower duration) as more container workers are being scheduled in the

“faster” paranoia cluster, with label 3 – 0 denoting the optimal placement where all containers

have been scheduled on that cluster. Nevertheless, there is approximately only 7% probability3

that the cloud scheduler will choose the optimal placement without bandwidth reservations.

Therefore, end-users will inevitably experience variability in their performance, due to the

unpredictability of the container placement.

0

50

100

150

200

250

300

350

400

450

3-0 2-1 1-2 0-3

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Number of Workers in Rennes-Nantes

Job wall time
Map duration

Reduce duration

Figure 4.6 – AdPredictor execution time over cluster placement

Scheduling with bandwidth reservations In order to eliminate all suboptimal placements

presented in figure 4.6, tenants have to specify bandwidth reservations during resource

scheduling. In this case, we add three additional requests during job submission: 300 Mbit/sec

between any two worker containers. Therefore, a container may only be scheduled on a

compute node that has at least 600 Mbit/sec available bandwidth, as it would require two

reservations of 300 Mbit/sec with each other container. Consequently, by including bandwidth

reservations in our requests, all containers were eventually scheduled in the fast paranoia

cluster, since there was not adequate bandwidth available in the slower econome cluster.

3 the theoretical probability of choosing 3 nodes in the paranoia cluster is C (4,3)
C (8,3) = 1

14

65



Chapter 4. Scheduling Shared Network Resources

4.3.4 Scenario 2: Scheduling with Latency Constraints

In this section, we are exploring the scenario where multiple latency-sensitive applications are

deployed on the cloud.

Experimental setup Our setup consists of 40 physical machines; 20 out of them located in

the paravance cluster, situated in Rennes, and 20 located in the econome cluster, situated in

Nantes. The wikipedia server is running on a separate physical machine within the paravance

cluster. The RTT between two compute nodes on different clusters is, in this scenario, at least

1.2ms.

Data-set The entire data-set, as described in §4.3.2, has been used in this scenario. A uniform

distribution has been applied on the wikipedia trace to split the trace into 20 segments of

approximately equal size; all together reconstruct the original trace. This will simulate the

entire workload originating from multiple clients.

Tenant request A single tenant is submitting an AdPredictor application request to the cloud

platform with the following characteristics:

• 20 client containers are being requested, which will host a WikiBench benchmark.

• As in section §4.3.3, 12 cores are requested for each container, to ensure that they will

be scheduled on different physical compute nodes. Despite running a single fetcher on

WikiBench, we assume that the tenant is requesting 12 cores to execute post-execution

computations.

• After scheduling, each of the 20 data-set segments will be loaded on a different container,

along with the WikiBench framework.

• The WikiBench framework will commence its execution simultaneously on all 20 con-

tainers, replaying the entire data-set by sending the requests to the wikipedia server.

Each container utilizes a single thread to send requests in sequence, respecting the

requests’ timestamp differences.

This experiment was executed 100 times, each time resulting in a different placement of the

requested 20 containers across the two clusters.

Scheduling without latency constraints We initially scheduled without latency constraints,

where there was an approximately equal probability for a requested container to be scheduled

in either cluster. A timeout threshold of 100 milliseconds has been set on the WikiBench

framework: if the Round-Trip-Time (RTT) of a request is longer than 100 milliseconds, the

66



4.3. Experimental Evaluation

request will be immediately dropped and a “miss” is registered. We elected this threshold, as

100 milliseconds is the point that a request feels “instant” to the human user and 1 second

where the end-user will notice a delay [43].

Figure 4.7 reports the miss rate distribution across all experiments, based on the originating

cluster. The box plots extend until they encompass the 95% of the data-points, with any outliers

also being depicted. We observe that only 2% of requests originating from the paravance cluster

were dropped, whereas the respective miss rate of requests originating from the econome

cluster was 16%.

 0%
 2%
 4%
 6%
 8%

10%
12%
14%
16%
18%
20%

econome paravance

R
eq

ue
st

 m
is

s 
ra

te

Cluster

Figure 4.7 – WikiBench request miss rate, no latency constraints, based on originating cluster

Figure 4.8 reports the distribution of the Round-Trip-Time of every request, across all ex-

periments, based on the originating cluster. The box plots extend until they encompass the

95% of the data-points, with any outliers omitted from the figure; The following scenarios

are depicted: (a) scheduling with no constraints, requests originating from either cluster;

(b) scheduling with no constraints, requests originating from the econome cluster; (c) schedul-

ing with no constraints, requests originating from the paravance cluster; (d) scheduling with

latency constraints, requests originating from either cluster. We obtained the distribution (d)

when we subsequently executed all our experiments with latency constraints, as we describe

below.

We observe that the RTT of requests originating from the econome cluster was about an order

of magnitude longer than the corresponding RTT of requests originating from the paravance

cluster.

Scheduling with latency constraints Based on our previous measurements, we repeated all

experiments by providing maximum latency constraints between the requested containers

and the wikipedia server in the paravance server. In particular, an end-to-end latency of 0.5

milliseconds (1 millisecond RTT) was provided; based on our observations in figure 4.8, this

67



Chapter 4. Scheduling Shared Network Resources

0

5

10

15

20

25

No constraints econome

cluster

paravance

cluster

Latency

Constraints

R
T

T
 (

m
s
)

Scenario

Figure 4.8 – WikiBench request Round-Trip-Time distribution, based on latency constraints

was adequate to exclude the econome cluster from consideration. This resulted in directly

affecting the placement of the requested resources, which where all placed in the paravance

cluster. The RTT distribution of all requests is illustrated in figure 4.8, while the miss rate was

virtually identical to the behavior observed in figure 4.7.

4.3.5 Scenario 3: Scheduling with Oversubscription

In this section, we are exploring the scenario where multiple tenants are deploying a dis-

tributed application on a cloud platform with insufficient bandwidth to accommodate all

requests.

Experimental setup Our setup consists of 2 physical compute nodes, both located in the

paravance cluster, which may be reviewed in table 4.1. We have emulated congestion on the

network link between the two compute nodes using the linux �� tool, limiting its capacity to

100 Mbit/sec. We assume that our platform is aware of the link’s capacity.

Tenant requests Multiple tenants are submitting the same AdPredictor application request

to the cloud platform with the following characteristics:

• Two worker containers, as defined in section §4.3.3 are being requested.

• Each worker container will host 1 map task and 1 reduce task. Therefore, 2 cores are

requested for each worker.

• We will also assume that the two worker containers cannot be allocated on the same

physical compute node. This may be implemented through, e.g., a request for a specific

68



4.3. Experimental Evaluation

hardware resource. This assumption is undertaken to evaluate the performance of the

job when data is being transferred over an over-subscribed network link.

• A bandwidth constraint of 100 Mbit/sec between the two worker containers is also

requested, which coincides with the total capacity of the link.

• As in §4.3.3, a master container is also requested, which we will not examine in this

scenario, as it does not affect the execution of the job.

Data-set We have chosen to limit the data-set to 10 million entries (680 MiB), as previously

described, on the grounds that it offered the most suitable trade-off between: (i) producing

an impactful throughput in the order of magnitude of at least 100 Mbit/sec, which required

a bigger data-set; and (ii) being able to concurrently store multiple copies of the data-set,

the intermediate output of the map tasks and the final output in memory, as we will discuss

further below, which required a smaller data-set. This reduced data-set produces a behavior

similar to the one reported in figure 4.4. The peak shuffle bandwidth has been measured

within 100−120 Mbit/sec.

Scheduling without oversubscription The cloud platform will only accept a single tenant

request, since a single request will reserve the entire capacity of the network link between the

two compute nodes. Consequently, any further job submissions are rejected. Nevertheless,

as we have already illustrated in figure 4.4, although the throughput between two workers

may reach, or exceed, 100 Mbit/sec, there is no continuous data transfer between two worker

containers. This leads to the link being severely under-utilized; as we may observe in figure 4.9,

link utilization is only 14%, defined as:

utilization = data transfered

capacity · time
·100%

Scheduling with oversubscription In order to boost the utilization of the network link, we

have scheduled the aforementioned requests with bandwidth oversubscription. We have

deployed the static oversubscription algorithm presented in section §4.2.5.

A maximum of 8 requests may be concurrently accepted, thus 8 worker containers per compute

node, as 2 cores have been requested per container and each compute node has 16 cores. We

have therefore executed 8 different experiments, each time decreasing the oversubscription

factor, until all 8 tenants have been concurrently scheduled on the cloud. Since the entire link

capacity is requested by every tenant, it is evident that only 1 tenant may be scheduled with

α= 1, 2 tenants with α= 1
2 and 8 tenants with α= 1

8 . Each experiment for a given value of the

oversubscription factor α was repeated 20 times.

69



Chapter 4. Scheduling Shared Network Resources

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300  350

B
an

dw
id

th
 (

M
bi

t/s
ec

)

Time (sec)

Shuffle traffic
HDFS traffic

Figure 4.9 – AdPredictor worker throughput over time; single tenant

Figure 4.10 illustrates the distribution of the instantaneous throughput of every worker con-

tainer, for all executions of a given tenant admission threshold. The box plots extend until

they encompass the 95% of the data-points, with any outliers omitted from the figure; there-

fore the top box bar corresponds to the 97.5th percentile. We may observe that the median

throughput is, as expected, degrading as we are scheduling more concurrent tenants, but up

to N = 3 tenants the degradation does not exceed 5.9% compared to the N = 1 case. A similar

degradation may be observed for the 75th throughput percentile and the 97.5th percentile,

which do not exceed 8.9% and 5%, respectively. We may therefore conclude that, if the cloud

provider accepts 3 concurrent tenants, the performance degradation will not be noticed by

the end-users.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  1  2  3  4  5  6  7  8  9

B
an

dw
id

th
 (

M
bi

t/s
ec

)

Number of Tenants

Figure 4.10 – AdPredictor “shuffle” traffic throughput over concurrently admitted tenants

On the other hand, as the number of concurrent tenants increases, the end-users will unavoid-

ably notice the performance degradation, as the median, the 75th and the 97.5th bandwidth

70



4.3. Experimental Evaluation

percentiles experience a 61%, 58.2% and 30% decline, respectively, when N = 8 users are

admitted, in comparison to the single-tenant admission.

Figure 4.11 illustrates the distribution of the execution time of every AdPredictor deployment,

for a single execution of a given tenant admission threshold. For N = 3 tenants, the median

execution time increases by 9.09%, compared to the single-tenant case, while for N = 8 tenants,

the same increase is 32.9%.

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

1 2 3 4 5 6 7 8

E
xe

cu
tio

n 
tim

e 
(m

in
)

Number of Tenants

Figure 4.11 – AdPredictor execution time over concurrently admitted tenants

Figure 4.12 reports the link utilization for a single execution of a given tenant admission

threshold. It is evident that, while the individual tenant performance exhibits degradation,

the link utilization is enhanced as more tenants are being concurrently admitted to the cloud

platform.

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 1  2  3  4  5  6  7  8

Li
nk

 u
til

iz
at

io
n

Number of Tenants

Figure 4.12 – Link utilization over concurrently admitted tenants

71



Chapter 4. Scheduling Shared Network Resources

Figure 4.13 illustrates the instantaneous “shuffle” bandwidth, during a single execution, when

N = 3 tenants have been scheduled concurrently due to bandwidth oversubscription. This

figure validates our measurements in figure 4.12, as, on average, more data is transferred over

the network link within a 1 second interval.

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300  350  400

B
an

dw
id

th
 (

M
bi

t/s
ec

)

Time (sec)

tenant 1 tenant 2 tenant 3

Figure 4.13 – AdPredictor “shuffle” throughput with bandwidth oversubscription, N = 3 tenants

To conclude, the cloud provider has a strong incentive to oversubscribe at least N = 3 tenants in

this scenario, as it will double the link utilization with a relatively low impact on the individual

performance of the tenants’ jobs. The exact policy to be used to determine the trade-off

between link utilization and tenant performance may be determined by the cloud provider.

Eliminating non-network-related bottlenecks Due to the concurrent executions of multi-

ple distributed applications on the same physical compute node, we had run into a number of

non-network-related bottlenecks that we had to address:

• Hard disk: we observed that hadoop is writing to the local hard disk not only the

final output of the reduce tasks, but also the intermediate output of the map tasks.

Preliminary measurements with multiple tenants indicated an I/O bottleneck, which

affected our measurements. To address this issue, we decided to mount the entire

Hadoop Distributed File System (HDFS) on the memory, including the data-set and the

final output.

• CPU affinity: we observed that hadoop does not enforce any core affinity on the run-

ning map or reduce tasks, a mechanism left to the linux scheduler. Therefore, it was

commonplace to have the running map or reduce tasks being moved across multiple

cores, resulting in the loss of the instruction pipeline, as well as the warm L1/L2 caches,

72



4.3. Experimental Evaluation

producing eventually inconclusive results. To address this issue, we developed a simple

scheduler utilizing the linux ������� tool, to “pin” each map and reduce task on an

unused CPU.

An alternative way to approach this issue would be to use Apache Hadoop YARN [5], a

subsequent Hadoop version, as the design goal of YARN is to improve resource utiliza-

tion by replacing map-reduce slots with containers [52].

4.3.6 Scenario 4: Enforcing Fairness

In this section, we are investigating the scenario where multiple tenants are contesting over

limited bandwidth resources to deploy their bandwidth-intensive applications. The cloud

provider is regulating the bandwidth provisioning between the tenants by operating the

mechanism described in §4.2.6. We have conducted a preliminary evaluation to demonstrate

the proof-of-concept of our proposal.

Experimental setup For the purposes of our evaluation, we have replicated the experimental

setup demonstrated in §4.3.5. In this scenario, we have limited the capacity of the network

link between the two compute nodes to 1,000 Mbit/sec.

Tenant requests Two tenants, referred to as “Alice and Bob,” are submitting the same ����	

application request to the cloud platform with the following characteristics:

• Two containers are being requested; we will assume that the two containers cannot be

allocated on the same physical compute node.

• An ����	 server and the respective client will be deployed on the two containers, re-

spectively.

• There are no specific bandwidth requests; the cloud provider will allocate as much

bandwidth as possible based on the bandwidth allocation scheme.

Results Figure 4.14 illustrates the results of our preliminary evaluation, presenting the

average bandwidth over the entire duration of each experiment. We are reporting the following

use-cases:

1. Alice is the only tenant with allocated resources on the testbed, running her ����	

application over the network link.

2. Both Alice and Bob have their resources allocated on the testbed, running their re-

spective ����	 applications over the same network link. No bandwidth management

73



Chapter 4. Scheduling Shared Network Resources

mechanism is employed, thus the TCP congestion control will administer the bandwidth

allocation between Alice and Bob.

3. Replicating use-case (2), with the aforementioned fairness mechanism in operation.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

Only Alice Both, no fairness Both, fairness

B
an

dw
id

th
 (

M
bi

t/s
ec

)

Scenario

Alice
Bob

Figure 4.14 – Enforcing fairness on ����� applications

As expected, when Alice is the lone scheduled tenant, she receives the entire bandwidth of the

network link. However, when both tenants are deployed, the TCP congestion control allocates

more bandwidth to Alice’s session, which had started at an earlier time than Bob’s respective

session. When we subsequently enable the fairness mechanism that both tenants are allocated

approximately 500 Mbit/sec on the shared network link. This is the expected behavior, as both

connections are allocated an equal weight WA =WB = 1
NX

+ 1
NY

= 1
1 + 1

1 = 2; therefore, half of

the link’s capacity is allocated to each connection. We conclude that in the absence of a “fair”

bandwidth allocation mechanism, the TCP congestion control mechanism will tend to favor

the existing connections over the newer ones, whereas a simple fairness enforcement will

result in a proper bandwidth allocation between different tenants.

4.4 Summary

In this chapter, we proposed a two-tiered approach to scheduling cloud resources: first, a

resource-agnostic layer makes scheduling decisions without relying on any resource-specific

semantics; second, a resource-specific layer enforces these scheduling decisions through

special infrastructure resource managers (IRMs), one per resource type. We focused on the

IRM responsible for network resources (IRM-NET), which plays two roles: (a) it informs the

resource-agnostic scheduler of the available bandwidth and latency of end-to-end paths

between compute nodes and implements the scheduler’s decisions; (b) it implements the

cloud provider’s general network-management policies, e.g., oversubscription or fair network

sharing. To evaluate IRM-NET, we used both benchmarking tools and realistic applications.

We experimented with scenarios where different tenants request bandwidth resources or

74



4.4. Summary

latency constraints, and with scenarios where the cloud provider supports oversubscription

or fair network sharing. We showed that our approach enables cloud providers to (a) provide

bandwidth and latency guarantees to tenants sharing the same network links, and to (b)

implement useful general network-management policies.

75





5 Conclusions

In this thesis, we have studied the problem of managing shared network resources on multi-

tenant cloud networks, in a way that exposes to tenants the illusion of an isolated network

exclusively under the tenant’s control.

Our work has been motivated by two challenges in resource management, stemming from the

increased demand for application migration to the cloud in recent years. First, storing access-

control rules (ACLs) within the operating system (OS) that hosts the tenant virtual machines

(VMs) or containers, despite being convenient, introduces unnecessary performance overhead

and security issues. Second, offering bandwidth and latency guarantees to end-users in the

cloud poses profound challenges, as cloud providers are allowing increased heterogeneous

resource support.

To address the challenge of storing ACLs in the cloud, we have developed a Top-of-Rack (ToR)

switch architecture that exposes the abstraction of a two-layered virtual flow table, composed

of: (i) a fast, but small data-path memory, acting as a flow rule cache; and (ii) a large, but slow

backing store accessible from the switch’s supervisor engine, which fits orders of magnitude

more rules than the switch’s physical flow table. We have showed that by deploying a simple,

practical heuristic to store in the limited cache memory the rules that recently matched

the most amount of traffic, we may attain fast packet-forwarding performance at line-rate

by keeping up to 95% of the traffic in the data-path. Our approach maintains the correct

forwarding behavior by resolving any challenges that rise from caching wildcard rules.

Furthermore, we have also proposed a two-tiered approach to scheduling cloud resources,

consisting of: (i) a resource-agnostic scheduling layer; and (ii) a resource-specific layer enforc-

ing the scheduling decisions. We have demonstrated that our architectures facilitates cloud

providers in providing bandwidth and latency guarantees to tenants sharing the same network

links, and in implementing useful general network-management policies, such as bandwidth

oversubscription or fair network sharing.

We consider the outcome of our extensive evaluations to be a favorable development for all the

77



Chapter 5. Conclusions

growing efforts in cloud computing: we conclude that when designing resource management

abstractions, flexibility does not necessarily preclude, but may facilitate performance.

78



A Flow Rule Definitions and Notations

In this appendix we present the definitions and notations that we utilize throughout chapter 3.

All notations that we introduce are briefly illustrated Table A.1.

Notation Representation

R Flow Rule
d Number of fields in Flow Rule
Fi i -th field of Flow Rule, i ∈ [0,d ]
Ud the entire d-dimensional flow rule space
Sd

R d-dimensional space of Flow Rule R
R1 ∩R2 
= � Rules R1 and R2 overlap directly

P Ingress Packet
P ∈ R Packet P matches rule R

Table A.1 – Notations used in flow rule related context

A.1 Flow Rule Concepts

A flow rule is a set of actions applied to ingress packets. Flow rules are usually determined

by the network provider’s or administrator’s policy and may include forwarding a packet to a

designated egress port or dropping it. Rules are applied on flows, defined as a set of headers

characterizing a wide range of ingress packets. Flows are usually described by a tuple of header

fields, such as the 5-tuple: {source IP address, destination IP address, IP protocol, Transport

source port, Transport destination port}.

We formally define a flow rule R as a data structure composed of:

• A number of d ∈N+ fields, used to characterize the range of ingress packets that will

match with rule R. Rule fields are typically ranges of packet headers, such as the source

IP address or the source port of the transport protocol.

79



Appendix A. Flow Rule Definitions and Notations

• A series of k ∈N+ actions to be applied on the matching ingress packets. Examples may

include “forward the packet to egress port p”, “drop the packet” or “forward the packet

to the controller.”

We will interchangeably refer to flow rules as traffic rules. In this dissertation, we will not focus

further on rule actions, being outside of the scope of our work.

A.2 Flow Rule Fields

A flow rule R is composed of d fields F1,F2, . . . ,Fd , corresponding to d different packet headers,

such as the source IP address. Each rule field Fi is defined as a closed interval Fi = [a,b],

representing the range of the respective ingress packet header that should match with field Fi .

Example: a rule applying on all ingress packets originating from the network 10.0.42.0/24

has its respective source IP field set to Fsr cI P = [10.0.42.0,10.0.42.255]. ■

A.3 Rule Matching

We say that a packet P with headers f1, f2, . . . , fd matches a rule R with respective fields

F1,F2, . . . ,Fd , denoting it as P ∈ R, if and only if:

P ∈ R ⇐⇒ fi ∈ Fi , ∀i ∈ [0,d ]

Equivalently, we also say that a rule R is matched with a packet P or matches a packet P , if and

only if P matches R.

A.4 Flow Rule Hyperspace

The d-dimensional hyperspace Sd (or simply space) of a flow rule R denotes the entire range

of packets that may be matched with this rule and is defined as the Cartesian product of its d

fields:

Sd = F1 ×F2 ×·· ·×Fd

Throughout this document, we assume that all flow rules within the same context are com-

posed of the same d fields.

Example: assuming d = 2 and that rules are defined within the plane {source IP address,

destination IP address}, a rule defined simply as F1 = [10.0.0.0,10.255.255.255], i.e.,

defined to match all ingress packets originating from 10.0.0.0/8, will have its destination

IP address field implicitly set to F2 = [0.0.0.0,255.255.255.255]. Any other packet headers,

80



A.5. Overlapping Flow Rules

such as the source MAC address, are ignored in this context. ■

We say that R is contained within the d-dimensional universe Ud ⊇Sd , defined as the hyper-

space representing the entire range of possible values of the d-tuple (F1,F2, . . . ,Fd ).

A.5 Overlapping Flow Rules

In this section, we will introduce the concept of overlapping flow rules, which have constituted

a considerable focus of our work.

A.5.1 Directly Overlapping Rules

We say that two flow rules Rx and Ry , with respective d-dimensional spacesSd
x andSd

y , overlap

directly, denoting it as Rx ∩Ry 
= �, if and only if:

Rx ∩Ry 
= � ⇐⇒ Sd
x ∩Sd

y 
= � ⇐⇒ Fx,i ∩Fy,i 
= �, ∀i ∈ [0,d ]

Rules that overlap directly will also be referred as directly overlapping rules.

Intuitively, we may visualize directly overlapping rules in the 2-dimensional space as two

rectangles on the 2D plane that overlap with each other, i.e., share a common surface. The

same concept applies on higher dimensions, where two rules overlap directly if they share a

common subspace. Ingress packets with headers contained within this shared subspace may

potentially match with either rule, in the absence of other priorities.

Example: consider the 2-dimensional plane {source IP address, destination IP address}

and two rules defined within it:

Rx : Fx,1 = [10.0.0.0,10.255.255.255], Fx,2 = [0.0.0.0,255.255.255.255]

Ry : Fy,1 = [0.0.0.0,255.255.255.255], Fy,2 = [42.0.0.0,42.255.255.255]

In other words, Rx is applied on all packets originating from network 10.0.0.0/8 and

Ry is applied on all packets destined to network 42.0.0.0/8. These rules are directly

overlapping, as the intersection of their respective hyperspaces is non-empty:

S2
x ∩S2

y = [10.0.0.0,10.255.255.255]× [42.0.0.0,42.255.255.255]

Packets originating from network 10.0.0.0/8 and destined to network 42.0.0.0/8 may

match with either rule Rx or Ry . ■

81



Appendix A. Flow Rule Definitions and Notations

Conversely, Rx ∩Ry =� denotes that rules Rx and Ry do not overlap directly, i.e.:

Rx ∩Ry =� ⇐⇒ Sd
x ∩Sd

y =� ⇐⇒ ∃i ∈ [0,d ] : Fx,i ∩Fy,i =�

A.5.2 Indirectly Overlapping Rules

We say that two flow rules Rx and Ry overlap indirectly if and only if m ∈N+ other rules Ri

exist, such that:

∃R1,R2, . . . ,Rm : Rx ∩R1 
= �
and Ri ∩Ri+1 
= �, i = 1,2, . . . ,m −1, if m > 1

and Rm ∩Ry 
= �

Rules that overlap indirectly will also be referred as indirectly overlapping rules. The trivial case

where m = 0 corresponds to Rx and Ry being directly overlapping rules. We do not consider

the trivial case in this dissertation; therefore, when we say that two rules overlap indirectly, we

assume that m > 0.

Intuitively, we may visualize two indirectly overlapping rules as a “chain” of directly overlap-

ping rules. For instance, rules Rx and Ry may not directly overlap with each other, but overlap

with a common “intermediate” rule Rz .

Example: consider the 2-dimensional plane {source transport port, destination trans-

port port} and three rules defined within it:

Rx : Fx,1 = [0,1023], Fx,2 = [0,65535]

Ry : Fy,1 = [8080,9000], Fy,2 = [0,65535]

Rz : Fz,1 = [0,65535], Fz,2 = [2000,3000]

We may see that Rx ∩Ry = �, but Rx ∩Rz 
= � and Rz ∩Ry 
= �, therefore Rx and Ry

overlap indirectly, but not directly. ■

82



B Packet Classifier Node Definition

In this appendix we present in detail the definition of the tree node, developed for the software

table described in section §3.2.1, which we partition by executing the HiCut algorithm [24].

We call the entire tree the Packet Classifier. In particular, we illustrate:

1. A partial definition of the ��������	 class in listing B.1, developed in C++14, including

the relevant types and private members.

2. A detailed example of a root node and the contents of its private members.

Listing B.1 – Partial definition of the ��������	 class

1 
�����	 ���� �

2 
�����	 ��	���� �

3 
�����	 ��	���� �

4 
�����	 �����	�������� �� �	���	� ���� ����� ���� !!

5

6 ���� ��������	 "

7

8 ��#��$

9 �%% &#��	� '��(	� �	��	� ��	���

10 % )� 	���	������ �����* ��	 ���(	� ��	���

11 %  ��� ��	� ��� #	 ��	� �� �	���	 � ���	�����

12 % �� ��	 	����	 ��� ���	�����	�

13 %�

14 	��� ��	� "

15 �+ ,-��.� / 01

16 �+ ,-��2�34� 1 �� ���� +' ����	��

17 �+ ,-��2�-35 1 �� ���� +' ����	��

18 �+ ,-��2�'4.5. 1 �� +' �������

19 �+ ,-�5'�34� 1 �� ���� ��������� ����

83



Appendix B. Packet Classifier Node Definition

20 ����������	� 
 �� ��� �������� ����

21 �� ���� ��� �� �������� 
 ����
 ������� ��� �����

22  !

23 "��� �������� # ���$�! �� �$��

24

25 �%% &����� 	���$� '�������� ��"�������

26 % � ���� �������� �(� ��"������ �� � ���$� ���������

27 % ���� �$�����) $��� ��"�� *�$���+

28 % 	����� �$�����) ���(� ��"�� *����+

29 % ,����) -$��� 
 ���(�+

30 %�

31 "��� .�"����� # ��))���� / "���01�� 
 "���01�� 2!

32

33 �%% &����� 3��� (���������

34 % � ��� ����������� �(� (�������� �� �(� �����

35 % 4�� # ��������

36 % 5�$"� # -$��� 
 ���(�+

37 %

38 % 36��) 7� (�8� "��$�9�� �� ������� ��� 


39 % ������ �� �� "�������� ��� 


40 % � �������� ��� ��� ������

41 % ��� ��: "��"$ �� (�8� �(� �������� ��������

42 %�

43 "��� 	����.�; # ��))��� / �������� 
 .�"����� 2!

44

45 �� �����"���� ��� �"�$�� ���(�� ������� ��� ���$�����

46

47 ���8���)

48 �%% &����� �(� �(�$� ��� �����

49 % � ��� (�$���� (�������� �� �(� ����: �(�$�����

50 % �� �(� ���� �� �"��(�� ����������� ���� � ��������

51 % <��(�� �� ���� ��; 
 ������� �� &�"���������� 


52 % �(�� �(�$���� ��� ������� ����������� �(� ����������

53 % 4 # �(� $��� ��"�� �� �(� ����������

54 % 5 # ������� �� �(� �(�$� ����������� �(� ����������

55 % 7� ��� "��� � ��� 
 � �(�� $��="� ���"�

56 % �� $������(��� �����

57 %�

58 "��� �(�$���� # ��))��� /

59 "���01�� 
 ��))(�������� / >��"�3��� 2

60 2!

61

84



62 ��� ������ 	
� ��������� ������

63 � � �������
� ���� ��� � ���
���� ��� ��������� �����

64 � ����������� � ���� �
���

65 ��

66 �
��� �����	
� �������
��

67

68 ��� ������ ��� �������
��

69 � �������
� �
 ��� ���
�� ��� ��������� �����

70 � ����������� � ���� �
���

71 �  � ��� �
 �������
� !! �����
�� �� ��� 
�" ��

72 � ���� �� � "��� �
���

73 ��

74 �������
� �����������
��

75

76 ��� ������ #�� ���"� $�� �������

77 � #�� �����" ����"�$�� �������

78 ��

79 ���"�$�� ���"���������

80

81 ��� ������ %
�� &��� '����

82 � �
������� (��� �"" �"
( ��"�� �� ���� �
��)�

����������

83 � #�� �

� �
�� �
"�� ��� ������ ��"� *����

84 � &��� �
�� �
"�� ��� ������ 
� ��� ������ )� ��"��

85 � ���� �
��"���� (��� ��� 
(� +����� �
�+�

86 � #��� "��� �� �� �"����� 
� �
� *"��� �
����

87 ��

88 ���!!,���
� - ."
(&��� / ��������

89 0�

Example: consider a root node covering the entire 2-dimensional hyperspace “{IP source

address, IP destination address}”. The HiCut algorithm has partitioned the root node in 4

segments, along the destination IP addresses 64.0.0.0, 128.0.0.0 and 192.0.0.0. The root node

will hold the following data:

1 �������
� 1 2

2 2 . &'��%3��4� � 2 5� 67 -- 879 0 0�

3 2 . &'��%3���# � 2 5� 67 -- 879 0 0�

4 0�

5 �����������
� 1 . &'��%3���#�

6 ���"�������� 1 2

7 2 5�55555555 � �
�������
����"��5 0�

8 2 5�:5555555 � �
�������
����"��; 0�

85



Appendix B. Packet Classifier Node Definition

9 � ���������� � ���	
��
������� ��

10 � ���������� � ���	
��
������� ��

11 �

The children nodes will hold the following respective data in their �������� variables:

1 ��������� � �

2 � ����� !"#� � � � � $� %% ��& � ��

3 � ����� !�"' � � ���������� � ��(������� � ��

4 �)

5 ��������� � �

6 � ����� !"#� � � � � $� %% ��& � ��

7 � ����� !�"' � � ��(������� � ���������� � ��

8 �)

9 ��������� � �

10 � ����� !"#� � � � � $� %% ��& � ��

11 � ����� !�"' � � ���������� � ���������� � ��

12 �)

13 ��������( � �

14 � ����� !"#� � � � � $� %% ��& � ��

15 � ����� !�"' � � ���������� � $� %% ��& � ��

16 �)

■

86



Bibliography

[1] Amazon Web Services. EC2 Instance Types, 2017. URL http://aws.amazon.com/ec2/

instance-types. [Online; accessed 28-October-2017].

[2] Amazon Web Services. Enhanced Networking on Linux, 2017. URL https://docs.aws.

amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html. [Online; accessed

28-October-2017].

[3] Amazon Web Services. Placement Groups, 2017. URL https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/placement-groups.html. [Online; accessed 28-October-

2017].

[4] Analog Bits Inc. 4096 x 128 ternary CAM datasheet (28nm), 2011. URL http://www.

analogbits.com/pdf/28nm_TCAM_Product_Brief.pdf. [Online; accessed 9-November-

2017].

[5] Apache Software Foundation. Apache Hadoop YARN, 2017. URL https://hadoop.apache.

org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html. [Online; accessed 26-

October-2017].

[6] Theophilus Benson. Data Set for IMC 2010 Data Center Measurement, 2010. URL

http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html. [Online; accessed 13-October-

2017].

[7] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic characteristics

of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM Conference on

Internet Measurement, IMC ’10, pages 267–280, New York, NY, USA, 2010. ACM. ISBN

978-1-4503-0483-2. doi: 10.1145/1879141.1879175. URL http://doi.acm.org/10.1145/

1879141.1879175.

[8] Cisco Systems Inc. Cisco Nexus 1000V Switch for KVM, 2016. URL https://www.cisco.

com/c/en/us/products/switches/nexus-1000v-kvm/index.html. [Online; accessed 12-

November-2017].

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-

tion to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN 0262033844,

9780262033848.

87



Bibliography

[10] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet Sharma,

and Sujata Banerjee. DevoFlow: Scaling flow management for high-performance net-

works. In Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, pages

254–265, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0797-0. doi: 10.1145/2018436.

2018466. URL http://doi.acm.org/10.1145/2018436.2018466.

[11] Jose Gabriel de Figueiredo Coutinho, Mark Lee Stillwell, Katerina Argyraki, George Ioan-

nidis, Anca Iordache, Christoph Kleineweber, Alexandros Koliousis, John McGlone, Guil-

laume Pierre, Carmelo Ragusa, Peter Sanders, Thorsten Schütt, Teng Yu, and Alexander L.

Wolf. The HARNESS Platform: A Hardware- and Network-Enhanced Software System

for Cloud Computing. Software Architecture for Big Data and the Cloud, 2017. URL

https://hal.inria.fr/hal-01507344/file/harness.pdf.

[12] Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng Liao, Kun Tian, and Haibing Guan.

High performance network virtualization with SR-IOV. J. Parallel Distrib. Comput., 72

(11):1471–1480, 2012. doi: 10.1016/j.jpdc.2012.01.020. URL https://doi.org/10.1016/j.

jpdc.2012.01.020.

[13] Jon Dugan, Seth Elliott, Bruce A. Mah, Jeff Poskanzer, and Kaustubh Prabhu. iPerf –

the TCP, UDP and SCTP network bandwidth measurement tool. URL https://iperf.fr.

[Online; accessed 24-October-2017].

[14] Jonas Fietz, Sam Whitlock, George Ioannidis, Katerina Argyraki, and Edouard Bugnion.

Vntor: Network virtualization at the top-of-rack switch. In Proceedings of the Seventh

ACM Symposium on Cloud Computing, SoCC ’16, pages 428–441, New York, NY, USA,

2016. ACM. ISBN 978-1-4503-4525-5. doi: 10.1145/2987550.2987582. URL http://doi.

acm.org/10.1145/2987550.2987582.

[15] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy. A distributed resource

management architecture that supports advance reservations and co-allocation. In

Quality of Service, 1999. IWQoS ’99. 1999 Seventh International Workshop on, pages 27–36,

1999. doi: 10.1109/IWQOS.1999.766475.

[16] Linux Foundation. Open vSwitch: Production quality, multilayer open virtual switch,

2016. URL http://openvswitch.org. [Online; accessed 12-November-2017].

[17] Soudeh Ghorbani and Matthew Caesar. Walk the line: Consistent network updates with

bandwidth guarantees. In Proceedings of the First Workshop on Hot Topics in Software

Defined Networks, HotSDN ’12, pages 67–72, New York, NY, USA, 2012. ACM. ISBN 978-1-

4503-1477-0. doi: 10.1145/2342441.2342455. URL http://doi.acm.org/10.1145/2342441.

2342455.

[18] Google Cloud Platform. Egress throughput caps, 2017. URL https://cloud.google.com/

compute/docs/networks-and-firewalls#egress_throughput_caps. [Online; accessed 28-

October-2017].

88



Bibliography

[19] Google Inc. Google web search engine. URL https://www.google.com. [Online; accessed

24-October-2017].

[20] Thore Graepel, Joaquin Quiñonero Candela, Thomas Borchert, and Ralf Herbrich.

Web-Scale Bayesian Click-Through rate Prediction for Sponsored Search Advertising

in Microsoft’s Bing Search Engine. In Johannes Fürnkranz and Thorsten Joachims,

editors, ICML, pages 13–20. Omnipress, 2010. URL http://dblp.uni-trier.de/db/conf/

icml/icml2010.html#GraepelCBH10;http://www.icml2010.org/papers/901.pdf;http:

//www.bibsonomy.org/bibtex/2b008aa80a83b88a6e5fee59caa9b6493/dblp.

[21] Albert Greenberg. SDN for the cloud, 2015. URL http://conferences.sigcomm.org/

sigcomm/2015/pdf/papers/keynote.pdf. [Online; accessed 20-November-2017].

[22] Grid’5000 development team. Grid’5000 Network Backbone, 2016. URL https://www.

grid5000.fr/mediawiki/index.php/Grid5000:Network. [Online; accessed 15-October-

2017].

[23] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yang, Chao Kong, Peng Sun, Wenfei

Wu, and Yongguang Zhang. SecondNet: A data center network virtualization architecture

with bandwidth guarantees. In Proceedings of the 6th International COnference, Co-NEXT

’10, pages 15:1–15:12, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0448-1. doi:

10.1145/1921168.1921188. URL http://doi.acm.org/10.1145/1921168.1921188.

[24] Pankaj Gupta and Nick Mckeown. Packet classification using hierarchical intelligent

cuttings. In in Hot Interconnects VII, pages 34–41, August 1999.

[25] Pankaj Gupta and Nick McKeown. Classifying packets with hierarchical intelligent cut-

tings. IEEE Micro, 20(1):34–41, January 2000. ISSN 0272-1732. doi: 10.1109/40.820051.

URL http://dx.doi.org/10.1109/40.820051.

[26] Pankaj Gupta and Nick McKeown. Algorithms for packet classification. IEEE Network, 15

(2):24–32, March 2001. ISSN 0890-8044. doi: 10.1109/65.912717.

[27] Evangelos Haleplidis, Kostas Pentikousis, Spyros Denazis, Jamal Hadi Salim, David Meyer,

and Odysseas Koufopavlou. Software-Defined Networking (SDN): Layers and Architec-

ture Terminology. RFC 7426, January 2015. URL https://rfc-editor.org/rfc/rfc7426.txt.

[28] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prab-

hakar, and Changhoon Kim. EyeQ: Practical Network Performance Isolation

for the Multi-tenant Cloud. In Rodrigo Fonseca and David A. Maltz, ed-

itors, HotCloud. USENIX Association, 2012. URL http://dblp.uni-trier.de/

db/conf/hotcloud/hotcloud2012.html#JeyakumarAMPK12;https://www.usenix.

org/conference/hotcloud12/workshop-program/presentation/jeyakumar;http:

//www.bibsonomy.org/bibtex/26f7b77222e16d115b5ded5d2e0d8b7b1/dblp.

[29] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. CacheFlow:

Dependency-aware rule-caching for software-defined networks. In Proceedings of the

89



Bibliography

Symposium on SDN Research, SOSR ’16, pages 6:1–6:12, New York, NY, USA, 2016. ACM.

ISBN 978-1-4503-4211-7. doi: 10.1145/2890955.2890969. URL http://doi.acm.org/10.

1145/2890955.2890969.

[30] G. Kim and W. Lee. Cannot take my allocation: Enforcing fairness by considering demand

and payment in clouds. In 2013 Fourth International Conference on the Network of the

Future (NoF), pages 1–5, Oct 2013. doi: 10.1109/NOF.2013.6724514.

[31] Last.fm. Online music catalog & music recommendation system. URL https://www.last.

fm. [Online; accessed 24-October-2017].

[32] Jeongkeun Lee, Myungjin Lee, Lucian Popa, Yoshio Turner, Sujata Banerjee, Puneet

Sharma, and Bryan Stephenson. CloudMirror: Application-Aware Bandwidth Reserva-

tions in the Cloud. In Dilma Da Silva and George Porter, editors, HotCloud. USENIX

Association, 2013. URL http://dblp.uni-trier.de/db/conf/hotcloud/hotcloud2013.html#

LeeLPTBSS13.

[33] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. Cicada: Dependably

fast multi-core in-memory transactions. In Proceedings of the 2017 ACM Interna-

tional Conference on Management of Data, SIGMOD ’17, pages 21–35, New York, NY,

USA, 2017. ACM. ISBN 978-1-4503-4197-4. doi: 10.1145/3035918.3064015. URL

http://doi.acm.org/10.1145/3035918.3064015.

[34] Layong Luo, Gaogang Xie, Steve Uhlig, Laurent Mathy, Kavé Salamatian, and Yingke

Xie. Towards tcam-based scalable virtual routers. In Proceedings of the 8th International

Conference on Emerging Networking Experiments and Technologies, CoNEXT ’12, pages

73–84, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1775-7. doi: 10.1145/2413176.

2413186. URL http://doi.acm.org/10.1145/2413176.2413186.

[35] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jen-

nifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling innovation in

campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March 2008. ISSN

0146-4833. doi: 10.1145/1355734.1355746. URL http://doi.acm.org/10.1145/1355734.

1355746.

[36] Peter M. Mell and Timothy Grance. SP 800-145. The NIST definition of cloud computing.

Technical report, Gaithersburg, MD, United States, 2011. URL http://nvlpubs.nist.gov/

nistpubs/Legacy/SP/nistspecialpublication800-145.pdf.

[37] Microsoft Corporation. Bing web search engine. URL https://www.bing.com. [Online;

accessed 24-October-2017].

[38] Microsoft Corporation. Optimize network throughput for Azure virtual ma-

chines, 2017. URL https://docs.microsoft.com/en-us/azure/virtual-network/

virtual-network-optimize-network-bandwidth. [Online; accessed 28-October-2017].

90



Bibliography

[39] Microsoft Corporation. Bandwidth/throughput testing (NTTTCP), 2017. URL https://

docs.microsoft.com/en-us/azure/virtual-network/virtual-network-bandwidth-testing.

[Online; accessed 28-October-2017].

[40] Microsoft Corporation. Azure virtual network, 2017. URL https://docs.microsoft.com/

en-us/azure/virtual-network/virtual-networks-overview. [Online; accessed 28-October-

2017].

[41] Nitin Mohan and Manoj Sachdev. Low-leakage storage cells for ternary content address-

able memories. IEEE Trans. Very Large Scale Integr. Syst., 17(5):604–612, May 2009. ISSN

1063-8210. doi: 10.1109/TVLSI.2008.2006040. URL http://dx.doi.org/10.1109/TVLSI.

2008.2006040.

[42] Masoud Moshref, Minlan Yu, Abhishek Sharma, and Ramesh Govindan. vcrib: Virtualized

rule management in the cloud. In Proceedings of the 4th USENIX Conference on Hot

Topics in Cloud Ccomputing, HotCloud’12, pages 23–23, Berkeley, CA, USA, 2012. USENIX

Association. URL http://dl.acm.org/citation.cfm?id=2342763.2342786.

[43] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1993. ISBN 0125184050.

[44] Radhika Niranjan Mysore, George Porter, and Amin Vahdat. FasTrak: Enabling express

lanes in multi-tenant data centers. In Proceedings of the Ninth ACM Conference on

Emerging Networking Experiments and Technologies, CoNEXT ’13, pages 139–150, New

York, NY, USA, 2013. ACM. ISBN 978-1-4503-2101-3. doi: 10.1145/2535372.2535386. URL

http://doi.acm.org/10.1145/2535372.2535386.

[45] OpenStack “kilo” documentation. SR-IOV-Passthrough-For-Networking, 2015. URL

https://wiki.openstack.org/w/index.php?title=SR-IOV-Passthrough-For-Networking&

oldid=93943. [Online; accessed 20-November-2017].

[46] OpenStack “kilo” documentation. Scheduling, 2016. URL https://docs.openstack.org/

kilo/config-reference/content/section_compute-scheduler.html. [Online; accessed 28-

October-2017].

[47] OpenStack “kilo” documentation. OpenStack Neutron, 2017. URL https://docs.openstack.

org/neutron/latest. [Online; accessed 12-November-2017].

[48] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy, Sylvia Rat-

nasamy, and Ion Stoica. FairCloud: Sharing the network in cloud computing. In Lars

Eggert, Jörg Ott, Venkata N. Padmanabhan, and George Varghese, editors, SIGCOMM,

pages 187–198. ACM, 2012. ISBN 978-1-4503-1419-0. URL http://doi.acm.org/10.1145/

2342356.2342396.

[49] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C. Mogul, Yoshio Turner, and

Jose Renato Santos. ElasticSwitch: Practical Work-conserving Bandwidth Guarantees for

91



Bibliography

Cloud Computing. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,

SIGCOMM ’13, pages 351–362, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2056-6.

doi: 10.1145/2486001.2486027. URL http://doi.acm.org/10.1145/2486001.2486027.

[50] RightScale, Inc. Cloud computing trends: 2017 state of the cloud sur-

vey, 2017. URL https://www.rightscale.com/blog/cloud-industry-insights/

cloud-computing-trends-2017-state-cloud-survey. [Online; accessed 12-November-

2017].

[51] Henrique Rodrigues, Jose Renato Santos, Yoshio Turner, Paolo Soares, and Dor-

gival Guedes. Gatekeeper: Supporting Bandwidth Guarantees for Multi-tenant

Datacenter Networks. In Sanjay Kumar, Himanshu Raj, and Karsten Schwan, ed-

itors, WIOV. USENIX Association, 2011. URL http://dblp.uni-trier.de/db/conf/

usenix/wiov2011.html#RodriguesSTSG11;https://www.usenix.org/conference/wiov11/

gatekeeper-supporting-bandwidth-guarantees-multi-tenant-datacenter-networks;

http://www.bibsonomy.org/bibtex/21f7e01a21cd0590d77760e40adac714f/dblp.

[52] Sandy Ryza. Improvements in the hadoop YARN fair scheduler, 2013. URL https://blog.

cloudera.com/blog/2013/06/improvements-in-the-hadoop-yarn-fair-scheduler. [On-

line; accessed 26-October-2017].

[53] Alan Shieh, Srikanth Kandula, Albert Greenberg, and Changhoon Kim. Seawall: Per-

formance isolation for cloud datacenter networks. In Proceedings of the 2nd USENIX

Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 1–1, Berkeley, CA, USA,

2010. USENIX Association. URL http://dl.acm.org/citation.cfm?id=1863103.1863104.

[54] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet classification

using multidimensional cutting. In Proceedings of the 2003 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM

’03, pages 213–224, New York, NY, USA, 2003. ACM. ISBN 1-58113-735-4. doi: 10.1145/

863955.863980. URL http://doi.acm.org/10.1145/863955.863980.

[55] Tencent Holdings Ltd. Session logs of �������� search engine [data-set]. Kag-

gle KDD Cup 2012, Track 2 competition, 2012. URL https://www.kaggle.com/c/

kddcup2012-track2. [Online; accessed 24-October-2017].

[56] Luis Tomás and Johan Tordsson. Improving cloud infrastructure utilization through over-

booking. In Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference,

CAC ’13, pages 5:1–5:10, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2172-3. doi:

10.1145/2494621.2494627. URL http://doi.acm.org/10.1145/2494621.2494627.

[57] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. Wikipedia Workload Analysis

for Decentralized Hosting. Elsevier Computer Networks, 53(11):1830–1845, July 2009. URL

http://www.globule.org/publi/WWADH_comnet2009.html.

92



Bibliography

[58] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. September 2007 Wikipedia

access traces, 2014. URL http://carambolier.irisa.fr/wiki/2007-09. [Online; accessed

22-October-2017].

[59] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. Resource overbooking and

application profiling in shared hosting platforms. SIGOPS Oper. Syst. Rev., 36(SI):239–254,

December 2002. ISSN 0163-5980. doi: 10.1145/844128.844151. URL http://doi.acm.org/

10.1145/844128.844151.

[60] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vijaykumar. EffiCuts: Optimizing

packet classification for memory and throughput. In Proceedings of the ACM SIGCOMM

2010 Conference, SIGCOMM ’10, pages 207–218, New York, NY, USA, 2010. ACM. ISBN

978-1-4503-0201-2. doi: 10.1145/1851182.1851208. URL http://doi.acm.org/10.1145/

1851182.1851208.

[61] Erik-Jan van Baaren. WikiBench: A distributed, Wikipedia based web application bench-

mark. Master’s thesis, VU University Amsterdam, May 2009. URL http://www.wikibench.

eu/wp-content/uploads/2010/10/van-baaren-thesis.pdf.

[62] Werner Vogels. 10 lessons from 10 years of Amazon web services, 2016. URL http://

www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html. [Online;

accessed 20-November-2017].

[63] Wikimedia Foundation. Wikimedia Downloads. URL https://dumps.wikimedia.org.

[Online; accessed 22-October-2017].

[64] Wikimedia Foundation. Mediawiki, the free wiki engine, 2016. URL https://www.

mediawiki.org/w/index.php?title=MediaWiki&oldid=2301969. [Online; accessed 22-

October-2017].

[65] Wikimedia Foundation. Wikimedia database dump of the Danish Wikipedia on August

01, 2016, 2016. URL https://archive.org/details/dawiki-20160801. [Online; accessed

22-October-2017].

[66] Di Xie, Ning Ding, Y. Charlie Hu, and Ramana Kompella. The only constant is change:

Incorporating time-varying network reservations in data centers. In Proceedings of

the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication, SIGCOMM ’12, pages 199–210, New York, NY,

USA, 2012. ACM. ISBN 978-1-4503-1419-0. doi: 10.1145/2342356.2342397. URL http:

//doi.acm.org/10.1145/2342356.2342397.

[67] Bo Yan, Yang Xu, Hongya Xing, Kang Xi, and H. Jonathan Chao. CAB: A reactive wildcard

rule caching system for software-defined networks. In Proceedings of the Third Workshop

on Hot Topics in Software Defined Networking, HotSDN ’14, pages 163–168, New York,

NY, USA, 2014. ACM. ISBN 978-1-4503-2989-7. doi: 10.1145/2620728.2620732. URL

http://doi.acm.org/10.1145/2620728.2620732.

93



Bibliography

[68] L. Ying. Sponge: an oversubscription strategy supporting performance interference

management in cloud. China Communications, 12(11):1–14, November 2015. ISSN

1673-5447. doi: 10.1109/CC.2015.7366242.

[69] Fang Yu, Randy H. Katz, and T. V. Lakshman. Gigabit rate packet pattern-matching using

TCAM. In Proceedings of the 12th IEEE International Conference on Network Protocols,

ICNP ’04, pages 174–183, Washington, DC, USA, 2004. IEEE Computer Society. ISBN

0-7695-2161-4. URL http://dl.acm.org/citation.cfm?id=1025124.1025890.

[70] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. Scalable flow-based

networking with DIFANE. In Proceedings of the ACM SIGCOMM 2010 Conference, SIG-

COMM ’10, pages 351–362, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0201-2. doi:

10.1145/1851182.1851224. URL http://doi.acm.org/10.1145/1851182.1851224.

[71] Jing Zhu, Dan Li, Jianping Wu, Hongnan Liu, Ying Zhang, and Jingcheng Zhang. Towards

bandwidth guarantee in multi-tenancy cloud computing networks. In Proceedings of the

2012 20th IEEE International Conference on Network Protocols (ICNP), ICNP ’12, pages

1–10, Washington, DC, USA, 2012. IEEE Computer Society. ISBN 978-1-4673-2445-8. doi:

10.1109/ICNP.2012.6459986. URL http://dx.doi.org/10.1109/ICNP.2012.6459986.

94



George Ioannidis
PhD in Computer & Communication Sciences � ioanngio@gmail.com

� github.com/gioannidis

Education
2011

2017
PhD in Computer & Communication Sciences, EPFL, Switzerland.
School of Computer and Communication Sciences.
In addition, completed semester projects and courses worth of 30 ECTS credits.

2006
2011

Diploma in Electrical & Computer Engineering, National Technical Uni-
versity of Athens, Greece, GPA: 9.58/10.00.
� Major: Computer Systems, Computer Software

� Minor: Communications & Computer Networks, Electronics – Circuits – Materials

Dissertations
PhD Thesis

title Adding Flexibility to Multi-Tenant Networks
supervisor Prof. Katerina Argyraki, EPFL, Switzerland

description We propose two mechanisms to facilitate cloud providers in managing shared
resources: (i) a virtual flow table abstraction for storing access-control rules
(ACLs) in Top-of-Rack (ToR) switches; and (ii) a two-tiered resource scheduling
architecture that provides bandwidth reservations and latency constraints to
cloud tenants.

Diploma Thesis
title Cone-Beam C-arm Radiography System Modeling for assisting in Closed

Intramedullary Nailing of Long-Bone Surgeries
supervisor Prof. Elias Koukoutsis, National Technical University of Athens, Greece

description C-arm radiography system modeling for assisting surgeons in the placement of
locking intramedullary nails in long-bone orthopedic surgeries.

Journal Publications
2017• Figueiredo Coutinho, Jose Gabriel de, Mark Lee Stillwell, Katerina Argyraki,

George Ioannidis, Anca Iordache, Christoph Kleineweber, Alexandros Koliousis,
John McGlone, Guillaume Pierre, Carmelo Ragusa, Peter Sanders, Thorsten
Schütt, Teng Yu, and Alexander L. Wolf. “The HARNESS Platform: A Hardware-
and Network-Enhanced Software System for Cloud Computing”. In: Software
Architecture for Big Data and the Cloud. Ed. by Ivan Mistrik, Nour Ali, Rami
Bahsoon, Maritta Heisel, and Bruce R. Maxim.

95



Conference Publications
2016• Fietz, Jonas, Sam Whitlock, George Ioannidis, Katerina Argyraki, and Edouard

Bugnion. “VNToR: Network Virtualization at the Top-of-Rack Switch”. In:
Proceedings of the Seventh ACM Symposium on Cloud Computing. SoCC ’16.
Santa Clara, CA, USA: ACM, pp. 428–441.

Projects
2014
2017

HARNESS Cloud Platform, EPFL, Switzerland.
Hardware- and Network-Enhanced Software Systems for Cloud Computing. Heteroge-
neous hardware and network technology integration into data center platforms, achieving
performance improvement and reduction in energy consumption and cost profiles for
important and high-value cloud applications such as real-time business analytics and
the geosciences. In collaboration with Imperial College London, Université de Rennes 1,
SAP Belfast, Maxeler Technologies and Konrad-Zuse-Zentrum für Informationstechnik
Berlin. Website: www.harness-project.eu

2011
2017

Virtual Data Plane, EPFL, Switzerland.
A programmable, high-performance packet-processing platform. We developed a platform
on a commodity hardware router, to address real-time resource management issues.
In cooperation with Broadcom Corporation, who had provided us with the hardware
router to deploy our prototype within our data center.

Achievements & Awards
2013• Outstanding Teaching Assistant Award, School of Computer and Commu-

nication Sciences, EPFL, Switzerland.
2011• 1st Year Fellowship, Computer and Communication Sciences Doctoral School,

EPFL, Lausanne, Switzerland.
2011• Top 2% Graduate, National Technical University of Athens, Greece.

Ranked 5th among 325 graduates.
2008• Zosima Scholarship for Undergraduate Studies, Zosima Bros. Founda-

tion, Greece.
2007• Papakyriakopoulos Award for Excellence in Mathematics, National

Technical University of Athens, Greece.
Awarded to the second-year students with the highest grades in Mathematics courses.

2006• Deligiannis Scholarship for Undergraduate Studies, EKO ABEE, sub-
sidiary of Hellenic Petroleum S.A., Greece.
Awarded to the first-year university students who attained the highest grades in the
Greek national examinations.

2005• 15th Greek National Physics Olympiad Award, 3rd place.
Organized by the Greek National Physicists Union at a nation-wide level.

96



Languages
Greek Native Mother Tongue

English Fluent Certificates of Proficiency (Cambridge/Michigan), TOEFL 109/120
French Very Good Daily practice, can handle everyday communication

German Good Zertifikat Deutsch (B1), Goethe Institut

Experience
Academic Experience

2011
2017

Research Assistant, Network Architecture Laboratory at EPFL, Lausanne,
Switzerland.
Extensive research on facilitating cloud providers in managing shared resources.

2014
2015

Research Assistant, Université de Rennes 1, Rennes, France.
MYRIADS team.
Eight-month internship. Worked on the HARNESS project.

Teaching Experience
2012
2016

Teaching Assistant, Computer Networks, EPFL, Switzerland.
Prof. Katerina Argyraki, IC faculty.
Fall Semesters 2012-2013, 2013-2014, 2016-2017, COM-208.

2016• Teaching Assistant, Programming II, EPFL, Switzerland.
Prof. Ronan Boulic, IC faculty.
Spring Semester 2015-2016, CS-112(c).

2014• Teaching Assistant, Programming, EPFL, Switzerland.
Prof. Thomas Lochmatter, ENAC faculty.
Spring Semester 2013-2014, CS-111(b).

2013• Teaching Assistant, Computer-Aided Engineering, EPFL, Switzerland.
Dr. David Lindelöf, ENAC faculty.
Spring Semester 2012-2013, CS-110(e).

2007
2011

Laboratory Assistant, Introduction to Programming, NTUA, Greece.
Prof. Stathis Zachos, ECE faculty.
Fall Semesters 2007-2008, 2008-2009, 2009-2010, 2010-2011, course 3.4.01.1.

Professional Experience
2007
2010

Junior IT Engineer, Hellenic Petroleum S.A. Group, Marousi, Greece.
IT department.
Four summer internships. Main Duties:

� Provide technical assistance to everyday issues.

� Upgrade the desktop infrastructure.

� Relocate the IT infrastructure from a subsidiary to the Group’s new Headquarters.

� Develop team work skills.

� Take responsibilities and initiatives in a real industrial environment.

97



Skills
Coding extensive C++; experienced in

C, Matlab, Octave, Python
Platforms Apache Hadoop, Click Modular

Router, OpenStack, Wireshark
Operating

Systems
Linux, Microsoft Windows Productivity

Software
Microsoft Office, OpenOffice,
LATEX

References
Katerina Argyraki
Professor
Network Architecture Laboratory
EPFL
Lausanne, Switzerland
� katerina.argyraki@epfl.ch
� people.epfl.ch/katerina.argyraki
� +41 21 69 38132

Guillaume Pierre
Professor
Myriads Team
Université de Rennes 1
Rennes, France
� guillaume.pierre@irisa.fr
� globule.org/~gpierre
� +33 2 99 84 25 20

98





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


