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Fluid-structure interaction for vascular flows:
from supercomputers to laptops

Claudia M. Colciago, Simone Deparis and Davide Forti

Abstract. There exists several models for the simulation of vascular flows; they span from
simple circuit models, to full three dimensional ones which take into account detailed fea-
tures of the blood and of the arterial wall. Each model comes with benefits and drawbacks,
the main denominator being a compromise between detailed resolution requirements versus
computational time.

We first present a fluid-structure interaction computational model where both the fluid and
the structure are three dimensional; in particular, the fluid includes modeling of large eddies
by the variational multiscale method. After time and space discretisations carried out by fi-
nite differences and finite elements, respectively, we set up a parallel solver based on domain
decomposition and a FaCSI preconditioner. These simulations allows to capture details of the
flow dynamics and of the structure deformation even in the transitional regime characterizing
the hemodynamics in the aorta. To complete a simulation of one heartbeat with 35 millions of
degrees of freedom on 2048 cores it takes roughly 10 hours.

We then reduce both the model and its numerical complexity. The structural model is sim-
plified to a two dimensional membrane located at the fluid-structure interface and the fluid
computational domain is fixed. For a fixed geometry and mesh, these assumptions allow to
apply proper orthogonal decomposition and generate a space discretisation which has only few
dozen degrees of freedom. It is then possible to perform the simulation of one hearbeat on a
laptop in less than one second.

The modeling and numerical reductions allows therefore a dramatic reduction of the com-
putational time. However, the price to pay comes, on the one hand, in terms of the preparation
of a reduced basis specific to the patient and the geometry of the vessel and, on the other hand,
with a detriment of certain quantities of interest. For example, when using a finite element
discretization with 9 millions of degrees of freedom, the offline part takes about 12 hours on
720 cores for the example provided in this work; in this case, the flow profiles in the aorta
are pretty close to the full three dimensional model, but the wall shear stress is overestimated
(although it follows the same temporal patterns).
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1 Introduction

The complexity of the cardiovascular system poses numerous challenges for its biolog-
ical and mathematical modeling, numerical discretization and simulation. The study of
the cardiovascular system is mainly motivated by the large amount of pathologies and
deaths related to cardiovascular diseases. Heart attacks and strokes are responsible of
half of human deaths in the developed countries. Two of the main cardiovascular dis-
eases are atherosclerosis and aneurysms. Atherosclerosis is an accumulation of fatty
material, fibrous elements and calcium located in the intima which is the structural
layer of the arterial wall that is in direct contact with the blood flow. Several studies
have shown that the mechanical stimuli of the blood flow on the arterial wall are strictly
related to the developing of atherosclerosis [81, 108, 69, 80]. Another example of a
widespread vascular disease is represented by aneurysms. An aneurysm is a gradual
stretching of the arterial wall that becomes thinner and weaker. Although aneurysms
can develop in all the arteries of the cardiovascular system, they are more likely to
appear in cerebral arteries and in the ascending and abdominal parts of the aorta. It
has been shown that pathogenesis of aortic aneurysm can be triggered by mechanical
stimuli, such as low or oscillatory wall shear stress, or also by regions featuring flow
recirculations or stagnations [19, 97, 82]. It is evident that the study of hemodynamics
is of primary importance from the clinical standpoint, hence the interest in modeling
these problems from the mathematical point of view and in numerical simulations.

The blood flow and the arterial wall are modeled by continuum mechanics; their
interaction is expressed by the action-reaction principle (equilibrium of stresses) and
by the fluid sticking to the wall (continuity of displacements and velocities). The
modeling, the discretization and the design of numerical schemes to solve efficiently
this coupled Fluid-Structure Interaction (FSI) problem are still challenging tasks and
major topics of ongoing research. Despite the fact that cardiovascular FSI problem
have been studied for almost two decades, their intrinsic complexity keeps the debate
open about the set up of appropriate models and algorithms. Numerical simulations of
such complex system may provide detailed and quantitative information to improve the
understanding of the underlying complex physical phenomena, thus helping and sup-
porting the development of more effective clinical treatments without using invasive
techniques.

The mathematical models of the constituents of the cardiovascular system such as
the arterial wall and blood should be able to reproduce their most important physi-
ological features and the biological interactions among them. The vascular system is
composed by a network of vessels in which blood flows under the stimuli of a quasi pe-
riodic pump, the heart. Blood is a heterogeneous medium, composed by a particulate
phase and a liquid one. The fluid part is called plasma and it behaves like water. De-
spite its heterogeneity, as a common assumption, blood in large vessels is considered
as a continuous media since the dimension of the particles is of orders of magnitude
smaller than the diameter of the vessel. Concerning the viscous properties of blood,
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at low shear rates it shows a non-Newtonian behavior: in small vessel like capillaries,
blood particles tend to form aggregates which affect the fluid viscosity. Nevertheless,
in large arteries with diameter greater than 0.3 cm, it is widely accepted to assume
a Newtonian behavior. Since our goal is to focus on large vessels such as the aorta
(about 3 cm diameter) and its main bifurcations, we also choose a constant value for
blood viscosity [92].

The resulting mathematical model is expressed by the Navier-Stokes equations [92,
44]. The other component of our physical system is the arterial wall. Vessels are com-
pliant pipes that convey the blood to all the organs of the body, they are complex living
tissues that react and interact with the blood flow depending on several factors. Due to
the difficulty of performing in vivo experiments on vessel tissues, the rheological be-
haviour of the arterial wall is still an ongoing topic of research [112]. Several models
have been proposed featuring increasing level of complexity. In the reference litera-
ture both linear and nonlinear models have been used to perform FSI simulations of
the cardiovascular system, featuring both isotropic and anisotropic properties (see e.g.
[118,96, 119, 62]). Some models are enhanced by multi-layered structure, by the pres-
ence of fibers or of an intraluminal thrombus (see e.g. [48, 36, 116]). Also damage and
growth models raised the interests of researchers, in particular for their relevance in
pathological conditions (see e.g. [63, 66, 71]). Not only the choice of the constitutive
model is challenging, but also the assessment and the tuning of the mechanical param-
eters that show a significant variation among both intra- and inter- patient conditions.
As mathematical model for the artery we choose a quasi-incompressible continuous
elastic material governed by an iperbolic partial differential equation.

In this paper we focus on the comparisons between different numerical choices
rather than comparing them with experimental results. Thus, for the sake of our presen-
tation, we will consider a rather simplistic structural model featuring a linear elastic
and isotropic constitutive law, being aware that our numerical output can be distant
from the in vivo biomechanical behavior.

The coupled fluid-structure interaction problem can not be solved analytically and
so it has to be studied by means of experiments or by numerical simulations; we are
interested in the latter.

On the modeling side, a distinction between the different methodologies to deal with
fluid-structure interaction problems comes from the choice of the frame of reference
in which the problem itself is formulated. We choose to describe the structure in a
Lagrangian reference and the fluid equations using an Arbitrary Lagrangian-Eulerian
(ALE) frame of reference [109, 93, 122, 64, 14, 45, 49, 73, 26, 15] which requires a
new equation for the fluid domain motion. Another possibility would consist in us-
ing a space-time formulation of the FSI problem. It involves a discretization of the
computational domain in time slabs, and each solution in a time slab is then computed
sequentially (see [113, 114, 111, 15] for a complete overview on this formulation).
It is also possible to formulate the FSI problem in a fully Eulerian frame of refer-
ence [25, 124, 103], i.e. on a fixed fluid domain; in this case, one needs to keep track
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of the position of the fluid-structure interface. In [38, 101, 102], a fully Eulerian formu-
lation of FSI is used in two dimensions to avoid the degeneration of the ALE mapping
and to facilitate mesh adaptivity. Yet, another approach is the immersed boundary
method, where the fluid is written in Eulerian coordinates, while the structure is still
in a Lagrangian frame of reference [98, 89, 18]. A further alternative approach to
ALE methods is based on the use of the Extended Finite Element method (XFEM)
[53, 123, 87].

The use of an ALE formulation for the fluid, together with a Lagrangian frame for
the structure, yields an FSI problem that is composed by three subproblems, namely
the fluid problem, which allows for the computation of the velocity and pressure inside
the fluid domain, the solid problem, which describes the deformation of the vessel wall,
and the so-called geometry problem, which accounts for the moving computational
fluid domain. A peculiarity in biomechanics is the similar density of the fluid and the
structure, which, combined with incompressible flows, leads to increased numerical
effort due to an added-mass effect [22, 6, 120, 121]. Because of the added mass effect,
staggered methods, where the fluid and the solid are explicitly coupled, are numeri-
cally unstable. Extensive work has been carried out on the development of algorithms
for the solution of time-dependent FSI problems in the framework of biomechanics.
The approaches are typically categorized either as segregated or as monolithic schemes
although the distinction is not always straightforward. Segregated schemes can range
from simple, loosely coupled fixed point iterations to schemes which still use segre-
gated solvers but apply a much stronger coupling. Monolithic schemes may include
block preconditioners constructed from segregated solvers as well as preconditioners
for the fully coupled problem which are not constructed from separate solvers. In
monolithic schemes all the unknowns of the FSI problem are solved simultaneously.
Monolithic algorithms were investigated, e.g., in [88, 64, 14, 73, 49, 12, 127, 26].
In [33], a comparison of the performance of strongly coupled Steklov-Poincaré al-
gorithm using the Dirichlet-Neumann, Neumann-Dirichlet, and Neumann- Neumann
preconditioners with a monolithic approach preconditioned by a Dirichlet-Neumann
preconditioner is reported.

A modular approach to solve the FSI problem would consist in dealing with the three
problems separately, but treat their coupling implicitly. For example, one can consider
the FSI problem using different type of interface conditions (Dirichlet-Neumann [79,
86, 75, 76, 77], Robin-Robin [6, 5, 95], Robin-Neumann [42], Neumann-Neumann
[33], FETI [30], etc. [117]) to ensure the coupling. A comparison of different coupling
schemes for FSI problems in hemodynamics is carried out in [73]. A further approach
makes use of a Steklov-Poincaré formulation [29] to enforce the coupling on the fluid-
structure interface.

The way the coupled set of equations describing the FSI phenomena are discretized
in time induces further distinctions. One approach may consist in dealing with all the
nonlinearities of the problem in an implicit mode, leading to the so-called Fully Im-
plicit (FI) strategy [41, 59, 115, 35, 14, 60, 12, 73, 49, 127]. Although this approach is
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the most stable, it is also the most expensive choice. A large variety of alternative time
discretizations can be devised. For instance, a Convective Explicit time discretization
is used in [26], in which the nonlinear convective term in the unsteady Navier-Stokes
equations is treated using a semi-implicit approach. Further, a Geometry-Convective
Explicit discretization is proposed in [6, 4, 26] wherein the moving geometry is taken
at the previous time step and the convective term is treated semi-implicitly. A possi-
ble approach to deal with the nonlinearity makes use of the Aitken accelerated fixed
point algorithm, see e.g. [79, 22, 74, 75, 6, 29, 86]. In this way each fixed point it-
eration requires one residual evaluation. Otherwise the time discretized problem can
be linearized via the Newton method, either considering the full Jacobian matrix, as in
[49, 41, 115], or neglecting some of its contributions, as in [50, 28, 59]. Each nonlinear
Newton iteration requires a solve of the linearized subproblems. Thus the cost of each
nonlinear iteration corresponds to the cost of one residual evaluation plus a variable
number of solutions of the linearized subproblems.

After spatial and temporal discretizations, one of the key aspects which charac-
terizes the different methodologies is the choice of the preconditioner. For instance,
relying on monolithic schemes, one may use block preconditioners built upon physic-
specific solvers as well as preconditioners for the fully coupled problem which are not
constructed from separate solvers. Several strategies have been proposed in literature,
see e.g., [99, 6, 8, 49, 12, 26, 127]. Overlapping Schwarz methods within monolithic
approaches were studied [26] in different regimes of severity of the added-mass effect
confirming successful results for 2D already reported in [12]. A monolithic FSI ap-
proach coupling nonlinear hyperelastic solid models with Navier-Stokes equations is
presented in [64], considering the incompressible case for the solid. A block precon-
ditioner with Schur complements for the monolithic system is presented in [68]. A
scalable monolithic solver for an FSI problem coupling blood flow with a conforming
arterial wall in two dimensions is presented in [11, 12]. There, a Newton scheme with
an explicitly computed Jacobian is applied; see also [41, 14, 12]. For the solution of
the FSI linearized systems, in [12] the authors use a hybrid multilevel Schwarz pre-
conditioner which uses restricted additive Schwarz on the fine level and multiplicative
Schwarz on the coarse level. The parallel Newton-Krylov-Schwarz approach for the
monolithic system is extended to three dimensions in [127], and scalability is shown
for up to three thousand processors. Parallel algebraic multigrid preconditioners have
recently been applied to fully monolithic ALE formulations of FSI problems in the set-
ting of biomechanics, see, e.g., [49, 125]. Specifically, in [49], the authors propose two
preconditioners that apply algebraic multigrid techniques to the linearized monolithic
FSI system obtained after spatial and time discretizations.

It is clear that the numerical solution of full three dimensional coupled FSI prob-
lems is extremely challenging and, as we discussed above, requires ad hoc strategies
to lower computational costs. Despite the fact that advanced parallel solvers and pre-
conditioners successfully managed to decrease the costs of numerical simulations, we
are still far from having a real time resolution of FSI problems using a finite element



6 C. M. Colciago, S. Deparis and D. Forti

method. The intrinsic complexity of the system and the fine unstructured meshes yield
computational costs that are orders of magnitude bigger than the simulated physical
time: for the solution of few heartbeats (order of seconds), several hours of CPU time
on supercomputers are required. Also in terms of memory the FSI problem is expen-
sive: the dimensions of the algebraic system and the discretized solutions are of orders
of millions of degrees of freedom and they need a suitable amount of memory to be
stored and manipulated. It is therefore necessary to use supercomputers and be able to
solve the discretized model in parallel.

A major issue arises when we consider the final goal of these numerical simulations.

The desired features of numerical tools which may be used in everyday clinical
practice includes reliability, parameter tuning and real time computations. Indeed, nu-
merical tools should allow specialists to compute accurate approximations of target
medical outputs together with the possibility of tuning patient-specific physical pa-
rameters. Moreover, these computations should be performed in a small amount of
time and, ideally, using a limited amout of computational resources (e.g. using a per-
sonal computer). These challenges has driven a reasearch stream of numerical and
applied mathematics in the latest years: a great effort has been devoted to the study
of numerical reduction techniques. These methods aims at dramatically lowering the
computational costs through a likewise dramatical decrement of the dimension of the
approximation spaces: numerical reduction techniques aims at describing the approx-
imated solution using hundreds of degrees of freedom versus the millions required
when using a high fidelity approximation like the finite element one.

Our choice to perform numerical reduction relies on Proper Orthogonal Decom-
position (POD) for parametrized PDEs, i.e., partial differential equations or system
of equations that depend on pre-selected physical and/or geometrical parameters. In
cardiovascular applications, for example, physical parameters may be the mechanical
properties of the structure like the young modulus, or the coefficients that affect the
boundary conditions [58] like the average inlet flow rate or outlet resistance and com-
pliance coefficients [17]. In scientific research many efforts have also been devoted to
the investigation of geometrical parameters, like the inflow angle or the morphology
of the domain itself, e.g. in [78, 105, 34, 67, 85, 52].

The POD allows to select a set of basis functions which allows to well approximate
the manifold generated by the parameter dependent solutions . In practice, suitable
operators are built to project the high fidelity functions onto the low dimensional dis-
cretization space. The resulting reduced order model can thus be solved with low
computational costs in a many query context, i.e. for different values of the model
parameters. To better quantify the efficiency of a reduced order model, it is in general
necessary to split the computational costs into two stages: an offline stage, expensive
but performed once for the construction of the projection operators, and an online stage
that is very rapid, in which reduced approximated solutions are computed for several
realizations of the parameters.

For a detailed presentation of reduced order model we adress the interested reader
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to the recent books [61, 99]. A lot of interest has been devoted to discretization reduc-
tion techniques for parametrized PDEs problems in realistic applications (e.g. [100]).
Recently, increasing attention has been devoted in particular to haemodynamics and
cardiovascolar applications (see e.g. [9, 10, 21, 17, 57, 84, 106, 56, 20]).

1.1 Outline

The paper is organized as follows. In Section 2 we introduce the fluid and structure
three dimensional models, their coupling, as well as the finite element discretization
and the resolution algorithm; the resulting approximation is highly accurate and the
computational effort very expensive and requiring parallel solvers. Section 3 presents
a possible reduced model for the structure mechanics and the integration of the struc-
ture variable into the fluid ones. This allows for a numerical reduction using POD as
shown in Section 4; the resulting system is very small and the computational effort
can be split into two separate steps: an offline one, requiring the resolution of finite
element problems, a little less expensive than the full three-dimension model, and an
online one, very cheap. The proposed methods are tested on a geometry including
the whole aorta and few additional ramifications, see Section 5; we show numerical
results, including comparisons between the full three dimensional model and the re-
duced one.

2 Modeling fluid-structure interaction in moving domains

We are interested in simulating the hemodynamics in a piece of artery. Our model
needs to account for the moving walls and at the same time focus on the region of
interest. A natural choice for the structure frame of reference is the Lagrangian one. It
allows for describing exactly the piece of artery we are interested in. The choice of the
fluid frame of reference needs a little more care. If on one side it has to follow the wall
movement, hence a Lagrangian frame of reference would fit well, on the other the the
fluid leaves the piece of artery after a short time, therefore an Eulerian frame would
be advisable. The Arbitrary Lagrangian Eulerian frame of reference allows to account
for both the constraints: near the arterial wall, the fluid computational domain sticks
to the wall, whilst at the inlet and outlet sides the domain stays fixed.

2.1 Fluid Structure Interaction modeling

Let Q ¢ and ﬁs be the fluid and solid domains, respectively, in their reference config-
uration. We denote by I'=00 N 98, the fluid-structure interface. The initial time
is set equal to zero and the final time is denoted by 7. At any time ¢ € [0,7], we
presume that the current fluid domain configuration Q/(¢) can be retrieved from Q ¥
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by the Arbitrary Lagrangian Eulerian (ALE) mapping

Ay .Q.f —>.Q.f(t) R @.1)

X = A =x+ds(x),
where d ¢ represents the displacement of the fluid domain. The ALE mapping does
not represent any physical quantity as it is a mathematical construct. We will need to
construct a discrete version which is needed to describe the displacement and velocity
of each mesh point. In fact, the use of the ALE formulation allows an arbitrary recon-
struction of the volumetric computational grid of Q¢(¢) from the one of the domain
boundary 0Q(t). For the sake of computation, this reconstruction is directly oper-
ated on the reference configuration by means of a harmonic extension of the structure
displacement d; at the fluid-structure interface T to the interior of the reference fluid
domain ﬁf, 1.e.,

~Ad; =0 inQy, (2.22)

d; = d, onT. (2.2b)

Other types of extensions are also possible; for example one may use the linear elas-
ticity equations [15, 110]. In our experience, this is necessary in presence of large (but
smooth) boundary displacements. As the solid displacement d; changes in time, equa-
tion (2.2a) allows to define the current fluid domain configuration Q¢(t) = Ay(Q 7)
thanks to the ALE map parametrization (2.1).

In our FSI model, the fluid dynamics is governed by the incompressible Navier-
Stokes equations written in the ALE frame of reference [15, 45, 65, 37], for almost all
t € (0,7),

ou .
PfFs +ps((u=—w) - V)u—-V-0,=0 anf(t),
ot A
V-u=0 in Q(t),
u=hy on FfD,
omy=g; on F{V,
ad, .
uo A; = 5 onl (2.3a)
where % A= % + w - V is the ALE derivative, w = % o A Uis fluid domain

velocity, u and p are the velocity and pressure of the fluid, respectively, and ny the
outward unit normal vector to 0Q(t). We denoted by p the density of the fluid and
by o s the Cauchy stress tensor

or = pr(Vu+ (Va)') — pI,
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with I being the identity tensor, iy the dynamic viscosity of the fluid. The functions
h; and gy indicate the Dirichlet and Neumann data applied at the the Dirichlet and
Neumann boundaries FfD and F{\,, respectively, of Q(t); equation 2.3a represents the
continuity of the velocities at the interface.

We formulate the full three-dimensional structure problem in a Lagrangian frame of
reference. The conservation of momentum for the structure reads

_0%d, o N
Psgm ~ Vi -II(ds) =0 in Qg x (0,7, (2.4a)
d, = h, onI% x (0,7,
(d,)n, =0 onT% x (0,7,
(det[F))TI(ds)F iy + oyn; = 0 onT x (0,7 (2.4b)

Here 0 represent the outward unit normal vector to 8§5 and F =1+ Vﬁas is the
deformation gradient tensor. The function hy indicates the Dirichlet data applied at the
Dirichlet boundary I'}; of ﬁs. The material is characterized by a density ps, Young’s
modulus F; and the Poisson’s ratio v, which define in turn the first Piola-Kirchhoff
stress tensor

~

. 2, + (Vg7 S
II(ds) = Astr (Vx + (Vzd,) ) I+ ps(Vgds + (Vgdy)?), (2.5)

2

where
ES l/S ES

(1 —205)(1 + 1) and B =20 1 vy)

are the first and second Lamé coefficients, respectively. Other constitutive laws are of
course also possible, here we choose the simplest one.

The coupling between these three subproblems is ensured by imposing the geometry
adherence, the continuity of the velocity and the continuity of the normal component
of the stresses at the interface through Equations (2.2b), (2.3a), and (2.4b), respec-
tively. Defining the physical sub-problems with (2.3a) and (2.4b) is arbitrary, one
could choose to swap them. We notice that the resulting coupled system is nonlin-
ear due to the convective term in the fluid momentum equation, to the possible use of
nonlinear material laws to model the structure deformation and to the moving compu-
tational fluid domain.

As =

2.2 Weak formulation

We recall the weak form of the FSI problem in nonconservative form. The velocity
coupling condition is imposed strongly, while the continuity of the normal component
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of the stresses is imposed in weak form. We presume that A; is a diffeomorphism for
ant time ¢ € [0, 7] and introduce introduce the following functional spaces:

Ul ={v=vo A |[ve[H' @)}

U}; ={v=cU/,v=0o0n F};(t)},

Q ={g=q04" | ge L@},

U = [H' (Q,), Up ={veUs|v=0onT5},

UY = [H'(Qf)P, Ug ={veU|v=0onT] .},

U/\ _ [HI/Z(f)}:i
nged is the part of the fluid boundary Q + where the domain motion is prescribed (e.g.
when a portion of the fluid domain boundary is fixed). The weak form of the fluid
and structure equations is standard [45]. We introduce an auxiliary variable A € U*

representing the normal stresses exerted by the fluid on the interface I" and which,
thanks to (2.4b), can be written as:

AeU%/A-ndy:/ anf~'r]oAt_ld’y:/H(as)ﬁs-ndﬁ/ vn e UM
I I'(t) I

(2.6)
We recall the notation for the Dirichlet boundary data for the fluid, structure, and ge-
ometry sub-problem: hy : F — R?, hy 'y — R?, h, Ffme a4 IR?, respectively.

The weak form of the FSI problem reads: for all ¢t € (0 T}, find (u,p, ds, df, A) €
Ul x Qf x U x U9 x U* such that u = h; onFD,d = h, on I}, df = hy on
Fﬁfxed, satisfying

/ p ou
;ou
Q1) Ot | 4,

+ /A)\'(VfOAt)d")\/:/ gr-vydy
r ]

N

vit+ps((u—w)-V)u-vy+oy: VVf> dQ

/ gV -udQ =0 2.7)
Qy(t)

—~ azas = 3 A
/A (psatz~vS+H(ds):Vﬁvs>dQ—/A)\~vsd7:/ gs - v dy
Qg T s

N

d,
/\ (ufo.At)-nd'y— 6t ’I’]d =0
r

<

/A ,z&f:V,zvng:O V(Vf,q,vs,vg,n)EUgXQfXUBXU%XU)‘
T
af :as onf.
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Note that 17 represents the Lagrange multiplier which enforces the equilibrium of
the stresses (2.4b) in weak form. From the variational viewpoint, the normal stresses
are in H—1/2 (T'), it is therefore natural to impose their equilibrium only weakly. A
strong treatment would not be consistent. From (2.6) and (2.7) we observe that

/r()afnf'nOAt_ld’y+/f_H(as)ﬁ5'nd’y:O Vi e U (2.8)
i

2.3 Fully implicit monolithic scheme

A large variety of different time discretization schemes for the coupled set of equations
describing the FSI phenomena can be found in literature. One approach may consist in
dealing with all the nonlinearities of the problem in a fully implicit fashion, leading to
the so-called fully implicit strategy [41, 59, 14, 49, 127]. Although this approach is the
most stable, it is also the most expensive. Alternative time discretizations, depending
on the targeted application, can be devised. For instance, in the field of hemodynamics,
a Convective Explicit (CE) time discretization is used in [27], in which the nonlinear
convective term in the unsteady Navier-Stokes equations is linearized by means of ex-
trapolation. Further, a Geometry-Convective Explicit (GCE) discretization is proposed
in [7] wherein the moving geometry is taken at the previous time step and the convec-
tive term is treated semi-implicitly, thus leading to a linear problem to be solved at
each discrete time step (provided that a linear material law is used for the solid).

We consider a Fully Implicit (FI) scheme for which all the nonlinearities are treated
implicitly. In space, we consider a Galerkin finite elements approximation. Stabi-
lized P1-P1 elements are used to approximate the fluid velocity and pressure variables
with VMS-SUPG stabilization [13, 46]. The solid displacement and ALE fields are
discretized by P1 finite elements. When considering the reduced model presented in
section 3, we use Taylor-Hood P2-P1 finite elements without stabilization for the fluid,
while the structure is integrated into the fluid variable.

For the sake of brevity, here we do not report here the finite element formulation
since it differ from (2.7) only on the spaces. When using the VMS-SUPG stabilization,
the following terms are added to the Galerkin formulation. Inside each element K of
the fluid tetrahedral mesh Tfh representing the current fluid domain Q¢(t), the finite
element solution is a linear function and it is possible to compute the strong residual
of the momentum equation as
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The VMS-SUPG stabilising terms are then computed as

Z / u-—w)-Vvy+q) Tnri(u,p)dQ

KeT}

+ Z /V vV -udQ

KeT}

+ /K(u w) - (Vvy) e (u, p) d,

h
KeT;

where the first two rows represent classical Streamline-Upwind Petrov-Galerkin (SUPG)
stabilization terms and the third row stems from the Variational Multiscale (VMS)
technique applied to the Navier-Stokes equations. In the stabilization terms we denoted
by K € Tfh one tetrahedron of the fluid mesh, while 7,,, and 7. are two stabilization
parameters defined as:

1
, (2.9)
4pf+p u-w) -Gu-w)+CuiG:G
A2 f T f
(Tmg - g) " (2.10)

In equations (2. 9) and (2.10), the covariant metric tensor G is defined component-

oy, 0
wise as G ;j = Z azk "k and is related to the geometrical mapping with n =
K] ’L

O
P 8:1:% '
depends on the degree p of the basis functions and we set it as an element-wise inverse
estimate C,. = 60 - 2P~2 as suggested by [13].

We discretize the time derivative of the fluid problem by second order backward
differentation formulas [54, 46]

(m1,m2,m3), while the vector g has components g; =

o 3 n+l _ 4u” n—1
Ty 24 wrw 2.11)
at " 2AL

where At is the time step size, {t" },,—1 »,... are the times at which we solve the discrete
space problem and u™*! is the approximation of u at time t"*!. The time discretiza-
tion of the structural problem is carried out by the Newmark method [91]

9%d,
o2

1
(thrl) BAtzdnJrl o W(dn +Atd )

1-285"

2/8 S

2.12)
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where 8 = 0.25, v = 0.5 and:

a - Lao L gad o228 2.13)
S BA2TE 6At2 28 % '
An ~n—1 =n zan—1

At each time step, the resulting nonlinear system to be solved may be rewritten as

S@rthy + 0+ 0 — IL At b,

—Ipedrtt G + 0 + 0 ]o

0 + 0 P prtdlth) + LA | by

— g Ied? T 0 4 Irfu;%“ + 0 b
(2.15)

We denoted by a;‘“, d"t unt prtland A"t the unknown displacement of the
structure, the displacement of the fluid domain, the velocity and pressure of the fluid,
and the Lagrange multipliers, respectively. We make use of an augmented formulation
wherein the Lagrange multipliers are used to impose the continuity of the velocity at
the fluid-structure interface.

The diagonal blocks on the left hand side of (2.15) account for the discretized solid,
geometry and fluid problems. We remark that F' is nonlinear due to the convective
term and the fact that the fluid domain moves. The matrices Iy and Irs are the restric-
tion of fluid velocity and structure displacement vectors to the interface and in (2.15)
account for the continuity of velocities and the geometry adherence, which are im-
posed strongly. Their transposes account for the continuity of the normal component
of the stresses, which is imposed weakly. Last row of (2.15) represents the discretized
kinematic coupling condition at the fluid-structure interface:

It — .d" = b, 2.16

where

An 1-2
b, = Ir‘sd ——(Irsd”—i—At Irsd,)—At~y b Irsd +At (1— )Ir‘s . (2.17)
pAt 2p
We assumed that the fluid and structural meshes, as well as the polynomial degree are
conforming at the interface. To account for non-conforming fluid-structure interface
discretizations, please refer to [87, 47].

2.4 Algebraic formulation

We solve the nonlinear fully coupled FSI problem (2.15) using the Newton method
as in, e.g. L41, 59, 14]. The solution of (2.15) at time t" = n At is denoted by
X" = (d?, d;l“, u”, p", A")T. At each time step, we first extrapolate an approximate
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solution Xg“ from the previous time levels by Newton Gregory backward polynomi-
als. In particular, since we use second order time integrators, we set Xg“ =2X" —
X"~ Then, we compute a sequence of approximations X?“, Xg“, etc. until the nu-
merical solution converges up to a prescribed tolerance. The generic k£ + 1 iteration of
the Newton method applied to (2.15) is described as follows. Starting from an approx-

: : n+1 : n+l _ (.n+l . ntl n+l  n+l _n+I\T.
imation of X", we compute the residual R = (rds’k7rdf’k7ru’k ok ,r)‘7k) :

b, S —IEN!
a0 ] — I agjk-i +G(d} L 018
k bf F(uZJrl 7p2+17 d;clj,:l) +11Tf Arkwl . .
b, —& mdlf gt

Then, we compute the Newton correction vector X! = (5d?j;1 , 5d?j€1 ,ouptt sppt]

(5)\Z+1 )7 by solving the Jacobian linear system

Jrsr X = —RIH (2.19)
being
S 0 0 -—IL
~Irs G 0 0
Jrsi = : (2.20)
st 70 D F IL
——Ir 0 1 0
pAL " Ff

where S, G and F represent the linearized structure, geometry and fluid problems,
respectively; D are the shape derivatives, i.e. the derivatives of F/(u™*!, p"*!, a’}“)
with respect to ?1;“ (see [41] for their exact computation).
Finally, we update the solution: X}'/} = X! 4 6X7*!. The Newton iterations
are stopped when
IRE o

Ik o o ¢ 2.21)
IRG ™ [loo

where Rg“ is the residual at the first Newton iteration and € is a given tolerance.

2.5 Preconditioning by FaCSI

At each iteration of the Newton method, linear system (2.19) is solved by the GMRES
method preconditioned by FaCSI [32]. FaCSI exploits the factorized form of the FSI
Jacobian matrix, the use of static condensation to formally eliminate the interface de-
grees of freedom of the fluid equations, and the use of SIMPLE for the condensed fluid
system. The FaCSI preconditioner reads:

Pracsr = Pg" - Pgap - P, (2.22)

)
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where:
Hs 0 0 O 1 0 00 1 0
e O el I ER el B
0 0 0 I 0 0 0 I —ﬁ_[[‘s 0

In the preconditioner we have dropped the off-diagonal block —IITS of Jpgr. In the
application of FaCSI, the inverses of the diagonal blocks associated with the structure
and geometry problems are approximated by efficient preconditioners denoted by H s
(structure problem) and Hg (geometry problem). The preconditioner for the fluid
and Lagrange multiplier parts, denoted by H r, is built upon static condensation to
formally eliminate the interface degrees of freedom of the fluid equations and the use
of SIMPLE preconditioner for the unsteady Navier-Stokes equations.
For the sake of clarity, below we report how the preconditioner of the fluid problem
P applies to a given linear residual r = (rq,,Tq,, Tu, Tp, ra)":
(i) compute zp = (I‘u7 rp)T — ’Drdf and z) = 1) + ﬁ Irsrq,
(ii) after denoting by w, and wy, z,, and z, the velocity and pressure components of
wr and z g, respectively, we set zyr = zy
(iii) application of the SIMPLE preconditioner, which involves the following steps:
a) Yui = H}Eili(zu,i — Kirzur),
b) w;, = 7‘%1 (Biyu,i — 2p + Brzur),
C) Wy = (Wu,iywu,l")T = <Yu,i - D_lBZTWpa Zu,F)T~
Finally, we compute wy = s (zy — Kwy — BTw,).
In the application of the SIMPLE preconditioner we denoted by /C and B the matrices
representing the linearized advection-diffusion-reaction and gradient terms of the fluid
problem split into their internal (index %) and interface (index I") components. The
matrix D is the diagonal of KC;;, Hyc,, is the preconditioner associated with C;; and
H g is an approximation of the Schur complement B;D~'B? of the fluid problem.
In this work we make use of the one level Algebraic Additive Schwarz (AAS)
method for ‘Hs, Hg, while the 3 level Alebraic Multigrid (AMG) method is used
for Hy,; and Hg. We remark that the exact local subdomain solves for AAS as well as

the exact coarse solve of the AMG preconditioner are carried out by LU factorization
using the library MUMPS [2, 3].

3 Modeling reduction for FSI in arteries

In Section 2 we focused on parallel algorithms to solve the three dimensional FSI
problems. Now we make a trend reversal and we proceed with a complexity reduction

00
00

Hr
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of the FSI system. In particular, our goal is to compute an approximation of specific
target outputs using a small amount of computational resources. . As we said in
the introduction, this challenge can be faced exploiting reduced order models that are
meant for approximating the solution of parametric PDE system in real time. .

Applying numerical reduction to fully three dimensional realistic FSI problems may
be even more challenging than solving FSI problems themselves. To begin with, we
start by introducing further modelling assumptions which aims at reducing the model
complexity of the original 3D nonlinear FSI system.

Once the model reduction has been completed, it is possible to proceed with its
numerical reduction by Reduced Order Modeling (ROM) based on Proper Orthogonal
Decomposition (POD).

3.1 Transpiration conditions

First, we focus on the complexity due to the motion of the fluid domain. We make
use of transpiration conditions [31, 40] with the specific goal of formulating the FSI
problem on a fixed computational domain. Transpiration conditions are based on a
Taylor expansion of the system variables. For instance, the Taylor expansion of the
velocity u at a point of the current configuration x = A;(X) in the neighborhood of
the point X (see Figure 1) reads:

u(A () = u(R) + Vgulgd, + O([|ds|e]?), 3.1)

where (3.1) is a first order approximation. Furtherly, if we truncate the expansion at
the zeroth order, we obtain:

u(4()) = uX) + O(|d,Iz)). 3.2)

In equations (3.1) and (3.2) we used the fact that on the interface T the following
identity holds: R
d; = A(X) — X.

The Taylor expansion allows us to write the velocity u as a function of X on the ref-
erence fixed configuration Q + which usually corresponds to the initial configuration
Q;(0). There is a crucial difference between choosing transpiration conditions of first
or zeroth order. Indeed, if we choose first order transpiration conditions, on one side,
we would manage to fix the computational domain, on the other side, we would intro-
duce several non-linear terms (V§u|§as). We opt then for zeroth order expansions,
although this may affect the results with a modelling error of the same order as that
one of the interface displacement.

Since transpiration conditions allow us to approximate the current configuration
with the reference one, there is no need to differentiate the notation. In what follows
we simplify the notation removing the”™, e.g.:

Qf(t) zﬁf = Qf and I'(t) ~T=T
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Figure 1: Graphical representation of the transpiration conditions

The strong formulation of the FSI problem wherein tranpiration conditions are used
can be derived from system (2.7) applying the following three modifications:

« the domain Q(t) is substituted in the domain Q;
« the ALE velocity w disappears since it is identically equal to zero;
« the kinematic coupling condition (2.3a) can be rewritten as follows:

ad,(x)
ot

=u(x) for xeTl. (3.3)

Finally, we remark that an equivalent Taylor expansion as the one written for the veloc-
ity u can be performed on the fluid Cauchy tensor o ¢, thus approximating o ¢(x) with
of(X). At this point, also the dynamic coupling condition (2.8) can be reformulated
and reads as follows:

/afnf-nd7+/H(ds)ns~ndF:0 vn € U (3.4)
r r

3.2 Thin-wall model

The second major source of complexity of FSI problems results from the presence of
two coupled physics: the fluid and the solid . Due to the fact that our target output are
mainly driven by the haemodynamics of the system, we concentrate the computational
effort on the fluid domain

In this regards, we aim at building a lower dimensional structural model, while
keeping the effect that the compliant arterial wall produces on the blood flow. It is
then possible to integrate the solid model as a boundary condition for the fluid one
through specific assumptions on the biomechanics of the arterial wall, cf. [24, 94, 43].

We assume that the wall is a thin-wall structure, i.e. hy << D, being h, the wall
thickness and D the lumen diameter. Using this approximation in system (2.7), vol-
ume integrals on Q, can be substituted with surface integrals on I multiplied by the
thickness hs. Furthermore, we assume that all the derivatives of structural quanti-
ties in the normal direction are negligible. In the following, the pedix + denotes the
tangential derivatives involved in grandient operators. With respect to the notaton of
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Figure 2: Schematic representation of the structural domain

Figure 2, considering a generic scalar field ¢, these assumptions yield the following
mathematical formulas:

¢(n,71,72)%¢(71,72),theref0re/ A(n,71,72)dQs z/hssb(mmz)dﬂ
Qg r

V¢ ~ V¢, therefore Vi¢ - n = 0,

being V¢ = V¢ — Vx¢ - n the tangential gradient of ¢.
At this point, we can rewrite the structural equation of system (2.7) as follows:

0%d,
/hspsat2 ~vedl + / heIL,(ds) : VyvedD' = /H,y(ds)nS -vedl. (3.5
r r r

where IL,(d) is the surface stress tensor that, with respect to (2.5), is modified as
follows:

V.d + (vvds)T)
2

I, (d) = )\str< + ps(Vods + (V,ds)T).

Using the coupling conditions (3.3) and (3.4), we replace the structural unknowns in
the first and third term of equation (3.5) with fluid ones:

0
/hspsalt1 ~vpdl 4 / hoIL,(ds) : Vyvedl = —/of(u,p)nf ~vpdl. (3.6)
r r r

We notice that the second term of equation (3.5) still depends on structural un-
knowns, i.e. on the displacement d,. It is possible to recover ds from (3.3) and
approximated, e.g., by exploiting a generic discretization of the first order temporal
derivatives of dg

od,
ot

~ o dnJrl _fn
~ ——dg R
t=tn+l At
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where £ = f(dy, d?,..) and similarly for f7. Discretization of the kinematic condi-
tion (3.3) then reads: u = 8(%5 onl"
u’l’H—l 7d7’b+1 _ fds

At ¢

which then allow us to substitute d at the time ¢! inside the stress tensor IL, (d?"!)
as follows:

At
IL, (d! ™) = —IL,(u"™ + £]).
o
Similarly, using
0
Ou o Ot g,
Ot |\_yni1 At

the temporal discretization of equation (3.6) at time t"*! reads as follows

A
/hS'OS(At +_ fﬂ) ~vpdl + / hs—tl'ly(un+1 +14.) : Vyvydl
r «

= —/Jf(u,p)nf-Vde. 3.7)
r

The above equation can be seen as a generalized Robin boundary condition on I'" for
the fluid problem: in fact it states that the weak term referring to the fluid stress on
I" can be written as a function of a boundary mass and a boundary stiffness term. We
remark that d} is not a primal unknown since it is reconstructed as a weighted sum of
the velocities at previous time levels.

3.3 Weak formulation of the reduced fluid-structure interaction problem

We call Reduced FSI (RFSI) problem the simplification of the FSI formulation deriv-
ing from the transpiration conditions and the thin wall assumption. The RFSI system
is composed by standard Navier-Stokes equation, written on a fixed domain, enhanced
by a generalized Robin boundary condition on the lateral surface of the lumen. The
second order differential operator on the boundary requires a higher regularity on the
surface I' (see [70] for more details on the analysis of partial differential equations
with generalized Robin boundary conditions). Thus, to garantee the well-posedeness
of the weak formulation, the velocity spaces (see section 2.2) needs to be modified as
follows:

U={veH (Q)|vlre[H'D)P}, Up={veU]|v=00nT i}

We use P2-P1 Taylor-Hood finite element spaces, which fulfill the higher regurality
requirement on the boundary I', i.e., Uy, C U, U, p C Up, and @y, C Lz(Qf).

We suppose to divide the temporal interval [0, 7] in N7 + 1 points uniformly dis-
tributed with a time step At = T'/Nrp, such that t,, = nAt. The fully discretized
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weak formulation of the RFSI problem then reads: for all n = 0,.., Ny — 1, find
(uth prthy € Uy, x Q) such that
{ a(uptt vy) + c(up, upt v) 4+ b(vi, it = f(viug,dy,) Vv, € Unp

b(uptt, gy) =0 Van € Qn,
(3.8)
where

un+1
a(u;“rl’vh) :/Q (pfa Zt -V, +Mf(vuz+l + (vuZJrl)T) : Vvh> dQ
f

o At
+ /l_hS (pSAtuZH 'VhEHV(uZH) : Vﬁ,vh> dr’

ctuto i) = [ o) Dy v
,,
b(vi, o) =/ PV - vidQ
Qy

fovwsdly) = [ gt vt [ gyevidr
Q Ind

N
+ hs psfuh - Vp + Enw(fd&h) . vnyh dr
r )

Solutions (uj}, pj) of problem (3.8) represent the so called high fidelity approximation
which will be used as reference solution in the numerical reduction phase described in
the next section.

4 Reduced Order Methods for Reduced Fluid-Structure
Interaction Models

4.1 Numerical reduction

Once the model equations have been simplified, we are ready to proceed with their
numerical reduction. In this section we will recall only some basic concepts of re-
duced order models, the full theoretical assessment of these methods can be found
in [61, 99]. Numerical reduction techniques are particularly interesting when dealing
with parametric PDEs. The parameters can be either geometrical and/or physical , for
instance the diameter of the vessel, mean flowrate, frequency, mechanical properties.

Let us suppose to select a suitable set of parameters. We denote p the vector that
collects all the chosen coefficients and D the set of possible parameter realisations.
The high fidelity approximations resulting from system (3.8) will thus depend not
only on space and time but also on the specific values of the parameters: uj (x; p) and
pr(x;p) forn =1,..., Ny
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The aim of reduction techniques is to find a suitable set of basis functions to ap-
proximate the high fidelity solution by a Galerkin projection onto low dimensional
spaces Uy and Q. We therefore focus on the construction of discretization spaces
Uy C U, g ,Uvnp CU ,‘i p and Qn C Qp, whose dimensions are orders of magnitude
lower than the dimension of the finite element spaces. The dimension of the velocity
and pressure spaces Uy x @ is noted by N and the one of U, ;17 X Qp by Nj,. The
weak formulation of the RFSI problem in the reduced numerical framework reads: for
alln =0,..., Ny — 1, find (uly/!, p™!) € Uy x Qn such that

{ a(u™, vn) + c(uf, uf™, va) + b(vi, o) = f(vviu,diy) Vv € Unp

b(uyt, gn) =0 Van € Qn,

4.1)

We remark that to build a basis for the spaces Uy and @)y, we need to explore

the variability of the finite element solutions with respect to both the time and the
parameters.

4.2 Proper Orthogonal Decomposition

To generate a set of basis functions for the spaces Uy and Q) 5 we rely on the Proper
Orthogonal Decomposition (POD) based on snapshots temporal solutions. In the con-
text of this work we only detail the specific numerical choices that we perform to
reduce the RFSI problem, for more details about POD algorithm applied to fluid prob-
lems the interested reader can find more details in, e.g., [104, 72, 126]. The POD is
performed assuming a fix value for each parameter in p, which will be thus removed
from the notation.

Let us suppose that our solution is periodic and that the time indices n = 0, ..., Np
are related to temporal instants spanning one single period. We select as snapshots
the high fidelity solutions of problem (3.8) sampled at specific instants such that we
cover the time lapse of one full cycle. To reduce the size of the eigenvalue problem
involved in the POD reduction, the solutions are sampled at a lower frequency than
the time discretization used in the simulation. Instead of using all of the Ny + 1
solutions, only a fraction Ng = N /k are taken. The set of selected temporal indeces
is therefore N = {0, k, 2k, 3k, ..., Nr}. The solutions {(uj,, p} ) } sens Will represent
our snapshots, the starting point for the POD analysis. Since velocity and pressure have
different dynamics, we split the POD into two separate eigenvalue decompositions
as also done in [51]. We measure the energy associated to the snapshots using the
following scalar products: for the velocity, we use

(uh,Vh)Ug = Vuy, : Vv, dQ + / Vyuh : VWV;Z dr
r

Qf
and for the pressure,

(Prsan)Q ZI/Qphqth.
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Then, we compute the two Gramian matrices
G?j = (u%,uil)v and ij — (p;wp{t)Q Viie N

We remark that since we deal with RFSI problems, the internal product of the velocity
space is enhanced by a boundary term. At this stage the indices ¢, 7 are not contigu-
ous. Since N is ordered, it is easy to renumber the indices such that G" and GP are
Ng x Ng matrices. We perform the eigenvalue decomposition of G" and the one of
GP, obtaining the pairs (A}, ¢F) and (Y, ¢F) where AP, AP € R and ¢}, ¢} € RYs
are the k — th eigenvalues and eigenvectors of the velocity and pressure Gramian ma-
trices, respectively, for k = 1,..., Ng; we sort the eigenvalues from the largest to
the smallest. Fixing the same tolerance 0 < § < 1 for both velocity and pressure
decompositions, we select the first N and NP eigenpairs such that:

N NP \p
AP AR\
TR IE A
Zk:1>‘k Zk:l/\k

respectively. The j—th velocity eigenfunction qb}‘ € U;‘Z is reconstructed using the
linear combination:

1 -4,

u 1 u S - u
¢j:Y2[CJ—]suh, forj=1,...,N
jSENs

and similarly for qﬁ? € Qn,j =1,..., NP, The velocity bases are linear combinations
of solutions of problem (3.8), thus, they all verify: fQ qnV - qb;-‘ =0, Vg, € Qp
for j = 1,..., N". If we consider the functional spaces generated from the velocity
functions @7 and the pressure modes ¢§ , linear system (4.1) would be singular. For
Navier-Stokes systems, this issue can be solved by restricting the system and solving it
only for the velocity unknown (see e.g., [20]). Unfortunately, this is not possible when
considering problem (3.8). Indeed, the boundary condition applied on I" derives from a
structural model whose solution is driven by the pressure condition set on the external
boundary of the structural model itself (see [24, 90]). If in the reduced system (4.1)
we do not account for the pressure variable, we cannot recover the correct velocity on
the boundary I'" and the related output functionals (e.g., wall shear stresses). In order
to construct a non singular reduced system (4.1), for each selected pressure mode (j)? ,
we define the corresponding supremizer function o; € U 57 p as the solution of the
following problem (see [107]):

(aj,vh):/¢§v-vhdﬂ Vv, € UY, forj=1,...,N?,
o)

and we add the supremizers to the POD velocity basis. We define Uy and @ 5 the POD
reduced spaces associated to the RFSI model that are generated by the basis functions

{o} ;-V,ul {7}, and {¢¥ }é\f 1> respectively, where ¢ for j = 1,..., N? represent
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the orthonormalization of the supremizer functions o ;, obtained with a Gram-Schmidt
algorithm with respect to the scalar product (-, ‘)U,f- The other basis functions are
already orthogonal thanks to the POD algorithm. The total dimension of the reduced
systemis N = N" + 2. NP,

5 Fluid structure interaction in a patient-specific
aortofemoral artery

In this section we address the study of the blood flow dynamics in a patient-specific
aortofemoral artery. Studying the hemodynamics of the vasculature distal to the ab-
dominal aorta may be important in understanding common diseases in peripheral ar-
teries downstream of the thoracic aorta. Diseases in the peripheral vasculature affect
millions of people in the U.S and can have a profound effect on daily quality of life.
Peripheral arterial disease is the build-up of fatty tissue, or atherosclerosis, in lower
extremity arteries. The prevalence of peripheral arterial occlusive disease increases
with age and can increase to up to 20% of the geriatric population. Atherosclerotic oc-
clusive disease of the lower extremity arteries is a major cause of walking impairment,
pain, ulcerations and gangrene.

The geometry of the aortofemoral artery used for the numerical simulations has been
obtained from [1] and is shown in Figure 3, while the meshes for the fluid and struc-
ture physical domains were generated using a software library [39] based on VMTK.
We consider the blood characterized by a density py = 1.06 g/cm? and by a dynamic
viscosity py = 0.04 g/(cm s). The physical parameters for the structure are set as fol-
lows: Young’s modulus £, = 4 - 10° dyne/cm?, Poisson’s ratio v, = 0.45 and density
ps = 1.2 g/lem?. The boundaries of the computational fluid domain are reported in
Figure 3b, 3c and 3d (see Table 1 for the identification of each artery). The inflow
section of the fluid domain correspond to surface ID 1 in Figure 3b and represents the
aortic root.

In a pre-processing phase, starting from the geometry shown in Figure 3 we gener-
ated flow extensions at the inflow 1 to obtain an inflow section of circular shape, see
Figure 4, where a patient-specific flowrate is prescribed using a Dirichlet boundary
condition, i.e., mapping the flowrate through a parabolic velocity profile. The flowrate
profile prescribed is shown in Figure 5. At each fluid outflow we impose the following
RC-type boundary condition proposed in [55]:

At RC
o"tn; = N T RC (RQ” + an) , (5.1)
where At = 1073 s is time step size used in our simulations, P" and Q" are the
pressure and flowrate values, respectively, at time ¢ = n At. In equation (5.1) R and
C represent the resistance and capacity associated to a distal position of the vascular
tree. In Table 1 we report the numerical values of the resistances used; for each outflow,
the value of the capacity used is C' = 3At\ R.
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(a) Whole geometry. (b) Thoracic aorta. (c) Abdominal aorta. (d) Iliac and femoral arteries.

Figure 3: Patient-specific aortofemoral geometry: from left to right we show the whole
arterial geometry and a zoomed-in view of the thoracic and descending aorta, of the
abdominal aorta and of the iliac arteries.

The solid domain is clamped at the inlet and outflow rings while at the external wall
we impose the following Robin-like boundary condition [90, 83] of the type:

PP ~ ad -
pon, + N, + kedg + csa—ts =0 onl%, (5.2)

where kg &5 and ¢, ag; represent the elastic and the viscoelastic components of the
external tissue, respectively. Concerning the reduced structural model, equation (3.7)
is modified as follows:

" At At
/ < sPsQ T Cs)unﬂ -vpdl + — / hsl'Ly(unH +1£y) : Vyvpdl
P\ At o @Jr

A
= /(—af(u"“,p”“)n-l-hspsfl’}) -Vde—/nS—tfg-Vde.
r r a
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ialie

Figure 4: Initial geometry (left) and flow extension generated at the inflow section of
the fluid domain (right).

Flow rate [om®/s]

0 01 02 03 04 05 06 07 08 09 1
Time [s]

Figure 5: Patient-specific inflow flowrate profile prescribed.

5.1 Numerical results obtained by the full three dimensional FSI model

In this section we show the results obtained using the full 3D FSI model described in
section 2. In the three-dimensional setting, we set the thickness of the arterial wall 15
% of to the local radius of the lumen.

The details of the computational meshes realized for the fluid and solid domains are
summarized in Table 2 while the number of degrees of freedom obtained after spatial
discretization is reported in Table 3. The numerical simulations have been carried out
using PizDora, a Cray XC 40 supercomputer at the Swiss National Supercomputing
center, whose technical specifications are summarized in Table 4.

In Figure 6 and 7 we show a post-processing of the solution obtained at several time
instances during the third heart beat simulated. In particular in Figure 6 we show a vol-
ume rendering of the blood flow velocity while in Figure 7 we report the displacement
of the the arterial wall.

The blood flow features transition to turbulent flow developing in the downstream
part of the descending aorta. The typical peak Reynolds number Re ~ 2/650, based
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ID surface Artery name Resistance [dyne s cm ]
2 Right Subclavian 788.82
3 Right Common Carotid 6’697.69
4 Left Common Carotid 6°708.98
5 Left Subclavian 788.87
6 Superior Mesenteric 829.30
7 Right Renal 4’141.67
8 Hepatic 1'114.61
9 Splenic 1°086.33
10 Left Renal 4°102.96
11 Left Internal 3°108.73
12 Right Internal 3°109.10
13 Left Profunda 6°620.49
14 Right External Circumflex 3°299.25
15 Right Femoral 3°312.96
16 Left Femoral 3°322.05
17 Left Profunda 6’620.49
18 Left External Circumflex 3’316.24

Table 1: Values of the resistances used at each outflow sections of the fluid domain,
values obtained from [1].

on an average velocity U = 100 cm/s and length D = 1 cm.The very fine mesh and
the SUPG-VMS model allow to recover peculiarities of the transitional flow regime.
We notice the presence of several ricirculation zones, as shown in Figure 8, occurring
between the end of the systolic phase and the diastolic one. To better visualize the
complex flow pattern of the blood flow as well as its transitional regime, we report in
Figure 9 the coherent vortex structures of the fluid flow identified by means of the Q
criterion at different time frames during the third heart beat simulated.

The simulations have been done with the finite element library LifeV [16]. The
strong scalability results of the parallel solver are reported in Figure 10. In the left
plot of Figure 10 we report the average number of GMRES iterations per linear solve
over the simulation, while in the right plot the average time to compute a single time
step. It includes: computation of the nonlinear residual, assembly of the Jacobian
matrix, construction of the preconditioner and numerical solution of the Jacobian linear
system. We remark that in our simulations, since the harmonic extension and the
structure matrices are constant, the preconditioners Hs and Hg defined in Section 2.5
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Fluid mesh Structure mesh
# Vertices  # Tetrahedra | # Vertices # Tetrahedra
4°237°118 25°925°318 | 1°525°185  7°311°192

Table 2: Details of the meshes used for the numerical simulations.

Fluid DoF  Structure DoF  Coupling DoF  Geometry DoF

Total

16°948°472 4°575°555

912’591

12°711°354  35°147°972

Table 3: Number of Degrees of Freedom (DoF) obtained after spatial discretization.

Number of compute nodes

Processor

Memory

Memory bandwidth
Network

1,256

64-bit Intel Xeon processor
ES5-2690v3-Haswell

64GB per node in 1, 192 nodes
128GB per node in 64 nodes
Up to 137 GB/s per node
Dragonfly interconnect

Table 4: PizDora Cray XC40 technical data.

are built only once and stored at the beginning. As shown in Figure 10, we observe the
robustness of the solver with respect to the number of cores utilized. Indeed, for the
problem at hand, the number of linear solver iterations ranges from roughly 75 (with
512 cores) up to 85 iterations (with 4’096 cores). The average time to compute a single
time step is almost perfect scalabile up to 2’048 cores; with this number of cores, a
complete heartbeat therefore takes about 10 hours
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Figure 6: Volume rendering of the magnitude of the fluid velocity at several time
instances during the third heart beat simulated.
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Figure 7: Solid displacement at several time instances during the third heart beat sim-
ulated.
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Figure 8: Magnitude of the fluid velocity in the descending aorta at the systolic peak,
at the end of systole and at diastole.
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Figure 9: Coherent vortex structures identified by means of the Q criterion in the

descending aorta.
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Figure 10: Scalability results: average number of GMRES iterations (left) and average
time to compute a single time step.
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5.2 Numerical simulation setting for the RFSI

With the aim of performing a numerical reduction of the RFSI problem, we require
to take ad hoc choices concerning the high fidelity discretization. During the offline
phase of the reduction algorithm several finite element vectors and matrices need to
be stored and manipulated, we therefore prefer to lower the dimension of the finite
element spaces with respect to the ones used for three dimensional FSI solver. We use
a coarser grid for the discretization of the fluid domain with a thin boundary layer of
elements near the interface I'" to maintain a good resolution towards the interface. We
neglect the VMS modeling and use the stable P2-P1 finite elements pair for the dis-
cretization of the fluid system, such that no further stabilization terms are required in
the formulation of the RFSI problem. This choices results in an approximation space
with 8’903°292 degrees of freedom for the velocity field and 379’160 degrees of free-
dom for the pressure field. Also the discretization of the temporal derivatives differs
between the FSI and the RFSI solver, which moreover do not take into account turbu-
lence models. Note however that we choose to use an implicit Euler time integrator
which is dissipative, with a time step equal to 0.001 s. Finally, regarding the physical
modelling, we use a homogeneous thickness hs = 0.1 and homogeoneous coefficients
cs = kg = 107 for the surrounding tissue since they are both important for the stability
estimates of the RFSI model [23].

We choose as model parameter the structural Young modulus E. The numerical
reduction is prepared with two different values of the parameters and two simulations
with the finite element method for some heartbeats. We then apply twice the POD
considering the two different sets of snapshots.

The set of snapshots of the first POD is computed fixing £ := 10% dyn/cm?. The
high fidelity RFSI simulation is performed for three heartbeats in order to reach a
periodic state. The snapshots are then selected among the finite element solutions of
the third heartbeat sampling the one every 5 time levels. The corresponding eigenvalue
problem has dimension 200. Fixing a tolerance equal to 6 = 0.001, which selects the
first 48 velocity modes and the first 2 pressure ones. This remarkable difference in
the modes number is due to the different behavior of the eigenvalue decays as it is
shown in Figure 11. Adding the supremizers corresponding to the pressure modes, the
reduced space resulting from the first POD produces 52 basis functions.

The second POD is performed considering a Young modulus equal to E, := 4 - 10°
dyn/cm?. As before, we focus on the high fidelity solutions of the third heartbeat that,
this time, are sampled one every 10 time levels. This choice results in an eigenvalue
problem of dimension equal to 100. With a tolerance 6 = 0.01, the POD selects 15
velocity eigenmodes and 2 pressure ones. We construct the corresponding 19 basis
functions, which are orthonormalized with respect to the basis obtained with the first
POD using a Gram-Schimdt algorithm.

The final reduced space has dimension 71 which is five orders of magnitude smaller
than the dimension of the high fidelity approximation space.
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We suppose to use as a-posteriori error indicator the dual norm of the following
residuals:

v (Vhs an)s ) = (vasuR, di ) — a(uiy™, va)

- c(u’ﬁ,, urji[+l7vh) - b(vh?pnN+l) - b(u’X/’_Ha Qh)u

beingn = 0, ..., Np. In Figure 12(a) we show the dual norms rescaled by the L*°([0, 77, ﬁ(Qf))
norm of the solution, for all the time levels of the third heartbeat, for both the values

of F/; and E) used to constuct the reduced order model. Even if the number of basis
functions associated with F» is smaller than the one related to £, the values of the

dual norms are comparable for both the choices of the Young modulus.

We select 500 random values of g in the interval [10°, 4 - 10°] and for each of them
we compute the maximum of the dual norm of the residuals among the time levels
n = 0, ..., Np. The values of the maximum residual dual norms shown in Figure 12-(b)
are of the same orders of the ones computed for £} and F,. Our reduced order model
can be thus used to simulate the entire interval of parameter values F € [10%,4 - 10°].

We focus now on the results obtained with £ = 4 - 10% dyn/cm? and we compare
the high fidelity solutions and the reduced order ones at different time levels. In Fig-
ures 13 and 14 we notice the good agreement between the two discretization for both
the velocity and the pressure fields, especially during the systolic phase. In the dias-
tolic phase the differences between the two discretization are higher since the energy
associated to these time levels is smaller. In Figure 15 we compare the evolution of
the averaged magnitude of wall shear stresses in three different areas. Once again, we
notice that the results obtained with the high fidelity approximation and the reduced
order one are in good agreement.

Concerning the computational costs, the solution of one single time instant of the
RFSI solver takes 40 s on 720 processors, i.e., 11 hours for one heartbeat. The offline
computation of the reduced order model with 71 basis functions takes about 1 hour on
720 processors, plus, roughly, 7 hours to compute the reduced structures for the online
evaluation of the dual norm of the residuals. The solution of the RFSI problem for 3
heartbeats using the reduced space of dimension 71 takes 3.4 s on one single processor
of a laptop.
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Figure 11: Top: decay of POD eigenvalues computed with 200 snapshots with
E = 10° dyn/cm?. Bottom: partial sum of the POD eigenvalues computed with 200
snapshots with £ = 10° dyn/cm?.
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Figure 12: (a): comparisons between dual norm of the residuals obtained solving the
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Figure 13: Comparisons between pressure solutions computed for £ = 4-10° dyn/cm?
using the reduced order model with 71 basis functions (left) and the finite element one

(right).
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5.3 Comparisons between FSI and RFSI

In this section we report a comparison of the results obtained using the 3D implicit
FSI solver described in Section 2 against those generated by the RFSI one reported
in Section 3. In particular, we focus on the outlet mean pressures, velocity profiles at
several locations and wall shear stress quantities.

In Figure 16 we compare the time evolution of the fluid pressure at all the outflow
sections. We notice that both solvers lead to comparable results in terms of pressure
wave speed either in proximal and distal branches. By comparing the peak values of
the pressure obtained we notice that they are in excellent agreement for what concerns
the proximal arteries. Conversely, moving towards distal vessels, it is possible to ob-
serve a gap in the peak pressure values. We remark that these differences may be due to
the dumping of the viscous term used in the RFSI solver for the Robin condition (5.2)
used to model the surrounding tissue. Furthermore such an effect is visible in the early
diastolic phase wherein the pressure oscillations are dumped out in the RFSI solver
wrt to the 3D FSI one.

In figures 17 and 18 we compare the velocity profiles at time 2.15 s and 2.4 s,
respectively, at three locations of our domain. At time 2.15 s, which corresponds
to the systolic peak of the third heartbeat, both solvers produce velocity profiles that
are in good agreement. Of course, the results obtained with the full 3D FSI feature
a much higher resolution thanks to the smaller mesh size used. At time 2.4 s, i.e.
during the mid-deceleration phase, we notice that the velocity profiles are qualitatively
similar although the FSI solver, wherein the SUPG-VMS stabilization is used, is able
to capture better local features of the blood flow dynamic like small vortexes.

Figure 19 shows a comparison of the Wall Shear Stresses (WSS). Specifically, we
focus on three different patches located at the fluid-structure interface where we eval-
uate the time evolution of the WSS magnitude averaged by the patch area and its nor-
malization by the corresponding temporal mean. The WSS curves obtained by both
solvers are in agreement for what concerns their phase, expecially in A; and A, ar-
eas. During the systolic phase the WSS values obtained by the two solvers feature
a remarkable difference. Similar comparisons have already been carried out in [24]
where the case of an aortic arch was considered. Nevertheless, in the same work a
better agreement was reported for other geometries (femoropopliteal bypass). This
difference may come from the use of transpiration conditions (3.2) in the RFSI solver
in presence of larger displacements. Indeed, transpiration conditions introduce a mod-
elling error proportional to the displacement. In the comparisons reported here, the
mismatch may be associated also with the different dicretization choices related to
the two solvers concerning the fluid problem: in fact, in the FSI solver we used an
isotropic grid and P1-P1 stabilized finite elements, while, in the RFSI solver we chose
an anisotropic grid featuring a boundary layer on the fluid-structure interface and P2-
P1 finite elements.
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Figure 16: Comparisons between outflow mean pressures computed in the third hear-
beat obtained by solving the 3D FSI and the RFSI problems.
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Figure 17: Comparisons between velocity profiles at time 2.15 s. On the right, the
solution is P2 but the visualisation is only P1.
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Figure 18: Comparisons between velocity profiles at time 2.4 s. On the right, the
solution is P2 but the visualisation is only P1.
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Figure 19: Comparisons between the magnitude of the wall shear stress averaged on
three different areas obtained by solving the 3D FSI and the RFSI problems.
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6 Conclusions

When dealing with vascular flow simulation several modeling and numerical options
are available. The choice depends on the targeted measures or indicators. In this work
we have presented two possibilities, one relying on a detailed three dimensional FSI
model for both the solid and the fluid, and one, RFSI, which focus on the fluid mechan-
ics and allows for further numerical reduction. The FSI model is approximated by the
finite element method and its resolution requires parallel methods, in particular we use
a FaCSI preconditioner derived from domain decomposition and multigrid methods.
RFSI relies on a fixed geometry and generalized Robin conditions to account for a
membrane model. It is firstly approximated by the finite element method in an offline
phase, then by POD and a Galerkin projection to a very small subspace in the online
phase.

We have compared the two methods and showed that RFSI introduces modeling er-
rors that has to be taken into account when interpreting the numerical results. However
it allows for drastic reductions of the computational times and runs online almost in
real time on a simple laptop. It is important to notice that the online solver is spe-
cialized for the geometry at hand: changing the geometry, for example a new patient,
requires the recomputation of the offline phase.
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