
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. C. Hébert, présidente du jury
Prof. H. Brune, Dr S. Rusponi, directeurs de thèse

Prof. F. Nolting, rapporteur
Dr T. Lau, rapporteur

Prof. O. Yazyev, rapporteur

Magnetic Stability of Single Lanthanide Atoms
on Graphene

THÈSE NO 8342 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 26 JANVIER 2018

 À LA FACULTÉ DES SCIENCES DE BASE

LABORATOIRE DE NANOSTRUCTURES SUPERFICIELLES

PROGRAMME DOCTORAL EN PHYSIQUE 

Suisse
2018

PAR





Mami i Julianu





Abstract

This thesis presents a study of the magnetism of surface supported atoms performed princi-

pally with XMCD spectroscopy and multiplet calculations. The objective of the research was

twofold: first, to study the underlying interactions and conditions governing the magnetiza-

tion stability of surface supported atoms, with the aim of achieving long magnetic lifetimes,

and second, to assemble single atom magnets in an ordered pattern.

Through our study of 4 f lanthanide atoms on supporting substrates, we established that their

magnetic stability is governed by their quantum level structure, in particular their ground

Jz state and the height of the energy barrier for thermally assisted magnetization reversal.

These features are ruled through the crystal field interaction with their supporting surface.

The adsorption site of adatoms governs the symmetry of the crystal field and, consequently,

the coupling between the different Jz levels. This in turn enables magnetization reversal

either through quantum tunneling between Jz states or via scattering with the electrons and

phonons of the substrate. To reduce the scattering events, it is necessary to decouple the

adatoms from the metal substrate by using decoupling layers. Here we show that a single layer

of graphene is sufficient to decouple Dy atoms from the underlying Ir(111) substrate, resulting

in a magnetic lifetime of about 1000 s at 2.5 K. In addition, we show that the moiré pattern of

the graphene/Ir(111) surface can be used as a template for the self-assembly of these single

atom magnets into well ordered superlattices. Further, by studying multiple graphene/metal

substrates we show that the interaction of graphene with the supporting substrate greatly

influences the magnetization stability of adsorbed atoms. Finally, we show that replacing

graphene with an insulating layer does not result in a stable magnetization of adsorbed atoms

if its superior decoupling is not accompanied with an adequate crystal field symmetry.

Key words: XAS, XMCD, multiplet calculations, single atom magnets, lanthanides, self-

assembly, superlattice, graphene, moiré, crystal field, QTM
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Résumé

Cette thèse présente une étude des propriétés magnétiques d’atomes supportés en surface,

effectuée principalement avec spectroscopie XMCD et calculs de multiplets. L’objectif de la

recherche comprend deux parties ; premièrement, l’étude des interactions sous-jacentes et les

conditions gouvernant la stabilité magnétique d’atomes supportés en surface, avec comme

but la recherche de longues durées de vie magnétiques, puis, l’assemblage d’aimants d’atomes

uniques en une structure ordonnée.

Notre étude des atomes lanthanides 4 f sur substrats, nous a permis d’établir que la stabilité

de ces derniers est déterminée par leur structure de niveaux quantiques, plus particulièrement

leur état Jz non-excité et la hauteur de la barrière d’énergie pour l’inversion magnétique

assistée thermiquement. Ces facteurs sont dépendant de l’interaction du champ cristallin

avec la surface qui le supporte. Les sites d’adsorption des atomes ajoutés gouvernent la

symétrie du champ cristallin, et en conséquence le couplage entre les différents niveaux

Jz . Il en découle la possibilité de renversement magnétique soit par effet tunnel entre les

états Jz , soit par dispersion avec les électrons et les phonons du substrat. Afin de réduire

les évènements de dispersion, il est nécessaire de découpler les atomes ajoutés du substrat

métallique en utilisant des couches de découplage. Ici, nous montrons qu’une seule couche

de graphène est suffisante pour découpler les atomes de Dy du substrat Ir(111) sous-jacent, ce

qui résulte en une durée de vie magnétique d’environ 1000 s à 2.5 K. En plus, nous montrons

que le motif Moiré de la surface graphène/Ir(111) peut être utilisé comme matrice pour l’auto-

assemblage de ces aimants à atome unique en super-réseaux bien ordonnés. En étudiant de

multiples substrats graphène/métal, nous montrons que l’interaction du graphène avec le

substrat sous-jacent a une grande influence sur la stabilité magnétique des atomes adsorbés.

Finalement, nous montrons que le remplacement du graphène par une couche isolante ne

résulte pas en une stabilité magnétique des atomes adsorbés si le découplage supérieur n’est

pas accompagné par une symétrie du champ cristallin adéquate.

Mots clefs : XAS, XMCD, calculs de multiplets, aimant à atome unique, lanthanides, auto-

assemblage, super-réseau, graphène, Moiré, champ cristallin, QTM
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Introduction

Single magnetic atoms on surfaces are currently the center of a vibrant field of research. The

main goal of the investigations is to identify model systems for data storage at ultimate scales,

where one atom serves as one unit of information. Aside from this technological appeal, these

systems have an even more fundamental allure. Single atoms on surfaces offer a playground

for investigating the underlying interactions governing magnetism at the atomic scale. In

addition, their assembly in well ordered superlattices would provide an identical environment

to each unit and a controlled distance among them, allowing for example to tune their mutual

interactions. This would not only facilitate comparison with theory, but would also, from

a technological point of view, provide the desired highest possible storage densities of a

magnetic medium.

For an atom to be considered as a bit, it must possess an easy magnetization axis and a long

lifetime of its magnetization. This can be attained through interaction with the surrounding

crystal field, generated either by the supporting surface, or by the surrounding molecular cage.

Hence, there are currently two approaches in achieving the magnetic stability and long range

order in single atoms. One is by using single-ion molecular magnets [1, 2] and metal-organic

networks [3]. Here, a molecular cage protects an atom from contamination. However, the

coupling with electrons and vibrational modes of the surrounding ligands destabilizes the

atom’s magnetic moment. The other approach, and the one that we are following in this thesis,

is placing atoms directly on supporting substrates. This reduces the number of bonds and

may reduce the atoms’ interaction with the environment, resulting in their greater magnetic

stability. In addition, it makes the comparison with theory easier.

In a classical picture, the stability of an atom’s magnetization is considered to be ruled by

the size of the magnetic anisotropy energy barrier (MAE) between the two stable directions

of an atom’s magnetic moment. The bigger this barrier is, the more resistant the magnetic

moment will be against thermally induced magnetization reversal, and consequently, the

longer the magnetic lifetime of an atom. The idea that large MAE would necessarily result in

long magnetic lifetime initiated the search for the atom/substrate combinations that yield

large MAE. Initially, the investigated systems were 3d transition metal (TM) atoms, and

large values of MAE were observed [4–7], culminating in the discovery of the record high

MAE of 58 meV for Co atoms on MgO [8]. Yet, none of the systems studied yielded desired

long magnetic lifetime. As it turned out, strong hybridization of TM atoms with substrates

1



Introduction

enables efficient scattering with the substrate’s electrons and lowers their spin relaxation

times [9]. Throughout the research, it was also established that, in many cases, a classical

picture is insufficient for describing the magnetism of surface supported atoms. A quantum

mechanical description, in which quantum tunneling of magnetization can cause temperature

independent magnetization reversal, is a more appropriate approach.

The hybridization with the electrons of the substrate can be reduced by using 4 f lanthanide

atoms. Their 4 f orbitals, responsible for their magnetism, are strongly localized and interact

mainly electrostatically with the surrounding crystal field generated by the supporting sub-

strate. This approach has proven to be more prosperous and it has, to this day, yielded two

systems of single atom magnets. One are Ho atoms on MgO/Ag(100) showing magnetic stabi-

lity up to 40 K, and a magnetic lifetime of about 1500 s at 10 K [10], and the other are Dy atoms

on graphene/Ir(111) showing a magnetic lifetime of about 1000 s at 2.5 K, as will be shown in

this thesis. Achieving the magnetic stability in these two systems has emphasized the role of

the decoupling layers in stabilizing atom’s magnetization. Namely, the same lanthanide atoms,

when placed directly on a bare metal surface, do not show neither hysteresis nor magnetic

remanence [11, 12]. This indicates that, despite their high localization, 4 f orbitals necessarily

need to be protected from electron and phonon scattering. Furthermore, the achieved sta-

bility has underlined the crystal field symmetry as one of the key factors in determining the

magnetic properties and stability of adsorbed atoms.

The objective of this thesis is twofold. First, by studying the magnetic properties of 4 f lant-

hanide and 3d transition atoms on primarily decoupling layers, we aim to investigate the

underlying interactions and conditions that lead to the magnetic stability in single atoms.

In particular, we focus on atoms in two types of crystal field symmetries, namely C3v and

C6v crystal field symmetry, provided by the h-BN and graphene surface, respectively. As a se-

cond objective, we investigate the possibility to use the moiré pattern of the graphene/Ir(111)

surface as a template for a self-assembly of single atom magnets. The following paragraphs

summarize the structure of this thesis.

Chapter 1 reviews the fundamentals of atomic magnetism. First, we address the origin of

magnetism in free atoms, after which we focus on atoms in the crystal field environment of

a supporting substrate. In particular, we discuss the influence of two different crystal field

symmetries, namely C3v and C6v symmetry, on the magnetic levels of an atom. Further, we

analyze two magnetization reversal mechanisms arising for an atom in a crystal field: quantum

tunneling of magnetization and scattering with electrons and phonons of a substrate, with

respect to these two crystal field symmetries. Finally, we address the influence of a magnetic

field on the magnetic levels of an atom.

Chapter 2 introduces the main methods employed in investing the magnetic properties of

surface supported atoms. Fundamental principles of x-ray absorption spectroscopy, x-ray

magnetic circular and linear dichroism are given. Further, we introduce multiplet calculati-

ons, a method for simulating experimental spectra and calculating energy level diagrams of
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investigated systems. In addition, this Chapter also presents sample preparation techniques

as well as the experimental setup.

Chapter 3 presents our combined STM, XMCD and multiplet calculations study of Dy atoms

on graphene/Ir(111). In the first part of this Chapter, we investigate the moiré pattern of

graphene/Ir(111) as a template for the self-assembly of Dy atoms. We determine the conditions

for the growth of the superlattice of Dy atoms. Further, we determine the adsorption site of Dy

atoms with respect to the moiré pattern and graphene lattice. The remainder of the chapter is

devoted to the study of magnetic properties of Dy atoms. We present XMCD measurements of

Dy atoms in both ordered and disordered ensembles, and show that in both cases Dy atoms

show long magnetic lifetime at T = 2.5 K. To elucidate the origin of their remarkable magnetic

stability, we investigate the crystal field environment provided by graphene and the resulting

electronic configuration and magnetic level diagram of Dy atoms. Further, we investigate the

magnetization reversal mechanisms arising from the scattering with electrons and phonons,

as well as graphene’s ability to decouple Dy atoms from these scattering events. Finally, we

investigate the influence of temperature on the magnetic stability of Dy atoms, as well as the

impact of the employed x-ray flux on the measured lifetime.

Chapter 4 extends the study of the magnetic and electronic properties of surface supported

Dy atoms with five additional substrates. First, to further clarify graphene’s capacity as a

decoupling layer, we investigate Dy atoms on a bare Ir(111) surface. Second, to investigate the

influence of the graphene/substrate hybridization on the properties of adsorbed Dy atoms, we

extend our study with HOPG and two other graphene/metal substrates, namely graphene/Cu

and graphene/Ru(0001). Similar to graphene on Ir(111), graphene forms only a weak bond with

Cu, whereas it strongly hybridizes with Ru(0001) surface. HOPG represents another weakly

bound system, as it consists of weakly bound parallel graphene layers. Finally, to compare

graphene’s decoupling potential to one of an insulator, we investigate Dy electronic and

magnetic properties on h-BN/Ir(111). This further enables the investigation of the importance

of the crystal field symmetry in comparison with the decoupling in stabilizing the atom’s

magnetization. h-BN offers superior electronic decoupling from the metal substrate; however,

it provides a lower crystal field symmetry in comparison with graphene. Dy atoms on graphene

are subjected to the C6v , whereas on h-BN they are subjected to the C3v crystal field symmetry.

Chapter 5 addresses the magnetic and electronic properties of Nd, Ho, Er and Tb atoms on

graphene/Ir(111). For each atom, we determine the crystal field environment provided by the

graphene/Ir(111) substrate and investigate its influence on the electronic configuration and

the magnetic level structure of adsorbed lanthanide atoms. We evaluate the magnetic stability

of these atoms based on their ground state and energy level diagram and determine the main

mechanism for magnetization reversal in each case. Further, we examine the underlying

interactions ruling their electronic configuration on this surface. In addition, this Chapter

addresses the sensitivity of lanthanide atoms to contamination and the validity of the sum

rule analysis of their XAS and XMCD spectra, whose results we compare to those obtained

from multiplet calculations.
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Chapter 6 addresses the magnetic properties of Co atoms on an h-BN surface. We investigate

whether it is possible to achieve magnetic stability in this transition metal atom by placing it

on a wide band-gap insulator like h-BN. Further, by using two different h-BN/metal substrates,

we study the effect of the substrate hybridization on its magnetic levels and stability. Namely,

we use strongly interacting h-BN/Ru(0001) and weakly interacting h-BN/Ir(111) systems.

Finally, at the end of this thesis, the main results are summarized and outlook on the future

work is given.
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1 Magnetism of surface adsorbed atoms

This chapter introduces the concepts for describing the magnetism of adatoms on surfaces.

Section 1.1 gives an overview of the origin of magnetism in free atoms. The influence of the

crystal field environment on the magnetism and magnetic levels of adatoms is discussed in

Section 1.2. In addition, a detailed analysis for two particular cases, C3v and C6v crystal field

symmetries, is given. Finally, Section 1.3 describes the evolution of the magnetic levels of an

atom in an external magnetic field.

1.1 Origin of magnetism in free atoms

The magnetism of atoms originates from electrons in their partially filled electronic orbitals.

For both transition metal and lanthanide atoms, the two categories of atoms studied throug-

hout this thesis, the Coulomb interaction between electrons is stronger than the spin-obit

interaction between their individual angular momenta. The electron-electron interaction is

typically of the order of 1 eV, whereas spin-orbit interaction is of the order of 0.1 eV for 4 f

lanthanide and 10−102 meV for 3d transition metal atoms [13, 14]. In this case, the interaction

between spin and orbital angular momenta can be described by LS or Russell–Saunders

coupling [15]. In this coupling scheme, the Coulomb interaction couples individual orbital

momenta into the total orbital momentum L, and exchange interaction couples the individual

spin and orbital angular momenta into the total spin momentum. Finally, the spin-orbit

interaction couples the resulting L and S into the total angular momentum of an atom, J.

The quantum numbers of total angular momentum J assume the following values: |L−S|� J �
L+S. Further, each J consists of (2J+1) Jz energy levels which are degenerate in the case of free

atoms, and their degeneracy can be lifted by imposing an anisotropy to an atom. The ground

state J multiplet can be determined by the three Hund’s rules [16, 17]. These rules determine

the filling of the electronic orbitals that minimizes the Coulomb interaction between the

electrons. The filling of the orbitals is further restricted by Pauli exclusion principle, from which

follows that two electrons in the same orbital must have their spins anti-aligned. According to

the first two Hund’s rules, the ground state configuration is the one with the maximal S and L

5



Chapter 1. Magnetism of surface adsorbed atoms

values. The third Hund’s rule determines the J value for which the energy due to the spin-orbit

interaction,

HSOC =−ζL ·S, (1.1)

is the lowest; ζ is the constant of the spin-orbit coupling. In the case of more than half-filled

orbitals, the spin and orbital angular momentum are parallel to each other and the ground

state is J = L+S. Less than half-filled orbitals have their angular momenta anti-parallel and

their ground state is given by J = |L−S|. Finally, half-filled shells have L = 0 and J = S.

The total magnetic moment of an atom is given by

m=−μB
(
gLL+ gS S

)=−μB g J J, (1.2)

where μB is the Bohr magneton, μB = 5.79×10−5eV/T, gL , gS and g J are g -factors of electron

orbital, spin, and total angular momentum, respectively. The g J - or Landé factor of the total

angular momentum is given by:

g J = 3

2
+ S(S+1)−L(L+1)

2J (J +1)
, (1.3)

while the other two g -factors are gL = 1 and gS ≈ 2 [18]. In a free atom, the magnetic moment

does not have a preferential axis and its orientation fluctuates in space. This results in zero net

magnetization of a free atom. Placing an atom in a crystal field or applying a magnetic field

creates an anisotropy that stabilizes the magnetic moment in a preferential orientation.

1.2 Atom in a crystal field

Surface adsorbed atoms feel the electrostatic potential of the surrounding charges generated

by the electrons and ions of a surface. This potential is called crystal or ligand field, and it

interacts primarily with the orbital angular momentum of the adsorbed atom. The interaction

with the spin is indirect, and it occurs via the spin-orbit coupling.

The magnetism of lanthanide atoms originates from electrons in their well shielded 4 f orbitals.

In this case, the spin-orbit interaction between electrons is much larger than their interaction

with the crystal field, with the latter being of the order of 10 meV [14]. Hence, the crystal field

interaction can be viewed as a perturbation to the overall energy of an atom and J remains

a good quantum number for describing the system. The crystal field lifts the degeneracy of

the lowest J multiplet and imposes its symmetry to Jz states. In the case of the pure uniaxial

anisotropy, Jz states are simply displaced in energy and Jz remains a good quantum number.

In the case where additional transverse crystal field parameters are present, several Jz states

are mixed into new eigenstates and Jz is no longer a good quantum number. This will be

addressed in detail for two specific crystal field symmetries further on in this chapter.
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The magnetism of transition metals originates from their outer 3d electrons that strongly

interact with the electrons of the surface. Here, the interaction with the crystal field is of the

order of 1 eV [13] and it is much stronger than the spin-orbit interaction. Here, the spin-orbit

interaction may be viewed as a perturbation, and, consequently, J is no longer a good quantum

number.

The interaction with a crystal field can greatly reduce or even completely quench the orbital

momentum of transition metal atoms on surfaces. In this respect, there are two distinct

cases. In systems where crystal field completely quenches the orbital angular momentum,

its value can be partially restored through the spin-orbit interaction. This is the so-called

second-order orbital momentum and is observed, for example, in Fe atoms on MgO [19]. Due

to orbital momentum being partially restored, the spin-orbit coupling can further split the

lowest multiplet whose multiplicity is given by the spin angular momentum. To interpret the

response of an atom subjected to a magnetic field, one can consider an equivalent magnetic

moment in a classical magnetic anisotropy barrier. In this case, the total magnetic moment

is given by the sum of spin and orbital moment of the ground state of an atom, whereas the

height of the barrier is given by the total energy splitting of the lowest multiplet.

Systems where crystal field does not quench the orbital momentum, i.e., systems with first-

order orbital momenta, have to be treated with a complete quantum mechanical approach.

This is, for example, the case for Co atoms on MgO [8]. Here, both spin and orbital angular

momentum contribute to the multiplicity of the ground state multiplet, with the latter being

determined by solving the effective spin Hamiltonian. In this case, the crystal field imposes its

symmetry to the magnetic levels of an atom, as discussed further in this chapter.

1.2.1 Crystal field Hamiltonian

In spherical tensor notation, the crystal field Hamiltonian can be expressed in terms of the

Stevens operators Ôn
m and coefficients B n

m [18, 20]:

HC F =
∑
n,m

B n
mÔn

m . (1.4)

Stevens coefficients are real numbers, whereas Stevens operators are functions of spherical

tensor operators Ĵz , Ĵ+ and Ĵ−, with the latter two being the ladder operators within the J

multiplet. Due to the orthogonality of the spherical harmonics and time reversal symmetry,

only even values of m are allowed. Real values of operators are obtained for m = 2,4, ...,2J and

n �m [21]. In addition, values of n are further limited by the crystal field symmetry, Cχv , and

can only take values n = kχ, where k is an integer, k = 0,1, ... [22].

The symmetry of the crystal field is determined by the packing of the atoms of the surface

and the adsorption site of an adatom on it. Throughout this thesis, atoms on three substrates

are studied. These substrates generate crystal fields with two different symmetries, C3v and

C6v , which are depicted in Figure 1.1. In the following, relevant Stevens operators and their
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influence on the magnetic states Jz will be discussed.

(a) (b) (c)

Figure 1.1 – Adatom adsorbed on the three-fold symmetric adsorption site of (a) (111) surface,
e.g. Ir(111), and (b) hexagonal ring composed of two different atomic species (e.g. hexagonal
boron nitride). (c) Adsorption of an adatom on the six-fold symmetric adsorption site of
hexagonal ring composed of single atomic species, e.g. graphene.

1.2.2 Magnetic levels in C3v and C6v crystal field symmetry

The expansion of the crystal field Hamiltonian given by Equation 1.4 in C3v and C6v symmetry

can have many terms; however, only the ones of the lowest order will have a considerable

effect on the magnetic levels of an atom. In C3v symmetry, the Hamiltonian with relevant

Stevens operators is reduced to [23]

H3v =B 0
2Ô0

2+B 0
4Ô0

4+B 3
4Ô3

4+B 0
6Ô0

6+B 3
6Ô3

6+B 6
6Ô6

6, (1.5)

whereas the one in C6v symmetry is given by:

H6v =B 0
2Ô0

2+B 0
4Ô0

4+B 0
6Ô0

6+B 6
6Ô6

6. (1.6)

The Stevens operators in Equations 1.5 and 1.6 expressed in terms of angular momentum

operators [18], with the abbreviation X = J
(

J +1
)
, are:

Ô0
2 = 3 Ĵ 2

z −X ,

Ô0
4 = 35 Ĵ 4

z −
(
30X −25

)
Ĵ 2

z +3X 2−6X ,

Ô0
6 = 231 Ĵ 6

z −
(
315X −735

)
Ĵ 4

z +
(
105X 2−525X +294

)
Ĵ 2

z −5X 3+40X 2−60X ,

Ô3
4 =

1

4

(
Ĵ 3
+− Ĵ 3

−
)

Ĵz + Ĵz
(

Ĵ 3
+− Ĵ 3

−
)
,

Ô3
6 =

1

4

[(
Ĵ 3
++ Ĵ 3

−
)(

11 Ĵ 3
z − (3X +59) Ĵz

)+ (
11 Ĵ 3

z −
(
3X +59

)
Ĵz

)(
Ĵ 3
++ Ĵ 3

−
)]

,

Ô6
6 =

1

2

(
Ĵ 6
+− Ĵ 6

−
)
.

The first three listed operators, Ô0
2, Ô0

4 and Ô0
6, are the uniaxial crystal field operators. They

partially lift the degeneracy of Jz states, that is, Jz levels with different absolute value get split
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1.2. Atom in a crystal field

in energy, while those with the same absolute value remain degenerate. The uniaxial operators

determine the total zero field splitting, i.e., the energy difference between the lowest and the

highest lying Jz state. In analogy with classical systems, this value is commonly related to the

magnetic anisotropy energy.

The lowest order uniaxial crystal field consists of only the first term in the expansion of

the Hamiltonian in Equations 1.5 and 1.6, B 0
2Ô0

2. In this case, the factor J
(

J +1
)

of Stevens

operator Ô0
2 equally shifts in energy all the magnetic levels, and the second order operator Ĵ 2

z

displaces them in a shape of parabola. The sign of B 0
2 coefficient determines the orientation

of this parabola, and hence the resulting anisotropy of the system. For negative coefficients,

the parabola is pointing downwards and the system has an out-of-plane anisotropy with a

maximal Jz ground state doublet (Figure 1.2(a)). For positive coefficients, the parabola is

pointing upwards, and the system has an in-plane anisotropy with a minimal Jz ground state

(Figure 1.2(b)). Introducing higher order operators like Ĵ 4
z and Ĵ 6

z results in non-monotonic

distribution of Jz levels. This can even lead to an intermediate Jz doublet as a ground state.

The last three operators, Ô3
4, Ô3

6 and Ô6
6, are the transverse crystal field operators. They mix

Jz states differing by ΔJz = ±3 and ΔJz = ±6, resulting in eigenstates that are a mixture of

several Jz states. These operators introduce quantum tunneling of magnetization (QTM)

to a system [24], and can open new relaxation paths by spin scattering with electrons and

phonons of a substrate. The mixing of the states in C3v crystal field symmetry is depicted in

Figure 1.2(c).

E E
(c)

E
(a)

 Jz

T
Z

F
S

 Jz Jz

(b)

Figure 1.2 – (a,b) Schematic representation of magnetic levels in HCF =B 0
2Ô0

2 for an atom with
J = 4; (a) B 0

2 < 0 results in an out-of-plane anisotropy, and (b) B 0
2 > 0 in an in-plane anisotropy.

An arrow in (a) marks the height of the total zero filed splitting (TZFS). (c) Mixing of Jz levels
in C3v crystal field symmetry. Different colors represent three classes of eigenstates created by
the three-fold symmetry. The eigenstate marked in green consists of Jz = 0 state on top of the
barrier, and a tunnel-split doublet with quenched 〈Jz〉 at a lower energy.

In the absence of transverse crystal field operators, the system has to go over the entire barrier

to reverse the direction of its magnetization. The presence of transverse operators, and in

particular quantum tunneling of magnetization, can greatly reduce this barrier and facilitate

magnetization reversal. These processes are depicted in Figure 1.3. In the following, we discuss

the influence of the transverse crystal field parameters on the magnetic stability of atoms. In
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particular, we examine the magnetic stability of lanthanide atoms in C3v and C6v crystal field

symmetry.

E

QTM

se

se

AQTM

AQTM

 Jz

Figure 1.3 – Schematic representation of different mechanisms of magnetization reversal in
the presence of transverse crystal field operators; quantum tunneling of magnetization (QTM)
between two ground states and assisted QTM (AQTM) via spin excitations (se) to higher energy
levels.

1.2.3 Quantum tunneling of magnetization in lanthanide atoms

The quantum tunneling of magnetization is the direct consequence of the coupling between

different Jz states which are nearly matching in energy [25]. The coupling between two Jz

states in C3v crystal field symmetry can be expressed in the following way:

〈Jz = n | Ô3
4 | Jz =m〉 �= 0, |n−m| = 3,6,9,12,15. (1.7)

Note that the maximal difference between coupled levels |n−m| depends on the total number

of available Jz states in a particular atom. In Equation 1.7, values are given for J = 8 multiplet

and its 17 Jz states; lower J multiplets will have less available |n−m| values. The C6v crystal

field symmetry couples fewer levels into a single eigenstate:

〈Jz = n | Ô6
6 | Jz =m〉 �= 0, |n−m| = 6,12. (1.8)

In the case of integer J systems all states except Jz = ±3,±6 are protected against QTM at

B = 0 T in both crystal field symmetries. At B = 0 T, the Jz =±3,±6 states form tunnel-split

doublets with quenched 〈Jz〉. If one of these doublets is a ground state, QTM occurs and there

is no stable magnetization. Alternatively, these states provide a shortcut that greatly reduces

the energy barrier for magnetization reversal.

In half-integer J systems, all possible ground states are protected against QTM. Even if they
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are coupled with the transverse term, the magnetic states of half-integer J systems are always

degenerate in absence of external magnetic field. This is due to the time reversal symmetry

(TRS), as expressed by Kramers theorem, and no QTM can occur [26].

Both non-Kramers doublets of non-integer J systems and Kramers doublets of integer J

systems can be classified into two categories: perfectly axial and non-axial doublets [27].

Non-axial doublets include those allowing QTM identified by Equations 1.7 and 1.8, as well as

Kramers doublets that tunnel split in the presence of the transverse perturbations, originating

from the transverse magnetic field. These non-axial doublets facilitate magnetization reversal,

as is discussed in the next Section.

1.2.4 Scattering with electrons and phonons in lanthanide atoms

Scattering with electrons and phonons of the substrate can cause additional magnetization

relaxation mechanisms. In the absence of magnetic field, the scattering can facilitate the

magnetization reversal via excitation to higher energy levels, whereas in finite fields, it can

produce a direct transition between the two states of the lowest Jz doublet.

The scattering probability is governed by the product of the density of states of scattering

particles (phonons or electrons) and the transition matrix element of a particular transition.

At B = 0 T, due to the degeneracy of the ground states, no direct transition between them

can occur as the density of states of interacting particles vanishes when the energy needed

to be exchanged is zero. At finite magnetic fields, the probability of direct transition strongly

depends on the matrix element, which is directly related to whether or not the TRS needs to

be broken for that transition to occur. The transitions which are TRS allowed will occur at the

higher rate than those which are TRS forbidden at B = 0 T [26].

In general, scattering with electrons can produce transitions between levels differing by

ΔJz = 0,±1, (1.9)

as it is given by the magnetic dipole selection rules. For scattering with phonons, in addition

to transitions given by Equation 1.9, the transitions between levels differing by ΔJz = ±2

can occur [28]. However, due to their weak effect, they will not be considered in the further

discussion.

The coupling of Jz levels in C3v and C6v crystal field symmetry expressed by Equations 1.7

and 1.8, respectively, allows additional transitions for phonon and electron scattering, with

respect to those expressed with Equation 1.9. In particular, in C3v symmetry Equation 1.9 can

be extended to:

ΔJz = 0±3k,−1±3k,1±3k (1.10)
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whereas in C6v symmetry it takes the following form:

ΔJz = 0±6k,−1±6k,1±6k, (1.11)

where k assumes positive integer values that reflect the coupling between different Jz states ex-

pressed with Equations 1.7 and 1.8. Explicitly, from Equation 1.11, it follows that in C6v symme-

try a direct transition can occur between levels differing by ΔJz = 0,6,12,±1,±7,±13,±5,±11.

Hence, at B = 0 T, for integer J systems, all possible ground states apart from Jz = ±3 and

Jz =±6 are protected against direct transitions, as they cannot be connected with the listed

ΔJz values. As mentioned before, Jz =±3 and Jz =±6 are tunnel-split doublets that support

QTM. In the case of half-integer J systems, the direct transition between two ground states

with a single electron scattering can occur in all cases apart from Jz = ±3/2, ±9/2, ±15/2 at

B �= 0 T. The transition between these states would require multiple electron scattering events.

From similar considerations for integer and non-integer J systems in the C3v and B �= 0 T, it

follows that none of their ground state doublets is protected against direct transition with a

single scattering event, as already ΔJz =±1 can connect any two ground states in this case.

Relaxation paths at B = 0 T are provided by thermally activated QTM. By absorbing energy

from electrons or phonons of the substrate, a system can be excited to a level for which QTM

is allowed. This will result in a magnetization reversal. In the case of integer J , this happens

for excitation to tunnel split doublets with Jz =±3 and Jz =±6. For atoms with half-integer J ,

assisted QTM can occur through levels that are, due to the transverse perturbations, non-axial.

In case of C6v and C3v symmetry, these are all states that are not mixed with Jz =±3/2 states

[27].

1.3 Atom in a magnetic field

The interaction between the magnetic moment of an atom and the uniaxial magnetic field

can be described with the following Zeeman Hamiltonian:

HZ =−μB g J J ·B=−μB g J Jz Bz . (1.12)

This interaction shifts the energy levels with positive Jz values to a higher energy, whereas

the ones with negative Jz get lowered in energy. As a consequence, magnetic field lifts the

remaining double degeneracy of Jz states and splits the tunnel-split doublets of integer J

systems.

As was noted in the previous section, the presence of the magnetic field breaks the time

reversal symmetry and enables the magnetization reversal by scattering with electrons and

phonons which was otherwise, due to these symmetry considerations, prohibited. Magnetic

field can even provide an additional magnetization reversal path. For certain crystal field

splittings of Jz levels, it is possible to match two different Jz levels in energy by applying a

particular value of magnetic field. At this point, these two Jz levels are quasi-degenerate and

12



1.3. Atom in a magnetic field

mixed by the transverse magnetic anisotropy [29]. This enables QTM and, as a consequence,

the reversal of magnetization.
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2 Methods

This chapter introduces the main methods employed in the study of magnetic properties of

surface adsorbed atoms. In Sections 2.1 and 2.2, the main theoretical principles of XAS, XMCD

and XMLD spectroscopy are given. Section 2.3 presents the main experimental aspects of

these techniques, including the experimental setup and the sample preparation. Multiplet

calculations are presented in Section 2.4, and Section 2.5 briefly presents the details of the

STM characterization.

2.1 XAS and XMCD spectroscopy

Investigating the electronic and magnetic properties of individual atoms on surfaces requires

an appropriate experimental probe. X-ray magnetic circular dichroism (XMCD), along with X-

ray absorption spectroscopy (XAS), is an unparalleled tool to study their properties as it allows

investigating the properties of systems in the sub-monolayer regime. In particular, it can be

used to probe the magnetic properties of systems with coverages down to Θ= 0.002 ML [30].

This technique, developed in the late 1980 and early 1990s [31–40], apart from its extremely

high sensitivity, offers the possibility of probing separately the magnetic properties of multiple

elements on the same surface. The theoretical aspects of XMCD are well established and

their details can be found for example in [13, 41]. In the following, only the main theoretical

concepts of this method are presented.

2.1.1 Transition probability

X-ray magnetic circular dichroism is based on the polarization dependent photon absorption

in magnetic materials. It corresponds to the difference in x-ray absorption for two different

helicities of circularly polarized x-rays.

In an atom, an incoming photon of energy E = �ω can induce a transition of a core electron

into an empty valence state if the energy difference between these two states matches the

energy of a photon. For a single electron process, the transition probability per unit time from
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an initial state |i 〉 to a final state | f 〉 is given by the Fermi’s Golden rule [13, 42]:

Wf i =
2π

�

∑
f

∣∣〈 f |Hint|i 〉
∣∣2
δE f −Ei−�ω, (2.1)

where Hint is the Hamiltonian describing the interaction between an electron and a photon,

Ei and E f are the energies of an initial and a final state of the system, respectively, and the

delta function ensures the energy conservation of the system. The interaction Hamiltonian

expressed in terms of the photon vector potential A and electron momentum operator p is [13]

Hint = e

me
p ·A, (2.2)

where, for an incident electromagnetic wave, the vector potential is given by A= A0ε̂ei k·r , with

A0 being the amplitude of the vector potential and ε̂ the unit vector of the photon polarization.

Given the relation between A and electric field E in free space, E = −∂A
∂t , it is clear that the

transitions are induced by the electric field of the incoming electromagnetic wave.

In the electric dipole approximation, which is valid for the small absorbing atomic shell in

comparison with the x-ray wavelength, k · r � 1 [13], we can use the approximation ei k·r �
1+ i k ·r. In addition, using the commutation law, p= me

i� [r, H ], the transition matrix element

of Equation 2.1 becomes

Mi f = 〈 f |Hint|i 〉∝ 〈 f |p · ε̂|i 〉∝ 〈 f |r · ε̂|i 〉 , (2.3)

giving the transition probability per unit time in the electric dipole approximation [43]

Wf i =
2πe2 A2

0

m2
e�

∑
f

∣∣〈 f |r · ε̂|i 〉∣∣2
δE f −Ei−�ω. (2.4)

The dipole operator r · ε̂ expressed in terms of spherical harmonics Yl ,m(θ,φ) for three different

polarizations of light propagating in ẑ direction [13] is:

− 1	
2

(x+ i y) = r

√
4π

3
Y1,1,

1	
2

(x− i y) = r

√
4π

3
Y1,−1,

z = r

√
4π

3
Y1,0,

(2.5)

for right circular, left circular and linear polarization, respectively.
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2.2. XMLD spectroscopy

2.1.2 Dipole selection rules

The transition matrix element Mi f can be calculated only when the initial and final states are

known. Nevertheless, its angular part can be written in terms of the Wigner 3 j symbols [44]

which imposes the so-called dipole selection rules to it. For states that can be described with

(L,Lz ,S) quantum numbers, the dipole selection rules state that the transitions are possible

only between initial and final states differing by ΔL =±1 and ΔLz = 0,±1. As the interaction

with photon only affects the orbital angular momentum of an electron, the spin angular

momentum remains unchanged, ΔS = 0 [13, 44].

The states originating from spin-orbit split levels are described with (J , Jz ) quantum numbers.

In this case, as a consequence of the spin-orbit coupling between L and S into J , the angular

momentum of a photon will be partially transmitted to the spin angular momentum of an

electron. The dipole selection rules state that transitions are possible between states differing

by ΔJ = 0,±1 and ΔJz = 0,±1 [44].

The detailed treatment of transitions in the case of spin-orbit split levels can be found for

example in [45]. However, the basic principles behind the XMCD originating from spin-orbit

split levels can be described using a simplified two step model [13, 46] summarized in the

following. In the first step, the photons transfer their angular momentum to core electrons,

which creates spin-polarized photoelectrons. The polarization of their spins depends on both

the helicity of the incoming photon, as well as on the sign of the spin-orbit coupling of level

from which they originate. For example, at the L2 edge for which J = L−S, x-rays with helicity

q =+1 excite 25% of spin up and 75% of spin down electrons, whereas at the L3 with J = L+S,

they excite 62.5% of spin up, and 37.5% of spin down electrons . Opposite percentages are valid

for x-rays with helicity q =−1. Here, spin directions are defined with respect to the direction

of x-rays. In the second step, these photoelectrons are excited into the valence band, where

photoelectrons with spin up occupy empty spin up states and photoelectrons with spin down

occupy empty spin down states. In case there is an equal number of empty spin up and spin

down states available, this results in equal absorption of the left and right circularly polarized

photons and gives no dichroic signal. However, in case of an imbalance in spin up and spin

down empty states, i.e., in case that the investigated system has a net magnetic moment, there

will be an imbalance in absorption of the left and right circularly polarized photons, resulting

in an XMCD signal.

2.2 XMLD spectroscopy

In addition to XMCD, we used x-ray magnetic linear dichroism (XMLD) to characterize the

properties of surface adsorbed atoms. Similar to XMCD spectroscopy, this method is based on

the polarization dependent photon absorption in magnetic materials. However, in this case,

linearly polarized x-rays are used.

In atoms with finite magnetic moments, the spin-orbit interaction distorts their spherical
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Chapter 2. Methods

charge distribution, resulting in a uniaxial charge distribution along their spin axis [13]. When

probing these atoms with two types of linearly polarized x-rays, namely x-rays with their

electric field vector E being parallel and perpendicular to the sample magnetization, a dichroic

signal will arise. The observed dichroism is a consequence of the different number of valence

holes for the two directions of the atomic volume [13]. Further details on XMLD spectroscopy

can be found in [13, 47].

2.3 Experimental aspects

2.3.1 Spectral analysis

For an ensemble of atoms exposed to x-rays, an abrupt increase in the adsorption occurs

when the energy of the incoming x-rays corresponds to the binding energy of a core level

of these atoms. This is the so-called absorption edge. The soft x-ray range, corresponding

to energies between 0.2 and 2 keV, includes the absorption edges of 3d transition metals

and 4 f lanthanides relevant for the study of their magnetism. These are the L2,3 edges in

transition metals, where of interest are the transitions from spin-orbit split 2p1/2,3/2
levels

to empty states of 3d orbitals. In lanthanides, these are the M4,5 edges, where of interest

are the transitions from spin-orbit split 3d3/2,5/2
to empty states of 4 f orbitals. The acquired

polarization dependent XAS spectra are the fingerprint of the electronic and magnetic ground

state of the investigated system.

Figure 2.1(a) shows the XAS spectra acquired with left and right circularly polarized x-rays,

together with the sketch of the experimental geometry, at Dy M4,5 edges for these atoms on

graphene/Ir(111)1. The sum of these spectra corresponds to the total XAS spectrum and their

difference to the XMCD spectrum. Throughout this thesis, only the sum and the difference,

and not the individual components, will be given. Figure 2.1(b) shows the absorption spectra

at Dy M4,5 edges acquired with two different linear polarizations of x-rays, namely one with

its electric field vector oscillating in plane of the sample, and the other with its electric field

vector oscillating in the direction normal to the surface of the sample. Throughout this thesis,

only their difference, corresponding to XMLD, will be given.

Expectation values of the orbital 〈Lz〉 and the effective spin magnetic 〈Seff〉 moment of the

investigated system can be obtained by applying the so-called sum rules to the integrated XAS

and XMCD spectra [37, 48]. Here, 〈Seff〉 contains both the contribution from spin magnetic

moment 〈Sz〉 and spin dipole magnetic moment 〈Tz〉, as with sum rules it is not possible to

determine their contributions independently. The spin dipole magnetic moment originates

from the distortion of the spherical atomic cloud, either due to the spin-orbit coupling or

the crystal field effects [48]. Note that the values here have subscript z, as they refer to the

values projected onto the investigated direction of the x-rays (and applied magnetic field). By

labeling the integral of the total XAS area with t, integral over the total XMCD area with q, and

1The spectra are presented here for illustrative purposes only and their detailed analysis is given in Chapter 3.
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Figure 2.1 – Example of spectra acquired with circularly (a) and linearly (b) polarized x-rays,
together with their experimental geometries. The presented spectra were acquired for Dy
atoms on graphene/Ir(111). (a) Circular spectra were acquired with two types of circularly
polarized x-rays, σ+ and σ−. Their sum (σ++σ−) corresponds to the total XAS, whereas their
difference (σ+−σ−) corresponds to the XMCD spectrum. (b) Linear spectra were acquired with
two different linearly polarizated of x-rays, σh and σv. Their difference (σh−σv) corresponds
to the XMLD spectrum. In all experiments, the applied magnetic field B was collinear with the
direction of x-rays and they were employed at the angle θ with respect to the surface normal.

integral over the L3 or M5 edge with p, for transition metals the sum rules are

〈Lz〉 =−4

3
nh

q

t
〈Seff〉 = 2〈Sz〉+7〈Tz〉 =−nh

6p−4q

t
(2.6)

whereas for lanthanides they are:

〈Lz〉 =−2nh
q

t
〈Seff〉 = 2〈Sz〉+6〈Tz〉 =−nh

5p−3q

t
(2.7)

where nh marks the number of holes in the 3d transition metal or 4 f lanthanide orbitals. Note

that these sum rules are valid only in the case of isotropic absorption of x-rays using both

linear and circular x-rays.

In the case of lanthanide atoms, where the crystal field is weak in comparison with the spin-

orbit interaction of the 4 f electrons, it is possible to separate the contributions of 〈Sz〉 and

〈Tz〉 from 〈Seff〉. Their absolute values will change in the presence of the crystal field, however

their ratio will remain roughly the same as the one obtained for the free atoms [49]. In this
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approximation, the spin magnetic moment can be calculated from the following relation:

〈Sz〉 = 〈Seff〉
2+6 〈Tz〉free

〈Sz〉free

. (2.8)

By performing angle dependent XAS and XMCD measurements, information about the mag-

netic anisotropy of the investigated system can be obtained. In addition, by acquiring the

maximum of the XMCD signal as a function of the external magnetic field, magnetization

curves can be acquired. The XMLD spectra represent an additional fingerprint of the magnetic

ground state of a system. Throughout this thesis, we used them as parameters in our multiplet

calculations, to determine the both electronic configuration and magnetic ground state of

investigated systems.

2.3.2 Experimental setup and measurements

Performing the XMCD measurements requires a source that can provide a wide range of

x-ray energies, high brilliance and a high degree of circular polarization. Therefore, XMCD

measurement are performed at synchrotron facilities. All measurements presented in this

thesis were performed at the end-station of the EPFL/PSI X-Treme beamline of the Swiss Light

Source at Paul Scherrer Institute in Villigen, Switzerland (Figure 2.2). The detailed description

of the end-station and the beamline specifications can be found in [50], and in the following

only their main characteristics are summarized.

Cryostat

X-rays

Load-lock

Transfer
Chamber

Platform

Sample
preparation 
system

Figure 2.2 – Drawing of the end-station of the EPFL/PSI X-treme beamiline where all XAS and
XMCD measurements presented in this thesis were performed. The figure is taken from [50].
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The X-Treme beamline enables polarization-dependent x-ray absorption spectroscopy in

the soft x-ray range, E = 260−2000 eV. The cryostat of the end-station is equipped with a

superconducting vector magnet which can generate magnetic fields up to B = 7 T parallel to

the direction of x-rays and up to B = 2 T in the direction perpendicular to them. Further, in

this chamber, a sample is attached to the variable temperature insert which allows adjusting

the sample temperature in the T = 2−370 K range.

The end-station is equipped with the in situ sample preparation chamber. This chamber is

equipped with an ion sputter gun and heating/cooling stage which enables preparation of

samples in T = 30−1800 K range. In addition, it offers the possibility of attaching evaporators,

and is equipped with a variable temperature scanning tunneling microscope. The preparation

chamber is connected to the cryostat through the transfer chamber which is kept at the UHV

pressure. This enables the transfer of prepared substrates to the cryostat without breaking the

vacuum.

The detection of the x-ray absorption signal is carried out by measuring the total electron

yield (TEY), where the total number of electrons escaping the sample surface is ascertained

from the drain current. Namely, the relaxation of atoms from excited to ground state can

result in the emission of high-energy Auger electrons. Subsequently, by inelastic scattering,

these electrons produce secondary electrons in the surrounding surface. Due to the very small

mean free path of these secondary electrons, TEY is a surface sensitive method, and hence an

ideal tool for measuring the adsorption spectrum of surface adsorbed atoms. Furthermore,

it allows investigating the systems with coverages down to Θ= 0.002 ML [30]. To eliminate

the influence of the variation in the beam intensity on acquired data, the TEY signal was

normalized with respect to the beam intensity, I0, measured in real-time on the metal grid

placed before the cryostat. The absolute photon flux φ reaching the sample was measured

with a photodiode placed after the last optical element of the beamline and is given in units of

φ0 = 3×10−3 photons nm−2s−1.

The measurements were performed for two incidence angles with respect to the surface

normal, namely normal incidence at θ = 0◦ and grazing incidence at θ = 60◦. In both cases the

magnetic field was collinear with the incident x-rays. To take into account the different surface

areas illuminated by x-rays in the two geometries, the acquired spectra were normalized with

respect to the absorption pre-edge of the corresponding element. In addition, prior to the

deposition of atoms, the spectra of the clean surface were acquired. They were subsequently

subtracted from the acquired atomic spectra to eliminate any contribution from the substrate.

The magnetization curves were acquired by recording the maximum of the XMCD intensity as

a function of the external magnetic field for each element.

2.3.3 Sample preparation

We used the preparation chamber of the X-Treme bamline to clean and prepare all the surfaces

used as supporting substrates for single lanthanide and transition metal atoms. Through this
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thesis two monocrystalline metal substrates were used: Ir(111) and Ru(0001). Both substrates

were prepared by repeated cycles of Ar+ sputtering at T = 300 K and annealing at T = 1300 K.

After the cleaning cycles were completed, these substrates were either used for growth of

decoupling layers, or were directly, without breaking the vacuum, transferred to the cryostat

where the subsequent deposition of atoms took place.

We employed chemical vapor deposition for the growth of two decoupling layers on clean

metal substrates, graphene and hexagonal boron nitride (h-BN). Graphene was grown by the

exposure of 100 Langmuir of ethylene (C2H4) to a metal substrate kept at T = 1400 K [51, 52],

whereas h-BN was grown by the exposure of 125 Langmuir of borazine (B3H6N3) to a metal

substrate kept at 1030 K [53, 54]. Both reactions are self-limiting to one monolayer since the

catalytic dissociation of respective precursor molecule requires bare metal areas.

In addition to monocrystalline substrates and in situ prepared decoupling layers, we used two

commercially available substrates: graphene grown on copper foil and highly oriented pyrolitic

graphite (HOPG). Both of these substrates were exposed to air prior to being placed into the

preparation chamber. Therefore, to outgas the air contaminations from the inert surface

carbon layer, we annealed these substrates at T = 870 K. In addition, before the insertion into

the preparation chamber, HOPG substrates were cleaved. More detail on these substrates and

their preparation is given in Chapter 4.

Lanthanide and transition metal atoms were deposited from high purity rods (99.9%) using an

electron-beam evaporator. The atoms were deposited at surfaces kept at low temperatures,

normally of about T = 4 K; however, in the case of dysprosium, depositions at T = 40 K were

also made (see Chapter 3 for more details). Prior to experiments, these rods were degassed

until a pressure of p ≤ 4×10−11 mbar was reached. Furthermore, during the beamtime, we

kept these rods in the degassing conditions, to degas them even further. Throughout our

experiments, we established that lanthanide atoms are particularly sensitive to the contami-

nation. Occasionally, despite using the same experimental procedure, the resulting spectra

would differ depending on whether the sample was prepared at the beginning or towards

the end of the beamtime. Hence, each sample was prepared multiple times, and only those

samples whose spectra did not show any further change with the preparation were considered.

A detailed discussion on the effects of the contamination on the spectra of lanthanide atoms

will be given in Chapter 5.

Throughout this thesis, the coverage of atoms is given in monolayers (ML). In the case of

graphene and h-BN, the coverage of Θ = 1 ML corresponds to one atom per their unit cell,

whereas in the case of metallic substrates, it is defined as one adsorbate atom per one substrate

atom. Further discussion on the coverage determination is given in Chapter 3.
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2.4. Multiplet calculations

2.4 Multiplet calculations

In addition to sum rules, an analysis of experimental XAS and XMCD spectra can be made

by their comparison with simulations carried out within an adequate theoretical frame. One

of them is the atomic multiplet theory [55, 56], which together with ligand field theory [57,

58], enables simulating the spectra of atoms subjected to a crystal field by calculating the

transitions from the ground to the permitted final states. In the case of 3d transition metals,

of interest are 2p63d n −→ 2p53d n+1 transitions, whereas in the case of lanthanides those

are the 3d 104 f n −→ 3d 94 f n+1 transitions. Such multiplet calculations can provide a deeper

understanding on the magnetic stability, as they give the complete energy diagram of the

investigated system.

The simulation of the polarization dependent XAS spectra is based on the calculations of the

transition probabilities presented in Section 2.1.1, and the detailed description of the multiplet

calculations can be found in [59, 60]. As previously mentioned, the transition matrix element

can be evaluated only when the initial and final states of a system of interest are known. These

states are obtained by diagonalization of the Hamiltionian of an atom of interest, to which an

electrostatic term representing a crystal field is added [60],

H =HA+HC F . (2.9)

Here, the atomic Hamiltonian is given by

HA =
N∑
i

p2
i

2me
+

N∑
i

−Z e2

ri
+

N∑
i< j

e2

ri , j
+

N∑
i
ζ(ri )li ·si , (2.10)

where N is the number of electrons in an atom, Z the charge of its nucleus and ζ is the

spin-orbit coupling constant. The first term of this Hamiltonian is the kinetic energy of the

electrons, the second one represents the electrostatic interaction of these electrons with the

nucleus, the third one is the electron-electron repulsion, and the last one is the spin-orbit

interaction of each electron. If an atom is subjected to an external magnetic field, a Zeeman

term is added to this Hamiltion,

HZ = μB

�

N∑
i

B · (2si + li ). (2.11)

The crystal field Hamiltonian has the following form

HC F =−eφ, (2.12)

where φ is the potential describing the surrounding ligand field. As has been shown in the

previous chapter, the crystal field can be expressed in terms of the Stevens operators and

coefficients. However, it can also be expressed in terms of the point charge electrostatic model.

Here, the surrounding ligand field is approximated with the collection of point charges, and
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the resulting crystal field Hamiltonian is [14]

HC F =−e
N∑
i

M∑
j

Q j

ri j
, (2.13)

where Q j is the strength of the j th point charge. This type of crystal field is suitable for atoms

with localized valence electrons which interact only electrostatically with the surrounding

crystal field. This is in particular the case for the lanthanide atoms and their well shielded 4 f

orbitals [61, 62].

In the scope of this thesis, we performed multiplet calculations using the multiX code2. As

explained in the publication describing the working principles of this code [63], it determines

the multiplets “from a Dirac density functional atomic calculation, followed by the exact

diagonalization of the Coulomb, spin-orbit and crystal field interactions for the electrons

in the open shells.” As an input, this code requires the investigated element and its exact

electronic configuration. Only integer occupations of valence states are permitted. Further,

the crystal field is given in a form of point charges. The coordinates of these charges, as well as

their strength, are entered manually and are used as parameters in simulating the XAS, XMCD

and XMLD spectra. Finally, the code allows to scale the Coulomb and spin-orbit interactions

with respect to their Hartree-Fock values, in order to optimize the simulated spectra.

2.5 Scanning Tunneling Microscopy

The scanning tunneling microscopy (STM) measurements were performed with a homemade

low temperature STM, operating at 5 K [64]. Tungsten (W) tips were used for all measurements

and the STM images were acquired in constant current mode. The bias voltages given in the

figure captions refer to the sample; therefore, at the negative values used, electrons tunnel

from occupied states of the sample into empty states of the tip. The samples measured with

the STM were prepared using the same procedure described earlier in this Chapter. In this

case as well, the samples were transferred to the cryostat without breaking the vacuum and

the atoms deposited on the cold surface kept either at T = 10 K or T = 40 K.

2The code, together with the manual, is available at https://www.psi.ch/cmt/project-multix.
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3 Dy atoms on graphene/Ir(111)

Dysprosium (Dy) atoms on a graphene/Ir(111) surface make the first superlattice of single

atom magnets. This chapter in its first part presents our scanning tunneling microscopy

(STM) investigation of the adsorption of Dy atoms on graphene/Ir(111). The remainder of the

chapter is devoted to the investigation of the magnetic properties of Dy atoms and their origin

by combined XMCD measurements and multiplet calculations.

The majority of the results presented in this chapter are published in R. Baltic, et al. Super-

lattice of Single Atom Magnets on Graphene, Nano Lett. 16, 7610-7615 (2016). The data on

coverage and exposure time dependence of Dy XAS spectra will be presented in R. Baltic, et al.,

Magnetic properties of single rare earth atoms on graphene/Ir(111), in preparation.

Work contribution. As part of a team led by Dr. Stefano Rusponi, I contributed to all XMCD

measurements presented in this Chapter. All STM measurements and analysis were performed

by Dr. Marina Pivetta. Dr. Stefano Rusponi carried out the multiplet calculations presented in

this Chapter. I performed the remaining data analysis. In particular, the analysis presented in

Sections 3.3, 3.7, 3.8 and 3.9.

3.1 Moiré pattern of graphene/Ir(111)

The surface atoms of Ir(111) are ordered in a triangular lattice with the lattice constant of

a0,I r = 2.73 Å [65]. Graphene, on the other hand, consists of carbon atoms ordered in a honey-

comb, i.e., hexagonal, lattice. However, the centers of its hexagonal rings form a triangular

lattice with a lattice constant a0,g = 2.46 Å [65]. The overlapping of these two triangular lattices,

due to the about 10% difference in their constants, results in a moiré pattern. This pattern

also has a triangular lattice symmetry with periodicity of about 2.5 nm [66, 67].

Graphene is only weakly bound to the Ir(111) surface through van der Waals forces. This results

in their large mean distance of dg−I r = 3.4 Å. As a consequence, the resulting corrugation of

the moiré structure is small, and it amounts to less than 0.5 Å over the moiré unit cell [68].
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Chapter 3. Dy atoms on graphene/Ir(111)

A sketch of graphene adsorbed on Ir(111) is shown in Figure 3.1. It shows three different

regions with respect to the positions of the centers of graphene hexagonal rings and iridium

atoms [67]. The region where the center of the ring is placed on top of the iridium atom

is called atop region. This is the weakest bound region of the graphene and, consequently,

graphene is here the furthest away from its supporting substrate. The other two, more bound,

regions are the so called fcc and hcp regions. They correspond to the centers of the hexagonal

rings being on top of the three-fold hollow sites of Ir(111) surface. The difference between

them comes from the atom beneath this hollow site. If the atom below is from the second

layer of the iridium surface, this is the hcp region, and if it originates from the third layer, it is

the fcc region.

hcp atop fcc

C

1st layer Ir(111)

2nd layer Ir(111)

3rd layer Ir(111)

Figure 3.1 – Sketch of graphene on Ir(111) surface. White arcs mark the atop regions, dashed
circles fcc region and dotted circles hcp regions. Adapted from [67].

3.2 STM measurements of Dy on graphene/Ir(111)

3.2.1 Disordered Dy on graphene/Ir(111)

Ensembles of individual Dy atoms on graphene/Ir(111) can be obtained by their deposition

with an e-beam evaporator. Figure 3.2 shows a STM image of one such ensemble after depo-

siting Θ= 0.01 ML of Dy on the substrate kept at Tdep = 10 K. Here, one monolayer (ML) is

defined as one Dy atom per graphene unit cell. In this image Dy atoms appear as a randomly

distributed protrusions on graphene/Ir(111) surface.

3.2.2 Self-assembly of Dy superlattice on graphene/Ir(111)

The scanning tunneling microscopy image in Figure 3.3 shows an ensemble of Dy atoms

on graphene/Ir(111) after deposition of Θ = 0.01 ML Dy at Tdep = 40 K . At this substrate

temperature, surface diffusion of Dy atoms is activated and they can reach the most favorable

adsorption site within the moiré unit cell. This results in a superlattice of single Dy atoms.

The potential landscape ruling the formation of the Dy superlattice consists of three com-
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10 nm

Figure 3.2 – STM image acquired for Θ = 0.01 ML of Dy on graphene/Ir(111) (Vt = −0.5 V,
It = 20 pA; Tdep = 10 K, T = 5 K).

20 nm

Figure 3.3 – STM image of Dy superlattice on graphene/Ir(111) (Vt = −0.2 V, It = 100 pA;
Θ= 0.01 ML, Tdep = 40 K, T = 5 K).
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ponents: the atomic corrugation of the graphene lattice, the long period surface potential

due to the graphene moiré, and the Coulomb repulsion between the atoms due to the strong

charge transfer from the Dy to the graphene of about 0.7−0.8 e [69–71]. Similar to the case

of Cs atoms on graphene/6H-SiC(0001) [72], the observed superlattice results from the joint

effect of the three components. Here the Coulomb repulsion prevents dimer formation upon

diffusion, and the moiré potential defines the array of stable adsorption sites.

The equilibrium positions of Dy atoms on the graphene/Ir(111) surface can be determined

by comparing the image of pristine graphene with the one with Dy atoms adsorbed on top.

These images need to be acquired with similar tunneling conditions, as the apparent heights

of the atop, fcc and hcp stacking areas depend on the tunneling parameters [67]. Figure 3.4(a)

shows an atomically resolved graphene structure with atop regions appearing dark and the fcc

and hcp regions appearing bright. Figure 3.4(b) shows an enlarged detail of the superlattice.

By comparing these two STM images, it can be seen that the Dy atoms of the superlattice

adsorb in the atop stacking region of the moiré pattern, i.e., where the C6 ring of graphene is

centered above an Ir substrate atom. Hence, the mean distance of Dy atoms in the superlattice

corresponds to the periodicity of the graphene moiré structure, 2.5 nm.

(a) (b)

2 nm 2 nm

Figure 3.4 – (a) Atomically resolved STM image of the graphene moiré structure; the atop
regions appear as dark areas (Vt =−0.02 V, It = 50 pA; T = 5 K). (b) Detail of the Dy superlat-
tice shown in Figure 3.3 with Dy atoms adsorbed in the atop regions of the moiré structure
(Vt =−0.4 V, It = 20 pA; T = 5 K).

The long range order of the Dy atom superlattice can be illustrated by the autocorrelation

function of the STM image [73]. In Figure 3.5(a) the autocorrelation function of Figure 3.3 is

shown. It consists of a global maximum in the center of the image, surrounded with satellite

maxima lying along the high symmetry directions of the superlattice, the positions of which

determine the periodicity of the superlattice. The intensity of the satellite maxima reflects the

degree of order of the superlattice [71]. The line cut along one of the high symmetry directions

is shown in Figure 3.5(b), and its intensity shows a very shallow decay with distance.
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Figure 3.5 – (a) Autocorrelation function of the STM image shown in Figure 3.3. (b) Line cut
along the orange line shown in (a).

Dy superlattice forms for a range of sample temperatures during deposition, 30 K≤ Tdep ≤ 50 K.

For Tdep < 30 K the inter-moiré cell diffusion is suppressed, resulting in disordered arrange-

ment of adatoms, as demonstrated in Section 3.2.1. These atoms can be found adsorbed in

all three stracking areas of the graphene moiré. For Tdep > 50 K the diffusing adatoms can

overcome the repulsive Coulomb barrier and dimers or bigger clusters form.

3.2.3 Adsorption site of Dy on graphene/Ir(111)

As we have seen in the previous sections, the adsorption of Dy atoms with respect to the

graphene moiré can vary depending on the deposition temperature. It is interesting to deter-

mine the adsorption site of these atoms with respect to the graphene itself as this adsorption

site determines the symmetry and strength of the crystal field acting on them and ultimately
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their magnetic properties. For Dy atoms on freestanding graphene, DFT calculations have

found a hollow adsorption site [70]. To experimentally determine the adsorption site of Dy on

graphene/Ir(111), we performed atomically resolved STM measurements.

Figure 3.6 shows an atomically resolved STM image of graphene with adsorbed Dy atom

after deposition at Tdep = 10 K. Minor asymmetry of Dy atom originates from the small

asymmetry of the STM tip. Hence, to find the adsorption site of this Dy atom, one has to

look for the position of its apex. Black lines in Figure 3.6 outline the sixfold graphene hollow

sites, i.e., the centers of the hexagonal carbon rings, in the vicinity of the adsorbed Dy atom.

Their intersection occurs at the summit of the Dy atom, thus identifying the hollow site

as the adsorption site of this atom. The same adsorption site has been determined for Dy

atoms in the superlattice. Hence, the same six-fold symmetric crystal field generated by this

adsorption site is experienced by both Dy atoms in disordered ensembles and superlattice on

graphene/Ir(111).

1 nm

0

450

pm

Figure 3.6 – Atomically resolved STM image of graphene/Ir(111) with an adsorbed Dy atom.
Black lines mark the hollow sites of the graphene lattice (Vt =−0.05 V, It = 500 pA; Tdep = 10 K,
T = 5 K).

3.2.4 Dy monomers and dimers

A detailed analysis of both ordered and disordered Dy samples reveals presence of two kinds

of protrusions at the surface characterized by two different apparent heights. In Figure 3.7(a),

a bigger and rounder object is marked with A and a smaller, slightly elongated object with B.

From their line profiles, shown in Figure 3.7(b), we measure 0.50±0.02 nm for species A and

0.41±0.02 nm for species B. These absolute heights depend on the bias Vt; however, for all

values employed, species A always appeared significantly higher.
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3.2. STM measurements of Dy on graphene/Ir(111)

To identify the nature of these two species, we performed manipulations by centering the STM

tip on top of them and applying a tunnel voltage ramp. Being subjected to such manipula-

tion, species A was found to be displaced laterally for tunnel voltages exceeding Vt =±2.5 V.

Species B, on the other hand was split into two objects of type A for tunnel voltages exceeding

Vt =±1.5 V. The arrow in Figure 3.7(a) points to the object of type B before the manipulation,

and arrows in Figure 3.7(b) point to the two objects of type A emerging after the splitting. We

therefore identify species A as Dy monomers and species B as Dy dimers. Figure 3.7(d) shows

the difference between Figures 3.7(a) and (b), with the split dimer appearing in black, and the

two newly emerged monomers in white. The statistical analysis performed over hundreds of

protrusions for a Dy coverage of Θ= 0.01 ML reveals that 83±3 % of them are monomers and

17±3 % are dimers both for Tdep = 10 K and Tdep = 40 K.

(a) (b)

(c) (d)

Distance (nm)

0

0.2

0.4

0.6

0 2 4 6

p
1

p
2

p
1

p
2

A

B

H
eig

h
t

Figure 3.7 – (a,b) Sequence of STM images showing the splitting of a dimer into two monomers
by manipulations with the STM tip. The arrow on image (a) points at the dimer before the
splitting, and arrows on image (b) point at the two monomers resulting from the split dimer
(Vt =−0.5 V, It = 20 pA; 8.3 × 8.3 nm2, Tdep = 10 K, T = 5 K). (c) Two STM profiles, indicated
by dashed lines on image (a), show apparent heights of monomers (A) and dimers (B). Both
profiles start at the bottom left of the image and have following sequences: dimer-monomer
in red, monomer-dimer in blue. (d) The difference between images (a) and (b), showing the
splitting of dimer (black) into two monomers (white).
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In addition to these two species, we observed the existence of another type of Dy objects.

These objects have a round shape and much smaller apparent height than the other two

described before. Upon manipulation with STM, a single such object transforms into a single

Dy atom. Hence, we attributed them to the Dy atoms contaminated with hydrogen present in

the UHV chamber.

3.3 XMCD measurements for Dy atoms on graphene/Ir(111)

3.3.1 Magnetism of Dy atoms on graphene/Ir(111)

To determine the magnetic properties of Dy atoms on graphene/Ir(111), we performed ex-

tensive XAS and XMCD studies of both ordered and disordered Dy ensembles. We studied

their properties by probing the 3d −→ 4 f transitions, i.e., transitions at the Dy M4,5 adsorption

edges.

The x-ray absorption and magnetic circular dichroism spectra acquired for a disordered

ensemble of Dy atoms for θ = 0◦ (normal) and θ = 60◦ (grazing) incidence angle of x-rays and

at T = 2.5 K are shown in Figure 3.8(a,b). By comparing these experimentally acquired spectra

to the spectra simulated for free Dy atoms, i.e., Dy atoms not subjected to any crystal field,

we can anticipate a divalent, 4 f n , electronic configuration of these atoms. This electronic

configuration corresponds to n = 10 electrons in Dy 4 f orbitals and it is the same as the

configuration of free Dy atoms.

The large XMCD signal of Dy atoms (Figure 3.8(b)) reveals a presence of large magnetic

moments localized in their 4 f orbitals. Larger intensity of the XMCD signal in normal with

respect to the grazing incidence indicates an out-of-plane easy magnetization axis for these

atoms. In addition, the same sign of both M5 and M4 XMCD features reveals large orbital

angular momenta of Dy atoms on graphene/Ir(111).

Figures 3.8(c,d) show XAS and XMCD spectra acquired for the Dy superlattice at T = 2.5 K. The

features of these spectra are comparable to the ones obtained for the disordered Dy system.

Just as in the disordered case, Dy atoms are in their divalent electronic configuration and show

an out-of-plane easy magnetization axis. The main difference in the XAS, as well as in the

XMCD spectra between ordered and disordered Dy systems is the intensity of the peaks at

1291.8 eV. In case of Dy superlattice, these peaks are more pronounced for both normal and

grazing incidence of x-rays.

The XAS and XMCD signal at 1291.8 eV does not originate from divalent Dy atoms. In fact,

it originates from trivalent Dy species with 4 f 9 configuration, such as contaminated atoms,

dimers and bigger objects, present on the graphene/Ir(111) surface. Due to the larger coverage

employed in the preparation of the Dy superlattice, it is likely that this sample contains more

dimers than the disordered Dy system whose data is presented here. The Dy superlattice has a

coverage of Θ= 0.01 ML, whereas the disordered Dy system has a coverage of Θ= 0.004 ML. In
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Figure 3.8 – XAS and XMCD spectra of (a,b) disordered Dy system with a coverage of
Θ= 0.004 ML (Tdep = 2.5 K ; T = 2.5 K, B = 6.8 T) and (c,d) Dy superlattice with a coverage of
Θ= 0.01 ML (Tdep = 40 K; T = 2.5 K, B = 5 T) acquired for both θ = 0◦ and θ = 60◦. The green
arrows point to the peaks at 1289.3 eV, while black ones point to the peaks at 1291.8 eV.

addition, unlike the spectra of disordered system which were acquired right after the sample

preparation, the spectra of the superlattice were acquired about half an hour later, as this was

the time needed to cool down the sample from T = 40 K to T = 2.5 K. During this additional

time, the residual gas of the UHV environment increased the contamination of the superlattice.

Thus, both increased amount of trivalent dimers and contaminated atoms resulted in a larger

intensity of the spectral feature at 1291.8 eV in the case of the superlattice. The influence of

dimers and bigger objects on the XAS spectra and magnetism of Dy atoms will be addressed in

detail in Section 3.7, whereas the effects of contamination will be discussed in Section 3.8.

Generally, in case of the single magnetic species on the surface, the maximum of its XMCD

intensity is proportional to its total magnetic moment along the beam direction. Hence, by

recording this maximum as a function of the external magnetic field, it is possible to acquire

the magnetization curve of a given system. In case of multiple species on the surface, it is
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Chapter 3. Dy atoms on graphene/Ir(111)

possible to acquire magnetization curves of a species of interest by selecting the appropriate

energy value for which its spectral features appear.

We acquired the magnetization curves of both ordered and disordered Dy system by recording

the intensity of the XMCD peak at 1289.3 eV, with respect to the intensity of the pre-edge at

1282.2 eV, as a function of the magnetic field. This peak is indicated with a green arrow in

Figures 3.8(b,d). The resulting magnetization curves for the out-of plane direction are shown

in Figure 3.9. Both magnetization curves show clear hysteresis extending up to B = ±5.6 T.

Since we measure in total electron yield (TEY) mode, the data points are highly scattered for

small fields (−0.2 T≤B ≤ 0.2 T). Assuming that the magnetization M(B) is linear in that region,

we estimate a magnetic remanence of approximately 30% of the saturation magnetization Msat.

These hysteresis loops also show several steps which are characteristic of quantum tunneling

of the magnetization (QTM) due to the crossing of quantum levels [24]. These steps will be

discussed in Section 3.5 in more detail. The magnetization curves acquired on the superlattice

and on the randomly distributed atoms are identical within our resolution. This demonstrates

that the magnetic properties of Dy atoms are not influenced by their position within the moiré

pattern. In addition, since the two systems have different Dy-Dy distance distributions, mutual

interactions, either dipolar or substrate-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY),

are not significant and in particular not responsible for the observed magnetic stability.

The equality of their magnetization curves shows that, despite some dissimilarities in their

XAS and XMCD spectra, Dy atoms in both disordered and ordered systems have identical

magnetic properties.
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Figure 3.9 – Magnetization curves of the Dy superlattice in orange and randomly distributed
Dy atoms in red (T = 2.5 K, θ = 0◦, photon flux φ= 5φ0, with φ0 = 0.003 photons nm−2 s−1,
Ḃ = 33 mT s−1).

To unambiguously demonstrate the existence of a remanent magnetization, and remove any

doubt due to the scattered points around B = 0 T, we have measured the decay of the Dy

XMCD signal at a negative magnetic field value after saturating the sample at a positive field,
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Figure 3.10 – Evolution of Dy XMCD spectra at B =−0.1 T and θ = 0◦. After saturation of Dy
magnetization at B = 6.8 T, magnetic field was set to B =−0.1 T. Subsequently, an evolution of
Dy XMCD spectra was recorded.

i.e., we have measured the decay after crossing B = 0 T. We have saturated the magnetization

of Dy atoms at B = 6.8 T and subsequently ramped down the magnetic field to B = −0.1 T.

Figure 3.10 shows the evolution of the Dy XMCD spectra during the following 19 minutes.

Initially, at t = 0 s, Dy shows clear XMCD at 1289.3 eV. This signal is reversed with respect to the

ones shown in Figure 3.8(b,d) due to the opposite direction of the magnetic field with respect

to the incident x-rays in these two cases. As time passes, the XMCD signal decreases, and it

completely vanishes after t = 17 min.

Figure 3.11 shows the magnetization curve of Dy atoms acquired at grazing incidence (θ = 60◦)

at T = 2.5 K. This curve also exhibits magnetic remanence and hysteresis up to about B = 6 T.
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Figure 3.11 – Magnetization curves of the Dy superlattice for Θ = 60◦ (T = 2.5 K, φ = 5φ0,
Ḃ = 33 mT s−1).
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The angular dependence of the out-of-plane component of the magnetic field is given by cosθ,

and at θ = 60◦ it is reduced by a factor of two in comparison with θ = 0◦. Therefore, simply

by considering the geometrical projections, the values at which QTM steps occur should be

shifted to twice the field values found for θ = 0◦ (Figure 3.9). The QTM step found at B = 2.7 T

in normal incidence should shift to B = 5.4 T when measured at this grazing angle. Instead,

we observe a broad step at around B = 4.5 T in the hysteresis loop at grazing incidence. We

ascribe this discrepancy to the presence of a strong transverse field that enhances the electron

and/or phonon mediated relaxation processes and broadens the magnetic field region where

QTM occurs [25].

3.3.2 Magnetic lifetime of Dy atoms on graphene/Ir(111)

The magnetic lifetime of the Dy atoms can be investigated by acquiring the decay time of

the maximum XMCD intensity after saturating the sample magnetization in an external field

and subsequently reducing it to a desired value close to zero, where decay measurements are

performed. Figure 3.12(a) shows the magnetic lifetime measurements we performed for Dy

atoms on graphene/Ir(111). After saturating their magnetization at B = 6.8 T, we measured the

decay of the Dy atoms’ XMCD signal at B = 0.01 T for two different values of the x-ray flux φ.

For φ= 5φ0, which corresponds to the x-ray flux used to acquire the magnetization curves

in Figure 3.9, we obtained a magnetic lifetime of τ = 284±12 s. By reducing the x-ray flux,

the magnetic lifetime of Dy atoms increases. Measurements performed with φ = φ0 give a

magnetic lifetime of τ= 971±71 s. A similar flux dependence of the magnetic lifetime was

observed for Ho/MgO [10] and for molecular magnets [2, 74]. It was ascribed to x-ray induced

secondary electrons in the supporting substrate, which through scattering with adsorbed

atoms destabilize their magnetic quantum states. Hence, the larger of the two values reported

above represents only the lower bound for the intrinsic lifetime of Dy atoms.

When the magnetic lifetime becomes comparable to the acquisition time of each point in

the magnetisation curve, narrowing of the hysteresis loop is observed [10]. Figure 3.12(b)

shows two magnetization curves of Dy on graphene/Ir(111) acquired with two sets of x-ray

flux and acquisition speed values. The curve acquired with φ= 5φ0 and Ḃ = 33 mT s−1 shows

prominent remanence, while the one acquired with nearly twice the flux and one third of

the speed is essentially closed at B = 0 T. Overall, the entire hysteresis has become narrower.

This confirms that, at the employed flux and field sweep speed, the magnetic lifetime of

Dy atoms on graphene/Ir(111) are comparable to the one between successive points in the

magnetization curve. Evidently, for very fast or very slow magnetic relaxation with respect to

the acquisition time, the magnetization curves are much less sensitive to the measurement

parameters. Hence, the flux and field sweep can be optimized for the best signal-to-noise

ratio.
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Figure 3.12 – (a) Time evolution of the maximum XMCD intensity at B = 0.01 T of Dy on
graphene/Ir(111) acquired with φ0 (yellow dots), and 5φ0 (blue dots) after saturation of the
sample magnetization at B = 6.8 T. Exponential fits (red and purple solid lines, respectively)
give the magnetic relaxation time τ. (b) Magnetization curves acquired with two combinations
of x-ray flux and acquisition speed values; blue, φ= 5φ0 and Ḃ = 33 mT s−1; green, φ= 9φ0

and Ḃ = 12 mT s−1 (T = 2.5 K, θ = 0◦).
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3.4 Multiplet calculations for Dy atoms on graphene/Ir(111)

The observation of long magnetic lifetimes for Dy atoms on graphene/Ir(111) indicates that

their quantum states are well protected against QTM and direct scattering with electrons and

phonons of the surface. To unravel the origin of this remarkable stability, i.e., the ground state,

the symmetry and the splitting of the Dy magnetic levels, we carried out multiplet calculations

using the multiX code [63]. These calculations were performed with the aim of reproducing

the experimentally acquired XAS, XMCD and XMLD spectra. An additional restriction for the

simulations was given by the field-dependent crossings of magnetic levels which result in

steps in the Dy magnetization curves shown in Figure 3.9. These crossings unambiguously

determine the energy splitting of the magnetic levels.

The multiplet calculations include the effect of external magnetic field, finite temperature,

incidence angle of x-rays, and crystal field environment on the magnetic atom. Since the Dy

atoms adsorb in the six-fold symmetrical (C6v ) hollow sites of the hexagonal carbon rings, as

demonstrated by the atomically resolved STM image in Section 3.2.3, we simulated the effect

of the graphene crystal field with a C6v arrangement of point charges around the Dy atom.

The geometry and the sign of the point charges used in multiplet calculations were inspired

by DFT calculations for Dy on freestanding graphene [69, 70]. However, to accurately simulate

the experimental spectra, the coordinates and the strength of these charges needed to be

finely adjusted. The employed crystal field consists of positive and negative point charges

placed at the positions of carbon atoms of the graphene surface, with the addition of a positive

charge in the center of the graphene hexagonal ring, just below the adsorbed Dy atom. The

exact geometry and strength of employed point charges are given in Appendix A, and their

planar representation is shown in Figure 3.13.
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Figure 3.13 – Planar representation of the point charge crystal field employed in the multiplet
calculations for Dy on graphene/Ir(111). Positive charges are marked with red, and negative
with blue. The size of each circle reflects the charge value. The exact geometry and strength of
depicted charges are given in Table A.1.
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The XAS, XMCD and XMLD spectra resulting from multiplet calculations are shown in Fi-

gure 3.14(a-c), along with their experimental counterparts (Figure 3.14(d-e)) for easier com-

parison. The simulated spectra show overall good agreement with the experimental ones.

They only differ in the peak at 1291.8 eV observed in the experimental XAS and XMCD spectra

and absent in the simulated ones. The origin of this peak are Dy dimers and contaminated

monomers present on the surface. These objects are not taken into account by the multiplet

calculations as reproducing them would require the knowledge of the crystal field acting upon

them. More details on the influence of Dy dimers and contamination on the XAS spectra will

be given in Section 3.7 and Section 3.8, respectively.

Multiplet calculations reveal divalent 4 f 10 occupation for Dy atoms on graphene/Ir(111), just

as was anticipated from the comparison with the simulated spectra for the freestanding Dy

atoms. Further, they show that the high spin-orbit coupling characteristic of lanthanides the

lowest multiplet with a total angular momentum J = 8. The zero field splitting of this multiplet

resulting from multiplet calculations is shown in Figure 3.15. The crystal field of graphene

splits its levels and promotes a strong uniaxial anisotropy resulting in a ground state with

out-of-plane projected moment Jz =±7.

In the absence of an external magnetic field, the Dy magnetic quantum states form degenerate

doublets. Further, the C6v symmetric crystal field mixes the states that differ by ΔJz =±6 and

forms six classes of eigenstates. These eigenstates are depicted with six different colors in

Figure 3.15. Notably, the crystal field strongly mixes states with Jz =±6 and Jz =±3, resulting

in tunnel-split doublets with quenched Jz (this is illustrated with dashed lines in Figure 3.15).

In this way, at B = 0 T the barrier for thermally assisted magnetization reversal is reduced

from 21.4 meV, corresponding to the reversal over the entire total zero field splitting barrier, to

only 5.6 meV since the Jz =±6 levels offer a thermally activated shortcut for magnetization

relaxation.

The remarkable magnetic stability stems from the combination of the Dy ground state and

adsorption site symmetry. At B = 0 T, the C6v crystal field does not mix Jz =±7 states. This

results in the degenerate ground doublet for which QTM does not occur. Further, in C6v

symmetry the first-order scattering (ΔJz =±1) with conduction electrons and phonons cannot

induce direct transition between these two ground states [23, 75]. Even considering coupling

with nuclear spins, i.e., hyperfine interactions, the Dy atoms are protected from QTM in their

ground state. In fact, more than half of the isotopes of Dy (56.2 % natural abundance) have

no nuclear spin (I = 0) and in this case the total moment remains unchanged, and the above

considerations are valid. The remaining isotopes have a nuclear spin I = 5/2 and its coupling to

the integer total electron moment leads to a half integer spin, for which QTM is forbidden due

to Kramers’ theorem [26]. Thus, the magnetization can reverse only via thermal excitations

to the first tunnel-split doublet with Jz =±6 at B = 0 T, and to the top of the energy barrier in

finite fields. This explains the opening of the magnetization curve up to large fields. Additional

relaxation can occur due to QTM induced by the hyperfine coupling for finite fields below

20 mT [76].
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Figure 3.14 – (a-c) XAS, XMCD and XMLD spectra at the M4,5 Dy edges resulting from multiplet
calculations for single Dy atoms in the C6v CF of graphene. (d-e) Experimentally acquired XAS,
XMCD and XMLD spectra for Dy atoms on graphene/Ir(111) ((a,b): B = 5 T; T = 2.5 K). The
arrows point to the peaks at 1291.8 eV in the experimental XAS and XMCD spectra, and their
absence in simulated ones.
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Figure 3.15 – The zero field splitting of the Dy lowest multiplet (J = 8) resulting from multiplet
calculations. The splitting around Jz = 0 is emphasized for better clarity. Each color identifies
magnetic quantum states belonging to one of the six classes of eigenstates defined by the C6v

group symmetry. Dashed lines connect doublets with quenched Jz .

The observed magnetic bistability of Dy atoms up to B =±5.6 T is the consequence of their

electronic state but also of the peculiar properties of graphene/Ir(111) which efficiently pro-

tects the Dy spin from destabilizing interactions. These interactions are specified in the

following paragraphs.

First, from a general point of view, the higher the crystal field symmetry, the lower the number

of channels available for QTM [75]. In the limit of perpendicular anisotropy and C∞v symmetry,

QTM is forbidden and the magnetization of an atom has to overcome the entire total zero

field splitting barrier to reverse its direction. In this respect, graphene, with its C6v symmetry,

represents a superior substrate for minimizing the possibility of direct QTM.

Second, only few vibrational modes exist for an atom adsorbed on a surface [10] which strongly

limits the energy and momentum exchange with the substrate phonon bath. The reduced

coupling is in particular true for graphene which is the material with the highest stiffness,

implying a very small phonon density of states in the few meV energy range of interest [77].

In addition, the vibrational modes of iridium are likely filtered by the graphene layer due to

its weak van der Waals coupling to the metallic substrate and by the gap of about 6−7 meV

in the graphene acoustic out-of-plane phonon modes [77, 78]. Thus, at low temperature,

spin-phonon coupling is strongly suppressed.

Third, for graphene/Ir(111) the Dirac point is close to the Fermi level, EF , and there is evidence

for the opening of an energy gap around EF [79]. This suggests very small, if not zero, electron

density at EF . Moreover, the weak interaction with the iridium substrate pushes the graphene

to a mean distance of 3.4 Å from the Ir(111) surface [80], and limits the transmission of the

conduction electrons from the iridium substrate through the graphene layer. These three
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factors altogether lead to strongly reduced spin-flip events in Dy and enable long magnetic

lifetime on graphene/Ir(111).

3.5 Steps in Dy hysteresis

As mentioned in the previous section, additional constraints in multiplet calculations were

the magnetic field positions (i.e. energy positions) of the steps in the Dy magnetization curves.

They appear for B = 0,±2.7 and ±5.6 T, and originate from crossings of magnetic levels and

the consequential QTM. To further resolve the origin of these steps and associate them with

specific magnetic levels, in Figure 3.16 we plot the Zeeman diagram of the lowest lying Dy

states, Jz =±7,±8,±6, for the range of magnetic fields used in the experiments. Multiple level

crossings occur for this range of magnetic fields; however, only those involving Jz =±7 levels

influence the magnetization curve, as only these levels are significantly populated at T = 2.5 K.

In the following we will address each of these crossings individually.

As discussed in the previous section, at B = 0 T, the direct transition between the two ground

states Jz = −7 and Jz = 7 is forbidden, and it can occur only via thermal excitation to the

Jz =±6 states. At B = 0 T, the Jz =±6 states are strongly mixed in the C6v crystal field symmetry

and support QTM, and hence provide a path for magnetization relaxation. This relaxation

mechanism is depicted in Figure 3.16(c).

At B = 2.7 T, the levels Jz = 7 and Jz =−8 cross. These states are not mixed in the C6v symmetry

of the crystal field, nor can a transition between them occur with the first order scattering

in this crystal field symmetry, hence QTM should not occur. The only way to justify the

observed sharp step in the magnetization curve is to assume a small C3v term in the crystal

field. This term could be arising from, for example, the non-equivalence of the A-B carbon sub-

lattices which affects the electron scattering processes in graphene [81, 82]. This term provides

an additional mixing between levels separated by multiples of ΔJz = ±3 and hence grants

transition between the levels Jz = 7 and Jz =−8. This opens a path for a QTM and results in

the sharp step in the magnetization curve. The strength of this perturbation can be evaluated

from the tunnel splitting Δ7,−8, obtained by applying the Landau-Zener model [83, 84] to the

observed magnetization jump. The Landau-Zener model gives the tunneling probability P

between two levels Jz and Jz ′ in constant sweep rate of the longitudinal magnetic field Bz

over their crossing [83, 84]: Note that the Landau-Zener model is valid in the regime of high

sweeping rates where Δ is independent of the applied sweeping rate [83]. The tunneling

probability between the levels Jz = 7 and Jz = −8 can be estimated from the height of the

corresponding step in the hysteresis, i.e., from the ratio of the spins that have tunneled during

this crossing and the total amount of spins that have entered the crossing.

This probability equals to P = 0.71 and we find Δ7,−8 = 1.4×10−7 meV, which is three orders

of magnitude smaller than the Δ−6,6 = 3.2×10−4 meV splitting at B = 0 T due to the C6v CF,

obtained by multiplet calculations. A detailed calculation of the tunnel splitting Δ7,−8 is given

in the Appendix B. This relaxation mechanism is depicted in Figure 3.16(d).
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Figure 3.16 – (a) Magnetization curve of Dy on graphene/Ir(111) (φ = 5 φ0, Ḃ = 33 mT s−1,
T = 2.5 K). (b) Zeeman diagram of the lowest lying Dy magnetic levels between −6.8 T and
6.8 T. The colors follow the color code of Figure 3.15, yellow: Jz = −7, blue: Jz = 7, purple:
Jz =−8, red: Jz = 8, and green: Jz =±6. The triangles mark crossings of ±7 and ∓6 levels at
±5.6 T, rectangles mark crossings of ±7 and ∓8 levels at ±2.7 T, and ellipse marks crossing of
±6 levels at 0 T. Schematic representation of the relaxation mechanisms: (c) thermal excitation
to the Jz = ±6 mixed doublet in the C6v CF, (d) QTM between the Jz = ±7 and the Jz = ∓8
crossing states induced by the C3v CF perturbation,(e) QTM mediated by spin-electron or spin
phonon scattering.

Finally, the small jump in the magnetization at B = 5.6 T corresponds to the crossing between

the Jz = +7 and Jz = −6 states. This crossing is allowed in the C6v crystal field symmetry

and grants QTM mediated by first-order electron or phonon scattering [75]. This relaxation

mechanism is depicted in Figure 3.16(e).
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Chapter 3. Dy atoms on graphene/Ir(111)

3.6 Temperature dependence of Dy magnetic lifetime

Given the single atomic layer thickness of graphene, its screening against electron and phonon

scattering is effective only at very low temperatures. Figure 3.17 shows the experimentally

acquired magnetization curve of Dy atoms at T = 12 K and its simulated counterpart. At this

temperature, Dy atoms show perfectly paramagnetic behavior. This indicates that their mag-

netic lifetime is of order of seconds or less, which is the time resolution set by our experimental

setup and acquisition parameters. Due to the inability to stabilize the sample temperatures

between T = 3 K and T = 12 K for a substantially long period of time, further investigation

of temperature dependence of magnetic lifetime was not possible in that temperature range.

As demonstrated for Ho atoms on MgO(111) [10], stronger screening and hence stability at

higher temperatures could be achieved by increasing the number of decoupling layers. This

could be achieved by growing graphene on insulating substrates.
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Figure 3.17 – Experimentally acquired and simulated magnetization curve for Dy on graphe-
ne/Ir(111) at T = 12 K (Θ= 0◦ , φ= 5φ0, Ḃ = 33 mT s−1).

3.7 Coverage dependent measurements

3.7.1 Coverage dependence of Dy XAS spectra

The XAS and XMCD spectra of Dy monomers on graphene/Ir(111) are characterized by the

pronounced peak at 1289.3 eV (Figure 3.8). However, in the experimental spectra there is an

additional peak at 1291.8 eV which is not reproduced in the simulations (Figure 3.14(a,b)).

This peak indicates the presence of Dy 4f 9 occupancy [85] and was associated with Dy dimers.

Similar has been observed for Dy atoms on metal substrates, as well as for other lanthanide

atoms [85]. To verify this, and to further investigate influence of dimers and bigger clusters on

the magnetic properties of an ensemble of Dy monomers on graphene/Ir(111), we performed

combined coverage dependent XAS and STM measurements.
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3.7. Coverage dependent measurements

Figure 3.18 shows the Dy M5 edge as a function of coverages between Θ = 0.004 ML and

Θ= 0.032 ML for ensembles of disordered Dy atoms. The peak at 1291.8 eV is present in the

XAS spectra for coverages as low as Θ= 0.004 ML, and its intensity increases with increasing

Dy coverage. At Θ = 0.032 ML this peak has similar intensity to the peak at 1289.3 eV. The

increasing intensity of the 1291.3 eV peak and its tail also result in the shift of the 1289.3 eV

peak towards higher energy values with increasing Dy coverage. Hence, the increase in the

intensity of the peak at 1291.3 eV with increasing coverage can be attributed to the formation

of Dy dimers and bigger clusters. It also demonstrates the presence of Dy dimers on the

graphene/Ir(111) surface for coverages as low as Θ= 0.004 ML. The observed difference in the

valency between Dy monomers and Dy dimers stems from the increased coordination of the

Dy atoms [85].
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Figure 3.18 – Coverage dependence of Dy XAS spectra at the M5 edge acquired at θ = 0◦. All
spectra were normalized to the intensity of the peak at or near 1289.3 eV. Lines mark the
position of peaks associated with divalent Dy atoms at 1298.3 eV (black dashed line) and
trivalent Dy clusters at 1291.8 eV (grey solid line).

To verify that the source of the additional multiplet features in Dy XAS are indeed dimers, we

performed coverage dependent STM measurements. Figure 3.19(a-e) show STM images for

Dy coverages comparable to the ones employed in the XAS measurements. In these images,

Dy monomers appear as protrusions with larger apparent height and circular shape, while

dimers have smaller apparent height with oblate shape, as already shown in Section 3.2.4.

Figure 3.19(f) shows the coverage dependence of the average size of Dy objects on grap-

hene/Ir(111). The average size 〈s〉 increases with increasing coverage from 1.02 atoms for

Θ= 0.002 ML, to 1.32 for Θ= 0.019 ML. This size dependence, and hence the dimer abundance,

at employed temperatures and coverages is inconsistent with statistical growth [86]. However,

similarly to what has been observed for Er on Cu(111) [87], it can be explained by the large

direct impingement area for the deposited Dy atoms. Only by considering 37 graphene sites

as a direct impingement area can account for such a large dimer abundance at such low Dy

coverages [71].
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Figure 3.19 – STM images for (a) Θ = 0.002 ML (b) Θ = 0.005 ML, (c) Θ = 0.010 ML,
(d) Θ= 0.014 ML and (e) Θ= 0.019 ML of Dy. The indicated scale of 5 nm applies to all images
((a,c-e): Vt =−0.5 V, It = 20 pA, (b): Vt =−0.2 V, It = 100 pA; Tdep = 10 K, T = 5 K). (f) Coverage
dependence of Dy average cluster size deducted from STM measurements. Grey line serves as
a guide for the eyes.
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3.7. Coverage dependent measurements

3.7.2 Coverage dependence of Dy magnetization curve

Figure 3.20 shows XMCD spectra and magnetization curve for Θ= 0.026 ML of Dy on graphe-

ne/Ir(111). The much larger intensity of the XMCD peak at 1291.8 eV with respect to the one

at 1289.3 eV reveals the presence of a large amount of trivalent Dy species at the surface. In

addition, these two peaks greatly overlap and a large part of the peak at 1289.3 eV originates

from the tail of the peak at 1291.8 eV. This means that by recording the magnetization curve at

the peak of Dy monomers, a large contribution to the curve comes from trivalent Dy species.

Figure 3.20(b) shows magnetization curve acquired for this sample at 1289.3 eV. The resulting

magnetization curve still shows hysteresis, but it is much narrower in comparison to those

in Figure 3.9 acquired for Θ= 0.004 ML and Θ= 0.01 ML of Dy. In addition, the characteris-

tic QTM steps are barely visible. This indicates that the magnetic interaction of Dy atoms

with neighboring atoms/clusters shortens the magnetic lifetime of the measured system. In

addition, it suggests that Dy dimers, the primary contributors of the trivalent signal, have a

paramagnetic behavior.
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Figure 3.20 – (a) XMCD spectra, and (b) magnetization curve for Θ= 0.026 ML of Dy (T = 2.5 K,
θ = 0◦; (a) B = 6.8 T, (b) φ= 5φ0, Ḃ = 33 mT s−1).
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Chapter 3. Dy atoms on graphene/Ir(111)

3.8 Exposure time dependence of Dy XAS spectra

In addition to the change in shape of Dy XAS spectra with increasing coverage shown in

Section 3.7, we observed similar change in the spectra with exposure time of Dy atoms to the

residual gas of the UHV environment. Figure 3.21 shows four XAS spectra at the Dy M5 edge

acquired over the course of five and a half hours of measurements. Initially, right after the

deposition the peak at 1291.8 eV is small. However, as the exposure time increases, its intensity

increases which, in addition, causes a shift of the peak at 1289.3 eV towards higher energies.

The divalent lanthanide atoms on surfaces are known to be highly reactive and sensitive to

contamination [88]. Hence, we associate this change in the spectra to the contamination of Dy

monomers with the residual gases in the cryostat, most likely hydrogen, and resulting change

in their 4 f occupation.
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Figure 3.21 – Exposure time dependence of XAS spectra for Θ = 0.01 ML Dy on graphe-
ne/Ir(111) at the M5 edge (T = 2.5 K, θ = 0◦, B = 6.8 T). Dashed lines mark the positions
of peaks associated with divalent Dy atoms at 1298.3 eV (black dashed line) and trivalent Dy
objects at 1291.8 eV (grey solid line).

3.9 Coverage calibration

The most straightforward and accurate way of determining the coverage of atoms on surfaces

is doing it by the means of STM. However, in most cases such calibration is not possible due to

the time limitations at the synchrotron facility. In addition, transferring sample from XAS to

the STM chamber requires warming it up to the room temperature. This can, in addition to

the formation of clusters, lead to the intercalation of surface atoms to the underlying substrate

which will obstruct the accurate determination of the coverage.

For samples whose coverage cannot be determined directly by STM, it can be determined

indirectly, with the help of a reference sample. The reference sample can be any sample whose

coverage was previously determined by STM, and it was related to its integrated area of the
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3.9. Coverage calibration

total XAS spectra, t. We used Er atoms on Pt(111) as a reference sample, for which the area

of total XAS t = 1.03 was associated with the STM determined coverage of Θ= 0.09 ML. Here

Θ= 1 ML corresponds to one Er atom per each atom of the Pt(111) substrate, and it includes

the difference in the covalent radii of Er and lanthanide atoms in general, with respect to the

one of Pt atoms. This difference implies that lanthanide atoms cannot be packed with the

same density as the TM substrate atoms [87]. An unknown coverage of a sample can then be

calculated with the following formula:

Θ(s)=Θ(r)
t (s) b(s) h(r)

t (r) b(r) h(s)
, (3.1)

where b is the value of the background at the pre-edge of the corresponding lanthanide atom,

h is the number of holes in its 4 f orbitals, s denotes sample whose coverage is unknown and r

the reference sample. In case of decoupling layers grown on metallic substrate, further scaling

can be applied to express the coverage with respect to these layers. For instance, in case of

graphene grown on Ir(111), a factor 0.8 arising from the difference in areas of their unit cells

can be applied to the coverage obtained from Equation 3.1 to express the coverage with respect

to the graphene unit cell.

Determining the coverage of Dy atoms on graphene/Ir(111) solely by using the total area of

their XAS spectra would, however, lead to vastly inaccurate estimations of their coverages.

For these samples, there are both divalent Dy atoms with 4 holes and trivalent ones with

5 holes in their 4 f orbitals present on the surface, and, before applying Equation 3.1, their

contributions to the total XAS area have to be separated. Fitting the spectra with multiple

peaks and assuming that only additional peaks in the M5 edge, with respect to simulated

spectra in Figure 3.14(a), belong to the trivalent species has proven to give faulty results. This

is due to the fact that the contribution of trivalent species to the M4 edge is not included

in these considerations. Hence, we have taken a different approach. After scaling all the

experimental spectra to 1 and shifting them to the same energy, we fitted their features with

multiple Lorentzians. In Figure 3.22(a), a fit for the lowest Dy coverage is shown. We attributed

the area of the rightmost peak of its M5 edge to trivalent Dy objects and the remaining features

of both M5 and M4 edges to divalent Dy atoms. The cumulative fits for all coverages, that

outline the experimental spectra, are shown in Figure 3.22(b). To obtain the area of each of

these fits that belongs to trivalent Dy, we simply subtracted the area of monomers obtained

for the lowest Dy coverage, as shown in Figure 3.22(b). This way, the contribution of trivalent

species to both M5 and M4 edge is taken into account. Subsequently, to obtain a percentage

of trivalent Dy for each spectra, a share of trivalent area in total XAS area was calculated. The

values for both divalent and trivalent Dy species for each coverage are given in Table 3.1.

Now that the contributions of divalent and trivalent species have been separated, Equation 3.1

can be applied to both of these species separately. The total coverage of Dy atoms for each

sample is the sum of these two contributions. The values for each of these coverages, as well

as the total coverages for each of these samples are given in Table 3.1.
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Figure 3.22 – (a) Multiple peak fit of the XAS spectra for Dy sample with coverage of
Θ= 0.004 ML using multiple Lotentzian lineshapes. (b) Outlines of four different Dy XAS
spectra resulting from their fitting with multiple Lorentzian lineshapes. Blue area marks the
share of divalent Dy in each of these spectra. The remaining area belongs to the trivalent Dy
species.

Table 3.1 – Share of divalent and trivalent Dy species and their coverages for four different
samples of Dy on graphene/Ir(111). ΘDy 2+ and ΘDy 3+ are, respectively, coverages of divalent
and trivalent Dy species for each sample, while ΘDy is the total Dy coverage.

sample divalent Dy (%) trivalent Dy (%) ΘDy 2+ (ML) ΘDy 3+ (ML) ΘDy (ML)
A 78 22 0.003 0.001 0.004
B 63 37 0.005 0.004 0.008
C 61 39 0.009 0.005 0.014
D 50 50 0.018 0.014 0.032

The above described method provides a crude estimate of the coverage of Dy. However, it once

more emphasizes the sensitivity of divalent Dy atoms to their environment and contamination.

The STM measurements presented in Section 3.2.4 and XAS measurements were performed in

two different UHV chambers, the walls of which are kept at two different temperatures. Cold

walls of the chamber surrounding the sample trap the molecules of the residual gas of the UHV

environment. The walls of the XAS UHV chamber are kept at the liquid nitrogen temperature,

whereas the ones in the STM chamber are kept at the liquid helium temperature. Hence, STM

chamber provides a better vacuum environment for the sample as it also traps the hydrogen

molecules. During several days of STM measurements Dy monomers have shown practically

no increase in contamination, whereas we have observed a substantial increase in trivalent

Dy species over the course of several hours of XAS measurements (see Section 3.8 for more

details). Therefore, an increased amount of trivalent species for XAS samples as compared to

the STM samples with similar Dy coverage is expected.
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4 Dy on Ir(111) and several decoupling
substrates

Dysprosium atoms on graphene/Ir(111) show a long magnetic lifetime at T = 2.5 K. At the

heart of this sizable magnetic stability lies the extraordinary decoupling power of a single

graphene layer. To demonstrate this further, in Section 4.1 we probe the magnetic properties

of Dy atoms on bare iridium surface. The hybridization of graphene with an underlying metal

substrate can greatly influence the magnetic properties of adsorbed atoms. To investigate the

possibility of adjusting magnetic properties of Dy atoms through this substrate hybridization,

in Sections 4.2, 4.3 and 4.4 we investigate their properties on graphene/Cu, graphene/Ru(0001)

and on highly oriented pyrolitic graphite (HOPG), respectively. Finally, in Section 4.5 we

investigate whether it is possible to achieve magnetic stability of Dy atoms in a lower, three-

fold crystal field symmetry, but with a larger electronic screening from the metallic substrate,

by studying their magnetic properties on hexagonal boron nitride (h-BN).

The results for Dy on graphene/Ru(0001) and Dy on h-BN/Ir(111) are published in R. Baltic, et

al. Superlattice of Single Atom Magnets on Graphene, Nano Lett. 16, 7610-7615 (2016). For

this thesis, additional multiplet calculations were performed for Dy on h-BN/Ir(111) to obtain

a better match between the simulated and experimental XMLD spectra and magnetization

curves. These simulations, together with the resulting energy level diagram are presented in

Section 4.5.

Work contribution. As part of a team led by Dr. Stefano Rusponi, I contributed to all XMCD

measurements presented in this Chapter. Further, I carried out the data analysis and multiplet

calculations. The multiplet calculation presented in Section 4.5 represent the continuation of

the work started by Dr. Stefano Rusponi. The STM image in Section 4.3 was acquired by Dr.

Marina Pivetta.

4.1 Dy atoms on Ir(111)

After depositing minute amounts of Dy atoms on a bare Ir(111) surface, we recorded their XAS,

XMCD and XMLD spectra. The resulting spectra of Dy atoms in C3v crystal field symmetry of
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Chapter 4. Dy on Ir(111) and several decoupling substrates

Ir(111) are shown in Figure 4.1(a-c). The XAS spectra of Dy atoms on Ir(111) have a lineshape

characeristic of Dy 4 f 9 occupation [32], containing a multiplet feature with the highest inten-

sity in both XAS and XMCD spectra at 1291.8 eV. The shape and intensity of the XMCD spectra

are independent of the incidence angle of x-rays, indicating a negligible magnetic anisotropy

of this system.
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Figure 4.1 – Experimentally acquired (a) XAS, (b) XMCD and (c) XMLD spectra at Dy M4,5 edges
for Θ= 0.002 ML Dy on Ir(111). The arrows point to the peak at 1291.8 eV. (d) Magnetization
curve acquired by measuring the XMCD signal at 1291.8 eV as a function of the magnetic
field (Tdep = 4 K, T = 2.5 K, φ = 9φ0, with φ0 = 0.003 photons nm−2 s−1; (a,b) B = 6.8 T,
(c) Ḃ = 12 mT s−1).

We acquired the magnetization curves of Dy atoms on Ir(111) by recording the intensity of

their XMCD peak at 1291.8 eV in both normal and grazing incidence, in the range of magnetic

fields between B = 6.8 T and B = −6.8 T. The acquired curves are shown in Figure 4.1(d).

Dy atoms on Ir(111) show a clear lack of magnetic hysteresis, and a perfectly paramagnetic

magnetization curve. This indicates magnetization lifetime shorter than a few seconds at
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4.2. Dy on graphene/Cu foil

T = 2.5 K , which can be ascribed to the strong interaction of Dy atoms with the electrons and

phonons of the Ir(111) substrate. A similar effect has been observed for lanthanide atoms on

other metal substrates [11, 85, 87].

By comparing the spectra acquired for Dy on Ir(111) with those of Dy on graphene/Ir(111)

shown in Figures 1.8 and 1.14, it can be seen that clear differences exist. These differences

cannot simply be ascribed to the difference in the crystal field symmetry as Dy atoms have

different electronic configurations on these two substrates. The interaction of Dy atoms with

graphene/Ir(111) results in a divalent 4 f 10 configuration, whereas the interaction with bare

Ir(111) surface results in a trivalent 4 f 9 configuration. Further, Dy atoms on graphene/Ir(111)

show sizable magnetic stability, which is completely absent for those on Ir(111). The con-

trasting properties of Dy atoms on these two substrates further highlight the remarkable

decoupling properties of a single graphene layer. A single graphene layer is sufficient to de-

couple Dy atoms from the electrons and phonons of the Ir(111) substrate and enable their

long magnetic lifetime.

4.2 Dy on graphene/Cu foil

Similar to graphene on Ir(111), graphene on copper is weakly bound to its substrate through

van der Waals forces, resulting in similar graphene-metal distances in these two cases. In

the case of graphene on Cu(111), their mean distance is dg−Cu = 3.26 Å [89], whereas for

graphene on Ir(111) it is dg−I r = 3.4 Å [68]. Assuming a similar interaction between graphene

and polycrystalline copper foil as in the case of graphene/Cu(111), a similar mean separation

can also be expected between graphene and Cu foil.

Since Dy atoms on graphene/Ir(111) show considerable magnetic stability, we studied their

magnetic properties on graphene/Cu foil to see whether the same is valid in the latter case.

Further, by comparing these two cases, we intended to investigate the influence of small

variations of graphene-substrate interaction on the magnetic properties of adsorbed atoms.

4.2.1 Preparation of graphene/Cu substrate

Rather than preparing the graphene/Cu substrates ourselves, we used commercially available

monolayer graphene films grown on copper foils1. In this way we could also explore whether

such commercial substrates, which have been exposed to the contamination from air, are

suitable for experiments that require high quality surfaces with low contamination.

The thin graphene/Cu foils were 50×100 mm2 in size, and in order to be used in experiments,

they needed to be cut into smaller pieces and fixed onto a sample holder. Figure 4.2(a) shows

an example of one of the samples used in our experiments. The graphene/Cu foil was placed

on a tantalum sample holder and it was fixed by a molybdenum mask and stainless steel

1Monolayer graphene films grown on copper foils were bought from www.6carbon.com.
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Chapter 4. Dy on Ir(111) and several decoupling substrates

screws. To clean it before the deposition of atoms, we annealed this substrate for five minutes

at about T = 870 K. Both warming up to the annealing temperature and cooling down were

performed slowly, to avoid damaging the graphene layer due to the thermal shock. The entire

procedure lasted for about 20-25 minutes. Before the deposition of atoms, the substrate was

further cooled down to T = 2.5 K.

tantalum plate

molybdenum mask

stainless steel screws

(a) (b)

Figure 4.2 – (a) Sample holder with the graphene/Cu foil. It consists of a tantalum plate and
molybdenum mask, in between which is the graphene/Cu foil. The mask is fixed to a plate
with stainless steel screws. (b) Back side of the molybdenum mask with graphene/Cu(111) foil
after performing the experiments.

Figure 4.2(b) shows the back side of the molybdenum mask with the copper foil stuck on it,

after the measurements were performed and the sample was taken out of the UHV chamber. It

can be seen that the copper foil became severely bent in the process of annealing and cooling

down. To reduce the risk of having any side effect from the sample deformation, we performed

measurements on the edge of the sample.

4.2.2 Magnetism of Dy atoms on graphene/Cu foil

After the deposition of Dy atoms on graphene/Cu foil, we performed x-ray measurements. The

resulting XAS, XMCD and XMLD spectra are shown in Figure 4.3. They look comparable to the

ones of Dy on graphene/Ir(111) shown in Figures 1.8 and 1.14, indicating a similar magnetic

state of Dy atoms in these two cases. The higher intensity of XMCD spectra in normal with

respect to the grazing incidence of x-rays (Figure 4.3(b)), indicates an out-of-plane easy

magnetization axis of this system. In addition, both XAS and XMCD spectra have their highest

intensity at the peak at 1289.3 eV which is associated with divalent Dy monomers. The peak at

1291.3 eV indicates the presence of trivalent Dy dimers and contaminated monomers on this

surface.
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4.2. Dy on graphene/Cu foil

The XMLD spectra in Figure 4.3(c) seemingly have different shape with respect to the ones

shown in Section 3.4 for Dy on graphene/Ir(111). However, their multiplet features appear

at the same energy in both cases, only their relative intensities differ. In addition, the XMLD
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Figure 4.3 – (a) XAS, (b) XMCD and (c) XMLD spectra of Θ= 0.005 ML Dy on graphene/Cu foil
at Dy M4,5 edges (Tdep = 2.5 K, T = 2.5 K, (a,b) B = 6.8 T).
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Chapter 4. Dy on Ir(111) and several decoupling substrates

spectra of Dy atoms on graphene/Cu have, for the same height of the XAS spectra, 40% lower

XMLD intensity at the peak at 1289.3 eV.

The magnetization curves acquired for two different coverages of Dy atoms on graphene/Cu,

Θ= 0.005 ML and Θ= 0.01 ML, are shown in Figure 4.4. Both magnetization curves show clear

hysteresis. In case of a lower coverage, the characteristic steps at B = 2.7 T are barely visible

due to the increased level of noise; however, in case of higher coverage they are clearly visible.

For magnetic fields larger than B ≈±3 T, these magnetization curves seem to be closed, and

Dy atoms no longer show bistability.
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Figure 4.4 – Experimentally acquired magnetization curve for (a) Θ = 0.005 ML and
(b) Θ= 0.01 ML Dy on graphene/Cu foil at 1289.3 eV (Tdep = 2.5 K; θ = 0◦, T = 2.5 K; φ= 5φ0,
Ḃ = 33 mT s−1).

Due to the noise and a lack of points at fields around B = 0 T, it is difficult to unambiguously

judge the behavior of magnetization curves in this region. In both magnetization curves, the

branch acquired for B = 6.8 −→−6.8 T hints towards the presence of magnetic remanence

at B = 0 T, and the branch acquired for B =−6.8−→ 6.8 T seems to indicate its absence. To

unequivocally show whether Dy atoms on graphene/Cu have magnetic remanence at B = 0 T

further experiments are needed.
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In comparison with Dy atoms on graphene/Ir(111), Dy atoms on graphene/Cu have a smaller

area of hysteresis for the same acquisition conditions, i.e., the same x-ray flux and acquisition

speed. The lifetime over the full range of hysteresis is therefore shorter in case of Dy atoms

on graphene/Cu. This can be rationalized by comparing the positions of Fermi levels, EF , for

these two substrates. In the case of graphene/Ir(111), there is evidence for the opening of an

energy band gap around EF [79], whereas in the case of graphene on Cu(111) EF is above the

Dirac point, making it n-doped [90]. Adsorption of adatoms and consequential charge transfer

to the graphene surface causes the upward shift of EF with respect to the Dirac point [91]. This

makes graphene on Ir(111) n-doped and results in larger n-doping for graphene on Cu(111).

As a consequence, for comparable charge transfers from Dy atoms to these two surfaces, Dy

atoms on graphene/Cu(111) will be subjected to more scattering events with electrons which

will ultimately results in their reduced magnetic stability on this surface.

4.3 Dy on graphene/Ru(0001)

4.3.1 Properties of graphene/Ru(0001)

Unlike the other two systems of graphene/metal substrates studied, graphene/Ir(111) and

graphene/Cu, graphene grown on Ru(0001) is strongly bound to its substrate by localized

covalent bonds [92]. This results in a strong buckling of graphene on this substrate. In

the regions where graphene is strongly hybridized with ruthenium, the carbon atoms are

2.2 Å above the Ru(0001) surface, whereas in the regions where there is only weak interaction

between them, their distance is 3.7 Å [92, 93]. The lattice mismatch between graphene and

Ru(0001), with their lattice constants being a0,g = 2.46 Å [65] and a0,Ru = 2.706 Å [94], results

in a moiré structure with periodicity of about 3 nm [92]. Due to the varying hybridization

between graphene and ruthenium, this moiré has highly inhomogeneous electronic structure

with a weakly metallic or semimetallic character [95, 96].

4.3.2 Magnetism of Dy atoms on graphene/Ru(0001)

Experimentally acquired XAS, XMCD and XMLD spectra of single Dy atoms on graphe-

ne/Ru(0001) are shown in Figure 4.5. The XAS and XMCD line shapes, with their characteristic

peaks at 1289.3 eV and 1291.8 eV reveal presence of Dy species with different 4 f occupations

on the surface. The large intensity of the peak at 1291.8 eV indicates a large amount of triva-

lent Dy species, which at the investigated coverage of Θ= 0.004 ML cannot be ascribed only

to Dy dimers or contaminated monomers. We ascribe it to Dy atoms in their trivalent 4 f 9

configuration.

Figure 4.6 shows an STM image of Θ= 0.002 ML Dy on graphene/Ru(0001). In this image, Dy

atoms appear as protrusions with different apparent heights depending on the adsorption site

in the moiré cell. Our analysis reveals that 55% of Dy atoms are adsorbed in the atop region

of the moiré, and the remaining 45% are adsorbed in other regions. Depending on their
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Chapter 4. Dy on Ir(111) and several decoupling substrates

absorption site with respect to the graphene moiré, the interaction between Dy atoms and

supporting substrate can result in different electronic configurations and magnetic properties.

In the case of adsorption sites where graphene is strongly hybridized with ruthenium, 4 f 9
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Figure 4.5 – Experimentally acquired XAS, XMCD and XMLD spectra at Dy M4,5 edges of
Θ= 0.004 ML Dy on Ru(0001) (Tdep = 4 K, T = 2.5 K, (a,b) B = 6.8 T).
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10 nm

Figure 4.6 – STM image of Θ = 0.002 ML Dy on graphene/Ru(0001) (Vt = −0.2 V, It = 50 pA;
Tdep = 10 K, T = 5 K). Dy atoms appear as protrusions with different apparent heights depen-
ding on their adsorption site in the moiré cell.
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Figure 4.7 – Experimentally acquired magnetization curve for Θ = 0.004 ML Dy on graphe-
ne/Ru(0001) at (a) 1289.3 eV and (b) 1291.8 eV (Tdep = 4 K, T = 2.5 K; φ= 9φ0, Ḃ = 12 mT s−1).
The magnetization curves were scaled with their respective ratios of XMCD intensities in the
normal and grazing incidence of x-rays shown in Figure 4.5(b).
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Chapter 4. Dy on Ir(111) and several decoupling substrates

configuration is expected, just as for Dy atoms on bare metallic surfaces. Adsorption in

weakly bound sites results in 4 f 10 configuration, just as for Dy atoms on graphene/Ir(111)

and graphene/Cu. Since XAS and XMCD probe the average properties of an ensemble, we

cannot distinguish between these two species and can only give the average of their magnetic

properties.

Magnetization curves for both characteristic XMCD peaks of Dy atoms on graphene/Ru(0001)

are shown in Figure 4.7. Due to the low intensity of the XMCD peaks at 1289.3 eV (Figure 4.5(b)),

the resulting magnetization curves at this energy are very noisy (Figure 4.7(a)); however, it

can be seen that both magnetization curve acquired in normal and in grazing incidence show

a clear paramagnetic behavior. It must be noted that most of the signal at 1289.3 eV in fact

originates from the tail of the peak at 1291.8 eV, hence the acquired magnetization curves

do not entirely reflect the magnetic properties of divalent Dy atoms. Figure 4.7(b) shows

magnetization curves acquired at 1291.8 eV. These curves also show paramagnetic behavior

and short magnetization lifetime of trivalent Dy atoms on graphene/Ru(0001).

4.4 Dy on HOPG

4.4.1 Properties of HOPG

Highly oriented pyrolitic graphite (HOPG) is a form of synthetic graphite characterized by

high purity and long range crystallographic order. It consists of stacked parallel graphene

layers which are only weakly bound to each other by van der Waals forces. This results in

their interplane distance of d = 0.335 nm [97]. The most stable and hence the most common

stacking arrangement is ABA stacking [97] shown in Figure 4.8. Here, carbon atoms of A

sublattice of the upper graphene layer are located directly above the carbon atoms B of layer

below, whereas B atoms of the upper layer are placed above hollow sites of the lower layer.

A

B

 0
.3

3
5
 n

m

Figure 4.8 – ABA stacking of graphene layers in HOPG. Red balls mark carbon atoms of
sublattice A and blue ones mark carbon atoms of sublattice B. Atoms A of the first layer are
positioned above atoms B of the second layer, whereas atoms B of the first layer are positioned
above hollow sites of second layer.
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The cleaning of the HOPG surface can be done simply by exfoliation. This results in atomically

flat surface which provides ideal, featureless background for deposited atoms. In addition

to cleaving, which has been done in air, prior to deposition of Dy atoms on this surface, we

annealed it to about T = 870 K, just as we did for the graphene/Cu substrates described in

Section 4.2.1. The mounting of thin HOPG foils was the same as the one for graphene/Cu

shown in Figure 4.2.

4.4.2 Magnetism of Dy atoms on HOPG

Experimentally acquired XAS, XMCD and XMLD spectra of single Dy atoms on HOPG are

shown in Figure 4.9. Similar to all other spectra of Dy atoms on decoupling layers, these XAS

and XMCD spectra are characterized by a prominent peak at 1289.3 eV showing a large amount

of divalent Dy atoms on the HOPG surface. The low intensity peak at 1291.8 eV indicates the

presence of a small abundance of trivalent Dy objects as well. Larger intensity of XMCD in

normal with respect to grazing incidence (Figure 4.9(b)) reflects an out-of-plane easy axis of

these atoms. Overall, all the acquired spectra resemble those for Dy atoms on Ir(111) shown in

Figures 1.8 and 1.14, indicating a similar magnetic state of Dy atoms on HOPG and those on

graphene/Ir(111).

To further characterize the magnetic properties of Dy atoms on HOPG, we acquired their

magnetization curve. The magnetization curve acquired at 1289.3 eV in normal incidence

of x-rays is shown in Figure 4.10(a). Similar to graphene/Ir(111), Dy atoms on HOPG show

hysteresis with several characteristic steps associated with QTM. The magnetization curve

is, however, closed at B = 0 T, i.e., there is no magnetic remanence. Upon closer inspection

of the positions of steps, it can be seen that three of them occur at the same magnetic field

values as in the case of graphene/Ir(111). These are the steps at B = 0 T and B =±2.7 T. The

remaining two steps occur at lower field values, B =±4.4 T, as compared to B =±5.6 T in the

case of graphene/Ir(111). Hence, we can conclude that the ground state of Dy atoms on HOPG

is the same as in the case of graphene/Ir(111), Jz =±7. However, the separation between its

magnetic levels is not the same, which is caused by a small difference in the crystal fields

generated by these two surfaces.

The levels which, along with Jz =±7, participate in the crossings at B =±2.7 T, are Jz =∓8.

Since their crossings occur at the same magnetic field value for both Dy atoms on HOPG

and graphene/Ir(111), the energy position of Jz = ±8 levels at B = 0 T is the same in these

two cases, 3.1 meV. At B =±5.6 T in the case of graphene/Ir(111) and B =±4.4 T in the case

of HOPG, levels Jz = ±6 and Jz = ∓7 cross. Since these crossings occur at smaller fields for

Dy atoms on HOPG, this implies that Jz =±6 levels are at a lower energy in this case. Their

energy is reduced from 5.6 meV in the case of graphene/Ir(111) to 4.1 meV in the case of HOPG.

Figure 4.10(b) shows Zeeman diagram of these lowest lying Dy levels for the range of magnetic

fields used in experiments. The lower position in energy of Jz =±6 levels is also responsible

for the lack of the magnetic remanence of Dy atoms on HOPG. The processes causing each
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Chapter 4. Dy on Ir(111) and several decoupling substrates

observed step in the hysteresis are addressed in detail in Section 3.5.
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Figure 4.9 – Experimentally acquired XAS, XMCD and XMLD spectra at Dy M4,5 edges of
Θ= 0.005 ML Dy on HOPG (Tdep = 2.5 K, T = 2.5 K, (a,b) B = 6.8 T).
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Figure 4.10 – (a) Experimentally acquired magnetization curve for Θ= 0.005 ML Dy on HOPG
at 1289.3 eV (Tdep = 2.5 K; T = 2.5 K; φ = 5φ0, Ḃ = 33 mT s−1). (b) Zeeman diagram of the
lowest lying Dy magnetic levels between −6.8 T and 6.8 T; yellow: Jz =−7, blue: Jz = 7, purple:
Jz =−8, red: Jz = 8, and green: Jz =±6. The triangles mark crossings of ±7 and ∓6 levels at
±4.4 T, rectangles mark crossings of ±7 and ∓8 levels at ±2.7 T, and ellipse marks crossing of
±6 levels at 0 T.

4.4.3 Magnetic lifetime of Dy atoms on HOPG

Magnetic lifetime of Dy atoms on HOPG can be estimated by Arrhenius law describing the

magnetization reversal:

τ= τ0 exp

(
Urev

kBT

)
, (4.1)

where τ is the magnetic lifetime of a system at temperature T , τ0 is the characteristic time

between two consecutive reversal attempts, kB is the Boltzmann constant, and Urev is the

barrier for the magnetization reversal. Using the measured magnetic lifetime of Dy atoms

on graphene/Ir(111) at 2.5 K, 971 s, and its barrier for magnetization reversal of 5.6 meV,

we obtained τ0,eff = 4.5× 10−9 s. Since the measured magnetic lifetime τ depends on the
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experimental conditions, notably on the x-ray flux employed in measurements, the obtained

value of τ0,eff represents a lower bound for the intrinsic τ0. This value is comparable to the ones

obtained for the Fe4 molecular magnets adsorbed on a metal surface [29] and on graphene [82].

Assuming that τ0 is primarily dependent on the properties of the substrate and particularly

of its phonons, we can use the value obtained for Dy on graphene/Ir(111) to estimate the

magnetic lifetime of these atoms on HOPG. The obtained value is τ = 1 s. This lifetime

is shorter than the time needed for the acquisition of a single point in our magnetization

curves and hence we do not observe any remanence in the acquired magnetization curve

(Figure 4.10(a)).

4.5 Dy on h-BN/Ir(111)

4.5.1 Properties of h-BN

Hexagonal boron nitride (h-BN) is a two-dimensional material consisting of boron and nitro-

gen atoms arranged in a honeycomb structure. It is isostructural to graphene, with a lattice

constant of a0,h−BN = 2.48 Å [53]. However, unlike graphene, h-BN is a wide bandgap insulator,

with gap of about 6 eV [98].

When h-BN is grown on metallic substrates, due to their lattice mismatch, a moiré superstruc-

ture is formed [53, 99, 100]. It consists of two distinct regions, pores where h-BN is strongly

bound, and wires where it is only weakly bound to its substrate. Strong bonds form in regions

where centers of the h-BN’s rings are situated on top of the fcc hollow sites of the surface. Weak

bonds occur for these centers being on top of atoms of the metallic substrate [101].

The exact properties of the moiré superstructure depend on the substrate upon which h-BN

is grown. For h-BN grown on Ir(111), the resulting moiré superstructure has periodicity of

about 2.9 nm [101]. Its pores are at dp = 2.95 Å, and wires are at dw = 3.30 Å above the iridium

surface, resulting in a weak corrugation of only 0.35 Å [101]. A stronger interaction of h-BN

with the substrate results in a larger corrugation. For instance, in the case of h-BN grown on

Ru(0001), their minimal separation is much smaller, only 2.0 nm, and the corrugation of the

h-BN layer is much larger, and its amounts to approximately 1.5 Å [100].

4.5.2 Magnetism of Dy atoms on h-BN/Ir(111)

To investigate whether it is possible to stabilize magnetic moments of Dy atoms in a lower

crystal field symmetry with respect to graphene, but with large screening from the electrons of

the substrate, we investigated their magnetic properties on h-BN. Adsorption of Dy atoms on

this substrate imposes C3v crystal field symmetry to their magnetic levels, and offers strong

decoupling from the metallic substrate with the wide band gap of h-BN.

The experimentally acquired XAS, XMCD and XMLD spectra for Θ = 0.007 ML of Dy on

h-BN/Ir(111) are shown in Figure 4.11(a-c). The XAS and XMCD spectra reveal predominantly
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Figure 4.11 – (a-c) Experimentally acquired XAS, XMCD and XMLD spectra of Θ= 0.007 ML
Dy on h-BN (Tdep = 4 K, T = 2.5 K, (a,b) B = 6.8 T). The arrows point to the peaks at 1291.8 eV.
(d-e) XAS, XMCD and XMLD spectra at the M4,5 Dy edges resulting from multiplet calculations
for Dy atoms in the C3v CF of h-BN.
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Dy atoms with 4 f 10 electronic occupation on the surface. A small number of objects with

4 f 9 occupation is also present, as can be deduced from the presence of the peak at 1291.8 eV

in the acquired spectra. The larger intensity of the XMCD in normal with respect to the

grazing incidence of x-rays indicates an out-of-plane easy magnetization axis for these atoms.

Figure 4.12 shows magnetization curves acquired for Dy atoms on h-BN/Ir(111). On this

surface, Dy atoms show paramagnetic behavior.
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Figure 4.12 – Experimentally acquired magnetization curves of Θ = 0.007 ML Dy on
h-BN/Ir(111) at 1289.3 eV (Tdep = 4 K, T = 2.5 K; φ = 9φ0, Ḃ = 12 mT s−1) shown together
with their simulated counterparts.

We performed multiplet calculations to determine the ground state and energy diagram of Dy

atoms on h-BN/Ir(111). The C3v point charge crystal field used to reproduce the experimental

spectra and magnetization curves is shown in Figure 4.13. It consists of alternating positive

and negative charges on the positions of boron and nitrogen of the h-BN/Ir(111) hexagonal

ring, respectively, surrounding the Dy atom adsorbed in the hollow site. Below Dy, there is

an additional positive charge. The exact geometry of this crystal field is given in the Appen-

dix A. The resulting simulations are shown together with their experimental counterparts in

Figure 4.11 and 4.12.

The simulated spectra show good agreement with the experimental ones. The main difference

in the XAS and XMCD spectra are peaks at 1291.8 eV, observed in the experimental and absent

in the simulated spectra. As mentioned before, the source of these peaks are contaminated

or bigger Dy objects present at the surface, which are not included in our simulations. In the

case of XMLD, we focused on reproducing the larger intensity of the spectrum at B = 0.05 T,

as compared to the one at B = 6.8 T. The experimental magnetization curves are also well

reproduced by our simulations.

As anticipated from the experimental spectra, the multiplet calculations reveal 4 f 10 occupa-

tion of Dy atoms on h-BN/Ir(111), with a lowest J = 8 multiplet and a ground state doublet

〈Jz〉 = ±6.8. The resulting energy diagram is shown in Figure 4.14. Three different colors in
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Figure 4.13 – Point charge crystal field employed in the multiplet calculations for Dy on
h-BN/Ir(111). Positive charges are marked with red, and negative with blue. The size of each
circle reflects the charge value. The exact geometry and strength of depicted charges are given
in Appendix A.

this diagram depict three classes of eigenstates created by the three-fold symmetric crystal

field of h-BN/Ir(111) surface.

The lack of the magnetic stability in Dy atoms at B = 0 T can be ascribed to the presence

of a tunnel split doublet with Jz =±6 at 4 meV above the ground state. The tunnel splitting
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Figure 4.14 – The zero field splitting of the Dy lowest multiplet (J = 8) resulting from multiplet
calculations. Each color identifies magnetic quantum states belonging to one of the three
classes of eigenstates defined by the C3v group symmetry. Jz =±6 form a tunnel split doublet
at 4 meV, and Jz =±3 form the one at 41 meV.
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between these two levels amounts to Δ−6,6 = 0.42 meV Thermal excitation to this state leads to

the QTM and results in magnetization relaxation on a time scale of seconds, just as in the case

of Dy atoms on HOPG. The coupling of levels in C3v symmetry is also responsible for the lack

of a magnetic bistability in the presence of magnetic field. Since this symmetry couples Jz

levels that differ by ΔJz =±3, only a single scattering event is necessary for transition between

the Jz =±6.8 states and a consequential relaxation of magnetization.
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5 Magnetism of Nd, Ho, Er and Tb on
graphene/Ir(111)

In this chapter we extend the study of the magnetic properties and electronic configuration of

lanthanide atoms on graphene/Ir(111) to four more elements: Nd, Tb, Ho and Er. The results of

our combined XMCD and multiplet calculations studies for Nd atoms are given in Section 5.1,

for Ho atoms in Section 5.2, for Er atoms in Section 5.3 and for Tb atoms in Section 5.4. In

section 5.5, the underlying interactions that lead to the predominantly divalent electronic

configuration of lanthanide atoms on graphene/Ir(111) are discussed. In Sections 5.6 and 5.7

we evaluate the magnetic stability of lanthanide atoms based on their ground state and energy

level diagram. In addition, we give an estimate of their magnetic lifetimes. The sensitivity of

divalent lanthanide atoms to contamination is presented in detail in Section 5.8. Finally, in

Section 5.9 a discussion on the validity of sum rules in the case of lanthanide atoms is given,

as well as their comparison with multiplet calculations.

For the results presented in this chapter, a manuscript is in preparation: R. Baltic, et al.,

Magnetic properties of single rare earth atoms on graphene/Ir(111).

Work contribution. As part of a team led by Dr. Stefano Rusponi, I contributed to all XMCD me-

asurements presented in this Chapter. I carried out the data analysis and multiplet calculations.

The multiplet calculations were performed under the supervision of Dr. Fabio Donati.

5.1 Nd on graphene/Ir(111)

In their divalent configurations, neodymium (Nd) atoms have 10 holes, whereas Dy atoms

have 10 electrons in their 4 f orbitals. This results in the same S and L values in these two cases;

however due to the opposite spin-orbit coupling in early and late lanthanides, the resulting J

values are different. To investigate magnetic properties of Nd atoms on graphene/Ir(111), we

deposited minute amounts of Nd on freshly prepared graphene/Ir(111) surface and acquired

their XAS, XMCD and XMLD spectra at Nd M4,5 edges. The acquired spectra are shown in

Figure 5.1(a-c).

In all acquired spectra, there are pronounced spectral features at both Nd M4 and M5 edges.
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Figure 5.1 – (a-c) Experimentally acquired XAS, XMCD and XMLD spectra of Θ= 0.002 ML Nd
on graphene/Ir(111) (Tdep = 4 K, T = 2.5 K, (a,b) B = 6.8 T). The arrows point to the peaks at
977.3 eV. (d-f) XAS, XMCD and XMLD spectra at the M4,5 Nd edges resulting from multiplet
calculations for Nd atoms in the C6v CF of graphene/Ir(111) surface.
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In XMCD spectra, these features have opposite sign, with the M5 edge being positive and the

M4 edge negative (Figure 5.1(b)). The higher intensity of the XMCD signal in normal with

respect to grazing incidence of x-rays indicates an out-of-plane easy magnetization axis of this

system.

Since spectral features of the M4 edge have higher intensity than those of the M5 edge, we

acquired magnetization curves of Nd atoms at the M4 edge. We recorded the magnetic field

dependence of the peak at 996.7 eV for both normal and grazing incidence and the resulting

magnetization curves are shown in Figure 5.2. Both curves show paramagnetic behavior at the

acquisition temperature of T = 2.5 K. The magnetization curve recorded in normal incidence

is much steeper for magnetic field values around B = 0 T and saturates for B ≥ |4| T, whereas

magnetization curve in grazing incidence saturates only for the highest available fields. This is

a clear evidence of an out-of-plane anisotropy of Nd atoms on graphene/Ir(111).
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Figure 5.2 – Experimentally acquired magnetization curves for Θ= 0.002 ML Nd on graphe-
ne/Ir(111) (T = 2.5 K, φ= 9φ0, with φ0 = 0.003 photons nm−2 s−1, and Ḃ = 12 mT s−1), shown
together with magnetization curves resulting from multiplet calculations for Nd atoms in the
C6v CF of graphene/Ir(111) surface. Experimental magnetization curves were acquired by
measuring the XMCD signal at 996.7 eV as a function of the magnetic field.

To gain further insight into the electronic structure and magnetic ground state of Nd atoms

on graphene/Ir(111), we performed multiplet calculations for this system. The main focus

in multiplet calculations was on reproducing three key features that characterize the energy

diagram of this system. These are the spectral features of the XAS, XMCD and XMLD spectra,

the overall shape of the magnetization curves (Figure 5.2), and the ratio of intensities of the

XMCD peaks in normal and grazing incidence at B = 6.8 T (Figure 5.1(b)). This ratio sets the

relative amplitude of the corresponding magnetization curves at the same field and it amounts

to approximately 1/2. This means that the XMCD intensity rescales as the cosine of the x-ray

incidence angle θ, indicating a maximal Jz as a magnetic ground state and a large splitting of

the magnetic levels.
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Multiplet calculations were performed using the point charge crystal field scheme shown in

Figure 5.3. It consists of six negative charges placed at the positions of the carbon atoms of a

hexagonal ring, with the Nd atom adsorbed in their center. The exact geometry and strength of

employed point charges are given in Appendix A. The resulting XAS, XMCD and XMLD spectra,

as well as magnetization curves are shown with their experimental counterparts in Figures 5.1

and 5.2.
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Figure 5.3 – Point charge crystal field employed in the multiplet calculations for Nd atoms on
graphene/Ir(111). Blue color represents the negative charge. The exact geometry and strength
of depicted charges are given in Appendix A.

The simulated spectra reproduce well all the spectral features observed in the experiments,

apart from the peak at 977.3 eV. Similarly to what was observed for Dy atoms on graphe-

ne/Ir(111), this disagreement can be attributed to clusters and/or contaminated Nd atoms.

Since these objects provide only a minor contribution to the average properties of an ensemble

consisting primarily of Nd atoms, they will not be considered in the further discussion. The

sensitivity of Nd atoms to contamination will be addressed in detail in Section 5.8.

Multiplet calculations reveal a divalent 4f 4 occupation for Nd atoms on graphene/Ir(111), and

a lowest multiplet with J = 4. Similar occupation of nearly 4 electrons in their 4f orbitals has

been calculated by DFT for Nd atoms on freestanding graphene [102]. The energy diagram for

Nd atoms at B = 0 T, resulting from multiplet calculations, is shown in Figure 5.4.

The adsorption of Nd atoms in the hollow site of graphene results in a strong uniaxial aniso-

tropy with nerly maximal magnetic ground state of Jz =±3.8 , as anticipated from the ratio of

XMCD intensities at B = 6.8 T. The total zero field splitting of this system is approximately 16

meV; nevertheless, it is greatly reduced by the Jz =±3 levels that provide a shortcut for the

thermally activated magnetization relaxation. These levels are strongly mixed and tunnel-

split in the C6v crystal field symmetry of graphene, forming a doublet of quenched 〈Jz〉. The

separation between two levels in this doublet is Δ−3,3 = 5.9 meV, and the lower of the two is

at the energy of 3.2 meV. This large separation provides a substantially larger QTM rate in
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Figure 5.4 – The zero field splitting of the Nd lowest multiplet (J = 4) resulting from multiplet
calculations. Each color identifies magnetic quantum states belonging to one of the six classes
of eigenstates defined by the C6v symmetry. The dashed lines illustrate the formation of a
tunnel split doublet by Jz = ±3 states. Grey arrows indicate the relaxation mechanism at
B = 0 T via thermal excitation to Jz =±3 doublet.

the case of Nd with respect to the Dy case, where the separation between the tunnel split

Jz =±6 levels is more than four orders of magnitude smaller [103]. Hence, this tunnel-split

doublet strongly reduces the barrier for magnetization reversal and is responsible for the lack

of magnetic remanence at B = 0 T in Nd atoms (Figure 5.2). The thermally activated shortcut

for magnetization reversal provided by this tunnel-split levels is indicated with grey arrows in

Figure 5.4.

5.2 Ho on graphene/Ir(111)

Holmium (Ho) atoms are the following lanthanide atoms whose magnetic properties we

investigated on graphene/Ir(111). We deposited Θ = 0.003 ML of Ho on a newly prepared

substrate, ensuring predominantly single Ho atoms on the surface. Subsequently, we acquired

their XAS, XMCD and XMLD spectra at Ho M4,5 edges. The resulting spectra are shown in

Figure 5.5(a-c).

The acquired spectra is characterized by pronounced features of the M5 edge and low in-

tensity features of the M4 edge, which are, in the case of XMLD spectra, hidden in the noise

(Figure 5.5(c)). Holmium atoms on graphene/Ir(111) show slight in-plane anisotropy, as can be

inferred from the slightly larger intensity of the XMCD signal acquired for grazing, as compared

to normal incidence of x-rays (Figure 5.5(b)).

To further characterize the magnetic properties of Ho atoms, we acquired their magnetization

curves at the M5 edge, at its peak with the highest intensity occurring at 1346.6 eV. The resulting

magnetization curves are shown in Figure 5.6. Both normal and grazing magnetization curves
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Figure 5.5 – (a-c) Experimentally acquired XAS, XMCD and XMLD spectra of Θ= 0.003 ML
Ho on graphene/Ir(111) (Tdep = 4 K, T = 2.5 K, (a,b) B = 6.8 T). (d-f) XAS, XMCD and XMLD
spectra at the M4,5 Ho edges resulting from multiplet calculations for Ho atoms in the C6v CF
of graphene/Ir(111) surface.
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show paramagnetic behavior. The normal magnetization curve is steeper for magnetic fields

around B = 0 T and saturates already at about B = 2 T. However, the grazing curve crosses it

at B = 3 T, and it does not saturate even for the highest available magnetic field of B = 6.8 T.

This indicates a larger magnetic moment of Ho atoms in in-plane with respect to out-of-plane

direction at fields larger than B = 3 T and demonstrates an in-plane anisotropy of this system.

Further, it suggests a ground state with an intermediate Jz value which can produce large

projected magnetic moments along both incidence directions.
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Figure 5.6 – Experimentally acquired magnetization curves for Θ= 0.003 ML Ho on graphe-
ne/Ir(111) (T = 2.5 K, φ= 9φ0 and Ḃ = 12 mT s−1), shown together with magnetization curves
resulting from multiplet calculations for these atoms in the C6v CF of graphene/Ir(111) surface.
Experimental magnetization curves were acquired by measuring the XMCD signal at 1346.6 eV
as a function of the magnetic field.

To determine the electronic structure and magnetic ground state of Ho atoms on graphe-

ne/Ir(111), we performed multiplet calculations. We focused on reproducing the Ho spectral

features shown in Figure 5.5(a-c), with an emphasis on reproducing the distinctive behavior

of its XMLD spectra. Unlike for the other studied lanthanide atoms, the intensity of XMLD

in the case of Ho atoms increases with increasing magnetic field. An additional feature that

unambiguously determines the ground state of these atoms is the crossing of its normal and

grazing magnetization curve at B = 3 T. Reproducing these features required the use of a more

complex point charge crystal field scheme, whose planar representation is shown in Figure 5.7.

It consists of alternating positive and negative charges placed at the vertices of two hexagons

rotationally displaced by 30◦. In addition, there is a small positive charge in the middle of

these hexagonal rings, below the adsorbed Ho atom. The exact geometry and strength of

employed point charges are given in in Appendix A.

The XAS, XMCD and XMLD spectra, as well as the magnetization curves resulting from mul-

tiplet calculations are shown together with their experimental counterparts in Figures 5.5

and 5.6. They reproduce experimental spectra well. In particular, we reproduced the incre-

ase in the XMLD intensity with the magnetic field, and the crossing of normal and grazing

75



Chapter 5. Magnetism of Nd, Ho, Er and Tb on graphene/Ir(111)

-2 -1 0 1 2

y 
(Å

)

-2

-1

0

1

2

x (Å)

Figure 5.7 – Planar representation of the point charge crystal field employed in the multiplet
calculations for Ho on graphene/Ir(111). Positive charges are marked with red, and negative
with blue. The size of each circle reflects the charge value. The exact geometry and strength of
depicted charges are given in Appendix A.

magnetization curve at B = 3 T.

Our simulations reveal 11 electrons in Ho 4f orbitals, a lowest multiplet with J = 15/2 and a

total zero field splitting of 23 meV. The resulting energy diagram is shown in Figure 5.8. The

ground state doublet of this system has 〈Jz〉 =±4.3, which is very close to the pure Jz =±9/2

levels. The distinctive behavior of XMLD spectra is unique to it, and it could not be reproduced

with any other Jz level as a potential ground state in our calculations. This ground state
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Figure 5.8 – The zero field splitting of the Ho lowest multiplet (J = 15/2) resulting from multiplet
calculations. Each color identifies magnetic quantum states belonging to one of the six classes
of eigenstates defined by the C6v symmetry. Grey arrows indicate magnetization relaxation
mechanism at B = 0 T via thermal excitation to 〈Jz〉 =±5.4.
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should, in principle, result in a stable magnetization of this system; nevertheless, the absence

of hysteresis in magnetization curves (see Figure 5.6) indicates magnetic lifetime in order of

seconds or less at 2.5 K.

Given the large total zero field splitting of 23 meV, thermally activated processes overcoming

the full barrier to reverse the magnatization must be excluded. Therefore, this relaxation has

to occur via assisted QTM involving nearest excited states. At B = 0 T, the lowest lying excited

states are Jz =±5/2 at 1.6 meV, which cannot be reached by first order transitions. Hence, the

lowest lying levels that participate in scattering processes with ΔJz =±1 are 〈Jz〉 =±5.4 (close

to pure Jz = ±11/2) at 4.2 meV. The transition from ground to these excited states and vice

versa is marked by solid-line arrows in Figure 5.8. This excited doublet is non-axial in the C6v

symmetry [27] and offers a path for assisted QTM, as indicated by dashed lines in Figure 5.8.

5.3 Er on graphene/Ir(111)

We deposited minute amount of erbium (Er) on newly prepared graphene/Ir(111). Subse-

quently, we acquired their XAS, XMCD and XMLD spectra and the resulting spectra are shown

in Figure 5.9(a-c). The spectra of Er atoms are characterized by the pronounced multiplet fea-

tures at the M5 edge, whereas the features of its M4 edge are hidden in the noise. Considerably

larger intensity of XMCD spectra in grazing with respect to the normal incidence of x-rays

(Figure 5.9(b)) indicates strong in-plane anisotropy of Er atoms on this substrate, and implies

a low Jz ground state of the system.

In the case of Er atoms on graphene/Ir(111), their high sensitivity to contamination has

hindered the acquisition of the magnetization curves. The magnetization curves we acquired

do not accurately reflect the magnetic state of Er atoms, as it will be discussed in more detail

in Section 5.8. The lack of magnetization curves in the full data set prevents the fine data

adjustments in simulations and therefore limits the precision of the inferred energy level

splitting from the multiplet calculations. Nevertheless, we performed calculations focusing on

reproducing the overall spectral shape of XAS, XMCD and XMLD. In particular, we aimed to

reproduce the in-plane anisotropy of this system with the adequate ratio of XMCD peaks in

normal and grazing incidence at 6.8 T (Figure 5.9(b)), and higher intensity of XMLD spectra at

B = 0.1 T, compared to B = 6.8 T. To reproduce these features, we employed the point charge

crystal field scheme, whose planar representation is shown in Figure 5.10. Similarly to the

scheme employed in the case of Ho, it consists of alternating positive and negative charges

placed at the vertices of two hexagons rotationally displaced by 30◦. However, in this case,

there is a large negative charge in the center of the hexagonal rings, below the adsorbed Er

atom. The exact geometry and strength of employed point charges are given in Appendix A.

The spectra resulting from multiplet calculations are shown in Figure 5.9(d-f). They reproduce

well all the spectral features observed in experiments, apart from the peaks at 1405.6 eV in

both XAS and XMCD spectra (see Figure 5.9(a,b)). These peaks have much higher intensity

in experimental spectra and can be attributed to Er dimers and contaminated atoms on the
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Figure 5.9 – (a-c) Experimentally acquired XAS, XMCD and XMLD spectra of Θ= 0.004 ML Er
on graphene/Ir(111) (Tdep = 4 K, T = 2.5 K, (a,b) B = 6.8 T). The arrows point to the peaks at
977.3 eV. (d-f) XAS, XMCD and XMLD spectra at the M4,5 Er edges resulting from multiplet
calculations for Er atoms in the C6v CF of graphene/Ir(111) surface. The arrows in (a,b) point
to the peak at 1405.6 eV, whose large intensity originates from contaminated Er atoms and
bigger Er objects.
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Figure 5.10 – Planar representation of the point charge crystal field employed in the multiplet
calculations for Er on graphene/Ir(111). Positive charges are marked with red, and negative
with blue. The size of each circle reflects the charge value. The exact geometry and strength of
depicted charges are given in Appendix A.

graphene/Ir(111) surface. Our simulations do not take into account these objects and hence

their features are not reproduced.

Our calculations reveal divalent 4 f 12 occupation of Er atoms on graphene/Ir(111) and a lowest

multiplet with J = 6. The resulting energy diagram is shown in Figure 5.11. The total zero field

splitting of this system is 15 meV and its ground state doublet is Jz =±2. In addition, there are

several levels with Jz � 3 within less than 1 meV, with the tunnel-split Jz =±3 levels lying at
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Figure 5.11 – The zero field splitting of the Er lowest multiplet (J = 6) resulting from multiplet
calculations. Each color identifies magnetic quantum states belonging to one of the six classes
of eigenstates defined by the C6v symmetry. Dashed lines connect doublets with quenched
〈Jz〉. Grey and black arrows indicate two magnetization relaxation mechanisms at B = 0 T.
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0.6 meV above the ground state doublet.

The very small separation between lowest lying levels facilitates magnetization reversal

through scattering with electrons and phonons of the substrate and no stable magnetiza-

tion is expected for this system. At B = 0 T, there are two main magnetization reversal paths.

For one, the relaxation occurs via thermal excitation to the tunnel-split Jz = ±3 states at

0.6 meV, as indicated by the grey arrows in Figure 5.11. For the other, the relaxation path

consists of thermal excitation to Jz = 0 via the Jz = ±1 states, as it is indicated by the black

arrows in Figure 5.11.

5.4 Tb on graphene/Ir(111)

The final lanthanide atom whose magnetic properties on graphene/Ir(111) we studied is

terbium (Tb). We deposited θ = 0.003 ML of Tb on a freshly prepared graphene/Ir(111) surface,

thus ensuring an ensemble of predominantly single and non interacting atoms on this surface.

Their experimentally acquired XAS, XMCD and XMLD spectra are shown in Figure 5.12.

Unlike for the other lanthanide atoms, the XAS spectral features of Tb atoms indicate their

trivalent configuration on the graphene/Ir(111) surface. This 4 f 8 configuration is characteri-

zed by a double-peak structure in the Tb M5 edge [32, 35]. The XMCD spectra of Tb atoms are

characterized by the pronounced features at the M5 edge. The higher intensity of the XMCD

signal acquired in grazing with respect to normal incidence of x-rays (Figure 5.12(b)) indicates

an in-plane anisotropy for this system.

To further characterize the magnetic properties of Tb atoms on graphene/Ir(111), we acquired

their magnetization curves. The resulting curves for both normal and grazing incidence of

x-rays are shown in Figure 5.13. Both acquired curves show paramagnetic behavior at T = 2.5 K.

The magnetization curve acquired in grazing incidence shows steeper behavior for magnetic

fields around B = 0 T, and a larger intensity throughout the entire range of employed magnetic

field values. This indicates larger magnetic moment of Tb atoms in the in-plane direction and

hence an in-plane anisotropy of this system.

We performed multiplet calculations to determine the electronic and quantum level structure

of Tb atoms on graphene/Ir(111). The main objective in these calculations was to reproduce

the in-plane anisotropy of this system with an appropriate ratio of XMCD intensities for two

incidences of x-rays at B = 6.8 T (Figure 5.12(b)). In addition, we focused on reproducing the

shape of XAS spectra for θ = 0◦. All these features characterize the ground state and the energy

diagram of this system.

Multiplet calculations were performed using the point charge crystal field scheme, whose

planar representation is shown in Figure 5.14. This scheme consists of six positive charges

placed at positions of carbon atoms in a hexagonal ring of graphene, and a smaller negative

charge in its center. Just as with other lanthanides on graphene/Ir(111), we performed simula-
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Figure 5.12 – (a-c) Experimentally acquired XAS, XMCD and XMLD spectra of Θ= 0.003 ML
Tb on graphene/Ir(111) (Tdep = 4 K, T = 2.5 K, (a,b) B = 6.8 T).(d-f) XAS, XMCD and XMLD
spectra at the M4,5 Tb edges resulting from multiplet calculations for Tb atoms in the C6v CF
of graphene/Ir(111) surface.
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Figure 5.13 – Experimentally acquired magnetization curves for Θ= 0.003 ML Tb on graphe-
ne/Ir(111) (T = 2.5 K, φ= 9φ0 and Ḃ = 12 mT s−1), shown together with magnetization curves
resulting from multiplet calculations for these atoms in the C6v CF of graphene/Ir(111) surface.
Experimental magnetization curves were acquired by measuring the XMCD signal at 1236.9 eV
as a function of magnetic field.

tions assuming the adsorption of Tb atom in the hollow site of graphene, i.e., center of the

hexagonal carbon ring. The exact geometry and strength of employed point charges are given

in Appendix A.

Our best fits of experimental spectra are shown with their experimental counterparts in Fi-

gure 5.12. They reproduce the in-plane anisotropy of the system and shape of XAS spectrum
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Figure 5.14 – Planar representation of the point charge crystal field employed in the multiplet
calculations for Tb on graphene/Ir(111). Positive charges are marked with red, and negative
with blue. The size of each circle reflects the charge value. The exact geometry and strength of
depicted charges are given in Appendix A.
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for θ = 0◦ well. However, the intensities of XAS spectrum for θ = 60◦, as well as the absolute

intensities of XMCD spectra for both incidences of x-rays are not well reproduced. Better

matching of these intensities with the employed crystal field configuration lead to poor mat-

ching in the shape and the ratio of the magnetization curves. Further fine tuning of the crystal

field parameters could possibly lead to the better fit of the experimental features; however,

due to the long calculation times, we refrained from such fine tuning. Simulating a full set

of XAS, XMCD and XMLD spectra took over seven hours, and simulation of a meaningful

pair of normal and grazing magnetization curves took approximately two days. Nevertheless,

throughout our analysis, we established that it is unlikely that any fine tuning would result in

different ground state of the system and it would only modify the energy separations between

levels in the Tb energy diagram. Since, as it will be demonstrated later on, the ground state of

this system is crucial for the lack of its magnetic stability, further adjustments to the crystal

field parameters would not give any deeper insight into the properties of this system.

As anticipated for the XAS spectra, multiplet calculations reveal trivalent Tb configuration with

8 electrons in its 4f orbitals. The ground state multiplet of this system has J = 6 and its energy

diagram is shown in Figure 5.15. The resulting total zero field splitting is the smallest among

all the lanthanide atoms we studied on graphene/Ir(111) and it amounts to only 7 meV. The

ground state of this system consists of a tunnel-split doublet with Jz =±3, with the splitting of

0.16 meV between these two levels. This ground state is responsible for the lack of magnetic

remanence in Tb atoms at B = 0 T, whereas for B �= 0 T the small energy separation between

other magnetic levels enables efficient magnetization reversal by scattering with electrons and

phonons of the substrate.
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Figure 5.15 – The zero field splitting of the Tb lowest multiplet (J = 6) resulting from multiplet
calculations. Each color identifies magnetic quantum states belonging to one of the six classes
of eigenstates defined by the C6v symmetry. Dashed lines connect doublets with quenched
〈Jz〉.
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5.5 4 f occupation of lanthanides on graphene/Ir(111)

The electronic configuration and 4 f occupancy of lanthanide atoms on a supporting substrate

is ruled by two competing quantities, namely the energy needed to change from a divalent

to a trivalent atomic configuration and the difference in their surface binding energies. The

former is given as a sum of the f −d promotion energy E f d and the intershell coupling energy

ΔEc , called atomic correction energy. More details on those values can be found in [104, 105].

The binding energy of an atom strongly depends on its environment as it is ruled by the

hybridization between its outer spd orbitals with the valence electrons of the substrate. The

degree of hybridization, and hence the binding energy, increases with the increasing substrate

DOS at EF [85].

When atoms are placed on substrates with low DOS at EF , such as graphene, the atomic

correction is the leading term. Among the lanthanide atoms studied, this energy is the smallest

for Tb, amounting to only 0.49 eV, while for all other investigated lanthanide atoms it is about

three times larger [104]. The valency of lanthanide atoms on graphene follows this trend in

atomic correction energy. The only lanthanide found in trivalent configuration is Tb, whereas

all the other ones are in their divalent configuration. This finding for Tb is also in agreement

with its well-known tendency to promote one 4 f electron to the outer spd shells [26]. In

addition, it has been demonstrated that the divalent state of Tb is highly unfavorable even

for a free standing dimers, i.e., that a single metallic bond is sufficient to trigger its trivalent

configuration [106]. Hence, a Tb atom on graphene assumes a typical trivalent configuration

that is also observed for TbPc2 molecular magnets [2, 107].

The 4 f occupation of divalent lanthanide atoms is highly sensitive to their coordination.

An increase in coordination, either via cluster nucleation or attachment of contaminants

leads to the promotion of trivalent configuration, as it has been demonstrated in Sections 3.7

and 3.8, and it will be further discussed in Section 5.8. In the case of cluster formation,

valence bands are formed which enables transfer of an electron from 4 f to spd bands [106].

Trivalent lanthanide atoms, on the other hand, even upon an increase in coordination keep

their valency unchanged, as it has been demonstrated for trivalent lanthanide atoms on metal

substrates [85, 87] and Tb atoms on graphene/Ir(111).

5.6 Magnetic stability of lanthanides on graphene/Ir(111)

The magnetic stability of lanthanide atoms on supporting substrates is governed by their

quantum level structure, in particular by their ground state and height of the energy barrier

required for thermally assisted magnetization reversal, Urev. From multiplet calculations, we

inferred large total zero field splitting with ground states protected against QTM for Nd, Dy

and Ho on graphene/Ir(111). However, only Dy atoms show hysteresis in their magnetization

curves, with significant magnetic stability on the timescale of our experiments and at B = 0 T

and T = 2.5 K. This can be rationalized considering the different heights of Urev of each of

84



5.7. Magnetic lifetime of lanthanides on graphene/Ir(111)

these systems, which are limited by the first excited states enabling thermally assisted QTM.

Out of the systems considered, Dy indeed shows the highest value of Urev, 5.6 meV.

The quantum tunneling of magnetization in the case of Dy and Nd is conveyed through their

first tunnel-split doublets. However, smaller Urev barrier and substantially larger separation

between Jz =±3 levels in the case of Nd with respect to Dy Jz =±6 levels result in the lack of

its magnetic stability at 2.5 K. In the case of Ho, a system with second highest Urev barrier, the

relaxation of magnetization is conveyed through the lowest non-axial excited states 〈Jz〉 =±5.4

that offer a path for assisted QTM.

In the case of Er atoms, magnetization reversal between Jz =±2 ground states is easily achieved

by thermal transitions to the lowest excited states. Within less than 1 meV there are several

excited states that provide two paths for magnetization reversal. Hence, in this case the upper

bound for Urev can be defined as 1 meV. Finally, in the case of Tb, the lack of its magnetic

stability on graphene/Ir(111) is due to its tunnel-split ground state doublet. This ground state

supports QTM and hinders any magnetic stability of this system. The corresponding Urev,

together with 4 f occupation, total angular momentum J and the ground state Jz for each

system are summarized Table 5.1.

Table 5.1 – Occupation of 4f orbitals, total angular momentum J and effective 〈Jz〉 value of
the ground state, together with Urev, for lanthanide atoms on graphene/Ir(111) resulting from
multiplet calculations.

Element 4f occupation J (�) 〈Jz〉 (�) Urev (meV)
Nd 4 4 ±3.8 3.2
Tb 8 6 ±3 0
Dy 10 8 ±7 5.6
Ho 11 15/2 ±4.3 4.2
Er 12 6 ±2 <1

5.7 Magnetic lifetime of lanthanides on graphene/Ir(111)

The ground state doublet of Tb atoms on graphene/Ir(111) does not support magnetic stability,

hence the magnetic lifetime of this system is zero. For the remaining lanthanide atoms, Nd,

Ho and Er, it is possible to estimate their magnetic lifetime, similar to Dy atoms on HOPG in

Section 1.4.3, by using the estimated value of τ0,eff from the magnetic lifetime measurements

for Dy atoms on the same substrate. Taking their Urev values given in Table 5.1 and applying the

Arrhenius law describing the magnetization reversal given by Equation 1.1 in Section 1.4.3, we

obtain an estimate of a magnetic lifetime for each of these atom. The obtained values are given

in Table 5.2. As expected from examination of their Urev values, the only system besides Dy that

shows considerable magnetic lifetime at 2.5 K is Ho with τ= 1.3 s. Nevertheless, this lifetime is

shorter than the time needed for the acquisition of a single point in our magnetization curves,

which explains the lack of magnetic remanence in our measurements.
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Table 5.2 – Estimated magnetic lifetime of lanthanide atoms on graphene/Ir(111) at 2.5 K.

Nd Ho Er Tb

Estimated lifetime (s) 0.01 1.3 < 5×10−7 0

Single lanthanide atoms on metal surfaces possess similar barriers for magnetization reversal

as those on graphene/Ir(111). In particular, Er atoms on Pt(111) have Urev similar to the one

of Dy atoms on graphene/Ir(111), 5.3 meV [11]. However, they do not show remanence in

their magnetization curves at T = 2.5 K, indicating a lifetime of order of seconds or less. This

implies that the characteristic time τ0 for lanthanide atoms on metal surfaces is at least three

orders of magnitude shorter than the one on graphene, possibly due to a stronger coupling of

the localized spins to both electrons and phonons of the surface.

5.8 Sensitivity to contamination of lanthanides on graphene/Ir(111)

High sensitivity of divalent lanthanide atoms to contamination has made XAS and XMCD

experiments rather challenging in the limited time available at a synchrotron facility. This

was especially the case during the acquisition of magnetization curves. Divalent and trivalent

species of the same lanthanide atom have different magnetic properties; however, their

spectral features appear in the same energy range and overlap. As magnetization curves are

acquired by measuring the intensity of a chosen XMCD peak in a certain range of magnetic

fields, any unwanted species with the spectral features at the same energy will contribute to the

magnetization curves as well. In addition, a constant contamination during the measurements

decreases the number of divalent atoms on the surface, which results in the faulty shape of the

magnetization curves. Hence, to accurately acquire full set of data for each divalent lanthanide

element, it was necessary to prepare several samples with as little contaminants as possible.

The sensitivity of lanthanide atoms to contamination has already been addressed in Section 3.8,

where we discussed exposure time dependence of Dy XAS spectra. Here we extend that

discussion to the other lanthanide atoms we studied on graphene/Ir(111).

5.8.1 Exposure time dependence of Nd XAS spectra

Figure 5.16(a) shows the XAS and XMCD spectra of two newly prepared samples of Nd on

graphene/Ir(111), samples A and B. Both samples were prepared with the same experimental

procedure during the same beamtime, and both have the same coverage, Θ = 0.002 ML.

However, their spectral features differ. In XAS spectra, the multiplet features appearing at

the highest energy of both M5 and M4 edge, 977.3 eV and 999.3 eV, respectively, have larger

intensity in the case of sample B. The differences in respective XMCD spectra are not so

pronounced. The origin of these differences can be understood by comparing the initial XAS

and XMCD spectra of sample A and its spectra after 160 minutes of measurements, shown in
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Figure 5.16(b). The spectra have changed during the exposure time and, similarly to sample

B, the highest energy features of each edge have increased intensity. In addition, the lower

energy feature of M5 edge (the peak at 975 eV) has significantly reduced intensity with respect

to its initial value. The differences of initial and final XMCD spectra are also more pronounced.

The overall intensity of XMCD M5 edge has reduced, whereas the peaks of M4 edge reversed

their intensity distribution in the course of measurements.

The only way to justify the change in spectra with time at T = 2.5 K is to ascribe it to the

continuous contamination of divalent Nd atoms on graphene/Ir(111). This reduces the

proportion of divalent Nd and increases the proportion of trivalent Nd species on the surface.

In the case of sample B, during the sample preparation, Nd atoms were subjected to higher

initial contamination than in the case of sample A, possibly due to the small pressure difference

in the UHV chamber. Furthermore, sample A was prepared three days after the sample B.

During these three days, the Nd rod was additionally degassed, which also helped reducing the

contamination of Nd atoms. The difference between samples A and B further demonstrates

that special care is needed while preparing samples with lanthanide atoms, as it is easy to

contaminate them and measure spurious instead of real magnetic properties of single atoms.
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Figure 5.16 – (a) XAS and XMCD spectra of two different Nd samples (sample A and sample
B) with the same coverage, Θ = 0.002 ML. (b) XAS and XMCD spectra of the newly prepa-
red sample A and its spectra after the exposure time of 160 minutes (Tdep = 4 K, T = 2.5 K,
B = 6.8 T). Red, purple, black and green arrows point to the peaks at 975 eV, 977.3 eV, 996.7 eV
and 999.3 eV, respectively.
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5.8.2 Exposure time dependence of Ho XAS spectra

The comparison between XAS and XMCD spectra of freshly prepared sample of Ho atoms on

graphene/Ir(111) and its spectra after four hours of measurements and exposure to the residual

gas of the UHV chamber is shown in Figure 5.17. The continuous contamination of divalent

Ho atoms has caused a shift of the spectral weight in Ho’s M5 edge towards higher energies

in both XAS and XMCD spectra. The peak at 1349 eV has gained intensity, whereas peaks at

lower energies have lost their intensity in this process. This is a clear sign of transformation of

divalent Ho atoms into trivalent Ho species on the graphene/Ir(111) surface [85].
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Figure 5.17 – (a) XAS and (b) XMCD spectra of Ho atoms on graphene/Ir(111) acquired
on freshly prepared sample (black) and after t = 4 h of measurements (red) (Tdep = 4 K,
Θ= 0.003 ML; T = 2.5 K, B = 6.8 T). Blue, black and green arrows point to the peaks at 1344.6 eV,
1346.5 eV, and 1349 eV, respectively.

5.8.3 Exposure time dependence of Er XAS spectra

The comparison between XAS and XMCD spectra at M5 egde of freshly prepared sample of

Er atoms on graphene/Ir(111) (sample A, Θ= 0.004 ML) and its spectra after t = 2.5 h hours

of measurements is shown in Figure 5.18(a). Similarly to other divalent lanthanide atoms,

in the course of measurements, Er M5 edge has changed its appearance. In time, the peak

at 1405.6 eV, associated with trivalent Er objects has increased its intensity in both XAS and

XMCD spectra. The change in the other peaks of the M5 edge is very small.

Figure 5.18(b) shows another sample of Er atoms on graphene/Ir(111), with higher coverage,

Θ = 0.007 ML (sample B). The distribution of intensities among the peaks of the M5 edge
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resembles those of sample A after prolonged exposure time, indicating a large amount of

trivalent Er species at the surface. Note that the spectra of sample B were scaled for graphical

purposes and in reality have over 1.5 times higher intensity than those shown in Figure 5.18(a),

as a result of a higher coverage.
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Figure 5.18 – (a) XAS and XMCD spectra of Θ= 0.004 ML Er on graphene/Ir(111) acquired on a
freshly prepared sample (black) and after t = 2.5 h of measurements (red). (b) XAS and XMCD
spectra of Θ= 0.007 ML Er on graphene/Ir(111) acquired on a freshly prepared sample ((a)
Tdep = 4 K, T = 2.5 K; (b) Tdep = 5 K, T = 5 K; B = 6.8 T). Red, purple and green arrows point to
the peaks at 1401 eV, 1402.8 eV, and 1405.6 eV, respectively.

An estimate of the share of divalent and trivalent Er objects on graphene/Ir(111) can be done by

reproducing their XAS spectra with the superposition of respective spectra of free divalent and

trivalent Er atoms. Such superposition will not reproduce all the features of the experimental

spectra as it does not consider the effects of the crystal field. The spectra of free atoms were

simulated by multiplet calculations, and their areas were subsequently normalized to the

number of holes in the 4 f orbitals, 2 in the case of divalent and 3 in the case of trivalent

configuration. These spectra are shown in Figure 5.19(a).

To reproduce experimental spectra, various shares of divalent and trivalent spectra in the

superposition were tried until the combination that resembles experimental spectra was

found. The area of such superposition was subsequently normalized to match the area of

the experimental spectra. Figure 5.19(b) shows the resulting superposition for the sample A.

Its XAS features are well reproduced by assuming approximately (66±5)% of divalent, and

(34±5)% trivalent Er objects on the surface. Reproducing the XAS spectra of sample B revealed
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only (53±3)% of divalent Er atoms on the surface. Such large shares of trivalent Er objects at

such low coverages (Θ= 0.004 ML and Θ= 0.007 ML, respectively) indicates high sensitivity of

Er atoms to contamination.

The high sensitivity of Er atoms to contamination and low intensity of the divalent XMCD

features has prevented us from acquiring magnetization curves that are characteristic of solely

divalent Er atoms.
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Figure 5.19 – (a) XAS spectra at the M5 edge of free Er atoms with divalent 4 f 12 and trivalent
4 f 11 electronic configuration. The area of the entire XAS spectra was normalized to the number
of holes in 4 f orbitals, to 2 in the case of divalent and to 3 in the case of trivalent spectra.
(b) Fitting of the Θ= 0.004 ML Er XAS spectrum by superposing divalent and trivalent spectra
of free atoms shown in (a). (c) Fitting of the Θ= 0.007 ML Er XAS spectrum by superposing
divalent and trivalent spectra of free atoms shown in (a). The number indicated with each
spectrum indicates the fraction of divalent atoms contributing to the total spectrum.
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5.8.4 Exposure time dependence of Tb XAS spectra

The comparison between XAS and XMCD spectra of a freshly prepared sample of Θ= 0.003 ML

Tb on graphene/Ir(111) and its spectra after three hours of exposure to the residual gas of the

UHV chamber is shown in Figure 5.20(a). Unlike in the case of divalent lanthanide atoms, the

spectra and hence the 4 f occupation of the trivalent Tb atoms remained unchanged during

the course of measurements. The valency of Tb atoms remains unchanged even in clusters.

Figure 5.20(b) shows XAS and XMCD spectra acquired for Θ= 0.015 ML Tb, coverage at which

there is a considerable amount of Tb dimers and bigger clusters on the graphene/Ir(111)

sufrace. The spectral features of this higher coverage sample resemble those of the low

coverage one shown in Figure 5.20(a).
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Figure 5.20 – (a) XAS and XMCD spectra of Θ= 0.003 ML Tb on graphene/Ir(111) acquired on
freshly prepared sample (black) and after t = 3 h of measurements (red). (b) XAS and XMCD
spectra of Θ= 0.015 ML Tb on graphene/Ir(111) (Tdep = 4 K, T = 2.5 K, B = 6.8 T). Spectra in
(b) were scaled to match the scale of spectra in (a)

5.9 Sum rules for lanthanide atoms

Sum rules give a valid estimate of angular momenta of atoms only in case where all the XAS

signal originates from a single species on a surface. In the case of lanthanide atoms, the

divalent atomic species are liable to contamination and dimers form already for very low

coverages due to the large impingement area for dimer formation [71, 87]. The energy range in

which the XAS spectral features of these three species appear overlaps, and they all contribute

to the acquired XAS spectra of a certain lanthanide studied. Therefore, when applying sum
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rules to the XAS and XMCD spectra, the resulting momenta do not describe the desired single

atoms, but give average values over the entire ensemble, consisting of all the species on the

surface. In addition, sum rules are valid only in the case of the isotropic integral of the XAS

intensity, which is generally not the case with lanthanide atoms on surfaces [85]. Multiplet

calculations are, on the other hand, done for the single atoms only and hence represent a

better tool for estimating angular momenta of lanthanide atoms.

Nevertheless, we have applied the sum rules to the experimental spectra of lanthanide atoms

on graphene. The resulting expectation values of spin, orbital and total angular momenta,

together with values resulting from multiplet calculations, are given in Table 5.3.

Table 5.3 – Expectation values of spin 〈Sz〉, orbital 〈Lz〉 and total 〈Jz〉 angular momenta of
lanthanide atoms on graphene/Ir(111), resulting from both multiplet calculations and sum
rules applied to experimental spectra. nh marks the number of 4 f holes used in calculations.
The values are given for normal direction of x-rays, θ = 0◦.

nh calculation 〈Sz〉 〈Lz〉 〈Jz〉

Tb 6
sum rules 0.7 ± 0.1 0.88 ± 0.05 1.6 ± 0.1

multiplet calc. 1.44 1.56 3.0

Dy 4
sum rules 1.2 ± 0.1 3.8 ± 0.1 5.0 ± 0.1

multiplet calc. 1.68 5.32 7.0

Nd 10
sum rules -0.75 ± 0.04 4.4 ± 0.2 3.7 ± 0.2

multiplet calc. -1.53 5.36 3.84

Ho 3
sum rules 0.63 ± 0.04 2.7 ± 0.1 3.3 ± 0.1

multiplet calc. 0.84 3.44 4.29

Er 2
sum rules 0.38 ± 0.06 1.7 ± 0.1 2.1 ± 0.1

multiplet calc. 0.33 1.67 2.0

In most cases, the sum rules underestimate the values of angular momenta. In the case of

Dy atoms, all angular momenta resulting from sum rules are about 30% smaller than those

resulting from multiplet calculations, and a similar difference is also found for Ho atoms. The

largest difference is obtained for Tb atoms, where sum rules’ angular momenta are about

50% smaller than their counterparts resulting from multiplet calculations. Surprisingly, an

excellent match of angular momenta is achieved for Er atoms. Considering the large amount

of trivalent Er objects on the graphene/Ir(111) surface, this must be ascribed to coincidence

rather than being considered as a confirmation that sum rules work well in this case. The

same is true for Nd atoms, where sum rules underestimate spin angular momentum by 50%

and orbital by about 20%, but the total angular momentum shows a good agreement between

these two methods.

To this day, among all the lanthanide atoms we studied, the DFT calculations were carried

out only for Nd atoms on freestanding graphene [102]. The obtained value for spin angular

momentum, 〈Sz〉 = 1.84 is only a little larger than the value we obtained from multiplet

calculations, and the main difference originates from the value of orbital angular momentum,
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〈Lz〉 = 2.58, which is greatly underestimated by DFT calculations.
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6 Co atoms on hexagonal boron nitride

In addition to lanthanide atoms on decoupling layers, we investigated one transition metal

atom, Co. We investigated its magnetic properties on h-BN. A free Co atom has a large orbital

momentum. If this momentum remains preserved upon adsorption on the h-BN surface,

this could result in a large magnetic anisotropy. In this Chapter, we present the results of the

combined XMCD and multiplet studies for Co atoms on h-BN/Ru(0001) and h-BN/Ir(111).

Work contribution. As part of a team led by Dr. Stefano Rusponi, I contributed to all XMCD

measurements presented in this Chapter. Further, I carried out the data analysis and multiplet

calculations.

6.1 Co on h-BN

As already discussed in Section 4.5, h-BN is a two-dimensional material, isostructural to

graphene. However, unlike graphene, it is a wide band gap insulator, with a gap of about

6 eV [98]. Growing h-BN on supporting substrates results in a moiré superstructure whose

properties depend on the interaction between the h-BN layer and the underlying substrate.

The weak interaction of h-BN with Ir(111) results in their large mean separation of 3.13 Å, and

a weak corrugation of the h-BN layer of 0.35 Å [101]. The interaction with Ru(0001) is strong,

resulting in a smaller mean distance, 2.75 Å, and a greater corrugation of the h-BN layer of

about 1.5 Å [100].

The interaction of a decoupling layer with the underlying metal surface can greatly influence

the magnetic properties of adsorbed atoms, as is the case for Co atoms on graphene [108]. To

investigate whether the same is true for Co atoms on h-BN, we investigated their magnetic

properties on h-BN/Ru(0001) and h-BN/Ir(111).
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6.1.1 Co on h-BN/Ru(0001)

To investigate the magnetic properties of Co on h-BN/Ru(0001), we deposited Θ= 0.008 ML of

Co on a freshly prepared h-BN/Ru(0001) surface. Subsequently, we acquired the XAS, XMCD

and XMLD spectra, as well as the magnetization curves at normal and grazing incidence at Co

L2,3 edges shown in Figure 6.1(a-d).

The XAS and XMCD spectra of Co atoms are characterized by pronounced features at L3 edge,

notably peaks at 777 eV and 778.9 eV, whereas a broad featureless L2 edge is present in XAS,

and absent in XMCD spectra (Figure 6.1(a,b)). The presence of multiplet features at the Co

L3 edge indicates a weak hybridization of Co 3d orbitals with h-BN surface, and their high

degree of localization. These spectra are characteristic of Co 3d 8 occupancy [108, 109]. The

3d 9 occupancy can be excluded as the Co XAS spectra for this configuration are characterized

by a single peak at the L3 edge [110]. Similar weak hybridization has also been observed for

Co atoms on other decoupling substrates [8, 108, 111–113] and alkali metal films [109].

The long tail present at the right side of the L3 edge in XAS spectra does not have its counterpart

in XMCD spectra. This suggests that, in addition to magnetic Co atoms, there are one or more

Co species with no or almost no net magnetization [113] present at the h-BN/Ru(0001) surface,

possibly Co contaminated with hydrogen atoms. For Co atoms on h-BN/Rh(111), it has been

demonstrated that the adsorption of one or two hydrogen atoms on a single Co atom can

result in the strong reduction of the magnetic moment due to the distortion of the crystal field

or Kondo effect, respectively [114].

The higher intensity of the XMCD spectra in normal with respect to grazing incidence of

x-rays indicates an out-of-plane easy magnetization axis for Co atoms on this surface. The

paramagnetic behavior of both normal and grazing magnetization curves (Figure 6.1(d))

indicates lifetime of seconds or less. In addition, the magnetization curves indicate a weak

magnetic anisotropy of this system.

Experimental linear XAS spectra, which was used to obtain XMLD spectra shown in Fi-

gure 6.1(c), had only a partial overlap with the background spectra we acquired prior to

deposition of Co atoms. Hence, the process of subtracting a polynomial background may

have affected the spectral features. As a result, the only feature that should be retained is the

variation of XMLD with the magnetic field. As it can be seen, the intensity of XMLD is larger at

B = 0.05 T than at B = 6.8 T.

To this day, the adsorption site of Co atoms on h-BN/Ru(0001) has not been determined

experimentally. Thus, we used multiplet calculations to gain an insight into the electronic

properties of this system as a function of the local environment generated by the possible

adsorption site. The DFT calculations performed for Co atoms on freestanding h-BN found

a hollow adsorption site for these atoms [114–116]. The same adsorption site was found by

DFT for Co atoms adsorbed on h-BN/Ni(111) [116]. Hence, we started our calculations by

considering hollow adsorption site for Co atoms on h-BN/Ru(0001).
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Figure 6.1 – (a-d) Experimentally acquired XAS, XMCD and XMLD spectra, as well as magne-
tization curves of Θ= 0.008 ML Co on h-BN/Ru(0001). Magnetization curves were acquired
by measuring the XMCD signal at 777 eV as a function of the magnetic field. This peak is
indicated by the green arrow in (b). The black arrow points to the peak at 778.9 eV. (Tdep = 4 K,
T = 2.5 K; (a,b) B = 6.8 T, (d) φ = 13φ0, with φ0 = 0.003 photons nm−2 s−1, Ḃ = 33 mT s−1).
(e-h) XAS, XMCD and XMLD spectra, as well as magnetization curves resulting from multiplet
calculations for Co atoms in the C3v CF of h-BN/Ru(0001) surface.
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Multiplet calculations were performed using the point charge crystal field scheme, whose

planar representation is shown in Figure 6.2. It consists of negative charges placed at positions

of nitrogen atoms, and positive charges placed at positions of boron atoms of h-BN hexagonal

ring. In addition, there is small positive charge in the middle of this hexagonal ring. In

calculations, Co atoms were assumed to be adsorbed in the center of this hexagonal ring. This

adsorption site generates a three-fold symmetric C3v crystal field to the adsorbed Co atoms.

The exact geometry and strength of employed point charges are given in Appendix A.
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Figure 6.2 – Planar representation of the point charge crystal field employed in the multiplet
calculations for Co atoms on h-BN/Ru(0001). The blue circles represent negative and red
positive charge. The exact geometry and strength of depicted charges are given in Appendix A.

In addition to the hollow adsorption site, we performed a series of multiplet calculations for

adsorption of Co atoms on top of the negatively charged nitrogen ion. This adsorption site

was considered since Co atoms show a tendency to adsorb on negatively charged atomic sites,

such as on the negatively charged oxygen ions of MgO [8, 117]. Nevertheless, these simulations

did not reproduce the experimental spectra as well as simulations for the hollow adsorption

site did. Hence, in the following, only the simulations obtained for the hollow adsorption

site are considered. The XAS, XMCD and XMLD spectra, as well as magnetization curves,

resulting from multiplet calculations are shown in Figure 6.1, together with their experimental

counterparts.

Overall, the simulations of XAS and XMCD reproduce the experimental spectra well and

confirm the 3d 8 electronic occupation of Co atoms. In particular, multiplet features of XAS

and XMCD spectra are well reproduced (Figure 6.1(e,f)), apart from the long tail of L3 edge. As

mentioned before, this tail originates from Co species with vanishing magnetic moment which

were not considered in our calculations. These additional Co species are also responsible for

the dissimilar ratios of intensities between Co XAS and XMCD spectra obtained for experiment

and simulation. Nevertheless, our simulations reproduce the higher intensity of XMCD in

normal incidence of x-rays, and hence an out-of-plane easy magnetization axis of Co atoms
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on h-BN/Ru(0001). The trend in XMLD spectra is also reproduced, showing higher intensity of

XMLD for B = 0.05 T with respect to B = 6.8 T. Finally, the simulated magnetization curves are

also well reproduced.

Using the information on the occupancy and hence the number of holes in Co 3d orbitals

gained from multiplet calculations, nh = 2, we performed sum rule analysis for the experimen-

tally acquired XAS and XMCD spectra, as well as for the simulated ones, to obtain effective spin

(mSe f f ) and orbital (mL) magnetic moments for Co atoms on h-BN/Ru(0001). The effective

spin magnetic moment resulting from sum rules is comprised of both spin magnetic moment

and spin dipole magnetic moment, as with this technique it is not possible to determine

their contributions independently. Further, we calculated the ratio of the orbital and effective

spin magnetic moments, mL/mSe f f . This ratio is obtained without the assumption of nh and

considers the XMCD spectra only [109]. The obtained values are given in Table 6.1.

Table 6.1 – Effective spin and orbital magnetic moments of Co atoms on h-BN/Ru(0001),
resulting from sum rule analysis of experimental and simulated XAS and XMCD spectra using
nh = 2; the values are expressed in μB .

θ = 0◦ θ = 60◦

sum rules
mSe f f 1.0±0.1 0.9±0.1
mL 0.7±0.1 0.6±0.1
mL/mSe f f 0.67 0.67

multiplet calc.
mSe f f 2.21 1.98
mL 1.81 1.60
mL/mSe f f 0.82 0.81

In comparison with the values obtained for simulated spectra, the magnetic moments obtai-

ned for experimental spectra are rather low. For instance, for normal incidence of x-rays, the

obtained values for experimental spectra are mSe f f (E) = (1.0±0.1) μB and mL(E) = (0.7±0.1) μB .

These values are over two times smaller than the values obtained for respective simulated

spectra. This discrepancy could be attributed to a significant proportion of the nonmagnetic

Co species on the h-BN surface, which would reduce the overall effective spin and orbital

moments of the Co ensemble. The ratio of orbital and spin effective moment depends only

on the XMCD spectrum. Therefore, only the magnetic Co species contribute to its value. As a

result, the mL/mSe f f values show much better matching between experiment and simulation.

For both incidences of x-rays, the experimental mL/mSe f f values are less than 20% smaller

than the ones obtained for simulations.

Multiplet calculations reveal that a large part of the orbital momentum of free Co atoms

(L = 3 in 3d 8 configuration) is preserved upon adsorption of these atoms on the h-BN surface,

resulting in orbital magnetic moment of mL(S) = 1.81 μB in normal incidence. This confirms a

weak hybridization of Co atoms with h-BN/Ru(0001).
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6.1.2 Co on h-BN/Ir(111)

With the aim of investigating the magnetic properties of Co on h-BN/Ir(111), we deposi-

ted Θ= 0.005 ML of Co on a clean h-BN/Ir(111) surface. The experimentally acquired XAS,

XMCD and XMLD spectra, as well as magnetization curves at Co L2,3 edges are shown in

Figure 6.3(a-d).

Similar to Co atoms on h-BN/Ru(0001), XAS and XMCD spectra of Co atoms on h-BN/Ir(111)

are characterized by multiplet features in their L3 edge, with peaks at 777 eV and 778.9 eV,

indicating the highly localized nature of their 3d orbitals. The long tail of the XAS L3 edge,

seen in the case of Co on h-BN/Ru(0001), is less pronounced (Figure 6.3(a)). The Co L2 edge is

present only in XAS spectra and it lacks a multiplet structure.

The XMCD spectra acquired in normal and grazing incidence of x-rays have equal intensities

(Figure 6.1(b)), indicating a lack of magnetic anisotropy for Co atoms on h-BN/Ir(111) and

no preferential direction of the magnetization. This is furthermore corroborated by the

magnetization curves (Figure 6.3(d)) which show identical paramagnetic behavior for the two

incidence angles of x-rays.

Since the acquired XAS and XMCD spectra of Co on h-BN/Ir(111) look similar to those of Co on

h-BN/Ru(0001), it is safe to assume the same adsorption site and electronic configuration in

these two cases. We performed multiplet calculations assuming 3d 8 electronic configuration

and using the point charge crystal field scheme shown in Figure 6.2 as a starting point in our

simulations. As it turned out, the charge configuration that gave the best results was very

similar to the one for Co on h-BN/Ru(0001). The only difference between these two cases is

the vertical position of the central positive charge. In the case of h-BN/Ir(111), this charge is

0.1 Å further from the Co atom than in the case of h-BN/Ru(0001). The exact geometry and

strength of employed point charges are given in Appendix A. The spectra and magnetization

curves resulting from our simulations are shown with their experimental counterparts in

Figure 6.3.

The simulated XAS and XMCD spectra reproduce the multiplet features observed in the expe-

rimental spectra well (Figure 6.3(e,f)). However, in our simulations, we were unable to entirely

reproduce the isotropy of the XMCD spectra, which is also reflected in the small anisotropy

shown by the simulated magnetization curves (Figure 6.3(h)). In addition, we were unable

to reproduce experimental ratios between Co XAS and XMCD spectra. Similar to the case of

h-BN/Ru(0001), this can be ascribed to additional Co species on the h-BN/Ir(111) surface with

vanishing magnetic moment. The simulated XMLD spectra shown in Figure 6.3(g) capture

the trend in XMLD intensity observed in experimental spectra, with the XMLD intensity at

B = 6.8 T being larger than the one at B = 0.05 T. This is opposite to the case of Co atoms on

h-BN/Ru(0001).

To obtain the effective spin and orbital magnetic moments, we applied sum rules to both

experimental and simulated XAS and XMCD spectra. The obtained values, together with their
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Figure 6.3 – (a-d) Experimentally acquired XAS, XMCD and XMLD spectra, as well as mag-
netization curves of Θ= 0.005 ML Co on h-BN/Ir(111). Magnetization curves were acquired
by measuring the XMCD signal at 777 eV as a function of the magnetic field. This peak is
indicated by the green arrow in (b). The black arrow points to the peak at 778.9 eV (Tdep = 4 K,
T = 2.5 K; (a,b) B = 6.8 T, (d) φ= 12φ0, Ḃ = 33 mT s−1). (e-h) XAS, XMCD and XMLD spectra,
as well as magnetization curves resulting from multiplet calculations for Co atoms in the C3v

CF of h-BN/Ir(111) surface.
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ratios, are given in Table 6.2. Peculiarly, despite the differences in the experimental spectra

between Co on h-BN/Ru(0001) and h-BN/Ir(111), the values obtained from sum rules for these

experimental spectra are, within the error bars, the same. The values obtained for simulated

spectra are also comparable to those for simulated spectra of Co atoms on h-BN/Ru(0001).

Hence, in this case as well, the effective spin and orbital magnetic moments obtained for the

experimental spectra are relatively small in comparison to the ones obtained from simulated

spectra. This could also be ascribed to the Co species with vanishing magnetization, which

contribute to the experimental XAS but not to XMCD spectra, and would reduce the overall

magnetic moments of the investigated Co ensemble.

Table 6.2 – Effective spin and orbital magnetic moments of Co atoms on h-BN/Ir(111), re-
sulting from sum rule analysis of experimental and simulated XAS and XMCD spectra nh = 2;
the values are expressed in μB .

θ = 0◦ θ = 60◦

sum rules
mSe f f 1.0±0.2 1.0±0.2
mL 0.6±0.1 0.7±0.1
mL/mSe f f 0.67 0.67

multiplet calc.
mSe f f 2.17 2.01
mL 1.77 1.62
mL/mSe f f 0.82 0.81

6.2 Discussion

The observed multiplet features Co atoms suggest their low hybridization with the h-BN

surface and the preservation of the atomic character of their electronic states. This is further

supported by the sum rule analysis of their XAS and XMCD spectra which reveals unquenched

orbital momenta for these atoms. The analysis of experimental spectra in normal incidence

reveals comparable orbital magnetic moments for Co atoms on both h-BN/Ru(0001) and

h-BN/Ir(111) of about mL(E) = 0.7 μB . In addition, the analysis of simulated spectra indicates

that the preserved orbital momentum could be even larger. In the case of experimental

spectra, the additional Co species with vanishing magnetization greatly reduce the overall

magnetic moment of the ensemble, which is not taken into account in simulations. The

preservation of orbital momenta in Co atoms did not result in a large magnetic anisotropy

for these atoms on h-BN. Their adsorption in the hollow site of the h-BN lattice, and the

surrounding alternating positive and negative charges placed on the positions of boron and

nitrogen atoms, respectively, did not result in the strong uniaxial bond which would promote

large magnetic anisotropy in Co atoms.

In the case of graphene grown on supporting substates, changing the supporting metal surface

greatly influences both adsorption site and magnetic properties of Co adatoms on grap-

hene [108]. In particular, for strongly interacting graphene/Ru(0001) system, Co atoms adsorb

on top of carbon atoms, resulting in an out-of-plane easy axis with large magnetic anisotropy.

102



6.2. Discussion

In the case of weakly interacting graphene/Ir(111) system, Co atoms adsorb in hollow sites of

the graphene lattice, resulting in an in-plane easy axis and lower magnetic anisotropy. In con-

trast, the interaction of h-BN with the supporting metal substrate does not have such a great

effect on the adsorbed Co atoms. Both in the case of strongly interacting h-BN/Ru(0001) and

weakly interacting h-BN/Ir(111) systems, our multiplet calculations suggest the adsorption of

Co atoms in the hollow site. In the case of h-BN/Ru(0001), this site results in an out-of-plane

easy axis of Co with a weak magnetic anisotropy, whereas in the case of h-BN/Ir(111), the

magnetic moment of Co atoms is isotropic. The small difference in the crystal field caused

by the change of supporting metal substrate from Ru(0001) to Ir(111) is further emphasized

by the point charge crystal field we used to simulate the experimental spectra of Co atoms in

these two cases. They only differ in the position of the small charge of q = 0.27 e, which is in

the case of h-BN/Ir(111) 0.1 Å further away from the Co atom.
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Figure 6.4 – Zeeman diagram of the Co magnetic levels between B = 0 T and B = 7 T for these
atoms on (a) h-BN/Ir(111) and (b) h-BN/Ru(0001). All states are labeled with the following
notation: |Sz ,Lz〉.

Cobalt atoms on both h-BN/Ru(0001) and h-BN/Ir(111) show paramagnetic behavior in their

magnetization curves, indicating a magnetic lifetime of order of seconds or less on these

substrates. Our multiplet calculations indicate a very small barrier for the magnetization

reversal of Co atoms. In the case of Co on h-BN/Ir(111), we obtained the 〈Sz〉 = 0 ground

state, with the excited doublet 〈Sz〉 = ±0.8 only 0.14 meV above the ground state. For this
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system, the ground state singlet is not compatible with magnetic bistability. In the case of Co

on h-BN/Ru(0001), its ground state doublet 〈Sz〉 =±0.8 would be compatible with magnetic

bistability; however, the 〈Sz〉 = 0 state is only 0.4 meV higher in energy. This effective barrier is

very small and at the measurement temperature of T = 2.5 K no magnetic stability is expected

for Co atoms on this surface. The resulting energy level diagrams for these two systems are

shown in Figure 6.4.
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Conclusion and outlook

The aim of the work presented in this thesis was to study the underlying interactions and

conditions governing the magnetic stability in surface supported atoms, and, ultimately, to

achieve the long magnetic lifetime in such systems. Further, we investigated the moiré pattern

of graphene/Ir(111) surface as a template for the self-assembly of single atom magnets.

The first step towards achieving magnetic stability in surface supported atoms is decoupling

them from the metallic substrate to minimize the scattering with electrons and phonons. This

step, although necessary, is not sufficient to achieve the desired long magnetic lifetimes as the

key role is played by the crystal field and its symmetry, imposed to the atom’s magnetic levels

by the adsorption site on the chosen decoupling surface.

On the surface of graphene, the investigated lanthanide atoms adsorb in its hollow site. This

generates a six-fold symmetric crystal field environment to the adsorbed atoms. Throughout

our analysis, we established that the graphene surface provides each of these atoms with

a unique crystal field environment. This is in contrast to lanthanide molecular magnets,

where replacing one lanthanide ion with another does not cause the redistribution of crystal

field charges, but rather rescales them [118]. Further, the interaction between lanthanide

atoms and graphene leads to two different electronic configurations, namely divalent 4 f n and

trivalent 4 f n−1. Lanthanide atoms on graphene are predominantly found in their divalent

configuration, and, among the studied atoms, only Tb is found in its trivalent configuration.

We established that, on substrates with low DOS at EF like graphene, the 4 f occupation of

lanthanide atoms follows the trend in their atomic correction energy, given by the sum of

the f −d promotion energy and the intershell coupling energy. For Tb, this value is about

three times smaller than for other investigated lanthanide atoms [104]. Hence, unlike the

other atoms, Tb readily promotes one electron from the inner 4 f into the outer spd shell

and assumes a trivalent configuration. The 4 f occupation of divalent lanthanide atoms is

readily changed by the change in their coordination. An increase in the coordination, either

via cluster formation or attachment of contaminants leads to the promotion of the trivalent

configuration. This was especially important while performing experiments, as contamination

during sample preparation or prolonged exposure to the residual gas of the UHV environment

lead to erroneous measurements.

The magnetic stability of lanthanide atoms is governed by their quantum level structure,
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in particular their ground state and the height of the energy barrier required for thermally

assisted magnetization reversal, Urev. As a general rule, this barrier is much smaller than the

total zero field splitting of the Jz levels in the crystal field as coupling among these levels,

induced by the transverse crystal field parameters, facilitates magnetization reversal either

via QTM or through spin scattering with electrons and phonons of the substrate. We have

established that, in the C6v symmetry, for both integer and non-integer J systems Urev is

limited by the first excited states enabling the thermally assisted QTM.

If Urev is sufficiently large, it will result in a long magnetic lifetime. Among the studied atoms

on graphene/Ir(111), Dy atoms show the largest Urev of 5.6 meV. This resulted in their magnetic

lifetime of about 1000 s at 2.5 K. Ho atoms, with Urev of 4.2 meV, have an estimated lifetime

of about 1.2 s; however, due to the experimental restrictions, this lifetime is too short to be

observed in our measurements. All other systems have smaller Urev and shorter lifetimes.

The interaction of graphene with the supporting substrate greatly influences the splitting of the

magnetic levels of an adsorbed atom, and consequently its magnetic lifetime, by altering the

surrounding crystal field. Replacing weakly coupled graphene/Ir(111) with strongly hybridized

graphene/Ru(0001) completely quenches the magnetic lifetime and hysteresis of adsorbed Dy

atoms. In the case of weakly bound HOPG, a small variation in crystal field sufficiently reduces

Urev to quench the remanence, whereas hysteresis still persists in the magnetization curve.

The magnetic lifetime is in addition strongly affected by the doping of the supporting substrate.

Based on the characteristics of acquired hysteresis, graphene/Ir(111) and graphene/Cu provide

comparable crystal field environments to the adsorbed Dy atoms. However, the n-doping

of graphene/Cu surface is larger and provides more scattering events, resulting in shorter

lifetime over the entire area of hysteresis for Dy atoms on this surface. The question of

magnetic remanence for this system, due to the inability to unambiguously interpret its

hysteresis around B = 0 T, is still open and it requires further measurements.

Large electronic screening from the metallic substrate, if not accompanied with an appropriate

crystal field symmetry, will not result in long magnetic lifetime of adsorbed atoms. h-BN

provides a superior electronic screening with its band gap of about 6 eV [98]. However, it

also provides a lower, C3v crystal field symmetry which enables magnetization reversal with a

single scattering event. As a consequence, no magnetic remanence or hysteresis is observed

for Dy atoms on this surface. Likewise, such superior decoupling did not result in a long

magnetization lifetime for Co atoms, where it generally results in a small magnetic anisotropy,

regardless of the substrate upon which h-BN is grown.

Dy single atom magnets can be ordered into a regular pattern using the moiré superstructure

of the graphene/Ir(111) surface as a template for their self-assembly. When deposited on a

surface kept at a temperature between 30 and 50 K, Dy atoms form a well-ordered superlattice.

Their separation is given by the periodicity of the moiré superstructure and it amounts to

about 2.5 nm. Dy atoms in these superlattices have identical magnetic properties to those in

disordered systems, proving that they indeed are non-interacting. To this day this represents
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the only known example of a superlattice of single atomic magnets.

The magnetic lifetime studied in this work is commonly referred to as spin-lattice relaxation

time, T1, and it marks the time needed for a system to relax to its steady state population, given

by the thermal distribution at a given temperature. In addition to T1, there is another relaxation

time of importance, called phase coherence time, T2. T2 refers to the lifetime of a superposition

of quantum states and its value is bound by T1, T2 ≤ T1 [119]. This value is of particular

importance in quantum computing as it limits the available time for computation. In case

of surface supported atoms, to this day, T2 has only been measured for Fe atoms adsorbed

on MgO/Ag(100) [120] by employing electron paramagnetic resonance (EPR) spectroscopy.

Considering the long T1 of Dy atoms on graphene/Ir(111), it would be of great interest to

measure their value of T2 time.
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A Crystal field parameters

In this appendix the parameters of point charge crystal fields used in multiplet calculations

for transition metal and lanthanide atoms on supporting substrates are given.

Table A.1 – Point charge CF scheme employed in multiplet calculations for Dy on graphe-
ne/Ir(111).

x (Å) y (Å) z (Å) q (e)
+0.00 +0.000000 -2.0 +0.13
+1.4 +0.000000 -2.0 -0.22
-1.4 -0.000000 -2.0 -0.22
+0.7 +1.212436 -2.0 -0.22
+0.7 -1.212436 -2.0 -0.22
-0.7 +1.212436 -2.0 -0.22
-0.7 -1.212436 -2.0 -0.22
+2.8 +0.000000 -2.5 +0.09
-2.8 -0.000000 -2.5 +0.09
+1.4 +2.424871 -2.5 +0.09
+1.4 -2.424871 -2.5 +0.09
-1.4 +2.424871 -2.5 +0.09
-1.4 -2.424871 -2.5 +0.09
+2.8 +2.424871 -2.5 -0.01
+2.8 -2.424871 -2.5 -0.01
+3.5 +1.212436 -2.5 -0.01
+3.5 -1.212436 -2.5 -0.01
+0.7 +3.637307 -2.5 -0.01
+0.7 -3.637307 -2.5 -0.01
-0.7 +3.637307 -2.5 -0.01
-0.7 -3.637307 -2.5 -0.01
-2.8 +2.424871 -2.5 -0.01
-2.8 -2.424871 -2.5 -0.01
-3.5 +1.212436 -2.5 -0.01
-3.5 -1.212436 -2.5 -0.01
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Table A.2 – Point charge CF scheme employed in multiplet calculations for Dy on h-BN/Ir(111).

x (Å) y (Å) z (Å) q (e)
+0.000 +0.000000 -2.25 +2.8
+1.450 +0.000000 -2.25 -2.7
-0.725 -1.255737 -2.25 -2.7
-0.725 +1.255737 -2.25 -2.7
-1.450 +0.000000 -2.25 +0.1
+0.725 -1.255737 -2.25 +0.1
+0.725 +1.255737 -2.25 +0.1

Table A.3 – Point charge CF scheme employed in multiplet calculations for Nd on graphe-
ne/Ir(111).

x (Å) y (Å) z (Å) q (e)
1.4 0 -0.5 -0.025
-1.4 0 -0.5 -0.025
0.7 1.212436 -0.5 -0.025
0.7 -1.212436 -0.5 -0.025
-0.7 1.212436 -0.5 -0.025
-0.7 -1.212436 -0.5 -0.025

Table A.4 – Point charge CF scheme employed in multiplet calculations for Ho on graphe-
ne/Ir(111).

x (Å) y (Å) z (Å) q (e)
0 0 -2 -0.05

1.4 0 -2.5 -0.12
-1.4 0 -2.5 -0.12
0.7 1.212436 -2.5 -0.12
0.7 -1.212436 -2.5 -0.12
-0.7 1.212436 -2.5 -0.12
-0.7 -1.212436 -2.5 -0.12

0 1.4 -1.07 0.25
0 -1.4 -1.07 0.25

1.212436 0.7 -1.07 0.25
-1.212436 0.7 -1.07 0.25
1.212436 -0.7 -1.07 0.25
-1.212436 -0.7 -1.07 0.25
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Table A.5 – Point charge CF scheme employed in multiplet calculations for Er on graphe-
ne/Ir(111).

x (Å) y (Å) z (Å) q (e)
0 0 -1.3 -0.0235

1.4 0 -2.0 0.01
-1.4 0 -2.0 0.01
0.7 1.212436 -2.0 0.01
0.7 -1.212436 -2.0 0.01
-0.7 1.212436 -2.0 0.01
-0.7 -1.212436 -2.0 0.01

0 1.4 -1.5 -0.002
0 -1.4 -1.5 -0.002

1.212436 0.7 -1.5 -0.002
-1.212436 0.7 -1.5 -0.002
1.212436 -0.7 -1.5 -0.002
-1.212436 -0.7 -1.5 -0.002

Table A.6 – Point charge CF scheme employed in multiplet calculations for Tb on graphe-
ne/Ir(111).

x (Å) y (Å) z (Å) q (e)
0 0 -1.5 -0.017

1.4 0 -1.5 0.034
-1.4 0 -1.5 0.034
0.7 1.212436 -1.5 0.034
0.7 -1.212436 -1.5 0.034
-0.7 1.212436 -1.5 0.034
-0.7 -1.212436 -1.5 0.034

Table A.7 – Point charge CF scheme employed in multiplet calculations for Co on
h-BN/Ru(0001).

x (Å) y (Å) z (Å) q (e)
+0.725 +1.255737 -2.5 -2.8
+0.725 -1.255737 -2.5 -2.8
-1.450 +0.000000 -2.5 -2.8
+1.450 +0.000000 -2.5 2.8
-0.725 -1.255737 -2.5 2.8
-0.725 +1.255737 -2.5 2.8
+0.000 +0.000000 -2.9 0.27
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Table A.8 – Point charge CF scheme employed in multiplet calculations for Co on h-BN/Ir(111).

x (Å) y (Å) z (Å) q (e)
+0.725 +1.255737 -2.5 -2.8
+0.725 -1.255737 -2.5 -2.8
-1.450 +0.000000 -2.5 -2.8
+1.450 +0.000000 -2.5 2.8
-0.725 -1.255737 -2.5 2.8
-0.725 +1.255737 -2.5 2.8
+0.000 +0.000000 -3.0 0.27
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B Tunnel splitting Δ7,−8 for Dy on grap-
hene/Ir(111)

In Section 3.5, we reported the estimated tunnel splitting between levels Jz =±7 and Jz =∓8 at

B =±2.7 T, Δ±7,∓8 in case of Dy atoms on graphene/Ir(111) from the Landau-Zener model [83,

84]. Here we present the full calculation.

From the Landau-Zener formula, shown in Section 3.5, the tunnel splitting can be expressed

in the following way:

Δ=
√
−ln(1−P )

π

√
2�gμB |Jz − Jz ′ |Ḃz . (B.1)

The following values are used in calculation:

μB = 5.79×10−5 eV/T

�= 6.58×10−16 eV s

Ḃz = 0.033 T/s

|Jz − Jz ′ | = 15.

The Landé factor can be calculated from the following formula [18]:

g = 3

2
+ S(S+1)−L(L+1)

2J (J +1)
(B.2)

where moments for divalent Dy atoms are used, J = 8, L = 6 and S = 2. This gives g = 1.25.

The tunneling probability P between Jz =±7 and Jz =∓8 levels can be estimated from the

height of the corresponding step in the Dy magnetization curve. Figure B.1 shows the step at

B =−2.7 T where levels Jz =−7 and Jz = 8 cross. The height h1 in Figure B.1 is proportional to

the total number of spins that are available for tunneling before the level crossing, while h2 is

proportional to the number of spins that have tunneled at the level crossing. The ratio of these

two values gives their tunneling probability, P = 0.71. Hence, the tunnel splitting between
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levels Jz =±7 and Jz =∓8 at B =±2.7 T resulting from Equation B.1 is Δ±7,∓8 = 1.4×10−7 meV.

Note that, due to an unintentional error made in calculation, this value differs form the one

reported in [121].
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Figure B.1 – The magnetic hysteresis of Dy atoms on graphene/Ir(111) for magnetic fields
between B =−6.8 T and B = 0 T. h1 marks the height of the normalized magnetization before
the step, while h2 marks the height of the step in the hysteresis.
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[65] R. Brako, D. Šokčević, P. Lazić, and N. Atodiresei. Graphene on the Ir(111) surface: from

van der Waals to strong bonding. New J. Phys. 12, 113016 (2010).

[66] A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely. Two-Dimensional Ir Cluster

Lattice on a Graphene Moiré on Ir(111). Phys. Rev. Lett. 97, 215501 (2006).

[67] A. T. N’Diaye, J. Coraux, T. N. Plasa, C. Busse, and T. Michely. Structure of epitaxial

graphene on Ir(111). New J. Phys. 10, 043033 (2008).
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Patthey, E. Fernandes, J. Dreiser, Ž. Šljivančanin, K. Kummer, C. Nistor, P. Gambardella, and H.

Brune, Magnetic remanence in single atoms, Science 352, 318-321 (2016).

C. Wäckerlin, F. Donati, A. Singha, R. Baltic, S. Rusponi, K. Diller, F. Patthey, M. Pivetta, Y. Lan,

S. Klyatskaya, M. Ruben, H. Brune and J. Dreiser, Giant Hysteresis of Single-Molecule Magnets

Adsorbed on a Nonmagnetic Insulator, Advanced Materials 28, 5195-5199 (2016).

A. Singha, F. Donati, C. Wäckerlin, R. Baltic, J. Dreiser, M. Pivetta, S. Rusponi, and H. Brune,

Magnetic hysteresis in Er trimers on Cu(111), Nano Letters 16, 3475 (2016).

C. Wäckerlin, F. Donati, A. Singha, R. Baltic, A.-C. Uldry, B. Delley, S. Rusponi and J. Dreiser,

Strong antiferromagnetic exchange between manganese phthalocyanine and ferromagnetic

europium oxide, Chem. Commun. 51 12958 (2015).

127



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


