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All we have to believe with is our senses, the tools we use to perceive the world: our sight, our

touch, our memory. If they lie to us, then nothing can be trusted. And even if we do not

believe, then still we cannot travel in any other way than the road our senses show us; and we

must walk that road to the end.

American Gods, Neil Gaiman





Abstract
This thesis concentrates on investigating the presence of 3D ideal MHD instabilities, partic-

ularly a saturated 1/1 ideal internal kink, on neoclassical phenomena such as the bootstrap

current and heavy impurity transport. The MHD equilibria are generated using the ideal

MHD equilibrium solver VMEC under free-boundary conditions and is used as a basis for

the neoclassical calculations performed. The bootstrap current and the parallel flows are

examined using the Shaing-Callen 3D neoclassical formulation[Shaing et al., 2015]. The ex-

amination of equilibria with ideal response to 3D perturbations such as toroidal field ripple

and resonant magnetic perturbations (RMPs) is performed. It is found that RMPs and toroidal

ripple produce a weak 3D response leading to a bootstrap current profile indistinguishable

from axisymmetry. Any additional effects are further obscured by the presence of numerical

resonances on q-rational surfaces. It is found, however, that a non-resonant 1/1 ideal inter-

nal kink which avoids the q = 1 resonance, is well-suited for computation of the bootstrap

current density. The bootstrap current is observed to be strongly augmented in the helical

core region of the 1/1 internal kink before returning to match the axisymmetric values in

the near-axisymmetric region outside the helical core. Explanations for the augmentation

of the bootstrap current are provided in an analytical derivation. A similar augmentation is

observed for background ion flows as well, including the presence of a finite poloidal flow.

Heavy impurities such as tungsten face friction because of the impurity particles colliding

with the background ions, and therefore the magnitude of this flow becomes of paramount

importance. The VENUS-LEVIS orbit-following code is used to follow the impurity particles

with additional effects provided by the centrifugal and Coriolis forces while colliding them

in the correct frame of the background ion distribution. This is successfully benchmarked

with known results in neoclassical theory concerning impurity transport. Without flows in

axisymmetry, an on-axis peaked impurity distribution is observed. With flows, an off-axis

peaking of impurities is observed, following known neoclassical expressions. Furthermore,

it is found that the impurity accumulation was strongly increased for the combined case of

helical core with flows, leading again to a near-axis peaked density profile. The results are

compared heuristically with a known peaking formula incorporating the presence of a finite

poloidal flow with toroidal flows, and a reasonable agreement is observed.

Key words: MHD equilibria, Neoclassical theory, Plasma Flows, Bootstrap current, Impurity

transport.
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Résumé
Cette thèse porte sur l’étude d’instabilités MHD 3D idéales, en particulier du mode “internal

kink” 1/1 saturé, et sur des phénomènes néoclassiques tels que le courant de “bootstrap” et

le transport d’impuretés lourdes. L’équilibre MHD est généré en utilisant le code d’équilibre

MHD idéale VMEC et en considérant des conditions aux bords libres. Cet équilibre est utilisé

comme base pour les simulations néoclassiques. Le courant de bootstrap et les flux parallèles

sont examinés en utilisant la formulation 3D néoclassique de [Shaing et al., 2015]. L’étude de

la réponse idéale de l’équilibre à l’application de perturbation 3D telles que des ondulations

du champ toroïdal et de perturbations magnétiques résonantes (RMPs) a été effectuée. Il

s’avère que les RMPs et les ondulations toroïdales conduisent à une faible réponse 3D qui

débouche sur un profile du courant de bootstrap indistinguable du profil axisymétrique. Les

effets supplémentaires sont davantage dissimulés par la présence de résonance numérique

sur les surfaces q rationnelles. En revanche, un mode non-résonant “internal kink” 1/1 évitant

la résonance q = 1 convient au calcul de la densité de courant de bootstrap. On observe que

le courant de bootstrap est fortement accru dans la région hélicoïdale du coeur du mode

“internal kink” 1/1 et est réduit à une valeur égale aux valeurs axisymétriques dans la région

quasi-axisymétrique en dehors du coeur hélicoïdal. Les raisons de cette accroissement du

courant de bootstrap sont fournies dans une dérivation analytique. Une augmentation si-

milaire est également observée pour le flux d’ions d’arrière plan, incluant la présence d’un

flux poloidal fini. Les impuretés lourdes telles que le Tungstène subissent une friction via

leur collision avec les ions d’arrière plan, par conséquent l’importance de ce flux devient

primordiale. Le code de suivi d’orbites VENUS-LEVIS est utilisé pour suivre les impuretés.

Il inclut à présent les effets additionnels de la force centrifuge ou de Coriolis ainsi que les

collisions en considérant une distribution correcte des ions d’arrière-plan. Le nouveau modèle

a été validé avec l’aide de résultats connus de théorie néoclassique traitant de la distribution

des ions d’arrière-plan. Sans flux axisymétrique, un pic dans la distribution des impuretés

sur l’axe est observée. Avec les flux, ce pic est observé en dehors de l’axe, en accord avec les

expressions néoclassiqueMHD Gleichgewichtes établies. De plus, on observe une accumu-

lation d’impuretés fortement augmentée pour le cas combiné du coeur hélicoïdal avec flux,

résultant à nouveau en un profil de densité piqué proche de l’axe. Ces résultats sont comparés

de manière heuristique avec une formule piquée intégrant la présence d’un flux poloïdal fini

avec des flux toroïdaux. Un accord raisonnable est observé.

Mots clefs : équilibre MHD, théorie néoclassique, flux de plasma, courant de Bootstrap, trans-
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Zusammenfassung
Diese Dissertation befasst sich mit der Erforschung von idealen 3D Instabilitäten, insbeson-

dere von gesättigten idealen 1/1 internen Kink-Moden, neoklassischen Phänomenen wie

dem Bootstrap-Strom und Transport, verursacht durch schwere Verunreinigungen. Die MHD

Gleichgewichte werden mit Hilfe des idealen MHD Codes VMEC unter der Bedingung einer frei

beweglichen Plasmaberandung erzeugt. Sie sind die Grundlage für die neoklassischen Berech-

nungen. Der Bootstrap-Strom und die parallelen Strömungen werden anhand der neoklas-

sischen Shaing-Callen 3D Formulierung [Shaing et al., 2015] bestimmt. Eine Untersuchung

von Gleichgewichten mit idealer Reaktion zu 3D Störungen wie toroidale Magnetfeldwellen

(toroidal field ripples) und resonante magnetische Störungen (RMPs) wird durchgeführt. Wir

beobachten, dass RMPs und toroidal field ripples eine schwache 3D Reaktion hervorrufen,

die ununterscheidbar von Axisymmetrie ist. Andere, zusätzliche Effekte werden weiter ver-

schleiert durch die Präsenz von numerischen Resonanzen auf rationalen q Flussoberflächen.

Jedoch wird beobachtet, dass eine nichtresonante ideale 1/1 interne Kink-Mode, die q = 1

Resonanz meidet, gut für die Berechnung der Bootstrap-Stromdichte ist. Es wird beobachtet,

dass der Bootstrap-Strom in der spiralförmigen Region des Plasmakerns der internen 1/1

Kink-Mode stark erhöht ist, bevor die axisymmetrischen Werte in der axisymmetrisch-nahen

Region ausserhalb des spiralförmigen Kerns erreicht werden. Erklärungen für die Erhöhung

des Bootstrap-Stroms werden anhand von analytischen Herleitungen geliefert. Eine ähnliche

Erhöhung wird auch für Hintergrundionen-Strömungen, einschliesslich der Anwesenheit end-

licher poloidialer Ströme, beobachtet. Schwere Verunreinigungen, z.B. Wolfram sind aufgrund

der Kollisionen mit den Hintergrundionen Reibung ausgesetzt und daher ist die Grössenord-

nung dieser Strömung von höchster Wichtigkeit. Der VENUS-LEVIS Code zum Verfolgen von

Teilchenorbits wird verwendet um die Trajektorien der Teilchen der Verunreinigungen nachzu-

vollziehen. Dies geschieht unter Berücksichtigung zusätzlicher Effekte durch die Zentrifugal-

und Corioliskraft während die Teilchen im korrekten Bezugssystem der Hintergrundionen

zusammenstossen. Dies wurde anhand von bekannten Ergebnissen aus der neoklassischen

Theorie hinsichtlich Transport von Verunreinigungen überprüft. Ohne Strömungen in Axi-

symmetrie werden Verunreinigungsverteilungen mit Höchstwert auf der magnetischen Achse

beobachtet. Mit Strömungen befindet sich der Höchstwert der Verunreinigungsverteilung

abseits der magnetischen Achse, gemäss bekannten neoklassischen Ausdrücken. Weiterhin

stellt sich heraus, dass die Ansammlung von Verunreinigungen stark erhöht ist für den Fall

von kombiniertem spiralförmigen Kern mit Strömungen. Dies führt erneut zu einem Dichte-

profil mit Höchstwert nahe der magnetischen Achse. Die Ergebnisse werden verglichen mit

v



einer bekannten heuristischen Formel, die Anwesenheit einer endlichen poloidialen Strö-

mung mit toroidialen Strömungen berücksichtigt und eine angemessene Übereinstimmung

ist vorhanden.

Stichwörter: MHD Gleichgewichte, Neoklassische Theorie, Plasmaströmung, Bootstrap-Strom,

Verunreinigungstransport.
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1 General Introduction

Nuclear fusion will be a viable source of clean energy for the future where energy needs

from alternative sources will become important due to the decrease in availability of fossil

fuels. Additionally fusion also is a solid candidate of a central power source in a power

grid that consists of a hybrid centralized-decentralized power grids. 1 Fusion, as compared

to fission, is different in that it involves fusing smaller nuclear together to form a heavier

nucleus, the mass defect in which is converted to energy. An advantage of fusion over fission

is also the significantly reduced quantities of long-lived nuclear waste. There are several

proposed methods to perform fusion in devices with a controlled release of energy: magnetic-

confinement fusion, electrostatic confinement, inertial fusion, and electromagnetic pinch

approaches[Wikipedia, 2017]. The field in which this thesis is oriented is that of magnetic

confinement - an area of research spanning 70 years. Magnetic-confinement fusion involves

the creation of a magnetic fields in which a high-temperature plasma can be contained and

heated to the point which the collisions among the ions will lead to their fusing. However,

such fusion comes with challenges of its own, particularly the confinement and the heating

of the confined particles. Further challenges come from the design idiosyncrasies of the

machine which add additional complexities to an already difficult problem. We now describe

the current leading machine type for fusion power, i.e. the Tokamak.

1.1 Historical background of 3D tokamaks

For nuclear fusion, the main contenders for reaching net positive energy output today are two

classes of machines: Tokamaks and Stellarators.

Tokamaks are a class of magnetic confinement fusion device that consist of a toroidal magnetic

field coupled with a small poloidal magnetic field to create the confining magnetic fields

necessary for the confinement of plasma. Literally, the word Tokamak is an acronym for the

1Nuclear fusion also is a good candidate of energy and propulsion exhaust for large-sized manned spacecrafts
for long deep-space journeys where starlight does not constitute an adequate source of energy. For the long-term
future of humanity, such spacecrafts will become an absolute necessity.
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Chapter 1. General Introduction

Figure 1.1 – A schematic representation of a tokamak. The D-shaped coils provide the toroidal
magnetic field. The central solenoid (inner poloidal field coil) provides the current drive and
the main poloidal magnetic field. The horizontal circular coils are poloidal coils that help with
the shaping of the plasma. Courtesy of the EUROfusion website.

Russian name of the machine which translates to, ‘Toroidal Chamber with axial magnetic

coils.’ By design, it was intended to confine plasma in an axially-symmetric, or axisymmetric

fashion. However, it was soon realized that the plasma can assume deviations from such a

symmetry, and exhibit magnetic structures in 3D. Such deviations may arise from several

factors. Intrinsically, they may arise from the coil geometry. For example, a toroidal field ripple

exists because the toroidal field coils are discrete and not continuous. 3D deviations in the

core, such as the 1/1 internal kink, arises due to the nature of the field-plasma interaction,

and is intrinsic to the self-organising nature of plasma behaviour and will exist even in perfect

magnetic toroidal symmetry of confining coils. Examples of tokamaks include the Mega-

Ampere Spherical Tokamak (MAST, pictured in Fig. 1.2) and the Joint European Torus (JET,

shown in Fig. 1.3), and the future tokamaks ITER (under construction) and DEMO (design in

progress). Tokamaks have been demonstrated to have good confinement properties, barring

effects causing confinement degradation, such as neoclassical tearing modes, edge localized

modes (ELMs) and disruptions[Wesson and Campbell, 2011].

The second class of machines, called Stellarators, are intrinsically 3D in nature with a sophisti-

cated magnetic coil geometry which leads to the formation of fully-3D magnetic field structure.

The concept of Stellarators was first proposed by Lyman Spitzer in 1951 in an internal Project

Matterhorn report later declassified in 1958[Spitzer, 1958]. By design, such machines do not

face some of the physical limitations of tokamaks such as disruptions, and can automati-

cally operate in steady-state. However, particle confinement and plasma heating capability

2



1.1. Historical background of 3D tokamaks

Figure 1.2 – A visible length photograph of the MAST tokamak. Courtesy of the CCFE website.

Figure 1.3 – A cross-section of the JET vessel with visible length photograph of the JET tokamak
plasma. Courtesy of Wikipedia.
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Chapter 1. General Introduction

Figure 1.4 – A schematic representation of the W7-X stellarator. One can notice the discretized
coils responsible for producing a complex 3D magnetic field geometry. Courtesy of the
EUROfusion website.

is poor for such machines currently, and high-performance has been barely demonstrated.

In this thesis, we do not consider any stellarator application cases. Nevertheless, some 3D

magnetic structures in tokamaks however, such as the 1/1 internal kink, exhibit stellarator-like

properties with reduced plasma performance. The neoclassical physics research of such

magnetic geometries in tokamaks overlaps considerably with the neoclassical physics for

stellarators[Shaing et al., 2015], and is of considerable interest. Examples of stellarators in-

clude the Large Helical Device (LHD) and the Wendelstein 7-X (W7-X, pictured in Fig. 1.4).

Stellarators can in principle operate in steady-state and do not face disruptions. However,

confinement properties are yet to be demonstrated.

In the current thesis, we confine ourselves to the study of tokamaks operating with strongly

3D plasmas. This will include the studying of the effects of the saturated 1/1 internal kink and

other 3D effects on certain properties of the tokamaks such as the bootstrap current and heavy

impurity accumulation.

1.2 Recent Research in 3D Geometry of Plasmas

Both bootstrap current current and impurity transport are inherently neoclassical phenom-

ena, and thus require a treatment that bridges 3D MHD equilibria and neoclassical theory

of non-axisymmetric systems. Neoclassical transport theory is needed, in addition to clas-

sical thermodynamic transport, in order to account for the magnetic field structure in a

tokamak. The curved toroidal and poloidal magnetic fields result in new orbit structures,

such as trapped banana orbits on the low-field side of the machine, which interact with the

“passing” particles resulting in collisional effects which are not accounted for in classical

theory. Such an interaction of trapped and passing orbits is found to have a profound effect

on the plasma behaviour[Hinton and Hazeltine, 1976, Helander and Sigmar, 2005]. Further-

more, the introduction of non-axisymmetric fields in the toroidal direction further adds one

more dimension to all transport processes[Helander, 2014]. The bootstrap current is a self-

generated current in the plasma which occurs because of a small fraction of particles near
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the trapped-passing boundary being released into passing orbits which carry current. For

the bootstrap current, neoclassical theory has been developed in 3D for various collisional

regimes[Shaing et al., 2015], formulae and scalings of which are used as a backbone for our

computations. For impurity transport, it is necessary to model correctly the interaction be-

tween the heavy impurity species and the background ions. In the trace density limit, where

we can safely neglect self-interaction of the impurities, we need a consistent neoclassical

description of the background plasma, i.e. the flows and the fluxes faced by the background

plasma. Neoclassical theory in 3D, and especially the description of background flows, is taken

from existing literature[Helander, 2014, Shaing et al., 2015].

A saturated 1/1 internal kink is an MHD instability that is stable over relatively long periods

of the plasma experiment. Saturated 1/1 internal kinks manifest themselves as Long-Lived

Modes (LLMs) in MAST[Chapman et al., 2010, Chapman et al., 2014], and are also known in-

formally as continuous modes in JET. These modes are expected to be observed in ITER and

other future tokamaks where they will play an important role in plasma operation. In this

thesis, we consider a saturated 1/1 internal kink with a low-shear q-profile which avoids

a resonance at the q = 1 rational surface. Such modes have been shown to exist in Ref.

[Brunetti et al., 2014] and the references therein. Confinement of fast ions generated by neu-

tral beam injection (NBI) has previously been demonstrated to strongly be affected by the 3D

internal kink[Pfefferlé et al., 2014b, Pfefferlé, 2015].

For tokamaks with pressure pedestals near the edge, as found in H-mode operations, the boot-

strap current acquires a large value, significantly reducing the dependence on current drive. In

TCV, operation of the tokamak with 100% bootstrap current has been demonstrated[Coda et al., 2007],

leading to hopes that future tokamaks can achieve high bootstrap-current fractions. This the-

sis investigates the effect of relatively steep pressure gradients in the core region,just outside

of the low q-shear region (and just outside of the 1/1 kinked magnetic field). It is shown that

the helical core can strongly affect the bootstrap current and plasma flows associated with the

steep pressure gradients associated to the 1/1 internal kink.

Another effect observed in plasma experiments with a saturated 1/1 modes with plasma

flow is the increased accumulation of impurities[Graves et al., 2000]. Normally this effect is

weaker in tokamaks with carbon-based walls, and the impurities are usually not in such a

high concentration so as to affect the plasma performance itself. Therefore, charge-exchange

reactions with carbon are often used as a diagnostic to learn about the flows of the background

plasma. However, future tokamaks like ITER and DEMO are designed to have tungsten walls.

Tungsten, possessing a very high number of ionisation states, leads to a drain on the heat of

the core plasma even when present in a relative concentration as 10−3 of the plasma density,

leading to a radiative collapse. In the thesis, we explore the neoclassical physics surrounding

an ideal 1/1 internal kink, plasma rotation and impurity accumulation.

5



Chapter 1. General Introduction

1.3 Outline of the Thesis

The thesis is organized as follows:

In Chapter 2, we provide a detailed description of the physical models that go into the appli-

cations considered. This first includes a description of the equilibrium model in 2D and 3D

with strong toroidal plasma flows, including the limitations of current 3D MHD models with

rotation. Then we describe how the particle orbits can be derived under strong flows using a

guiding-center model that accurately reproduces the conservation properties. Plasma flows

in various orders and of different origins are described as well. These flows can be used for

looking at heavy impurity test-particle interactions with the plasma. A brief description of

the frictional effects of such flows on the heavy impurities is then provided. In regards to the

bootstrap current calculations, the Sauter and Shaing-Callen models are described, the former

being a fit-based approximation valid for axisymmetry and the second being an analytical

approximation valid in both 2D and 3D.

In Chapter 3, we take a detailed look at the bootstrap current in 2D and 2D magnetic field

configurations. As mentioned before, we compare the Sauter[Sauter et al., 1999] and Shaing-

Callen[Shaing and Callen, 1983] models of bootstrap current. The Sauter model is an axisym-

metric numerical approximation and the Shaing-Callen model is a neoclassical model valid

self-consistently for 3D. First examine a near-axisymmetric equilibrium with a strong edge-

pedestal, including small perturbations provided at the edge by RMP coils. We use this case

to benchmark the two models. Then, we investigate the predictions of the two models on a

3D equilibrium with a saturated 1/1 internal kink and provide explanations for the observed

effects. One aim of this chapter is to demonstrate the viability of the non-resonant 1/1 internal

kink as a good candidate for the current thesis.

Chapter 4 is dedicated to a novel investigation into the effect of plasma flows on heavy-

impurity-accumulation in 2D and 3D magnetic fields. We first benchmark the peaking ob-

served in axisymmetry through inclusion of neoclassical effects without flows. Then we

observe the effects of strong plasma flow in an axisymmetric plasma and a plasma with a satu-

rated 1/1 internal kink. We also perform comparisons with known analytic approximations

for the density peaking. This chapter aims to see how a 1/1 internal kink affects impurity

accumulation and provides explanations for impurity accumulation during continuous 1/1

mode activity in tokamaks.

In Chapter 5, we summarize the thesis and provide possible ways to expand on the work

performed in the current thesis.
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2 Equilibrium Theory, Guiding-Center
Orbits and Neoclassical Theory with
Flows
This chapter describes the basic known theory of the physics involved in the thesis. No new

results are shown, and this chapter serves to lay the foundation on which further chapters rest.

Since the basis for work in the thesis is given by the availability of 3D ideal MHD equilibria,

the next section describes a model of 3D equilibria with flow and the constraints faced by 3D

equilibria. Then we describe the guiding-center physics involved in tracking particle orbits

through flowing plasmas. We also describe the neoclassical physics that come in through

particle-background collisions and describe the physics in various collisional regimes of the

plasma. Finally, we explain the two cases where these building blocks form clear applications.

The first is the calculation of the background plasma bootstrap current in the banana regime

(or the
�
ν-collisionless regime). The second application is the effect of background plasma

flows and 3D equilibrium on heavy impurity accumulation.

2.1 Ideal AxisymmetricMHDequilibriumwithZeroth-OrderPlasma

Rotation

We first begin with the set of equations that define the ideal MHD model with flows at equilib-

rium (i.e. ∂/∂t = 0). They are given as follows[Maschke and Perrin, 1980]:

−μ0∇p+ J×B−μ0ρU0, j ·∇U0, j = 0 (2.1)

E+U0, j ×B = 0 (2.2)

∇· (ρU0, j ) = 0 (2.3)

∇·B = 0 (2.4)

∇·E = 0 (2.5)

∇×B = μ0J (2.6)
d

d t

(
ρpΓ

) = 0 (2.7)

B ·∇S j = 0 (2.8)
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where E and B are the electric and magnetic fields respectively, J is the current density, U0, j

is the zeroth-order plasma flow for the species j , p = pi + pe is the total pressure, ρ is the

mass density, and Γ the adiabatic index. Equation (2.1) is the ideal MHD force balance

equation with flows, equation (2.2) is the Ohm’s law under ideal conditions, equation (2.3) is

the continuity equation, equations (2.5) and (2.4) are the Gauss’ laws for electric and magnetic

fields, equation (2.6) is the Faraday law, equation (2.7) is the adiabatic closure expression for

ideal MHD, and finally Eq. (2.8) is the entropy conservation condition, which shows that the

entropy S j is a flux-surface quantity. Together with adiabaticity of the plasma consistent with

kinetic theory[Helander, 2014], this leads to the isothermal condition

B.∇T j = 0, (2.9)

i.e., the temperature remains a flux-surface function, T j ≡ T j (ψ). Using the ideal Ohm’s law

and Faraday’s law, we obtain

∇× (U0, j ×B)= 0, (2.10)

which on expanding and taking the ∇φ component, one obtains

B.∇Uφ =Bφ∇.U+U.∇Bφ. (2.11)

where the superscript index refers to the contravariant representation of the vector fields (and

where the subscript would refer to the covariant representation). In conjunction with the

continuity equation, we find

B.∇Uφ = Bφ

ρ
∇ρ.U+U.∇Bφ. (2.12)

On imposing a toroidal flow of the form U=Uφeφ, we find for axisymmetric conditions, the

terms in the RHS of Eq. (2.12) vanish, and we finally obtain

B.∇Uφ = 0, (2.13)

implying that for axisymmetric toroidal flow, the flow velocity Uφ =Ω(ψ) is a flux-surface

function as well, through which the flow field can be represented as U=Ωeφ =R2Ω∇φ. Using

this flow in the MHD force balance relation, and that Ωeφ.∇Ωeφ =Ω2∇(R2/2), we find

−μ0∇p+ J×B−μ0ρΩ
2R∇R = 0, (2.14)

on taking the parallel component leads to

∂p

∂R

∣∣∣∣
ψ

=−ρΩ2R. (2.15)
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2.1. Ideal Axisymmetric MHD equilibriumwith Zeroth-Order Plasma Rotation
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Figure 2.1 – The surfaces of constant pressure (colourbar in Pa) in the same equilibrium with
and without flow. It can be noticed that the constant pressure surfaces with toroidal flow
shift towards the low field side and do not align with the magnetic flux surfaces (black curves)
anymore. The supersonic Mach number is chosen M 2

) = 10 is chosen for illustrative purposes.

From this, assuming Ti = T = Te , and using p = 2ρT (ψ), one can obtain the pressure to be of

the form

p(ψ,R)= p0(ψ)exp
miΩ(ψ)2R2

4T (ψ)
, (2.16)

i.e., the pressure is composed of a leading-order surface quantity p0(ψ) and a R-dependent

profile correction to account for the flow field. Thus the surfaces of constant pressure are

shifted with respect to the flux-surfaces, as illustrated in Fig. 2.1. Furthermore, the quantity

M 2
0 =

miΩ
2
0R2

0

2T0
=

(
ΩR0

vth

)2

, (2.17)

where vth =
�

2T /mi is the thermal velocity of the background ions, is the Mach number of

the flow.

Now, on taking the ∇ψ component of the force balance equation, we obtain

−μ0∇p.∇ψ+ (∇×B)×B.∇ψ−μ0ρΩ
2R∇R.∇ψ= 0 (2.18)

which on taking the axisymmetric magnetic field in the form B=Bφ∇φ+∇φ×∇ψ reduces to

−|∇ψ|2
{
∇.(|∇φ|2∇ψ)+ μ0

∂p

∂ψ

∣∣∣∣
R
+|∇φ2|Bφ

∂Bφ

∂ψ

}
−(∇R.∇ψ)μ0

{
∂p

∂R

∣∣∣∣
ψ

+ρΩR2

}
= 0. (2.19)
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We can see, from Eq. 2.15, that the coefficient of the∇R.∇ψ term in the Eq. 2.20 is zero, leading

to a Grad-Shafranov equation modified for rotation of the form

∇.(|∇φ|2∇ψ)+ μ0
∂p

∂ψ

∣∣∣∣
R
+|∇φ2|Bφ

∂Bφ

∂ψ
= 0. (2.20)

Since |∇φ| = 1/R, we have

∇.

(∇ψ
R2

)
+ μ0

∂p

∂ψ

∣∣∣∣
R
+ Bφ

R2

∂Bφ

∂ψ
= 0. (2.21)

One can solve the Grad-Shafranov equation to obtain axisymmetric equilibria under some limi-

tations, such as a Solov’ev equilibrium with fixed aspect ratio at the boundary [Maschke and Perrin, 1980].

We do not use a Grad-Shafranov solver to obtain or equilibria, as we use the general 3D equi-

librium code VMEC, described in the next section.

2.2 VMEC and the Variational Formulation with Flows

The Variational Moments Equilibrium Code (VMEC) can be used to obtain a myriad of 2D

and 3D ideal MHD equilibria[Hirshman and Whitson, 1983, Hirshman et al., 1986]. The code

has been successfully used to compute and obtain the fields for an axisymmetric equilibrium

with fixed boundary and free boundary conditions with purely toroidal flows. It has also been

used to compute a 3D equilibrium with a saturated ideal internal kink mode and saturated

external harmonic modes. The fields obtained can be used to develop particle orbits and

study linear stability of ideal MHD modes. This comes at a disadvantage of not being able

to include resistive effects and magnetic structures such as magnetic islands. The advantage

of VMEC, as compared to time-dependent MHD field solvers is that the equilibria converges

very quickly. Therefore, VMEC continues to remain a robust equilibrium solver which delivers

equilibria quickly, which can then be used to study effects of such equilibria on various

physical situations such as fast particle dynamics and neoclassical physics. An example can

be seen in the Fig. (2.2), where a JET-like 3D equilibrium with a strong saturated 1/1 internal

kink mode is shown, with the convergence of a time-invariant m = 1,n = 1 mode can be seen

in the mode-number maps in Fig. (2.3).

We describe the variational MHD model used by VMEC to compute the MHD equilibria and

show its equivalence to the ideal MHD model described in the previous section. This varia-

tional MHD equilibrium model has recently been used to compute axisymmetric equilibria

with toroidal flow[Cooper et al., 2014], and also has been used to compute 3D helical-core

equilibria without flows[Cooper et al., 2015]. It is put in text here as a reference for future

students.
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Figure 2.2 – An example of a JET like helical core equilibrium obtained with VMEC. The
contours are surfaces of constant pressure, and the shade refers to the magnetic field intensity
B . Notice how the axis is helically distorted in comparison to the last closed flux surface.

2.2.1 EquilibriumWithout Flows

To obtain an ideal MHD equilibrium without flows, one starts by varying the MHD free energy

with respect to an artificial time parameter t . The energy functional W is given by

W =
∫∫∫

d sdud v
�

g

(
B 2

2
+ μ0p(s)

Γ−1

)
(2.22)

where (s,u, v) are the radial and angular flux-coordinates varied in VMEC, B is the modulus of

the magnetic field, p ≡ p(s) is the pressure varying only with the radial variable s, and Γ is the

adiabatic index. The coordinates (s,u, v) represent the VMEC magnetic flux coordinates, which

are not straight-field like coordinates. Instead the variables are chosen to provide adequate

resolution in the radial and angular directions to aid spectral decomposition techniques. In

essence, VMEC numerically solves for a 1−1 mapping between (R, Z ,φ) and (s,u, v), and for

that reason v ≡φ. VMEC coordinates are flux-coordinates meaning that the lines of magnetic

field and current lie on the surfaces with constant s.

Because of the form of the adiabatic closure condition on MHD d/d t(pρΓ) = 0, one can

prescribe the pressure to be of the form

p(s)= f (s)

〈 f (s)〉Γ (2.23)
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Figure 2.3 – The mode spectrum for the helical core obtained in Fig. (2.2). The colour scale is
logarithmic with respect to the largest mode-value. One can see that the spectrum is converged
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where the angle brackets 〈〉 represent a flux-surface average 〈 f (s)〉 =∫∫
dud v

�
g f (s). With

this choice of the form of pressure, on varying the energy functional against an artificial time

parameter t , one obtains a first variation of the form

dW

d t
=

∫∫∫
d sdud v

∂

∂t

(�
g B 2

2

)
−μ0

∫
d s

f (s)

〈 f (s)〉Γ
∫∫

dud v
∂
�

g

∂t
. (2.24)

where λ is the generating function which defines the transformation of the angular coordinates

to VMEC coordinates. Firstly, λ̃ is a modified magnetic flux, periodic in u and v , defined as

λ̃(s,u, v)=−Ψ′(s)v +Φ′(s)u+λ(s,u, v) (2.25)

where Ψ′ and φ′ are magnetic potentials, such that the magnetic Gauss’ law ∇·B= 0 can be

satisfied as follows

�
g B u =−∂λ̃

∂v
,
�

g B v = ∂λ̃

∂u
, (2.26)

which implies

�
g B u =Ψ′(s)− ∂λ

∂v
,
�

g B v =Φ′(s)+ ∂λ

∂u
. (2.27)

After the calculation of the derivative terms inside the integral, one can express the first

variation as

dW

d t
= −

∫∫∫
d sdud v

(
μ0FR

∂R

∂t
+μ0FZ

∂Z

∂t
+μ0Fλ

∂λ

∂t

)

−
∫∫

s=1
dud vR

(
μo p+ B 2

2

)(
∂R

∂u

∂Z

∂t
− ∂Z

∂u

∂R

∂t

)
(2.28)

where the second integral is the free-energy term in the boundary. For a chosen fixed-

boundary, the second-term is zero, but for magnetic fields arising from coil specifications, this

is a non-zero term contributing to total variation on the energy functional W . The minimiza-

tion towards an energy state is obtained by advancing

∂R

∂t
=μ0FR ,

∂Z

∂t
=μ0FZ ,

∂λ

∂t
=μ0Fλ, (2.29)

for which the energy functional remains negative definite. The forces μ0FR , μ0FZ and Fλ are

13
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as follows

μ0FR = ∂

∂s

[(
μ0p+ B 2

2

)
R
∂Z

∂u

]
− ∂

∂u

[(
μ0p+ B 2

2

)
R
∂Z

∂s

]

+ ∂

∂u

[�
g B u(B.∇R)

]+ ∂

∂v

[�
g B v (B.∇R)

]
+

�
g

R

[
μ0p+ B 2

2
−R2(B v )2

]
, (2.30)

μ0FZ = ∂

∂u

[(
μ0p+ B 2

2

)
R
∂R

∂s

]
− ∂

∂s

[(
μ0p+ B 2

2

)
R
∂R

∂u

]

+ ∂

∂u

[�
g B u(B.∇Z )

]+ ∂

∂v

[�
g B v (B.∇Z )

]
, (2.31)

μ0Fλ =
∂Bv

∂u
− ∂Bu

∂v
. (2.32)

The latter equation is the condition that the currents lie on flux-surfaces.

One can show, following the ideal MHD force balance equation

μ0F=μ0∇p− (∇×B)×B, (2.33)

one can straightforwardly show that the force balance in the radial direction μ0F.∇v ×∇Z ,

in the azimuthal direction μ0F.∇R×∇v and along the magnetic geodesics μ0
�

gF.B×∇s/B 2

correspond to the terms μ0FR , μ0FZ and μ0Fλ obtained in the equation above.

2.2.2 Axisymmetric Equilibriumwith Purely Toroidal Flows

Following [Maschke and Perrin, 1980], one can generalize the energy functional in axisymme-

try by extending the pressure to have a dependence on R in addition to the radial variable s, as

seen in Eq. (2.16)

W =
∫∫∫

d sdud v

(
B 2

2
+ μ0p(s,R)

Γ−1

)
. (2.34)

We note that this is an exact model for axisymmetry where the energy functional corresponds

exactly to ideal MHD with flows in axisymmetry. One can notice that the variational form of

the pressure is similar to the one obtained earlier in Eq. (2.16). Continuing along this model,
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2.2. VMEC and the Variational Formulation with Flows

the form of the pressure is chosen to be

p(s,R)= f (s,R)

〈 f (s,R)〉Γ (2.35)

with the averaging being in the same fashion as before. On calculating the first variation,

compared to Eq. (2.28)we will now have an additional term arising from the radial dependence

of f

dW

d t
=

∫∫∫
d sdud v

∂

∂t

(�
g B 2

2

)

− μ0

∫
d s

f (s,R)

〈 f (s,R)〉Γ
∫∫

dud v
∂
�

g

∂t

− μ0

∫∫∫
d sdud v

�
g
〈 f (s,R)〉Γ
〈 f (s,R)〉Γ

∂p

∂R

∂R

∂t
. (2.36)

Only the radial force term μ0FR would be affected by the third term in the integral, taking the

form

μ0FR = ∂

∂s

[(
μ0p+ B 2

2

)
R
∂Z

∂u

]
− ∂

∂u

[(
μ0p+ B 2

2

)
R
∂Z

∂s

]

+ ∂

∂u

[�
g B u(B.∇R)

]+ ∂

∂v

[�
g B v (B.∇R)

]
+

�
g

R

[
μ0p+ B 2

2
−R2(B v )2+R

∂p

∂R

]
(2.37)

with the other two force terms not being affected by the inclusion the radially dependent

pressure term. Imposing the pressure to be of the form p ≡ p(s,R), we proceed to calculate

the contribution of the additional term in μ0FR . The radial force can be written as:

μ0FR =μ0FR |st ati c +
�

g

R

(
R
∂p

∂R

)
(2.38)

and where

�
g

R

(
R
∂p

∂R

)
→
�

g

R

(
miΩ

2R2

2T
p(s,R)

)
. (2.39)

Recalling that p = 2nT , and ρ =mi n, we have

�
g

R

(
R
∂p

∂R

)
→
�

g

R

(
ρΩ2R2) . (2.40)
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Therefore, the radial force balance is of the form

μ0FR =μ0FR |st ati c +
�

g

R

(
ρΩ2R2) . (2.41)

The second term in the RHS is equivalent to theμ0∇v×∇Z component ofρU0.∇U0 =μ0ρRΩ2∇R ,

thus satisfying the axisymmetric version of the force balance equation. Thus, the axisymmetric

equilibrium obtained through variational principle is completely consistent with the ideal

MHD with flows.

2.2.3 Limitations of 3D Equilibria with Purely Toroidal Flows

The equilibrium obtained in the previous sections are either valid for 3D without flows or

axisymmetry with flows. But it has been seen in the past as an approximately valid model for

3D with flows when the ideal MHD response to 3D perturbations is weak[Cooper et al., 2014,

Cooper et al., 2015]. We now set out to look at the validity of the model for 3D magnetic

geometries with purely toroidal flows. We assume here that the axisymmetric energy functional

Eq. 2.34 is valid for 3D while imposing toroidal flow. Assuming Ω is flux-surface function or

equivalently, assuming that the flow is chosen to be purely toroidal, the force balance equation

arising from the flow becomes

μ0ρU.∇U=μ0ρRΩ2∇R+μ0ρR2g sφΩΩ′eφ (2.42)

where R now has a 3D dependence. As we have observed, on a radial projection μ0ρU.∇U.∇v×
∇Z , we reproduce the extra term in the radial force balance equation above. However, the

second term in the RHS cannot be obtained from the form of the energy functional used.

Therefore, the restriction on the equilibrium becomes

Ω′(s) ∼ 0, where R2g sφ �= 0, strongly 3D regions

R2g sφ ∼ 0, where Ω′ �= 0, for high flow shear regions.

These constraints can be nearly satisfied for a rotating equilibrium with a saturated 1/1 internal

kink, of the flow in the helical region is unsheared.

However, a more important limitation of the equilibrium is the incompressibility condition

∇.U0 = 0 which must be satisfied. With the purely toroidal flow, from the continuity equation,

it is required that

UφR2g sφ ∂Bφ

∂φ
= 0 (2.43)

must also be satisfied. In regions of strong 3D, where the metric element g sφ �= 0, the variation

in the toroidal field with the toroidal angle φ is generally non-negligible. That is, the flow itself
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must be zero in case of strong 3D. In the case of a saturated helical core with strong radial

displacements, this condition is not satisfied.

For pragmatic reasons, we must also take into account that, for a tokamak like JET, the Mach

number of the background plasma is relatively low, and hence the centrifugal effects on the

main ions are weak. Therefore, for testing cases with 3D, we can choose to use an MHD

equilibrium without the flow, as it won’t differ significantly in terms of magnetics from a 3D

MHD equilibrium incorporating flow. This is a caveat central to this thesis. We will, however,

include centrifugal effects on the heavy impurity ions.

2.3 Plasma Flows and Ordering

In this section, we describe the general theory of plasma flows, as is also applicable to 3D

magnetic geometries[Helander, 2014, Shaing et al., 2015]. The major flows in the plasma, for

the species j , can be expressed as follows following the Larmor radius ordering

U j =U0, j +U1, j , (2.44)

where these flows can be separated into their parallel and perpendicular components

U⊥, j = U0⊥, j +U1⊥, j , (2.45)

U∥, j = U0∥, j +U1∥, j . (2.46)

The zeroth order flow U0, j arises from the presence of a zeroth-order electric potential Φ0

and the first order flow arises from the presence of pressure gradients ∇p j and the first-order

electric potential Φ1. The perpendicular components can be written as

U0⊥, j = E0×B
B 2 (2.47)

U1⊥, j = B×∇p j

n j Z j eB 2 +
E1×B

B 2 . (2.48)

where E0 =∇Φ0 and E1 =∇Φ1. The flows are considered to be incompressible at all orders,

therefore we have the constraints

∇.U0, j = 0=∇.U1, j . (2.49)

Thus the parallel flows at all orders can be obtained from the solution to the continuity

equation. However, it can be noticed that additional constraints are required to determine the

respective parallel flows completely.
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2.3.1 Lowest-Order Flows U0

For the zeroth order flow U0, j , we start from the following expressions of constraints

b.∇T j = 0 (2.50)

∇.(n jU0, j ) = 0 (2.51)

U0, j .∇
(
lnn j − 3

2
lnT j

)
= 0 (2.52)

b.∇U0, j .b− 1

3
∇.U0, j = 0, (2.53)

b.

(
∇ lnn j + e∇Φ1

T
+ m

T
U0, j .∇U0, j

)
= 0. (2.54)

These neoclassical constraints arise from the quasi-stationary solution of the drift-kinetic

equation with plasma flows[Hinton and Hazeltine, 1976]. Equation (2.50) is the isothermal

condition, which states that the temperature is a flux-surface function T j ≡ T j (ψ). Assuming

n j is a flux-surface function, equation (2.51) reduces to the continuity equation. The equations

(2.52-2.54) relate the flows to the magnetic geometry. For axisymmetry, it can be shown that

the lowest-order poloidal velocity vanishes, U0θ, j = 0, and the flow is purely toroidal of the

form:

U0, j = ∂ψΦ0eφ = ∂ψΦ0R2∇φ (2.55)

where the radial potential gradient ∂ψΦ0 can be considered as the toroidal angular velocity.

For 3D, the application of the constraints leads to a flow which lies along the intersection of the

contours of the flux-surfaces and the contours of magnetic field strength B [Helander, 2014]

U0, j = ∂ψΦ0
∇B ×∇ψ
B.∇B

. (2.56)

2.4 Higher-order FlowU1

Moving on to the first-order flows, U1, j , we reframe this flow and drop the∇Φ1 dependent flow

term for two reasons. Firstly, as will be seen later, we only consider the higher-order flow to

provide the correct difference in velocities between the impurity particle and background ions,

for the ∇Φ1 component remains the same for both species. Secondarily, the component is

dependent generally on (ψ,θ,φ) for 3D equilibria and the inversion with such a 3D dependence

is beyond the scope of this thesis and can be considered as an avenue to extend the work.

We again start from the perpendicular flow component U1⊥,i of Eq. (2.48), dropping the

contribution from Φ1 for reasons given above.

U1⊥,i = B×∇pi

ni Zi eB 2 . (2.57)
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2.4. Higher-order FlowU1

This perpendicular component can be recognized as the diamagnetic flow. The parallel

component can again be obtained by solution of the continuity equation ∇.U1, j = 0. We start

by assuming that the pressure pi to the leading-order is a flux-surface function, such that

∇.(U1∥,i +U1⊥,i )= 0 =⇒ ∇.

(
U1∥,iB

B

)
=−∇.

(
B×∇ψ

B 2

p ′i
ni Zi e

)
. (2.58)

Using chain rule on both sides of the equation, and using the expressions for the magnetic

Gauss’ law ∇.B = 0, the Faraday law ∇×B = μ0J and that the lines of current lie along the

flux-surface J.∇ψ= 0, we transform the expression above into

B.∇
(

ni Zi e

p ′i

U1∥,i B

B 2

)
=B×∇ψ.∇

(
1

B 2

)
. (2.59)

With a difference in a constant of integration, a flux-surface function yet to be defined, the

above equation can be reformulated as

B.∇
( g2

B 2

)
=B×∇ψ.∇

(
1

B 2

)
. (2.60)

With the condition that 〈g2B〉 = 0[Hinton and Hazeltine, 1976, Helander, 2014], the solution to

the above equation will yield the Pfirsch-Schlüter return flows[Nakajima and Okamoto, 1992,

Helander, 2014]. Additional averaged flows, such as the bootstrap flows can be included to

provide the full flow description, which leads to the solution for the parallel flows being

U1∥,i =−
(

g2

B
− B

〈B 2〉 〈g2〉
) p ′i

Zi eni
+ B

〈B 2〉 〈U1∥,i B〉. (2.61)

Expression (2.60) is fairly straightforward to solve for g2 if the magnetic field were specified

in straight field-line coordinates. (E.g., one can make a Fourier transform of both the sides

of the equation and obtain the B.∇ = ∇∥ parameter as mΨ′ −nΦ′, if (Ψ,Θ,Φ) are in Boozer

coordinates).

The bootstrap flow velocity 〈U1∥,i B〉 could be obtained by a neoclassical code such as SFINCS

[Landreman et al., 2015, Mollén et al., 2014], which is computationally expensive however.

A simpler analytical prescription for the bootstrap flow velocity 〈U1∥,i B〉 for 3D magnetic

geometry can be obtained through the Shaing-Callen model as well[Shaing et al., 2015] in

different regimes, depending on which the background plasma is in. The expression for the

parallel velocity in different regimes is given by

〈U1∥,i B〉
〈B 2〉 =−G(ψ)

Ti

ei 〈B 2〉
(
∂

∂ψ
ln pi + μ2i

μ1i

∂

∂ψ
l nTi

)
(2.62)

where G(ψ) is a geometrical factor in the relevant regime of concern. The geometrical factor

G ≡G(ψ) is calculated through averaging over the entire 3D field. The coefficients μ1i and μ2i

are analytically determined in terms of the neoclassical viscosity tensor coefficients. The ratio
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μ2i /μ1i is approximately equal to -1.17 in the collisionless banana regime and to 1.69 in the

Pfirsch-Schlüter regime.

We proceed to state the geometrical factors G(ψ) for the banana regime and the Pfirsch-

Schlüter regime. The geometrical factor Gb(ψ) is computed in the 1/ν (collisionless) regime as

Gb(ψ)= 1

ft

{
〈g2〉− 3

4

〈B 2〉
B 2

max

∫1

0

〈g4〉
〈g1〉

λdλ

}
. (2.63)

This expression will be used in the computation of the bootstrap current later. The same factor

can be used to describe the background common flow, as the geometrical scaling remains the

same. GPS(ψ) is a geometrical factor in the Pfirsch-Schlüter regime[Shaing and Callen, 1983,

Shaing et al., 1986a, Watanabe et al., 1992, Johnson et al., 1999]

GPS(ψ)= 〈g2〉− 〈B 2〉
〈(b̂.∇B)2〉

〈
(b̂.∇B)(b̂.∇g2)

B 2

〉
, (2.64)

where g1, g2 and g4 are defined later in equations (2.132-2.133). As one can notice, the

geometrical factor is slightly smaller in the Pfirsch-Schlüter regime than in the banana regime.

Correspondingly, the electron bootstrap current is also negligible in the Pfirsch-Schlüter

regime[Shaing et al., 2015]. With this, the description of the higher-order flows is complete.

The treatment of flows arising from the presence of a higher-order electric-field ∇Φ1, which is

not a flux-surface function in general, as mentioned before, is beyond the scope of the current

thesis.

2.5 Guiding-Center formulation

Particle orbits in an MHD equilibrium as described by the previous sections can be developed

with the help of the guiding-center formulation. In this thesis, we will follow the orbits of

impurity ions in the presence of collisions. Since plasma rotation is of fundamental impor-

tance to this thesis, the formulation must also allow for drifts induced by the toroidal flow

of the plasma. For this reason, we follow the guiding-center prescription suggested by Ref.

[Brizard, 1995], decomposing the particle guiding center velocity Vg c into flow and thermal

components in the following manner:

Vg c, j =U0, j +w j , (2.65)

where U0, j is the total leading-order ensemble flow velocity of the particle, and w j is the ther-

mal component of the velocity of the particle of species j . The advantage of the formulation

in Ref. [Brizard, 1995], over guiding-center formulations which explicitly solve for the orbits

in the rotating frame[Peeters et al., 2009] is that this formulation allows us to incorporate a

shear in the flow profile, which is essential for modeling cases which correspond closely to

actual experimental conditions. (In the scope of the thesis, however, we do not apply a sheared
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flow). Most importantly, the collisions which come through a collision operator need to be

in the rest frame. Another advantage of this velocity decomposition is that the collisions can

be directly imposed on the thermal part of the velocities, which are, by definition, in the rest

frame of the plasma. Furthermore, the parallel and perpendicular dynamics can be resolved

by further splitting the species flow and the thermal velocity into its parallel (U0∥, j , w∥, j ) and

perpendicular (U0⊥, j ,w⊥, j ) components.

The independent phase-space variables are chosen to be (X,ρ∥, j ,μ j ), where X is the guiding-

center position, μ=mw2
⊥, j /2B is the magnetic moment, and ρ∥, j , the parallel gyroradius is

defined as

ρ∥, j =
m j

Z j e

w∥, j

B
. (2.66)

The redefinition of the parallel variable in terms of ρ∥, j instead of w∥, j makes the guiding-

center derivation more convenient. The charge-normalized Hamiltonian and Lagrangian are

given by

Hg c

Z j e
= h =Φ+ μ

Z j e
B + 1

2

m j

Z j e

(
U0, j +

Z j e

m j
ρ∥, jB

)2

, (2.67)

and

Lg c

q
= l =A∗.Ẋ−h, (2.68)

where we define a modified vector potential A∗ as

A∗ =A+ m j

Z j e
U0, j +ρ∥, jB. (2.69)

This consequently leads to the definition of a modified magnetic field B∗

B∗ =∇×A∗ =B+ρ∥, j∇×B+
m j

Z j e
∇×U0, j . (2.70)

These ∗ modified potentials and flows ensure the conservation of the drift-kinetic plasma

distribution function to the first-order[Brizard, 1995, Littlejohn, 1983]. One can now obtain

the canonical equations of motion through the formal solution of the minimization of the vari-

ation of the Hamiltonian[Littlejohn, 1983, Brizard, 1995, Cary and Brizard, 2009]. The final

expression is

żα = [Ω−1]αβ(∂βh+∂t A∗β), (2.71)

where z is used to denote the independent phase-space variables, where also (α,β) can be any

of the independent phase-space variables (X j ,ρ∥, j ,μ j ). The Lagrange bracket Ωαβ is defined
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to be

Ωαβ = ∂αA∗β+∂βA∗α, (2.72)

which can be shown to be

Ωαβ =
(

0 Bq

−Bp
�

g B∗r εr pq

)
, (2.73)

where (p, q,r ) is used to denote the configuration space components of X. εr pq refers to the

Levi-Civita tensor. The inverse of Ωαβ is

[Ω−1]αβ = 1

Bp B∗p

(
0 −B∗q

B∗q Br�
g ε

r pq

)
. (2.74)

From Eq. (2.71)-(2.74), we get

∂ρ∥, j h =U0∥, j B + Z j e

m j
ρ∥, j B 2 (2.75)

and

∂p h =−E∗p = −Ep +
(

μ

Z j e
+ Z j e

m j
ρ2
∥, j B

)
∂p B + m j

Z j e
∂p (U 2

0, j )+ρ∥, j∂p (U0∥, j B), (2.76)

respectively, where E∗p is the electric field with thermal and centrifugal corrections. The

modified electric field E∗ can be written in vector form as

E∗ = E−
(

μ

Z j e
+ Z j e

m j
ρ2
∥, j B

)
∇B − 1

2

m j

Z j e
∇(U 2

0, j )−ρ∥, j∇(U0, j .B), (2.77)

where E=−∇Φ0−∇Φ1. Φ0 is the electric potential responsible for driving the toroidal flow,

and Φ1 is the higher-order centrifugal correction as explained shortly below. The equations of

motion are obtained by substituting equations (2.74)-(2.75) in equation (2.71),

(
˙ρ∥, j

Ẋ p
j

)
= 1

Bp B∗p

(
0 −B∗q

B∗q Br�
g ε

r pq

)(
U0∥, j B + Z j e

m j
ρ∥, j B 2

−E∗q

)
. (2.78)
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Finally, the relevant guiding-center equations are

˙ρ∥, j =
B∗q E∗q
Bp B∗p =

E∗.B∗

B.B∗
(2.79)

Ẋ p
j =

(
U0∥, j +

Z j e

m j
ρ∥, j B

)
BB∗p

Bp B∗p +
εpqr

�
g

Br E∗q
Bp B∗p

=
[(

U0∥, j +
Z j e

m j
ρ∥, j B

)
B∗

B.B∗
+ E∗ ×b

B.B∗

]p

. (2.80)

We can see that the effects of plasma rotation are now incorporated in the guiding-center

equations, which are coded into VENUS-LEVIS. VENUS-LEVIS solves Eqns. (2.80) using the 4th-

order Runge-Kutta (RK4) algorithm with a heuristic adaptative time-stepping scheme[Pfefferlé et al., 2014a].

The adaptative RK4 scheme has been shown to preserve the energy and toroidal momentum

(for axisymmetric equilibria) to machine precision. We proceed to describe in detail the

individual terms implemented in VENUS-LEVIS.

2.5.1 Implementation of the Guiding-Center Equations in VENUS-LEVIS

In this subsection, we describe the implementation of the guiding-center equations used

in VENUS-LEVIS. First, we start by choosing a form for the toroidal flow U0, j . The most

general solution for U0, j is obtained by inverting the continuity equation ∇.U0, j = 0 and can

be written, assuming the lowest order electric potential Φ0 is a flux-surface function, in the

Pfirsch-Schlüter regime[Shaing and Callen, 1983] as

U0,i =
{
−

(
g2

B
− B

〈B 2〉 〈g2〉
)
− B

〈B 2〉GPS + B

〈B 2〉U0∥,i ,bc

}
Φ′0b+

B×∇ψ
B 2 Φ′0, (2.81)

where U0∥,i ,bc is the boundary condition. This expression is valid for 3D magnetic geom-

etry in general. Note however, that U0∥,i ,bc is zero in the case of axisymmetric magnetic

fields[Shaing and Callen, 1983]. Currently, we choose a value of U0∥,i ,bc to impose a purely

toroidal flow. The leading-order flow is then imposed as

U0 =Ωeφ =Ω(ψ)R2∇φ, (2.82)

where Ω(ψ) is the angular velocity. This makes the computations of gradients of the flow

in Eq. (2.80) much simpler. (Again, It is important to note that the leading-order flow in its

most general form is not purely toroidal for 3D equilibrium fields, but actually lies along the

intersection of the contours of ψ and B [Helander, 2014]. The treatment of a complex flow of

such nature is out of the scope of the current thesis, and poses a possible way to extend the

work further.)

Under the imposition of a purely toroidal ensemble flow, the guiding-center definitions for
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the modified fields, Eqs. (2.69), (2.70) and (2.77) can be expressed as

A∗ =A+ρ∥, jB+
m j

Z j e
U0, j , (2.83)

B∗ =B+ρ∥, j∇×B+
m j

Z j e
∇×U0, j , and (2.84)

E∗ =E−
(
μ j

Z j e
+w∥, jρ∥, j

)
∇B − 1

2

m j

Z j e
∇(U 2

0, j )−ρ∥, j∇(U0∥, j B). (2.85)

One can see that there are some extra terms in presence of the flow that are not found in the

flow-free stationary frame guiding-center equations. Using the form for the flow above, we

now proceed to compute those terms. The term ∇×U0 is given by

∇×U0, j =∇× (R2Ω∇φ)

=−R2Ω�
g

(
1

Ω

∂Ω

∂ψ
+ 2

R

∂R

∂ψ

)
eθ+

2RΩ�
g

∂R

∂θ
eψ. (2.86)

This expression gives the ∇×U0 in the contravariant form and, if needed, the covariant form

can be obtained by vector multiplication with the contravariant metric g pq . The expression

(2.86) can be substituted into Eq. (2.70) to complete the description for B∗.

We expand the terms required to complete the description forE∗. The electric field is expressed

as

E=−∇Φ0−∇Φ1 (2.87)

where −∇Φ0 refers to the leading-order electric field responsible for the toroidal flow. From

Ohm’s law, ∇Φ0 can be written as

∇Φ0 =U0, j ×B=�gΩR2{(Bθgφφ−Bφg θφ)∇ψ+Bφgψφ∇θ−Bθgψφ∇φ} (2.88)

where
�

g is the Jacobian of the coordinate transformation. Next, we have, |U0| =RΩ, therefore,

we can calculate ∇U 2
0 to be

∇U 2
0, j =∇R2Ω2

= 2R2Ω2
[(

1

Ω

∂Ω

∂ψ
+ 1

R

∂R

∂ψ

)
∇ψ+ 1

R

∂R

∂θ
∇θ+ 1

R

∂R

∂φ
∇φ

]
. (2.89)

The term ∇U0∥, j B can be written as ∇(U0, j .B) which can be written as

∇(U0, j .B)=∇(ΩR2∇φ.B)=∇ΩR2Bφ

=R2Bφ ∂Ω

∂ψ
∇ψ+2ΩRBφ

(
∂R

∂ψ
∇ψ+ ∂R

∂θ
∇θ+ ∂R

∂φ
∇φ

)
+ΩR2∇Bφ. (2.90)
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With these calculated values, we may again express the modified fields as

A∗ =A+ρ∥, jB+
m j

Z j e
R2Ω∇φ, (2.91)

B∗ =B+ρ∥, j∇×B−
m j

Z j e

R2Ω�
g

(
1

Ω

∂Ω

∂ψ
+ 2

R

∂R

∂ψ

)
eθ+

m j

Z j e

2RΩ�
g

∂R

∂θ
eψ, and (2.92)

E∗ =−∇Φ1−�gΩR2{(Bθgφφ−Bφg θφ)∇ψ+Bφgψφ∇θ−Bθgψφ∇φ}

−
(
μ j

Z j e
+w∥, jρ∥, j

)
∇B − m jΩ

2R2

Z j e

[(
1

Ω

∂Ω

∂ψ
+ 1

R

∂R

∂ψ

)
∇ψ+ 1

R

∂R

∂θ
∇θ+ 1

R

∂R

∂φ
∇φ

]

−ρ∥, j R2Bφ ∂Ω

∂ψ
∇ψ−2ρ∥, jΩRBφ

(
∂R

∂ψ
∇ψ+ ∂R

∂θ
∇θ+ ∂R

∂φ
∇φ

)
−ρ∥, jΩR2∇Bφ (2.93)

With all the terms calculated, we may implement the new corresponding guiding center

equations. VENUS-LEVIS only requires the descriptions for A∗, B∗ and E∗; it computes the

dot and cross products required to form the guiding-center forces shown in Eq. (2.80). We

can notice, from Fig. 2.4, that the guiding-center motion of a particle follows its full-Lorentz

motion very closely within the order of the approximation. Note that For simulations with a

large number of trapped particles, as can be expected for supersonic Mach numbers for heavy

impurity species, the full-Lorentz orbits are computationally much slower (up to five times

slower) than the guiding-center orbits, making guiding-center approach more feasible. Notice

that from Eqs. (2.80) and (2.100), the effects of ∇Φ1 yield contributions to the guiding-center

equations similar to the centrifugal effects just considered, as is explained in the next section.

2.5.2 Quasi-neutrality corrections in case of plasma rotation

The centrifugal force resulting from the leading-order electric field −∇Φ0 is mass sensitive,

and significantly displaces the main ions as compared to the electrons. This resulting charge

separation results in a higher-order electric field correction −∇Φ1 which aims to bring the two

species together. To calculate this compensating potential and its corresponding field, we

assume a local Maxwellian for the ion and electron species of the plasma and then minimize

the charge separation. Single particles of species j in the rotating frame have the energy

Er ot , j = 1

2
m j w2

∥, j +μ j B − 1

2
m jΩ

2R2+Z j eΦ1. (2.94)

The particle distribution can now be locally expressed as the Maxwellian by integrating over

the velocities w∥, j and w⊥, j

F j (ψ)= n̄ j (ψ)

[2πT j (ψ)]3/2
exp

(
− Er ot

T j (ψ)

)
. (2.95)
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Integrating for the number density n j (ψ,θ), one can derive the relation

n j (ψ,θ)= n̄ j (ψ)exp

(
m jΩ

2R2

2T j
− Z j eΦ1

T j

)
. (2.96)

On preserving the quasi-neutrality between ions and electrons (subscripts i and e respectively)

through

∑
j={i ,e}

n j (ψ,θ)Z j e = 0, (2.97)

assuming n̄i = n̄e and , and neglecting the centrifugal shift on electrons, we have

exp

(
miΩ

2R2

2Ti
− eΦ1

Ti

)
−exp

(
eΦ1

Te

)
= 0 (2.98)

and on approximating the potentials to first order

(
miΩ

2R2

2Ti
− eΦ1

Ti

)
−

(
eΦ1

Te

)
= 0 (2.99)

we obtain Φ1 as

Φ1(ψ,θ)= miΩ
2R2

2e

Te

Ti +Te
. (2.100)

This is the form of Φ1 that will appear in the guiding-center equations (2.113) and (2.114). If

we assume that both the ions and the electrons have the same temperature, one can see that

the potential Φ1 is half the value in magnitude to the energy contributed by the centrifugal

term. This term for ions reduces some of the displacement caused by the rotation by a factor

of M 2
∗,i , and for electrons increases it by the same factor M 2∗,e . The densities for species j then

becomes

n j (ψ,θ)= n̄ j (ψ)expM 2
∗, j , (2.101)

where M 2
∗, j is

M 2
∗, j =

(
m j − mi Te

Ti +Te

)
Ω2R2

2T j
(2.102)

In doing so, it brings the ions and electrons densities together, thus satisfying quasi-neutrality.

Therefore, one can see that the effect of the centrifugal force trying to violate the quasi-

neutrality is mitigated by the lower-order potential. The resultant modified electric field then
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2.5. Guiding-Center formulation

Figure 2.4 – The guiding-center orbit (red) as compared to full Lorentz (green) orbit. It follows
closely to each other within the first-order guiding-center approximation. Again, the Mach
number is chosen to be M 2

0 = 20 for illustration purposes.

becomes

E∗ =−�gΩR2{(Bθgφφ−Bφg θφ)∇ψ+Bφgψφ∇θ−Bθgψφ∇φ}

−
(
μ j

Z j e
+w∥, jρ∥, j

)
∇B −

(
m j − mi Te

Ti +Te

)
Ω2R2

Z j e

[(
1

Ω

∂Ω

∂ψ
+ 1

R

∂R

∂ψ

)
∇ψ+ 1

R

∂R

∂θ
∇θ+ 1

R

∂R

∂φ
∇φ

]

−ρ∥, j R2Bφ ∂Ω

∂ψ
∇ψ−2ρ∥, jΩRBφ

(
∂R

∂ψ
∇ψ+ ∂R

∂θ
∇θ+ ∂R

∂φ
∇φ

)
−ρ∥, jΩR2∇Bφ (2.103)

where the centrifugal force term has been reduced by a factor comparable to the centrifugal

force.

2.5.3 Equivalence with the Traditional Expression for Drifts

In this section, we transform the guiding-center equations (2.80) in order to compare its

form with the guiding-center equations usually found in existing literature. We expand the

27



Chapter 2. Equilibrium Theory, Guiding-Center Orbits and Neoclassical Theory with
Flows

perpendicular particle drifts and provide an explanation as to how the E0 ×B flow term

cancels out in the expressions for the particle motion, as is usually the form in current

literature[Brizard, 1995, Peeters et al., 2009]. We first evaluate the drifts by expanding the

terms in Eq. 2.80. The value of the modified electric field E∗ can be given by

E∗ =E−
(
μ j

Z j e
+ Z j e

m j
ρ2
∥, j B

)
∇B − 1

2

m j

Z j e
∇(U 2

0, j )−ρ∥, j∇(U0, j .B) (2.104)

which could be written as

E∗ =E− μ j

Z j e
∇B − 1

2

m j

Z j e
∇U∗2

0, j , (2.105)

where we have just substituted U0, j +Z j eρ∥, jB/m j =U∗0, j . We expand

1

2
∇U∗2

0, j =∇
(

1

2
U∗0, j .U∗0, j

)
=U∗0, j .∇U∗0, j +U∗0, j × (∇×U∗0, j ). (2.106)

Thus, Ẋ j becomes

Ẋ j = (U∗0, j .b)
B∗

B∗∥
+ 1

B∗∥

{
E− μ j

Z j e
∇B − m j

Z j e
U∗0, j .∇U∗0, j −

m j

Z j e
U∗0, j × (∇×U∗0, j )

}
×b.

(2.107)

We expand {U∗0, j × (∇×U∗0, j )}×b, and take it out of the parentheses,

{U∗0, j × (∇×U∗0, j )}×b= (U∗0, j .b)∇×U∗0, j − (∇×U∗0, j .b)U∗0, j , (2.108)

which can then be merged with the first term on the RHS. Realizing that B∗ = B+m j∇×
U∗0, j /Z j e, we have now

Ẋ j =
U∗0, j .b

B∗∥

{
B+ m j

Z j e
∇×U∗0, j

}
− m j

Z j e

U∗0, j .b

B∗∥
∇×U∗0, j +

m j

Z j e

U∗0, j

B∗∥
b.∇×U∗0, j

− b

B∗∥
×

{
E− μ j

Z j e
∇B − m j

Z j e
U∗0, j .∇U∗0, j

}
. (2.109)

We can see that a part of the first and the complete second term cancel out. We can now obtain

b.∇×U∗0, j from:

B∗∥ =B + m j

Z j e
b.∇×U∗0, j , (2.110)
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and on substituting, we get

Ẋ j = U∗0, j −
B

B∗∥

{
U∗0, j − (U∗0, j .b)b

}
− b

B∗∥
×

{
E− μ j

Z j e
∇B − m j

Z j e
U∗0, j .∇U∗0, j

}
.

(2.111)

Now, U∗0, j − (U∗0, j .b)b is just U∗0⊥, j and that U∗0⊥, j B = b× (U∗0⊥, j ×B). We also substitute the

electric field E=−∇Φ0−∇Φ1. Doing so, we have

Ẋ j = U∗0, j −
b

B∗∥
× (U∗0⊥, j ×B−∇Φ0)− b

B∗∥
×

{
−∇Φ1−

μ j

Z j e
∇B − m j

Z j e
U∗0, j .∇U∗0, j

}
.

(2.112)

From ideal Ohm’s law, we know that U∗0⊥, j ×B−∇Φ0 = 0, thus we have out expression finally

reduced to

Ẋ j =U∗0, j +
b

B∗∥
×

{
∇Φ1+

μ j

Z j e
∇B + m j

Z j e
U∗0, j .∇U∗0, j

}
. (2.113)

And hence, the effect of the leading-order electric field is contained in U∗0, j . Notice that the

term U∗0, j .∇U∗0, j contains the standard curvature drift, centrifugal drift and Coriolis drifts.

From similar calculations, we obtain an expression for ρ̇∥, j

ρ̇∥, j =
B∗

B.B∗
.

{
∇Φ1+

μ j

Z j e
∇B + m j

Z j e
U∗0, j .∇U∗0, j

}
(2.114)

We now have (ρ̇∥, j , Ẋ j ) in a more familiar form where we can easily extract the B×∇B , E×B,

centrifugal and Coriolis drifts. The final expressions for the drifts are the similar to the one

obtained in Ref. [Brizard, 1995] and Ref. [Peeters et al., 2009], which implicitly include the

curvature, centrifugal and Coriolis drifts in the U∗0, j .∇U∗0, j term.

2.6 Introduction to bootstrap current

The self-generated current in a tokamak plasma is known as the bootstrap current. The

current arises because of a small portion of trapped particles getting collisionally released

into passing orbits which carry a substantially higher current as opposed to the small current

carried by the toroidal drift precession of trapped particles[Hinton and Hazeltine, 1976]. In

addition to the Ohmic current and the current from current drives such as ECCD, the bootstrap

current is an integral part of the total toroidal current. As this current depends on collisions

among the particles, it varies in different regimes of collisionality, ranging from the highest

in the collisionless banana regime to virtually zero in the high-collision Pfirsch-Schlüter

regime[Shaing et al., 2015].
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Our aim is to calculate the bootstrap-current and a magnetic equilibrium consistently with

one another in the collisionless banana regime. This is to say that if the initial current profile

used for the magnetic equilibrium calculation included the bootstrap current, the equilibrium

thus generated would extract the same bootstrap current density profile as the one we began

with. In order to establish this iteratively, we need a magnetic equilibrium and an interface

for calculating the bootstrap current. The equilibrium for the iterative process is provided by

the Variational Moments Equilibrium Code (VMEC)[Hirshman and Whitson, 1983]. VMEC is

a versatile ideal free-boundary MHD equilibrium code which generates equilibrium by mini-

mizing the variations in the equilibrium energy functional. Using the free-boundary version

of VMEC[Hirshman et al., 1986], we generate equilibria for the desired current and pressure

profiles. We also vary the equilibrium by specifying an initial guess of a skewed magnetic axis

of 1/1 helicity with axisymmetric boundary conditions that leads to the formation of a helical

core, thereby allowing the representation of a 1/1 internal kink mode. One can include the

effect of external fields in VMEC by prescribing the coil positions and coil currents. A package

within the VMEC-Suite, MAKEGRID allows us to calculate the magnetic field generated by the

specified coils. Including this external magnetic field in the equilibrium calculations allows us

to generate equilibria with the ideal response of the equilibrium to the external fields. One

element of this study is to analyse the variation in the equilibrium and the bootstrap currents

due to the varying number of toroidal field coils (TF-coils), and due to the Resonant Magnetic

Perturbation (RMP) coils. In addition to the externally produced 3D effects, VMEC can also gen-

erate a realistic representation of a saturated 1/1 internal kink mode[Brunetti et al., 2014]. Of

special interest will be to examine and contrast the 3D helical core state and the axisymmetric

sister-state and thus isolate the 3D effect of the bootstrap current.

2.7 Bootstrap Current Models and Approach to Simulation

For calculating the bootstrap current, we consider two models. First, the Sauter model

[Sauter et al., 1999], which is an axisymmetric 2D model, and the second is the Shaing-Callen

model [Shaing and Callen, 1983, Shaing et al., 1986a] which is quasi-analytic and valid for 3D

equilibria. The 2D model for the bootstrap current is written in terms of coefficients that can,

as will be seen later, be still calculated for 3D magnetic equilibria. In contrast, the Shaing-

Callen model, which is fully 3D, should be more robust for 3D equilibria. They should as a

benchmark, however, agree in the axisymmetric limit.

The subsections are organized as follows: First, we describe the Sauter bootstrap current model

in subsection 2.7.1. Then we elaborate upon the Shaing-Callen bootstrap current model in

subsection 2.7.2. Further, we explain the resonance effects which arise in the 3D model,

and the mitigation of the resonances through the resonance detuning scheme in subsection

2.7.4. Finally, we describe the iterative scheme used for the self-consistent bootstrap current

calculation in subsection 2.7.5.
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2.7.1 Sauter Model

The expression given by Sauter et al, in which the parallel bootstrap current density 〈Jbs.B〉, is

given by

〈Jbs.B〉 =−
I (ψ)

ψ′
pe

[
L31

p

pe

∂ ln p

∂ψ
+L32

∂ lnTe

∂ψ
+L34α0

∂ lnTi

∂ψ

]
(2.115)

where μ0I (ψ)=−Bv in Boozer coordinates. Throughout the current work, we work in S. I. units

for the sake of consistency through all our simulations. Following usual conventions, ψ is the

flux-surface label, p is the pressure and T j is the temperature of the species j in the plasma.

The dimensionless factor α0 is a coefficient for correctly accounting for the contribution of

each species towards the bootstrap current in the collisionless limit.

The coefficients L31, L32, L34 and α0 are described in Ref. [Sauter et al., 1999] where these are

determined as fits of functions of the trapped fraction of particles and collisionalities. After

the fit to the previously computed results in Ref. [Sauter et al., 1999], these have the following

expressions in terms of the trapped particle fraction ft in the 1/ν collisionless regime:

L31 =
(
1+ 1.4

Z +1

)
ft − 1.9

Z +1
f 2

t +
0.3

Z +1
f 3

t +
0.2

Z +1
f 4

t (2.116)

L32 =
[

0.05+0.62Z

Z (1+0.44Z )
( ft − f 4

t )+ 1

1+0.22Z
( f 2

t − f 4
t −1.2( f 3

t − f 4
t ))+ 1.2

1+0.5Z
f 4

t

]

+
[
− 0.56+1.93Z

Z (1+0.44Z )
( ft − f 4

t )+ 4.95

1+0.44Z
( f 2

t − f 4
t −0.55( f 3

t − f 4
t ))− 1.2

1+0.5Z
f 4

t

]
(2.117)

L34 ≈ L31 (2.118)

α0 = 1.17(1− ft )

1−0.22 ft −0.19 f 2
t

(2.119)

where in L32, the two terms in their respective square brackets represent the electron and

ion contributions to L32 respectively. Z refers to the effective screened charge of the ions.

In accordance to previous work, we set Z = 1 throughout our simulations neglecting any

screening effect. The trapped fraction of particles ft is computed as

ft = 1− 3

4

〈B 2〉
B 2

max

∫1

0

λ

〈g1〉
dλ. (2.120)

g1 is given by

g1 =
√

1−λ
B

Bmax
(2.121)
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and the angle brackets 〈x〉 represent the quantity x averaged over a flux-surface. Heretofore,

we refer to equations (2.115-2.119) as the Sauter formula.

2.7.2 Shaing-CallenModel

The Shaing-Callen formulation for the bootstrap current in the zero-collisionality banana

regime is given by

〈Jbs.B〉 =−Gb(ψ)

[
L31

∂p

∂ψ
+Le

32ne
∂Te

∂ψ
+Li

32ni
∂Ti

∂ψ

]
(2.122)

where Gb ≡Gb(ψ) is a geometrical factor in the banana regime, calculated through averaging

over the entire 3D field. The coefficients L31 and Li ,e
32 are analytically determined in terms of

the neoclassical viscosity coefficients and the trapped particle fractions. The formulae are as

follows:

L31 = {μe1(Lee
22+μe3)−μe2(Lee

12+μe2)}/D (2.123)

Le
32 = (μe3l ee

12 −μe2l ee
22 )/D (2.124)

Li
32 = −L31μi 2l i i

22/{μi 1(l i i
22+μi 3−μ2

i 2)} (2.125)

D = (l ee
11 +μe1)(l ee

22 +μe3)− (l ee
12 +μe2)2 (2.126)

and where,

μa1 = ft

fc

{�
2− ln(1+�2)+Zδae

}
(2.127)

μa2 = ft

fc

{
2
�

2− 5

2
ln(1+�2)+ 3

2
Zδae

}
(2.128)

μa3 = ft

fc

{
39

8

�
2− 25

4
ln(1+�2)

13

4
Zδae

}
(2.129)

where δi j is the Krönecker delta, fc = 1− ft the fraction of circulating particles, and

l ee
11 = Z , l ee

12 =
3

2
Z , l ee

21 =
�

2+ 13

4
Z , l ee

22 = Z . (2.130)

Physically, the μ-coefficients are related to the friction coefficients among various species and

the l -coefficients are the proportionality of the contribution by each species. The expressions

for the L-coefficients can also be found in Ref. [Johnson et al., 1999]. In this sense, the Shaing-

Callen formulation can be considered to be a analytic approximation to determining the

bootstrap current.
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The geometrical factor Gb(ψ) is computed in the 1/ν (collisionless) regime as

Gb(ψ)= 1

ft

{
〈g2〉− 3

4

〈B 2〉
B 2

max

∫1

0

〈g4〉
〈g1〉

λdλ

}
(2.131)

where again,

ft = 1− 3

4

〈B 2〉
B 2

max

∫1

0

λ

〈g1〉
dλ,

g1 =
√

1−λ
B

Bmax
.

The quantities g2 and g4, in turn, must also satisfy the following expressions.

B.∇
( g2

B 2

)
= B×∇ψ.∇

(
1

B 2

)
(2.132)

B.∇
(

g4

g1

)
= B×∇ψ.∇

(
1

g1

)
(2.133)

g2(Bmax ) = 0 (2.134)

g4(Bmax ) = 0 (2.135)

where ψ is the radial variable in Boozer coordinates. We integrate these equations by trans-

forming them into Fourier-space, where the gradients can be realized simply as coefficients

multiplying the Fourier-transformed integrand.

2.7.3 Axisymmetric Comparison of the Sauter and the Shaing-Callen Formula-
tions

It is necessary to compare the Sauter and Shaing-Callen formulations because they must

agree in the axisymmetric limit, as they derive from different approaches. On assuming the

magnetic field in axisymmetry to have the form

B= I (ψ)∇φ+∇ψ×∇φ (2.136)

one can solve the equations for g2 in axisymmetry in Boozer coordinates and obtain

g2 = I (ψ)

ψ′

(
1− B 2

B 2
max

)
(2.137)

and therefore the flux-surface average becomes

〈g2〉 = I (ψ)

ψ′

(
1− 〈B 2〉

B 2
max

)
. (2.138)
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Similarly, g4 in axisymmetry[Nakajima and Okamoto, 1992] becomes

g4 = I (ψ)

ψ′

(
1− g1�

1−λ

)
(2.139)

with its corresponding flux-surface average

〈g4〉 = I (ψ)

ψ′

(
1− 〈g1〉�

1−λ

)
(2.140)

Since geometric factor in the banana regime is

Gb(ψ)= 1

ft

{
〈g2〉− 3

4

〈B 2〉
B 2

max

∫1

0

〈g4〉
〈g1〉

λdλ

}
, (2.141)

we replace the values of 〈g2〉 and 〈g4〉 and obtain

Gb(ψ)= 1

ft

I (ψ)

ψ′

{
1− 〈B 2〉

B 2
max

− 3

4

〈B 2〉
B 2

max

∫1

0

(
1

〈g1〉
− 1�

1−λ

)
λdλ

}
, (2.142)

The last term in the parentheses integrates to 4/3, therefore we have

Gb(ψ)= 1

ft

I (ψ)

ψ′

{
1− 3

4

〈B 2〉
B 2

max

∫1

0

λdλ

〈g1〉
}

. (2.143)

Recalling that the term in the parentheses is equal to ft , we finally have

Gb(ψ)= I (ψ)

ψ′
, (2.144)

which is the same as the Sauter expression. Furthermore, the L-factors are similar to the order

of ( ft / fc )2[Watanabe et al., 1995]. Thus the two formulations are identical in axisymmetry,

which will be used as a benchmark to test the numerical agreement of the two schemes in

axisymmetric and approximately axisymmetric (E.g. with weak RMPs) conditions.

2.7.4 Numerical resonancemitigation

The mitigation of numerical resonances at rational q-surfaces is of particular importance to

the Shaing-Callen model[Cooper et al., 2004]. For solving the equations in the Shaing-Callen

model, we use a Fourier-decomposition scheme to simplify the equations in Fourier space.

However, the B.∇ operator becomes (mΨ′ −nΦ′), which is zero at rational q =m/n surfaces,

which raises singularities at rational surfaces during the inversion. This has been mitigated

in previous work by the inclusion of a resonance detuning operator Δmn , which numerically

prevents the singularities from occurring. The detuning operator is defined as follows:

Δmn =Δ
[
(m+1)Ψ′ −nΦ′

]
(2.145)
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where Δ is a dimensionless detuning factor. The singularity itself is prevented by the transfor-

mation

1

mΨ′ −nΦ′
→ mΨ′ −nΦ′

(mΨ′ −nΦ′)2+Δ2
mn

. (2.146)

It is important to note that this scheme is purely a numerical correction on the resonant

q =m/n surfaces. In reality, these resonances represent parallel current sheets which would

create islands and local pressure flattening (and thus reduction of the local bootstrap current

density) in a resistive MHD model. However, this cannot be accounted for by an ideal MHD

equilibrium code like VMEC, and hence is unphysical under the VMEC equilibrium model. As

will be seen, the 1/1 non-resonant internal kink mode is a particularly interesting application

because the core 3D structure avoids resonance and hence, the need of the resonance detuning

here.

In the bootstrap current density profile, the resonant contributions appear as sharp spikes

at the values of s corresponding to the resonant q-values. These spikes are very sensitive to

the choice of the detuning factor Δ. Choosing too large a value of Δ makes the current density

profile globally distorted to a significant order, and the choice of too small Δ leads to the

presence of large spikes at rational q surfaces. We will explore this in more detail in the next

section.

2.7.5 Self-ConsistentComputationofTheToroidally-AveragedBootstrapCurrent

In order to calculate the flux-surface averaged toroidal bootstrap current density 〈Jbs.∇φ〉(ψ) ,

we must average over the toroidal and poloidal angles as follows

〈Jbs.∇φ〉(ψ)=
∫s

0

〈Jbs.B〉(ψ)

B 2 Φ′(ψ)dudv. (2.147)

where again the angled brackets 〈x〉 are used to represent the flux-surface average of the

parameter x. In VMEC coordinates, this is computationally difficult to perform on account

of coordinate system used. In the VMEC (s,u, v) coordinate system, the integrand is not a

flux-surface quantity, which makes an additional averaging necessary. The toroidal current

density 〈Jbs.∇φ〉 in VMEC coordinates is given by

〈Jbs.∇φ〉(ψ)= 〈Jbs.B〉(ψ)
∫∫ dudv

�
g

(
Φ′ − ∂λ

∂u

)
g v v

(
Ψ′ + ∂λ

∂v

)2
guu +

(
Φ′ − ∂λ

∂u

)2
gv v +2

(
Ψ′ + ∂λ

∂v

)(
Φ′ − ∂λ

∂u

)
guv

.

(2.148)

This is computationally expensive to calculate over each flux-surface and over each iteration

of the scheme, as the double integral would have to performed for every point of the defined

grid in u and v with sufficient precision. Instead, we convert the obtained equilibrium to

Boozer coordinates using TERPSICHORE[Cooper, 1992]. On multiplying the numerator and
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the denominator by the Jacobian
�

g , we find that they both reduce to flux-surface functions,

which reduces the averaging to

〈Jbs.∇φ〉(ψ)= 〈Jbs.B〉(ψ)
Φ′(s)V ′(s)

Ψ′(s)J (s)−Φ′(s)I (s)
. (2.149)

It is immediately noticeable that the computation required to perform the integral has been

reduced by a factor of nu ×nv , where nu and nv are the grid sizes chosen over the VMEC
coordinates u and v . Now one can integrate over the value of 〈Jbs.∇φ〉 to arrive at the value of

bootstrap current profile Ibs(ψ) as follows:

Ibs(ψ)=
∫ψ

0
〈Jbs.∇φ〉(ψ) dψ (2.150)

where Ibs is the total bootstrap current obtained in amperes. In addition, the net toroidal

current density has to be adjusted for the bootstrap current for the next iteration of the scheme

in order to keep the total toroidal plasma current Ip constant. 〈JOhm.∇φ〉(ψ) is the purely

Ohmic current density profile over the first iteration of the equilibrium, chosen as per typical

current profiles in MAST experiments. The bootstrap current and the Ohmic current profiles

are then merged so as to preserve the total toroidal current as follows:

〈J.∇φ〉(ψ)=
(
Ip −Ibs

IOhm

)
〈JOhm.∇φ〉(ψ)+〈Jbs.∇φ〉(ψ) (2.151)

The coefficient of 〈JOhm.∇φ〉(ψ) is the new Ohmic current fraction IOhm/Ip = (Ip −Ibs)/Ip .

Integration of current density over ψ at each step will conserve the total current to the chosen

value of Ip . At each iteration, the form of the Ohmic current is kept the same, but the overall

current profile changes with respect to the form of the bootstrap current obtained in the

last equilibrium. For the next iteration, VMEC takes the profile 2π〈J.∇φ〉(ψ) and creates a new

equilibrium satisfying that profile.

In order for the iterative scheme to end, we stop it after an iteration where the bootstrap

current converges to a sufficient precision. To that effect, we define the tolerance ‘tol ’ as

the relative difference between the current density profiles between successive iterations.

Therefore, we have for the nth iteration

tol = I (n)(ψ)−I (n−1)(ψ)

I (n−1)(ψ)
(2.152)

where the superscript n represents the total toroidal current at the nth iteration. We declare

the bootstrap current density as having being ‘saturated’ when the specified tolerance is

reached.
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2.8 Neoclassical Physics of the Background Plasma and Impurities

We now describe the inclusion of the parallel dynamics in the collision operator which are

crucial to the friction force experienced by the impurity particles. The general force balance

equations for the impurity, main ion and electron species can be written as:

−mW nW Ω2ReR = −∇pW −nW ZW (−∇Φ0+U0×B−∇Φ1+U1,W ×B)−F (2.153)

−mi niΩ
2ReR = −∇pi −ni e(−∇Φ0+U0×B−∇Φ1++U1,i ×B)+F (2.154)

0 = −∇pe −ni e(−∇Φ0+U0×B+U1,e ×B), (2.155)

where, as before, U0 denotes the E×B flow velocity which is independent of the species, and

Ui , j is the diamagnetic flow velocity which is different for each species j . The force F is the

friction force acting on each species. Now, according to ideal Ohm’s law, the leading order ∇Φ0

will cancel out with the U0×B terms. Therefore, only the diamagnetic flow components will

remain in the equation for the impurities. In the trace impurity limit, we neglect the pressure

of the impurities. Thus, the equations reduce to:

−mW nW Ω2ReR = −nW ZW (−∇Φ1+U1,W ×B)−F (2.156)

−mi niΩ
2ReR = −∇Pi −ni e(−∇Φ1+U1,i ×B)+F (2.157)

0 = −∇Pe −ne e(−∇Φ1+U1,e ×B). (2.158)

The friction force acting between two species is equal to the collisional drag felt by each

species, and is proportional to the difference in the flow velocity of each species (including the

parallel flow). It has the form

Fab =−manaν
a/b(U1,a −U1,b)− 2

5
manaν

a/b
(
Qa

pa
− Qb

pb

)
, (2.159)

where U j represents the flow velocity of species j , and Q j represents the heat flux of species

j . The heat flux Q depends solely on the temperature gradient of the species, whereas the

flow depends on pressure and temperature gradients and the higher-order potentials. The

perpendicular component of the friction force F⊥ is responsible for the classical diffusion,

whereas the parallel component F∥ is responsible for the neoclassical diffusion. Also, the

general expression for the collision frequency of two species is given[Huba, 2004] by

νa/b
0 = 4

�
2π

3

nb

ma

(
1

ma
+ 1

mb

) Z 2
a Z 2

b e4 lnΛ

(4πε0)2

1

(V 2
T,a +V 2

T,b)3/2
(2.160)

where mi and Zi are the mass and charge of the species i , Λ is the Coulomb logarithm, Vi is

the velocity of the particle of species i , and Ti is the temperature of the species i . From this

expression firstly, one can notice that the self-collisions of tungsten particles can be neglected
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if the impurity is in trace quantities as compared to the bulk ions, i.e. nW � ni . One can

also notice that the dominant collisions present are those between the trace heavy tungsten

particles and the background ions. These simplifications in the neoclassical physics faced by

the heavy impurity ions leads to the idea that the impurity particles can be treated by a PIC

approach in the trace density limit.

We know that the friction force F for the impurities arises solely out of collisions with the

background ions moving at a different flow velocity as compared to the impurities. Therefore,

in PIC simulations, we can simulate the friction force by resolving the impurity particle veloci-

ties correctly in the frame of the flow velocity of the background ions in the collision operator

of VENUS-LEVIS. The collision operator in VENUS-LEVIS is a Monte-Carlo collision operator

implementation which simulates single-particle collisions with a thermal background plasma,

i.e. a Maxwellian background that is at rest. The Monte-Carlo kicks are provided in Energy

E and pitch λ. Given that, for a background plasma with flow, the distribution function is

a Maxwellian shifted by the value of the flow velocity, the energy and pitch of the impurity

particle supplied to the collision operator should include the change in frame corresponding

to the flow of the background. A simplification arises from the fact that the flows driven by the

electric potentials Φ0 and Φ1 remain the same for all species, and therefore both the impurity

and background plasma distributions are shifted by the same velocity values for these flows.

The only flow that differs is the flow that arises due to the pressure gradients U1, j as the

pressure gradients for the impurity and background species will be different. Calculating the

background flow as explained in Section 2.3, we shift the impurity particle velocities by U1, j

and provide it to the collision operator to obtain the frictional dynamics. This is sufficient to

simulate impurity collisional dynamics equivalent to the neoclassical dynamics described

above, which is used as a benchmark.

2.8.1 Recovery of Known Neoclassical Results in a Rotating Axisymmetric Equi-
librium

An important part of this work will be the recovery of known impurity steady-state profiles

in a rotating axisymmetric equilibrium with the Monte-Carlo approach just described. The

equations (2.156)-(2.159) can be solved, as in Ref. [Romanelli and Ottaviani, 1998] following

a method similar to Ref. [Rutherford, 1974], to obtain the surface-averaged radial impurity

flux 〈ΓW .∇r 〉, under large aspect ratio conditions, and in the absence of temperature gradient

effects, it is found to be

〈ΓW .∇r 〉ψ = −DPS(1+M 2
∗ )2〈nW 〉×

{
∂r ln〈nW 〉−

(
1− M 2∗

1+M 2∗

Zi eni

p ′
〈U1,iθ〉

)
ZW

Zi
∂r ln pi

− m̃

m∗

(
M 2∗ (1+3εM 2∗ +2εM 4∗ )−R0∂r εM

2∗
R0ε(1+M 2∗ )2

)}
,

(2.161)
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where DPS is the stationary Pfirsch-Schlüter diffusion coefficient, DPS = 2ε2(Ti /ZW eBθ0)2,

and the angle brackets 〈〉 indicate surface-averaged quantities. The effective Mach number

M 2∗ , and the masses m̃ and m∗ are defined as

M 2
∗ =M 2

0,W

(
1− mi Te

mW (Ti +Te )

)
, m̃ =mW −ZW mi , m∗ =mW − Te

(Ti +Te )
mi .

The averaged poloidal velocity 〈U1θ,i 〉 in the absence of temperature gradients is

〈U1,iθ〉 =
〈{(

g2

B 2 −
〈g2〉
〈B 2〉

)
+ GPS(ψ)

〈B 2〉
}
B.∇θ+ B×∇ψ.∇θ

B 2

〉 p ′i
Zi eni

. (2.162)

This value goes to zero for axisymmetry in all collisional regimes. For 3D, this may not be the

case and will contribute to neoclassical effects.

The steady-state of the density profile can be obtained by setting the expression for radial flux

to zero 〈Γ.∇r 〉 = 0 and choosing a flat rotation profile, and we arrive at [Romanelli and Ottaviani, 1998]

〈nW (r )〉
〈nW (0)〉 =

(
ni (r )

ni (0)

)(
1− M2∗

1+M2∗
Zi eni

p′ 〈U1,iθ〉
)

ZW /Zi

×exp

{
m̃

m∗
(3+2M 2∗ )M 4∗

(1+M 2∗ )2

r

R0

}
. (2.163)

Thus, the steady state profile crucially depends on two factors: the presence of a poloidal flow,

and the centrifugal effects of rotation.

In the absence of rotation with M0 = 0, we can arrive at an impurity density profile that has

the form

〈nW (r )〉
〈nW (0)〉 =

(
ni (r )

ni (0)

)ZW /Zi

. (2.164)

This implies that there is a very peaked impurity density even without rotation. One can see

that the pressure dependent term in the RHS is the main contributor to the inward flux of the

impurities. We use these expressions to benchmark impurity profiles in Chapter 4.

2.9 Summary of the General Theory Background

We have presented the aspects of various physics that will be used in the current thesis for

application to calculation of the bootstrap current and the impurity accumulation. The next

two chapters will focus on numerical results for various 3D applications, specifically on the

bootstrap current with a saturated 1/1 internal kink mode, and on impurity transport with a

toroidally rotating saturated 1/1 internal kink mode.
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3 Effects of 3D on Bootstrap Current

The bootstrap current plays an important role in the steady-state function of future fusion

devices, especially tokamaks such as ITER, as it reduces the dependence on external current

drive, leading to savings in the input energy. Thus, it is of great interest to study the bootstrap

current in existing fusion devices, under operational conditions similar to ITER. ‘

For tokamaks with steep edge pedestals, similar to those found in H-mode operations, the

bootstrap current near the edge acquires a large value, significantly reducing the dependence

on current drive. In TCV, operation of the tokamak with nearly 100% bootstrap current

fraction due to bootstrap effect with ECCD has been demonstrated[Coda et al., 2007], leading

to hopes that future tokamaks can achieve high bootstrap-current fractions. At the same

time, plasma behaviour at and near the edge is crucial for the operation of a tokamak. The

toroidal field ripple caused by the discretization of the toroidal magnetic field is a 3D effect

that can play an important role in confinement of particles near the edge. Another example

of such 3D effect on the edge is the Edge Localized Mode (ELM), which in short bursts,

causes large degradation to the confinement of the plasma[Wingen et al., 2015]. Recently, the

effort towards mitigating ELMs has concentrated on using Resonant Magnetic Perturbations

(RMPs), to mitigate and control ELMs. However, large density pump-outs associated with

ELM mitigation can cause a change in the edge bootstrap current. In addition to the 3D effects

caused by externally imposed magnetic fields, the saturated 1/1 internal kink mode, also

known in experimental plasma physics as Long Lived Modes (LLMs), is an intrinsic MHD

instability in toroidally confined hybrid-type plasmas. The pressure barrier around the helical-

core region can contribute significantly to the bootstrap current, and therefore, it is important

to see to what extent the helical core affects the bootstrap current ordinarily associated with

core localised pressure gradients.

In the current chapter, we attempt to undertake such self-consistent calculations of the boot-

strap current in the 3D applications mentioned above. We use a self-consistent iterative

scheme for the bootstrap current and employ two contrasting models to compute the boot-

strap current. In particular, we wish to compare the performance of an axisymmetric model

and a 3D model, as opposed to previous works which have only compared the validity compar-
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isons of axisymmetric schemes[Belli et al., 2014b]. The iterative scheme yields the bootstrap

current self-consistently starting from an ideal (2D and 3D) MHD equilibrium obtained from

the VMEC code[Hirshman and Whitson, 1983]. The two distinctive models of bootstrap cur-

rent we use are as follows: First, the Sauter model[Sauter et al., 1999] and second the Shaing-

Callen model[Shaing and Callen, 1983, Shaing et al., 1986a], as described in Sec. 2.7. Both

bootstrap current calculation models are applied to both 2D and 3D equilibria in this chapter,

even though the Sauter model was originally derived for axisymmetric equilibrium calcula-

tions, and the Shaing-Callen is a neoclassical model valid for 3D equilibria. In the current work,

we compare the performance of the two models for a variety of cases ranging from axisym-

metric equilibria, to 3D equilibria incorporating the ideal response of RMPs to 3D equilibria

with a helical core. This resultant bootstrap current is incorporated into the original toroidal

current density profile, and iterated through VMEC again to generate a new equilibrium. The

scheme is iterated until the bootstrap current profiles are sufficiently converged, resulting in a

self-consistent magnetic equilibrium and its resultant bootstrap current profile. There have

been apparently similar attempts to simulate bootstrap current using an iterative scheme

on tokamaks and stellarators[Watanabe et al., 1992, Watanabe et al., 1995, Isaev et al., 2003].

However, each work has usually limited itself to using either an axisymmetric model or solely

using a 3D model. The current work will compare and contrast the two bootstrap current

models on 2D and 3D equilibria, obtaining novel, realistic bootstrap current calculations in

tokamaks with field ripple, RMPs and helical cores.

This chapter is organised as follows: In section 3.1, we benchmark the bootstrap current

formulations in the axisymmetric limit then proceed to consider weakly 3D equilibria, i.e.

equilibria with toroidal field ripple and RMPs which pose a weak ideal equilibrium response,

with an edge pressure pedestal. Next, in section 3.2, we consider a weak internal pressure

barrier in the core region, however accompanied by a strongly 3D equilibrium. In the last

section, Sec. 3.3, we summarise the results we observe and explain possible future works.

3.1 Edge Pedestal with Weak 3D effects: Toroidal Field Ripple and

RMPs

In this section, we examine three distinct topics. Firstly, we benchmark the Sauter and Shaing-

Callen formulations in the limit of axisymmetry. As shown in Sec. 2.7.3, the schemes must agree

for axisymmetric equilibria and in Sec. 3.1.1 we will demonstrate the numerical agreement.

Then we proceed to consider weakly 3D equilibria with Toroidal Field Ripple in Sec. 3.1.2 and

Resonant Magnetic Perturbations (RMPs) in Sec. 3.1.3.

We begin by generating equilibria with an input pressure profile. We choose the pressure

profile in a manner so as to represent the steep edge pedestals observed in H-modes in

tokamaks (alternatively referred to as edge pressure barrier, as such steep profiles near the

edge provide an edge transport barrier increasing the confinement of the plasma). In terms of
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Figure 3.1 – The pressure profile is chosen so as to generate a VMEC equilibrium a steep edge
pressure pedestal. Notice the pressure barrier staring at s = 0.8.

the radial variable s, the pressure and the density profiles are chosen to be:

p(s) = 104{0.6105(1− s)(1− s2)+0.3105(1− s10)2} N m−3 (3.1)

n(s) = 1.06.1020{0.3105(1− s)(1− s2)+0.6333(1− s10)2} m−3 (3.2)

respectively. The pressure profile succinctly allows for an edge pressure pedestal beyond

s = 0.8, which can be seen in Fig. (3.1). Further, the density profile is deliberately chosen to

be a similar form so as to obtain a smooth and relatively flat temperature profile near the

edge. The temperature profiles is calculated as T (s)= p(s)/(2(n(s)), and as can be observed

from Fig. (3.2), is relatively flattened in the edge region beyond s = 0.8. Additionally, we fix

the density on the axis as n0 = 1020m−3 and the temperature on the axis to be T0 = 0.6keV .

These values ensure faithful representation of the kind of equilibria seen in MAST reasonably

(Figs. 3.1,3.2).

We begin the first iteration of the iterative scheme by setting solely the Ohmic part as the total

toroidal current I . The initial Ohmic current profile is chosen as

〈JOhm.∇φ〉(s)= Itot al
5

12
(1− s− s2+ s3) Am−2 (3.3)

and we fix the total toroidal plasma current to Itot al = 0.48M A (where the 5/12 is the nor-

malization factor for the chosen s polynomial). This prescription of pressure, density and

temperature profiles is the initial condition for the calculation of the first equilibrium. The
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Figure 3.2 – The temperature profile is chosen so as to generate a VMEC equilibrium a steep
edge pressure pedestal. The temperature profile flattens at s > 0.8 corresponding to the
pedestal in pressure.

choice of our current density and pressure profiles determines the q-profile which plays

an important role in the determination of the resonant rational surfaces which affects the

bootstrap current densities calculated from 3D approaches. The associated q-profile can be

seen in Fig. 3.3. With these profiles and axis parameters, we generate an equilibrium using

VMEC. It is important to point out that the (s,u, v) coordinates of VMEC make calculations easy

wherever harmonic decomposition is necessary. However, for the calculation of the bootstrap

current, these coordinates necessitate additional averaging loops because of the fact that

these are not field-aligned coordinates. This is computationally expensive as compared to

using field-aligned coordinates for the averaging process. Therefore, as alluded to in the

previous section, we convert the equilibrium to Boozer coordinates through the use of the

TERPSICHORE package[Anderson et al., 1990].

The bootstrap current is then calculated through the use of the Sauter and Shaing-Callen

formulae. The key idea, after this step is to scale and incorporate the bootstrap-current into

the Ohmic current, thus prescribing the new current profile for the next iteration. This is

subsequently iterated over with VMEC in order to generate a new equilibrium. The iterations

are performed until convergence is reached to a required tolerance.

3.1.1 Benchmark with an axisymmetric MAST equilibrium

In order to benchmark the scheme, we first confine ourselves to axisymmetry. The VMEC

free-boundary version[Hirshman et al., 1986] is used to generate an axisymmetric equilibrium
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Figure 3.3 – The safety factor q-profile for the simulations for the chosen initial current and
pressure profiles.

by allowing no toroidal modes except n = 0. This also makes sure that there are no resonant

surfaces on which there can be singularities. Thus, we have the advantage of being able to

examine the two bootstrap current models without the numerical effects of 3D magnetic

equilibria. This allows us to compare the forms and magnitudes of the bootstrap current

generated by each model.

In Fig. 3.4, we have plotted the bootstrap current density curves obtained from the Sauter

formula from equations (2.115-2.119) described in Sec. 2.7.1, and the curve obtained from the

Shaing-Callen formulation, described by equations (2.122-2.126) in Sec. 2.7.2. One can notice

in Fig. 3.4 that even just after the first iteration, the Sauter and Shaing-Callen formulations

prescribe bootstrap current density profiles which lie very close to each other, and follow the

overall same shapes (which depend on the initial profiles we specified). In fact, the Shaing-

Callen bootstrap current density agrees very well with the Sauter bootstrap current density.

Therefore, we see that despite being prescribed by different schemes, the profiles lie very close

to each other, as is expected from the axisymmetric agreement described in Sec. 2.7.3.

Further, it is of some interest to study the convergence of this scheme. In order to do so, as

seen in Figs. (3.5,3.6), we iterate the scheme several times until a convergence is reached to a

required tolerance. In general, as the Shaing-Callen scheme follows the Sauter scheme very

closely in the axisymmetric limit, it is usually enough to seek convergence with respect to

one of the prescriptions for the bootstrap current. The tolerance is defined as the relative
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Figure 3.4 – Profiles of the parallel bootstrap current density 〈JBS.B〉 obtained according to the
Sauter formula (the black curve) and the Shaing-Callen formula (red ‘+’ points).

difference between the current and the previous iteration. Unless otherwise mentioned, we fix

a tolerance of 10−3. We observe that, with each iteration, the bootstrap current approaches

saturation. Beyond the fourth iteration, the tolerance is achieved, and the current profile can

be considered to be sufficiently converged.

Another point which is very useful to consider is that even just after the second iteration,

the form for the bootstrap current lies very close to the final form of the bootstrap current

density profile. For computation of the bootstrap current density for 3D equilibria which are

computationally expensive, one can use this fact as a heuristic to estimate the form of the

bootstrap current profile, before proceeding to iterate and obtaining the profile more precisely.

3.1.2 Bootstrap Current for a 3D Equilibriumwith Toroidal Field Ripple

In order to look at 3D effects on the bootstrap current density (and the total current), we

generate MAST-like 3D equilibria using VMEC under free-boundary conditions, keeping the

same pressure, temperature, Ohmic current and rotational-transform ι profiles. We generate

equilibria, first to examine the effect of the number of toroidal field coils (the rectangular

orange coils in Fig. 3.10) and hence the effect of varying toroidal field ripple near the edge

(by changing coil currents), and then with varying current density in the RMP coils (the red

discrete coils in Fig. 3.10) to simulate the ideal response to RMPs. For the following 3D cases

with possible resonant q surfaces, there must be numerical resonance detuning performed, as
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Figure 3.5 – Plot of Sauter parallel bootstrap current density 〈JBS.B〉 for each iteration of the
bootstrap procedure. The profile for each nth iteration is the input for the VMEC equilibrium
calculation of the (n+1)th iteration.
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Figure 3.6 – Plot of the total current profile 〈J.∇Φ〉 for each iteration of the bootstrap procedure.
The profile for each nth iteration is the input for the VMEC equilibrium calculation of the
(n+1)th iteration.

47



Chapter 3. Effects of 3D on Bootstrap Current

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−9

−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

5

Radial Variable s

〈J
B
S
.B

〉/
T
A
m

−
3

Bootstrap currents after the 1st iteration for the 3D case

 

 

Sauter Formulation

Shaing − Callen Formulation

Figure 3.7 – Comparison of the Shaing-Callen formula and the Sauter formula for bootstrap
current densities after the first iteration.

explained in Sec. 2.7.4 to numerically correct the resonances near the rational-q flux-surfaces.

We proceed to fix the detuning factor to Δ= 10−4, unless mentioned otherwise. We can see

in Fig. 3.7 that the Shaing-Callen derived bootstrap current now carries deviations from the

axisymmetric Sauter model, as is expected from the 3D nature of the magnetic field. However,

these deviations present themselves chiefly in forms of resonant spikes in the bootstrap

current density profile. These spikes are caused by resonant rational q-surfaces, and in reality,

represent parallel sheet currents, as seen in the side-by-side comparison in Fig. (3.8). It can be

immediately noticed that there are major resonances distorting the edge bootstrap current

profile at and around the q = 2/1 and q = 3/1 surfaces. These resonances are not avoidable

because of the choice of the mode numbers and the effectively attained q-profile. (Additionally,

we mention that the choice of the grid for averaging over the pitch λ in Eq. 2.131 plays little

to no effect on the resonant spikes. We chose to implement several forms (linear, sinusoidal,

hyperbolic) pitch grid between s, λ so as to concentrate a high sampling density near the

trapped-passing λ for the pitch λ. We observe virtually no mitigation of the resonances with

the change in the density of the pitch grid. The resonances are also not mitigated by increasing

the resolution in the (θ,φ) physical grid used in equilibrium generation.)

However, we would still like to see whether these spikes can be removed by adequately ad-

justing the detuning factor Δ. In Fig. (3.9), where the value of Δ is varied, we see that above

Δ = 10−4, the detuning causes the whole current density profile to change, distorting the

current density profile itself. We observe, that the change in the profile becomes worse at
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Figure 3.8 – A side-by-side comparison of the Sauter and Shaing-Callen bootstrap current
densities with the q-profile. It can be seen that the spikes on the edge bootstrap current
correspond to rational values of q on the profile.
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Figure 3.9 – The parallel Shaing-Callen bootstrap current density 〈JBS.B〉 for different values of
detuning factor Δ. The dashed black line in the background is the Sauter bootstrap current.
The bootstrap current density curve for Δ= 10−7 overlaps with the curve for Δ= 10−4.
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Figure 3.10 – Diagram depicting coil placement in MAST. The doughnut shaped figure is a plot
of the magnetic field strength the last closed flux-surface of the equilibrium. The toroidal field
coils are shown in orange, and the RMP coils are shown in red.

Δ= 10−2. And as we decrease below Δ= 10−4, we observe that the profile remains the same.

Thus, the optimal value of the detuning factor seems to be 10−4, as has been observed in previ-

ous literature[Turnbull et al., 2011]. However, even within the optimal range for the resonance

detuning, the resonances are still present to the same order as the current.

It is hoped as we increase the number of toroidal field coils (referred to as ‘TF-coils’ from

here onwards), we approach an equilibrium closest to an axisymmetric equilibrium, avoiding

some large q resonances. In order to investigate whether some resonance stemming from the

toroidal field ripple can be suppressed, we choose to change the number of toroidal field coils

(TF-coils), modeled in VMEC, in order to observe the change in the bootstrap current density

profile. In MAST, there are 12 TF-coils (seen in Fig. 3.10), which in itself presents a considerably

small field ripple. In order to increase the ripple, we decrease the number of TF-coils to 6, and
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Figure 3.11 – The effect of increasing TF-coil numbers on the parallel Shaing-Callen bootstrap
current densities. The resonance detuning factor is fixed at Δ= 10−4. The black dashed curve
represents the Sauter bootstrap current density for the same Δ.

in order to decrease the ripple to get as an axisymmetric toroidal field as possible, we increase

the number of TF-coils to 24 and 32. This allows us to examine the effect of the toroidal field

ripple on the bootstrap current, and the particular resonances it undergoes.

The coil positions can be specified to VMEC using another package in the VMEC-Suite called

MAKEGRID. MAKEGRID can define the magnetic-field strength of the TF-coils to any specified

precision and to any specified number of modes. This is an important point to keep in mind,

as increasing the number of coils would subsequently require an increase in the number of

required toroidal modes, in order to maintain the same order of accuracy as in the tests with a

lower number of TF-coils. Also, the current in the coil has to be proportionally compensated

corresponding to the number of coils being used in order to maintain the same field strength.

We notice from Fig. 3.11 that when the number of TF-coils is decreased to 6, there is a change in

the bootstrap current profile, though the net difference from the axisymmetric value does not

significantly increase. In addition, we can see more spikes for the case with 6 TF-coils, which

implies that a larger ripple causes more resonances, and hence more spikes. However, as can

be seen in the figure, these additional spikes appear at mid-radius region, where the bootstrap
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Figure 3.12 – A plot of the bootstrap current density, for the case of 32 TF coils, for increasing
sampling in radial variable s. We have especially zoomed in between the near-edge region
s = 0.8−1.0. It is immediately noticeable that the increase in the sampling produces neither a
significant amelioration of the numerical resonance, nor do the non-resonant portions differ
significantly.

current is weak. However, the increase in the number of TF-coils beyond 12 does neither

affect the bootstrap current density curve, nor the particular spikes observed in the density

profile. Thus, we conclude that the number of TF-coils does not play any significant role on

the form or order of the bootstrap current. In all the cases beyond 12 TF-coils, we do not see

a difference in the bootstrap current density curve. For all the cases considered, including

the case with 6 TF-coils where a strong ripple ensues at the edge of the plasma,the Shaing-

Callen bootstrap current density curve closely follows the axisymmetric Sauter bootstrap-

current density curve, except for the spikes observed at the resonant q-rational surfaces. It

is reasonable to hypothesize that if these spikes were not present, the curves agree closely

with the axisymmetric case. It is therefore reasonable to conclude that the 3D Shaing-Callen

model is as good as the axisymmetric Sauter model, for the cases with a steep edge pedestal

and toroidal field ripple.
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Figure 3.13 – The parallel Shaing-Callen bootstrap current density 〈JBS.B〉 as calculated for
12 TF-coils for a MAST 3D equilibrium with varying RMP currents. The black dashed curve
represents the Sauter bootstrap current. The resonance detuning factor is set to Δ = 10−4.
Note in particular the higher (m,n) mode number resonances caused in the mid-radius.

3.1.3 Bootstrap Current for a 3D Equilibriumwith RMPs

Additionally now, we would like to learn if any relevant physics can be extracted under the

same weak 3D conditions. RMPs play an important role in mitigating ELMs, and therefore the

effects of ideal RMP fields on the bootstrap current are important to examine. We apply RMPs

to the same VMEC equilibrium and get equilibria corresponding to the ideal response of the

RMP fields. The RMP coils, again, are specified through the MAKEGRID package. Now, in order

to check the effect of the RMP fields on the bootstrap current, we progressively increase the

value of the bootstrap current from 0k A to 14k A. In MAST, the order of currents used in the

RMP coils is usually 1k A. In our scan, the value closest to realistic values would be around

1.4k A. It is worth mentioning that the 14k A case is purely academic, in order to examine an

extreme-case ideal RMP response might cause to the edge bootstrap current. The RMP coils,

as seen in Fig. 3.10, are chosen so as to create an n = 3 perturbation.

We notice that beyond a certain value of the RMP current, there is virtually no difference in

the bootstrap current at the edge, and that the bootstrap current remains virtually unchanged

between the RMP-coil current values of IRMP = 0A and IRMP = 1.4k A. The RMP-coil current
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values lying in between these values correspond to a bootstrap current curve that lies in

between the blue and green curves in Fig. 3.13.

We notice that the bootstrap current therefore is not significantly different at the edge. How-

ever, in the s = 0.3− s = 0.8 region, there is a significant effect on the 3D Shaing-Callen

bootstrap current. This is expected of an n = 3 perturbation to penetrate more deeply towards

the axis. Therefore, we conclude a negative result, that RMPs do not affect the edge bootstrap

current significantly. However, when we assume (an unrealistic) value of RMP-coil current at

IRMP = 14k A, we see that the parallel current spikes in the region between the edge and the

axis are more strongly affected than the edge itself. We see, in general, that the parallel current

spikes grow with the increasing RMP-coil current, therefore distorting the bootstrap current

profile significantly and preventing us from extracting any significant results in this region of

interest. Again, the 3D model does not offer any insight here. Thus the axisymmetric model is

as good as the 3D model for the 3D equilibria with steep edge pressure barrier.

3.1.4 Summary of Bootstrap Current in Axisymmetry with RMPs and Toroidal
Ripple

The conclusions of the previous section can be summarised as follows. There is an excellent

agreement between the Sauter and Shaing-Callen formulations under the limit of axisymmetry,

as is expected from standard neoclassical theory. Furthermore, it can be confidently stated

that the axisymmetric Sauter model is robust to weak 3D ideal perturbations, like toroidal field

ripple and resonant magnetic perturbations, when the 3D equilibrium is near axisymmetry,

where the Shaing-Callen model can undergo multiple resonances near the edge. The reso-

nance detuning has a limited effect on the bootstrap current profile and has a favourable range

(Δ = 10−4−Δ = 10−6) where enough resonance damping is provided without affecting the

overall profile. Therefore, for equilibria with weak 3D ideal response, it is prudent to use the

Sauter model and reduce computational time. Hence, the Shaing-Callen model is desirable

with 3D modes that do not undergo rational-q resonances, which is considered in the next

section where we examine the non-resonant 1/1 internal kink mode.

3.2 Internal Pressure Barriers with Strong 3D effects: Saturated 1/1

internal kink

A saturated 1/1 internal kink is known in experimental plasma physics as a long-lived mode

(LLM) MAST[Chapman et al., 2010, Chapman et al., 2014] or informally as a helical-core. The

deformation of the flux-surfaces near the core twist around helically with the toroidal angle.

The helical core extends up to the point where the safety factor q is the minimum (qmi n)

or alternatively till where the rotational transform is maximum (ιmax )[Brunetti et al., 2014].

Beyond that, the flux-surfaces are quickly assume axisymmetry, and the region enclosing

the helical core is termed here as the axisymmetric mantle. They play an important role
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Figure 3.14 – The rotational transform ι profile chosen to generate a helical core.

in the functioning of machines such as MAST and JET, and future fusion devices like ITER.

Helical-core equilibria can be generated in VMEC[Cooper et al., 2010] by providing an initial

n = 1 distortion on the magnetic-axis which leads to the formation of an appropriate helical

core.

3.2.1 Bootstrap Current for a Saturated 1/1 Internal Kink

We begin by fixing the rotational transform ι= 1/q profile, and letting the current profile free in

VMEC. In order to avoid resonance, we choose a ι-profile which avoids major resonant surfaces

in the helical-core region and peaks slightly below ι= 1. Additionally, the pressure profile is

chosen so as to provide a weak internal pressure barrier in the helical core region. Having fixed

the q-profile, and not the current density profile 2π〈J.∇Φ〉, we only perform the first step of

the iteration to obtain the form of the bootstrap current profile. Following from benchmarks

in the superseding section, we can safely assume that the first iteration itself will bring the

bootstrap current current density profile sufficiently close to the converged value.

The ι-profile is chosen to peak around s = 0.2 with a low shear region between s = 0−0.2 (seen

in Fig. 3.14). The edge of the helical core extends up to the point at which q-profile transitions

from a low-shear to a high-shear region, indicating that the helical core extends until s ∼ 0.2,

seen from Fig. 3.14. Beyond that, the equilibrium is effectively axisymmetric. Further the

pressure profile in the helical core-region is chosen to be reasonably steep, thereby providing a

weak pressure gradient in the helical-core region, as seen in Fig. 3.15 The temperature profile

is chosen to be constant at T = 640keV , thus making the pressure profile of the same form as
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Figure 3.15 – The chosen density profile in order to produce a helical core equilibrium. We can
see that in the helical core-region up to s = 0.2, there is a steep density (and hence, pressure)
gradient, providing a weak internal pressure barrier.

the density profile. With these, we generate a 3D equilibrium with a helical core, which can be

seen in Fig. (3.16).

Using the above-mentioned profiles, we start by benchmarking the case against a 2D axisym-

metric sister equilibrium. In order to create this axisymmetric analogue equilibrium, we

force only one toroidal mode n = 0, which forces VMEC to have an axisymmetric magnetic

axis around which to form an equilibrium. This axisymmetric equilibrium is similar in all

aspects with its helical core sister-state except for the presence of a helical skew in the core till

s = 0.2, which can be seen in Fig.3.18. We perform our bootstrap current density calculations

on this axisymmetric equilibrium using the Sauter and Shaing-Callen models. One can see in

the Fig. (3.18), that again, we see an excellent agreement between the two models to within

5%. It can be observed that the form of the Sauter bootstrap current density is modulated

chiefly from the pressure gradient d p/d s and the trapped fraction ft . In the helical core region

s < 0.2, the trapped fraction ft is the chief contributor to the form of the bootstrap current,

taking it abruptly towards zero as it approaches the magnetic axis. Again, the Shaing-Callen

bootstrap current density also closely follows the Sauter bootstrap current density. We observe

no resonant contributions because of the lack of n �= 0 modes in the computation of the

geometrical factor Gb .

Having found a similar agreement as the previous edge pressure barrier case for axisymmetry,

we move on to compute the 3D helical core equilibrium with a skewed magnetic axis and an

axisymmetric free boundary. With the finely chosen q-profile to avoid major resonances in
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Figure 3.16 – The helical core equilibrium obtained from VMEC for the specified ι-profile
and pressure profile. One surface from inside the helical core (s = 0.1), one from near the
internal axisymmetric boundary (s = 0.25) and the last from the edge (s = 1) are shown here
for reference.
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Figure 3.17 – A comparison of toroidal cross-sections of (s,u, v) coordinate grids for the helical
core equilibrium and its axisymmetric sister-state. The magenta coloured lines are lines of
constant poloidal angle variable u. The helical core region is represented by green coloured
lines of constant s, and the axisymmetric mantle is represented by blue coloured lines of
constant s.
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Figure 3.18 – The bootstrap current densities calculated for the axisymmetric analogue equi-
librium for the chosen helical core parameters.

the helical core region, we compute the Sauter and Shaing-Callen bootstrap current densities.

The resonance detuning parameter is set at Δ= 10−4, as per the optimal detuning parameter

value obtained in the previous case. We notice from Fig. 3.19, that in the helical core region,

there are no major resonance contributions, leading to a smooth bootstrap current density

curve with the Shaing-Callen prescription. However, even as we move a small distance outside

of the helical core, at the beginning of the axisymmetric mantle, we notice spikes caused

by the ι-profile crossing major resonant surfaces despite the fact that in this domain the 3D

deformations are very weak. In the axisymmetric mantle, there is an agreement between the

two formulations similar to what was seen for the edge pressure pedestal case, rife with major

resonance contributions.

Crucially, the bootstrap current densities prescribed by the Sauter formulation and the Shaing-

Callen formulation in the helical-core region are visibly different. In particular, we notice that

the current prescribed by the Sauter formulation is non-zero on the magnetic-axis whereas it

tends to zero as prescribed by the Shaing-Callen formulation. We proceed to investigate the

origins of the difference between the two bootstrap current prescriptions in the helical core

region.
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Figure 3.19 – We choose a q-profile which avoids major resonant surfaces in the helical-core
region. The figure above represents the bootstrap current profiles specified by the Sauter and
Shaing-Callen formulations respectively and the figure below shows the chosen ι-profile.
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3.2.2 Comparison of the Sauter and Shaing-Callen Formulations: Particle Trap-
ping and Geometry

The Sauter bootstrap current density depends on the values of I /ψ′, and the coefficients

L31, L32 and L34. From the Eqs. (2.116)-(2.119), it can be immediately noticed that the L-

coefficients are dependent on the trapped fraction ft . An approximation for the trapped

fraction[Sauter, 2016] in terms of the triangularity δ, the inverse aspect-ratio ε is given by

εe f f = 0.67 (1−1.4δ |δ|) ε, (3.4)

ft ,appr ox = 1 − 1−εe f f

1+2
�
εe f f

√
1−ε

1+ε
, (3.5)

ft ,appr ox = mi n(1 , ft ,appr ox (Eq.(3.5)). (3.6)

Now since s = (r /a)2, r and a being the minor radius and maximum minor radius respectively,

and thus r /R being the inverse aspect-ratio of the flux-surface in concern, we compute the

approximate axisymmetric trapped fraction ft ,appr ox , through the values of ε and δ obtained

from the VMEC equilibria. In addition, it is also possible to calculate the exact flux-surface

averaged trapped fraction for the given axisymmetric VMEC equilibrium using Eq. 2.120. A

comparison between the exact trapped fraction and the approximate trapped fraction can be

seen in Fig. (3.20). The two axisymmetric trapped fractions follow each other quite closely as

expected. Importantly, the exact trapped fraction ft for the 3D helical core (Fig. (3.20)), ft does

not approach zero towards the magnetic axis, and it is for this reason that the Sauter model

yields non-zero bootstrap current on the axis (see Fig. (3.18)).

For the 3D VMEC helical core equilibrium, the skewed magnetic axis has a variation in the radial

R and azimuthal Z directions. This causes a variation in the absolute magnetic field |B |, and

therefore allows for the formation of a local magnetic well on the magnetic axis where the par-

ticles can get trapped. By following a similar approach as in Ref. [Wesson and Campbell, 2011],

the particle gets trapped when its parallel velocity vanishes w∥ = 0. Therefore,

w∥(x)2+w⊥(x)2 =w⊥(xbounce )2, (3.7)

wherew∥ is the parallel velocity of the particle, and the subscript ’bounce’ refers to the bounce

point on the arbitrary coordinate x. From the conservation of the magnetic moment, we have

w⊥(x)2

B(x)
= w⊥(xbounce )2

B(xbounce )
. (3.8)

Now, at the trapped-passing boundary of the particles, the bounce point is the point with the

maximum magnetic field intensity. Therefore, at the trapped-passing boundary, we have

w∥(x0)=w⊥(x0)

(
Bmax

B(x)
−1

)1/2

(3.9)
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where subscripts 0 and max refer to the initial position and position of maximum magnetic

fields respectively. A particle would be trapped for a value of w∥(x0) less than the RHS, and

vice-versa for a passing particle. Assuming a distribution F in (w∥, w⊥), the density of trapped

particles nt would be given by

nt = 4π
∫∞

0
d w⊥w⊥

∫w∥(x0)

0
d w∥F (w∥, w⊥), (3.10)

where the trapped fraction now becomes ft = nt /n. Assuming a Maxwellian distribution in

(w∥, w⊥), the trapped fraction becomes

ft = nt

n
= 4π

( m

2πT

)3/2
∫∞

0
d w⊥w⊥ exp

{
−mw2

⊥
2T

}∫w∥(x0)

0
d w∥ exp

{
−

mw 2
∥

2T

}
(3.11)

which is a nested integral. In the limit of small w∥(x0), the integral in w∥ integrates to a value

of w∥(x0). The trapped fraction can then be integrated to

ft (x0)=
[

B(x0)

Bmax

(
Bmax

B(x0)
−1

)]1/2

. (3.12)

If the arbitrary variable x is the helical angle χ= (θ−φ), and consider a skewed magnetic axis

with a magnetic field of the form

B ∼B0− δrhel

R0
cosχ, (3.13)

then the local trapped fraction can be averaged over χ to obtain the trapped fraction on the

magnetic axis ft ,appr ox,hel

ft ,appr ox,hel =
2

π

(
2δrhel

R0

)1/2

(3.14)

where δrhel is the displacement of the magnetic axis. From the equilibrium data, we find

δrhel ≈ 0.18, which makes the trapped fraction on the axis ft ,appr ox,hel ≈ 0.6, which is consis-

tent with what we observe in Fig. 3.20. The disparity in the 2D and 3D exact trapped fractions

is very low in the axisymmetric mantle and therefore the agreement between the Sauter and

Shaing-Callen formulations outside of the helical core region still remains of the order ob-

served in Figures (3.18) and (3.19). It must also be mentioned that the collisionality towards the

magnetic axis is typically not negligible, and the trapped fractions are reduced by the order of

the collision frequency of the species[Sauter et al., 1999]. This helps drive the trapped fraction

to a lower value near the magnetic axis for the 3D case, which would in turn modulate the

Sauter bootstrap current density to a lower value at the axis. However, this wouldn’t affect the

shape of the current density curve away from the magnetic axis, and the difference observed

among the two bootstrap models will remain significant.

As for the Shaing-Callen bootstrap current density formulation, the coefficients again depend
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Figure 3.20 – A comparison between the exactly calculated trapped fraction ft and the trapped
fraction calculated under axisymmetric conditions for the vacuum form of the magnetic field
ft ,appr ox for the helical core case.

on the neoclassical viscosity coefficients and the trapped fractions. However, as we have seen

earlier, the trapped fractions do not approach zero, and from Ref.[Johnson et al., 1999], the

viscosity coefficients are constants. Therefore, the key contribution to the modulation of the

form of the bootstrap current density curve arises from the geometrical factor Gb . Firstly,

because of the q � 1 low-shear region in the helical core, there is an augmentation in the

geometrical factor because of the parallel gradients B.∇ approaching, but never reaching, zero.

This near-resonance causes the helical-core bootstrap current to be augmented in the helical

core region as compared to the axisymmetric version, as seen in Fig. 3.22.

We observe, from Fig. (3.21), that the geometrical factor for the helical core approaches

zero towards the magnetic axis. The geometrical factor Gb , as evidenced from Eqns. (2.131)

and (2.132)-(2.135), depends on the flux-surface averaged coefficients 〈g2〉 and 〈g4〉, which

subsequently depend on B.∇B and B.∇g1 respectively. For axisymmetry, on the magnetic axis

throughout which the value of |B | remains the same, makes Bmax = |B0|. Therefore, g2, g4 and

therefore their flux-surface averages on the axis remain zero, leading the geometrical factor

Gb to a null value. In the 3D case, exploiting the symmetry in θ, the RHS of Eq. (2.132) and

Eq. (2.133) on the magnetic axis can be written as

B×∇Ψ.∇→− Bθ�
g

∂

∂φ
+ Bφ�

g

∂

∂θ
(3.15)
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Figure 3.21 – The geometrical factor Gb for the Shaing-Callen model. The geometrical factor
goes to zero on the magnetic axis, and it exhibits the resonances observed in the axisymmetric
mantle.

where
�

g is the Jacobian, Bθ,Bφ are the covariant θ,φ components of the magnetic field. For

helical symmetry, this expression is anti-symmetric along the field-line, and thus integrates

to zero along the field-line, leading to the integral for g2, and consequently its flux-surface

average 〈g2〉 = 0. Assuming a small contribution from the second term of Gb , the geometrical

factor Gb will be close to zero on the magnetic axis. Thus, the geometrical factor Gb for the

Shaing-Callen model in the banana regime will always approach zero at the magnetic axis

for a 1/1 saturated internal kink mode, giving a significantly different result from the Sauter

model, seen in Fig. (3.22).

3.2.3 Summary of Bootstrap Current in 1/1 Helical Geometry

To summarise our conclusions about the bootstrap current in a strongly 3D equilibrium with a

saturated 1/1 internal kink, we refer to Fig. (3.22), where it becomes evident that drastic drop in

the Sauter bootstrap current density in between s = 0 and s = 0.1 follows the trapped fraction

ft profile, however the Shaing-Callen bootstrap current density follows the modulation offered

by the geometrical factor more faithfully. Thus the 3D model provides a physical resolution

that the axisymmetric model falls short of. We can thus conclude that, for a helical-core case

which avoids resonant surfaces, it would be of interest to study the behaviour of the bootstrap

current profiles in the case of a weak internal transport barrier. The difference amongst the

Sauter and Shaing-Callen models, along with the possibility to choose non-resonant ι-profiles,

make it a useful case in which the Sauter and Shaing-Callen models can show significantly
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Figure 3.22 – A focus on the bootstrap current density in the helical core region. Also plotted
are the trapped fractions and the geometrical factor in order to compare the variations of the
Sauter and Shaing-Callen bootstrap current prescriptions against the causal factors.
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3.3. Summary and Outlook

different bootstrap current density profiles in the helical core region, a strong intrinsic 3D

effect. Thus the 3D Shaing-Callen model, and the additional computational effort exerted, is

significant for an accurate numerical analysis of the helical core case. This result will assume a

central importance in the next chapter, where we examine the background ion parallel flow

velocity in presence of a saturated 1/1 internal kink equilibrium.

3.3 Summary and Outlook

In the chapter, we have studied the bootstrap current in MAST-like equilibria with an iterative

self-consistent procedure in which the total current and the Ohmic current profiles are kept

fixed. The bootstrap current calculations were performed from a given VMEC equilibrium

and merged into the toroidal current profile while keeping the total current constant. The

procedure is iterated until convergence to a specified tolerance. The bootstrap current profile

was evaluated using using two known models: the Sauter and the Shaing-Callen models. We

first began with a MAST equilibrium presenting a steep edge pressure pedestal as is observed

in H-modes. For the axisymmetric test case considered, we observed a rapid convergence.

Having being satisfied with the convergence and the self-consistency of the scheme in ax-

isymmetry, we proceeded to examine 3D equilibrium for the edge pressure barrier with the

two models. The 3D equilibrium was seen to present severe current sheets at q-rational flux-

surfaces, prompting an investigation into methods to minimize these resonances. First, when

applying resonance detuning, it was noticed that the resonance detuning parameter has a very

narrow range of optimal values where the resonant q-rational surface currents are minimized

without affecting the overall bootstrap current density. But the minimization of the parallel

current was still not enough to extract any useful physics from this case. In order to investigate

ways to externally minimize the q-rational resonances, we proceeded to reduce the toroidal

field ripple by increasing the number of TF-coils. It was observed that toroidal ripple plays

little effect beyond 12 toroidal-field coils, implying that the axisymmetric model performs as

well as the 3D model, without the burden of parallel sheet currents that emerge on q-rational

flux surfaces. In addition, sampling in the radial direction was increased in order to minimize

the width of the resonant current spikes. However, it was seen that the increased sampling

provides no significant improvement to the values of the resonances observed, leading to

another negative result. In order to see whether some useful physical effects would still be

salvageable from this particular 3D case, we further applied RMPs, varying the current in

the RMP coils. At the edge, where bootstrap current is the maximum for the edge pressure

barrier based equilibrium, virtually no change was observed. Therefore, the bootstrap current

does not change significantly under equilibria with ideal response to RMPs. Furthermore, any

possible effects that could have been observed in the mid-radius region are masked by severe

current spikes, making such observations statistically weak. Therefore, very little physical

insight could be derived for the 3D edge pressure barrier case.

Therefore, we chose to focus on the choice of a q-profile along with a strong 3D effect that

prevents major resonances in the domain of interest. We generated through VMEC, a finely
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tuned equilibrium with a saturated 1/1 internal kink helical core, by imposing a q-profile that

avoids low order resonances in the helical core region. In the helical core region, we observed

a significant difference between the Sauter and Shaing-Callen formulations. In particular,

it was noticed that there is an augmentation in the bootstrap current density in the helical

region of the 1/1 internal kink. We conclude that these differences occur on the account

of the differences in the physical model, and that the 2D and 3D models do indeed present

significantly distinguished results without resonance effects, making helical core studies an

ideal candidate for bootstrap current research using the self-consistent iterative method.
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4 Effect of 3D on Impurities

4.1 Introduction

In beam injected plasmas exhibiting strong toroidal flow, an important area of concern

is the mitigation of confinement of heavy impurities. Unfortunately, beam injected ex-

periments in JET and ASDEX upgrade, both with tungsten divertors, often exhibit rapid

inward transport of tungsten impurities, leading to poor performance, and occasionally

radiative collapse[Pütterich et al., 2010]. These poor plasma conditions can be mitigated

by using auxiliary heating to peak the core temperature[Sertoli et al., 2015b] shielding in-

ward impurity transport, verified via fluid-based neoclassical[Ahn et al., 2016] and turbulent

gyrokinetic approaches[Casson et al., 2015]. Such techniques, however, have limited suc-

cess during strong core MHD phenomena, such as neoclassical tearing modes (NTMs) and

sawteeth[Sertoli et al., 2015a], where the parallel transport associated with resistive islands is

probably important. In JET, it has been stated that n = 2,m = 3 NTMs are now intolerable due

to the massive influx of impurities associated with long-living core islands[Hender et al., 2016].

Scenario development is concerned with avoiding core magnetic islands.

The presence of strong toroidal flow leads to a significant modification of the particle con-

finement in the plasma. Because of their low thermal velocity, tungsten particles possess

supersonic flow and are strongly trapped even in plasmas where the bulk-ion flow is strongly

subsonic. In the axisymmetric limit, it has been shown that the centrifugal trapping leads to

a strong enhancement of diffusivity[Wong and Cheng, 1989, Fülöp and Helander, 1999]. One

way to model the distribution of impurities is to follow the full 6D gyromotion of the impurity

marker distribution (a so-called PIC approach) which is necessary when the electric and mag-

netic field variation is of the order of the gyroradius of the particle. When such scale-length

variations (including time-varying fluctuations[Romanelli et al., 2011]) are not present and

the fields are smooth to the scale of the gyroradius, one may follow the guiding-centre orbits,

which greatly reduces the computational cost. Proper accounting of centrifugal and neoclassi-

cal effects leads to the well-known impurity flux distribution[Romanelli and Ottaviani, 1998]

in axisymmetry, though little has been done so far using a PIC approach. Modelling attempts
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using PIC methods in the past have reproduced the strong diffusivity without reproducing

the impurity peaking seen in experiments[McKay et al., 2008, McClements and McKay, 2009,

Romanelli et al., 2011] essentially because the neoclassical transport arising from collisions of

the trapped impurity particles with the passing particles background ions was neglected. This

is the first area addressed by this manuscript, in which we follow a guiding-centre based PIC

approach with a neoclassical collision operator.

In addition to plasma rotation and neoclassical effects, the presence of MHD modes can

also have a significant effect on the particle orbits. Here, and in contrast to previous works

involving resistive saturated structures associated with NTMs and sawteeth, we concentrate on

plasma scenarios with q > 1 in the presence of a continuous m = 1,n = 1 3D ideal MHD mode.

In MAST and JET hybrid scenario experiments, where the q-profile has an extended region of

low magnetic shear near the axis and stays above unity, experiments can exhibit long-lived

continuous n = 1 helical structures[Chapman et al., 2010, Chapman et al., 2014]. These con-

tinuous modes, accompanied by toroidal rotation of the plasma and the mode, are surmised

to be manifestations of a saturated and stable 1/1 internal kink. While 1/1 ideal internal kinks

(without magnetic islands), degrade the confinement of fast ions[Pfefferlé et al., 2014b], there

is also increasing evidence of enhanced heavy impurity accumulation in the core region. We

aim at a better understanding of the neoclassical impurity pinch (and other geometric effects)

under such conditions in the plasma.

In order to compare impurity transport for kinked and unkinked magnetic fields with the

neoclassical transport, turbulent transport is out of the scope of the thesis. We use the

3D ideal MHD equilibrium code VMEC to obtain our stationary 1/1 kinked magnetic fields

[Hirshman and Whitson, 1983, Hirshman et al., 1986]. One of the features of VMEC, is that one

may obtain bifurcated solutions for an equilibrium with a helically distorted axis [Cooper et al., 2010],

which agrees with saturated initial value calculations of the internal kink mode [Brunetti et al., 2014].

This allows us to obtain accurate magnetic equilibria representing modes which are ob-

served experimentally. Using the obtained equilibrium, one can use the guiding-center orbit-

following PIC code VENUS-LEVIS[Pfefferlé et al., 2014a] to observe the behaviour of different

kinds of particles facing different equilibrium scenarios[Pfefferlé et al., 2014b]. In addition,

we have incorporated centrifugal and electric field effects in VENUS-LEVIS in the current

work, allowing us to test particle behaviour under strong rotation. Furthermore, in order to

develop an accurate model, it is of utmost importance to include neoclassical effects arising

because of the collisions. We consider only the collisions between the impurity particles and

the background ions[Helander and Sigmar, 2005, Shaing et al., 2015], and neglect impurity

self-collisions. We therefore operate in the so-called trace limit. In order to account for the

discontinuity in the distribution function at the trapped-passing boundary of the background

ions, we calculate the background ion parallel velocity analytically using established neo-

classical theory[Nakajima and Okamoto, 1992, Shaing et al., 2015]. The analytic computation

of the parallel background velocity of the ions in axisymmetry is fairly simple. For cases in

which a strong 3D deformation is present, we invert the continuity equation for computing

the parallel flow velocity of the background ions. These calculations enable us, for the first
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time, to compute tungsten accumulation in realistic rotating hybrid plasma scenarios with

continuous modes using a PIC approach.

This chapter is organized as follows. In Section 4.2, we describe the complete implementation

of the flows and neoclassical effects. As the collision operator responsible for the friction

force requires an accurate description of the flows of the plasma background, we proceed to

describe that in Section 4.3. Then, we simulate the heavy impurity cases with VENUS-LEVIS
for axisymmetry and helical core equilibria generated from VMEC in Section 4.4. In the end, we

summarize our conclusions and future direction of work in Section 4.5.

4.2 Impurity Trajectories with Collisions

The standard guiding-center orbits of the impurity particles are chiefly modified by two

additional factors, i.e. plasma flow and collisions. Therefore, in this section, we aim to describe

the implementation of the classical orbit effects and the neoclassical collisional effects.

The problem of obtaining heavy impurity dynamics in the trace limit involves the solution

of the full distribution FW for the impurity ions evolving over time to a steady-state. In the

PIC approach, this involves the sampling of particles from the impurity distribution, evolving

their trajectories with time, and accounting the interaction of the impurity particles with the

background through collisions. The background flow plays two major roles in the behaviour

of heavy impurities. Firstly, the centrifugal force arising from the potential gradients is felt

significantly by the impurity ions because of their relatively high mass and ionization state.

Secondly, since the impurities and the background ions move with different flows, this will

result in a drag force on the impurity distribution FW by the background ion distribution Fi .

4.2.1 Centrifugal Effects

We consider here the centrifugal effects. We know, from Sec. 2.3, the total flow of the species

j , U j , with the parallel and perpendicular components being U∥, j and U⊥, j respectively,

further divided into the leading-order and higher-order flows U j =U0, j +U1, j . Imposition of

a toroidal leading-order flow leads to simplifications in the computation of the associated

centrifugal and Coriolis terms in the guiding-center formulation, and in the computation of

the higher-order quasi-neutrality-preserving Φ1, which leads to an associated E1×B flow. The

leading-order flow is the same for every species, and the centrifugal and Coriolis forces arising

from the lowest-order flow are imposed on heavy impurity species through the guiding-center

equations. As derived in Section 2.5, the guiding-center equations of motion are given by

71



Chapter 4. Effect of 3D on Impurities

Eqs. (2.80),

˙ρ∥, j = E∗.B∗

B.B∗
(4.1)

Ẋ j =
(
U0∥, j +

Z j e

m j
ρ∥, j B

)
BB∗

B.B∗
+ E∗ ×B

B.B∗
,

or in the alternate form in Eqs. (2.113)-(2.114) as seen in Chapter 2,

ρ̇∥, j = B∗

B.B∗
.

{
∇Φ1+

μ j

Z j e
∇B + m j

Z j e
U∗0, j .∇U∗0, j

}

Ẋ j = U∗0, j +
B

B.B∗
×

{
∇Φ1+

μ j

Z j e
∇B + m j

Z j e
U∗0, j .∇U∗0, j

}
.

The leading-order flow is imposed to be purely toroidal

U0 =Uφ0, j∇φ=Ω(ψ)R2∇φ, (4.2)

where Ω(ψ) is the angular velocity, for the simplicity of expressions of gradients of the flow

in Eq. (2.80) much simpler as elaborated in Sec. 2.5.1. Again, It is important to note that

the leading-order flow in its most general form is not purely toroidal, but actually lies along

the intersection of the contours of ψ and B [Helander, 2014]. The extension of the work to

incorporate a more complete description for the flow is in progress. Next, the quasi-neutrality

restoring potential is

Φ1 = Te

Ti +Te

mi

2e
Ω2R2. (4.3)

We again mention that we impose the axisymmetric form of Φ1 for the simulations with 3D

fields as well. Additionally, in inductively-driven plasmas, there is also a loop voltage Vloop

induced electric field E∥,loop . The parallel electric field is responsible for driving the plasma

current results in an inward pinch of particles, known as the Ware pinch[Ware, 1970]. It leads

to a usually very small inward velocity for the heavy impurities, which has been established to

not play a significant role in heavy impurity confinement in the presence of strong plasma

rotation[McClements and McKay, 2009]. With high temperatures and low loop-voltages in

JET and high M 2
0,W flows for tungsten particles, this pinch will not be a significant effect to

consider. This parallel electric field is very low (Vloop is of the order of 0.1V) for a JET pulse

during the NBI-driven phase of the pulse and does not play a significant role when strong

rotation is involved.
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4.2.2 Neoclassical Effects

The neoclassical effects arise from the fact that the flow velocities for the background ion

species and the heavy impurity species is different, therefore leading to a drag on the im-

purities by the background ions. Additionally, the neoclassical effects are modified in the

presence of strong leading-order flow U0,i , which causes the heavy impurities to be confined

in heavily trapped orbits with strong poloidal asymmetry, which leads to a magnification of

the neoclassical diffusion[Wong and Cheng, 1987, Angioni and Helander, 2014]. The forces

responsible for such strongly trapped particle orbits are provided by guiding-center equations

described in the previous section[Wong and Cheng, 1989]. The neoclassical effects, however,

come into action through collisions. The drag affects all impurities except those flowing with

the same flow velocity U0,i as the main ions.

To account for the parallel friction, we must take into account the pressure-gradient derived

higher-order flow U1, j , which is different for each species and requires the solution of the

continuity equation for each species. In the trace impurity limit, the higher-order flow for

impuritiesU1, j will arise when the impurity particle finite Larmor-radius effects are statistically

averaged over. Therefore, we only need the background ion flow U1, j description to correctly

account for the flow differences. Once the higher-order flow U1,i is computed, it must also

be implemented in the collision operator in order to obtain the corresponding neoclassical

effects. Thus, the particle velocity has to be provided to the collision operator such that it is

in the frame of the background flow U0,i +U1,i . To illustrate this, in Fig. 4.1, the distribution

Fi represents the background distribution with which the heavy impurities collide and the

distribution FW represents the distribution from which the heavy impurity particles are

sampled for the PIC simulations. We can notice that the distributions are displaced by their

respective flow velocities, and the difference in flows leads to a drag by the background species

on the heavy impurity species. We would ideally like to stay in the rest frame in order to make

the orbit-following simpler.

However, the Monte-Carlo collision operator assumes that the background distribution with

which the collisions are simulated is at rest. There is a simple work-around to solve this issue,

however. The Monte-Carlo collision operator in VENUS-LEVIS takes as inputs the kinetic

energy E and pitch λ and supplies new values of these parameters E ′,λ′ after the collision.

Collisions are performed at intervals smaller than the inverse of the collision frequency or

at each time-step, whichever is larger, in order to reduce computational bottlenecks. Before

providing the collision operator with the values of E ,λ, we transform these parameters into the

flow frame of the background ions, which involves providing values Er est ,λr est , modified by

the shift by the velocity U1,i , as seen in Fig. 4.2. In this frame, the background ion distribution

is at rest. Since the flows arising from the potential gradients (U0,i and quasi-neutrality

dependent higher-order flow) are same for all species, they cancel out and are not needed

for the frame-shift. After the collision operator performs the collision, we receive as output

the new energy and pitch in the moving frame E ′r est ,λ′r est . These values are now transformed

back into the rest frame E ′,λ′ by performing a velocity shift of −U1,i . This effectively implies
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Figure 4.1 – The distributions in the rest frame.

that the collision operator takes into account the difference between the particle velocity and

the background ion velocity, thus providing the relevant classical and neoclassical friction

forces. However, since the impurity particles are individually sampled from a distribution, the

drag on each individual impurity particle cannot be observed, but can be statistically averaged

and observed over the entire distribution. With this procedure, the neoclassical effects are

implemented and will be used for simulations in the next sections.

One subtlety to note, is that the impurity distribution F ′W has been shifted by the leading-order

flow. Thus, the initial sampling of the particles must now take into account the flow velocity

in order to produce the initial distribution in the rest frame. Then, the application of the

centrifugal force by the guiding-center forces will ensure that the particle remains flowing

with the leading-order flow.

4.3 Neoclassical properties of Axisymmetric and Helical-core Equi-

libria

The ideal MHD equilibria, both axisymmetric and those possessing a saturated 1/1 inter-

nal kink, are generated for a JET-like case with the Variational Moments Equilibrium Code

(VMEC)[Hirshman and Whitson, 1983, Hirshman et al., 1986]. VMEC generates equilibria us-

ing the steepest descent method minimizing the ideal MHD energy functional:

μ0W =
∫∫∫

d 3x

(
B 2

2
+ μ0p(s)

Γ−1

)
. (4.4)
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Figure 4.2 – The distributions in the frame moving with the background ions.

For axisymmetry, the minimization of Eq. 4.4 is functionally equivalent to arriving at an equi-

librium by solving the Grad-Shafranov equation under the appropriate boundary conditions.

For obtaining a 3D saturated 1/1 internal kink, one specifies a skewed axis with an appropriate

q-profile that can effectively converge upon a saturated helical core. The flow is imposed

later in the guiding-centre equations to study particle behaviour. The helical core equilib-

rium with qmi n � 1 has been shown to correspond to the stable 1/1 internal kink mode in

hybrid scenarios[Brunetti et al., 2014]. The reason for ignoring the rotation in calculation of

the equilibrium fields is that currently there is no consistent MHD model for rotation in 3D

plasmas. In the limit where the bulk ions are strongly subsonic, inertial effects due to the

centrifugal force are negligible, and as such we may assume that the plasma rotates toroidally

in a 3D kinked plasma just as it does to leading order for an axisymmetric plasma. Indeed

the Mach number for bulk ions is such that the bulk flow is strongly subsonic, and hence

any empirically observed MHD non-axisymmetry would move past magnetic probes with an

associated frequency nΩ, where n is the toroidal mode number, and Ω is the toroidal plasma

rotation frequency. The dominant MHD mode in the current work is a saturated n = 1,m = 1

continuous mode.

We proceed to generate the required magnetic equilibria. We choose appropriate pressure

and q-profiles for the equilibria as seen in Fig. 4.3, and create a helical core equilibrium by

initially prescribing an appropriate helical displacement of the magnetic axis (∼ 0.2m helical

skew in the radial direction). On constraining the number of toroidal modes to zero, we obtain

an axisymmetric bifurcated solution. The comparison of the axisymmetric and helical core

sister states can be seen in Fig. 4.4. The equilibria are low current hybrid scenario equilibria,
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state. Notice how the constant pressure surfaces are shifted by the saturated internal kink.

with a normalized beta value of βN = 3.1%, as seen in Tab. 4.1. We use these equilibria as the

basis for our electric and magnetic fields in the guiding-centre orbits.

We use the equilibrium to compute the parallel velocity U1∥,i for the background equilib-

ria. It is fairly difficult to invert the continuity equation assuming VMEC-coordinates. Con-

version to straight-field line coordinate system such as Boozer coordinates[Boozer, 1981]

makes the calculation for the parallel velocity much easier. This is accomplished using

TERPSICHORE[Anderson et al., 1990], a code package that also allows for a convenient mode

selection so as to ensure a precise conversion of the VMEC mode spectrum into the Boozer

mode spectrum. Furthermore, after having converted the magnetic equilibrium into Boozer

coordinates, we integrate equation 2.132 by transforming into Fourier-space of the Boozer

spectrum, where the gradients are represented as simple scalars in the direction of the

magnetic field. However, this leads to the problem of numerical resonances at rational q-

surfaces[Cooper et al., 2004]. These spikes occur due to the parallel gradient operator B.∇
being proportional to (mΨ′ −nΦ′)−1, which is singular at rational q =m/n surfaces in Fourier

space. The mitigation of these numerical resonances is performed by inclusion of a resonance

detuning operator Δmn , which numerically smooths over the singularities, as described in

Sec. 2.7.4. Crucially, quantities in the helically-deformed region are unaffected by the value

of Δ. As will be seen, the 1/1 non-resonant internal kink mode is a particularly interesting

application because the core 3D structure avoids resonance, hence is independent of the

details of the resonance detuning parameter, and largely the physics of resistivity, should it
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Toroidal Current Ip 1.79MA
On axis pressure P0 1.0×105Pa
On axis temperature T0 2.1keV
Safety factors q0, q95 1.053,4.683
Edge toroidal flux Φed g e 8.27Wb
On axis field B0 2.88T
Major and minor radii R0, a 3.238m,1.14m
Helical skew δh 0.23
Beta values β,βN 2.56%,3.16%
Grid Sizes (ns ,nθ,nφ) (231,45,25)
Mode numbers (m,n) (9,5)

Table 4.1 – Values of essential parameters used in the equilibrium generation for a JET-like
case

have been included.

As explained in the previous section, it is of interest to compute the surface-averaged par-

allel velocity, 〈U1∥,i 〉 for axisymmetric and helical cores in the Pfirsch-Schlüter regime. This

gives us an insight into how the helical distortion modifies the parallel velocities, 〈U1∥,i 〉,
as shown in Fig. 4.5. It is worth noting that, for the 3D equilibrium, this leads to a finite

poloidal flow, as seen in Fig. 4.6, whereas it is zero for the axisymmetric case in the Pfirsch-

Schlüter regime as is well-known neoclassical literature in the limit of zero temperature

gradients[Helander and Sigmar, 2005, Shaing et al., 2015]. This will become important to in-

terpret the simulation results, as will be seen.

We notice immediately that, for the 3D case, the parallel velocity 〈U1∥,i 〉 is strongly augmented

in the helical core region, as compared to axisymmetry, as observed in the previous work of

the authors in Ref. [Raghunathan et al., 2016]. This increase in the helical core region is due to

the parallel gradient operator being very small in the core ((mΨ′ −nΨ′)−1 being large) due to

the near resonance of the 1/1 mode. The low value of (mΨ′ −nΨ′) consequently causes the

magnification of the geometrical factor in the helical core region. Similar enhancements to the

bootstrap current due to the helical core have been reported earlier[Raghunathan et al., 2016]

and in Chapter 3 in the current thesis. The enhanced parallel velocity U1∥,i is accompanied by

the presence of a finite poloidal flow for the 3D case, whose importance will be explained later.

4.4 Simulations of Tungsten Neoclassical Transport

In this section, we perform full- f simulations of tungsten species in the trace limit interacting

with the background plasma through collisions. The particle trajectories are evolved by the

guiding-centre formulation and the collisions with the background plasma are made by the

Monte-Carlo collision operator described in the preceding section. The background fields

are used from the VMEC equilibria as also described earlier. The full distribution is initialized
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Figure 4.5 – The computed values of the parallel velocity U1∥,i .
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Figure 4.6 – The associated value of the poloidal flow velocity U1θ,i for the helical core.
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in terms of markers weighted appropriately to emulate the chosen initial distribution. The

evolution of the distribution and the marker weights provides us the evolution of the distri-

bution in time. For all our guiding-centre simulations, we choose a toroidal angular velocity

Ω= 1.2×105rad/s (corresponding roughly to 20kHz and Mach number M0,W = 8.94) for the

toroidal ensemble flow. We initialize a full distribution of heavy tungsten impurity with an

effective charge of ZW = 40 and an initial Maxwellian density of the form nW = ni ×10−4, such

that the impurity contributions to the plasma and the fields can be neglected. We initialize 215

markers weighted appropriately to emulate the full distribution and let the particles evolve

their orbits until the density profile saturates. It is necessary to resolve very finely in time

because of the large angular rotation speed, and we find in the performed simulations that

the final impurity density profiles converge to the precision of 10−7 with 215 particles on 210

cores.Hence this choice of the number of the particles leads to adequate precision while

optimizing the overall computation time.

The initial normalised pressure and temperature profiles are chosen to be the same as those of

the background ions and electrons used for the VMEC equilibria as in Fig. 4.3. We assume a flat

background ion and electron temperature profiles with T0,i = 2.1keV, in order to choose the

most pessimistic case of inward impurity pinch without the potentially beneficial screening

provided by the thermal gradient.

4.4.1 Benchmark for a Non-Rotating Axisymmetric Equilibrium

We first start with a benchmark to test whether the model has been implemented properly. In

order to do so, we choose an axisymmetric equilibrium, initialise the particles as explained

previously, and let the orbits evolve in the absence of flow, and let the density profile evolve to

saturation. We notice that the density profiles take about t ≈ 2s to evolve to saturation. During

the progression of the simulation, we see from Fig. 4.7, that the particles are drifting inwards

with time, leading to density saturation at around t = 2s. Additionally, the inward drift speed

can be heuristically estimated to be in the order of 1m/s, which agrees with benchmarked

values from studies performed previously[Ahn et al., 2016]. Fig. 4.9 further shows that the

density of the tungsten impurities over R and Z strongly peaks near the axis.

Having performed the simulation under the simplest conditions of axisymmetry without flows,

we would now like to confirm it with known results from the theory of impurity transport.

From the neoclassical theory of impurities without flow for axisymmetric conditions, we would

expect the saturated density profile to be as in Eq. (2.164) [Helander and Sigmar, 2005]

〈nW (r )〉
〈nW (r = 0)〉 =

(
ni (r )

ni (r = 0)

)ZW /Zi

,

i.e. a very peaked density indicating that the particles have to undergo a significant inward

drift leading to peaking on the axis, which is exactly what we observe in our simulations. On

comparing the numerically obtained density with the peaked profile predicted by Eq. (2.164),
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Figure 4.7 – The density profile of the impurity with time for an axisymmetric JET-like equi-
librium without rotation. Notice the slow but constant inward drift of the density, leading to
heavy impurity peaking on the axis.
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Eq. (2.164). We find that they are in good agreement.
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Figure 4.9 – Density plot for the axisymmetric equilibrium without flow at t = 2s. As we expect,
the tungsten impurities concentrate on the axis with the density following the predicted
density.

we can observe from Fig. 4.8 that the final normalized density profile agrees reasonably well

with the predicted normalized density.

4.4.2 Benchmark for Axisymmetry with Plasma Rotation

We now perform a full- f simulation with 20kH z flow for axisymmetry and we find that the

particles do not make it all the way into the core region, but saturate at the edge of the core

region, which can be seen in Fig. 4.10. For the JET cases examined here, the effective Mach

number is M 2∗ ≈ 80. Also, from the plot of the density on the toroidal plane, in Fig. 4.11, we

notice that the particles are deeply trapped centrifugally, as expected, and settle off-axis. The

time for the impurity density profile to saturate is reduced to the order of t ∼ 30ms from the

t ∼ 2s value for the case of axisymmetry without flow.

Furthermore, if we impose a 20kH z flow and remove neoclassical effects by assuming that

the flow velocity of heavy impurities in the flow-frame of the background ions is zero, i.e. the

two species are flowing together therefore removing any frictional effects, we find a strong

outward drift accompanied by a quick loss of particles, with the particle numbers depleting to

zero in a very short time. If we define the impurity confinement time as the time it takes for

the density to drop to 1/e its initial value, the confinement time is of the order of 40ms, which

agrees with the PIC simulations in Ref. [McClements and McKay, 2009, Romanelli et al., 2011],

which were also performed without the inclusion of the neoclassical effects through collisions.
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Figure 4.10 – The time progression of the density profile for an axisymmetric equilibrium case
with 20kHz rotation.
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Figure 4.11 – Plots of density of tungsten for the axisymmetric equilibrium with 20kHz rotation.
We notice that the impurities, deeply trapped on the low field side, saturate off-axis
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These two results can be understood by recalling Eq. (2.161) for the radially averaged impurity

fluxes[Romanelli and Ottaviani, 1998, Romanelli, 1998]. By assuming that the impurities have

a strong poloidal asymmetry caused by the presence of the centrifugal force and the corrections

for quasi-neutrality, the equations for parallel momentum balance and ambipolarity can be

solved to obtain the following flux-surface averaged radial impurity flux 〈ΓW .∇r 〉 as shown

earlier in Eq. (2.161)

〈ΓW .∇r 〉ψ =−DPS(1+M 2
∗ )2〈nW 〉×

{
∂r ln〈nW 〉−

(
1− M 2∗

1+M 2∗

Zi eni

p ′
〈U1,iθ〉

)
ZW

Zi
∂r ln pi

− m̃

m∗

(
M 2∗ (1+3εM 2∗ +2εM 4∗ )−R0∂r εM

2∗
R0ε(1+M 2∗ )2

)}
,

and where ε= r /R0 is the inverse aspect-ratio, DPS = 2ε2(Ti /ZW eBθ0)2 is the stationary Pfirsch-

Schlüter diffusion coefficient, and the angle brackets 〈〉 indicate surface-averaged quantities.

〈U1,iθ〉 is the surface-averaged poloidal component ofU1,i , as seen in Sec. 2.8.1. To understand

Eq. (2.161), the physical contributions can be broken down term-by-term. The overall coeffi-

cient DPS(1+M 2∗ )2 implies that the convective and diffusive processes are enhanced by the

centrifugal effects by a factor of the Mach number squared. This plasma rotation dependent

enhancement of the impurity flux could be simplistically understood in relation to the deep

centrifugal trapping experienced by the heavy impurity particles. As trapped particles spend

most of their time on their bounce-tips, the random walk step size is increased from their

gyroradius to distance between their bounce tips, thus contributing to the increased diffusivity

(as noticed later in the saturation times of the two cases with plasma flow.) In the fluid calcula-

tions, this can be reconciled by having impurity densities which are strongly dependent on the

poloidal angle which can later be averaged out to obtain the radial impurity fluxes. The first

term in the curly brackets proportional to ∂r ln〈nW 〉, implies an outward flux contribution

from the impurity density gradient, which remains small in the trace limit. The second term,

proportional to ∂r ln pi is responsible for the inward flux of the particle, and is enhanced by

presence of poloidal flow along with the toroidal flow. The averaged poloidal velocity remains

exactly zero in axisymmetry with no temperature gradients in the Pfirsch-Schlüter regime,

as seen in Fig. 4.6, and hence does not effectively amplify the peaking in the axisymmetric

limit. The third term consisting of an expression in terms of the effective Mach number M∗,

provides an outward flux as a result of centrifugal effects.

The steady state of impurities is reached when the net flux of impurities vanishes, that is

〈ΓW .∇r 〉 = 0. On setting the RHS of Eq. (2.161) to zero, in the large aspect ratio limit with an

unsheared M 2∗ , with 〈U1θ,i 〉 = 0 for axisymmetry, we arrive at a steady-state impurity density

profile for unsheared flows as follows

〈nW (r )〉
〈nW (0)〉 =

(
ni (r )

ni (0)

)ZW /Zi

×exp

{
m̃

m∗
(3+2M 2∗ )M 4∗

(1+M 2∗ )2

r

R0

}
. (4.5)

It can be immediately seen that the density profile with flow does not peak on the axis, but
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Figure 4.12 – Plot of the predicted and numerically obtained impurity density for an axisym-
metric equilibrium with 20kHz plasma flow. The dashed black curve represents the saturated
state obtained from Eq. (4.5). We find that they are in reasonable agreement, with the off-axis
peaking reasonably predicted well.

is modulated by a flow-dependent exponential term moving the saturated density profile

off-axis. We also recover Eq. 2.164 from the above expression by setting the Mach number

M∗ = 0.

Ultimately, the observed spatial distribution of the impurities in Fig. 4.11 results because of

the competition between the inward pinch offered by the neoclassical effects and the outward

drift because of the centrifugal effects in Eq. 2.161. In the expression for steady-state density,

Eq. 4.5, we see that the centrifugal effects add an exponential term that competes against the

density peaking and can lead to off-axis peaking. This is also consistent with our numerical

calculation of the parallel velocity U1∥,i , since outward centrifugal advection starts competing

with the inward pinch when the parallel velocity of the background ions is low, and hence the

impurities do not feel a strong inward pinch in the low q-shear core region. Using Eq. 4.5, we

evaluate the local maximum of the density distribution, by setting the derivative to zero. We

find the local maximum occurs at r /a ≈ 0.23, which agrees reasonably with the maximum of

the density in Fig. 4.10. We also notice a reasonable agreement between the predicted surface-

averaged density from Eq. 4.5 (setting M 2∗ ≈ 80) and our numerically obtained saturated

surface-averaged density, which can be seen in Fig. 4.12. Furthermore, in absence of the

friction term in Eq. (2.161), the only remaining term is the centrifugal outward diffusion,
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further amplified by the (1+M 2∗ )2 factor. This would lead to a strong outward impurity

diffusion, evidently increasing the standard non-rotating neoclassical diffusion of impurities

by a factor of M 4∗ , i.e. by a factor of ∼ 1600 as employed in the simulations in this chapter.

This also explains the quick particle loss observed for strong rotation without accounting for

friction in previous literature[McClements and McKay, 2009, Romanelli et al., 2011].

4.4.3 Simulations for 1/1 Saturated Internal Kink with Rotation

In the previous subsection we saw that with strong rotation the impurities do not peak on the

magnetic axis if the plasma is axisymmetric, even when there is no temperature screening.

However, experiments often show strong peaking on the axis even in the presence of strong

flows[Casson et al., 2015]. This section investigates the possibility of axial neoclassical peaking

due to 3D effects in the core despite the presence of centrifugal effects.

For our simulations, we use the parallel flow velocity in the Pfirsch-Schlüter regime as obtained

in the previous section for the helical core equilibrium. The surface-averaged parallel velocity

profile 〈U1∥,i 〉, as seen in the Fig. 4.5, is significantly different from that for the axisymmetric

equilibrium. In particular, there is a significantly higher parallel flow for the background ions

in the helical core than for the axisymmetric core. Therefore, we expect a different value of the

neoclassical inward pinch for the impurity species for the helical core. We proceed to perform

a full- f simulation for the helical core equilibrium rotating at 20kHz including neoclassical

effects. We see, in Fig.4.13, that the particles have made their way into the core very near

the magnetic axis, and we notice saturation around t ≈ 0.015s. Furthermore looking into

the density distribution over various toroidal cuts, in Fig.4.14, we observe that the particles

stay close to the axis, following the helical core. Thus, we find that there is a strong effect of

the helical core amplitude on the inward pinch faced by impurity particles, arising implicitly

through the associated neoclassical effects.

We again consider the analytical radial flux expression for impurities Eq. 2.161. Strictly speak-

ing, Eq. 2.161 is only valid for axisymmetry, however it contains an explicit dependence on

the relation of the fluxes to the background ion poloidal flow U1θ,i , and therefore it is in-

structive to study the same expression using the background poloidal flow U1θ,i obtained

for the helical core to see its explicit effect on the saturation density peaking. Firstly, as we

know from Eq. 2.161, toroidal rotation enhances the diffusivity by a factor of (1+M 2∗ )2, which

enhances the rate of peaking for plasma rotation. This enhanced diffusivity is in accordance

with our observation of the saturation times of the peaked impurity density, reducing from

about t ∼ 2s for the non-rotating case to t ∼ 15ms for 20kHz rotation. We notice from the

second term on the RHS of Eq. 2.161 that the inward impurity flux gets further modulated

by a factor of 〈U1θ,i 〉, in addition to the centrifugal enhancement. This averaged poloidal

velocity is a purely geometric effect, and scales in the same manner as the parallel velocity

U1∥,i , seen in Fig. 4.6. One can notice that 〈U1θ,i 〉 ≈ 0 in the axisymmetric limit, as is expected

from conventional neoclassical literature[Helander and Sigmar, 2005, Shaing et al., 2015], but
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Figure 4.13 – The plots of the density profile for a helical core equilibrium with 20kHz rotation
(zoomed in from s = 0.05−0.3).
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Figure 4.14 – Plots of density of tungsten on various toroidal cuts for a helical core case with
20kHz rotation, assuming a value of the geometrical factor Gb consistent with the equilibrium.
One can notice that the impurities for this case are pinched much closer towards the axis,
following the axis of the helical core.
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Figure 4.15 – Plot of intensity of density peaking for axisymmetry and helical core without flow
and helical core with flow. The figure is zoomed to ρtor = 0.35 for convenience of comparison.

is enhanced by an order of magnitude for the helical core in the core region. Additionally,

this geometrical enhancement only appears in the flux through a factor of M 2∗/(1+M 2∗ ). If

one neglects rotation, setting M 2∗ = 0, we find the density peaking to scale identically for the

axisymmetric and helical core cases, irrespective of the geometry, which we recover in Fig. 4.15.

Retaining M∗ and 〈U1θ,i 〉, the saturated impurity density profile from Eq. 2.161 becomes as in

Eq. 2.163

〈nW (r )〉
〈nW (0)〉 =

(
ni (r )

ni (0)

)ξZW /Zi

exp

{
m̃

m∗
(3+2M 2∗ )M 4∗

(1+M 2∗ )2

r

R0

}
, where

ξ = Zi eni

p ′

(
1− M 2∗

1+M 2∗
〈U1θ,i 〉

)
. (4.6)

With the addition of plasma rotation, the augmentation of 〈U1θ,i 〉 for the helical core leads to

the strong peaking near the magnetic axis noticed earlier. In the rotating case, the saturated

impurity density peaks near the axis as compared to off-axis in the axisymmetric case with

rotation, as the inward pinch is enhanced by the non-zero poloidal flow for the helical core

case. As also can be seen in Fig. 4.15, the peaking density for helical core is much higher with

plasma rotation than for the cases without rotation, as expected. There is reasonably good

agreement in the peaking density predicted by Eq. 2.163 and the obtained peaking as can be

noticed in Fig. 4.16.
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Figure 4.16 – Comparison of obtained density with density predicted from Eq. 2.163.

In order to verify the effects of presence of the poloidal flow, we increased the parallel flow

U1∥,i for the axisymmetric case by a small amount, while making sure that the poloidal flow

remains zero U1θ,i = 0. We still find a similar off-axis peaking as observed in the case of

axisymmetry in the previous section. When we artificially increase the poloidal flow velocity

U1θ,i for axisymmetry from zero to a small finite value as in the helical core case, we observe

a near-axis peaking again in the presence of finite poloidal flows with strong toroidal flow.

Thus, the peaking in the helical core seems to be an effect arising from the presence of a

finite poloidal velocity U1θ,i , due to pressure-gradient effects and strong toroidal flows. Finite

poloidal flows are only geometrically possible in presence of large 3D effects such as the 1/1

saturated internal kink.

4.5 Conclusions

In this chapter, we have described the results obtained from the simulations of neoclassical

transport of trace heavy impurities using a PIC-based approach. We considered ideal MHD

equilibria computed with VMEC for kinked and unkinked plasmas pertaining to JET-like hybrid

scenarios. In order to perform the particle-orbit following, we used the guiding-centre code

VENUS-LEVIS with added modifications for plasma flow and also include the neoclassical

friction force through a Monte-Carlo collision operator. The inward flux from neoclassical

friction force depends on the flow velocity of the background ions, and we find that it has a

strong dependence on the poloidal velocity 〈U1θ,i 〉, which depends solely on the magnetic
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geometry of the equilibrium.

We first benchmarked for an axisymmetric case without rotation and observed that the impu-

rity density peaking does indeed satisfy the theoretically predicted scaling as expected from

well-known neoclassical literature[Hinton and Hazeltine, 1976, Helander and Sigmar, 2005].

On doing another axisymmetric case including rotation but without neoclassical effects,

we find that the outward diffusivity increase also follows the predicted scaling from the

neoclassical transport of impurity species with rotation, which is similar to known results

[McClements and McKay, 2009, Romanelli et al., 2011]. Having established the benchmarking

of the tungsten behaviour with and without rotation, we proceed to perform simulations of

tungsten transport with realistic account of the parallel flow velocity of the background ions.

We find that the parallel velocity of the ions in the core region is much higher in a helical core

than in axisymmetry, thus imparting an inward drift to the impurity particles, dragging them

towards the axis. For the case of axisymmetry with rotation, the impurity particle densities

saturate off-axis at the boundary of the core, as expected from neoclassical theory and as

seen in [Casson et al., 2015]. We find that this is because of the centrifugal effects competing

with the neoclassical inward pinch, where the centrifugal effects encourage a strong out-

ward diffusion. For the strong helical core case, the inward flux is strongly enhanced by the

augmented poloidal velocity U1θ, j of the background ions near the magnetic axis, thereby

strongly increasing the impurity peaking, which has been experimentally seen with helical-

core presence[Sertoli et al., 2015a, Sertoli et al., 2015b] but not previously explained before.

This has been shown to occur very quickly (30ms) if the Tungsten Mach number is high, but

slowly (2s) if rotation is ignored. In the absence of rotation, helical cores and their associated

pressure-gradient driven flows do not introduce any additional inward transport. We thus

conclude that the helical core geometry and toroidal rotation are key to the dominating inward

pinch of impurities with 1/1 continuous modes in JET-like hybrid operation scenarios.

The neoclassical contribution becomes smaller and smaller as the helical core weakens to

approach axisymmetry. Thus, by controlling and reducing the strength of the helical core,

it is possible for the centrifugal outward advection to compete strongly with the inward

neoclassical friction force, pushing the impurities further away from the magnetic axis. And

given the larger trapped fractions for the helical core, the centrifugal effects will also be

enhanced leading to a more efficient expulsion of impurities away from the magnetic axis.

This could be very useful for impurity control in JET hybrid-scenario beam-injected plasmas.
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5 Outlook and Future Work

In this chapter, we consider avenues to continue the work in the thesis. The ideas presented

here either rely on extending some work within the assumptions made in the thesis, or in

generalizing certain ideas in order to overcome the assumptions and extend its area of validity.

5.1 Exploring the Impurity Screening Effects of TemperatureGradi-

ents

We have neglected the effect of temperature gradients throughout the thesis in order to focus

solely on geometrical effects, neglecting the additional complication produced by thermal

transport. In the presence of temperature gradients, the impurities face temperature gradient

shielding which offers an outward flux. Furthermore, the poloidal flow is non-zero with

finite temperature gradients and is significantly different in different regimes of collisionality,

changing sign while transitioning from the banana regime to the Pfirsch-Schlüter regime.

This implies a significant effect on the axisymmetric plasmas with temperature gradients and

flows[Belli et al., 2014a], and may also imply a similar effect for the case with the 1/1 internal

kink. This is certainly worth exploring as a more realistic and less pessimistic extension of the

work presented in the thesis.

5.2 More Accurate Computation of Higher-Order Potential Φ1 and

3D Flows

In the current thesis, we assumed that the higher-order quasi-neutrality restoring potential

Φ1 calculated assuming axisymmetric flows is valid for 3D geometries as well. However, in

general, the leading-order flow in 3D fields is not purely toroidal and possesses a finite poloidal

flow as well. Once the flows in 3D magnetic fields are obtained accurately, it is possible to use

the constraints Eqs. (2.50)-(2.54) to solve for the higher-order potential Φ1. This requires a

neoclassical solver that is able to solve the set of equations along the field line in 3D, which
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requires coding an additional module to the existing neoclassical solver that calculates the

parallel flows.

5.3 Extension into Different Collisional Regimes

So far, this thesis limits itself to the collisionless banana regime for calculation of the bootstrap

currents and the Pfirsch-Schlüter regime for computing impurity transport. In the
�
ν-regime,

though the neoclassical formulae for the plasma flows are available[Shaing and Callen, 1983],

it is difficult to perform the impurity transport calculations because we are not aware of how

much of a deviation from a Maxwellian the background ion distribution undergoes. Further-

more, in case of 3D, the higher-order potential Φ1 may play an important role in the back-

ground and impurity fluxes in the banana regime shown in recent studies[Helander et al., 2017].

To improve on the modeling in the banana regime, it is imperative to have a collision operator

and a PIC scheme that faithfully takes into account the changing form of the background

distribution, and it may also be important to know the exact form of Φ1 for the 3D equilibrium,

at least where the impurity densities can no longer be considered trace.

The implementation for the calculation of bootstrap current and parallel flows for the plateau

regime (with moderate collisionality) is more involved computationally[Shaing et al., 1989,

Shaing et al., 1986b], but could constitute a self-consistent project. That the helical core

presents an augmentation of the bootstrap current or the parallel flow is still expected to hold

true.

In the Pfirsch-Schlüter regime, the bootstrap current is virtually zero for 2D and 3D and does

not need to be evaluated[Shaing et al., 2015].

5.4 Extending the Scope of theMHD equilibrium

With strong 3D flows, it is necessary to formulate a variational model for ideal 3D MHD

with fully 3D flows. Currently, the model for an 3D MHD equilibrium with purely toroidal

flows relies on severely constraining assumptions, and is only a valid model for axisymmetry

as shown in Chapter 2. It may be prudent to generalize the association between the varia-

tional ideal MHD model and the ideal MHD equation model, for example with a Hamiltonian

approach as in Ref. [Andreussi et al., 2010], for fully toroidal flows in order to eventually de-

velop an equilibrium solver which can generate numerically accurate 3D MHD equilibria

with fully 3D flows. Strong flows may however force the equilibrium to constrain itself to

axisymmetry[Sugama et al., 2011, Helander, 2014].
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5.5 Modeling of Experiments in JET

Once all the previous factors are accounted for, it would be pertinent to perform a comparison

with JET cases where continuous modes are observed. This would require searching through

the JET pulse archive to search for shots with an acceptable range of physical parameters

which lie within the approximations of our model. It would also require a synthetic Soft X-Ray

(SXR) diagnostic in VENUS-LEVIS, similar to Ref. [Pütterich et al., 2008], in order to visually

compare what is observed by the actual SXR cameras installed in JET. This will require close

collaboration with the maintainers of the SXR diagnostic. The modeling and comparison

would be the logical culmination of this nature of work.
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6 Summary and Conclusions

6.1 Summary of the Thesis

We use this chapter as an opportunity to summarize the salient points of the thesis. In this

thesis, we have considered certain neoclassical phenomena in 2D and 3D magnetic geometries

using accurate numerical representations of the equilibria from VMEC.

In chapter 2, we collected together all the relevant physics that explores the use of 3D fields

and neoclassical effects. The chapter involves the exploration of the limitations of the 3D

MHD model with toroidal flow, the nature of the plasma flows and bootstrap current for 3D

geometries, and impurity behaviour in the presence of friction offered by the background

flow. In outlining the limitations, we find there to be at least two neoclassical phenomena that

are amenable to use with 3D equilibria obtained numerically: solution of parallel flows and

bootstrap currents in various collisional regimes.

We observed that the use of 3D equilibria with certain 3D magnetic effects like RMPs and

Toroidal Ripple often obscured relevant physical effects because of the presence of current

sheets in the relevant region of the equilibria. This was the conclusion derived from the first

part of Chapter 3. In the second part of Chapter 3, we proceeded to build a case for the 1/1 sat-

urated internal kink as a prime candidate for studying neoclassical effects. On careful choice

of the helical core with a q-profile such that it avoided the q = 1 resonance in the helical region,

we found an augmentation of the bootstrap current in the helical core region which was not ob-

served for the axisymmetric case. This work was published in 2016[Raghunathan et al., 2016].

We expected a similar augmentation of the parallel background ion flows in the helical core

region.

In Chapter 4, having now confirmed that the parallel flows for a 1/1 internal kink in the

helical-core region can be obtained without any serious numerical resonances, we proceeded

to perform guiding-center simulations for heavy impurity particles facing neoclassical fric-

tion force due to the background ion flow. We first benchmarked and observed very good

agreement with well-known neoclassical results in axisymmetry without flows. Then we
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used some recent results developed from Ref. [Romanelli and Ottaviani, 1998] to benchmark

heavy impurity behaviour in the case of axisymmetry with flow, resulting in off-axis peaking

of impurities. This off-axis peaking was also found to agree well with known neoclassical

results incorporating axisymmetric rotation. Having made sure that our model reproduces

known results from the neoclassical theory, we proceeded to simulate heavy impurity particles

in a saturated 1/1 internal kink with flow. For this case, we observed that the helical core,

because of the presence of finite background poloidal flow, causes the impurity particles to

peak near-axis again. Therefore, we conclude that the presence of an ideal helical core leads

to impurity accumulation in the core region, at least in the absence of temperature gradients.

This work was recently published[Raghunathan et al., 2017].

In Chapter 5, we delineate possible avenues to expand the work of the thesis along the lines of

overcoming the limitations posed by the assumptions in the various models used.

6.2 Final Words

This thesis explored topics bridging various physical themes together such as ideal MHD

equilibrium theory, guiding-center physics and neoclassical physics with an overarching use

of computational techniques. The thesis has presented results obtained by considering valid

and viable domains under which these various themes overlap and has presented various

avenues to extend the work and generalize it. It is hoped that the thesis can be used as a clear

starting point for further exploration of relevant issues in 3D tokamak physics.
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