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We study the approximate cloaking via transformation optics for electromagnetic waves
in the time harmonic regime in which the cloaking device only consists of a layer con-
structed by the mapping technique. Due to the fact that no-lossy layer is required,
resonance might appear and the analysis is delicate. We analyze both non-resonant and
resonant cases. In particular, we show that the energy can blow up inside the cloaked
region in the resonant case and/whereas cloaking is achieved in both cases. Moreover, the
degree of visibility depends on the compatibility of the source inside the cloaked region
and the system. These facts are new and distinct from known mathematical results in
the literature.
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formation optics; infinite energy.
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1. Introduction

Cloaking via transformation optics was introduced by Pendry et al% for the
Maxwell system and by Leonhardt?Y in the geometric optics setting. They used a
singular change of variables which blows up a point into a cloaked region. The same
transformation was used by Greenleaf et all% to establish the non-uniqueness of
Calderon’s problem. The singular nature of the cloaks presents various difficulties
in practice as well as in theory: (1) they are hard to fabricate and (2) in certain
cases, the correct definition of the corresponding electromagnetic fields is not obvi-
ous. To avoid using the singular structure, various regularized schemes have been
proposed. One of them was suggested by Kohn et al. in Ref. 24! in which they used
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a transformation which blows up a small ball of radius p instead of a point into the
cloaked region.

Approximate cloaking schemes for the Helmholtz equation based on the regu-
larized transformations introduced in Ref. 24! have been studied extensively in the
literature AL THISE20R23E2 02830 Frequently, a (damping) lossy layer is employed
inside the transformation cloak. Without the lossy layer, the field inside the
cloaked region might depend on the field outside, and resonance might appear
and affect the cloaking ability of the cloak®8 Approximate cloaking was investi-
gated in the time domain for the acoustic waves21#2 In Ref. [32] the dependence of
the material constants on frequency via the Drude—Lorentz model was taken into
account.

Cloaking for electromagnetic waves via transformation optics has been mathe-
matically investigated by several authors. Greenleaf et al® and Weder2#3? studied
cloaking for the singular scheme mentioned above by considering finite energy solu-
tions. Concerning this approach, the information inside the cloaked region is not
seen by observers outside. Approximate cloaking for the Maxwell equations using
schemes in the spirit of Ref. 24 was considered in different works22% Ammari
et al® investigated the cloaking problem where the cloaked object is placed inside
the core of the cloaking device which is a cavity. Additional layers were used and
designed in order to cancel the first-order scattering coefficients. Similar idea was
used for the conducting problem where the layers are designed in an appropriate
way to cancel the first high-order generalized polarization tensors® Bao et all stud-
ied the approximate cloaking using a lossy layer inside the transformation cloak.
Their approach is as follows. Taking into account the lossy layer, one easily obtains
an estimate for the electric field inside the lossy layer. This estimate depends on the
property of the lossy layer and degenerates as the lossy property disappears. They
then used the equation of the electric field in the lossy layer to derive estimates for
the electric field on the boundary of the lossy region in some negative Sobolev norm.
The cloaking estimate can be finally deduced from the integral representation for
the electric field. This approach essentially uses the property of the lossy layer and
does not provide an optimal estimate of the degree of visibility in general. For exam-
ple, when a fixed lossy layer is employed, they showed that the degree of visibility
is of the order p?, which is not optimal. In Ref. 25, Lassas and Zhou considered the
transformation cloak in a symmetric setting, dealt with the non-resonant case (see
Definition and studied the limit of the solutions of the approximate cloaking
problem near the cloak interface using separation of variables. Other regularized
schemes are considered in Ref. [13l

In this paper, we investigate approximate cloaking for the Maxwell equation in
the time harmonic regime using a scheme in the spirit of Ref. 24l More precisely,
we consider the situation where the cloaking device only consists of a layer con-
structed by the mapping technique and there is no source in that layer. Due to
the fact that no-lossy (damping) layer is required, resonance might appear and the
analysis is subtle. Our analysis is given in both non-resonant and resonant cases
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(Definition and the results can be briefly summarized as follows:

(i) In the non-resonant case, cloaking is achieved, and the energy remains finite
inside the cloaked region.

(ii) In the resonant case, cloaking is also achieved. Nevertheless, the degree of
invisibility varies and depends on the compatibility of the source with the
system (see and (2.10)). Moreover, the energy inside the cloaked region
might explode in the incompatible case. See Theorems [2.2] and 2.3]

(iii) The degree of visibility is of the order p® for both non-resonant and resonant
cases if no source is inside the cloaked region (Theorems [2.1] and [2.2).

We also investigate the behavior of the field in the whole space (Theorems
and establish the optimality of the convergence rate (Sec. . Our results are
new and distinct from the works mentioned above. First, cloaking takes place even
if the energy explodes inside the cloaked region as § goes to 0. Second, in the
resonant case with finite energy inside the cloaked region, the fields inside the
cloaked region satisfy a non-local structure. Optimal estimates for the degree of
visibility are derived for all cases. In particular, in the case of a fixed lossy layer
(non-resonant case), the degree of visibility is of the order p® instead of p? as
obtained previously. Both non-resonant and resonant cases are analyzed in detail
without assuming the symmetry of the cloaking setting.

Our approach is different from the ones in the works mentioned. It is based
on several subtle estimates for the effect of small inclusion involving the blow-
up structure. Part of the analysis is on Maxwell’s equations in the low frequency
regime, which is interesting in itself. The approach in this paper is inspired from
Ref. 28 where the acoustic setting was considered. Nevertheless, the analysis for
the electromagnetic setting is challenging and requires further new ideas due to
the non-standard structure coming from the mapping technique and the complex-
ity of electromagnetic structures/phenomena in comparison with acoustic ones.
The Helmholtz decomposition and Stokes’ theorem are involved in the Maxwell
context.

2. Statement of the Main Results

In this section, we describe the problem in more detail and state the main results
of this paper. For simplicity of notations, we suppose that the cloak occupies the
annular region Bs\ B and the cloaked region is the unit ball B; in R? in which the
permittivity and the permeability are given by two 3 x 3 matrices €, u, respectively.
Here and in what follows, for » > 0, let B, denote the open ball in R? centered at
the origin and of radius . Through this paper, we assume that

€, b are real, symmetric,

and uniformly elliptic in By, i.e. for a.e. x € By and for some A > 1,

el < ()., (u(x)e.€) < Ale for all € € B,
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We assume in addition that e, are piecewise C! in order to ensure the well-
posedness of Maxwell’s equations in the frequency domain (via the unique con-
tinuation principle). In the spirit of the scheme in Ref. [24] the permittivity and
permeability of the cloaking region are given by

(€cspre) == (F, I, F, I) in Bo\By,
where F, : R* — R3 with p € (0,1/2) is defined by

x inR?)\BQ,
2—2p || x .
— | — Bo\B
b (50 ey gy means
x :
’ in B,.

We denote

Fo(z) = fl)ig(l)Fp(x) for x € R%.
As usual, for a matrix A € R3*3 and for a bi-Lipschitz homeomorphism T, the
following notation is used:
DT(x)A(z)DTT (z) .
T.A(y) = th y =T(x).
() et DT()| with y = T'(x)

Assume that the medium is homogeneous outside the cloak and the cloaked region.
In the presence of the cloaked object and the cloaking device, the medium in the
whole space R? is given by (e, i) which is defined as follows:

(I, 1) in R3\ By,
(€espte) = { (F,, I, F,,I) in By\B, (2.1)
(e, 1) in By.

With the cloak and the object, in the time harmonic regime of frequency w > 0,
the electromagnetic field generated by current J € [L?(R?)]® with compact support
is the unique (Silver—Miiller) radiating solution (E., H.) € [Hioc(curl, R?)]? of the
system

V x B, =iwuc.H, in R3,
{V x H, = —iwe.E, +J in R3.
For an open subset U of R, denote
H(curl,U) == {¢ € [L*(U)]*; V x ¢ € [L*(U)]°},
Hioo(curl, U) := { € [Li,o(U)]’; V x ¢ € [Li (U)]*},

and

DNl e (curr,vy == 1@l L2y + IV X @l 20y
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Recall that, for w > 0, a solution (E, H) € [Hoc(curl, R3\ Bg)]?, for some R > 0,
of the Maxwell equations

V x E=iwH in R3\ Bg,

{V x H= —iwE in R3\Bg
is called radiating if it satisfies one of the (Silver—Miiller) radiation conditions
Hxz—|z|E=0(1/|z]) and E xz+ |z|H =0(1/]z|) as|z| = +oo.

Here and in what follows, for @ € R, O(|z|*) denotes a quantity whose norm is
bounded by Clz|* for some constant C' > 0.

Denote Jeoy and Jiy the restriction of J into R?’\Bl and By, respectively. It is
clear that

J cht in RS\Bl,
- Jint in Bl.

In the homogeneous medium (without the cloaking device and the cloaked object),
the electromagnetic field generated by Jex is the unique (Silver—Miiller) radiating
solution (E, H) € [Hoc(curl, R3)]? to the system

VxFE=iwH in R?,
V x H=—iwE + Jo in R3.

We next introduce the functional space A/ which is related to the notion of
resonance and plays a role in our analysis.

Definition 2.1. Let D be a smooth bounded subset of R® such that R3\D is
connected. Set

N (D) := {(E,H) € [H(curl, D)]? : (E, H) satisfies the system (2.2)},
where
V xE =1iwuH in D,
V x H = —iweE in D, (2.2)
VxE-v=VxH-v=0 ondD.
In the case D = By, we simply denote N'(B;) by N.

The resonant and non-resonant notions are defined as follows.

Definition 2.2. The cloaking system (2.1) is said to be non-resonant if N' =
{(0,0)}. Otherwise, the cloaking system (2.1]) is called resonant.

Remark 2.1. The definition of resonant and non-resonant notions of the cloaking
system is related to an eigenvalue problem of a compact and self-adjoint operator
(see Lemma 4.4 and its proof). In fact, set

V={p € H(curl, D) : div(ep) =0, ep-v=00n 0D, Vx ¢-v=0o0n dD}



Math. Models Methods Appl. Sci. 2019.29:1511-1552. Downloaded from www.worldscientific.com

by ECOLE POLY TECHNIQUE FEDERALE DE LAUSANNE on 08/16/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

1516 H.-M. Nguyen & L. Tran

and let A:V — V be defined by

(AE, o) vy = —2/ el -pdr forall peV.
D

One can check that A is compact and self-adjoint. Moreover, the cloaking system
(2.1) is resonant if and only if (see (4.29))

w™'E + AE = 0 has a non-zero solution in V

with D = Bj. Since (AE, E) vy = —2 fD ¢E-E <0for E €V, it follows that A is
injective and there exists a countably infinite set K C R\{0} such that the system
is resonant if and only if w € K. When D is radially symmetric, e = p = I, the
resonant characterization is given in Lemma [5.1

Our main result in the non-resonant case is the following theorem.

Theorem 2.1. Let p € (0,1/2), Ry > 2, and let J € L*(R®) be such that
supp Jext CC Bp,\B2. Assume that system (2.1) is non-resonant. We have, for all
K CcC R3\ By,

||(F;1 * ECvF;1 * HC) - (EvH)HH(curl,K)
< C(* | extllLa(Brg\Ba) + P2 Jine L2 (1)) (2.3)
for some positive constant C depending only on Ry,w, K, pu,e. Moreover,

lim (E, He) = CI(0, Jint) in [H(curl, B, (2.4)
p—

where CL(0, Jing) is defined in Definition [2.3]
Here and in what follows, one denotes
FxE=(DFTE)oF!

for an appropriate bijective map F and a vector field E.
The notation CI(-,-) used in Theorem [2.1]is defined as follows.

Definition 2.3. Assume that ' = {(0,0)}. Let 61,0 € [L?(B;)]3. Define
Cl(01,62) = (Eo, Hy), where (Eo, Hy) € [H(curl, By)]? is the unique solution to the
system

V x Ey = iwpHy + 61 in By,
V x Hy = —iweEy + 04 in By, (25)
VXEO'I/:VXHO'V:O onaBl.

Remark 2.2. The existence and the uniqueness of (Ey, Hy) are established in
Lemma [£4

Remark 2.3. In Ref. 39, the conditions
VXE()-tht:VXHO'tht:O
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are also imposed on the boundary of the cloaked region. This is different from
Ref. [15] (see also p. 459 of Ref. 25]), where the following boundary conditions are
imposed for solutions satisfying some integrability conditions, which are called finite
energy solutions,

EQ X V|int = HO X V‘int =0.

The novelty of Theorem [2.] relies on the fact that no lossy layer is required.
The result holds for a general class of pairs (e, ). Applying Theorem to the
case where a fixed lossy layer is used, one obtains that the degree of visibility is of
the order p? which is better than p? as established previously™ for the case Jin = 0.
In contrast with Refs. |5, [7l and [13] the estimate of visibility is considered up to the
cloaked region and the behavior of the electromagnetic fields are also established
inside the cloaked region in Theorem

We next consider the resonant case. We begin with the compatible case, i.e.

(2.6 holds.

Theorem 2.2. Let p € (0,1/2), Ry > 2, and J € [L*(R*)]3 be such that
supp Jext CC Bpg,\B2. Assume that system (2.1) is resonant and the following
compatibility condition holds:

/ Jms - Edz =0 forall (E,H)€N. (2.6)
B,

We have, for all K CC R3\ By,
H(F/;1 * EC?F/;1 *HC) - (EaH)”H(Curl,K)

< C(p3||Jext||L2(BRO\B2) + 0| el £2(51)) (2.7)
for some positive constant C depending only on Ry, w, K, u, and . Moreover,
lim (Ee, He) = CU0, Jine) in [H (curl, By)J?, (2.8)
p—

where CU(0, Jint) is defined in Definition [2.4]
In Theorem we use the following notion.
Definition 2.4. Assume that N # {(0,0)}. Let 61,602 € [L?(B1)]® be such that

/ (6B — 6, H)de=0 forall (EH) e N.
By

Let (Eo, Hy, B+, HY) € [Hypc(curl, R?)]?> x Nt be the unique solution of the fol-
lowing systems:

VxEy=VxHy=0 inR\B, V x B =iwpHY  in B,
divEy=divHy =0 in R®\ By, o V x H+ = —iweE+ in By,
V x Ey = iwpHgy + 64 in By, eE+ v =FEy-vl|exs on 0By,
V x Hy = —iweEg+ 05 in By, pHL v =Hy-v|exy on 0B

(2.9)
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such that
| (Eo (z))] = O(|z|~?) for large |z|.
Denote Cl(61,602) the restriction of (Ey, Hp) in Bj.

Here and in what follows, A'(D)+ denotes the orthogonal space of V(D) with
respect to the standard scalar product in [L?(D)]%. The uniqueness and the exis-
tence of (Ey, Hy, E+, H') are given in Lemmas and

In Definition (Eo, Hp) is determined by a non-local structure . This is
new to our knowledge.

In the incompatible case, we have the following.

Theorem 2.3. Let p € (0,1/2), Ry > 2, and J € [L*(R®)]® be such that
supp Jext CC Bpr,\B2. Assume that system ({2.1) is resonant and the compatibility
condition does not hold, i.e.

/ Jint - Edz #0  for some (E,H) € N. (2.10)
B1

We have, for all K CC R3\ By,
(Fy '« Eo, Fyl s He) — (E, H) || H(eurl, k)

< C(P° | Jext |22 (Bry\B2) + Pl intll22(5,)) (2.11)
and

hzn_}glfp||(Ec,Hc)||Lz(Bl) > 0. (2.12)

Some comments on Theorems 2.2] and 2.3 are in order. Theorems 2.2 and R3]
imply in particular that cloaking is achieved even in the resonant case. Moreover,
without any source in the cloaked region, one can achieve the same degree of visibil-
ity as in the non-resonant case considered in Theorem Nevertheless, the degree
of visibility varies and depends on the compatibility of the source inside the cloaked
region. More precisely, the rate of the convergence of (E,., H.) — (E, H) outside B;
in the compatible case is of the order p? which is better than the incompatible reso-
nant case where an estimate of the order p is obtained. The rate of the convergence
is optimal and discussed in Sec. [5] By (2.12)), the energy inside the cloaked region
blows up at least with the rate 1/p as p — 0 in the incompatible case.

We now describe briefly the ideas of the proofs of Theorems [2.1H2:3] Set

(EpyHp) = (F, ' % Ee, F,' « He) in R (2.13)

It follows from a standard change of variables formula (see e.g. Lemma that
(EpsHp) € [Hioe(curl, R?)]? is the unique (Silver-Miiller) radiating solution to

V xE,=iwu,H, in R3,
V xH, = —iwe, &, +J, inR5,



Math. Models Methods Appl. Sci. 2019.29:1511-1552. Downloaded from www.worldscientific.com

by ECOLE POLY TECHNIQUE FEDERALE DE LAUSANNE on 08/16/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

Approximate cloaking for electromagnetic waves 1519

where
_ -1 -1 o (Iv I) in R3\Bpa
(epottp) = (Fyl wee, Fylwpe) = {(p1€(~/p),p1p(«/p)) n B, (2.14)
and
Joxt in R?\ By,
Jy =< p 2 Jm(-/p) in B,, (2.15)
0 otherwise.

We can then derive Theorems by studying the difference between (€,,H,)
and (E, H) in R3\B; and the behavior of (£,,H,)(p) in By. It is well known that
when material parameters inside a small inclusion are bounded from below and
above by positive constants, the effect of the small inclusion is small.®37 Without
this assumption, the effect of the inclusion might not be small?#2% unless there is an
appropriate lossy layer P13 Tn our setting, the boundedness assumption is violated
(see ) and no lossy layer is used. Nevertheless, the effect of the small inclusion
is still small due to the special structure induced from .

It is worth noting that system , which involves in the resonant and non-
resonant definitions, and the condition of compatibility , appears very naturally
in our context. Indeed, note that if (E., H.) is bounded in [H (curl, B;)]?, one can
check that, up to a subsequence, (p&,, pH,)(p:) = (E., H;) converges weakly in
[H (curl, By)]? to (Ey, Hy) which satisfies system with (61, 62) = (0,J).

The paper is organized as follows. In Sec. |3] we establish some basic facts and
recall some known results related to Maxwell’s equations. These materials will be
used in the proofs of Theorems The proofs of Theorems [2.1H2.3] are given
in Sec. [d Finally, in Sec. [5} we discuss the optimality of the convergence rate in

Theorems 211231

3. Preliminaries

In this section, we establish some basic facts and recall some known results related
to Maxwell’s equations that will be repeatedly used in the proofs of Theorems [2.1
In what follows in this section, D denotes a smooth, bounded, open subset of
R? and on its boundary, v denotes its normal unit vector directed to the exterior.
We begin with a variant of the classic Stokes’ theorem for an exterior domain.

Lemma 3.1. Assume that R3\D is simply connected and let u € Hyoe(curl, R\ D)
be such that

Vxu=0 inR\D and |u(x)|=O0(z|"2) for large |z|. (3.1)
There ezists £ € HE (R3\D) such that
Vé=u inR\D and |¢(2)]=0(z|7') for large ||
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Proof. By Theorem 2.9 of Ref. 14} there exists 7, € H'(B,\D) for large n such
that

Vi, =u in B,\D and / M = 0.
OB,
It follows that, for m > n large,
Nm = Nn  in Bp\D.
Let 7 be the limit of 7, as n — +oo. Then n € HL _(R3\D) and
Vn=u inR*D.

Fix z,y € R? large enough with |y| > |z| and denote & = z/|z| and § = y/|y|.
Using (3.1)), we have, by the fundamental theorem of calculus,

lyl o

In(z) —n(y)| < [n(lylg) — n(lyl2)] + [n(ly[2) —n(|z|2)] < |(yJ| + / " dr

x|
for some positive constant C' independent of x and y. It follows that

¢  C

n(z) —n(y)| < T (3.2)

x|
Hence lim|;|_, o 7(z) exists. Denote this limit by 7. By letting |y| — +o0 in (3.2),
we obtain

C
[n(z) — Neo| < Tl for |z| large enough.
The conclusion follows with £ =7 — 7. D

Let U be a smooth open subset of R3. Denote
H(div,U) := {¢ € [L*(U)]? : dive € L*(U)}.

Concerning a divergence free field in a bounded domain, one has the following result
which is related to Stokes’ theorem, see e.g. Theorems 3.4 and 3.6 of Ref. [14l

Lemma 3.2. Assume that D is simply connected and let w € H(div, D) be such
that

divu=0 inD and / u-v =0 for all connected component T'; of OD.
T
There exists ¢ € [HY(D)]? such that
Vx¢=u imD and divp=0 1inD.

Assume in addition that w-v =0 on 0D. Then ¢ can be chosen such that

¢xv=0 ondD and / ¢-v=0 for all connected component I'; of 0D.
r;
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Moreover, such a ¢ is unique and, for some positive constant C,

¢l 2oy < Cllullz2(p)-
The following result is a type of Helmholtz decomposition. It is a variant of
Corollary 3.4 of Ref. 14, where o is a positive constant.

Lemma 3.3. Assume that D is simply connected and let o be a 3 X 3 uniformly
elliptic matriz-valued function defined in D. For any v € [L?(D)]?, there exist
p € HY(D) and ¢ € [H*(D)]® such that

v=0Vp+Vx¢ inD, divg=0 inD and ¢xv=0 ondD.
Moreover,

ol oy + 19l (py < Cllvllz2(py-

Proof. The proof given here is in the spirit of Ref. [14] as follows. By Lax—Milgram’s
theorem, there exists a unique solution p € H'(D) with fD pdx = 0 to the equation

/UVp-quxz/v-qux for all ¢ € H'(D).
D

D
Moreover,
ol oy < Cllvll2(py- (3.3)
Then
diviv—oVp)=0 inD and (v—0oVp)-v=0 ondD. (3.4)

By Lemma there exists ¢ € [H!(D)]? such that
VXx¢=v—0oVp in D,
divg =0 in D, and |¢|lg1(py < Cllv—0oVp|lL2py.  (3.5)
opxv=0 on 0D,

Combining (3.3)), (3.4), and (3.5]), we reach the conclusion for such a pair (p, ¢).
O

We next present two standard lemmas concerning the uniqueness of the exterior
problems for electrostatic settings, see e.g. Theorems 2 and 3 of Ref. 35 (see also
Chap. 1 of Ref. [I4)). They are used in the study of the exterior problems in the low
frequency regime. The first one, whose proof can be derived from Lemma is as
follows.

Lemma 3.4. Assume that R3\D is simply connected. Let u € Hyoc(curl, R*\ D) N
Hioe(div, R3\D) be such that

Vxu=0 inR3\D,
divu =0 in R3\D,
u-v=>0 on 0D,
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and
lu(z)] = O(|2| %) for large |z|.
Then u = 0 in R3\D.

The second lemma, whose proof can be derived from Lemma |3.2] is as follows.
Lemma 3.5. Assume that R3\D is simply connected and u € Hoc(curl, R3\D) N
Hyoo(div, R3\D) is such that

Vxu=0 inR3\D,

divu=0 in R3\D, / u-v=0 for all connected component I'; of 0D,

uxv=0 ondD, b
and

u(z)| = O(|z|7?)  for large |z.
Then u = 0 in R3\D.
The following result is a consequence of the Stratton—Chu formula.

Lemma 3.6. Let 0 < k < ko. Assume that D CC By and (E,H) €
[Hioc(curl, R3\D))? is a radiating solution to the Mazwell equations

V x E=1ikH in R3\D,
V x H=—ikE inR3\D.
We have

C
(E(x), H(z))| < W(l + klz)(E, H)||L2(Bs\p)  for |z| >3
for some positive constant C independent of x and k.

Proof. Set
eik‘x_yl

Gr(x,y) = forz, yeR? z#y.

drle —y|

It is known that, see e.g. Theorem 6.6 and (6.10) in Ref. [I1] the following variant
of the Stratton—Chu formula holds, for x € R3\D,

E(z) =V, x /OB v(y) x E(y)Gr(z,y)dy + ik /83 v(y) x H(y)Gr(z,y)dy

-V, - v(y) - E(y)Gr(z,y)dy. (3.6)
Using the facts
C

|[VGi(z,y)| < W(l +klz|) fory € 0By, z€R3\Bs
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and, since AE + k?E = 0 in R3\D,
||E||L°°(332)
< C||E||L2(Bs\p), for some positive constant C' depending only on ko,

we derive from (3.6) that
C

B@)| < 1 (1 + MaD(B. )20 for Ja] > 3. (3.7)
Similarly, we obtain
C
|H(z)| < W(l + klz|)|(E, H)||L2(B,\p) for |z] > 3. (3-8)
The conclusion now follows from and (| . O

We next recall the following compactness results related to H(curl,-) and
H(div,-).

Lemma 3.7. Let € be a measurable symmetric uniformly elliptic matriz-valued
function defined in D. Assume that one of the following two conditions holds:

(1) (un)nen C H(curl, D) is a bounded sequence in H(curl, D) such that
(div(etn))nen converges in H=(D) and (up, X V)nen converges in H/2(8D).

(i) (un)nen C H(curl, D) is a bounded sequence in H(curl, D) such that
(div(ewn))nen is bounded in L*(D) and (euy, - v)nen converges in H~/?(dD).
There exists a subsequence of (tn)nen which converges in [L(D)]3.

The conclusion of Lemma under condition (i) is Lemma 1 of Ref. 29 and has
its roots in Refs. [19/and [12l The conclusion of Lemma under condition (ii) can
be obtained in the same way. These compactness results play a similar role as the
compact embedding of H' into L? in the acoustic setting and are basic ingredients
in our approach.

The following trace results related to H(curl,-) and H(div, -) are standard 2244

Lemma 3.8. SetI' = 0D. We have
||U X VHHfl/Q(divr,F) < C”UHH(Curl,D) f07’ v E H(Cuﬂ:D)'

lv - Z/HH—1/2(F) < Cllvlla(div,py  for v € H(div, D).
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Moreover, for any h € H=/?(divp,dD), there exists ¢ € H(curl, D) such that
¢pxv=h ondD and |¢|acun,p) < Clhllg-1/2ivr,00)-
Here C' denotes a positive constant depending only on D.
Here and in what follows, we denote
H2(divp,T) := {¢ € [HV*D)]*; ¢-v =0 and divrg € H/*(T)},
Ml zr-1/2(aivr,ry = IOl -172(0) + |[dive @l g—1/2(r)-

We finally recall the following change of variables for the Maxwell equations. It
is the basic ingredient for cloaking using transformation optics for electromagnetic
fields.

Lemma 3.9. Let D, D’ be two open bounded connected subsets of R® and F : D —
D’ be a bijective map such that F € CY(D),F~' € CY(D'). Let ¢, u € [L>=(D)]>*3
and j € [L*(D)]3. Assume that (E, H) € [H(curl, D)]? is a solution of the Mazwell
equations

V x E =iwpuH in D,

VXxH=—weE+j inD.

Set, in D',
E'=F+E:=(DF 'E)oF™ and H :=Fx+H:=(DF TH)oF '
Then (E', H') € [H(curl, D"))? satisfies
V x B = iwp'H’ in D',
{V x H' = —iwe'E"' + 5 in D',
where

DFeDFT
e = Foe = —2 577 F~1 W :=F.pu

DFuDFT
L H o 1
|det F|

~|det F| ’
DFj -1

d j=Fj=—"%
and - J I et £ ©

Remark 3.1. It is worth noting the difference of F'x in the definition of E’ and
H', and F, in the definition of ¢/, u’, and j’.

4. Proofs of the Main Results

This section is devoted to the proof of Theorems [2.1H2.3|and is organized as follows.
In Sec. we establish various results related to (£,, H,). The proof of T heorem
is given in Sec. and the ones of Theorems [2.2] and [2.3] are given in Sec.
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4.1. Some useful lemmas

In this section, D C B; denotes a smooth open bounded subset of R3, and € and
1 denote two 3 x 3 matrices defined in D which are both assumed to be real,
symmetric, and uniformly elliptic in D. We also assume that D and R?\ D are simply
connected and ¢, p are piecewise C'. The following lemma provides the stability of
the exterior problem in the low frequency regime.

Lemma 4.1. Let 0 < p < py and let (E,, H,) € [Hioc(curl, R3\D)]? be a radiating
solution to the system

VxE,=ipH, inR3\D, (4.1)
V x H, = —ipE, inR3*\D. '
We have, for R > 1,
1(Ep, Ho)lltr(cur, Br\D) < CRUIE, X Vllg-1/20p) + 1 Hp - Vlg-1/2(0p))  (4:2)
and

I(Eps Hp) |t (curt, Br\D) < CR([Ep X Vlgr-1/2(0py + 1 Hp X V| g-1/2(5py)  (4.3)

for some positive constant Cr depending only on pg, D, and R.

Proof. Lemma might be known but we cannot find a reference for it, see e.g.
Refs. 2] and [36] and references therein for related results. For the convenience of
the reader, we present its proof. We begin with the proof of . Since (E,, H,)
satisfies , it suffices to prove that

1(Eps Hp)llL2(Br\D) < Cr(IEp X Vllg-1/2(5py + [ Hp - Vr-1/20p))  (44)

for R > 3. Fixing R > 3, we prove (4.4]) by contradiction. Suppose that there exist a
sequence (pn)nen C (0, po) and a sequence of radiating solutions ((En, H"))nGN C
[H (curl, R*\ D)]? of the system

V x B, =ip,H, in R3\D,
(4.5)
V x H, = —ip,E, inR3\D,
such that
||(En, Hn)||L2(BR\D) =1 forneN (4.6)
and

}Lig})(llEn X V| g-1/29p) + | Hn - V| g-1/2(9p)) = 0.

Without loss of generality, one might assume that p, — poo as n — oo for some
Poo € [0, po]. We only consider the case po, = 0. The case po, > 0 can be proven

similarly. From (4.5)) and (4.6]), we have
|| (Ena Hn) ||H(curl,BR\D) S C.
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Here and in what follows in this proof, C' and C, denote positive constants inde-
pendent of n. Applying Lemma we obtain

| (Ens Ho)ll 2 (curt,B,\D) < Cr (4.7)
for r > 3. Since
AE,+ p’E,=AH, +p*H, =0 in R*\D,
it follows from that, for r > 3,
|(En, Ho) |52 (B, 1\B,—1) < Cr.
By the trace theory, we have
1By Hollg12(03,) < Ci-

Since the embedding of H'/?(B,) into H~'/2(dB,) is compact, by applying (i)
of Lemma to (E,) and by applying (ii) of Lemma to (Hp), without loss of
generality, one might assume that (E,, H,) converges in [L2 (R3\D)]. Moreover,
the limit (E, H) € [Hioe(R?\D)]? satisfies

VxH=0 inR3\D, VxE=0 inR3D,
divH =0 inR*\D, and divE=0 inR3\D, (4.8)
H-v=0 on 0D, Exv=0 ondD.

Applying Lemma [3.6{ to (E,,, Hy,) and letting n — 400 (p, — 0), we have

(E(w), H(z))| = O(ja] ™) for large [z, (4.9)
1
On the other hand, since E,, = —ﬁv x H, in R3\D, we have
/ E, -v=0 for all connected component I'; of 9D. (4.10)
I

Since (E,) converges to E in [L _(R3\D)]* and div E,, = divE = 0 in R*\D, it
follows that (E,,) converges to E in Hj,(div,R3\ D). This in turn implies, by (4.10)),

/ E-v=0 for all connected component I'; of 0D. (4.11)
r;

Applying Lemma to H, we derive from (4.8) and (4.9) that

H=0 inR3D. (4.12)
Similarly, applying Lemma to E, from (4.8)), (4.9), and (4.11), we obtain®
E=0 inR3\D. (4.13)

aWhen poo > 0, instead of being a solution of (4.8), (E, H) is the radiating solution of (4.1]) with
p = poo and E x v = 0 on dD. This also implies that (E, H) = (0,0) in R3\D.
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From (4.6, (4.12), and (4.13) and the fact that (E,, H,) converges to (E, H) in
L2 _(R3\D), we reach a contradiction. The proof of (4.2) is complete.

loc

We next deal with (4.3)). The proof of (4.3) is similar to the one of (4.2)). However,
instead of obtaining (4.8]) and (4.11]), we have

VxH=0 inR3D, VxE=0 inR3\D,
divH =0 inR3\D, and divE=0 inR3\D,
Hxv=0 ondD, Exv=0 ondD,

and

/ H-v= / E-v =0 for all connected component I' of 0D.
r r

By the same arguments, we can derive that (E, H) = (0,0) in R3, which also yields
a contradiction. The details are left to the reader. O
Remark 4.1. We have

divr(E, xv) =V x E,-v=1ipH,-v on 0D.
It follows that

IN

1Ep X vl g-1/2(dive,00) < 1 Ep X Vlg-1/2(0py + 1 Hp - VIl -1/2(0D)

IN

1
;”Ep X V|| g-1/2(divr,0D)-

The next lemma gives an estimate for solutions of Maxwell’s equations in the
low frequency regime, which in turn implies an estimate for the effect of a small
inclusion after a change of variables.

Lemma 4.2. Let 0 < p < 1/2, R > 1/2, and let (E,, H,) € [Hoc(curl,R*\D)]? be
a radiating solution to the system
V x E,=iwpH, inR3\D,
{V x H, = —iwpE, in R*\D.
We have
|(Ep($)va($))| < Cp3||(Ep7Hp)||L2(B2\D) forx € B3R/p\BzR/p
for some constant C' depending only R.

Lemma[£.2]is well known, see e.g. Ref. 22, It can be derived from Stratton-Chu’s
formula and Stoke’s theorem (see also Eq. (12) of Ref. 22)).
The following compactness result is used in the proof of Theorems [2.1

Lemma 4.3. Let ((E,, H,)), be a bounded sequence in [H(curl, D)]?> and let
((01,1,02.1))n be a convergent sequence in [L*(D)]°. Assume that
{v x B, =iuH, +0,, inD,

(4.14)
V x H, = —icE, + 05, in D,
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and
(VX Ey-v,V x Hy,-v)), converges in [H */*(0D)]*. (4.15)
Then, up to a subsequence, ((E,, H,))n converges in [H(curl, D)]?.

Remark 4.2. A comparison with Lemma [3.7]is necessary. The difference between
Lemma [£.3] and part (i) Lemma [3.7]is that the sequence (E,, x v), or (H X v),, is
not required to be convergent in H~/2(9D). The difference between Lemma
and part (ii) Lemma is that the sequence (div(eE,)), or (div(uH,)), is not
required to be bounded in L?(D). Nevertheless, in Lemma is assumed.

Proof. It suffices to prove that, up to a subsequence, ((E,, Hy)), converges in
[L*(D)]°. By Lemma [3.3] there exist (gn), C H*(D) and (¢,), C [H'(D)]® such
that, for all n,

ek, =¢eVg,+V xX¢p, inD, divg,=0 inD, and ¢, xv=0 ondD.
(4.16)

Moreover, we have
Gnll 1 (D) + H¢n||[H1(D)]3 < ClEn||r2py < C (4.17)

for some positive constant C' independent of n. From (4.17)), without loss of gener-
ality, one might assume that

(@n)n and (¢,,)n converge in L?(D) and [L?(D)]?, respectively.

From (4.16)) and an integration by parts, we derive that, for all n,
/ eVaq, - Vpdx = / eE, -Vpdx for p e HY(D).
D D

This implies, by (4.14), for m,n € N,

/ eV(gn — am) - V(Gn — Gm)dz
D
- / e(En — En) - V(@n — Gm)dz,
D

=i [ (V% (Hy = Hy) = (B2 = 020)) - V(an ~ @)
D
An integration by parts yields

/ 6v((]n - Qm) ! V(q_n - (jm)d‘r
D

= z/ V X (Hn — Hp) - V(Gn — Gm)ds — z/ (02,0 — O2.m) - V(Gn, — Gm,)d.
oD D
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By (4.15) and the convergence of (61.,,,602,) in [L*(D)]°, the left-hand side of the
above identity converges to 0 as m,n — oco. Hence, by the ellipticity of e, (Vg )n
is a Cauchy sequence and thus converges in [L?(D)]3. From ([4.16)), we have

/ eIV x (¢n - Qbm) -V X (d_)n - Q_Sm)dx - / V x (En - Em) : (Q/_)n - J’m)dl"
D

D

By the ellipticity of € and the convergence of (¢,,) in L?(D), we derive that (V x ¢, )n
is a Cauchy sequence in [L?(D)]? and thus converges in [L?(D)]?. Since

E, =Vq, +€_1V X Pn,
(E,), converges in [L?(D)]3.

Similarly, up to a subsequence, (H,), converges in [L?(D)]3. |

Using Lemma and applying the Fredhom theory, one can prove the well-
posedness of (Ey, Hp) in Definitions [2.3| and The first result in this direction is
as follows.

Lemma 4.4. Let 01,05 € [L*>(D)]®. The system
V x E=iuH + 6, in D,
Vx H=—icE+ 0, in D, (4.18)
VXxE-v=VxH-v=0 ondD

has a solution (E, H) in [H(curl, D)]? if and only if

/92-Ed$—/91~1:1dx:0 for all (E, H) € N(D). (4.19)
D D

In particular, system (4.18)) has a unique solution (E,H) € N (D)t if and only if
(4.19) holds.

Proof. Lemmal[4.4]is derived from the Fredholm theory. Since £ and p are uniformly
elliptic, by Lemma there exist p1,ps € HY(D) and ¢y, g2 € [H(D)]? such that

01 =uVpr +V X ¢1, b2=eVpa+V X o in D, (4.20)

and

VX¢p1-v=VX¢py-v=0 ondD. (4.21)
Set (Eo, Ho) := (—iVp2,iVp1) in D. Then (Ey, Hy) € [H(curl, D)]? is a solution to

V x Ey =iuHg + uVpy in D,

V x Hy = —ieEy 4+ eVps in D, (4.22)

VXxEy-v=VxHy-v=0 ondD.
We have

/ eVps - E dz — / uVp,-Hdr =0 forall (E,H)c N (D). (4.23)
D D
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From (4.20)—(4.23)), by considering (F — Eo, H — Hy) instead of (E, H), one might
assume that (01, 602) € H(div, D),

div(6y) =div(f2) =0 inD and 6,-v=0-v=0 ondD. (4.24)

This is assumed from now on.
Set

V={p e H(cul,D) : div(ep) =0, ep-v=00n 0D, V x ¢-v =0 on dD}.

Since € and p are real, symmetric and uniformly elliptic, V is a Hilbert space
equipped with the scalar product

(E,p)vy = / IV x E-V x @de +/ eE-pdr for E,p€eV. (4.25)
D D
Let A:V — V be defined by
(AE, o) vy = —2/ eE-pdr forall peV. (4.26)
D

Since e is symmetric, one can easily check that A is self-adjoint. Since € and p are
symmetric and uniformly elliptic, by Lemma[3.7] A is compact.
Let g € V be such that

(9, 0)vvy = /Di92 @+ /D;rlel Vx¢@ forall peV. (4.27)
We claim that
system (4.18)) has a solution in [H (curl, D)]?
if and only if the equation v + Au = ¢ in V has a solution in V (4.28)
and
(E, H) is a solution of if and only if
E+AE=g inV and H=—ipg 1 (VxE—0). (4.29)

Assuming this, we continue the proof. By (4.28)) and the Fredholm theory, see e.g.
Chap. 6 of Ref. 8] system (4.18)) has a solution if and only if

(9,)vy=0 forall p eV suchthat o+ Ap=0 inV, (4.30)

since A is self-adjoint. Applying (4.29) with ¢ = 6; = 62 = 0 and using (4.25)—
(4.27), we derive that condition (4.30]) is equivalent to the fact that

/GQ'de—/Hl'I:IdeO for all (E,H) € N (D),
D D
which is (@.19).

The rest of the proof is devoted to establishing Claims (4.28]) and (4.29). Let
(E,H) € [H(curl, D)]? be a solution to (4.18)). From (4.24)), we derive that £ € V.
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Fix ¢ € V. Then V x ¢ - v = 0 on 9D. By Lemma [3.2] there exists ¢ € [H'(D)]?
such that

Vxpo=Vxe inD, divpg=0 inD, and ¢oxv=0 ondD.
(4.31)

Since V X (po — ¢) = 0 and D is simply connected, there exists & € H(D) such
that

wo—@=VE¢ in D. (4.32)
We have, for p € V,
/ M*VxE-waxzi/ H-Vx@g+pu 6, -Vxgde. (4.33)
D D
Using (4.31)) and an integration by parts, we obtain
/H~V><gbdas:/H~Vx¢0dx:/VxH~@0dm. (4.34)
D D D
Using (4.32) and the fact V x H - v = 0 on D, we also get, by an integration by
parts,
/VxH~¢0dx:/ Vx H:-pdz.
D D
This implies, by (4.34)),
/H-Vx@dxz/VxH-gﬁdx. (4.35)
D D
A combination of (4.33)) and (4.35]) yields

/;fleE-Vx@dx:i/VxH-@+u7161-Vx¢dx. (4.36)
D D

We derive from (4.18) and (4.36) that

/ /fleEon@dx:/ 6E~<,5dx+i/ 92~<,5dx+/ w0 -V x gd.
D D D D
(4.37)
It follows from (4.25)—(4.27) that
E+AE=g inV.
Conversely, assume that there exists u € V such that v + Au = g. Set
E=u and H=—ipg "(VxE—6) inD.

Using (4.37)), one can check that (E, H) satisfies the first two equations of (4.18)). Tt
is clear that V x E-v =0 on 0D by the definition of V. Since V x H = —icE + 0,
inD,eE-v=00n0D (FE€V),and 63 -v =0 on dD by (4.24), we obtain

VxH-v=0 ondD.

The proof is complete. O
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Remark 4.3. One of the key points in the proof of Lemma [£.4] is the identity
/H-VXde:/ V x H - Edzx,
D D

if B, H € H(curl, D) is such that VX E-v =V X H-v =0 o0n 9D, see (4.35)). This
ensures the variational character of system (4.18]).

The following lemma yields the uniqueness of (Ey, Hy) in Definition

Lemma 4.5. Let [(E, H),(E, H)] € [Hi(curl, R3)]2 x (D) be such that

VxE=VxH=0 inR3\D, V x E =ipH in D,
divE=divH =0  inR3\D, o VxH=—icE inD,
V x E=iuH in D, eE-v=F Vet ondD,
V x H=—icE in D, pH-v=H Vleyy on D,
(4.38)
and
|(E(x), H(z))| = O(|z|~%) for large |z|. (4.39)

Then (E, H) = (0,0) in R3 and (E,H) = (0,0) in D.

Proof. Applying Lemma to E, there exists a function 6§ € H}_(R3\D) such
that

VO=E imR*\D and |0(z)]=O(z|~") for large |z|. (4.40)

For R > 0 large, since div E = 0 in R3\ D, we have

/ |E|2dx:/ E~V0dx:/ (E~y)9ds—/ (E-v)|, ., 0ds.
Br\D Br\D OBR oD &

Letting R tend to +oo and using (4.39)) and (4.40]), we obtain
/ |E|? dox = —/ (E - 1)|ext0 ds. (4.41)
R3\ D oD

Extend 6 in D so that the extension belongs to H _(R3) and still denote this

extension by . We derive from the system of (E, H) in ([@.38) that
—/ (B v)|ext0ds = —/ (eE -v)0ds = —/ eE-V0dx —/ div(eE)0 da
aD aD D D

:/ —iV x H-VOde=—i | H-(V6xv)ds
D oD

= —i/ H - (E x v)ds. (4.42)
oD
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Combining (4.41)) and (4.42) yields
/ |E? dz = —i/ H-(E x v)ds. (4.43)
R3\D oD
Similarly, we have
/ |H|? do = z/ E-(H x v)ds. (4.44)
R3\D aD

An integration by parts implies

I~{~(E><1/)dsf/ E-(H x v)ds

oD oD

=/fo1-Edm—/VXE.fldx—/VxE-de+/V><H-de.
D D D D
Using the equations of (E, H) and (F, H) in D in (4.38)), we obtain

H-(E x v)ds — / E-(H x v)ds = 0. (4.45)
oD oD

A combination of (4.43)—(4.45]) yields
/ (1EP + |H?)dz = 0.
R3\D

We derive that E = H = 0 in R3\D. This implies, by the unique continuation
principle, see e.g. Theorem 1 of Ref. 33|

E=H=0 inD
and, since (E, H) € N(D)™,

The proof is complete. O
4.2. Approximate cloaking in the non-resonant case — Proof of
Theorem 2.1

The key ingredient in the proof of Theorem [2.1]is the following lemma whose proof
uses various results in Secs. Bl and E.11

Lemma 4.6. Let 0 < p < po, 0, = (01,02 ,) € [L*(D)]®, and h, = (h1,,,h2,,) €
[H~/2(divy, 0D)]2. Let (E,, H,) € [Nz, H(curl, BR\OD)]? be the unique radiat-
ing solution to the system

V x E, =1ipH, in R3\D,
V x H, = —ipE, in R3\D,
VXxE,=iul,+6,, in D,
VxH,=—ieE,+ 0, in D,
[E, x V] =hy,,[Hy, x V] =ha, ondD.
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Assume that N (D) = {(0,0)}. We have
I(Ep, Hp)llL2(B5) < CU10,l2 (D) + 1Rl ir-1/2(divr,00)) (4.46)
for some positive constant C depending only on pg, €, . Assume in addition that

Tim ol zr-1/2(divr,0p) =0 and Timy 0, =6 in[L*(D))°
for some 0 = (61,02) € [L3(D)]°. We have
lim (E},, H,) = Cl(01,02) in [H (curl, D)]?. (4.47)
p—

Here and in what follows on 0D, [u] denotes the jump of u across dD for an
appropriate (vectorial) function w, i.e. [u] = U|ext — U|int 00 OD.

Proof. By Lemma without loss of generality, one might assume that h; , =
ha,, = 0 on dD. This is assumed from now on.

We first prove by contradiction. Assume that there exist sequences
(Pn)n C (0,p0), ((En, Hn))n C [Hioc(curl, R?)J?, ((01,n502,0))n C [L*(D)]® such
that

V x E, =ip,Hy in R®\D,
V x H, = —ip, E, in R3\D,
VxE,=iuH,+6,, inD,
V x Hy, = —icEy + 03, in D,
|(En, Hp)ll22(Bs) =1 for all n € N, (4.48)

and

Hm |[(61,n,02,)]2(p) = 0.

n—-+oo

Without loss of generality, one might assume that p, — poo € [0, po]. We only
consider the case p,, = 0. The case po, > 0 can be proved similarly.
We have

V x E, - V’im =V X E, Vlext = ipnHp  V|ext = 0 in H_1/2(8D) as n — o00.
(4.49)

Similarly, we obtain
V X Hy - Vline — 0 in H~Y2(0D) as n — occ. (4.50)

Applying Lemma to ((En, Hp))n in D, without loss of generality, one might
assume that

((Ey, Hy,))n converges in [H (curl, D)]? as n — oo. (4.51)
Applying (i) of Lemma [3.8] we derive that

((En X v, H, x 1)), converges in [H~*?(divp, dD)]? as n — occ.
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It follows from (4.48)), Lemma[3.6] and (i) of Lemma [3.7) that
((En, Hy))n converges in [L2 _(R3\D)]% as n — oo. (4.52)

Let (E,H) be the limit of (E,,H,) in [L?

2 (R®)]S. Then (E,H) €
[Hyoc(curl, R?)]2 and

VxE=VxH=0 inR3D,
divE=divH =0 in R3\D,

V x E=iuH in D, (4.53)
V x H=—icF in D.
We derive from and that
VXE Vin=VXH -Vin=0 ondD. (4.54)
Applying Lemma we have
(E(x), H(x))| < |j for [o] > 3 (4.55)

for some positive constant C'. Combining (4.53]) and (4.54) yields that (E, H)|p €
N (D). Since N (D) = {(0,0)}, it follows that £ = H = 0 in D. Hence

Exv=Hxv=0 ondD. (4.56)

We have, for each connected component I' of 0D,

1
/E “Vlext = lim /En|ext v= lim — /(V X Hp) - Vl|ext =0
r n—oo J1r n—oo —ip, Jr

and similarly,
/ H - V|ext =0.
r

Using (4.53)), (4.55)), and (4.56)), and applying Lemmato (E,H) in R®\D, we

obtain

E=H=0 inR*D.

Thus E = H = 0 in R?, which, by using (4.51)) and (4.52)), contradicts (4.48)).
Therefore, (4.46|) is proved.
We next establish (4.47). Fix an arbitrary sequence (py,),, converging to 0. From

(4.46)), one obtains that

I(Eps Hp )l 2(85) < CU0p,llL2(0) + hpo =172 (divr,00)) < C-

PIn the case poo > 0, the limit (E, H) satisfies the radiating condition and is a solution to Maxwell
equations in R? with vanished data. Tt follows that (E, H) = (0,0), which also gives a contradiction.
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Using the same argument as above, one obtains that, up to a subsequence,

(E,,,H,,) converges in [H (curl, R*)]? to (E, H), the unique solution of

VxE=VxH=0 inR3\D,
divE =divH =0 in R3\D,
V x E=1iuH + 64 in D,
VxH=—icE+60y in D.
This system implies V X E - v|ing = V X H - v|ing = 0 on dD. Since N (D) = {(0,0)},

we have (E, H)|p = Cl(6;,02). Since (p,) — 0 arbitrarily, assertion (4.47)) follows.
The proof is complete. O

We are ready to give the following.

Proof of Theorem Let (E1,, Hip) € [Hioc(curl, R3\B,)]? be the unique
radiating solution to the system

V x ELP = inLp in Rg\Bp,
V x Hi,=—iwE ,+ Jext in R3\B,,
Eipxv=0 on 0B,

extend (E4 ,,Hq,,) by (0,0) in B, and still denote this extension by (E4 ,, H1 ).
Define, in R3,

(E2 Hg,p) = (E,H) — (El,paHl,p) and (ES,paH?),p) = (gP’HP) — (Elvp’Hl,P)'

P
Then (Es,, Ha ) € [Hioc(curl, R¥\B,)]? is the unique radiating solution to the
system

V x E27p = inQ,p in RB\BP,

V x Hg)p = —in27p in RB\B
Eyyxv=Exv on 0B,,

P

and (Es ,, Hs ) € [gsq H(curl, BR\0B,)]? is the unique radiating solution to the
system

V x B3, =iwp,Hs p in R3\0B,,
V x Hz , = —iwe, B3, + J,XB, in R*\0B,,
[E37P X V] = 07 [HS,p X V} = *Hl,p X V|ext on 8Bp,

where xp denotes the characteristic function of a subset D of R3. Recall that J, is

defined in (2.15)). Set
Eg,p(x) =E,(pz) and ﬁg,p(x) = H,(pz) for z € R*\B.
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Then (Elp, PNIZP) € [H (curl, R3\ B;)]? is the unique radiating solution to the system
V x EQ,‘, = iwp]jlzp in R3\ By,
V x f[g)p = —iwaQ)p in R3\ By,
Ez’p xv=FE(p)xv ondbBj.

By Lemmas and (also Remark [4.1)), we have, for R > 1/2 and for z €
Bsr\Bzrg,

‘(EZP (P>7H2’p <P)>’ = CPSH(EZ/NH2,p)||L2(Bz\Bl)

< O (IB(p) x vl /205,
+ o ldivas, (E(p.) X V)| gr-1/2(08,))
< Cp*(|E(p.) % Viig-12008,) + 1H(p-) - VlEg-1208,))-

Here and in what follows in this proof, C' denotes a positive constant depending
only on pg, Ry, and R. It follows from the definition of (E5 ,, Ha ,) that

1(B2,p, Ha,p)l| 22(Bsm\Bar) < CP° [ Jextll L2 o\ Ba)- (4.57)
From now on in this proof, for any vector field v, we denote®
8() = pu(p-). (4.58)
We claim that

||I:I1,P X V|ext||H*1/2(aBl) + |‘E1,p : V|extHH*1/2(aB1) < Cp||Jext||L2(R3\Bz) (4.59)
and, for R > 1/2,

1(Es3,p, Hs p) || 2By s\ Bar) < C(0° | Jext 2@\ sy + 07| Jintll 2(5y))- (4.60)

It is clear that (2.3)) follows from (4.57) and (4.60). Moreover, by Lemma
assertion ([2.4) now follows from (4.59) and the fact that (E., H.) = (E3,,, Hs,p)
in Bl-

It remains to establish (4.59) and 1) It is clear that (E37p,ﬁ3,p) €
[Ngo H (curl, BR\dBy)]? is the unique radiating solution to the system

V x E37p = iwpf{g,,p in R®\ By,
V x ﬁg’p = —Z'waA’g’p in R®\ By,
V x EA‘37P = iwuﬁg,p in By,

V x Hs , = —iweEs  + Jint in By,
(B3, xv] =0,[Hs, xv]=—Hy, X Vet on dBy.

°With this notation, one has (Ec, He)(z) = (£,,,) in Bi. Note that 9(-) # v(p-).
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By Lemma we have

1(E3,05 Hz, p)| 1 (curt, B5) < C[JintllL2(By) + [[H1,p X Vlext | m-1/2(divr,081))-

(4.61)
Applying Lemmauto (Eg)p, ﬁg’p), by (4.58]), we obtain
||I:12’p X V‘ext”H*I/?(aBl) + ||E2,p ) V|ext||H*1/2(8Bl) < CP||Jext||L2(R3\Bz)'
Since
(E2p, Hap) = (E,H) — (E1,,H1,) inR*\By,
it follows that
[H1.p X Vlextllm-1/2(08y) + 1B1p - Vlextlm-1208,) < CpllJextll 22\ By)
which is (4.59).
Combining (4.59) and (4.61)) yields
(B30, H3 o)l i (curt,Bs) < C ([ insll 2 (1) + Pl Jext | 2movBy)) - (4.62)
Applying Lemma and using (4.62]), we obtain
N €T A X 3
Es, ) ,Hs, 5 < Cp° (Iintllz2 (1) + pllJext || 223\ B2))
for © € B3g\Bag. This implies (4.60). The proof is complete. ]
4.3. Approximate cloaking in the resonant case — Proofs of

Theorems 2.2 and 2.3

The key ingredient in the proof of Theorems and [2.3]is the following variant of
Lemma

Lemma 4.7. Let 0 < p < po, 0, = (61 ,,,02,) € [L*(D)]®, and h, = (h1,p, h2,p) €
[H~Y/2(divy, 0D)]?, and let (E,, H,) € [N, H(curl, BR\OD))? be the unique radi-
ating solution to the system

V x E,=1ipH, in R3\D,
V x H, = —ipE, in R3\D,
VxE,=iuH,+ 01, in D,
VxH,=—icE,+ 0, in D,
[E, x v] =hyp,[H, x V] = ha, on dD.

Assume that N (D) # {(0,0)}. We have
I(Ep, Hy)ll 22 (55)

< Clp~ l0pllL2oy + ol zr-1/2(0m) + o~ I divehpll 172 (o) )- (4.63)
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Assume in addition that, for all p € (0, po),
/D(Hg,p -E —01,-H)dr=0 forall (E,H) € N(D). (4.64)
Then
I(Ep, Hp)lL2(55)
< C0ull2py + 1Rl sr-1/200) + 2~ dive byl g-1/2(0p))- (4.65)
Here C' denotes a positive constant depending only on pg, €, and p. Moreover, if
gi_f}})(thHHfl/z(aD) +p Hdivehy|l g-1/2py) =0 and lim 6, = 6 in [L*(D)]°,

for some 0 = (01,02) € [L*(D)]®, then

;ig% (E,, H,) = Cl(01,05) in [H(curl, D)]*. (4.66)
Remark 4.4. In comparison with in Lemma in the resonant case
N(D) # {(0,0)}, estimate is weaker. Under the compatibility con-
dition , estimate (4.65)) is stronger than . Note that the term
[divehyll g-1/2(5py in of Lemma [4.6]is replaced by p~"(|divrhy| g-1/2(op) in
. However, this does not affect the estimate for the degree of visibility in the
compatible resonant case (in comparison with the non-resonant case) since in the
proof of Theorem 1.2, we apply Lemma to the situation, where A, g-1/2(9p)
and p~!||divrhyll g-1/2(apy are of the same order. The estimates in Lemma
somehow sharp because of the optimality of the estimates in Theorems and
this is discussed in Sec. [Bl

Proof. We will give the proof of and and explain how to modify the
proof of to obtain .

We prove by contradiction. Assume that there exist sequences (pp,), C
(Oa PO)a ((Em Hn))n - [ﬂR>0 H(curL BR\aD)]27 (en)n = ((el,n; 02,n))n C [L2(D)]6
such that holds for (01 ,,,02.1),

V x E, =ip,Hy in R3\D,
V x H, = —ip,E, in R3\D,
V x E, = ipHy, + 010 in D,

V x Hy, = —icE, + 02, in D,
[En X V] = hip, [Hy X V] =hg, ondD,

|(En, Hp)|lL2(s) =1 for all n € N, (4.67)
and

i (1020 + Wnlliz-v/20p) + 93 IdivEha -1/ 0m)) = 0. (468)
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Without loss of generality, we assume that p, — peo € [0, po]. We will only consider
the case pso = 0. The proof in the case ps, > 0 follows similarly and is omitted.

Similar to (4.49) and (4.50)), we have, by (4.68]),
lim VX Epling-v=0 and 1@,Vmewm:o in H='/2(0D).
n——+0o0

n—-+oo

(4.69)

Applying Lemma and using (4.67)), without loss of generality, one might assume
that ((E,, Hy))n converges in [L?(D)]® and hence also in [L2 (R3\D)]® by applying
(4.3) of Lemma and (i) of Lemma [3.7 to Bg\D. Moreover, the limit (E, H) €
[Hioc(curl, R?)]? satisfies

VxE=VxH=0 inR3\D,

divE =divH =0 in R3\D,

V x E=iuH in D, (4.70)
VxH=—icE in D,
and, by applying Lemma and letting p, — 0,
(E(x), H(x))] = O(|J2|~%) for large |z]. (4.71)

Since

/ (02, - E — 01, -H)dr =0 forall (E,H)c N(D),
D

by Lemma there exists a unique (E1 ,, Hy,) € N(D)* solving

V x El,n = Z'/LHLn + 91,n in D,
V x Hl,n = _iEEl,n + 02,n in D7
VXE, - v=VxH, v=0 ondD.

Denote by (Es,,, Hs,,) the projection of (E,, H,) — (E1,, H1,,) onto N (D) and
define

En = p;l(En - El,n - E2,n> and ﬁn = p;l(Hn - Hl,n - H2,n) in D.

Then
(En, Hy,) € N(D)*
and
V x En = i,uf[n in D,
V x H, = —icE,, in D,

~ (4.72)
VXE, v=p;'VxE, vVl onoD,

Vxﬁn~yzp;1Van-V|int on OD.



Math. Models Methods Appl. Sci. 2019.29:1511-1552. Downloaded from www.worldscientific.com

by ECOLE POLY TECHNIQUE FEDERALE DE LAUSANNE on 08/16/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

Approximate cloaking for electromagnetic waves 1541

We have
itV X By Vg = p 'V X By - Vlext + py, dive hin
= iHy, - Vlext + p,, - divr hi,, on 0D.
This implies, by ,
uﬁn v = Hy, - Vlexs — ip;, * divp hin on 0D. (4.73)
Similarly, we have

eE,-v=E,- Vlext — p;,* divpy ha, on 0D. (4.74)

Using (4.68), we derive from (4.69), (4.73]), and (4.74]) that

(eEy - v, piHy, - v) = (B - lexty H - V]ext) in H~/2(0D) as n — . (4.75)

It follows from Lemma [4.8] that ((En,H,)), is bounded in [L%(D)]®. Applying
Lemma E 3| to (En, H, ), one can assume that

(En, H,) converges to some (E, H) € N (D)* in [H(curl, D)]?. (4.76)

Moreover, from and , we have
V x E =iuH in D,
VxH=—icE inD,
eE-v=E- Vlext on 0D,
ﬂf[ v =H  V|ext on dD.

(4.77)

Applying Lemma to (E, H) defined in R3 and (E,ﬁ) defined in D and using
@D, , and @, we deduce that £ = H = 0 in R3, which contradicts
@. The proof of @ is complete.

We next establish . Fix a sequence (p,,) converging to 0. From , one
obtains that

(B, Hp)z2(ms) < CU0p,Nlz20) + Ihpll-1/2(0m) + pi Idivehp, | -1/2(0m))
<C.

Define (Epn,H ) in D from (E,, ,H,, ) as in the definition of (En, H,) from
(Ey, Hy,). Using the same arguments to obtain (4.76[), we have

(E,,,H,,) converges to (E, H) € N'(D)* in [H(curl, D)].
Up to a subsequence, (E,,, H,, ) converges to (E, H) in [Hloc(curl,R3)]2 and
(B(x), H(x))] = O] %) for large |x|.

Moreover, as in (4.77]), one can show that (2.9) holds. Since the limit is unique,
assertion (4.66|) follows.
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We finally show how to modify the proof of to obtain . The proof is
also based on a contradiction argument and is similar to the one of . However,
we denote by (E2,, Ha ) the projection of (E,, H,) onto N (note that E , and
H; ,, might not exist in this case) and define

Eyn=p; (Ep—Ey,) inD and H, =p, (H,— Hy,) inD.
Then
V x En = i,uf-jn —i—pfll@l,n in D,
V x ﬁn = —ieE’n + 0 0.0 in D,
VxEn~V:p;1VxEn-u\int on 0D,
VX.FNIn~V:p;1V><Hn~V|int on 0D.

Since (p;'0,)n — (0,0) in [L2(D)]5, the sequence ((E,,H,)), converges to
(E,H) in [L*(D)]%. Similar to the proof of ([4.65), one also derives that (E, H) =
(0,0) in R3. This yields a contradiction. The proof is complete. 0

In the proof of Lemma we used the following lemma.

Lemma 4.8. Assume that D is simply connected and (E,H) € N'(D)* satisfies
VxE=iuH mD and VxH=—icE inD.
We have
(£, H) ||z (cunt, 0y < Cll(eE - v, pH - v)||g-1/2(D)

for some positive constant C depending only on D, €, .

Proof. It suffices to prove that
I(E, H)||L2(p) < Cl(eE - v, uH - V)| zr-1/2(0D)-
The proof is via a standard contradiction argument. Assume that there exists a
sequence ((E,, H,)), C N(D)* such that
VxE,=iuH, inD and V x H, =—icE, in D,

(4.78)
|(En, Hn)||L2(py =1 for all n,
and
(eEn v, pHy -v) =0 in [H/2(0D)P.

Applying Lemma [£.3] one might assume that (E,, H,) converges to some (Eq, Ho)
in [H(curl, D)]?. Then (Ey, Hy) € N(D)* and
V x Ey = iuHy in D,
V x Hy = —icE, in D,
VXxEy-v=VxHy-v=0 ondD.
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It follows that (Eo, Ho) € N(D)™ NN (D). Hence (Ey, Hy) = (0,0) in D, which
contradicts (4.78). O

We are ready to give the following.

Proof of Theorem In this proof, we use the same notations as in the one of
Theorem Similar to the proof of Theorem [2.1] using Lemmas and we
have, for R > 1/2,

1(E2,p, Ha, )l 2By i\ Bar) < CP° | Jext | L2 w2\ ) - (4.79)

Involving the same method used to prove (4.59)) and (4.60]), however, applying (4.65))
in Lemma instead of Lemma we have

IH1,p X Vlext | m-1/2(8,) + 1E1,p - Vlext | m-1/2(88y)

< Opl[Jextll L2 (r3\B2) (4.80)

and
1(Es,p, H,p) |l 2By i\ Bor) < C(0* 1 ext || L2 @3\ Bo) + 271 Jint | 22(B1))- (4.81)

It is clear that (2.7) follows from (4.79) and (4.81]). Moreover, by Lemma
assertion ([2.8) now follows from (4.80) and the fact that (E., H.) = (Es,,, H3,) in

Bj. O

Proof of Theorem In this proof, we use the same notations as in the one of
Theorem Similar to the proof of Theorem using Lemmas and we
have, for R > 1/2,

1(E2,ps H2,p) |22 (Bs s\ Bar) < CP° || Jextl| L2 &3\ Bo) - (4.82)

Using the same method used to prove (4.60)), however, applying (4.63)) in Lemma
instead of Lemma [.6] we have

(B3, H3 p) || £2(Bsm\Bar) < C(0° 1 Jext || 2o\ By + Pl Jint | L2(51))- (4.83)

It is clear that (2.11]) follows from (4.82)) and (4.83]).
It remains to prove (2.12). Using the linearity of the system and applying

Theorem [2.2] one can assume that Joxw = 0, and Jine = Eo for some (Eg,Hy) €
M\{(0,0)}. From the definition of A/, we have

E0$é0 and H0§é0 in Bl-
Note that (E., H,) € [Hiyc(curl, R?)]? is the unique radiating solution to the system

V x E, = z'wpf]c in R®\ By,
V x H, = —iwac in R?\ By,
VxFE, = iw,uﬁc in By,

V x H, = —iweE,. +Ey in B.
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We prove (2.12)) by contradiction. Assume that there exists a sequence (pn)n C
(0,1/2) converging to 0 such that

nh_)ngoan(EmHn)HLz(Bﬂ =0, (4'84)

where (E,, H,) € [Hioc(curl, R?)]? is the unique radiating solution to the system

V x E, =iwp,Hy, in R3\ By,
V x H, = —iwpnE, in R®\ By,

P \Br (4.85)
V x E, =iwuH, in By,

V x H, = —iweE, + Ey in Bj.
Applying Lemma to (Ey, Hy,) in By and using and , we obtain
Jim. prll(En X v, Hy X V)|l gr-1/298,) = 0.
By Lemma |4.1] we have
Jim pp[(Eny Hp)ll2(82\8,) = 0 (4.86)
Since div E,, = div H,, = 0 in R*\ By, we have, by Lemma [3.8] and (4.86)),
Jim pp[[(Ep - v, Ho - V)| g-1/2(08,) = 0-

It follows that

Jim [[(dive (B, x v), dive(Hn X V)| g-1/2(08,)

= lim (VX En) -, (V % Ho) -0) | -1/29m,) = 0. (4.87)

n— oo

Using the fact that (Eq,Hp) € N, we derive from ([4.85)) that

/ mleEO-vXEnd:c—&/
B1

eEo- E, dr = —iw/ (v x E,)-Hds,
B1

0B,

and

/u—leEn-vXEde—WQ/ eE, -Eydx
B1 Bl

:—iW/ (VXHn)EodS—i—Zw/ EQ-EQ.
9B B,

Considering the imaginary part of the two identities yields

R {/ (v x Hy,) - Eods —|—/ (v x Ey) ~H0d8} = / |Eol? > 0. (4.88)
8Bl aBl Bl

However, since V x Hy-v = 0 on 0By, by Lemma there exists H € H(curl, By)
such that

VxHy=VxH inB; and Hxv=0 on0B;.
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Since V x (Hg — H) = 0 in By, by Lemma|[3.1] there exists ¢ € H'(B;) such that
Hy-H=V¢ in By,
and hence
Hy xv=VE¢xv ondB.
We have thus

/(VxEn)~I:IOds:/ (vx E,)-V&ds
0B,

o8,
= / divr(v x E,)&ds =0 asn — +o0, (4.89)
OB1
thanks to (4.87). Similarly, we obtain

/ (v x Hy,) -Egds — 0 asn— +o0. (4.90)
8B1

Combining (4.88))-(4.90]), we obtain a contradiction. Hence (2.12]) holds. The proof

is complete. O

5. Optimality of the Degree of Visibility

In this section, we present various settings that justify the optimality of the degree
of visibility in Theorems In what follows in this section, we assume that

e=p=1 1in Bj. (5.1)

Let ALY (n € N) be the spherical Hankel function of first kind of order n and let
Jn, Yn denote, respectively, its real and imaginary parts. For —n < m < n,n € N,
denote Y, the spherical harmonic function of order n and degree m and set

U™(&) := Vop,Y/™(&) and V™(&):=d x U™(&) for & € OB,.

We recall that Y, (2)z, U(Z), and V,"(£) for —n < m < n,n € N form an
orthonormal basis of [L%(dB1)]3.
We have the following.

Lemma 5.1. System (2.1)) is non-resonant if and only if j,(w) # 0 for alln > 1.

Proof. Assume that j,(w) = 0 for some n > 1. Fix such an n and define, in B,
Eo(z) = jn(wr)V, (),

n(n+1) . 0/ an 1. y 0(x

Hy(r) = " )Y 2(@)3 + 2 [jawr) + wrdl (0)U2),

where r = |z| and & = z/|z|. Then (Eq,Hy) € . System is hence resonant.
Conversely, assume that j,(w) # 0 for all n € N. Using separation of variables
(see e.g. Theorem 2.48 of Ref. 21)), one can check that if (Eg,Hyg) € N, then

(Eo,Ho) = (0,0) in Bj. O
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The following result implies the optimality of with respect to Jeyxt. For
computational ease, instead of considering fields generated by Jext, we deal with
fields generated by a plane wave. In what follows, we assume that 0 < p < 1/2. We
have the following.

Proposition 5.1. Set v(z) := (0,1,0)e™®s for x € R3. There exists w > 0 such
that

IEc|lL2(Ba\Bs) = CP°

for some positive constant C' independent of p. Here (E., H.) € [Hioc(curl, R3)]? is
uniquely determined by

V x E =iwu.H in R3,
{V x H = —iwe.E  in R3,
where ' = E. +v and H = H. + iv x v and by the radiation condition. Here
(€c, pie) is defined by [2.1), where (e, ) is given in (5.1).
Proof. Let w > 0 be such that j;(w) # 0. Set
(EpyHp) = (F, '« E,F, '« H) inR%

and define
1 .
<Sp —v,H,——V x v) in R3\B,,
(Ey, Hy) = w
(Ep, Hp) in B,,.
Set
(Emﬂp) = (E,H))(p:) and 9=wv(p-) iR’
We have
VxE,=ipwH, in R3\ By,
V xH,=—ipwE, in R3\ By,
V x Ep = z'wI:Ip in By,
V x pr = —iw]:]p in By,
- . 1
[E,xv]=—-txv, H,xv]=—-—(Vx0)xv ondBj.
ipw
Denote

Aext = / Ep|ext . ‘711 dS and Aint = / Ep‘int . ‘711 dS.
6B1 8B1

Using the transmission condition for Ep x v on 0B and considering only the com-
ponent with respect to Vi for E, (see e.g. Theorem 2.48 of Ref. 21)), we have

Aext - Aint = Q, (52)
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where

oz:—/ oV ds.
0B,

1547

Using the transmission condition for I:Ip x v on 0B and considering the component

with respect to U{ for ﬂp (see e.g. Theorem 2.48 of Ref. 21]), we have

Aext (wp)Aext — Qint (w)Aint = ﬁv

where
(1" () + ki ()
ant(T) = i (1) )
—irhy (1)
(J1(r) +rji(r))
in = d = in .
@it (1) i (r) and B = aaint(wp)
Combining (5.2)) and (5.3)) yields
Ao = p—aain(w)
Gext(Wp) — Qint(w)
Since
(1) _,ifzsinx—xcosx .rsinz —coszx
hy (m)—zdx . " +i = for x € R,

we derive that

liminf p™! |dext (wp) — aint(w)|_l > 0.

p—0

Since, by separation of variables (see e.g. Theorem 2.48 of Ref. 21]),
/ ’lN)-Vll ds‘ = Jl(wp) / ’U'Vll ds
6B1 aBl

C™'p<lal <Cp

b

J1(w)

we have

for some positive constant C independent of p. From (5.6) and the fact that

|aint (wp)| > Cp™!,
we have

liminf |3 — aain(w)] > 0.
p—0

Combining (5.5 and (5.7)) yields

liminf p~ ! Aexe| > 0.
p—0

Since, again by separation of variables,

(5.3)

(5.6)



Math. Models Methods Appl. Sci. 2019.29:1511-1552. Downloaded from www.worldscientific.com

by ECOLE POLY TECHNIQUE FEDERALE DE LAUSANNE on 08/16/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

1548 H.-M. Nguyen & L. Tran

and, by Lemma [3.9
Ep(x/p) =E,(z) =&,(x) —v(z) = E.(x) for x € B4\Bs,
we obtain the conclusion from (5.4]) and (5.8). O

We next show the optimality of ([2.3)) with respect to Jint.

Proposition 5.2. Assume that the system is non-resonant and Jext = 0 in R3\Bg.
There exists Jin € [L?(B1)]® such that

. . —2
llggglfp | HellL2(B4\B2) > 0

Proof. Consider
Jine(x) = j1(wr)ViH (&) in By, (5.9)
where r = |z| and & = x/|z|. Set
1
EO = Jint and HO = —V X E(] in Bl.
w

Then
V xEy=iwHy in By,
{V x Hy = —iwEy in Bj.
Define
(Em I:Ip) = p(EpHp)(pr) in R?,
where (€,,H,) is given in (2.13). Then

V x Ep = ipr:Ip in R®\ By,
VxH, = —ipuE, in R®\ By,
V x Ep = iwI:Ip in By,

VxH,=—iwE,+E; in B.
We have

/ (v x H,) - Egds — / (vxE,) -Hods = / |Eo|? > 0. (5.10)
9B, 9B, B,

We claim that

hrpn_)l(l)lf /831 (v x E,)-Hods| = 0. (5.11)
Assuming this, we have, from ([5.10)),
lim inf / (v x ﬂp) -Eods| > 0.
p—0 9B,
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This implies, since ji (w) # 0 by Lemma[5.1] that
I:IPU Lds
OB,
On the other hand, by the separation of variables (see e.g. Theorem 2.48 of Ref. 21]),

lim inf > 0.
p—0

Y (wpr) + workM (wpr A =

H,(r2) Ul2)dz =
o, e (rd) - Un (@) r(h{" (wp) + wpht! (wp)) JoB,
(5.12)

Using the fact

.. o 1
liminf p o >
o0 by (wp) + wpht (wp))|

and taking r = R/p with R € (2,4) in (5.12)), we obtain

4
lim inf p—3 /
p—0 2

This implies, since H.(R#) = H,(R%) = p'H,(R%/p) for R € (2,4) and & € dB,

H,(Rz/p) - UL (z)d#|dR > 0.
831

)
hrpn_)lglf,o | HellL2(B,\Bs) > 0,

which is the conclusion.

It remains to prove ((5.11)). Since

Ho(x) = %v « Eo(x)

mjl(wr)Yll(:fs)i' + i[]l (wr) + wrji (wr)|UL(£) in By, (5.13)

where r = |z| and & = x/|z|, using the separation of variables (see e.g. Theorem 2.48
of Ref. 21]), we have

li;n_)i(r)lf aBl(Vpr)-I-_IOdi’ SCIilgl_)i(I)lf /331 E,(2)-Vi'(z)d
.| —iwp s Sl /Ay Ay n
= C'liminf H,(Z)|ext - (Y7 (2)2) dz|.
mipt| =" | @ (7 @)2)
(5.14)
Since, by Lemma [£.6]
HI:IP”H(curl,Br)) < Ca
we have
.| —iwp B S1/ay Ay gn
lim inf H,|ot (Y7 (2)2)dz| = 0. 5.15
mipf| " | Hyle (1 (@)2) (5.15)

Thus, (5.11)) follows from (5.14]) and (5.15]). O
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We finally show the optimality of (2.11]) in the case where Joxt = 0 and Jing
does not satisfy the compatibility condition.

Proposition 5.3. Assume that Joxw = 0 in R3\By and ji(w) = 0. There exists
Jint € [L*(B1)]? such that

||EcHL2(B4\Bz) >Cp

for some positive constant C independent of p.

Proof. Define Ji; by (5.9). We use the notations in the proof of Proposition
We have

/ (v x H,) - Eods — / (vxE,) -Hods = / |Eo|? > 0. (5.16)
OB 9B1 B:

Since j1(w) = 0, it follows that

/ (v x H,) - Egds = 0.
0B1

We derive from (5.16)) thatd

lim inf / (vxE,)-Hods| > 0.
p—0 8B,
This implies, by (5.13),
lim inf / E,(#) - V}(2)di| > 0. (5.17)
p—0 8B,

By the separation of variables (see e.g. Theorem 2.48 of Ref. 21)), for r > 2, we

obtain
RO g (7 20) by Trloan ge
E,(rz) - Vi (2)dz = OIS E, (%) Vi (2)dz. (5.18)
0B, h’l ((Up) 0B
(1)
Taking r = R/p with R € (2,4) in (5.18), since lim,_, p~2| };h)((wR)) | > 0, we obtain
wp
from (5.17) that '
4
lim inf p~2 / / E,(R#/p) - Vi{(2)di| dR > 0.
p=0 2 |Jom,
This implies
lizn_j(f)lfp_1||EcHL2(B4\Bg) >0,
which is the conclusion. D

dThis is the difference between the resonant and the non-resonant cases.
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