APPROXIMATE CLOAKING FOR ELECTROMAGNETIC WAVES VIA
TRANSFORMATION OPTICS: CLOAKING VS INFINITE ENERGY

HOAI-MINH NGUYEN AND LOC TRAN

ABSTRACT. We study the approximate cloaking via transformation optics for electromagnetic
waves in the time harmonic regime in which the cloaking device only consists of a layer constructed
by the mapping technique. Due to the fact that no-lossy layer is required, resonance might appear
and the analysis is delicate. We analyse both non-resonant and resonant cases. In particular,
we show that the energy can blow up inside the cloaked region in the resonant case and/whereas
cloaking is achieved in both cases. Moreover, the degree of visibility depends on the compatibility
of the source inside the cloaked region and the system. These facts are new and distinct from
known mathematical results in the literature.
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1. INTRODUCTION

Cloaking via transformation optics was introduced by Pendry, Schurig, and Smith [34] for the
Maxwell system and by Leonhardt [26] in the geometric optics setting. They used a singular
change of variables which blows up a point into a cloaked region. The same transformation was
used by Greenleaf, Lassas, and Uhlmann to establish the nonuniqueness of Calderon’s problem in
[16]. The singular nature of the cloaks presents various difficulties in practice as well as in theory:
(1) they are hard to fabricate and (2) in certain cases the correct definition of the corresponding
electromagnetic fields is not obvious. To avoid using the singular structure, various regularized
schemes have been proposed. One of them was suggested by Kohn, Shen, Vogelius, and Weinstein
in [24] in which they used a transformation which blows up a small ball of radius p instead of a
point into the cloaked region.

Approximate cloaking schemes for the Helmholtz equation based on the regularized transfor-
mations introduced in [24] have been studied extensively in [15] 17, 23, 27] 28, [30] 10, 4 20, 1§].
Frequently, a (damping) lossy layer is employed inside the transformation cloak. Without the
lossy layer, the field inside the cloaked region might depend on the field outside, and resonance
might appear and affect the cloaking ability of the cloak, see [28]. Approximate cloaking was
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2 H.-M. NGUYEN AND L. TRAN

investigated in the time domain for the acoustic waves in [31], 32]. In [32], the dependence of the
material constants on frequency via the Drude-Lorentz model was taken into account.

Cloaking for electromagnetic waves via transformation optics has been mathematically investi-
gated by several authors. Greenleaf, Kurylev, Lassas, and Uhlmann in [I5] and Weder in [38] [39]
studied cloaking for the singular scheme mentioned above by considering finite energy solutions.
Concerning this approach, the information inside the cloaked region is not seen by observers out-
side. Approximate cloaking for the Maxwell equations using schemes in the spirit of [24] was
considered in [7, 5] 25]. In [5], Ammari et al. investigated the cloaking problem where the cloaked
object is placed inside the core of the cloaking device which is a cavity. Additional layers were
used and designed in order to cancel the first order scattering coefficients. Similar idea was used
for the conducting problem [3] where the layers are designed in an appropriate way to cancel the
first high order generalized polarization tensors. In [7], Bao, Liu, and Zou studied approximate
cloaking using a lossy layer inside the transformation cloak. Their approach is as follows. Tak-
ing into account the lossy layer, one easily obtains an estimate for the electric field inside the
lossy layer. This estimate depends on the property of the lossy layer and degenerates as the lossy
property disappears. They then used the equation of the electric field in the lossy layer to derive
estimates for the electric field on the boundary of the lossy region in some negative Sobolev norm.
The cloaking estimate can be finally deduced from the integral representation for the electric field.
This approach essentially uses the property of the lossy-layer and does not provide an optimal
estimate of the degree of visibility in general. For example, when a fixed lossy layer is employed,
they showed that the degree of visibility is of the order p?, which is not optimal. In [25], Lassas
and Zhou considered the transformation cloak in a symmetric setting, dealt with the non-resonant
case (see Definition and studied the limit of the solutions of the approximate cloaking problem
near the cloak interface using separation of variables. Other regularized schemes are considered in
[13].

In this paper, we investigate approximate cloaking for the Maxwell equation in the time harmonic
regime using a scheme in the spirit of [24]. More precisely, we consider the situation where the
cloaking device only consists of a layer constructed by the mapping technique and there is no
source in that layer. Due to the fact that no-lossy (damping) layer is required, resonance might
appear and the analysis is subtle. Our analysis is given in both non-resonant and resonant cases
(Definition and the results can be briefly summarized as follows.

i) In the non-resonant case, cloaking is achieved, and the energy remains finite inside the
cloaked region.

ii) In the resonant case, cloaking is also achieved. Nevertheless, the degree of invisibility varies
and depends on the compatibility (see (2.14) and (2.19)) of the source with the system.
Moreover, the energy inside the cloaked region might explode in the incompatible case.
See Theorems 2.2] and 2.3

iii) The degree of visibility is of the order p? for both non-resonant and resonant cases if no
source is inside the cloaked region (Theorems and [2.2).

We also investigate the behavior of the field in the whole space (Theorems and
and establish the optimality of the convergence rate (Section . Our results are new and distinct
from the works mentioned above. First, cloaking takes place even if the energy explodes inside the
cloaked region as § goes to 0. Second, in the resonant case with finite energy inside the cloaked
region, the fields inside the cloaked region satisfy a non-local structure. Optimal estimates for
the degree of visibility are derived for all cases. In particular, in the case of a fixed lossy layer
(non-resonant case), the degree of visibility is of the order p? instead of p? as obtained previously.
Both non-resonant and resonant cases are analysed in details without assuming the symmetry of
the cloaking setting.
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Our approach is different from the ones in the works mentioned. It is based on severals subtle
estimates for the effect of small inclusion involving the blow-up structure. Part of the analysis is
on Maxwell’s equations in the low frequency regime, which is interesting in itself. The approach
in this paper is inspired from [28] where the acoustic setting was considered. Nevertheless, the
analysis for the electromagnetic setting is challenging and requires further new ideas due to the
non-standard structure coming from the mapping technique and the complexity of electromag-
netic structures/phenomena in comparison with acoustic ones. The Helmholtz decomposition and
Stokes’ theorem are involved in the Maxwell context.

2. STATEMENT OF THE MAIN RESULTS

In this section, we describe the problem in more details and state the main results of this paper.
For simplicity of notations, we suppose that the cloak occupies the annular region By \ B; and the
cloaked region is the unit ball By in R? in which the permittivity and the permeability are given
by two 3 x 3 matrices ¢, i respectively. Here and in what follows, for » > 0, let B, denote the open
ball in R? centered at the origin and of radius r. Through this paper, we assume that

(2.1) e, b are real, symmetric,

and uniformly elliptic in By, i.e., for a.e. x € By and for some A > 1,

(22) 16 < (@6, €), (@), €) < AlEP for all £ € B

We assume in addition that e, j1 are piecewise C'! in order to ensure the well-posedness of Maxwell’s
equations in the frequency domain (via the unique continuation principle). In the spirit of the
scheme in [24], the permittivity and permeability of the cloaking region are given by

(€cs pre) == (Fp, I, F, 1) in By \ By,
where F,, : R? — R? with p € (0,1/2) is defined by

x in R?\ Bo,
2—2p || T
= s B>\ B
5 (2—p+2—p>x|1“2\ 4
X
— in B,.
P p

We denote
Fy(z) = lim Fy(z) for x € R3,
p—0

As usual, for a matrix A € R3*3 and for a bi-Lipschitz homeomorphism 7', the following notation
is used:
DT (z)A(z)DTT (z) .
T, A(y) = th y = T(x).
Assume that the medium is homogeneous outside the cloak and the cloaked region. In the presence
of the cloaked object and the cloaking device, the medium in the whole space R3 is given by (e, fic)
which is defined as follows

(I,1) in R3\ By,
(2.3) (ecope) = (F, I, F,,I) in By )\ By,
(8, ,u) in Bl.
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With the cloak and the object, in the time harmonic regime of frequency w > 0, the electro-
magnetic field generated by current J € [L?(R3)]? is the unique (Silver-Miiller) radiating solution
(Ee, H.) € [Hipe(curl, R3)]? of the system

V x E, = iwp.H, in R3,
(2.4)
V x H, = —iwe.E.+J in R3.
For an open subset U of R3, denote
H(curl,U) { ; VX o¢e [LQ(U)P}
and
Higo(owl, U) i= {6 € [L2(U)]%s V x 6 € [LE,.(U)}.

Recall that, for w > 0, a solution (E, H) € [Hy,c(curl, R? \ Bg)]?, for some R > 0, of the Maxwell
equations

V x E=iwH in R3 \ Bg,
V x H=—iwE inR3\ Bg
is called radiating if it satisfies one of the (Silver-Muller) radiation conditions
(2.5) Hxz—|z|E=0(1/|z|]) and FE xz+ |z|H=0(1/|z|) as |z| = +oo.

Here and in what follows, for & € R, O(|x|) denotes a quantity whose norm is bounded by C|x|*
for some constant C > 0.
Denote Jext and Jiy: the restriction of J into R3 \ B; and Bj respectively. It is clear that

Jext in Rg \ Bl,
J =

2.6
( ) Jint in Bl.

In the homogeneous medium (without the cloaking device and the cloaked object), the elec-
tromagnetic field generated by Jex is the unique (Silver-Miiller) radiating solution (E,H) €
[Hyoe(curl, R?))? to the system

V x E=iwH in R3,
(2.7)
V x H=—iwE + Jo in R3.

We next introduce the functional space N which is related to the notion of resonance and plays
a role in our analysis.

Definition 2.1. Let D be a smooth bounded subset of R® such that R3\ D is connected. Set
N(D) := {(E, H) € [H(curl, D))? : (E, H) satisfies the system },

Vx E=iwuy H n D,
(2.8) V x H= —iwe E in D,

VXE -v=VxH- -v=0 ondD.
In the case D = By, we simply denote N'(B1) by N.

The resonant and non-resonant notions are defined as follows:
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Definition 2.2. The cloaking system (2.3)) is said to be non-resonant if N' = {(0,0)}. Otherwise,
the cloaking system ([2.3)) is called resonant.

Remark 2.1. The definition of resonant and non-resonant notions of the cloaking system is related
to an eigenvalue problem of a compact and self-adjoint operator (see Lemma 4.4 and its proof).
In fact, set

V:{(pEH(curl,D):div(sgo):O, ep-v=0onaD, VXQo-y:Oon@D}
and let A:V — V be defined by

(2.9) <AE,p > yys>= —2/ el - @dx for all p € V.
D

One can check that A is compact and self-adjoint. Moreover, the cloaking system ([2.3)) is resonant

if and only if (see (4.34))
(2.10) w™'E + AFE = 0 has a non-zero solution in V.

Since < AE, E >_yy>= —2 fD eE-E <0for E €V, it follows that A is injective and there exists
a countably infinite set K C R\ {0} such that the system is resonant if and only if w € K. When
D is radially symmetric, € = u, and €, p are isotropic and constant, the resonant characterization
is given in Lemma

Our main result in the non-resonant case is the following theorem.

Theorem 2.1. Let p € (0,1/2), Ry > 2, and let J € L*(R?) be such that supp Jext CC Br, \ Ba.
Assume that system is non-resonant. We have, for all K CC R3\ By,

(2.11)  |[(F, " % Ee, Fy '« He) — (B, H) || greurt, iy < C (pg”Jext”LQ(BRO\Bg) + p2HJint”L2(B1)) ,
for some positive constant C depending only on Ry, w, K, u,e. Moreover,

(2.12) lim (B, He) = CI(0, Jint) in [H (curl, By)%,
p—

where C1(0, Jint) is defined in Definition [2.5,
Here and in what follows, one denotes
FxE=(DFTE)oF™},

for an appropriate bijective map F' and a vector field E.
The notation CI(-,-) used in Theorem is defined as follows.

Definition 2.3. Assume that N'= {(0,0)}. Let 61,05 € [L?(B1)]®. Define Cl(01,02) = (Eo, Ho)
where (Eo, Hy) € [H(curl, B1))? is the unique solution to the system

V x Ey = iwpuHgy + 01 i Bi,
(2.13) V x Hy = —iweEy + 09 i By,
VxEy-v=VxHy-v=0 ondBj.
Remark 2.2. The existence and the uniqueness of (Ey, Hy) are established in Lemma
Remark 2.3. In [39], the conditions
V X EyV|int =V X Hy - v]int = 0
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are also imposed on the boundary of the cloaked region. This is different from [15] (see also [25]
page 459]), where the following boundary conditions are imposed for solutions satisfying some
integrability conditions, which are called finite energy solutions in [15],

E(] X l/‘l‘mg = H() X V’int =0.

The novelty of Theorem relies on the fact that no lossy layer is required. The result holds for
a general class of pair (g, ). Applying Theorem to the case where a fixed lossy-layer is used,
one obtains that the degree of visibility is of the order p? which is better than p? as established
previously in [7] for the case Jipy = 0. In contrast with [7), 5, [13], in Theorem the estimate of
visibility is considered up to the cloaked region and the behavior of the electromagnetic fields are
established inside the cloaked region.

We next consider the resonant case. We begin with the compatible case, i.e., (2.14]) below holds.

Theorem 2.2. Let p € (0,1/2), Ry > 2, and J € [L*(R3)]3 be such that supp Jext CC Br, \ Ba.
Assume that system s resonant and the following compatibility condition holds:

(2.14) / Jnt - Edr =0 for all (E,H) € N.
B
We have, for all K cC R3\ By,

(2.15)  |[(F, " % Ec, F, ' s« He) — (B, H) || (eunt i) < C(/’SHJGX‘EHLQ(BRO\BQ) + pQHJintHLQ(Bl)>7
for some positive constant C depending only on Ry, w, K, u, and €. Moreover,
(2.16) lim (Ee, He) = CU(0, Jiy) in [H (curl, By)J?,
p—
where CU(0, Jint) is defined in Definition .
In Theorem we use the following notion:

Definition 2.4. Assume that N # {(0,0)}. Let 61,02 € [L?(B1)]® be such that

(2.17) / (62- E—6,-H)dx =0 for all (E,H) € N.
B1
Let (Eg, Hy, B+, HY) € [Hyoe(curl, R3)]2 x Nt be the unique solution of the following systems
VxEy=VxHy=0 R\ By, (V x B+ =iwpHY  in By,
divEy =divHy =0 in R3\ By, V x H+ = —iweE+  in By,
(2.18) and
V x Ey = iwuHy + 64 in Bi, eBt v =Fy v|exx on 0By,
V x Hy = —iweEy+ 6y in By, \uHJ"l/:Ho-l/‘eXt on 0Bj.
such that
}( )‘ = O(|z|™?) for large |x|.

Denote Cl(601,02) the restriction of (E[), Hy) in Bj.

Here and in what follows, A(D)+ denotes the orthogonal space of (D) with respect to the
standard scalar product in [L?(D)]®. The uniqueness and the existence of (Ey, Hy, B+, H') are

given in Lemmas [4.5] and [4.6]

In Definition (Ey, Hp) is determined by a non-local structure (2.18). This is new to our
knowledge.

In the incompatible case, we have
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Theorem 2.3. Let p € (0,1/2), Ry > 2, and J € [L*(R3)]3 be such that supp Jext CC Br, \ Ba.
Assume that system 18 resonant and the compatibility condition does not hold, i.e.,

(2.19) / Jmnt - Edz #0  for some (E,H) € N.
By
We have, for all K cC R?\ By,

(2.20) (Fy' % Ee, Fy Vs He) — (B, H)| prenn i) < C(pSHJextHLQ(BRO\Bg) + PHJintHH(Bl))
and
(2.21) lim inf pl| (Ee, He)ll22(8,) > 0.

Some comments on Theorems [2.2] and are in order. Theorems and imply in particular
that cloaking is achieved even in the resonant case. Moreover, without any source in the cloaked
region, one can achieve the same degree of visibility as in the non-resonant case considered in
Theorem Nevertheless, the degree of visibility varies and depends on the compatibility of the
source inside the cloaked region. More precisely, the rate of the convergence of (E., H.) — (E, H)
outside B in the compatible case is of the order p? which is better than the incompatible resonant
case where an estimate of the order p is obtained. The rate of the convergence is optimal and
discussed in Section [5| By , the energy inside the cloaked region blows up at least with the
rate 1/p as p — 0 in the incompatible case.

We now describe briefly the ideas of the proofs of Theorems and Set
(2.22) (EpMp) = (Fy ' % Ee, Fy '« He)  inR®.

It follows from a standard change of variables formula (see, e.g., Lemma that (€,,H,) €
[Hoc(curl, R?))? is the unique (Silver-Miiller) radiating solution to

V xE,=1iwu,H in R3,
(2.23) ’ rr
V xH,=—iwe,Ep+J, inR?,
where
(I,I) in]R{?’\Bp,
(2.24) (eps o) = (Fﬁl*EC’Fil*“C) - { i
g g (p~e(-/p). P~ u(-/p)) in By,
and
Jext in R \ By,
(2.25) Jp=1 p 2 Jm(-/p) in B,
0 otherwise.

We can then derive Theorems and by studying the difference between (£,,H,) and
(E,H) in R\ B; and the behavior of (£,,H,)(p:) in B;. It is well-known that when material
parameters inside a small inclusion are bounded from below and above by positive constants, the
effect of the small inclusion is small (see, e.g., [37, [6]). Without this assumption, the effect of
the inclusion might not be small (see, e.g., [24, 29]) unless there is an appropriate lossy-layer, see
[7, 5, 13]. In our setting, the boundedness assumption is violated (see ) and no lossy-layer
is used. Nevertheless, the effect of the small inclusion is still small due to the special structure
induced from .

It is worth noting that System , which involves in the resonant and non-resonant def-
initions, and the condition of compatibility , appears very naturally in our context. In-
deed, note that if (E,, H.) is bounded in [H (curl, B1)]?, one can check that, up to a subsequence,
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(pEpypHp)(p) = (Ee, He) converges weakly in [H (curl, B1)]? to (Ep, Ho) which satisfies system
(2.13]) with (61,62) = (0, J).

The paper is organized as follows. In Section [3| we establish some basic facts and recall some
known results related to Maxwell’s equations. These materials will be used in the proofs of Theo-

rems 2:2] and 23] The proofs of Theorems 2.1} 2.2] and [2.3] are given in Section[d Finally, in
Section [B], we discuss the optimality of the convergence rate in Theorems 2.1} 2.2 and [2.3]

3. PRELIMINARIES

In this section, we establish some basic facts and recall some known results related to Maxwell’s
equations that will be repeatedly used in the proofs of Theorems and In what follows
in this section, D denotes a smooth bounded open subset of R? and on its boundary v denotes its
normal unit vector directed to the exterior. We begin with a variant of the classic Stokes’ theorem
for an exterior domain.

Lemma 3.1. Assume that R3\ D is simply connected and let u € Hyoc(curl,R?\ D) be such that

(3.1) Vxu=0inR\D and|u(z) = O(z|™%) for large |z|.
There exists ¢ € HL (R3\ D) such that
(3.2) VéE=uinR3\D and |&(x)] = O(|z|™") for large |x|.

Proof. By [14, Theorem 2.9], there exists 1, € H'(B, \ D) for large n such that
Vi, =uin B, \ D and / N = 0.
0B>

It follows that, for m > n large,
Mm = NMn in By, \ D.
Let n be the limit of 7, as n — 4+o00. Then n € H. (R3\ D) and

loc
Vn=uin R*\ D.

Fix x,y € R3? large enough with |y| > |x| and denote & = x/|z| and § = y/|y|. Using (3.1)), we
have, by the fundamental theorem of calculus,

C vl ¢

lyl Sz I7]

for some positive constant C' independent of x and y. It follows that

(3.4) in(@) — (y)| < ‘j, + |C,

Hence lim 7(x) exists. Denote this limit by 7. By letting |y| — +oo in (3.4)), we obtain

|z| =00

(3.3) In(x) —n()| < [n(lylg) — n(yl2)| + |n(|yl2) — n(|z|E)

C
In(x) — Noo| < Tl for |z| large enough.
x
The conclusion follows with & =7 — 7eo. 0

Let U be a smooth open subset of R?. Denote
H(div,U) == {¢ € [L*(U)]? : divp € L*(U)}.

Concerning a divergence free field in a bounded domain, one has the following result which is
related to Stokes’ theorem, see, e.g., [14, Theorems 3.4 and 3.6].
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Lemma 3.2. Assume that D is simply connected and let w € H(div, D) be such that

(3.5) divu=01in D and / w-v =20 for all connected component I'; of OD.
ry;

There exists ¢ € [H'(D)]? such that
Vx¢=uinD and diveg =0 in D.

Assume in addition that u-v =0 on 0D. Then ¢ can be chosen such that

¢xv=0o0ondD and / ¢-v =0 for all connected component I'; of OD.
r;

Moreover, such a ¢ is unique and, for some positive constant C,
19l 1Dy < Cllullr2(p)-

The following result is a type of Helmholtz decomposition. It is a variant of [I4, Corollary 3.4]
where o is a positive constant.

Lemma 3.3. Assume that D is simply connected and let o be a 3 x 3 uniformly elliptic matriz-
valued function defined in D. For any v € [L?(D)]3, there exist p € H(D) and ¢ € [H(D)]? such
that

(3.6) v=0cVp+V x¢inD, divp=0inD and ¢xv=0ondD.
Moreover,
(3.7) 1Pl 10y + 181l oy < Cllvllr2(py-

Proof. The proof given here is in the spirit of [I4] as follows. By Lax-Milgram’s theorem, there
exists a unique solution p € H(D) with / pdxz = 0 to the equation
D

/UVp-qux:/v-qux for all ¢ € H'(D).
D

D
Moreover,
(3.8) Pl 1Dy < Cllvllz2(py-
Then
(3.9) div(v —oVp)=0in D and (v—0oVp)-v=0onadD.

By Lemma there exists ¢ € [H'(D)]? such that
Vx¢=v—0oVp inD,

(3.10) divg =0 in D, and  [|¢]| g1 (py < Cllv —oVplr2(p)-
pxv=>_0 on 0D,
Combining (3.8)), (3.9), and (3.10]), we reach the conclusion for such a pair (p, @). O

We next present two standard lemmas concerning the uniqueness of the exterior problems for
electro-static settings, see, e.g., [35, Theorems 2 and 3] (see also [14, Chapter 1]). They are used
in the study of the exterior problems in the low frequency regime. The first one, whose proof can
be derived from Lemma [3.1] is
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Lemma 3.4. Assume that R3\ D is simply connected. Let u € Hyoe(curl, R3\ D)N Hyoe(div, R3\ D)
be such that
Vxu=0 inR3\D,

divu=0 inR3\ D,
u-v=0  ondD,
and
(3.11) lu(z)| = O(|z|~2) for large |z|.
Then u =0 in R3\ D.
The second lemma, whose proof can be derived from Lemma is

Lemma 3.5. Assume that R3\ D is simply connected and v € Hyye(curl, R?\ D) N Hyoo(div, R3\ D)
is such that

Vxu=0 inR3\D,
divu=0 nR3\ D, / u-v =0 for all connected component I'; of 0D,
uxv=0 ondD, '

and

(3.12) lu(z)| = O(|z|~2) for large |z|.

Then u =0 in R3\ D.

The following result is a consequence of the Stratton - Chu formula.

Lemma 3.6. Let 0 < k < ko. Assume that D CC By and (E,H) € [Hyc(curl, R®\ D)]2 is a
radiating solution to the Mazxwell equations

VxE=ikH inR3\D,
Vx H=—ikE inR3\D.

We have
c
(3.13) [(B(), H) | < [ (4 Ha) B ) 2,00 for le] > 3,
for some positive constant C' independent of x and k.
Proof. Set
eikll‘_y‘
Gk(flf,y) = —— for T,y € Rgvx 7é Y.
Arlz -y

It is known that, see, e.g., [1_1, Theorem 6.6 and (6.10)], the following variant of the Stratton-Chu
formula holds, for x € R3\ D,

(3.14) E(z) = V, x /a  vl) x E) Gl )dy

ik / v(y) x H(y)Gr(z,y)dy — Vo | v(y)- By)Gr(w,y)dy.
0B 0B2

Using the facts

C
IVGi(z,y)| < W(l + k|z|) for y € dBg,z € R\ Bs
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and, since AE + k*E =0 in R\ D,
£l Loo(aBs) < C|lE||L2(B5\ D), for some positive constant C' depending only on ko,

we derive from (3.14)) that
C
|z

(3.15) [E(x)] < ?(1 +E|z)[(E, H)| r2(s\p) for |z] > 3.

Similarly, we obtain

(3.16) H(@)| < 5 (1+ klal) (B, H) |2y p) for [2] > 3.

?‘Q

2
The conclusion now follows from (3.15)) and (3.16)). O

We next recall compactness results related to H(curl,-) and H(div, ).

Lemma 3.7. Let € be a measurable symmetric uniformly elliptic matriz-valued function defined
in D. Assume that one of the following two conditions holds

i) (un)neny C H(curl, D) is a bounded sequence in H(curl, D) such that

(div(eun))neN converges in H (D) and (un x I/)n converges in H~'/2(0D).

eN
il) (up)nen C H(curl, D) is a bounded sequence in H(curl, D) such that

(div(eun))neN is bounded in L*(D) and (eus, - v) converges in H~/2(8D).

neN

There exists a subsequence of (un)nen which converges in [L*(D)]?.

The conclusion of Lemma [3.7| under condition 4) is [29, Lemma 1] and has its roots in [19] and
[12]. The conclusion of Lemma under condition ii) can be obtained in the same way. These
compactness results play a similar role as the compact embedding of H' into L? in the acoustic
setting and are basic ingredients in our approach.

The following trace results related to H(curl,-) and H(div,-) are standard, see, e.g., [I}, 9, [14].
Lemma 3.8. Set ' =09D. We have
i)
o X VIl g-12divp,r) < CllollH(cun,p) for v e H(curl, D).
i)
lv-vilg-12ry < Cllvl|maiv,p) for v € H(div, D).
Moreover, for any h € H=Y?(divy,dD), there exists ¢ € H(curl, D) such that
¢ xv="hondD, and ||¢| cun,p) < ClAlg-1/2divr00)-
Here C' denotes a positive constant depending only on D.

Here and in what follows, we denote

H™Y2(divp,T) = {¢> e [H™V2(D)3; ¢-v =0 and divr ¢ € H‘l/Q(I‘)},

16l -1/2(dive,r) = 10l 1720y + 1 dive | 172y

We finally recall the following change of variables for the Maxwell equations. It is the basic
ingredient for cloaking using transformation optics for electromagnetic fields.
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Lemma 3.9. Let D, D’ ‘be two open bounded connected subsets of R? and F : D — D’ be a bijective
map such that F € CY(D), F~t € CY(D'). Lete, p € [L>®(D)]?*3, and j € [L*(D)}3. Assume that
(E,H) € [H(curl, D)]? is a solution of the Mazwell equations

V x E =iwuH mn D,
(3.17)
VxH=—iweE+j inD.
Set, in D',
E' =F«E:=(DFTE)oF' and H :=F«H:=(DF TH)oF !

Then (E', H') € [H(curl, D")]? satisfies

V x B =qwu'H' in D'
(3.18) : ’
‘ Vx H = —iwe’E' + 35 in D,
where
DFeDFT DFuDFT DFj
"=Fe=—""—"—0oF"' yi=Fpu=—"""_oF"! d j :=F.j= -1
B P T B P 2 e S P Py o B

Remark 3.1. It is worth noting the difference of F'x in the definition of £’ and H', and F, in the
definition of &/, p/, and j'.

4. PROOFS OF THE MAIN RESULTS

This section is devoted to the proof of Theorems and [2.3] and is organized as follows.
In the first subsection, we establish various results related to (£,,H,). The proof of Theorem
is given in the second subsection and the ones of Theorems and are given in the third
subsection.

4.1. Some useful lemmas. In this section, D C B;j denotes a smooth open bounded subset of
R3, and ¢ and g denote two 3 x 3 matrices defined in D which are both assumed to be real,
symmetric, and uniformly elliptic in D. We also assume that D and R?\ D are simply connected
and €, 1 are piecewise C'. The following lemma provides the stability of the exterior problem in
the low frequency regime.

Lemma 4.1. Let 0 < p < pg and let (E,, H,) € [Hoc(curl, R®\ D)]? be a radiating solution to the
system

(4.1) V x E,=1ipH, in R3\ D,
4.1
V x H,=—ipE, inR3\D.

We have, for R > 1,

(4.2) | (Eps Hp) | (curt, Br\D) < CR(HEp X V| g-1729py + [ Hp - VHH%&(@D))
and
(4.3) I(Ep, Hp) | (curt, B\ D) < CR(HEp X V| g-1/209p) + [ Hp ¥ VHH*1/2(8D))’

for some positive constant Cr depending only on po, D, and R.
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Proof. Lemma might be known but we cannot find a reference for it, see, e.g., [2 B6] and
references therein for related results. For the convenience of the reader, we present its proof. We
begin with the proof of (4.2)). Since (E,, H,) satisfies (4.1), it suffices to prove that

(4.4) 1(Ep, Hp) || L2(BR\D) < CR(”EP x vl g-1/2p) + 1 Hp - V||H—1/2(3D))

for R > 3. Fixing R > 3, we prove (4.4) by contradiction. Suppose that there exist a sequence
(pn)nen C (0, po) and a sequence of radiating solutions ((Ey, Hy)) C [H(curl, R?\ D))? of the

neN

system
(15) V x E, =ip,H, in R3\ D,
4.5

V x H, = —ip, B, inR3\D,
such that
(4.6) [(Ens Hn)||lL2(Bp\py = 1 for n €N,
and
(A7) tim (I1Bn x ¥l g-1/2(0p) + [ Ho -Vl g-1/2(01)) = 0-

Without loss of generality, one might assume that p, — poo as n — oo for some po € [0, po]. We
only consider the case po, = 0. The case po, > 0 can be proven similarly. From (4.5) and (4.6]),
we have

(4.8) | (Ens Ho) |l H(curt,B\D) < C-
Here and in what follows in this proof, C' and C, denote positive constants independent of n.
Applying Lemma [3.6] we have
(4.9) | (Ens Ho) |l 5 (curt,B,\D) < Cr
for r > 3. Since
AE,+ p’E,= AH, + p’H,=01in R*\ D,
it follows from that, for r > 3,
| (Eny Ho) | (B \By—1) < Cr

By the trace theory, we have

1(En, Ho)ll zr1/2(98,) < Cr-

Since the embedding of H'/2(9B,) into H~'/2(0B,) is compact, by applying i) of Lemma to
(E,) and by applying ii) of Lemma to (Hy), without loss of generality, one mlght assume that
(En, Hy,) converges in [L2 (R3\ D)] Moreover, the limit (E, H) € [Hjo(R3\ D)]? satisfies

VxH=0 inR3\D, Vx E=0inR?\ D,
(4.10) divH=0 inR¥\D, and divE =01in R3\ D,
H-v=0 ondD, Exv=0on0dD.

Applying Lemma [3.6 to (E,,, H, ) and letting n — +oo (p, — 0), we have
(4.11) |(E( ()] = O(|=|” ~2) for large |z|.

On the other hand, since E, = —,—V x H, in R3\ D, we have
ipn

(4.12) / E, -v =0 for all connected component I'; of 9D.
1_‘.
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Since (E,) converges to E in [L (R?\ D)]* and divE,, = divE = 0 in R®\ D, it follows that
(E,) converges to E in Hy,(div,R?\ D). This in turn implies, by ([4.12)),

(4.13) / E -v =0 for all connected component I'; of 9D.
r;
Applying Lemma to H, we derive from (4.10) and (4.11)) that
(4.14) H=0inR3\D.
Similarly, applying Lemma to E, from (4.10)), (4.11]), and (4.13)), we obtain
(4.15) E=0inR*\ D[]

From (4.6), (.14), and (4.15) and the fact that (E,, H,) converges to (E, H) in L2 .
reach a contradiction. The proof of (4.2)) is complete.

We next deal with (4.3). The proof of (4.3]) is similar to the one of (4.2)). However, instead of
obtaining (4.10) and (4.13)), we have

(R3\ D), we

VxH=0 inR?*\D, VxE=0inR3\ D,
divH=0 inR3\D, and divE =0in R3\ D,
Hxv=0 ondD, Exv=0on0dD,

and
/ H.-v= / E - v =0 for all connected component I" of 9D.
r r

By the same arguments, we can derive that (E, H) = (0, 0) in R?, which also yields a contradiction.
The details are left to the reader. O
Remark 4.1. We have

divp(E, xv) =V x E,-v =1ipH,-v on dD.
It follows that

1
1Es X V|l g=1/2(divr.om) < 1Ep X VIl g-1/29p) + 1 Hp - vl g-1/20p) < ;HE,; X V|| gr-1/2(divr,00)-

The next lemma gives an estimate for solutions of Maxwell’s equations in the low frequency
regime, which in turn implies an estimate for the effect of a small inclusion after a change of
variables.

Lemma 4.2. Let 0 < p < 1/2, R > 1/2, and let (E,, H,) € [Hioc(curl,R?\ D)]? be a radiating
solution to the system

V x E, =iwpH in R3\ D,
(4.16) ’ g

V x H, = —iwpE, inR3\D.

We have

(Ep(w)aHp(x))’ < CP|(Ep, Hy)ll12(By\p)  for @ € Bsgy, \ Bagyp,
for some constant C depending only R.

Lemma is well-known, see, e.g., [22]. It can be derived from Stratton-Chu’s formula and
Stoke’s theorem (see also [22], (12)]).

The following compactness result is used in the proof of Theorems and

lWhen pso > 0, instead of being a solution of (.10}, (B, H) is the radiating solution of (4.1) with p = po and
E x v =0 on dD. This also implies that (£, H) = (0,0) in R*\ D.
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Lemma 4.3. Let ((E,, Hy)), be a bounded sequence in [H(curl, D)]* and let ((01,,02,)), be a
convergent sequence in [L?(D)]®. Assume that

V x E, =iuH, + 01, m D,
(4.17)
V x Hy = —icEy + 05y in D,
and
(4.18) ((Vx Ep-v,V x Hy -v))  converges in [H~Y/2(8D))2.

Then, up to a subsequence, ((En,Hn))n converges in [H (curl, D)]?.

Remark 4.2. A comparison with Lemma is necessary. The difference between Lemma [4.3
and part i) Lemma[3.7)is that the sequence (E,, X 1), or (H x 1), is not required to be convergent
in H='/2(9D). The difference between Lemma and part i) Lemma is that the sequence
(div(eEy)), or (div(uH,)), is not required to be bounded in L?(D). Nevertheless, in Lemma
(4.17)) is assumed.

Proof. Tt suffices to prove that, up to a subsequence, ((En,Hy)), converges in [L*(D))°. By
Lemma there exist (¢,,)n, C H'(D) and (¢,), C [H*(D)]? such that, for all n,

(4.19) eb,=eVg,+VX¢p,inD, divg,=0inD, and ¢, xv=0o0ndD.
Moreover, we have

(4.20) lgnll 1oy + lénll @1 (pys < CllEnllz2(py < C,

for some positive constant C' independent of n. From (4.20]), without loss of generality, one might
assume that

(4.21) (gn)n and (¢ ), converge in L2(D) and [L?(D)]? respectively.
From (4.19) and an integration by parts, we derive that, for all n,

(4.22) / eV, - Vpdzr = / eE, - Vpdz for p € H(D).
D D
This implies, by (4.17)), for m,n € N,

/ EV(QTL - Qm) : V(Qn - ij) dr = / E(En - Em) : V(Cjn - Qm) dxu
D D

= z/ (V X (Hn — Hm) — (02 — 02’m)> V(G — @) dev.
D
An integration by parts yields
/ng(qn - qm) ’ v(@n - Qm) dx

= z/ V x (Hn — Hm) v (Gn — Gm) ds —i/ (02, — O2.m) - V(Gn — Gm) dx.
aD D

By (4.18) and the convergence of (61, 602,) in [L?(D)]%, the LHS of the above identity converges
to 0 as m,n — oco. Hence, by the ellipticity of €, (Vg,), is a Cauchy sequence and thus converges

in [L?(D)}3. From (4.19), we have
/ eV X (¢pp — ém) - V ¥ (¢n—¢m)dx:/ V X (Ey — Ep) - (bn — ¢m) dz.
D D
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By the ellipticity of € and the convergence of (¢,,) in L?(D), we derive that (V X gbn)n is a Cauchy
sequence in [L%(D)]? and thus converges in [L?(D)]3. Since
E, =Vg, +e 'V X ¢,
(Epn)n converges in [L2(D)]3.
Similarly, up to a subsequence, (H,), converges in [L?(D)]3. O

Using Lemma and applying the Fredhom theory, one can prove the well-posedness of (Ey, Hy)
in Definitions 2.3l and 2.4l The first result in this direction is

Lemma 4.4. Let 01,05 € [L*(D)]?. The system
Vx E=iuH + 6, in D,

(4.23) V x H=—ieE+ 6 in D,
VxE-v=VxH-v=0 ondD,

has a solution (E, H) in [H(curl, D)]? if and only if

(4.24) /Dé?g-Edac—/DHl'Hdac:O for all (E, H) € N (D).

In particular, system has a unique solution (E, H) € N'(D)* if and only if holds.

Proof. Lemma [£.4] is derived from the Fredholm theory. Since e and p are uniformly elliptic, by
Lemma there exist p1,p2 € H(D) and ¢1, ¢ € [H'(D)]? such that

(4.25) 01 =uVp1+V X ¢1, b=eVpy+V X ¢yin D,

and

(4.26) VXé1 v=Vxdy v=0ondD.

Set (Eo, Ho) := (—iVp2,iVp1) in D. Then (Ey, Hy) € [H(curl, D)]? is a solution to
V x Ey = iuHg + uVpy in D,

(4.27) V x Hy = —icEy+Vpy in D,
VxEy-v=VxHy-v=0 ondD.

We have

(4.28) /D eVpe - Edx — /D uVpr-Hdr =0 for all (E,H) € N(D).

From (4.25)), (4.26]), (4.27), and (4.28)), by considering (E — Ey, H — Hy) instead of (E, H), one
might assume that (61,02) € H(div, D),

(4.29) div(#;) =div(f2) =0in D and 6;-v=03-v=0ondD.
This is assumed from now on.
Set

V:{cpEH(curl,D):div(ap):O, ep-v=0on oD, ngo-yzoon(?D}.

Since € and p are real, symmetric and uniformly elliptic, V is a Hilbert space equipped with the
scalar product

(4.30) <E,¢>V,V:/u1V><E-V><g0dx+/€Ewpda: for E,p € V.
D D
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Let A:V — V be defined by

(4.31) <AE, ¢ > yys>= —2/ eE - pdx forall p € V.
D

Since € is symmetric, one can easily check that A is self-adjoint. Since € and p are symmetric and
uniformly elliptic, by Lemma A is compact.
Let g € V be such that

(4.32) <G, P ><vy>= / it - o —I—/ w0, -V x @ for all p € V.
D D

We claim that

(4.33) system (4.23)) has a solution in [H (curl, D)]?

if and only if the equation u + Au = ¢ in V has a solution in V

and

(4.34) (E, H) is a solution of (4.23)) if and only if

E+AE=ginVand H=—ip YV x E—6).

Assuming this, we continue the proof. By (4.33) and the Fredholm theory, see, e.g., [8, Chapter
6], system (|4.23]) has a solution if and only if

(4.35) (g9,¢)v,y =0 for all ¢ € V such that ¢ + Ap =01in V,

since A is self-adjoint. Applying (4.34) with g = 01 = 6 = 0 and using (4.30)), (4.31]), and (4.32)),
we derive that condition (4.35)) is equivalent to the fact that

/QQ-de—/Ql-Hd:L‘ZO for all (E,H) € N (D),
D D

which is (4.24).
The rest of the proof is devoted to establishing Claims (4.33) and (4.34). Let (E,H) €

[H (curl, D)]? be a solution to (4.23). From (#4.29)), we derive that E € V. Fix ¢ € V. Then
V x¢-v=0ondD. By Lemma there exists pg € [H'(D)]3 such that

(4.36) Vxpo=VxepinD, diveyg=0in D, and ¢oxv =0ondD.

Since V x (g — ¢) = 0 and D is simply connected, there exists ¢ € H'(D) such that
(4.37) wo—p=VEin D.
We have, for ¢ € V,

(4.38) /,u_IVxE-Vx@dx:i/H-ng5+u_191-V><¢dm.
D D
Using (4.36) and an integration by parts, we obtain
(4.39) /H-Vx@dm-/H-ngo_gdx—/VxH-gﬁgdx.
D D D

Using (4.37)) and the fact V x H - v =0 on 9D, we also get, by an integration by parts,

/VxH-good:c:/VxH-npdx.
D D
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This implies, by (4.39),

(4.40) /DH-chpdx:/DVxH~npdx.

A combination of and yields

(4.41) /DH_IVXE-anpdx:i/DV><H-g0+u_191-V><godx.

We derive from and that

(4.42) /uleE.ngpdx:/eEwdxﬂ/ Gg'godx—k/ulHl-ngodm.
D D D D

It follows from (4.30), (4.31]), and (4.32)) that
E4+AE =gin V.

Conversely, assume that there exists u € V such that v + Au = g. Set
E=wand H=—ipy "(VxE—6)inD.

Using (4.42)), one can check that (E, H) satisfies the first two equations of (4.23]). It is clear that
V x E-v =0 on dD by the definition of V. Since Vx H = —icE 4+ 603 in D, eE -v =0 on 0D
(E€V),and 6y -v =0 on 0D by (4.29)), we obtain

VxH-v=0ondD.
The proof is complete. O

Remark 4.3. One of the key points in the proof of Lemma [£.4] is the identity
/ H-VxEd:z:/ V x H - Edx,
D D

if E,H € H(curl,D) is such that VX E-v =V x H-v =0 on 0D, see (4.40). This ensures the
variational character of system (4.23]).

The following lemma yields the uniqueness of (Ey, Hp) in Definition
Lemma 4.5. Let [(E, H),(E, H)] € [Hyc(curl, R?)]? x N (D)* be such that

(VX E=VxH=0 mR*\D, (V x E =ipH in D,
divE=divH =0 in R®\ D, V x H=—icE in D,
(4.43) and -
V x E=iuH in D, eE - v=F Vet on 0D,
Vx H=—icFE in D, ,uﬁ cv=H  V|exx ondD,
and
(4.44) ‘(E(x),H(x))‘ = O(|z|™?) for large |z|.

Then (E,H) = (0,0) in R® and (E, H) = (0,0) in D.

Proof. Applying Lemma |3.1|to E, there exists a function § € H} _(R?\ D) such that
(4.45) V6 = E in R\ D and |0(z)| = O(|z| ") for large |z].

For R > 0 large, since div E = 0 in R3\ D, we have

/ |E|2d:c:/ E-Vedx:/ (E-u)eds—/ (E-v)|,0ds.
Br\D Br\D dBR oD
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Letting R tend to 400 and using (4.44) and (4.45)), we obtain

(4.46) / ]E[Qda::—/ (E-v)]|,,.0ds.
R3\D oD

Extend 6 in D so that the extension belongs to H\. (R?) and still denote this extension by 6. We
derive from the system of (F, H) in (4.43)) that

—/ (B v)|extfds = —/ (eE-v)fds = —/ eF -Vdx —/ div(eE)6 dx
oD oD D D

ﬁ-(V@xu)ds:—i/ H-(E xv)ds.

(4.47) :/ —iVx H -Vldx = —i
D oD

oD

Combining (4.46) and (4.47) yields

(4.48) / |Ej*de=—i | H-(E xv)ds.
R3\D aD

Similarly, we have

(4.49) / |H|*dx = 2/ E-(H x v)ds.
R3\D aD

An integration by parts implies
/ I;T-(Exzj)ds—/ E.-(H xv)ds
oD oD

:/VXFNI-ECM—/VXE-fIdx—/VXE'FIdl‘—i—/VXFI~E~dI.
D D D D

Using the equations of (£, H) and (E,H) in D in (4.43)), we obtain

(4.50) H-(Exv)ds— E-(Hxv)ds=0.
oD oD

A combination of (4.48]), (4.49), and (4.50)) yields

/ (IEP + |H?)de = 0.
R3\D

We derive that £ = H = 0 in R?\ D. This implies, by the unique continuation principle see, e.g.,
[33, Theorem 1],

EFE=H=0inD
and, since (E, H) € N(D)*,

E=H=0inD.
The proof is complete. O
4.2. Approximate cloaking in the non-resonant case - Proof of Theorem The key

ingredient in the proof of Theorem is the following lemma whose proof uses various results in
Section Bl and Section [A.1]
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Lemma 4.6. Let 0 < p < po, Hp = (917,), (92”0) S [L2(D)]6, and hp = (th, th) € [H71/2(diVF, 8D)]2
Let (E,, Hy) € [Ngs1 H(curl, Bg \ 0D))? be the unique radiating solution to the system

(V x E, =ipH, in R3\ D,
V x H, = —ipE, in R3\ D,
VxE,=iuH,+ 01, in D,

V x H,=—ieE, + 02, in D,
[E, x v] =hi,,[H, xv|=hy, ondD.

Assume that N (D) = {(0,0)}. We have

(451) 1(Ep, Hp)llz2ss) < € (10l 2200) + Wl -s/2(aive.0m )

for some positive constant C' depending only on pg, €, . Assume in addition that

i )l g1/ op) =0 and Lm0, = 0 in [L(D))",

for some 6 = (01,62) € [L*(D)]®. We have
(4.52) (E,, H,) = Cl(61,62) in [H(curl, D)]?.

lim

p—0
Here and in what follows on 0D, [u] denotes the jump of u across 0D for an appropriate

(vectorial) function wu, i.e., [u] = U|ext — |int O OD.

Proof. By Lemma [3.8, without loss of generality, one might assume that hy, = ha, = 0 on 9D.

This is assumed from now on.

We first prove (4.51) by contradiction. Assume that there exist sequences (pn), C (0, po),
((Bn, Hy)), C [Hioe(cur, R?*)]?, ((01,n,02,)), C [L*(D)]® such that

V x E, =ip,Hp, in R\ D,

V x H, = —ip,Fy, in R\ D,
(4.53)

VX E, =ipuH, + 01, inD,

\V x Hy, = —icE, + 02, in D,

(4.54) (B, Ho)ll 255y = 1 for all n € N,
and
(4.55) lim ||(91,n, 92,n)||L2(D) = 0.

n—-+o0o

Without loss of generality, one might assume that p, — ps € [0, po]. We only consider the case
Poo = 0. The case po, > 0 can be proved similarly.

We have
(4.56) VX By v|,, =V X Ey-v|, =ipnHyv|  —0in H/2(0D) as n — cc.
Similarly, we obtain
(4.57) V xHy-v|  —0in H™Y2(8D) as n — oco.

Applying Lemma E to ((En, H”))n in D, without loss of generality, one might assume that
(4.58) ((En, Hn))n converges in [H (curl, D)]? as n — cc.
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Applying i) of Lemma we derive that
((En x v,Hy x 1)), converges in [H~Y/%(divy, dD))? as n — oco.

It follows from (4.54)), Lemma and i) of Lemma [3.7] that
(4.59) ((En, Hn))n converges in [L2 (R3\ D)]% as n — oo.

loc

Let (E, H) be the limit of (E,, H,) in [L?

2 (R3)]S. Then (E, H) € [Hjoe(curl, R%)]? and [}
(VX E=VxH=0 inR3\D,
divE =divH =0 in R3\ D,
(4.60)
VxFE=iuH in D,
V x H = —icE in D.
We derive from (4.56) and (4.57) that

(4.61) VXE Vipn=VxH: v =0ondD.

Applying Lemma 3.6 we have

(4.62) [(E(z),H(z))| < ’;’2 for |z| > 3,

for some positive constant C. Combining ([£.60) and (£.61) yields that (E, H)| p € N(D). Since
N (D) ={(0,0)}, it follows that F = H =0 in D. Hence

(4.63) Exv=Hxv=0onadD.

We have, for each connected component I" of 9D,

1
/E V]ext = lim /En|ext v = lim — /(V X Hp) - V]ext =0
r n—oo Jp n—o0 —ipp Jr

/H'V|ext =0.
r

Using (4.60)), (4.62)), and (4.63)), and applying Lemmato (E,H) in R3\ D, we obtain
E=H=0inR3\D.

Thus £ = H = 0 in R3, which, by using (4.58) and (4.59), contradicts (4.54). Therefore, (4.51)) is

proved.

and similarly

We next establish (4.52)). Fix an arbitrary sequence (py), converging to 0. From (4.51)), one
obtains that

1 Epos )l z2035) < € (1001120 + Wpulla-1/2(atvr 00 ) < C-

%In the case poo > 0, the limit (E, H) satisfies the radiating condition and is a solution to Maxwell equations in
R?® with vanished data. It follows that (E, H) = (0,0), which also gives a contradiction.
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Using the same argument as above, one obtains that, up to a subsequence, (E,,, H,,) converges
in [H (curl, R)]? to (E, H), the unique solution of

(VX E=VxH=0 inR3\D,
divE =divH =0 in R3\ D,

(4.64)
VX FE=iuH+6; in D,

VxH=—-icE+6; inD.

This system implies V X E - vyt = V X H - v|ing = 0 on dD. Since N(D) = {(0,0)}, we
have (E,H)|p = Cl(01,02). Since (p,) — 0 arbitrarily, assertion (4.52)) follows. The proof is
complete. 0

We are ready to give the

Proof of Theorem Let (E1,p, H1,p) € [Hioe(curl, R\ B,)]? be the unique radiating solution
to the system

V x By, =iwHi , in R\ B,,
(4.65) V x Hyp=—iwE,+ Joxy inR3\ B,
Ei,xv=0 on 0B,

extend (E1,, H1,p) by (0,0) in B,, and still denote this extension by (E1,, H1,p). Define
(B2, H2p) = (E,H) — (E1,,H1,) and (Fs,, Hs,) = (£, H,) — (F1p, H1,) inR®
Then (B2, Ha,p) € [Hioc(curl, R?\ B,)]? is the unique radiating solution to the system
VX Ey,=iwHy, inR?\B,
V x Hy,=—iwks, in R3 \ By,
Esp,xv=FEXxv on 0B,,

and (B3, H3 ) € [\g~y H(curl, Bg \ dB,)]? is the unique radiating solution to the system

V x E3 , = iwp,Hs in R®\ 0B,,
(4.66) V X Hs, = —iwe, B3, + JyxB, in R3\ 8B,,
[E3,xv]=0,[Hs,xv]=—Hi,XV|ext ondB,,

where xp denotes the characteristic function of a subset D of R3. Recall that J, is defined in

[225). Set
Es ,(x) = E,(px) and Hy ,(z) = H,(px) for 2 € R®\ By.

Then (Esy p, Ha p) € [H(curl,R? \ B;)]? is the unique radiating solution to the system
V x EQ’p = iwpﬁ[zp in R®\ By,

(4.67) V x Hy, = —iwpFs, inR>\ By,
Ey,xv=E(p-)xv ondBy.
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By Lemmas and (also Remark , we have, for R > 1/2 and for x € Bsr \ Bag,

(Ea0(2). 10 (2)

< C’p3||(E2,p, }NIZ,p)”LQ(B2\BI)

< CPYIE(p) x vl g1r20m,) + o7 | divap, (E(p-) X V)| g-1/2(98,))

< Co’(IE(p-) x vl g-1129m,) + [H(p2) - Vilgr-1/20,))-
Here and in what follows in this proof, C' denotes a positive constant depending only on pg, Ry,
and R. It follows from the definition of (Es ,, Ha ) that

(4.68) 1(E2,p, Ha,p) || 2B\ Bar) < CP° et |l 2w\ By)-
From now on in this proof, for any vector field v, we denoteﬂ
(4.69) () = pv(p-).

We claim that

(4.70) 151 X Vlextll -172(08,) + 1E1p - Vlextll-1/298,) < CollJextll 2w\ 52)
and, for R > 1/2,

(4.71) (B3, H3.p) | £2(Bsp\Bar) < C (0% Jextl 2@\ 5y) + 071 Jint | 22(5y)) -

It is clear that (2.11)) follows from (4.68]) and (4.71)). Moreover, by Lemma assertion ([2.16))
now follows from (4.70) and the fact that (E., H.) = (E3,,, H3,) in Bj.

It remains to establish (£.70) and (4.71). It is clear that (E3 5, H3 ) € [\pwo H(curl, B\ dB1)]?
is the unique radiating solution to the system

V x E37p = iwpffg,p in R?\ By,
V x fIg,p = —iwa37p in R?\ By,
(4.72) V x B3, = iwuHs , in By,
V x Hy, = —iweEs ) + Jing in By,
[E3, x V] =0,[H3, x V] = —Hj ) X V]exs on OBy,
By Lemma [4.6] we have
(4.73) (B30, Hs )| rr(curl, Bs) < C'(||Jint||L2(Bl) + || Hy,p % V’GX‘GHH—l/?(divF,aBl))'

Applying Lemmauto (Ezp, ﬁQ’p), by (4.69)), we obtain

HﬁZp X V‘ext“H*1/2(8Bl) + ”E2,p ) V\extHHfW(aBl) < CPHJextHL2(R3\Bg)-

Since
(E2p, Hap) = (E,H) — (E1,, H1,) in R®\ By,
it follows that

1H X Vextl| r-1/2(0m,) + 1 Evp - Viextl 17298,y < CollJext 22w\ B2)
which is (4.70)).
Combining (4.70) and (4.73) yields
(4.74) (B30 Hs o) | 1(curt,Bs) < C (1 Jimtll22(8,) + pllJextl| 2w\ 52 ) -

3With this notation, one has (E., He)(z) = (£,,#,) in By. It is worth noting that #(-) # v(p-).
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Applying Lemma and using (4.74]), we obtain
~ z\ - x
’ (E&p <p) Hs <p>) ‘ < Cp* (It £2(m1) + PllJextllz2®\5y)) for @ € Bsg \ Bag.
This implies (4.71]). The proof is complete. O

4.3. Approximate cloaking in the resonant case - Proofs of Theorems and The
key ingredient in the proof of Theorems [2.2] and is the following variant of Lemma

Lemma 4.7. Let0 < p < po, 0, = (61,,02,) € [L*(D)]%, and h, = (k1 p, ha ) € [H~V/?(divr,dD)]?,
and let (E,, Hp) € [Np~; H(curl, Bg \ dD)]? be the unique radiating solution to the system

V x E,=1ipH, in R3\ D,
V x H, = —ipE, in R3\ D,
VX E,=1iuH,+ 01, in D,
VxH,=—icE,+ 03, in D,
[Ep x V] =h1,, [Hyx V] =ha, ondD.

Assume that N (D) # {(0,0)}. We have

(4.75) 1(Eps Hp)ll£2(B5) < C(P_lHep”m(D) + hollg-1/2(0p) + p~ | divp hp”H—l/?(aD))-
Assume in addition that, for all p € (0, pp),
(4.76) / (b2, E— 61, H)dx =0 for all (E, H) € N(D).
D
Then
(4.77) I(Ep, Hp)llL2(Bs) < C(HHPHLQ(D) + ol 17209y + p~ | divp hp‘|H*1/2(8D)>'

Here C denotes a positive constant depending only on pg, €, and p. Moreover, if
. -1 . . . 2 6
tim (lr-1720m) + 7 | ive gl ygsoopy ) =0 and lim6, =0 in [L2(D)]",

for some 6 = (01,02) € [L*(D)]®, then
(4.78) lim (B, Hy) = Cl(61,05) in [H (curl, D)J2.
p—

Remark 4.4. In comparison with (4.51)) in Lemma[4.6] in the resonant case N'(D) # {(0,0)}, es-

timate (4.75)) is weaker. Under the compatibility condition (4.76[), estimate (4.77) is stronger
than (4.75). Note that the term || divr hpllg-1/2(9p) in (4.51) of Lemma is replaced by

p~ Y| dive hpl| -1 /2(9p) in (4.77). However, this does not affect the estimate for the degree of visibil-
ity in the compatible resonant case (in comparison with the non-resonant case) since in the proof of
Theorem 1.2, we apply Lemmato the situation where ||| -1/2(9p) and p~ | divp hollg-12(5p)

are of the same order. It is worth noting that the estimates in Lemma [4.7] are somehow sharp
because of the optimality of the estimates in Theorems and this is discussed in Section

Proof. We will give the proof of (4.77)) and (4.78) and explain how to modify the proof of (4.77))
to obtain (4.75]).
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We prove ([4.77)) by contradiction. Assume that there exist sequences (p,)n C (0, po), ((En, Hn))n C
[Ng=o H (curl, Br \ dD)]2, (0n)n = ((01,n, 927”))n C [L*(D)]® such that (4.76) holds for (61 ,,62.),

V x E, =ip,Hy in R3 \ D,

V x H, = —ip,E, in R3\ D,
(4.79) V x B, =ipHy, + 61, in D,

V x Hy = —ieEy + 05, in D,

[En X V] = hip, [Hp X v] = hgy on 0D,

(4.80) | (En, Hy)|lp2(y) = 1 for all n € N,
and
(4.51) tim (10l 2y + Wl sv2omy + 07 Ve Bl 11200y ) = 0.

Without loss of generality, we assume that p, — poo € [0, p0]. We will only consider the case
Poo = 0. The proof in the case po, > 0 follows similarly and is omitted.

Similar to (4.56|) and (4.57)), we have, by (4.81]),
(4.82) lim VX Byl -v=0 and  lim V x Hy, - vy = 0 in H~/2(0D).

n—-+o0o n—-+o00

Applying Lemmaand using (4.80)), without loss of generality, one might assume that ((En, Hn))n
converges in [L?(D)]% and hence also in [LZ _(R®\ D)]® by applying ([#.3) of Lemma and i) of
Lemma [3.7/to Br \ D. Moreover, the limit (E, H) € [Hjoc(curl, R?)]? satisfies

(VX E=VxH=0 inR3\D,
divE =divH =0 in R3\ D,

(4.83)
V x E=iuH in D,
V x H = —icE in D,
and, by applying Lemma [3.6] and letting p,, — 0,
(4.84) |(E(z), H(z))| = O(|z|?) for large |z|.
Since

/D (b2, - E — 01, - H) dz = 0 for all (E,H) € N(D),

by Lemma there exists a unique (F1,, H1,) € N(D)* solving

VX Eiy=iuHin,+ 01 in D,

V x Hy, = —ieEy, + o in D,

VXFE, v=VxH, - v=0 ondD.
Denote by (E2,, Ha,) the projection of (E,, Hy) — (E1 5, H1,) onto N (D) and define

E,=p,Y(Ey — E1py— Fap) and  H, = p, ' (H, — Hy, — Hy,,) in D.

Then
(4.85) (En, H,) € N(D)*



26 H.-M. NGUYEN AND L. TRAN

and
(V x E,, =iuH, in D,
V x f{n = —isE‘n in D,
(4.86) i
VXxE, v=pVxE, vn ondD,
\Vxﬁn-yzp#Van-vhm on 0D.
We have

p,;lv X By - Vit = pglv X By - Vlext + pgl divp by = iHp - Vext + p,;l divp b1, on OD.
This implies, by ,
(4.87) ,u,I:In v =Hp Vlext — z'pgl divr hy, on 0D.
Similarly, we have
(4.88) eE, -v=EFE,- Vlext — ipgl divp hg, on 0D.
Using , we derive from , , and that
(4.89) (eEy - v, uHy, - v) = (B - Vlext, H - V]ext) in H~V2(0D) as n — oo,

It follows from Lemma [4.8 below that ((En, ﬁn)) is bounded in [L?(D)]%. Applying Lemma

to (Ey, Hy,), one can assume that

n

(4.90) (E,, Hy,) converges to some (E, H) € N (D)* in [H(curl, D)]?.
Moreover, from (4.86|) and (4.89), we have
(V x E = ipH in D,

V x H=—icE in D,
(4.91) ~
eE-v=FE V|t ondD,

pH-v=H- Vlext ~on 0D.
Applying Lemma to (E, H) defined in R® and (E, H) defined in D and using (4.83), (4.84),
ki

and (4.91)), we deduce that E = H = 0 in R3, which contradicts (4.80). The proof of ) is
complete.

We next establish (4.78)). Fix a sequence (p,,) converging to 0. From (4.77)), one obtains that
1(Eps Hp )l 22(85) < C(Hepn”L2(D) + 1kl r-1/2(0) + o || dive th”H*1/2(8D)) <C.

Define (E,,, H,,) in D from (E,,, H,,) as in the definition of (E,, H,) from (E,, H,). Using the
same arguments to obtain (4.90]), we have

(4.92) (E,,, H,,) converges to (E, H) € N(D)* in [H(curl, D)]?.
Up to a subsequence, (E,,, H,,) converges to (£, H) in [Hloc(curl,R3)]2 and
(4.93) |(E(z), H(z))| = O(|z|~?) for large |z|.

Moreover, as in (4.91), one can show that (2.18]) holds. Since the limit is unique, assertion (4.78))
follows.
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We finally show how to modify the proof of (4.77)) to obtain (4.75)). The proof is also based on a
contradiction argument and is similar to the one of (4.77)). However, we denote by (E2,, Ha) the
projection of (E,, H,) onto N (note that E;, and H;, might not exist in this case)) and define

E,=p,Y(Ey — Eyy,)in D and  H, = p,*(H, — Hy,,) in D.
Then

(V x E, =ipH, + p;lelm in D,

V X FIn = —ieEn + pgleg’n in D,

(4.94) _
VXE, v=p'VxE, v|n ondD,

fo]n‘yzp;LleHn-tht on dD.

Since (p;,'0,)n — (0,0) in [L?(D)]%, the sequence (( ~n,f~In))n converges to (E, H) in [L?(D)]S.
Similar to the proof of ({.77)), one also derives that (E, H) = (0,0) in R3. This yields a contradic-
tion. The proof is complete. O

In the proof of Lemma we used the following lemma:
Lemma 4.8. Assume that D is simply connected and (E,H) € N (D)t satisfies
(4.95) VxE=ipH inD and V xH=—ieE inD.
We have
(B, H) |5 (cun,p) < Cll(eE - v, pH - V)| g-1/2(9p),
for some positive constant C depending only on D, €, .
Proof. 1t suffices to prove that
(4.96) I(E, H)|l12(py < CN(EE - v, uH - V)| g-1/2(5)-

The proof is via a standard contradiction argument. Assume that there exists a sequence ((En, Hn))n C
N (D)* such that

(4.97) VX E,=4uH,in D and V xH, =—icE, in D,
(4.98) | (En, Hp)|l2(py = 1 for all n,

and

(4.99) (eEy - v, pH, -v) — 0 in [H~Y/2(0D)]2.

Applying Lemma one might assume that (E,,, H,) converges to some (Eq, Hg) in [H (curl, D)]?.
Then (Eo, Ho) € N (D)* and

V X EO = Z,LLHO in D,
(4.100) V x Hy = —icEy in D,
VxEy-v=VxHy-v=0 ondD.

It follows that (Eo, Hy) € N(D)* N N(D). Hence (Ey, Hy) = (0,0) in D, which contradicts
(@.93). 0
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We are ready to give the

Proof of Theorem In this proof, we use the same notations as in the one of Theorem
Similar to the proof of Theorem using Lemmas and we have, for R > 1/2,

(4.101) (B2, H2,p) || 12 (B i\ Bar) < C0° 1 ext | 2R3\ Bo) -

Involving the same method used to prove (4.70]) and (4.71)), however, applying (4.77)) in Lemma
instead of Lemma we have

(4.102) |H1,, % Vlextl gr-172(9m,) + 1B - Vlextll ir-172(9m,) < CpllJext |l L2®2\By)

and

(4.103) 1(Es.p, H3,p) |l 2B\ Bom) < C (0% 1 Jextll L2®3\ Ba) + £° 1 Jint £2(B1) ) -

It is clear that (2.15]) follows from (4.101]) and (4.103[). Moreover, by Lemma assertion ([2.16|)
now follows from (4.102) and the fact that (E., H.) = (E3,,, H3,) in By. O

Proof of Theorem In this proof, we use the same notations as in the one of Theorem
Similar to the proof of Theorem using Lemmas and we have, for R > 1/2,

(4.104) 1(E2.ps H2,p) | 12 (B i\ Bar) < C0° 1 extll 2R3\ o) -

Using the same method used to prove (4.71)), however, applying (4.75) in Lemma instead of
Lemma we have

(4.105) |1, x Vlextll g-1/2(0m,) + 1B, Vlextll g-1/2(0m,) < CpllJextll L2 (r3\By)
and
(4.106) 1(Es3,0, H3,p) || £2(Bs g\ Bar) < C (0% |1 Jext |l L2ro\85) + PNl Jintll £2(By)) -

It is clear that (2.20]) follows from (4.104]) and (4.106]).

It remains to prove (2.21)). Using the linearity of the system and applying Theorem one can
assume that Jeyt = 0, and Jiny = Eg for some (Eg, Hy) € N\ {(0,0)}. From the definition of N,

we have

Eo#0 and Hy#0in B;.
Note that (E., H,) € [Hyc(curl, R3))? is the unique radiating solution to the system

(VXEC:iwprC in R?\ By,
V x H. = —iwac in R3\ By,
(4.107) . .
V x E. = iwpH, in By,
V x ﬁc = —iweEc +Ey in Bj.

We prove (2.21]) by contradiction. Assume that there exists a sequence (pn)n C (0,1/2) converging
to 0 such that

(4.108) Jim pp | (En, Ha)llz2(8,) = 0,
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where (E,,, H,,) € [Hioc(curl, R?)]? is the unique radiating solution to the system

V x E, =iwp,Hy in R?\ By,
V x H, = —iwp,E, in R?\ By,
(4.109)
V x E, = iwuHy, in By,
|V X Hp, = —iweE, + Eg in By.

Applying Lemma to (Ey, H,) in By and using (4.108)) and (4.109)), we obtain

(4.110) M pn|(En x v, Hy X V)|l g-1/2(9,) = 0-

By Lemma we have

(4.111) i py||(En, Hn) |l L2(B,\By) = 0.

Since div E,, = div H,, = 0 in R? \ B1, we have, by Lemma and (4.111]),
M pn| (B - v, Hy )l g-172(98,) = 0-

It follows that
(4.112)
nh—glo H(leF(En X V),diVF(Hn X V))HH—I/Z(aBl) = nh—>120 H(V X By, - V,v x H,, - V))HH—I/Q(aBl) =0.

Using the fact that (Eg, Hy) € N, we derive from (4.109)) that

/ ,u_IVxEO-VxEnd:E—wQ/ 6E0'End:1::—iw/ (v x E,) - Hods,
By By OB,
and

/ H_IVxEn-VxEodxw2/ sEn-Eodx:iw/
Bl Bl

(V X Hn) 'EO d5+iw/ E[)'EO.
0B,

By
Considering the imaginary part of the two identities yields

(4.113) 3%{/ (v x Hy) - Eods+/ (v x Ey) - ﬂods} :/ |Eo|* > 0.
0B; 0By B1
However, since V x Hg-v = 0 on 087, by Lemma there exists H € H(curl, By) such that

VxHy=VxHinB; and Hxvr=0o0ndhB;.
Since V x (Hp —H) =0 in By, by Lemma there exists & € H'(B;) such that
Hy—-H = V¢ in By,
and hence
Hy xv = V¢ x v on 0B;.

We have thus
(4.114) / (v x Ep) -Hpds = / (v x E,)-Véds = / divr(v x E,)&ds — 0 as n — +00,

0B1 0B, 051
thanks to . Similarly, we obtain

(4.115) / (v x Hy,)-Eods — 0 as n — +oo0.
0B1

Combining (4.113)), (4.114)), and (4.115)), we obtain a contradiction. Hence (2.21)) holds. The proof

is complete. ]
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5. OPTIMALITY OF THE DEGREE OF VISIBILITY

In this section, we present various settings that justify the optimality of the degree of visibility
in Theorems and In what follows in this section, we assume that

(5.1) e = pu = I (the identity matrix) in Bj.

Let Y (n € N) be the spherical Hankel function of first kind of order n and let j,, vy, denote
respectively its real and imaginary parts. For —n < m < n,n € N, denote Y," the spherical
harmonic function of order n and degree m and set

UM() = Vop, Y™ (&) and  V™&) =i x U™ (&) for & € OB.

We recall that Y,"(2)z, UJ'(z), and V,)*(z) for —n < m < n,n € N form an orthonormal basis of
[L2(0By)].

We have
Lemma 5.1. System (2.3) is non-resonant if and only if j,(w) # 0 for alln > 1.

Proof. Assume that j,(w) = 0 for some n > 1. Fix such an n and define, in By,

() = jn(wr)V2(@) and Hofa) = "5 n)y 0@ + (o) +wr won]U0(@),

where r = |z| and & = z/|z|. Then (Eg,Hy) € N. System (2.3) is hence resonant. Conversely,
assume that j,(w) # 0 for all n € N. Using separation of variables (see, e.g., [21, Theorem 2.48]),
one can check that if (Eg, Hyp) € N then (Eg,Hy) = (0,0) in By. O

The following result implies the optimality of (2.11)) with respect to Jext. For computational
ease, instead of considering fields generated by Joxt, we deal with fields generated by a plane wave.
In what follows, we assume that 0 < p < 1/2. We have

Proposition 5.1. Set v(x) := (0,1,0)e™?s for x € R3. There evists w > 0 such that
|1Eellr2(5\5,) = Cp°,

for some positive constant C independent of p. Here (E., H.) € [Hioc(curl, R3)]? is uniquely deter-
mined by

V x E =iwu.H in R3,
V x H=—iwe,E inR3,

where E = E.+v and H = H, + V X v and by the radiation condition. Here (¢, p.) is defined
by (2.3) where (e, ) is given in (5.1).
Proof. Let w > 0 be such that jj(w) # 0. Set
(EpMp) = (Fy' « E,F, "« H) in R?,

and define
)_{ (Ep—v,H,—LV xv) inR®\ B,
p) — .

(EpyHp) in B,,.
Set
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We have
'Vpr:z’pwf{p in R?\ By,
V x I:Ip = —ippr in R3\ By,
(5.2) V x E, =iwH, in By,
V x ﬂp = —inp in By,
[E, x V] = =0 x v, [I:Ipxu]:—l.p%(foJ) X v on 0Bj.
Denote

Aoyt = / Ep|ext . Vll ds and A = / Ep|int . Vll ds.
0By

By
Using the transmission condition for Ep X v on 0B1 and considering only the component with
respect to Vi! for E, (see, e.g., [21, Theorem 2.48]), we have

(53) Aext - Aint = Q,

where
o= —/ v- Vi ds.
0By

Using the transmission condition for I:Ip X v on 0By and considering the component with respect
to U} for H, (see, e.g., 21, Theorem 2.48]), we have

(54) Aext (wp)Aext - aint(w)Aint = ﬁ)
where

(O () + 7RO (1))

Aext (1) = : Qi () = (jl (r) +rj] (r))

, and [ = aain(wp).

—irhgl)(r) —irji(r)
Combining ([5.3]) and ([5.4) yields
(55) A .= /8 — aaint(w) .

T text (wp) — aing(w)
Since
(1) d er sinx — x cosx .xrsinx —cosx

(5.6) hi’(z) = i = > +1 - , for x € R,
we derive that
(5.7) liggiglf P aext (wp) — aing(w)] ™1 > 0.

Since, by separation of variables, (see, e.g., [21, Theorem 2.48)),
/ @-Vllds‘ = j%(wP)/ v-Vids
0B1 0B1
we have

J1(w)
(5.8) C'p<la| <Cp
for some positive constant C' independent of p. From (5.8]) and the fact that
|aing (wp)| > CpY,

)

we have

(5.9) liminf |8 — aint(w)| > 0.
p—0
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Combining ([5.7]) and ([5.9) yields

(5.10) liminf p~ Y Aoy | > 0.
p—0
Since, again by separation of variables,
. ~ A0
/ Eﬂ(ri") ' ‘/11 (‘%) di = 1(1)(wpr) ext
OB hy” (wp)

and, by Lemma [3.9
E,(z/p) = Ey(z) = E)(x) — v(z) = E.(z) for z € By \ Ba,
we obtain the conclusion from and . O
We next show the optimality of with respect to Jint.

Proposition 5.2. Assume that the system is non-resonant and Joxy = 0 in R3 \ By. There exists
Jint € [L?(B1))? such that
hlp};igf p 2 | Hellp2(py\ sy > 0-
Proof. Consider
(5.11) it () = j1(wr)V)! (2) in By,

where r = |z| and & = z/|z|. Set

1
Eo = Jint and H() = —V X EO in Bl.
1w

Then

VXEozino in Bl,
(5.12)

VXHoz—ing in Bj.
Define

(Ep, H,) = p(€,, H,) (p:) in R,
where (€,,H,) is given in . Then

rVXEp:ipr:Ip in R®\ By,
V x I:Ip = —ippr in R?\ By,
V xE, =iwH, in By,
V x I:Ip = —inp + EO n Bl.
We have
(5.13) / (v x H,) - Bods _/ (v x B,) - Hods = / 1 Eo|? > 0.
0B 0By By
We claim that
(5.14) lim inf / (v x E,) - Hyds| = 0.
p—0 9B
Assuming this, we have, from (5.13]),
lim inf / (v x I:Ip) - Eods| > 0.
p—0 9B
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This implies, since ji(w) # 0 by Lemma that

IZIPUIIds
0B1

lim inf > 0.

p—0

On the other hand, by the separation of variables (see, e.g., [21, Theorem 2.48]),

hgl)(wpr) + wprhit(wpr)
r(h{Y (wp) + wpht! (wp)) Jom:

(5.15) /6 R TERACTE H,(3) - O} (3)di.

Using the fact

o 1
liminf p D
P70 by (wp) + wphf (wp)

and taking r = R/p with R € (2,4) in (5.15)), we obtain

4
lim inf p=3 /
p—0 2

This implies, since H.(R%) = H,(R%) = p~' H,(R%/p) for R € (2,4) and & € dB;y,

>0,

H,(Rz/p) - Ul () di| dR > 0.
0B;

. . —2
hl;,ILl(I)lfp HHCHLQ(Bz;\Bz) >0,

which is the conclusion.

It remains to prove ([5.14)). Since

(5.16)  Ho(x) — iv X Bo() = ——j1 (wr)Y} (2)3 + %[jl(wr) +wrjl(@n]UN (&) in B,

—J1
iwr
where r = |z| and & = x/|z|, using the separation of variables (see, e.g., [21, Theorem 2.48]),
have

(5.17) liminf/ (v x B,) - Hodi gCliminf/ B, (%) - V] (%) dz
p—0 8B1 p—0 0By
. | —wp o 1/ an AN A
= C'liminf H,(2)|ext - (Y7 (2)2) dZ
mipt| L [ @) (@)

Since, by Lemma [4.6
HI:IPHH(curl,B5) <,
we have
—iwp
V2 Jos,
Thus, follows from and .

(5.18) lif)n_jglf H,) | (Y (2)2) d| = 0.
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we

0

We finally show the optimality of (2.20)) in the case where Jext = 0 and Jiy does not satisfy the

compatibility condition.

Proposition 5.3. Assume that Jo = 0 in R3\ By and ji(w) = 0. There exists Jiny € [L?(B1)]?

such that
||EC||L2(B4\BQ) = Cp,

for some positive constant C independent of p.
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Proof. Define Jiy by (b.11]). We use the notations in the proof of Proposition (5.2)). We have

(5.19) / (v x H,) - Bods _/ (v x B,) - Hods :/ |Eo |2 > 0.
8B1 aBl

By
Since ji(w) = 0, it follows that

/ (v x H,) - Egds = 0.
0B,
We derive from ([5.19) thatﬁ

lim inf / (v x B,) - Hods| > 0.
p—)O aBl
This implies, by (5.16)),
(5.20) lim inf / E,(&) - V}(2)dz| > 0.
pA)O 831

By the separation of variables (see, e.g., [2I, Theorem 2.48]), for r > 2, we obtain

(1) ) )

(5.21) / E,(ri) - Vi (2) da M / E,(2) - V(&) dé.
0By hg)(wp) 9B

o [P (wR)

h(l)(wp) > 0, we obtain from ([5.20]) that
1

Taking r = R/p with R € (2,4) in (5.21]), since lin%p
p—

4
liminf p~2 / / E,(R&/p) - V{(2) d&| dR > 0.
p—0 2 |JoB,
This implies
.. 1
lim inf ™ || Ee | p2(8\) > 0:
which is the conclusion. O
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