
Automatic Synthesis of Rulesets for
Programmable Stochastic Self-Assembly of
Rotationally Symmetric Robotic Modules

Bahar Haghighat and Alcherio Martinoli

Distributed Intelligent Systems and Algorithms Laboratory
School of Architecture, Civil and Environmental Engineering

École Polytechnique Fédérale de Lausanne
1015 Lausanne, Switzerland

bahar.haghighat@epfl.ch, alcherio.martinoli@epfl.ch

Abstract. Programmable stochastic self-assembly of modular robots
provides promising means to formation of structures at different scales.
One way to address the design of dedicated control rulesets for self-
assembling robotic modules is to leverage formalisms based on graph
grammar. While these tools are powerful and allow for formal analysis
of the resulting controllers, expressing the embodiment of the robotic
modules and therefore the physical structure of assemblies of such mod-
ules is not readily possible with such formalisms. This typically results
in inefficient representation of ruleset controllers and poses limitations
on automatizing ruleset synthesis methods, requiring manual design or
tuning of the rules before deployment on the robotic modules. In this
work, we consider robotic modules endowed with identical latching con-
nectors arranged in a rotationally symmetric configuration. We extend a
grammar formalism based on graphs and propose a new encoding of the
modules’ internal states. This allows for formulating formal methods ca-
pable of automatically deriving the rules based on the morphology of the
robotic modules, in particular their number of connectors. The derived
rules are directly applicable to robotic modules with no further tuning. In
addition, we show that our method allows for a reduced complexity in the
rulesets, a particularly welcome feature in the case of limited on-board
storage, computation, and communication resources. In order to illus-
trate the application of our method, we extend two synthesis algorithms
from the literature, namely Singleton and Linchpin, to automatically
synthesize rules applicable to our resource-constrained robotic modules.
In order to increase the prototyping speed and the thoroughness of the
validation for the synthesis algorithms, we leverage two complementary
simulation frameworks capturing the system at different levels of abstrac-
tion. Finally, employing the generated rulesets, we conduct experiments
with our robotic platform to demonstrate several assemblies.

1 Introduction

Self-assembly (SA) plays a key role in many of the natural structuring phe-
nomena at all scales (Whitesides & Grzybowski, 2002). SA is formally defined

as the reversible and spontaneous phenomenon of an ordered spatial structure
emerging from the aggregate behavior of simpler preexisting entities, through
inherently local and random interactions in the system (Bušev, 1994). In re-
cent years, SA has been extensively studied both as an enabling technique for
micro/nano-fabrication, and as a spatial coordination mechanism for distributed
robotic systems of miniaturized modules with limited capabilities, where highly
stochastic sensing, actuation, and interactions are inevitable (Haghighat et al.,
2016a; Yan et al., 2003). One main motivation for employing SA techniques
in distributed engineered systems is to replicate the sort of scalability and ro-
bustness observed in the natural instances of SA where a global spatial order
is achieved through inherently local interactions. The engineering question is
thus that of finding proper assembly directives governing the local interactions,
in order to achieve a global spatial order, i.e., a desired target structure. The
set of assembly directives or rules guiding the assembly process is denoted as
“ruleset” hereafter. Depending on the characteristics of the system, such as the
SA medium and the capabilities of the modules, different approaches have been
used.

Several engineered systems have demonstrated SA (Rubenstein et al., 2014),
(O’Grady et al., 2009), (Tolley & Lipson, 2010), (Salemi et al., 2006), (Aya-
nian et al., 2008), (Klavins, 2007). The robotic modules in these systems have a
symmetric design; i.e., their latching connectors are gender-less and arranged in
a rotationally symmetric fashion on the module’s body. Programmable SA has
been demonstrated in (Rubenstein et al., 2014), and (Klavins, 2007) where ac-
tive modules self-assemble into predefined desired 2D structures following a set
of assembly rules. In (Rubenstein et al., 2014), the miniaturized self-locomoted
Kilobot robots coordinate using a deterministic and quasiserial approach in a
large swarm of 1000 robots. Module transportation may also be achieved by
taking advantage of the stochastic ambient dynamics, realizing stochastic SA.
This in turn can allow for simplifying the modules’ internal design. In (Klavins,
2007), the programmable parts stochastically self-assemble on an air table based
on their internal ruleset controller. In that work, a ruleset is generated using an
automatic rule synthesis algorithm which starts from a description of a target
structure in the form of an abstract graph and automatically generates proper
rulesets for SA of bodiless modules. The resulting rules are then manually tuned
to suit the specific morphology of the physical robotic modules. An alterna-
tive method for generating self-assembly rules is to use powerful metaheuristic
methods. For instance, employing the abstract Tile Assembly Model (aTAM)
(Rothemund, 2001), (Lathrop et al., 2009), evolutionary computing has been
used to generate rules for self-assembly in a system of passive modules in 2D
(Bhalla et al., 2010), and a system of real and simulated passive modules in 3D
(Bhalla et al., 2012). The off-line evolved rules are then encoded in the physical
characteristics of the passive modules in each case in the form of a magnetic
bit pattern, enabling modules with matching patterns to assemble successfully.
Manually designed ruleset controllers are utilized in a case study of stochastic
SA of simulated underwater robotic modules in 3D in (Ganesan & Chitre, 2016),

where the authors manually define ruleset controllers specifically tailored to their
robotic modules and the target structures under study.

The problem of ruleset synthesis for programmable SA of graphs is first ad-
dressed in (Klavins, 2002) where the self-assembling system consists of bodiless
modules represented as the graph vertices, and the connections between the
modules are represented by the graph edges. The system graph evolves as the
SA process progresses, following the specified assembly rules. Graph rewriting
systems may be used to express algorithmically how a new graph is created given
an initial one and a set of directives. In (Klavins et al., 2006b), the formalism
of graph grammar is formally applied to the SA of graphs and two rule syn-
thesis algorithms are presented. The synthesized rules represent local changes
in the system graph based on locally available information. The local nature
of the interactions leading to formation of edges between vertices may produce
deadlock situations, blocking the system from further progression towards the
global objective. The deadlock situation is discussed in (Klavins et al., 2006b),
where the number of copies of the target structure being assembled in parallel
is higher than the maximum feasible number, considering the total number of
initially available modules. In the same work, in order to avoid deadlocks the
authors propose a disassociation rule that requires implementing a consensus
algorithm among the communicating modules. Alternatively, (Fox & Shamma,
2015) employs a graph grammar formalism and show that the SA of graphs can
be achieved while avoiding deadlocks by introducing probabilistic dissociating
rules. Two formal rule-synthesis algorithms, Singleton and Linchpin, are intro-
duced in the same work. While in the case of assembling bodiless modules it
is only the existence of edges among vertices that specifies the graph structure,
in the case of physical modules their embodiment plays a crucial role. For in-
stance, the orientation of the links formed between the modules is restricted by
their morphology, in particular by the placement of their latching connectors,
and therefore the space of the possible assembled structures is ultimately deter-
mined by such local embodiment. In an attempt to apply similar formalisms to
the case of robotic modules, (Fox & Shamma, 2010) leverages weighted graphs
in a case study to encode the geometric orientations of the edges.

Describing self-assembling robotic systems by means of an appropriate graph
grammar formalism offers several advantages. First, a graphical description in-
herently suits the SA problem where the typically fixed number of constituting
modules can be represented by the graph vertices and the bonds forming and sev-
ering throughout the SA process can be represented by the graph edges, evolving
over time. This provides an efficient model for capturing self-assembling systems
characteristics at a high level (Napp et al., 2006). Second, such a description
enables the application of several formal rule synthesis algorithms, originally de-
veloped for SA of abstract graphs, to the case of SA of robotic modules. While
several formal rule synthesis algorithms leveraging graph grammar have been
proposed for programmable SA of graphs, their synthesized ruleset controllers
are not directly applicable to SA of robotic modules where orientation of the
forming links determines the resulting assembled structures.

In this work, we consider the specific but widely common case of rotation-
ally symmetric robotic modules endowed with genderless latching connectors.
In order to overcome the problems mentioned above, we extend the concept of
abstract graphs by augmenting vertices with link slots, introducing extended
vertices, where a link between two extended vertices can only form through spe-
cific slots. Additionally, we propose a new way of encoding the robotic modules’
internal state by introducing extended labels; a module’s internal state evolves
according to the ruleset controller and corresponds to the module’s local percep-
tion of the assembly it is part of. This allows for formulating general methods
for synthesizing rules directly applicable to robotic modules endowed with an
arbitrary number of genderless connectors arranged in a rotationally symmet-
ric fashion. The self-assembling robotic system is therefore modeled using an
extended graph, with each module being associated with one extended vertex
in the graph and its internal state being encoded by a control state label and
a latching orientation index. For a rotationally symmetric module with N gen-
derless connectors, we provide a proof that our extended formalism achieves a
ruleset complexity of O(N) compared with O(N2) obtained by assigning one
vertex and label per connector as presented in (Klavins, 2007). The reduced
ruleset complexity is of particular interest for the case of miniaturized modules
where very limited memory and communication resources are available. In par-
ticular, it allows for a reduction of the memory required for storing the rules as
well as that of the overall volume of data shared among modules. Leveraging our
formalism, we extend the Singleton and Linchpin rule synthesis algorithms from
(Fox & Shamma, 2015), obtaining the SingletonR and LinchpinR algorithms.
Compared with the original Singleton and Linchpin, the two new extended al-
gorithms allow for synthesis of rulesets which are directly applicable to robotic
modules. We then use SingletonR and LinchpinR to synthesize rules for our
resource-constrained floating robotic modules considering case studies on two
specific target structures. Finally, in order to increase the prototyping speed and
the thoroughness of the validation for the synthesis algorithms, we leverage two
complementary simulation frameworks capturing the system at different levels
of abstraction.

The remainder of this paper is organized as follows. We begin in Section
2 by describing the SA process in our robotic system. In Section 3, the graph
grammar formalism for the SA of graphs is summarized. Section 4 discusses our
proposed extended formalism enabling rule synthesis for the SA of rotationally
symmetric robotic modules. Section 5 describes the two synthesis algorithms
generating rules for SA of our robotic modules. In Section 6, we detail the simu-
lation frameworks. Simulated and experimental results are presented in Section
7, with the conclusions offered in Section 8.

2 Fluidic self-assembly of lily robotic modules

Figure 1 depicts our system which consists of two main components: 1) the Lily
robots, originally presented in (Haghighat et al., 2015), which serve as the build-

Fig. 1: An overview of the system: The experimental setup consisting of a water-
filled tank with peripheral pumps agitating the fluidic environment, an overhead
camera for visually tracking the robots and a projector for modulating the light-
ing in the environment (perceivable by the Lily robots for control purposes, not
used in the experimental studies of this work), a wireless node for establishing
the radio link between the workstation and the Lily robots (left). Visual tracking
of ten Lily robots during an experiment; the blue lines show a short trajectory
history for each robot and the white arrows depict the fluid outflow from the
peripheral pumps (middle). The Lily robotic module (Haghighat et al., 2015)
(right).

ing blocks of the SA process, and 2) the experimental setup built around them
(Haghighat & Martinoli, 2016a). The system has several features and capabili-
ties which accommodate a range of experimental studies. While here we briefly
review the full list of system features, only a limited subset has been leveraged in
the experimental work reported in this paper (features not used are mentioned
explicitly in the text). Lilies are endowed with four custom-designed Electro-
Permanent Magnets (EPM) to latch and also to communicate locally with their
neighbors. They can also communicate over a radio link to a base station whose
primary functionality is to allow for wireless programming of the robots without
the need of opening the sealed plastic shell for establishing a wired connection.
The base station can also issue query commands to receive specific information,
for instance to learn about the robots’ battery voltage level or internal state.
Being power-autonomous, the robots can actively take part in the assembly pro-
cess at all times. Given a target structure, an appropriate ruleset is derived as
detailed in Section 5, and deployed on all robots through wireless bootloading.
The robots’ EPM latches are by default enabled, resulting in a default latching
upon meeting another robot. Once latched, the EPM-to-EPM inductive com-
munication channel is physically established. The robots then exchange their
internal states and look for an applicable rule in their ruleset. If no applicable
rule is found, they unlatch by switching off their EPM latches; otherwise they
remain latched and update their internal states accordingly. Each robot then
updates the base station with its new internal state over the radio. Lilies are
not self-locomoted, they are instead stirred by the flow field produced within a
tank by several peripheral pumps. An overhead camera is used to monitor the
evolution of the system by visually tracking a passive marker on the top of each

robot using the tracking software SwisTrack (Lochmatter et al., 2008). Three
further centralized features of this flexible setup are available but not leveraged
in the experimental work of this paper. First, the system is capable of adjusting
the agitation in real time. For instance, the agitation mode in the fluidic tank
may be modified according to the progress of the SA process to facilitate assem-
bly of the desired target structure. Similarly, the luminosity of the environment,
perceivable by the light sensor on the robots, can be modified via an overhead
projector to induce a global change in the parameters of the robots’ ruleset con-
troller. Specific messages can also be sent to selected robots, inducing a local
change in the controllers through the radio link with the base station.

3 Graph grammars for self-assembly of bodiless modules

In this section we summarize the graph grammar formalism for formulating SA
of graphs as presented in (Klavins, 2007), and (Fox & Shamma, 2015). A self-
assembling system of bodiless modules can be efficiently modeled as a graph
evolving over time. Each vertex in the graph represents an anonymous module
in the system. While the number of vertices is finite and established at the start
of the SA process, the set of edges is dynamic. A finite ruleset determines the
course of the evolution of the graph, providing a distributed control scheme for
the SA process. Each module maintains an internal state taking values from a
discrete and finite set, represented as a labeling on the graph. A rule specifies
how an edge between vertices corresponding to modules with certain internal
states may be modified. In order to simulate the SA process, at each time step
two modules are selected randomly. If the finite ruleset contains a rule applicable
to the modules considering their current internal states, the rule gets applied and
the graph is modified. In case of probabilistic rules, the rule gets actually applied
only with a certain probability associated with the rule. Since the modules are
considered to be bodiless, their embodiment and thus the physical orientation
of the bonds they form is irrelevant. In the following, we formally define various
concepts related to the SA of graphs.

Definition - Internal state of bodiless modules: Each module maintains
an internal state which corresponds to its local perception of the progress of the
SA process, or equivalently its local neighborhood structure. The internal state
of a module evolves according to the rules specified in its ruleset, depending on
its interactions with other modules and their respective internal states.

Definition - Labeled graph: A labeled graph is a triple G = (V,E, `)
where V = {1, ...,M} is the set of vertices, E ⊂ V × V is the set of edges,
and ` : V → Σ is a labeling function, with Σ being a set of labels. A pair of
vertices {x, y} ∈ E is represented by xy. The vertex set, the edge set, and the
labeling function of a graph G are represented by VG, EG, and `G respectively.
The notation nE(x) represents the neighbors of vertex x relative to the edge set
E.

Two graphs G1 and G2 are considered to be isomorphic when there exists a
bijection h : VG1 → VG2 such that ij ∈ EG1 ⇔ h(i)h(j) ∈ EG2 . The function h

is called a witness. A label-preserving isomorphism has the additional property
that `G1

(x) = `G2
(h(x)),∀x ∈ VG1

. Since the vertices represent identical bodiless
modules,G1 andG2 represent the same assembly iff they are isomorphic. A graph
G is said to contain a graph H if a subgraph of G is isomorphic to H.

Definition - Rule: A rule is an ordered pair of labeled graphs r = (L,R)
such that VL = VR. The graphs L and R are the left hand side (LHS) and right
hand side (RHS) of the rule r. The rule r = (L,R) essentially specifies how
the LHS graph L transforms to the RHS graph R through modification of EL
to ER and `L to `R. The size of r is defined as |VL| = |VR|. A rule specifies a
local change in the system graph, meaning that |VG| > |VL|. An example of a
rule of size two, i.e., a binary rule, can be visually represented as a b ⇀ c− d,
with the characters denoting the labels of the two initially disconnected engaged
vertices forming a bond and updating their respective internal states, i.e., the
vertex with internal state a updates its internal state to c and the vertex with
internal state b updates its internal state to d.

A binary rule corresponds to an interaction between two modules. Simulta-
neous interactions among many modules, i.e., rules of size larger than two, are
generally believed to be difficult to coordinate.

Definition - Rule applicability: A rule r = (L,R) is applicable to a graph
G if there exists I ⊂ VG such that the subgraph G ∩ I has a label-preserving
isomorphism h : I → VL.

Definition - Ruleset: A ruleset φ is a set of rules ri = (Li, Ri) which
specifies the evolution of the SA process towards a desired target assembly out of
initially disconnected modules. The application of rules included in φ sequentially
advances the SA progress by forming or severing bonds between modules with
proper internal states.

Definition - Action: The triple (r, I, h) is called an action. The application
of an action with r = (L,R) to G gives a new graph G′ = (VG, EG′ , lG′) defined
by

EG′ = (EG − xy : xy ∈ EG ∩ I × I) ∪ (xy : h(x)h(y) ∈ ER)

`G′(x) =

{
`G(x), if x ∈ VG − I
`R(h(x)), otherwise

Definition - Reverse rule: The complement or reverse of a rule r = (L,R),

is r̄ = (R,L), such that G
r,I,h−−−→ G′

r̄,I,h−−−→ G′′ = G, for appropriate I and h
corresponding to the rule r.

Definition - System trajectory: A trajectory of a system (G0, φ), where
G0 is the initial graph of the system and φ is a ruleset, is a finite or infinite

sequence, depending on the number of applicable rules, of G0
r1,I,h−−−−→ G1

r2,I,h−−−−→
G2

r3,I,h−−−−→ ...
Given a ruleset φ, one can study the sequences of graphs obtained from

successive application of the rules in φ. For a probabilistic ruleset, a probability
is associated with each rule by the mapping P : φ → (0, 1], indicating the
tendency for the corresponding event to take place provided that the conditions

Fig. 2: Different structures represented by the same abstract graph not capturing
the orientation of the formed links (left). Association of latching connectors with
labels marked in red (Klavins, 2007) (middle). Relative CCW convention for
hop numbering, marked in red, starting at the most recently engaged latching
connector, marked in blue (right).

under which the rule is applicable are met. All formal rule synthesis methods
proposed for programmable SA of graphs automatically generate a ruleset φ
for assembling a desired target by iteratively browsing and parsing the target
graph (Klavins et al., 2006b), (Klavins, 2007), (Fox & Shamma, 2015). Section
5 provides details on the functionality of such methods and how they can be
extended to generate rules for SA of rotationally symmetric robotic modules.

4 Graph grammars for self-assembly of rotationally
symmetric robotic modules

In this section, we explain how we extend the graph grammar formalism to for-
mulate the problem of ruleset synthesis for programmable SA of rotationally
symmetric robotic modules (Haghighat et al., 2016b). As explained in Section
3, the SA process in a system of bodiless modules can be directly modeled by
an abstract graph evolving over time and the standard graph grammar formal-
ism can be applied. For the case of robotic modules, their embodiment needs
to be incorporated in the model as the modules’ morphology, in particular the
orientation of the links they may form, strictly determines the shape of the re-
sulting structure. This information cannot be directly encoded in the structure
of abstract graphs. Figure 2 (left) gives a simple illustration of this issue con-
sidering square-shaped modules. While in both the L shaped structure, on the
top, and the chain shaped structure, in the middle, the assembly comprises three
modules, with two modules having one common neighboring module, it can be
seen that depending on the latching connectors which get engaged, two distinct
assembly structures may exist. If the orientation of the formed links are ignored,
both assemblies can be described by the same abstract graph, depicted on the
bottom.

In order to employ the graph grammar formalism for the problem of SA of
robotic modules two main issues should be addressed: first, how the morphology
of the robotic module, in particular its latching connectors, can be incorpo-
rated into the system graph structure, and second, how the internal states of

the robotic modules, which includes information on the orientation of the links
formed, can be encoded and represented in the graph structure.

One approach to address the aforementioned issues is considered in (Klavins,
2007). Instead of representing a single module, each vertex in the system graph
can be associated with a latching connector on a robotic module. The vertices
corresponding to latching connectors of a certain robotic module are then con-
nected using permanent links which indicate the physical coupling, as depicted
in Figure 2 (middle). For the case of bodiless modules the state of the module
can be encoded by a single label associated with its corresponding vertex in the
system graph. For the case of robotic modules, the method in (Klavins, 2007)
represents the internal state of a module as the set of labels associated with
the vertices corresponding to its latching connectors. Several drawbacks may be
listed for this method of representing a robotic module and its internal state
within a graph grammar formalism. First, as a result of dedicating several ver-
tices to represent a single module, i.e., one vertex per latching connector, the
system graph, i.e., the graph representing the system, will be crowded with ver-
tices and edges which encode redundant information, giving rise to an increased
complexity in analyzing and simulating the model. Second, automatic synthesis
of rules for robotic modules is not straightforward using this method, mainly
due to the complex structure of the graph. Indeed, (Klavins, 2007) first runs
a synthesis algorithm on an abstract description of the desired target, and the
resulting rules are then manually tuned to account for the correct orientation of
the forming links. Third, for a robotic module with N connectors each acquiring
a dedicated state label, it can be shown that the ruleset complexity grows in
O(N2).

In what follows, we propose an alternative approach for applying a graph
grammar formalism to the SA problem of rotationally symmetric robotic mod-
ules. Our goal is not only to be able to employ such formalisms but also to formu-
late algorithms for the automatic synthesis of rules. To this end, we extend the
notion of labeled graphs by introducing the definition of extended vertices and
labels. While we are particularly interested in scenarios involving our Lily robots
in 2D, the assumptions we make are general enough to be directly applied to
similar platforms. The method is also easily applicable to 3D SA with similar as-
sumptions. In essence, we augment the vertices with link slots and introduce the
extended vertices, where a link between two extended vertices is formed through
specific link slots. The link slots are then indexed according to an enumeration
convention on the latching connectors of the robotic modules. Assuming that
the latching connectors on the robotic modules are genderless and arranged in
a rotationally symmetric configuration, the relative hop distance between the
engaged link slots determines the relative orientation of the links formed be-
tween the modules and thus determines the shape of the structure. Following
this extension, we introduce the extended labels, encoding the internal state of
a robotic module as a pair of the control state and the latest engaged connector
index. Formal definitions of these concepts are provided below.

Definition - Extended vertex: An extended vertex has ordered link slots
which correspond to the latching connectors of a robotic module. An extended
vertex v representing a rotationally symmetric robotic module endowed with N
latching connectors is a N -tuple v = (s1, s2, ..., sN) where si ∈ {0, 1} is a binary
value representing the latching state of the corresponding latching connector on
the ith latching slot. The numbering of the slots is assumed to match the one on
the robotic module, following a counter-clockwise (CCW) rotation convention
on the module. Since the modules are assumed to be rotationally symmetric,
the connectors are anonymous for an isolated module.

Definition - Internal state of robotic modules: Similar to the case of
bodiless modules, each robotic module maintains an internal state which corre-
sponds to its local perception of the progress of the SA process, or equivalently
its local neighborhood structure. The internal state of a module evolves accord-
ing to the rules specified in the ruleset, depending on its interactions with other
modules and their respective internal states. The difference is in the notion of
the neighborhood structure.

In the case of bodiless modules, the local neighborhood structure of a module
and its corresponding internal state does not contain information about the
orientation of the links. However, for the case of robotic modules with specific
embodiment, the orientation of the links strongly determines the structure of
the assembly formed around a module, and must be encoded in the modules
internal state.

For the case of rotationally symmetric robotic modules, we consider the in-
ternal state to consist of two components: a non-spatial component, called the
control state hereafter, which encodes the same information as the internal state
in the case of bodiless modules, and a spatial component, called the latching state
hereafter, which encodes the index of the latest engaged latching connector.

Definition - Extended label: An extended label is a pair l = (la, ln) encod-
ing the internal state of a rotationally symmetric robotic module. la represents
the control state of the robotic module and ln represents the latching state of
the robotic module, i.e., the index of its most recently engaged connector. Notice
that ln may be extended to be an ordered list of recently engaged connectors.

Definition - Extended labeled graph: An extended labeled graph is a
quadruple G = (V,E, S, `) where V = {1, ...,M} is the set of extended vertices,
E ⊂ V ×V is the set of edges, K = {1, ..., N} is the set of link slots available on
each of the extended vertices, S : E → K×K defines which slots are involved in
a link between two vertices, and ` : V → Σ is a labeling function, with Σ being
a set of extended labels.

Following the extension of the graphs, the rules are also extended to be
described using elements which are a combination of a control state variable and
a relative latching state variable as explained below. The idea is that a robotic
module can only take part in an interaction governed by a certain rule if it has
the appropriate control state and is participating in the interaction with the
appropriate orientation.

We assume that the robotic modules exchange information of their respective
internal states once their latching connectors are engaged. More specifically, once
one of the connectors is engaged, the robot may communicate its internal state
in the form of a relative extended label of l = (la, lh) with la being the robot’s
control state and lh being a relative hop number which represents the relative
orientation of the currently engaged connector with respect to its predecessor,
assuming a CCW hop convention (see Figure 2, right). For a vertex with an
extended label of (la, ln) on a robot with N connectors lh = [(ln−lc) mod N]+1,
where lc is the index of the currently engaged connector and ln is the index of
the previously engaged connector.

Definition - Extended rule: An extended rule is an ordered pair of ex-
tended graphs r = (L,R). An extended binary rule can be depicted as l1 l2 ⇀
l3 − l4, with the l1, l2, l3, l4 being pairs of the form li = (lia, lih) denoting the
relative extended label of the engaged vertices.

Proposition: For a rotationally symmetric robotic module with N number
of connectors, employing extended relative labels allows for a ruleset complexity
of O(N) compared to the one-label-per-connector approach which results in a
ruleset complexity of O(N2). More formally, if χ is the set of alphabets utilized
in the ruleset for encoding the modules’ internal states then the extended rela-
tive labeling approach results in |χ| = O(N) while the one-label-per-connector
approach results in |χ| = O(N2).

Proof: Consider a rotationally symmetric robotic module having N number
of connectors and an internal state S. Having N connectors, the module can
interact with a similar one through N different orientations, i.e., one orientation
per each of its connector. Assume that each one of these N configurations can
potentially result in a distinct assembly. For each distinct assembly, the module’s
internal state S needs to be updated to a distinct value of S′.

Consider the one-label-per-connector approach; S′ is encoded by assigning
a new label to each connector. To encode a new distinct internal state S′, this
approach requires N new labels to be added to the alphabet included in χ. To
encode all possible interaction outcomes, i.e., all possible updated S′ values,
N new labels should be added to the ruleset for each one of the N possible
configurations, thus a total of N2 new labels.

Consider the relative extended labeling approach; S′ is encoded by assigning
a new la label per interaction configuration and updating the ln label to the
currently engaged connector index. To encode all possible interaction outcomes,
one new label should be added to the ruleset for each of theN possible interaction
configurations, thus a total of N new labels. ut

5 Synthesizing rules for rotationally symmetric robotic
modules

In Section 4, we presented the extension of the graph grammar formalism for
the case of SA of symmetric robotic modules and in Section 1 argued that the
extended formalism may be utilized to 1) formulate automatic rule synthesis

algorithms directly applicable to programmable SA of rotationally symmetric
robotic modules, and 2) model and simulate the evolution of the SA process in
a system of rotationally symmetric robotic modules. In this section, we show-
case the application of the extended formalism to the former of the two points
mentioned above. Our focus here is on demonstrating the capability of the ex-
tended formalism, and as such, we do not propose inherently novel rule synthesis
algorithms. Rather, we pick two rule synthesis algorithms for SA of bodiless mod-
ules previously proposed in the literature (Fox & Shamma, 2015), Singleton and
Linchpin, and utilize our extended formalism to formulate their counterparts,
SingletonR and LinchpinR, for rotationally symmetric robotic modules. There-
fore, the specific contribution of this section is demonstrating how our proposed
extended formalism explained in Section 4 can be employed to extend automatic
rule synthesis algorithms that have been previously proposed for SA of abstract
graphs into algorithms capable of automatically synthesizing rules for SA of sym-
metric robotic modules with arbitrary number of connectors, for a given target
represented as an extended graph.

Consider the discussion in the Introduction of this paper, particularly the
work in (Ganesan & Chitre, 2016) where the ruleset applied on the simulated
robotic modules are essentially hand-designed, or the work in (Klavins, 2007)
where an automatic rule synthesis algorithm for bodiless modules is employed
to generate a ruleset which is then tuned to fit the specific morphology of the
programmable robotic modules. The contribution of this section eliminates the
necessity for manually designing or tuning rulesets for robotic modules by provid-
ing a formal and efficient (see the proof in Section 4) tool for employing existing
rule synthesis algorithms in the literature, possibly originally designed for SA
of bodiless modules and transform them so that they can be directly applied to
any given symmetric robotic module. Additionally, we provide a comparison be-
tween the rules synthesized for a robotic target structure and its abstract graph
counterpart by the respective algorithms and show how the two rulesets relate.
We then use the SingletonR and LinchpinR to synthesize rulesets for the SA of
our Lily robotic modules for two specific target structures, a chain structure and
a cross structure, each consisting of 6 robotic modules.

5.1 Singleton and Linchpin for self-assembly of bodiless modules

Here, we briefly introduce the Singleton and Linchpin algorithms originally pre-
sented in (Fox & Shamma, 2015). For a given acyclic target graph, these algo-
rithms synthesize rulesets for SA of a system of bodiless modules represented
as an abstract graph. The rulesets generated by both algorithms include reverse
rules executed probabilisitically in order to avoid deadlock situations. While the
rules are the output of the synthesis algorithms, proper execution probabilities
need to be assigned separately. This is due to the fact that the synthesis algo-
rithms are agnostic to the dynamics of the underlying self-assembling system
and solely consider the necessary steps for the formation of the target.

Thanks to the use of probabilistically executed reverse rules, the rulesets syn-
thesized by the two algorithms provide probabilistic guarantees on achieving the

maximum feasible assembly yield. However, they natively differ in their temporal
assembly profile. While Singleton induces a serial assembly strategy, Linchpin
gives rise to a more parallel scheme. More specifically, for a given target graph G,
Singleton generates a serial ruleset where each rule progresses the SA of the tar-
get graph by appending an isolated vertex to the structure. In contrast, Linchpin
synthesizes a parallel ruleset, where the target graph is assembled from each leaf
towards a final vertex, with the process culminating in two concurrently built
subgraphs joining together (Fox & Shamma, 2015). Note that both algorithms
were specifically designed for handling acyclic target graphs, i.e., trees, and thus
do not synthesize valid rulesets for cyclic target graphs.

As an example consider a chain shape target graph constituting six modules
G = (V = {1, 2, 3, 4, 5, 6}, E = {12, 23, 34, 45, 56}), assuming vertex 2 as the root
vertex fed to the algorithms in (Fox & Shamma, 2015), the resulting rulesets
are as below, where the forward rules and their corresponding reverse rules are
denoted as ri and r̄i, respectively:

φSingleton =


0 0 � 1− 2 (r1, r̄1)

1 0 � 3− 4 (r2, r̄2)

4 0 � 5− 6 (r3, r̄3)

6 0 � 7− 8 (r4, r̄4)

8 0 � 9− 10 (r5, r̄5)

φLinchpin =


0 0 � 1− 2 (r1, r̄1)

0 0 � 7− 8 (r2, r̄2)

2 0 � 3− 4 (r3, r̄3)

4 0 � 5− 6 (r4, r̄4)

8 6 � 9− 10 (r5, r̄5)

Considering a system of six randomly interacting bodiless modules, all ini-
tially isolated and labeled 0, the assembly progress guided by the forward rules
of the two synthesized rulesets of φSingleton and φLinchpin are depicted in Figure
3. Note the difference in the natural course of the process induced by the two
rulesets. This is regarded as the assembly strategy of the ruleset. While φSingleton
assembles the target graph in five sequentially executed steps, the rules r1 and
r2 in the φLinchpin ruleset can be executed concurrently and may thus constitute
one step. It is through this concurrency that the assembly strategy of φLinchpin
can reduce the total required assembly time and achieve a higher assembly rate
than that of φSingleton. Note that the ultimate assembly rate in a system depends
strongly on the system dynamics, in particular the mixing in the system which
allows for the probabilistic interactions between the bodiless modules. However,
assuming that all the interactions in the system take place equiprobably, the
assembly process guided by φLinchpin will on average result in the target graph
faster than that guided by φSingleton. Below we formally define a measure for
ruleset concurrency.

Definition - Concurrent steps: The number of concurrent steps required
by a ruleset φ for building a certain target structure is the minimum number
of steps that it takes to assemble the target structure out of initially isolated
modules, considering that several concurrently executable rules can be executed
simultaneously, and assuming that execution of one rule takes one step. Note
that the measure of concurrent steps as defined above is general and applies
to rulesets for the SA of both bodiless (see examples given in Section 5.1) and
rotationally symmetric robotic modules (see examples given in Section 5.2).

Fig. 3: Progress of the SA process for a chain shape target graph as guided by
rulesets φSingleton and φLinchpin.

5.2 SingletonR and LinchpinR for self-assembly of rotatinally
symmetric robotic modules

Algorithm 1 depicts the pseudo codes of both Singleton and SingletonR algo-
rithms, and Algorithm 2 depicts the pseudo codes of both Linchpin and Linch-
pinR algorithms. SingletonR and LinchpinR essentially have the same structure
as their abstract graph counterparts. Their main difference is that at each step
of the rule synthesis they determine two labels, i.e., la and lh, instead of a sin-
gle one. As a result of following the same rule synthesis strategy, the class of
targets which are achievable by SingletonR and LinchpinR are the same as the
ones of the original algorithms, i.e., solely acyclic target graphs can be handled.
l, k, and NE(k) denote the largest label, the root vertex, and the neighbors of
node k with respect to edge set E, respectively. For a given target graph Ĝ, run-
ning Singleton((VĜ, EĜ, k, 0)) for any k ∈ VĜ generates a ruleset. The ruleset
allows the SA process to grow the target graph outwards from the starting ver-
tex k. Similarly, SingletonR generates a ruleset for robotic modules based on
a given target structure, represented by an extended graph G = (VG, EG, SG),
where S(vi, vj) returns the ordered pair of (si, sj), the involved link slots on the
two linked vertices. L(v) returns the current extended label of a vertex, (la, ln).
The GVL() (short for Get Vertex Label) procedure returns the ordered pair of
(la, lh) by updating the value of lh such that it indicates the relative position of
the currently engaged slot, s, with respect to the previously engaged one. The
SVL() (short for Set Vertex Label) procedure updates the extended label (la, ln)
by updating the value of ln considering the value of the applied label. Com-
pared to the Singleton algorithm where only the state labels are synthesized,
SingletonR and LinchpinR produce the relative hop number lh indicating the
proper linking orientation as well. The combination of these two values provides
a general description of the full internal state of a robotic module.

1: Target graph : G = (V,E)
2: Root vertex : vk
3: Initial label : l = 0
4: procedure Singleton(G, vk, l)
5: φ← ∅
6: if |nE(k)| = 0 then
7: return (l, φ)
8: else
9: {vj : j = 1, 2, ..., |nE(vk)|} ← nE(vk)
10: l̄← l
11: for j = 1 to |nE(k)| do
12: φ← φ ∪ {l̄ 0
 (l + 1)− (l + 2)}
13: l̄← l + 1
14: l← l + 2
15: Let (V j , Ej) be the component
16: of (V,E − {vkvj}) containing vj
17: Gj ← (V j , Ej)
18: (lj , φj)← Singleton(Gj , vj , l)
19: φ← φ ∪ φj

20: l← lj
21: end for
22: end if
23: return (l, φ)
24: end procedure

1: Target graph : G = (V,E, S, L)
2: Root vertex : vk
3: procedure SingletonR(G, vk)
4: φ← ∅
5: if |nE(k)| = 0 then
6: return (l, φ)
7: else
8: {vj : j = 1, 2, ..., |nE(vk)|} ← nE(k)
9: for j = 1 to |nE(vk)| do
10: (sk, sj)← S(vk, vj)
11: lk ← GVL(L, sk, vk)
12: lj ← GVL(L, sj , vj)
13: l̄← IncrementState(l, 1)
14: l← IncrementState(l, 2)
15: SVL(L, vk, sk, l̄)
16: SVL(L, vj , sj , l)
17: φ← φ ∪ {lk lj
 l̄− l}
18: Let (V j , Ej) be the component
19: of (V,E − {vkvj}) containing vj
20: Gj ← (V j , Ej , S, L)
21: (l, φj)← SingletonR(Gj , vj)
22: φ← φ ∪ φj

23: end for
24: end if
25: return (l, φ)
26: end procedure

27: procedure GVL(L, s, v)
28: (la, ln)← L(v)
29: lh ← (ln − s+ 1) (mod N)
30: return (la, lh)
31: end procedure

32: procedure SVL(L, v, s, l)
33: (la, lh)← l
34: ln ← s
35: L(v)← (la, ln)
36: end procedure

37: procedure IncrementState(l, i)
38: return (la + i, ln)
39: end procedure

Alg. 1: Original Singleton algorithm for the SA of bodiless modules as presented
in (Fox & Shamma, 2015), and the SingletonR algorithm for the SA of rota-
tionally symmetric robotic modules obtained by applying our extended graph
grammar formalism.

1: Target graph : G = (V,E)
2: Root vertex : vk
3: Initial label : l = 0
4: procedure Linchpin(G, vk, l)
5: φ← ∅
6: for j = 1, 2, ..., |nE(vk)| do
7: if |nE(vj)| ≥ 2 then

8: Let (V j , Ej) be the component
9: of (V,E − {vkvj}) containing vj
10: (lj , φj)← Linchpin(Gj , vk, l)
11: l← lj
12: else
13: lj ← 0
14: φj ← ∅
15: end if
16: end for
17: φ← φ1 ∪ {l1 0
 (l + 1)− (l + 2)}
18: l← l + 2
19: for j = 2, ..., |nE(vk)| do
20: φ← φ∪ φj ∪ {lj l
 (l+ 1)− (l+ 2)}
21: l← l + 2
22: end for
23: return (l, φ)
24: end procedure

1: Target graph : G = (V,E, S, L)
2: Root vertex : vk
3: procedure LinchpinR(G, vk)
4: φ← ∅
5: for j = 1, 2, ..., |nE(vk)| do
6: if |nE(vj)| ≥ 2 then

7: Let (V j , Ej) be the component
8: of (V,E − {vkvj}) containing vj
9: (lj , φj)← Linchpin(Gj , vk)
10: l← lj
11: else
12: lj ← 0
13: φj ← ∅
14: end if
15: end for
16: (sk, s1)← S(vk, v1)
17: lk ← GVL(L, sk, vk)
18: l1 ← GVL(L, s1, v1)
19: l̄← IncrementState(l, 1)
20: l← IncrementState(l, 2)
21: SVL(L, vk, sk, l̄)
22: SVL(L, v1, s1, l)
23: φ← φ1 ∪ {l1 0
 (l + 1)− (l + 2)}
24: l← l + 2
25: for j = 2, ..., |nE(vk)| do
26: (sk, sj)← S(vk, vj)
27: lk ← GVL(L, sk, vk)
28: lj ← GVL(L, sj , vj)
29: l̄← IncrementState(l, 1)
30: l← IncrementState(l, 2)
31: SVL(L, vk, sk, l̄)
32: SVL(L, vj , sj , l)
33: φ← φ∪ φj ∪ {lj l
 (l+ 1)− (l+ 2)}
34: l← l + 2
35: end for
36: return (l, φ)
37: end procedure

Alg. 2: Original Linchpin algorithm for the SA of bodiless modules as presented in
(Fox & Shamma, 2015), and the LinchpinR algorithm for the SA of rotationally
symmetric robotic modules obtained by applying our extended graph grammar
formalism.

Fig. 4: Progress of the SA process for the chain shape target structure employing
φS−. The latest engaged latching connectors on the modules are highlighted with
a blue mark, while the relative hop numbering starting at the most recently
engaged latching connector are shown on the sides of each module.

5.3 Rulesets for self-assembly of Lily robotic modules

The rulesets returned by SingletonR for a chain and a cross structure, φS− and φS+
respectively, as well as the rulesets returned by LinchpinR for a chain and a cross
structure, φL− and φL+ respectively, using six rotationally symmetric robotic mod-
ules, are reported below. The (la, lh) notation is used for the relative extended
labels expressed in the rules as explained in Section 4, and the reverse rules are
separated.

φS− =



(0, 0) (0, 0)
r1−−→ (1, 1)− (2, 1)

(1, 3) (0, 0)
r2−−→ (3, 1)− (4, 1)

(4, 3) (0, 0)
r3−−→ (5, 1)− (6, 1)

(6, 3) (0, 0)
r4−−→ (7, 1)− (8, 1)

(8, 3) (0, 0)
r5−−→ (9, 1)− (10, 1)

(1, 1)− (2, 1)
r̄1−−→ (0, 0) (0, 0)

(3, 1)− (4, 1)
r̄2−−→ (1, 3) (0, 0)

(5, 1)− (6, 1)
r̄3−−→ (4, 3) (0, 0)

(7, 1)− (8, 1)
r̄4−−→ (6, 3) (0, 0)

(9, 1)− (10, 1)
r̄5−−→ (8, 3) (0, 0)

φS+ =



(0, 0) (0, 0)
r1−−→ (1, 1)− (2, 1)

(1, 2) (0, 0)
r2−−→ (3, 1)− (4, 1)

(3, 3) (0, 0)
r3−−→ (5, 1)− (6, 1)

(5, 4) (0, 0)
r4−−→ (7, 1)− (8, 1)

(8, 3) (0, 0)
r5−−→ (9, 1)− (10, 1)

(1, 1)− (2, 1)
r̄1−−→ (0, 0) (0, 0)

(3, 1)− (4, 1)
r̄2−−→ (1, 4) (0, 0)

(5, 1)− (6, 1)
r̄3−−→ (3, 3) (0, 0)

(7, 1)− (8, 1)
r̄4−−→ (5, 1) (0, 0)

(9, 1)− (10, 1)
r̄5−−→ (8, 3) (0, 0)

φL− =



(0, 0) (0, 0)
r1−−→ (1, 1)− (2, 1)

(0, 0) (0, 0)
r2−−→ (3, 1)− (4, 1)

(2, 3) (0, 0)
r3−−→ (5, 1)− (6, 1)

(4, 3) (0, 0)
r4−−→ (7, 1)− (8, 1)

(8, 3) (6, 3)
r5−−→ (9, 1)− (10, 1)

(1, 1)− (2, 1)
r̄1−−→ (0, 0) (0, 0)

(3, 1)− (4, 1)
r̄2−−→ (0, 0) (0, 0)

(5, 1)− (6, 1)
r̄3−−→ (2, 3) (0, 0)

(7, 1)− (8, 1)
r̄4−−→ (4, 3) (0, 0)

(9, 1)− (10, 1)
r̄5−−→ (8, 3) (6, 3)

φL+ =



(0, 0) (0, 0)
r1−−→ (1, 1)− (2, 1)

(0, 0) (0, 0)
r2−−→ (3, 1)− (4, 1)

(0, 0) (4, 4)
r3−−→ (5, 1)− (6, 1)

(0, 0) (6, 3)
r4−−→ (7, 1)− (8, 1)

(2, 3) (8, 2)
r5−−→ (9, 1)− (10, 1)

(1, 1)− (2, 1)
r̄1−−→ (0, 0) (0, 0)

(3, 1)− (4, 1)
r̄2−−→ (0, 0) (0, 0)

(5, 1)− (6, 1)
r̄3−−→ (0, 0) (4, 2)

(7, 1)− (8, 1)
r̄4−−→ (0, 0) (6, 3)

(9, 1)− (10, 1)
r̄5−−→ (2, 3) (8, 4)

Fig. 5: Progress of the SA process for the cross shape target structure employing
φL+. The latest engaged latching connectors on the modules are highlighted with
a blue mark, while the relative hop numbering starting at the most recently
engaged latching connector are shown on the sides of each module.

The resulting rulesets are not easy to understand at first glance. Here, we
provide additional explanations and visualizations in order to bring additional
intuition on their operation. Consider the φS− whose SA progress course using six
Lily robotic modules is visualized in Figure 4. While the state labels returned
by SingletonR for Lilies are similar to the ones for a chain shape in the case of
bodiless modules presented in 5.1, it can be seen that the values of lh = 3 on the
left-hand-side (LHS) of the rules dictate two hops on the link slots between the
successive latching events, resulting in a linear structure considering the square-
shaped modules. The reverse rules all have lh = 1 at the LHS, indicating that
the rule’s corresponding interaction happens at the link slot engaged the latest.

Consider the φS+ whose SA progress course using six Lily robotic modules is
visualized in Figure 5. Each square represents a Lily, labeled with its internal
state la value in the middle. The most recent engaged link slot is indicated with
a blue mark, while the relative hop numbers of lh are shown on the modules’
sides. For each Lily, numbering the slots always starts with lh = 1 at the most
recently engaged slot and follows a CCW convention. Note that the synthesis
algorithms only generate the rules; appropriate probabilities should be associated
with forward and reverse rules in order to allow the system to recover from
deadlocks, while reliably forming the target.

6 Simulation frameworks

In order to compare the performance of different rulesets synthesized by Single-
tonR and LinchpinR algorithms for SA of our Lily robotic modules and to study
the transient system behavior corresponding to each of these ruleset controllers,
we utilize two simulation frameworks: a non-spatial microscopic and a spatial
submicroscopic framework, each shedding complementary light on specific as-
pects of the process.

The purpose of the microscopic framework is to allow for the comparison
of the intrinsic performance of the derived rulesets, i.e., the final yield and the
convergence rate determined by the concurrency in the ruleset, in absence of
any influence of physical phenomena on the application of the rules. This is
particularly interesting considering that the two rule synthesis algorithms, i.e.,
SingletonR and LinchpinR, are agnostic about the spatial aspects of the system,
analogous to their abstract graph counterparts, the Singleton and Linchpin al-
gorithms. More specifically, given a target structure, the relevant metric when
comparing rulesets synthesized by SingletonR and LinchpinR is the number of
concurrent steps as defined in Section 5.1 for formal definition. In reality, the
realization of the conditions under which each step can be executed depends di-
rectly on the spatial characteristics of the system influenced by, for instance, the
density of the modules and their mobility due to agitation in the environment,
effects that are not taken into account in this microscopic simulation framework.

The submicroscopic framework, on the other hand, provides a realistic repli-
cation of the real experimental setup, faithfully capturing the physics of the SA
process in the system. This framework allows for the comparison of the perfor-
mance of the ruleset controllers in simulation under realistic conditions, revealing
the outcome of the interplay of the physical characteristics of the system and
the assembly strategy of the ruleset controllers. This is particularly interest-
ing considering that the functionality of the ruleset controllers depends on the
robotic modules’ randomly arranged encounters. The nature of these random
encounters is strongly determined by the physical characteristics of the system.
More specifically, since the Lily robotic modules are not self-locomoted and are
assumed to be driven around by the environmental agitation, we are essentially
relying on diffusion for module transportation and thus the performance of the
assembly process can be hindered by the diffusion limitations in the system.
In other words, if the robotic modules do not have the chance for proper in-
teractions, the target structure will never form, regardless of any well-designed
features of the employed ruleset controllers.

6.1 Microscopic simulation framework

The microscopic simulation framework is based upon the abstract model for
randomized interactions among bodiless modules introduced in (Fox & Shamma,
2015). We build on this method in two ways. First, in order to model interactions
between robotic modules the notion of ’extended graphs‘ along with appropriate
geometrical constraints is utilized. Second, we introduce a new shape recognition
method which is an extension over a graph isomorphism check to track the
progress of the SA process in the system. This method is directly generalizable to
rotationally symmetric modules with an arbitrary number of latching connectors.

Random pairwise interactions In our extended formalism, a random pair-
wise interaction dynamics is defined as a quadruple (G,F, φ, P). Rule proba-
bilities are assigned by P : φ → (0, 1]. The set of pairs of disjoint vertices is

1: procedure GroupToShape(VG, EG, SG)
2: ∀ vi : i = 1, 2, ..., |VG|, pos(vi) = (0, 0)
3: ∀ vi : i = 1, 2, ..., |VG|, prev(vi) = 0
4: ∀ vi : i = 1, 2, ..., |VG|, dir(vi) = 1
5: unvisited← {v1}
6: visited← {∅}
7: while (unvisited 6= {∅}) do
8: vi ← unvisited(1)
9: s̄i ← (dir(vi)− 1 + 2) (mod 4) + 1
10: si ← SG(vi, prev(vi))
11: d← s̄i − si
12: if d < 0 then
13: d← d+ 4
14: end if
15: {vj : j = 1 : |nEG

(k)|} ← nEG
(k)

16: for j = 1 to |nEG
(k)| do

17: if vj /∈ visited then
18: sj ← SG(vj , vi)
19: s̄j = (sj − 1 + d (mod 4)) + 1
20: for k = 1 : 4 do

21: if s̄j == k then
22: Let R(θ) be the 2D
23: rotation matrix
24: pos(vj)← pos(vi)+
25: [−1, 0]R(k · π/2)
26: end if
27: end for
28: dir(vj)← s̄j
29: prev(vj)← vi
30: unvisited← unvisited∪{vj}
31: visited← visited ∪ {vi}
32: end if
33: end for
34: unvisited(1)← {∅}
35: end while
36: (xmin, ymin) = {(x, y)|
37: (x, y) = pos(vi), ∀j, pos(vj) > pos(vi)}
38: ∀i pos(vi)← pos(vi)− (xmin, ymin)
39: return (pos)
40: end procedure

Alg. 3: Pseudo code of the shape recognition algorithm for the case of square-
shaped Lily robotic modules.

defined as PW (G) = {(x, y) :6 ∃I ⊂ G|(x, y) ∈ EI , x 6= y}, where I is a con-
nected subgraph of G. The set PW (G) specifies the modules among which an
interaction is feasible as they are not connected to the same subassembly. F (G)
maps an extended graph G to probabilities of pairwise vertex selections from
VG. A random trajectory of the system, is generated by sampling F (Gt) at each
time instant to obtain a pair (x, y) and then executing an appropriate action on
the selected pair. For the two selected vertices to interact, engaged link slots are
chosen randomly from the available slots. Sampling from F (Gt) introduces an
inherent stochasticity to the trajectories of the system even if the ruleset con-
tains only deterministic rules. The interaction probabilities, defined by F (Gt),
depend on the current graph Gt and can be calibrated based on experimental
data to reflect the spatial aspects of the underlying SA process. More specifically,
it is the dynamics of mixing in the physical system which affects the interaction
chances of different assemblies. For instance, larger assemblies may move around
the arena more slowly, or orient themselves in the fluidic field in such a way
that certain encounters are less probable. In the current work, our goal is to em-
ploy the microscopic simulation framework to study the intrinsic performance
of the synthesized rulesets, similar to the studies conducted in (Fox & Shamma,
2015). Therefore, the interaction probabilities are kept uniform similar to (Fox
& Shamma, 2015).

Shape recognition Tracking the progress of the SA process of the simulated
system requires a mapping between the connected components of the graph
of the system and the shape of the corresponding assemblies. For the case of
SA of graphs, where the system is represented by an abstract graph at each
time instant, this describes a problem of graph isomorphism (Fox & Shamma,

Fig. 6: Simulated world of Lily robots in Webots (Michel, 2004) (left), along with
a close-up of the floating simulated Lily robotic modules (right).

2015). However, for the case of our extended graphs, the relative position of
the engaged slots needs to be taken into account to recognize the shape of the
resulting assembly. We propose a simple method for recognizing the shapes based
on traversing the connected components of the extended graph and constructing
a series of locations of the Center Of Mass (COM) of the robotic modules.
The relative ordering of the link slots on the neighboring modules determines
the orientation of each traverse. The series of locations are then rotated and
translated such that all coordinates are positive. The resulting ordered set is
used as the identifier of the structure. This method can be applied to modules
with a variety of shapes. Our method is sufficient for the case of structures
confined in 2D and is substantially less computationally expensive than general
approaches such as the ones presented in (Asadpour et al., 2009), (Golestan
et al., 2013). The pseudo code of our proposed shape recognition algorithm for
the case of Lily robotic modules is shown in Algorithm 2.

6.2 Submicroscopic simulation framework

Figure 6 depicts the submicroscopic simulation of the system. In this context,
submicroscopic reflects the fact that the model provides a higher level of detail
than a canonical microscopic model, faithfully reproducing intra-robot features
(e.g., body shape, individual sensors and actuators). With this level of details,
a submicroscopic simulator can keep track of a number of state variables such
as the exact pose of the robotic node, the specific forces exerted by one of its
actuators, or the signal perceived by one of its sensors. In order to faithfully
recreate our self-assembling system in simulation, we use Webots (Michel, 2004),
a physics-based robotics simulator. Webots uses the Open Dynamics Engine
(ODE) for simulating rigid body dynamics. Additionally, in order to simulate
specific non-natively supported physics, it is possible to employ custom-designed
physics plugins. The Lily robotic modules’ CAD design as well as the robots’
controller software are imported into the Webots simulated world. The rulesets
programmed on the simulated robots are also identical to the case of the micro-
scopic simulation in the previous section. The latest version of Webots supports

Fig. 7: Diagram of the overall software framework. The “synthesis algorithm”
block may utilize different rule synthesis algorithms. In the current work Single-
tonR and LinchpinR synthesis algorithms have been used.

a basic fluid node which allows for a simple uniform stream velocity, but is not
capable of simulating a complex fluidic field. We used a similar approach as
(Di Mario et al., 2011) to reproduce the complex flow field and the correspond-
ing hydrodynamic forces. In particular, we developed a dedicated physics plugin
for the simulated world in Webots that applies the drag force to the simulated
Lily robotic module based on the velocity of the module and the flow velocity at
its location at each time instant. The details of this development can be found
in (Haghighat & Martinoli, 2016b).

7 Experiments and results

We have conducted simulated experiments using the microscopic and submi-
croscopic simulation frameworks described in Section 6, as well as real-world
experiments using the platform described in Section 2. The performance of the
rulesets synthesized by Singleton and Linchpin algorithms for SA of bodiless
modules have been comparatively studied in (Fox & Shamma, 2015). The pur-
pose of this section is primarily to validate the rulesets generated by the Single-
tonR and LinchpinR algorithms using the different simulated and real platforms
and secondarily, to provide a comparison between the performance of the rule-
sets synthesized by the two algorithms for the SA of Lily robotic modules. We
expected to observe similar trends in the performance of the rulesets of Sin-
gletonR and LinchpinR compared to the ones of Singleton and Linchpin. More
specifically, the concurrency in the rulesets synthesized by LinchpinR should al-
low for an intrinsically (i.e., disregarding spatial effects) higher assembly rate
than that of SingletonR rulesets. We investigated this aspect in our first set of
experiments conducted within the microscopic simulation framework. In our sec-
ond set of experiments, we employed the submicroscopic simulation framework

Fig. 8: Comparison of the rulesets synthesized by SingletonR and LinchpinR
algorithms in the microscopic simulation using six Lily robots for the two tar-
get shapes. The lines (dashed for SingletonR and continuous for LinchipR) and
shaded regions (striped for SingletonR and uniform for LinchpinR) indicate the
mean and standard deviation of 100 runs, respectively.

to investigate the performance of the rulesets in more realistic conditions where
the spatial aspects of the underlying SA process are carefully modeled. Finally,
we used physical Lily robotic modules to evaluate the rulesets performances in
real world experiments.

Figure 7 depicts the structure of the overall software framework developed
and employed in this work. Rulesets for SA of Lily robotic modules are synthe-
sized utilizing the SingletonR and LinchpinR algorithms in the synthesis algo-
rithm block depicted in Figure 7 to derive rules for 1) the chain shape target
assembly, and 2) the cross shape target assembly, both of size six. The synthe-
sized rulesets, explained in detail in Section 5.3, are deployed at all the three
implementation levels (microscopic and submicroscopic simulations as well as
real world) using six modules and only in simulation (microscopic and submi-
croscopic) using 24 modules. For forward rules P (.) = 1 and for reverse rules
P (.) = 0.1 are chosen. In addition, within a ruleset, all the rules with identical
LHS are set to be equi-probable and share the P (.) = 1 which is set for forward
rules. This concerns only rules in the LinchpinR ruleset where the two rules
forming dimers label them probabilistically. As a result each rule is executed
with P (.) = 0.5. The finishing rule is chosen to be irreversible in all the rulesets,
i.e., P (r̄5) = 0, giving rise to stable target assemblies once they are formed.
There exists a breadth of research on optimization of ruleset controllers for
programmable self-assembling systems (Klavins et al., 2006a), (Matthey et al.,
2009). However, with the focus of our current work being on automatizing rule

Fig. 9: Comparison of experimental results obtained with the real set-up and the
submicroscopic simulation framework (Webots) using six Lily robotic modules
for the two target shapes. The lines (dashed for the real setup and continuous for
the Webots setup) and shaded regions (striped for the real setup and uniform
for the Webots setup) indicate the mean and standard deviation of five runs,
respectively.

synthesis for robotic modules, the rule probabilities are chosen empirically and
are not necessarily optimal. The reverse rules probability is chosen such that the
dissociation of advanced assemblies is roughly less probable than the formation
of a more advance assembly. In other words, the assemblies are stable enough
not to disassemble before a further rule can be applied in order to progress the
assembly process, for the chosen agitation regime in the fluidic arena. Two other
values were tested as well, P (.) = 0.5 which typically resulted in having all the
modules isolated and P (.) = 0.01 which typically resulted in having the modules
all stuck in a dimer formation.

Mean and standard deviation of several sample runs are used for performance
study and comparison in (Fox & Shamma, 2015). We use the same statistical in-

Fig. 10: Snapshots of the SA process employing SingletonR rulesets for the cross
shape target (arranged in the top row) and chain shape target (arranged in the
bottom row) and using six Lily robots.

dicators due to roughly symmetric quasi-Gaussian distribution of our data for all
the plots in this paper. Figure 8 shows the performance of the rulesets derived by
SingletonR and LinchpinR for the two target structures in microscopic simula-
tion with a total of six available modules, all initially isolated. With a maximum
feasible yield of one (i.e., six available robotic modules and targets of size six),
the vertical axis shows the proportion of modules in the correct placement. The
horizontal axis shows the number of steps, with each step representing a forma-
tion event in the system as a result of application of a forward deterministic rule.
For both target structures, the rulesets derived by SingletonR and LinchpinR
exhibit similar assembly rates, in other words, the curves have similar slopes.
However, it is interesting to note that the LinchpinR rulesets generally exhibit
slightly higher variability around the mean performance value. Both of these
observations can be explained considering the assembly strategies of the corre-
sponding rulesets. The LinchpinR ruleset by design builds the target structure in
fewer concurrent steps than the SingletonR ruleset (three versus five concurrent
steps for the case of the chain structure and four versus five concurrent steps for
the case of the cross structure). However, such concurrency is unexploited if not
enough modules are supplied to the ruleset. Indeed, as we will see later (Figure
11 depicting results achieved with 24 modules), it is sufficient to increase the
absolute number of available modules (and therefore increase the number copies
of the objective target) to see a clear exploitation of the Linchpin superior con-
currency. More specifically, considering the rules in φL− and φL+, LinchpinR builds
dimers with two possible labelings assigned probabilistically with equal proba-
bility (as introduced in the ruleset), while SingletonR adds modules one by one,
labeled deterministically. With exactly six modules available, if the probabilis-
tically assigned labeling happens not to be of the type needed, the progress of

Fig. 11: Microscopic simulation results of rulesets derived by the two extended
synthesis algorithms for the two target structures of chain and cross shape. The
lines (dashed for SingletonR and continuous for LinchipR) and shaded regions
(striped for SingletonR and uniform for LinchpinR) summarize the mean and
standard deviation of 100 runs, respectively.

the SA process is delayed until a dimer disassembles and reassembles with the
required labeling.

Real-world experiments were conducted by programming six Lily robots with
the four derived rulesets to build the two target structures. Each experiment was
repeated five times. The same experiments were also conducted in the submi-
croscopic simulation framework, each repeated five times, to provide a direct
comparison between the simulated and the real-world setups. Figure 9 shows
the evolution of the target structure in the simulated and real-world setups.
With a maximum feasible yield of one (i.e., six available robotic modules and
targets of size six), the vertical axis shows the proportion of modules in the
correct placement. For all the simulated and real experiments, the maximum
yield of one was achieved as depicted in Figure 9. These results roughly indicate
a good matching between the two setups. Table 1 details the formation time
statistics from the real-world experiments. The low number of runs (five runs
per experiment) limits the significance of the gathered statistics. However, as we
will show below through leveraging the submicroscopic simulation framework,
the observations from these experiments are confirmed in simulated experiments
repeated for a larger number of runs and when higher number of modules are
available. Considering the real-world results for the chain shape, while the me-
dian formation time for SingletonR is less than that of LinchpinR, the minimum
and maximum formation times achieved by the two rulesets are close (see Table
1 results and horizontal width of the blue region in Figure 9, left column). Linch-

Fig. 12: Submicroscopic simulation results of the performance of rulesets derived
by the two extended synthesis algorithms for the two target structures of chain
and cross shape. The lines (dashed for SingletonR and continuous for LinchipR)
and shaded regions (striped for SingletonR and uniform for LinchpinR) summa-
rize the mean and standard deviation of 50 runs, respectively.

pinR builds the target out of dimers and requires two dimers labeled differently.
Since the labeling is done at random, when the available modules are scarce
this can easily result in longer formation times. In other words, LinchpinR does
not necessarily make the best use of the available resources. This explains how
SingletonR manages to achieve lower median. Additionally, the specific interac-
tion configuration that LinchpinR requires for chain formation, i.e., two chains
of size three joining to form the target chain of size six, is particularly difficult
to arrange, while for the case of the SingletonR ruleset, the isolated Lily module
seems to manage more easily to reach the interaction site. For the cross shape,
both the smallest and the largest formation times were obtained by LinchpinR.
This can be explained by considering the interaction between the intermediate
subassemblies. While LinchpinR builds the target through four concurrent steps
as opposed to SingletonR’s five, the relative orientation of the connecting sub-
assemblies is more easily achieved for SingletonR where one component, i.e., the
isolated Lily, is always symmetric. Figure 10 depicts the progress of the SA pro-
cess for the two target structures deploying the SingletonR ruleset on the Lily
robots. These observations highlight the importance of having simulation tools
at different modeling levels as each tool manages to shed light on aspects which
remain out of reach of the other tools.

Figure 11 shows the performance of the rulesets derived by the two extended
synthesis algorithms for the two target assemblies in microscopic simulation us-
ing 24 available modules, all initially isolated. The vertical axis shows the number

of copies of the target assembly in the system at each step. The four rulesets
exhibit interestingly different performance in comparison with the previous sce-
nario employing only six modules. For the cross shape target, the naturally serial
ruleset of SingletonR is outperformed by the more concurrent one of LinchpinR,
achieving the target with fewer rule executions. For the chain shape target, the
rulesets of the two algorithms perform similarly. With a large number of avail-
able modules compared to the desired target size, the strategy of LinchpinR to
build dimers with two possible labelings assigned probabilistically proves effi-
cient in comparison to the one of SingletonR, adding modules one by one with
deterministic labelings.

Figure 12 shows the submicroscopic simulation results of the derived rulesets
using 24 available modules all initially isolated. These findings further verify the
results of the real-world experiments. For the chain shape, both rulesets exhibit a
high variability in the formation time, and perform similarly in effect. However,
for the case of the cross shape, the performance of the two rulesets is significantly
different. SingletonR outperforms LinchpinR in this case achieving lower average
formation time as well as lower standard deviation. This is in agreement with
the observations of the real experiments and highlights the strong spatial effects.
Even though the LinchpinR ruleset is capable of forming the target with fewer
rule executions, the final rule forming the target requires a specific configuration
which is not easily achieved in the system.

8 Conclusion

In this paper, we addressed the problem of rule synthesis for programmable SA
of rotationally symmetric robotic modules endowed with genderless latching con-
nectors. More specifically, we focused on a case study involving robotic modules
relying on the surrounding environment for their mobility. The SA process in the
system was guided towards achieving a global target structure in a distributed
fashion by means of appropriate ruleset controllers programmed on the robotic
modules. The robotic modules maintained an internal state corresponding to
their local perception of the progress of the SA process. The ruleset controller
programmed on the modules regulated the outcome of the random interactions
between two robotic modules based on their internal states.

Table 1: Real experiment results of the four rulesets derived by the two extended
synthesis algorithms for the two target structures of chain and cross shape.
Formation time statistics are reported for five runs of each experiment.

Algorithm Target Median (s) Mean (s) Min. (s) Max. (s) Std. (s)

SingletonR Chain shape 788 844 720 1080 166
LinchpinR Chain shape 935 941 780 1112 139
SingletonR Cross shape 185 181 146 208 26
LinchpinR Cross shape 165 190 131 300 78

In a broad sense, the engineering question that motivates this effort can
be formulated as follows: given a desired target structure composed of several
robotic modules, how can we design the proper ruleset controllers to be deployed
on the individual robotic modules? Our focus in this work has been thus on for-
mulating rule synthesis algorithms for the SA of robotic modules. In particular,
we considered the specific but widely common case of rotationally symmetric
robotic modules endowed with genderless latching connectors.

The main contribution of this work is introducing the extended graph gram-
mar formalism. This was motivated by the fact that previous research employing
the standard graph grammar formalism for formulating SA of bodiless modules
had demonstrated the relevance and application of the formalism and success-
fully presented several automatic rule synthesis algorithms. However, the rulesets
synthesized by these algorithms were not directly applicable to robotic modules.
As a result, one had to further tune the rulesets synthesized by these algorithms
to fit the specific morphology of the robotic modules used in their study or
to manually design them. The extended graph grammar formalism allows for
taking into account the morphology of the robotic modules by introducing the
notion of extended graphs comprising extended vertices with ordered link slots
representing the robotic modules’ connectors. Additionally, we introduced the
notion of extended labels. The internal state of each module is encoded by an
extended label. We provided the proof that this extended formalism allows for
the generation of rulesets of O(N) complexity, with N being the number of
genderless connectors available on a robotic module. Using our extended formal-
ism, we extended two synthesis algorithms originally introduced for the SA of
bodiless modules, namely Singleton and Linchpin. Doing so, we obtained their
counterparts for the SA of rotationally symmetric robotic modules, namely Sin-
gletonR and LinchpinR. Studies on the synthesized rulesets in simulation and
reality considering two specific target structures were conducted to validate the
functionality and evaluate the relative performance of the synthesized rulesets.

The strength and limitations of our proposed formalism can be summarized
as follows. For a rotationally symmetric robotic module with N genderless con-
nectors, our extended formalism allows for a ruleset complexity of O(N) com-
pared with O(N2) obtained through the convention of assigning one vertex and
label per connector. The reduced ruleset complexity is of particular interest for
the typical case of miniaturized modules in engineered self-assembling systems
as it allows for a reduction of the memory required for storing the rules as well as
the amount of data shared among the modules. Employing the extended graph
grammar formalism for the SA of rotationally symmetric robotic modules of-
fers the possibility of formulating automatic rule synthesis algorithms capable
of deriving rules directly applicable to embodied robotic modules. Such algo-
rithms systematically process a description of the target structure in the form
of an extended graph; they go through the graph structure recursively severing
edges and generating a new rule for each severed edge, in a computationally effi-
cient way. This systematic scheme allows for designing rule synthesis algorithms
with different strategies and characteristics, depending on how the algorithm

goes through the graph structure. As opposed to metaheuristic rule synthesis
methods, the rule synthesis methods based on graph grammars can be formally
studied, the characteristics of their synthesized rulesets can be deduced, and their
rule synthesis process is computationally very efficient. However, the limitation
of the formal algorithms based on graph grammars, including also our proposed
extended formalism, is that the rulesets will not necessarily be optimal under
realistic or real-world conditions. Consider the case of LinchpinR and Single-
tonR studied in this paper. While the SingletonR generates concurrent rulesets
by design, under realistic conditions, the advantage of concurrency is not always
observable. In other words, while the theoretical and inherent characteristics of
the rulesets designed by graph grammar algorithms can be deduced, they may
fail to perform accordingly well under realistic conditions. This highlights a limi-
tation of this approach as opposed to metaheuristic rule synthesis algorithms: the
effect of the environment and the conditions under which the SA process takes
place is not considered when deriving the rulesets. Along the same lines, a second
limitation is the fact that rule synthesis algorithms based on graph grammars
only generate the structure of the rulesets. The ruleset controller’s parameters,
i.e., the probabilities associated with the rules, are however undetermined and
need to be assigned through a different process.

To summarize, we believe that, in the long run, engineered programmable
self-assembling systems comprising miniature active modules have the potential
of several applications, most notably in space and medical domains, where ro-
bust structure formation out of miniature building blocks in a reversible and
re-programmable fashion is of significance. This work provides a graph grammar
formalism for formulating models and control methods for the SA of rotation-
ally symmetric robotic modules. Using this formalism, previously proposed rule
synthesis algorithms for SA of bodiless modules can be readily transformed into
algorithms able to generate rules directly applicable to symmetric robotic mod-
ules. Additionally, novel algorithms can be formulated for synthesizing ruleset
controllers for robotic SA (Haghighat & Martinoli, 2016b). Future work will be
followed on several fronts. We will investigate novel rule-synthesis algorithms al-
lowing for higher concurrency in the process by considering geometrical features
of the target. Additionally, optimization techniques will be considered towards
assigning optimal rule probabilities, which in this work were essentially empir-
ically chosen, as well as towards generating rulesets which are optimal with
regards to environmental characteristics. To this end, we will leverage the high-
fidelity calibrated submicroscopic simulation framework for providing a system-
atic way of evaluating the performance of rulesets with different parametriza-
tions of their associated rule probabilities. Finally, we plan to fully exploit our
setup to evaluate the performance of the synthesized rulesets in real experiments
involving up to 50 Lily robotic modules.

Acknowledgments.

The authors gratefully acknowledge the highly constructive and insightful assis-
tance of the reviewers of this manuscript. This work has been sponsored by the
Swiss National Science Foundation under the grant numbers 200021 137838/1
and 200020 157191/1.

Bibliography

Asadpour, Masoud, Mohammad Hassan Zokaei Ashtiani, Alexander Sproewitz,
& Auke Ijspeert 2009. Graph signature for self-reconfiguration planning of
modules with symmetry. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5295–5300. IEEE.

Ayanian, Nora, Paul J White, Adám Hálász, Mark Yim, & Vijay Kumar 2008.
Stochastic control for self-assembly of xbots. In International Design Engi-
neering Technical Conferences and Computers and Information in Engineering
Conference, pages 1169–1176. IEEE.

Bhalla, Navneet, Peter J Bentley, & Christian Jacob 2010. Evolving physical
self-assembling systems in two-dimensions. In International Conference on
Evolvable Systems, pages 381–392. Springer.

Bhalla, Navneet, Peter J Bentley, Peter D Vize, & Christian Jacob 2012. Pro-
gramming and evolving physical self-assembling systems in three dimensions.
Natural Computing, 11(3):475–498.

Bušev, M. 1994. Synergetics: Chaos, order, self organization. World scientific.
Di Mario, E., G. Mermoud, M. Mastrangeli, & A. Martinoli 2011. A trajectory-

based calibration method for stochastic motion models. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 4341–4347.

Fox, Michael, & Jeff Shamma 2015. Probabilistic performance guarantees
for distributed self-assembly. IEEE Transactions on Automatic Control,
60(12):3180–3194.

Fox, Michael J, & Jeff S Shamma 2010. Communication, convergence, and
stochastic stability in self-assembly. In IEEE International Conference on
Decision and Control, pages 7245–7250.

Ganesan, Varadarajan, & Mandar Chitre 2016. On Stochastic Self-Assembly of
Underwater Robots. IEEE Robotics and Automation Letters, 1(1):251–258.

Golestan, Keyvan, Masoud Asadpour, & Hadi Moradi 2013. A new graph sig-
nature calculation method based on power centrality for modular robots. In
International Symposium Distributed Autonomous Robotic Systems (DARS),
pages 505–516.

Haghighat, Bahar, Emmanuel Droz, & Alcherio Martinoli 2015. Lily: A Minia-
ture Floating Robotic Platform for Programmable Stochastic Self-Assembly.
In IEEE International Conference on Robotics and Automation (ICRA), pages
1941–1948.

Haghighat, Bahar, & Alcherio Martinoli 2016a. Characterization and validation
of a novel robotic system for fluid-mediated programmable stochastic self-
assembly. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2778–2783. IEEE.

Haghighat, Bahar, & Alcherio Martinoli 2016b. A Rule Synthesis Algorithm for
Programmable Stochastic Self-Assembly of Robotic Modules. In To appear
in proceedings of the International Symposium on Distributed Autonomous
Robotic Systems (DARS).

Haghighat, Bahar, Massimo Mastrangeli, Grégory Mermoud, Felix Schill, &
Alcherio Martinoli 2016a. Fluid-Mediated Stochastic Self-Assembly at Centi-
metric and Sub-Millimetric Scales: Design, Modeling, and Control. Microma-
chines, 7(8):138.

Haghighat, Bahar, Brice Platerrier, Loic Waegeli, & Alcherio Martinoli 2016b.
Synthesizing rulesets for programmable robotic self-assembly: A case study
using floating miniaturized robots. In International Conference on Swarm
Intelligence (ANTS), volume 9882 of LNCS, pages 197–209. Springer.

Klavins, Eric 2002. Automatic synthesis of controllers for distributed assembly
and formation forming. In IEEE International Conference on Robotics and
Automation (ICRA), pages 3296–3302.

Klavins, E. 2007. Programmable self-assembly. IEEE Control Systems, 27(4):43–
56.

Klavins, E., S. Burden, & N. Napp 2006a. Optimal Rules for Programmed
Stochastic Self-Assembly. In Proceedings of Robotics: Science and Systems,
Philadelphia, USA.

Klavins, Eric, Robert Ghrist, & David Lipsky 2006b. A grammatical approach
to self-organizing robotic systems. IEEE Transactions on Automatic Control,
51(6):949–962.

Lathrop, James I, Jack H Lutz, & Scott M Summers 2009. Strict self-assembly of
discrete Sierpinski triangles. Theoretical Computer Science, 410(4-5):384–405.

Lochmatter, Thomas, Pierre Roduit, Chris Cianci, Nikolaus Correll, Jacques
Jacot, & Alcherio Martinoli 2008. Swistrack-a flexible open source tracking
software for multi-agent systems. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4004–4010.

Matthey, Löıc, Spring Berman, & Vijay Kumar 2009. Stochastic strategies
for a swarm robotic assembly system. In IEEE International Conference on
Robotics and Automation (ICRA), pages 1953–1958. IEEE.

Michel, O 2004. WebotsTM: Professional Mobile Robot Simulation. Advanced
Robotic Systems, 1(1):39–42.

Napp, Nils, Samuel Burden, & Eric Klavins 2006. The statistical dynamics of
programmed self-assembly. In IEEE International Conference on Robotics and
Automation (ICRA), pages 1469–1476. IEEE.

O’Grady, Rehan, Anders Lyhne Christensen, & Marco Dorigo 2009. SWAR-
MORPH: multirobot morphogenesis using directional self-assembly. IEEE
Transactions on Robotics, 25(3):738–743.

Rothemund, Paul Wilhelm Karl 2001. Theory and experiments in algorithmic
self-assembly. University of Southern California.

Rubenstein, M., A. Cornejo, & R. Nagpal 2014. Programmable self-assembly in
a thousand-robot swarm. Science, 345(6198):795–799.

Salemi, Behnam, Mark Moll, & Wei-Min Shen 2006. SUPERBOT: A de-
ployable, multi-functional, and modular self-reconfigurable robotic system.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3636–3641.

Tolley, M., & H. Lipson 2010. Fluidic manipulation for scalable stochastic 3D
assembly of modular robots. In IEEE International Conference on Robotics
and Automation (ICRA), pages 2473–2478.

Whitesides, George M, & Bartosz Grzybowski 2002. Self-assembly at all scales.
Science, 295(5564):2418–2421.

Yan, Hao, Sung Ha Park, Gleb Finkelstein, John H Reif, & Thomas H LaBean
2003. DNA-templated self-assembly of protein arrays and highly conductive
nanowires. Science, 301(5641):1882–1884.

