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Brain-machine interfaces (BMIs) have been applied as new rehabilitation tools for motor

disabled individuals. Active involvement of cerebral activity has been shown to enhance

neuroplasticity and thus to restore mobility. Various studies have focused on the detection

of upper-limb movement intention, while the fewer study has investigated the lower-limb

movement intention decoding. This study presents a BMI to decode the self-paced

lower-limb movement intention, with 10 healthy subjects participating in the experiment.

We varied four influence factors including the movement type (dorsiflexion or plantar

flexion), the limb side (left or right leg), the processing method (time-series analysis based

on MRCP, i.e., movement-related cortical potential or frequency-domain estimation

based on SMR, i.e., sensory motor rhythm) and the frequency band (e.g., delta, theta,

mu, beta and MRCP band at [0.1 1] Hz), to estimate both single-trial and sample-based

performance. Feature analysis was then conducted to show the discriminant power

(DP) and brain modulations. The average detection latency was −0.334 ± 0.216 s in

single-trial basis across all conditions. An average area under the curve (AUC) of 91.0

± 3.5% and 68.2 ± 4.6% was obtained for the MRCP-based and SMR-based method

in the classification, respectively. The best performance was yielded from plantar flexion

with left leg using time-series analysis on the MRCP band. The feature analysis indicated

a cross-subject consistency of DP with the MRCP-based method and subject-specific

variance of DP with the SMR-based method. The results presented here might be further

exploited in a rehabilitation scenario. The comprehensive factor analysis might be used

to shed light on the design of an effective brain switch to trigger external robotic devices.

Keywords: brain-machine interface (BMI), electroencephalography (EEG), lower-limb movement, onset detection,

movement-related cortical potentials (MRCPs), sensory motor rhythms (SMRs)

1. INTRODUCTION

A brain-machine interface (BMI), also known as a brain-computer interface (BCI), is a
communication and control system that does not require any peripheral muscular activity (Wolpaw
et al., 2002). The brain activity is translated into control signals bypassing the physiological output
pathways, thereby enabling severely disabled individuals to interact with the surroundings. There
have been assistive BMIs for communication in paralysis patients with amyotrophic lateral sclerosis
and rehabilitative BMIs for end-users with chronic stroke (Naseer et al., 2014; Chaudhary et al.,
2016). Furthermore, many studies have demonstrated that active involvement of central nervous

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2017.00560
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2017.00560&domain=pdf&date_stamp=2017-11-23
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:whchen@buaa.edu.cn
mailto:jose.millan@epfl.ch
https://doi.org/10.3389/fnhum.2017.00560
https://www.frontiersin.org/articles/10.3389/fnhum.2017.00560/full
http://loop.frontiersin.org/people/441046/overview
http://loop.frontiersin.org/people/495235/overview
http://loop.frontiersin.org/people/662/overview
http://loop.frontiersin.org/people/2607/overview


Liu et al. Decoding of Self-paced Lower-Limb Movement Intention

system can improve neuroplasticity and thus enhance the
opportunity of motor recovery (Beldalois et al., 2011; Hatem
et al., 2016). In this respect, non-invasive EEG-based BMI has
been developed to decode the user’s movement intention based
on markers of active brain involvement in the preparation of the
desired movement.

Current state-of-the-art BMIs have employed two types of
EEG correlates to detect motor intention, i.e., movement-
related cortical potentials (MRCPs) and sensory motor rhythms
(SMRs). MRCPs are slow EEG fluctuations associated with
movement planning and execution, which occur as early as
1.5 s to 2 s before the actual movement onset (Kornhuber
and Deecke, 1965; Libet, 1993). Recent works have used
MRCPs to identify self-paced reaching movement intention
in a single-trial basis (Lew et al., 2012) and detect both
motor imagery and motor execution of ankle dorsiflexion in
real time (Xu et al., 2014a). MRCPs have also been used to
explore the differences between goal-directed and non-goal-
directed movements and the classification results showed that
better performance would be achieved when the movement was
directed toward a goal (Pereira et al., 2017). SMRs, on the
other hand, have also been used as an alternative to MRCPs for
movement intent decoding. Typical SMRs include event-related
desynchronization/synchronization (ERD/ERS), which refer to
the decrease and increase of power in given frequency intervals,
e.g., mu (8–12 Hz) and beta bands (13–30 Hz) (Pfurtscheller
and Da Silva, 1999). For instance, self-paced wrist movement
onset was detected from ERD-based EEG correlates from healthy
subjects (Bai et al., 2011). Another work by Ibáńez et al.
also used self-paced wrist extension as the movement type
to detect the motor intention from essential tremor patients
(Ibáńez et al., 2013). Besides, post-imagery ERS, known as
beta rebound, has also been investigated to detect movement
intention (Pfurtscheller and Solis-Escalante, 2009). The ERS is
observed after the movement onset with several seconds delay,
which hardly satisfies the underlying Hebbian principle for intent
detection (Xu et al., 2014a). Consequently, in this work, SMR-
based intent detection only refers to the power decrease or
ERD.

More recently, some BMIs have combined MRCPs and SMRs
in order to boost their decoding performance, as both of the
EEG correlates have been observed to provide complementary
information regarding the timing of volitional motor actions.
Voluntary upper-limb reaching movement onset was detected
with a logistic regression classifier combining the output of
an SMR-based naive Bayes classifier and an MRCP-based
matched filter (Ibáńez et al., 2014). Furthermore, movement
types and movement directions have been detected from pre-
movement EEG correlates. Stand-up and sit-down transitions
were classified in (Bulea et al., 2014) with both externally
triggered and self-paced paradigms. Another study by Lew
et al. shows that reaching directions can be classified from
MRCPs preceding movement onset in a self-paced paradigm
(Lew et al., 2014). Passive and active center-out reaching
movement decoding were further investigated in Úbeda et al.
(2017) and results showed that the low-frequency bands

carried most of the significant information for the kinematics
decoding

Previous studies have mainly relied on upper-limb movement
intention to build a brain switch and results indicated that
the decoding performance was influenced by movement types,
frequency bands and processing techniques, e.g., MRCP-
based and SMR-based methods. While upper-limb movement
intention has been shown to provide multifaceted and rich
information as control signals, several works have been done to
tackle the lower-limb movement decoding. Locomotor training
was evaluated with stroke patients and the effectiveness was
estimated comparing with home-exercise in Duncan et al.
(2011) and physiotherapy in Pohl et al. (2007). Body weight
supported treadmill training and conventional over-ground
walking training were further compared in Mao et al. (2015)
and a review of the techniques and therapies used in gait
rehabilitation after stroke can be found in Beldalois et al.
(2011). Besides, lower-limb motor intention can be used to
build an intuitive and natural BMI to trigger gait-related
movements. A recent study has shown that it was possible to
decode walking intention from cortical patterns generated in
the sensorimotor strip during robot-assisted gait training in
both healthy volunteers and stroke patients (Garcia-Cossio et al.,
2015).

For lower-limb motor intent detection, the most commonly
employed movement was ankle dorsiflexion of the dominant
leg (Niazi et al., 2011; Xu et al., 2014a), although there have
been also attempts to decode plantar flexion (Boye et al., 2008).
Dorsiflexion refers to flexion between the foot and the body’s
dorsal surface, where the toes are brought closer to the shin. In
contrast to dorsiflexion, plantar flexion refers to the movement
where the angle between the foot and the body’s plantar surface
decreases during the movement. In contrast to the works by
Xu et al. where a motorized unilateral orthosis was used to
conduct the movement (Xu et al., 2014b), in this study we
performed the experiment with a lower-limb gait trainer (Liu
et al., 2017). Consequently, limb side, i.e., moving left or right
leg, was considered as another influence factor for the intention
decoding.

Therefore, the motivation of this study is twofold. First,
to build a brain switch based on the decoding of self-paced
lower-limb movement intention. Second, to address the gap
in the literature with the analysis of influence factors on the
performance. In this work, we conducted experiment with 10
healthy individuals and compared the detection of the movement
intention with respect to four influence factors: movement
types (ankle dorsiflexion and plantarflexion), limb sides (left
and right legs), processing frameworks (MRCP-based method
in the time domain and SMR-based method in the frequency
domain) and frequency bands (e.g., mu, beta, and MRCP
band). To our knowledge, this is the first work reporting
comprehensive comparisons of all these influence factors on the
lower-limb movement intention detection. Our decoding and
comparison results can shed light on the design of a high accuracy
and short latency brain switch for lower-limb rehabilitation
applications.
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2. MATERIALS AND METHODS

2.1. Experimental Protocol and Set-Up
Ten healthy right-handed subjects (three females, average age
25.6 ± 2.9 years old) participated in the experiment. The
experiment conformed to the Declaration of Helsinki and the
protocol was approved by the local ethical committee (EPFL-
Brain and Mind Institute ethical committee). All participants
provided written informed consent for this study.

Each participant was measured during one single session,
which consisted of 6 runs (around 12 min each) with 3 min
rest in between. Participants were comfortably seated in a lower-
limb gait trainer, named the legoPress (Olivier et al., 2014).
The legoPress is a robotic device that can mobilize the user’s
legs driven by a BMI (Liu et al., 2017). It has integrated force
sensors to monitor the interactions at the pedal level. We
used two monitors in the recordings: the first one was placed
approximately 2 m away to display the instructions (e.g., visual
cues) to the subjects, and the other one was used to present the
produced pressure from the movements with a graphical user
interface (GUI) to the experimenter. The force was monitored in
real time to keep the isometry of the movement in each trial and
to eliminate corrupted trials.

The subject performed self-paced dorsiflexion for 3 runs and
plantar flexion for the other 3 runs with a crossover design. Each
run consisted of 50 trials with left and right directional cues
randomized and balanced inside. Figure 1 presents the protocol
of the experiment. Each trial began with a cue showing the
number of performed trials, followed by an idle period (baseline)
of 2 s and a preparation period of more than 2 s. The preparation
period refers to the time interval after the directional cue but
before the actual movement. The subject was instructed to wait
at least 2 s to execute the movement after the directional cue,
but with no explicit or implicit count of the time. Trials with the
preparation period less than 2 s were removed to avoid possible
contamination with instructional visual stimuli.

2.2. Data Acquisition and Preprocessing
EEG, EMG, and EOG signals were synchronously acquired using
an ActiveTwo measurement system (BioSemi instrumentation,
Amsterdam, Netherlands), with a sampling frequency of 2048
Hz. EEG was recorded using 32 electrodes arranged in the
modified 10/20 international standard. Three EOG electrodes
were placed above the nasion and below the outer canthi of the
eyes to capture both horizontal and vertical EOG components.
Besides, muscular activity was inspected by 4 EMG electrodes to
detect the actual movement onset. In dorsiflexion runs, two pairs
of surface EMG (sEMG) electrodes were placed on the tibialis
anterior muscles of each leg. The sEMG electrodes were placed
on the tibialis posterior muscles for plantar flexion runs. This
configuration was shown to best capture the maximum voluntary
contraction (MVC) of the muscles (Soma et al., 2013).

Data acquisition, visualization, and processing were
conducted under a customized Python framework (Lee
et al., 2017). Trigger values were synchronized with the
electrophysiological signals via a USB to parallel port adapter
from the legoPress. The directional cues were stored in local files

and trials when the subject executed the movement incorrectly
were removed in the post processing. The actual movement
onset was detected from sEMG based on a data conditioning
and threshold-based method (Solnik et al., 2010). The data
conditioning included band-pass filtering at 30-300 Hz using a
sixth order Butterworth filter, the Teager-Kaiser energy operator
(TKEO), rectification and low-pass filtering at 50 Hz using a
second order Butterworth filter. The TKEO was defined as,

ψ[x(n)] = x(n)2 − x(n− 1)x(n+ 1) (1)

where x was the EMG signal and n was the sample index. This
conditioning was shown to reduce high-frequency noise and
provide a smoothed envelope of the signal (Solnik et al., 2010).
After data conditioning, we calculated the threshold as

T = µ+ hθ (2)

where µ and θ were the mean and standard deviation of the
reference signal. The reference signal was chosen as [0, 1] s with
respect to the directional cue since there were no sudden muscle
activities during this period. h was a preset variable defining the
level of the threshold. In this study, we empirically set h to 10.
The actual movement onset was identified as the first time point
when there were more than 50 consecutive samples exceeded
the threshold T. We removed the trials in which no movement
onset was detected by this method. Visual inspections were also
performed to remove noisy trials.

As the EEG signals might be contaminated by the eye
movement, we performed artifact removal by calculating the
correlation between EOG and EEG channels. We extracted the
idle periods (baseline) and used a regression-based method to
evaluate the influence of both horizontal and vertical EOG
component on each EEG channel (Lew et al., 2012). In contrast to
eliminating peripheral channels (Zhang et al., 2015), we kept all
the 32 channels in the preprocessing but only removed the EOG
component.

2.3. Electrophysiology Analysis
Grand average EEG analysis was first performed to visualize
the brain activity. The EEG signals were spatially filtered by
a common average reference (CAR) and a weighted average
filter (WAVG), which had been proved to improve the detection
performance of motor intention (Khaliliardali et al., 2015). A
4th order non-causal Butterworth filter with cutoff frequencies
between [0.1, 1] Hz was applied to filter the data. While the grand
average analysis was used to show the EEG scalp distributions,
we extracted MRCPs and SMRs from the raw signals to assess the
pre-movement cortical activity.

For MRCP analysis, we applied CAR to remove the global
background activity. The signals were filtered using the same
Butterworth filter (4th order, zero-phase, at [0.1, 1] Hz) and then
down-sampled to 16 Hz. The EEG data were segmented into 8 s
long epochs from −6 to 2 s with respect to the actual movement
onset. Each epoch was baseline corrected with the average activity
between [1, 2] s with respect to the baseline cue.

On the other hand, for SMR analysis, the EEG data were
first spatially filtered by a small Laplacian, i.e., the signal of
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FIGURE 1 | Protocol of the experiment. The movement type refers to ankle dorsiflexion and plantar flexion, and the limb side refers to left and right legs. The

movement type was consistent within each run and the limb side was indicated by the directional cues.

each channel was referenced to the averaged potentials from the
nearest orthogonal electrodes. Then the data were down-sampled
to 512 Hz. The time-frequency representation of the power was
calculated using Morlet wavelets with 5 cycles in the frequency
band of 0.1–30 Hz (López-Larraz et al., 2014; Sburlea et al., 2015).
Each trial contained samples from −6 to 2 s with respect to
the movement onset. Bootstrap statistics were computed using
a spectral baseline window from [−4, −3] s with respect to the
actual movement onset at a significance level of α = 0.05, and
non-significant values were zeroed out.

2.4. Feature Extraction and Classification
The pipeline from preprocessing, feature extraction, and
classification were performed on each movement type and limb
side. For both EEG correlates, the features were calculated over
1 s windows shifted with the step of 125 ms on the 8 central
channels (FC1, C3, CP1, Pz, CP2, FC2, Fz, and Cz). The EEG
traces in the time domain were used as features for the MRCP-
based method. In contrast, we calculated the power spectral
density (PSD) using a Welch’s method as the features for the
SMR-based method (pwelch function implemented in Matlab).
The Welch’s method first segmented the time series into different
intervals. A modified periodogram was computed for thses
segments and the resulted values were averaged to produce the
estimate of the PSD. The PSD was estimated using Hamming
windows of 0.75 s overlapped of 50%, and then log-transformed
to fit the normality.

For feature extraction, we applied the canonical variant
analysis (CVA), also known as multivariate discriminant analysis,
which had shown to be advantageous for BMI (Galán et al., 2007).
The intuition of CVA is to extract canonical discriminant spatial
patterns (CDSPs) whose directions maximize the separability in
the features between the given classes. By extracting CDSPs from
the original feature space, CVA ranked the discriminant power
(DP) based on the differences between the given classification
tasks. The features were extracted from preprocessed EEG signals
with different units. For the SMR-based method, the features
were PSD values (uV2/Hz) with channel and frequency band
pairs; While for the MRCP-based method, the features were EEG
traces (uV) with channel and time point pairs.

The amplitudes or power estimations obtained from −1.5
to 0 s with respect to the movement onset were labeled as
preparation epochs and the others (from −6 to −1.5 s and from
0 to 2 s) were labeled as idle epochs. The 10 most discriminative
features ranked by CVA were selected for classification. We
used linear discriminant analysis (LDA) to classify preparation
and idle epochs (classify function implemented in Matlab). We
assumed that the two classes had the same corvarience matrixes
and the prediction was performed based on Bayes theorem.
The sample-based classification was conducted using a 5-fold
cross validation, where the chronological order of the data was
maintained. Since the number of idle and preparation epochs was
imbalanced, we further reported the results with an area under
the curve (AUC) in the receiver operating characteristics (ROC)
space, which represented the trade-off between the false positive
rates (FPR) and true positive rates (TPR). It is worth noting that
the CVA was only performed on the training data in each fold.

Furthermore, we performed single-trial classification to
evaluate the latency. The amplitudes or power estimations
computed exactly at the actual movement onset (with the same
1-s window from−1 to 0 s) were labeled as the preparation period
and the estimations at directional cue were labeled as the idle
period. We used the same CVA and LDA for feature selection
and classification over 5-fold cross validation. To evaluate the
single-trial performance, we used 1 s window shift every 125ms
from −4 to 2 s with respect to the actual movement onset.
The chance level was computed by shuffling the training labels
and repeated the 5-fold cross validation for 1,000 times. When
3 consecutive samples had a true positive rate significantly
above chance level (two-sample t-test, p < 0.05, Bonferroni
correction), we selected the first time point as the detection
latency.

2.5. Post-hoc Feature and Influence Factor
Analysis
We did a post-hoc analysis to assess the relevant features for
classification and the impact of the influence factors on the
performance. We first measured the discriminability between the
preparation period and idle period. A modified CVA was used to
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calculate the discriminant power (DP) of the two classes. Given
the feature number c, class number k and feature matrix T (with
the dimension of c× (k− 1)), the discriminant power of a single
feature can be calculated as,

DPe = 100×

∑N
i= 1

∑k− 1
u= 1 γ

i
ut

i
eu

2

∑N
i= 1

∑c
e= 1

∑k−1
u= 1 γ

i
ut

i
eu

2
(3)

whereN was the number of data chunks across different influence
factors, teu was the element of T, and γu was the normalized
eigenvalues of feature matrix defined as,

γu =
λu

∑k−1
u= 1 λu

(4)

where λ was the eigenvalues of the CDSP matrix. Compared
with averaging DP values across all the data chucks, the modified
CVA was able to better capture the variations among different
influence factors. It also penalized those features which were
not consistently discriminant. Furthermore, DP distributions
were estimated by averaging the discriminant power across the
frequency bands and time points for the SMR-based and MRCP-
based method, respectively.

The four influence factors can be categorized into
experimental conditions (movement types and limb sides) and
processing methods (MRCP-based or SMR-based framework
with different sub-frequencies). In order to evaluate the
performance with different frequency bands, we conducted the
movement onset detection with the signals filtered in certain
frequency intervals, i.e., MRCP ([0.1, 1] Hz), delta ([1, 4] Hz),
theta ([4, 7] Hz), mu ([8, 13] Hz), low beta ([14, 21] Hz), and
high beta ([22, 30] Hz) bands. In contrast to manually setting
the feature number to 10, a grid search was used to optimize
the feature number during feature selection. Finally, we built a
concatenate model with the combination of MRCP-based and
SMR-based features and used this model to estimate both the
classification performance across all the six frequency bands and
the detection latency in a single-trial basis.

3. RESULTS

3.1. Electrophysiology Analysis
Figure 2 shows the brain activity at different time points averaged
over both subjects (N = 10) and conditions (movement types

and limb sides) across all 32 channels. We observed that the
negativity was spatially localized in the central area and started
around −1.5 s with respect to the actual movement onset. The
negative potentials were prominent elicited over regions involved
in motor planning and motor execution. Furthermore, grand
average EEG correlates, i.e., MRCPs and SMRs, are shown in
Figure 3. The electrophysiology results observed in this study are
consistent with previous literature on both upper-limb (López-
Larraz et al., 2014) and lower-limb works (Sburlea et al., 2015).
Statistical test on the EEG signals from Cz found that there was
a significant difference (two-sample t-test, p < 0.05) between
the movement types, while no significant difference (two-sample
t-test, p> 0.05) was observed between the limb sides.

3.2. Classification Results
Both the sample-based and single-trial classification were
performed separately across the influence factors. Since the
MRCP has been proved prominent in the frequency band
of [0.1,1] Hz (Lew et al., 2012; Garipelli et al., 2013), we
only exploited this narrow band in the MRCP-based method.
The performance of SMR-based method across sub-frequency
bands will be discussed in the following section. The remaining
influence factors include the movement type, limb side, and
processing method. An average area under the curve (AUC) of
91.0 ± 3.5% and 64.7 ± 4.3% was obtained for the MRCP-based
and SMR-based method, respectively. No statistically significant
difference (two-sample t-test, p > 0.05, Bonferroni correction)
was found between left and right legs, although the performance
of left leg was slighter better than right leg with the p-value close
to the significance level (p = 0.087). We pooled the trials with
left and right legs for sample-based classification. It is worth
noting that we also performed the MRCP-based processing for
detecting movement onset with different frequency bands. The
classification results were close to chance level (Müller-Putz et al.,
2008) and therefore is not reported.

Figure 4 shows the AUC concerning the movement types
and processing methods. Plantar flexion with the MRCP-based
method reached the highest AUC (92.5± 2.2%). A repeated two-
way ANOVA on AUC found no significant differences between
movement types (p = 0.131) and no significant interaction
(p = 0.422) between these two factors. However, a significant
difference (p < 0.01) was observed between processing methods
with the MRCP-based method performed better. Besides, the
plantar flexion with the MRCP-based method also reached the

FIGURE 2 | Topographic representations of the brain activity at different time points from −2.5 s to 1.5 s with respect to the actual movement onset.
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FIGURE 3 | Grand average electrophysiology signals around the motor cortex over all subjects and conditions. The actual movement onset is shown with vertical

dashed lines. (A) Grand average time-amplitude representations at [0.1, 1] Hz. (B) Grand average time-frequency representations at [0.1, 30] Hz. Only significant

values (bootstrap p < 0.05) are colored and non-significant values are plotted in green.
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FIGURE 4 | Sample-based performance (AUC) for different movement types

and processing methods. We use dorsi and plantar to represent dorsiflexion

and plantar flexion for simplicity. The boxplot shows the median (central mark)

and 25th/75th percentiles (edges of the box) of the AUC values.

lowest error rate (14.7 ± 2.7%). Another repeated two-way
ANOVA was performed on the error rate with similar results
(p= 0.080, 0.667 and< 0.01, respectively).

Single-trial classification of the movement intention detection
was performed across the three influence factors: the movement
type, limb side, and processing method. The results of one
representative subject for the two processing framework are
shown in Figure 5 (upper and middle panels). The black curves
display the mean detection rate across the 5 folds with the
standard deviation in gray shadows. The results of the latency
(detection time) over all subjects with these influence factors
are displayed in Table 1. The average detection latencies for
all subjects across all influence factors were −0.334 ± 0.216 s,
ranging from −1 to 0.25 s with respect to the movement onset.
A repeated three-way ANOVA on the latency found no three-
way interaction (p = 0.951) and no two-factor interactions
(p = 0.426, 0.951, 0.668). No significant difference (two-sample
t-test, p > 0.05, Bonferroni correction) was observed between
the latencies of the processing method. We also observed
that the majority of the MRCP-based detection occurred at
around 300 ms before the actual movement onset, which
was in agreement with previous works (Lew et al., 2012;
Ibáńez et al., 2014). For the SMR-based detection, the average
latency was similar to the MRCP-based results, whereas there
were several detections occurring after the movement onset,
which might be caused by the false negatives during the
movement preparation periods. Furthermore, Table 2 displays
the single-trial detection performance with the concatenate
model using both MRCP and SMR features. The result of

FIGURE 5 | Single-trial detection performance using the MRCP-based

method (upper), the SMR-based approach (middle), and the concatenate

model combining MRCPs and SMRs (lower) from a typical subject (s10). The

detection was performed from −4 to 2 s with respect to the actual movement

onset. The blue lines display the detection points when consecutive 3 samples

have a detection rate significantly above the chance level (p < 0.05). The

chance level is shown in red dashed lines. The black curves and gray regions

depict the mean and standard deviation of the detection rate.

one representative subject for this processing framework is
shown in Figure 5 (lower panel). We observed that similar
results were obtained between the MRCP-based method and the
concatenate approach, indicating that MRCPs might be more
frequently selected as the discriminative features in the single-
trial detection.

3.3. Feature and Influence Factor Analysis
Figure 6 presents the DP maps attained by both processing
methods using the modified CVA. For the MRCP-based method,
central channel Cz in the last two windows before movement
onset were the most discriminative features. Besides, CP1, Pz,
and C3 in the last windows before actual movement were also
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TABLE 1 | Single-trial detection performance (latency) for each subject with different influence factors.

Subject ID MRCP-based method SMR-based method

dorsiL dorsiR plantarL plantarR dorsiL dorsiR plantarL plantarR

s1 −0.125 −0.250 −0.250 −0.125 −0.250 −0.500 −0.125 −0.375

s2 −0.250 −0.375 −0.125 −0.375 −0.250 +0.125 −0.250 −0.625

s3 −0.750 −0.500 −0.500 −0.500 −0.250 −0.875 +0.125 −0.125

s4 −0.375 −0.375 −0.750 −0.750 −0.500 −0.375 −0.750 −1.000

s5 −0.375 −0.625 −0.250 −0.875 −0.500 +0.125 −0.750 −0.375

s6 −0.250 −0.375 −0.375 −0.375 −0.500 −0.500 +0.250 −0.125

s7 −0.375 −0.375 −0.500 −0.500 −0.125 −0.750 −0.500 −0.250

s8 −0.250 −0.375 −0.375 −0.500 −0.375 −0.500 −0.250 −0.375

s9 −0.250 −0.500 −0.375 −0.375 −0.125 −0.500 −0.125 −0.250

s10 −0.375 −0.375 −0.250 −0.375 −0.250 −0.375 −0.500 −0.125

Mean ± Std −0.338 ± 0.167 −0.413 ± 0.103 −0.375 ± 0.177 −0.475 ± 0.211 −0.313 ± 0.147 −0.413 ± 0.323 −0.288 ± 0.339 −0.363 ± 0.273

The unit is second with respect to the actual movement onset.

TABLE 2 | Single-trial detection performance (latency) for each subject with the

combination of MRCPs and SMRs.

SubjectID dorsiL dorsiR plantarL plantarR

s1 −0.125 −0.250 −0.125 −0.250

s2 −0.250 −0.250 −0.125 −0.125

s3 −0.500 −0.500 −0.375 −0.375

s4 −0.375 −0.375 −0.500 −0.500

s5 −0.375 −0.500 −0.250 −0.500

s6 −0.250 −0.375 −0.375 −0.250

s7 −0.250 −0.500 −0.500 −0.250

s8 −0.250 −0.375 −0.250 −0.375

s9 −0.250 −0.500 −0.250 −0.250

s10 −0.375 −0.375 −0.375 −0.375

Mean ± −0.300 ± 0.105 −0.400 ± 0.099 −0.313 ± 0.135 −0.325 ± 0.121

Std

The unit is second with respect to the actual movement onset.

discriminative between the preparation and idle periods. For the
SMR-based method, the most discriminative features distributed
at the high beta band at parietal midline vertex. Bins in the
frequencies [9, 12] Hz (mu band) and [1, 4] Hz (delta band)
were also selected in various channels. Based on the DP maps, it
seems that the MRCP-based and SMR-based processing methods
carried complementary information. Scalp distributions of the
discriminate power are shown in Figure 7. Each topographicmap
shows the weights assigned by the modified CVA. We observed
that the central areas of the motor cortex were the regions with
the highest weight for the MRCP-based method. For the SMR-
based method, a wide distribution was found along the motor
cortex, indicating the subject-specific brain modulations.

Figure 8 summarizes the sample-based performance for the
SMR-based method across different frequency bands. We found
a significant difference (one-way repeated measures ANOVA

with factor frequency band, p < 0.01) between frequency bands.
Multiple comparisons with the Tukey-Kramer critical value
showed that the mean AUC of the full band (68.2 ± 4.6%) was
significantly larger than the mean AUC from other frequency
bands. Similar results were also found with one-way repeated
measures ANOVA and multiple comparisons on the error rate
over the factor of frequency bands. Besides, the detection
results based on the combination of MRCP-based and SMR-
based methods are shown in Figure 9. No significant difference
was found (one-way repeated measures ANOVA with factor
frequency band, p > 0.05) in both AUC and error rate between
frequency bands. Finally, the performance of the combination of
features was better than the SMR-based method but worse than
the MRCP-based method (one-way repeated measures ANOVA,
p < 0.01, and multiple comparisons with the TukeyKramer
critical value), which was consistent with previous works with
both upper-limb and lower-limb movement intention detection
(Ibáńez et al., 2014; Sburlea et al., 2015).

4. DISCUSSION

In this paper, we studied the problem of detecting a single lower-
limb movement from EEG signals comparing four influence
factors on the performance, i.e., the limb side, movement type,
processing framework and frequency band. We found that
plantar flexion with left leg using the MRCP-based method in
[0.1, 1] Hz was the optimal combination in terms of classification
performance, i.e., AUC. The performance of the MRCP-based
method in a single-trial basis was significantly better than
that of the SMR-based method. For both processing methods,
the results from feature analysis were consistent with the
electrophysiological results. We also observed that a combination
of both features could boost the detection performance. The
overall detection and comparison with the influence factors in
this study could shed light on the design of more practical BMI
systems.
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FIGURE 6 | DP maps calculated by the modified CVA to show the consistency in feature selection across all subjects and conditions. The features are the channels

and time points in the 1-s window for the MRCP-based method and channels and frequency bands for the SMR-based method.

FIGURE 7 | Topographic maps to show the normalized DP index of each channel averaged across all subjects and conditions. The weights were assigned by the

modified CVA for the MRCP-based and SMR-based methods.

In recent years, there have been an increasing number of
studies investigating the decoding of movement onset with
MRCP-based techniques (Bhagat et al., 2016; Pereira et al., 2017),
SMR-based approaches (Bai et al., 2011; Planelles et al., 2014),
and the concatenated methods (Ibáńez et al., 2014; Sburlea et al.,
2015). We observed from our study that the EEG correlates
of lower-limb movement intention shared common features
with those of upper limbs. The practical significance of the
current work in a translational perspective is the single trial
classification of the movement intention detection. We showed

the applicability of themethod in people that have plastic changes
of their brain and brain responses because of the neurological
disease.

Commonly used metrics to estimate the performance of onset
detection include the true positive rate (TPR), false positive/min,
and detection latency (Ibáńez et al., 2014; Xu et al., 2014a;
Lin et al., 2016). As the main goal of this work is to estimate
the influence factors on the performance, we only use the
detection latency in a single-trial basis and AUC for sample-
based classification as our metrics. We obtained an average
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FIGURE 8 | Sample-based performance (AUC) across different frequency

bands using the SMR-based processing method. The meaning of the boxplot

was the same as that in Figure 4.

detection latency of −0.334 ± 0.216 s across all conditions and
the AUC of 91.0 ± 3.5% and 64.7 ± 4.3% for MRCP and SMR
detection, respectively. Comparable works can be found in Bai
et al. where the latency was 0.62 s and the successful prediction
rate was 90% (Bai et al., 2011), Lew et al. where the latency was
−0.460 ± 0.085 s and the classification performance was 92%
(Lew et al., 2012), and Khaliliardali et al. where the latency was
−0.320 ± 0.200 s and the classification performance was 83.0 ±
13.0% (Khaliliardali et al., 2015).

The influence factors proposed by the current work have
been partially studied in previous works. For example, analysis
of frequency band in the upper-limb movement intention
detection was conducted in Garipelli et al. (2013) and Lew
et al. (2012) with a cue-based (CNV) and self-paced (BP)
paradigm, respectively. Different processing methods were
compared in Sburlea et al. (2015), i.e., MRCP-based, SMR-
based, concatenated of both features, and the combination of
both model outputs. No significant difference was also found
concerning the limb side, i.e., left or right foot, in that paper,
which was consistent with the current study. Although recent
works have also compared influence factors during movement
imagination (Xu et al., 2015), in this study we have focused
on real movements because our aim is to integrate a brain
switch in a robotics rehabilitation framework, where patients
have to attempt the movement rather than just imagine it.
Another potential influence factor concerning motor execution
is the type of the paradigm, e.g., cue-based (reaction tasks)

FIGURE 9 | Mean and standard deviation of sample-based performance

(AUC) across different frequency bands using the combination of MRCP and

SMR features.

or self-paced. Previous work on sitting and standing intention
decoding found that there was no significant difference in
classification accuracy between these two paradigms (Bulea et al.,
2014).

In order to build a practical brain switch in a closed-loop
BMI, detection of movement intention with a short latency
was a prerequisite. Causality of the spectral filter is the main
issue when transferring from offline to online works. A drop
of TPR would be expected in the online decoding with MRCP-
based methods (Niazi et al., 2011; Xu et al., 2014a). In the
current work, although the MRCP-based method was shown
to be superior in classification performance, the SMR-based
method might be more suitable for online deployment. A
direct comparison of the results from this study with previous
works is difficult due to the different settings and performance
metrics. Still, results of the electrophysiology and feature analysis
in the current work were consistent with the literature (Bai
et al., 2011; Lew et al., 2012; Bulea et al., 2014; Sburlea et al.,
2015). The comparison of impact factors presented in this
study could serve as a guidance for the design of a practical
BMI. Future work would be devoted to building this brain
switch in a closed loop, with visual or proprioceptive feedback
provided during an online experiment to trigger the gait trainer.
Similar work had been conducted by Bhagat et al. where
successful intent detection was used to trigger an upper-limb
exoskeleton (Bhagat et al., 2016). Moreover, our results on
healthy subjects need to be validated on patients as the clinical
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target. Previous studies had found that similar results were
obtained in movement intention detection from both healthy
subjects and patients (López-Larraz et al., 2014; Xu et al.,
2014c), although medication status could be another influence
factor in the clinical environment. Further studies with patients
should be carried out toward the gait rehabilitation in clinical
trials.
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