000234047 001__ 234047
000234047 005__ 20181203024926.0
000234047 0247_ $$2doi$$a10.1515/jgth-2017-0019
000234047 022__ $$a1433-5883
000234047 02470 $$2ISI$$a000418567900001
000234047 037__ $$aARTICLE
000234047 245__ $$aIrreducible representations of simple algebraic groups in which a unipotent element is represented by a matrix with a single non-trivial Jordan block
000234047 260__ $$aBerlin$$bWalter De Gruyter Gmbh$$c2018
000234047 269__ $$a2018
000234047 300__ $$a20
000234047 336__ $$aJournal Articles
000234047 520__ $$aLet G be a simply connected simple linear algebraic group of exceptional Lie type over an algebraically closed field F of characteristic p >= 0, and let u is an element of G be a non-identity unipotent element. Let phi be a non-trivial irreducible representation of G. Then the Jordan normal form of phi(u) contains at most one non-trivial block if and only if G is of type G(2), u is a regular unipotent element and dim phi <= 7. Note that the irreducible representations of the simple classical algebraic groups in which a non-trivial unipotent element is represented by a matrix whose Jordan form has a single non-trivial block were determined by I. D. Suprunenko [21].
000234047 700__ $$0243571$$aTesterman, Donna M.$$g133751$$uEcole Polytech Fed Lausanne, Stn 8, CH-1015 Lausanne, Switzerland
000234047 700__ $$aZalesski, Alexandre E.
000234047 773__ $$j21$$k1$$q1-20$$tJournal Of Group Theory
000234047 909C0 $$0252563$$pGR-TES$$xU12576
000234047 909CO $$ooai:infoscience.tind.io:234047$$pSB$$particle
000234047 917Z8 $$x133751
000234047 937__ $$aEPFL-ARTICLE-234047
000234047 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000234047 980__ $$aARTICLE