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Abstract. The e�ects of plasma shaping, in particular triangularity (δ), on
temperature �uctuations in the Tokamak à Con�guration Variable (TCV) have
been studied using the Correlation Electron Cyclotron Emission (CECE) system.
It has been found that, in ohmic discharges with comparable density pro�les,
the relative �uctuation level measured at the edge is signi�cantly reduced in
plasmas with negative triangularity with respect to positive triangularity ones.
Additionally, the critical temperature gradients for the onset of turbulence are
observed to increase in the negative triangularity plasmas. An estimation of
the correlation length of the �uctuating structure shows smaller structure size
in the negative triangularity cases, which are known to be associated with
improved con�nement. Together, these observations suggest that changing
triangularity from positive to negative strongly in�uences the nature of the
turbulent �uctuations excited in the plasma.

‡ See author list of S. Coda et al 2017 Nucl. Fusion 57 102011
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1. Introduction

One of the long-standing problems in magnetic
con�nement fusion research is the fact that measured
heat and energy �uxes are found to be at least one
order of magnitude larger than those predicted by
neoclassical theory. This is generally attributed to the
interplay between multi-�eld micro�uctuations such as
those that can be generated by turbulent phenomena.
A thorough study of how plasma characteristics
in�uence these �uctuations is thus very important.

The Tokamak à Con�guration Variable (TCV) [1]
is a medium sized tokamak (major radius R = 0.88 m,
minor radius a = 0.25 m) with up to 1.53 T magnetic
�eld on axis and up to 1 MA plasma current. Its
main asset is the unparalleled shaping capability that
allows the investigation of plasmas with elongation
0.9 < κ < 2.8 and triangularity [2] −0.7 < δ < 1.

These shaping capabilities have been exploited
in past experiments, where it was found that
one parameter strongly in�uencing electron heat
transport is the plasma triangularity (δ)[3]. It has
in fact been observed that in L-mode discharges
with similar density pro�les, the same temperature
pro�le can be achieved using half of the Electron
Cyclotron Resonance Heating (ECRH) power in
negative triangularity plasmas with respect to positive
triangularity ones [4][5]. In discharges where the same
heating power has been applied, the electron heat
transport has been found to be strongly reduced from
the edge to ρvol = 0.4 [5], where ρvol is de�ned
as
√
V/VLCFS where VLCFS is the plasma volume

included in the last closed �ux surface.
Moreover this di�erence has been found to

decrease for increasing e�ective collisionality, de�ned
as the ratio between the electron-ion collision frequency
and the curvature drift frequency. This can be
approximated as νeff = 0.1∗R∗Zeff ∗ne/T 2

e [5] where
R is the major plasma radius. Successive gyrokinetic
simulations [6][7][8] have shown that turbulence
in these plasmas was mainly Trapped Electron
Modes (TEM) dominated, and since collisionality
acts as a stabilizing factor for this type of modes,
it has been suggested that some change in the
underlying turbulence characteristics may be tied to
the shaping e�ect on �uctuations. This earlier works,
however, only focused on macrospcopic quantities
related to transport (electron heat �ux, electron heat
conductivity and electron energy con�nement time)
due to the lack of �uctuations measurements on TCV
at the time [3][4][5].

Despite the magnitude of δ (positive or negative)
decreasing quickly when moving from the edge
to the plasma interior, the observed con�nement
improvement extends well into the core (ρvol < 0.4)[5].
A coherent picture emerges based on a distinction

between regions of di�erent sti�ness within the plasma.
In this paper the same de�nition of sti�ness used in [9]
is considered: the existence of a critical temperature
gradient, which cannot e�ectively be exceeded, in that
increases in the heat �ux cause an increase in the
level of turbulence, instead of a further increase in
the temperature inverse scale length (R/LTe

= R ∗
dlog(Te)/dR). In TCV it has indeed been observed,
particularly in L-mode, limited plasmas, that a region
exists around the plasma mid-radius (tipically from the
sawtooth inversion radius to ρvol ∼ 0.8), where the Te
and ne scale lengths are generally insensitive to various
plasma parameters, including edge triangularity [9].
This will be referred to in the following as the sti�
region. For more external radial locations, instead,
the pro�les can be �t with a uniform gradient that
is found to change when changing plasma conditions
and thus this plasma region is considered to be non-
sti�. Thus, even if the local �ux-surface triangularity
magnitude quickly decreases when moving towards the
core, a localised con�nement improvement up to the
outer edge of the sti� region would be carried all the
way across it by its constant logarithmic gradient.

Gyrokinetic simulations have also been employed
to investigate the e�ects of shaping on turbulence.
All these simulations were performed at the ion scale,
hence excluding Electron Temperature Gradient mod-
des (ETG) and taking into accounts electromagnetic ef-
fects, which were found to be unimportant. Non-linear
simulations run with the �ux tube GS2 code [10], using
the experimental pro�les and equilibria of the ECRH
heated experimental cases in [5], found that Trapped
Electron Modes (TEM) are the dominant instability.
Furthermore, they reproduced the heat �ux variation
at the plasma edge within error bars and found a par-
tial stabilization of TEM in the negative triangularity
case [6]. Other non-linear simulations performed using
the GENE code [11], on the same experimental pro�les
and equilibria, again found TEM dominated �uctuati-
ons, reproduced the heat �ux di�erence at the plasma
edge and suggested that, to reproduce the penetration
of the heat �ux reduction in the plasma core, global
simulations would be necessary. Moreover, indications
were found that changing triangularity from positive
to negative increases the critical electron temperature
gradients for the saturated heat �ux [7][8].

2. New experiments

2.1. Pro�les analysis

In 2016, new experiments were performed where �uc-
tuations diagnostics, in particular the Correlation
Electron Cyclotron Emission (CECE), were available.
CECE [12][13][14][15][16][17][18] is a technique that
allows spatially localised measurements of low wave-
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Figure 1: Pro�les of the model discharges for the two
most extreme shapes. a) Electron density. b) Electron
temperature. c) Ion temperature. d)Electron/ion
temperature ratio. e) Normalized density scale-
length. f) Normalized electron temperature scale
length. g) Normalized ion temperature scale length.
h) Inverse e�ective collisionality. The electron pro�les
are calculated from Thomson scattering measurements
while ion temperature and Zeff from charge exchange
recombination spectroscopy measurements. Colors
online.

number radiative temperature �uctuations. It exploits
cross-correlation analysis on close but not overlapping
plasma volumes to detect small �uctuations (<1%).
The CECE system of TCV [19] has recently been up-
graded with a new Intermediate Frequency (IF) section
containing six frequency tunable YIG �lters with 100
MHz bandwidth granting very high (< 1 cm) spatial re-
solution in the radial direction. This, combined with a
steerable line of sight and the �exibility of TCV, allows
the measurement of small (< 1%) electron temperature
�uctuations with kθ < 1.12cm−1 over a large fraction
of the plasma cross-section. The signals are sampled
at 1.75 MHz and low-pass �ltered at 450 kHz before
acquisition to improve the signal to noise ratio.

The e�ects of triangularity on the relative �uc-
tuations amplitude were studied in ohmic dischar-
ges with Ip = 225kA, comparable density pro�-
les with line averaged density of 21019 m−3, δ =
+0.5,+0.3,−0.3,−0.4 and where the electron tempe-
rature was left free to evolve. The resulting pro�les are

shown in �gure 1. Electron temperature and density
pro�les shown here are calculated from measurements
from the Thomson scattering diagnostic [20], while ion
pro�les were obtained through the charge exchange re-
combination spectroscopy diagnostic of TCV [21]. Ex-
amples of the resulting plasma cross sections for the
δ = +0.5 and δ = −0.4 are shown in �gure 3.

As expected, the negative triangularity discharges
show a higher temperature over the whole pro�le.
Note that this also implies that the ohmic power,
calculated as the product of the plasma current and
the voltage measured by the �ux loops around the
vacuum vessel in a stationary phase, actually decreases
in going from positive to negative triangularity, from
329 kW at δ = +0.5 to 287 kW at δ = −0.4.
Both e�ects therefore contribute to the con�nement
improvement. In particular, comparing the discharges
with δ = +0.5 with respect to those with δ = −0.4,
a central region where the temperature ratio is almost
constant at ∼ 1.4 can be distinguished between 0.45 <
ρvol < 0.7 (�gure 2). This is what is expected to
happen in the sti� region of a plasma. A con�rmation
of this hypothesis can be found by looking at the
normalized temperature gradients for the di�erently
shaped discharges (�gure 1f). In the same radial range,
despite the di�erences in the temperature pro�les,
the value of the inverse temperature scale length is
very similar across the di�erent shapes considered.
For ρvol > 0.75, instead, R/LTe changes and the
temperature gradient of the negative δ discharges
grows compared with the positive δ one. This is
hence identi�ed as the non-sti� region where the edge
triangularity e�ectively exerts its in�uence. These
discharges are ideal targets to observe how �uctuations
change in positive and negative triangularity plasmas.
Care was taken in selecting the line of sight and the
CECE channels frequencies such to obtain �uctuations
measurements both in the sti� and non-sti� regions of
the plasma.

2.2. E�ects of optical depth

It is important to stress that TCV plasmas are not
optically thick over the whole volume. In fact, for the
discharges considered here, the optical depth τ > 2
only for ρvol < 0.55. This implies that the measured
�uctuations are a convolution of electron temperature
and density �uctuations, where the relative weight of
the latter increases with lower τ and strongly depends
on the phase φ between Te and ne �uctuations. On
TCV it is not yet possible to have measurements of
density-temperature cross phase to precisely quantify
the relative weight of these contributions. Nevertheless
it is possible to estimate an upper boundary using the
results of [22], considering the case in which density
and temperature �uctuations are perfectly in phase.
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Figure 2: Electron temperature ratio between the
δ = −0.4 and δ = +0.5 discarges.

In this case the measured radiative temperature Trad
�uctuations would depend only on R = δne

ne
/ δTe

Te
, the

ratio between temperature and density �uctuations,
τ and the wall re�ectivity χ. The dependence from
the last two parameters is summarised in the function
A2(τ, χ) de�ned in the aforementioned [22]. Finally
the measured radiative temperature �uctuations can
be expressed as the sum of three components:

(
δTrad
Trad

)2

=

(
δTe
Te

)2

{[1 +A2(τ, χ)]2 +

+A2(τ, χ)2R2 +

+ 2[1 +A2(τ, χ)]A2(τ, χ)R}, (1)

where the �rst term represents the contribution of
Te �uctuations exclusively, the second that of ne, and
the third is the result of the correlation of the two.

From the optical depth pro�les for these experi-
ments, τ ∼ 0.5 at ρvol = 0.85, and a conservative value
for the re�ectivity of the carbon tiles (as in TCV) is
χ ∼ 0.76 [23] resulting in A2(τ, χ) = 0.33. Prelimi-
nary non-linear, electromagnetic, gyrokinetic simula-
tions suggest that the ratio R should be between 0.5
and 1. The latter will be considered, in the frame of
an upper limit estimation. The resulting maximum re-
lative contribution of density on the measured �uctua-
tion would then be between 10 and 15% at ρvol = 0.85.
For radial positions closer to the core this value quickly
decreases. In any case, in this work, an exact estima-
tion of the electron temperature �uctuations will not be
attempted but only �uctuations of the radiative tem-
perature will be discussed.

2.3. Temperature �uctuations measurements

After the development of a target for the four di�erent
shapes, each of them was repeated several times, with

a) b)

Figure 3: Plasma cross sections and position of the
CECE emission volumes for the measurements taken
with δ = −0.4 (a) and δ = +0.5 (b). Colors online.

di�erent frequency settings for the CECE channels. In
this way it was possible to obtain measurements from
plasma volumes covering the region 0.3 < ρvol < 0.95
and 0.3 < ρvol < 0.85 for the positive and negative
triangularity discharges respectively. The position
of the emission volume for each channel has been
calculated via ray tracing, using the TORAY code
[24] [25]. The repeated discharges showed excellent
reproducibility. In �gure 3 the shapes of the two
target discharges for δ = +0.5 and δ = −0.4 are
shown together with the reconstructed position of the
emission volumes of the whole set of measurements.
The chosen frequency spacing of the channels (500
MHz) corresponds to physical distances varying from
0.8 cm for the outer channels to 0.65 cm for the inner
ones, in any case shorter than the expected correlation
lengths of �uctuating structures of interest. Cross-
correlation analysis was performed for each couple
of adjacent channels, over a 100 ms time period.
Examples of the spectra obtained with this technique
are shown in �gure 4. In these plots it can be
observed that positive triangularity discharges show a
broadband feature between ∼ 20 and 160 kHz, absent
in the negative triangularity case. This feature seems
to reduce in both amplitude and bandwidth moving
towards the plasma core. The relative �uctuations
amplitude between two channels is calculated from an
integral of their cross power spectral density Gxy:

δTrad
Te

=
1

Te

√∫ fb

fa

Gxy(f)df (2)
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Figure 4: Cross Power Spectral Density obtained from correlation analysis over 100 ms of CECE signals coming
from couples of neighbouring channels at ρvol = 0.8 ρvol = 0.4, in positive and negative triangularity. The noise
level is at 0 dB for all the curves. Colors online.

a b c

Figure 5: a)Radial pro�les of relative radiative temperature �uctuations amplitude for di�erent triangularity
values. The �uctuations amplitude is reduced changing shape from positive to negative triangularity and the
e�ects extends up to ρvol = 0.5. The same data are plotted against the normalized density (b) and temperature
(c) scale lengths. Notice that these data points combine measurements taken over a wide fraction of the radial
pro�le. Colors online.

In this formula fa and fb de�ne the frequency range of
the �uctuations whose amplitude is to be calculated.
The spectra shown in �gure 4 can be roughly divided
in two parts. The high frequency part (20-200kHz)
is where turbulent micro �uctuations are expected to
be observed in TCV. The low frequency range (0-
20 kHz) could still contain �uctuations, like zonal
�ows, that are known to in�uence the saturated
turbulence amplitude [26], but it is normally not
taken into account in TCV due to the strength of
low frequency components (MHD modes, sawteeths).
Furthermore negative triangularity is known to have
an e�ect on sawteeth period and amplitude [27], so
di�erences in this range cannot be directly associated
with changes in the turbulence activity. In this case,

anyway, negative and positive triangularity discharges
showed comparable values of absolute �uctuations
amplitude in the 0-20 kHz spectrum, over the whole
range of measurements. Taking into account the
radiometer characteristics [12] and the averaging time,
the minimum detectable �uctuation is:

δTe/Te =

√
2Bvid
BIF

1√
Ns

=∼ 0.45%. (3)

where Bvid is the signal bandwidth before acquisition,
BIF the 3dB bandwidth of the IF �lters and Ns the
number of samples over which the correlation is being
calculated.

The pro�les of relative temperature �uctuations,
δTrad/Te, shown in �gure 5a, clearly show a strong
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suppression of the �uctuations, especially close to the
edge, in negative triangularity compared to positive
triangularity. At ρvol ∼ 0.8 the �uctuation level
in the δ = −0.4 case is less than one third with
respect to the one with δ = 0.4. The suppression of
the �uctuations can also be observed in the absolute
�uctuations amplitude (not shown here) proving that
the di�erence in temperature is not the only factor
responsible for this e�ect.

For radial positions closer to the plasma core the
di�erence quickly decreases, but it is interesting to note
that �uctuations in positive triangularity discharges
remain measurably higher than those in negative
triangularity down to ρvol = 0.55, where the magnitude
of the plasma triangularity has already decreased to
less than ∼ 40% its edge value.

These measurements, taken over a wide fraction
of the radial pro�le, have also been used to study
the dependence of the relative �uctuations on the
normalized density and temperature scale lengths, as
shown in �gure 5 b and c. Notice that, over the plasma
region considered, these scale lengths are not the only
parameters changing. Nonetheless, the plots suggest
that a "critical" or threshold gradient is present in both
temperature and density, corresponding to the point
of sharp increase in �uctuation level. In the positive
δ discharges, the sharp �uctuation rise occurs in a
small region, corresponding to the sti� region of the
plasma, where they increase until they reach the level
measured at the edge. A similar trend is not observed
in negative triangularity discharges. It could then
be hypothesized that negative triangularity discharges
have a higher critical gradient in terms of the behavior
of �uctuations, beyond the range explored in these
experiments. This is in agreement with the results
of the non-linear gyrokinetic simulations performed in
[7][8]. The exploration of a larger range of scale lengths
and a more in depth study of the radial dependence
of these critical gradients will be addressed in future
work.

Cross-correlation analysis between the di�erent
CECE channels provides the means to estimate
the radial correlation length (Lc) of the observed
�uctuating structures, de�ned as the 1/e folding length
for the correlation coe�cient ρ at time delay τ = 0
calculated for a set of pairs of channels with di�erent
radial separation. The correlation length estimated
for discharges with positive and negative triangularity,
in two di�erent radial position, is shown in �gure 6.
Larger structures are estimated for δ > 0 compared to
δ < 0 plasmas in both positions. Smaller correlation
lengths are usually associated with reduced local
transport [28]
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Figure 6: Correlation coe�cient, at time delay τ = 0,
for couples of channels at distance ∆r, and �ts for
radial correlation lengths calculated for sets of six
CECE channels at 0.75 < ρvol < 0.85 and 0.45 <
ρvol < 0.55. Colors online.

3. Conclusion

A series of discharges, with similar density pro�les and
plasma current, in which triangularity was varied from
δ = 0.5 to δ = −0.4 has been performed in TCV.
Fluctuation measurements over the region 0.4 < ρvol <
0.9 have been made using the newly upgraded CECE
diagnostic. The data show a strong reduction in the
�uctuations amplitude at the edge of these plasmas
with negative triangularity. This suppression seems to
penetrate up to ρvol = 0.55 where the triangularity at
this �ux surface (0.12) is already much lower than at
the edge (less than ∼ 40% of the edge value).

When the �uctuation data are plotted versus the
normalized scale lengths at the position of the emission
volumes, a threshold behaviour is observed both on
density and temperature for the positive triangularity
discharges but not in the negative triangularity ones.
One hypothesis is that in the latter case the threshold
scale length is higher with respect to the range that
has been explored in these experiments. This is in
agreement with the results of nonlinear gyrokinetic �ux
tube simulations. These measurements are taken over
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a considerable extension of the minor radius where the
scale lengths are not the only parameters varying. But
due to the extreme similarity of the pro�les of many
other quantities and the fact that these scale lengths
are supposed to constitute the drives for the observed
�uctuations, these trends could show the presence of
a higher threshold for �uctuations onset in negative
triangularity plasmas.

Estimation of the radial correlation length has
shown that it is shorter in the negative triangularity
discharges than in positive triangularity cases, a con-
dition usually associated with improved con�nement.
All these observations suggest that an underlying di�e-
rence exists in the nature of the turbulence �uctuations
in negative and positive triangularity plasmas. Furt-
her work is necessary to identify the underlying cause
of this di�erence.

Future experiments will focus on the e�ects of
di�erent ratios of electron and ion temperature in
plasmas with positive and negative δ to investigate the
e�ects of a transition between TEM to ITG dominated
turbulence regime on the �uctuations.

Moreover a study of the dependence of �uctuati-
ons in di�erently shaped plasmas at varying collisio-
nality will be undertaken, to verify if the di�erence in
�uctuations between positive and negative triangula-
rity plasmas tends to decrease with increasing collisio-
nality as does the heat �ux [5]. At the same time the
study of the critical gradients will continue with the
exploration of a larger parameter space.
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