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Abstract 

Safe ITER operations will rely on power spreading to keep the peak heat flux within divertor 
material constraints. A solid understanding and parameterization of the heat flux is therefore 
mandatory. This paper focuses on the separability of the effects of plasma geometry from 
those of transport in divertor heat flux profiles. Numerical profiles, obtained for a broad 
variety of devices and magnetic equilibria with a simple model of the scrape-off layer 
transport called MONALISA, show agreement with a purely diffusive model for cylindrical 
plasmas, suggesting that geometry and transport can be easily separated. A dedicated 
experiment on TCV was designed to further test this assumption: L-mode plasmas with 
similar control parameters and shape but different divertor leg size (���� = −14, 0, 28	��) 
are used to study the impact of geometry on divertor and upstream transport. Heat flux 
profiles, characterized with Langmuir probes and infrared thermography, exhibit unexpected 
behavior with the divertor leg size: the power decay length (��) increases, while the 
spreading factor (�) shows no clear trend. These findings suggest that the link between 
geometry and transport is currently not yet understood and, furthermore, that upstream and 
divertor transport can hardly be disentangled. 
 
 
1. Introduction 
 
ITER will need to be run as close as possible to its operational limits in order to maximize 
fusion performance. In particular, the spreading of the heat flux on the divertor surface will 
set the maximum energy throughput allowed in ITER discharges within the divertor material 
constraint of 10 MW m-2 in steady state [1]. For a given input power and a given plasma 
geometry (divertor shape plus magnetic equilibrium), the heat flux is set by the heat channel 
width: this quantity determines the divertor wetted area and thus the footprint of the heat flux 
profile as well as its peak value. Experimental measurements performed on JET and ASDEX-
Upgrade (AUG) [2] showed that parallel heat flux profiles at the target (�∥���) are well 
parametrized by the convolution of a decaying exponential in the main scrape-off layer 
(SOL) with a further Gaussian spreading in both the main SOL and in the private flux region 
(PFR). The e-folding length of the exponential tail is called power decay length (�����), while 
the width of the Gaussian is known as spreading factor (� 	���). In order to compare different 
machines and extract scaling laws, it is necessary to remove the geometrical effects due to 



 

 

magnetic equilibrium and to the divertor shape and tilting with respect to magnetic field lines. 
Target profiles are then “remapped” to a reference location, conventionally the outer 
midplane (OMP), accounting for the magnetic flux expansion (��), defined as the ratio of the 
distance between two given flux surfaces evaluated at the divertor target and at the OMP, 
calculated according to [3]. After such a coordinate transformation, parallel heat flux profiles 
at the OMP (�∥) can still be parameterized in terms of the upstream scale lengths �� and �, 
which are now purged from obvious geometrical effects and embed only the information 
related to transport. On the one hand, �� is a result of the competition between parallel and 
perpendicular transport around the main plasma: scaling laws obtained from a multi-machine 
database [4] showed that �� depends mainly on the poloidal magnetic field at the OMP (��) 
for all devices and therefore seems to be a universal feature. Extrapolations to ITER based on 
this scaling law return a frighteningly small ������ ≅ 1	��. On the other hand, � is related 
to the transport in the divertor region which makes it a machine-dependent feature. For this 
reason a scaling law based on plasma parameters is a challenging task: in [5] it was shown 
that � also has a strong dependence on �� and on the upstream electron density (� ) or, 
equivalently, on the target electron temperature (! ���), at least in JET and AUG. An increase 
of � was detected in AUG for the closed divertor configuration with respect to the open one, 
underlining its dependence on divertor specific transport mechanisms, including neutrals. It 
should be remembered that both �� and � concur to set the overall heat channel width and 
therefore they are equally important: for this reason it is convenient to embed them in a single 
quantity, the so-called integral power decay length (�"#�), which is directly linked to the peak 
heat flux: ���� = $%&' 2()�"#�⁄  . This quantity is an estimate of the heat channel width and 
can be easily expressed as �"#� = �� + 1.64�	[6]. However, since �� is pretty much set once 
a scenario is chosen under performance constraints (e.g. the 15 MA diverted H-mode in 
ITER), the dependence on the divertor design exhibited by � should leave some room for the 
possibility of reducing ����. In other words, if the peak heat flux on ITER will be 
unacceptable, there is still a chance to reduce it by redesigning the divertor. In a similar 
panorama of experimental observations/extrapolations and in the absence of first-principle 
theoretical models for the robust prediction of the ITER heat channel width, a simple 
approach for the modeling of SOL transport is proposed, allowing the correlation of a few 
key plasma parameters to a restricted set of transport mechanisms and representing an easy 
way to test important, and universally accepted, assumptions on plasma geometry. In 
particular, a Monte Carlo code named MONALISA is used to study the separability between 
the effect of plasma geometry and those related to transport in numerical outer strike point 
(OSP) heat flux profiles. In section 2 a short description of the code is given. Section 3 
discusses the effect of plasma geometry on numerical heat flux profiles and compares them 
with a simple theoretical model. In section 4 MONALISA simulations are compared with an 
experimental characterization through Langmuir probes (LP) and infrared thermography (IR) 
of the effect of plasma geometry on �� and � on TCV. Section 5 is dedicated to the 
discussion of results and to conclusions.  
 
 
2. A simple model of SOL energy transport 
 
MONALISA is a Monte Carlo code for the simulation of SOL energy transport and target 
heat flux profiles in realistic tokamak geometry but with simplified physics. It is based on 



 

 

experimental magnetic flux (0) maps from equilibrium reconstruction codes (e.g. EFIT or 
LIUQE) and realistic tokamak wall contours. In simulations, energy packets are generated at 
a point-like source located in the confined plasma with a Maxwellian energy distribution (!) 
and then freely stream along magnetic field lines at constant parallel velocity (1∥), thanks to a 
predictor/corrector scheme (order 2) with linear interpolation on the magnetic map. While 
doing so, they undergo homogeneous diffusion in the direction perpendicular to field lines 
(modeled with a homogeneous diffusion coefficient (23) over the entire plasma volume), 
eventually crossing the separatrix and following open field lines until the machine wall. Full 
curvature drifts, as well as 4 × � drifts (based on an ad hoc electric potential map), can be 
added to the system. When a heat packet strikes the wall, its kinetic properties (1∥, 43) are 
locally stored. By repeating the process for a high number of heat packets (106 − 107) in a 
Monte Carlo fashion and by performing local fluid interpolation on the whole wall contour, it 
is possible to reproduce target heat flux profiles whose shape is qualitatively consistent with 
those observed in experiments. It should be noted that the results don’t depend on the position 
of the source, provided that the latter is far enough inside the separatrix to ensure that heat 
packets are poloidally uniformly distributed before entering the SOL. The strong points of 
MONALISA are its flexibility and quickness: since there’s no need of a grid aligned to 0 
surfaces, the code is ready to simulate any magnetic configuration (limiter, single or double 
null, snowflake, etc.) on any device once 0 map and wall geometry are given; it is also a fast 
“particle” tracer and therefore the simulation time ranges from few minutes to few hours, 
depending on the machine size and on the value of 23. This features allow fast scans of 
control parameters such as 8�, !, �� and 23, as well as tuning of the drifts. Figure 1 gives an 
example of the typical MONALISA output: �∥ profiles (only OSP is shown) for three 
simulations based on the same magnetic equilibrium but with different transport parameters 
are superimposed. Control parameters and results from the fit [2] are summarized in table 1. 
With respect to the reference case (blue squares, 23 = 1	�9:;<, no drifts), the addition of 
curvature drifts (red dots) impacts the inboard-outboard asymmetry causing a higher peak 
heat flux (����) since more energy reaches the OSP. On the other hand, a stronger diffusion 
coefficient (green diamonds, 23 = 4	�9:;<, no drifts) determines a bigger spreading in both 
the main SOL and PFR, so ���� decreases while ��and � increase. The dashed fitting lines 
are obtained following the approach described in [2] showing that the numerical profiles can 
be parameterized consistently with the experimental ones. Moreover, � ��⁄ ≈ 40% as found 
in the multi-machine database [4], suggesting that the profiles asymmetry is accurate. It has 
to be clarified that MONALISA shouldn’t be considered as an alternative to more complex 
edge codes but rather as a faster and lighter complementary tool to check simple assumptions, 
disentangle the effect transport mechanisms and explore different (or new) configurations. 
Even though the physics included in the code is fairly simple compared to the complexity of 
experimental reality, making any attempt of quantitative estimate of ���� fruitless, it is worth 
taking advantage of the wide variety of devices and magnetic geometries that MONALISA 
can tackle in order to address the effect of plasma geometry on �� and � . 
 
 
3. Effect of geometry in a purely diffusive cylindrical plasma 
 
Taking full advantage of the speed and flexibility of MONALISA in handling different 
plasma geometries, a database of magnetic equilibria from AUG, TCV, WEST, JET and 



 

 

COMPASS was explored, covering a wide zoology of plasma shapes and sizes (? = 1.46 −1.78, �ABC = 1 − 10, DEF = 0.08 − 0.37, DCHI = 0.28 − 0.79). Several simulations were run 
for each equilibrium making a semi-random scan of the main control parameters 
(8� , �� , 23, !) around their reference values in order to mimic the scatter of conditions typical 
of a real experimental database. It should be noted that, 0 maps were linearly scanned when 
changing 8�, neglecting variations of the Shafranov shift. For the sake of simplicity, drifts 
were turned off in this study. Numerical OSP heat flux profiles were then fitted according to 
[2] in order to extract ��	and �. With the aim of checking whether, under the assumption of 
the model, remapping with �� is indeed a robust way to remove geometrical effects, it is 
worth comparing MONALISA values of �� with those theoretically predicted for a purely 
diffusive cylindrical plasma, in the following way: 
 L∥ = L3 
 M∥�N = ��	923  

 

��	�O H = P23 M∥�N = P23 (	)	�ABC�N  

 

�ABC = Q)����
1 + ?92  

 
Here L∥ and L3 are the parallel and perpendicular transit times, M∥ is the parallel connection 
length, �ABC is the cylindrical safety factor (not to be confused with the heat flux, also labeled 
with the letter �), Q and ) are minor and major radius, while ? is the plasma elongation. 
Comparison is made in figure 2, where numerical values (��	RH#�) are plotted against ��	�O H 
calculated for the corresponding magnetic equilibrium and using the same 23 value. For the 
entire database points fall on the same straight line meaning that, regardless the device and 
the magnetic equilibrium, ��	RH#� is always a constant fraction of ��	�O H, within Monte 

Carlo fluctuations. This result proves that ��	�O H, which embeds �ABC and thus the rough 
approximation of a cylindrical plasma shape, is a good proxy for MONALISA profiles: once 
heat flux profiles are remapped at the OMP, all equilibria behave the same way, leading to 
the conclusion that the geometrical information is efficiently dropped together with ��. An 
example is shown in figure 3a, where two TCV equilibria with same upstream plasma shape 
but different divertor leg size are considered: the M∥ (from OMP to outer target) for the 
plasma at the bottom (blue) is in the order of 10 m, while for the one at the top (red) it is 
about twice. Based on the abovementioned square root dependence of �� on M∥, a factor of 2 
increase (ΔM∥~100%) should lead to a 40% increase in ��. Instead, MONALISA simulations 
based on the two equilibria show a difference in �� lower than 5%. This can be understood by 
detailing the buildup of �� along the path from the OMP to the target, in terms of local 
diffusion steps in the radial direction: 
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UV9 ≡ 1��	CHA9 	UVCHA9 =
1��9 	23 	UM∥1∥  

 

��9 = Y UV9���
H�F = 231∥ Y UM∥��9 ≡ 231∥

���
H�F 	M∥ ZZ 

 

M∥ ZZ = M∥〈��9〉 
 
where ��	CHA is the local flux expansion with respect to the OMP and 〈��〉 is the average of the 
same quantity over the whole M∥. In other words, diffusion steps in the radial direction taking 
place in the region below the X-point are less effective in broadening �∥ profiles because of 
the higher flux expansion, as can be seen in the map of figure 3b. When weighted by 〈��9〉, 
different portions of M∥ don’t matter equivalently: 
 

M∥ ZZ = M∥EFN�]^��EFN�]_9 +
M∥`"a	C �^��`"a	C �_9 ≈

10	�1 + 10	�39 ≈ 11	� 

 
Therefore a factor of ~2 difference in M∥, as for the two cases in figure 3a (ΔM∥~100%), 
corresponds to a ΔM∥ ZZ = 10% only, coherent with the Δ�� ∼ 5% found by MONALISA. 
This reasoning, valid for a purely diffusive system, supports the idea that ��, set by control 
parameters where �� is small (upstream), contains only the information related to transport 
disentangled from geometry. Once the separability of geometry and transport effects is 
verified in a simplified model, these assumptions have to be tested in experimental 
conditions. Furthermore, the interplay between divertor and upstream transport has to be 
carefully investigated. 
 
 
4. Experimental data from TCV: scan of plasma vertical position 
 
To further check the separability of geometrical and transport effects, to study whether 
upstream and divertor transport can be disentangled and to test the simple assumptions made 
so far, MONALISA results will be compared with recent experimental findings from TCV. 
Under the flagship of the EUROfusion MST1 campaign, a dedicated experiment is currently 
being carried out with the goal of studying the effect of the outer divertor leg size on OSP 
heat flux profiles and thus on transport, thanks to the shaping capabilities of TCV. Ohmic 
heated, low density, L-mod plasmas within the same range of control parameters (8� =210	?d, �� = 1.4	!, �ef = 4, ? = 1.6) and very similar shape of the confined region were 
achieved at different vertical positions of the magnetic axis (����), changing the size of the 
outer divertor leg and therefore M∥. Three main ���� positions were explored: -14 cm 
(bottom), 0 cm (middle) and 28 cm (top) to which correspond M∥ values of 12 m, 14 m, and 
20 m respectively (distance along field lines from OMP to target, averaged over the whole 



 

 

SOL). Experimental conditions for the considered database, as well as shot numbers, are 
summarized in table 2. The characterization of outer divertor heat flux profiles is performed 
with Langmuir probes (LP) and infrared thermography (IR). All the shots were performed in 
steady state conditions: during the first part of the shot the OSP was kept at constant position 
for better IR measurements, while during the second it was swept (2 cm / 300 ms) to increase 
LP spatial coverage. The LP setup of TCV consists of 26 probes distributed along the floor of 
the machine: the spatial resolution is 11 mm and I-V characteristics are acquired every 1.4 
ms. More details about the LPs setup can be found in [7]. The recently upgraded infrared 
system of TCV consists of two IR cameras. The first, a Thermosensorik CMT 256M HS, is 
mounted on the top of the vacuum vessel and images the floor, where usually the OSP of a 
single-null diverted plasma sits: the spatial resolution is 2.5 mm and the typical acquisition 
frequency is 400 Hz in full-frame (up to 15 kHz in subframe mode). The second camera, a 
Equus 81k M MWIR, monitors a portion of TCV central column and can be moved between 
a lower port and a midplane port intra-shots, according to the expected position of the inner 
strike point; the field-of-view can be increased by changing lens (two lenses, with 12.5 mm 
and 25mm focal length, are available), corresponding to a spatial resolution of 0.8 mm and 
1.6 mm respectively, while a typical acquisition rate is 200 Hz in full frame. The main 
deliverables of the experiment are the scale lengths �� and � as a function of ����. As show 
in figure 4a, both LP (blue dots) and IR (red stars) show an increase of ��with ���� with a 
factor of two difference between top and bottom positions. In other words the plasma shape, 
in particular the divertor region, impacts ��: this effect cannot be captured by current scaling 
laws and is counterintuitive with respect to the idea of a multi-machine database [4]. This 
unexpected trend is not reproduced by MONALISA simulations based on the corresponding 0 maps (23 = 1	�9:;<, ! = 50	gh, �iV1�	UVj�W:), which yield an almost constant �� for 
the three vertical positions (black squares and dashed lines in figure 3a). This discrepancy 
suggest that a purely diffusive model including full curvature drifts is not enough to capture 
non-trivial effects of plasma geometry on heat flux profiles. An important role could be 
played by 4 × � drifts and therefore this mechanism will undergo detailed investigation in 
future studies. More importantly, the �� assumption (discussed in section 3), doesn’t hold 
against the experimental evidence brought by TCV: a divertor-leg-dependent ��	implies that, 
at least for these extremely spread configurations, the information related to transport cannot 
be separated from geometry. This “hidden” geometrical effect could be a game changer when 
making predictions of �� for future devices such as ITER, it has to be understood and will be 
object of further studies. On the other hand, as shown in figure 4b, no clear trend of � as a 
function of ���� was detected by either of the two diagnostics. This second result is also 
quite surprising: a spreading factor which is insensitive to the size of the divertor leg would 
go against the current understanding of � as related to diffusion in the PFR volume (and main 
SOL) along the path from the X-point to the target and thus strongly dependent on the 
divertor shape. Coherently with this way of thinking, MONALISA simulations exhibit 
increasing � with ����. Nevertheless, as far as � is concerned, measurements should be 
considered cautiously: errorbars are big, as well as the scatter among the data points, with a 
measured quantity as small as fractions of a millimeter. This makes the analysis and the 
fitting of the data challenging, especially for LPs which have a smaller spatial resolution. The 
judgement on the behavior of the spreading factor is then suspended until future 
investigations. Moreover, the inner strike point heat flux profiles need to be analyzed together 



 

 

with measurements of the radiated power in order to make a global power balance to ensure 
that the divertor plasma is kept in a similar regime across the ���� scan. 
 
 
5. Discussion and conclusions 
 
This contribution focuses on the impact of plasma geometry on OSP heat flux profiles and, in 
particular, on the heat channel width: this quantity depends on both the e-folding length �� 
and the spreading factor �, therefore any attempt to make meaningful predictions for ITER 
must take into account both of these parameters. The separability of features related to 
plasma geometry from the signature of transport in heat flux profiles is investigated by 
comparing the results of a Monte Carlo simple model of SOL transport (MONALISA) with 
theoretical predictions for a purely diffusive cylindrical plasma. For a number of devices and 
magnetic equilibria, providing a broad variety of shapes, the agreement between simulations 
and theory suggests that remapping at the OMP through �k is an effective way to purge �� 
from obvious geometrical details such as the divertor shape and the magnetic expansion, and 
thus geometry and transport can easily be disentangled. This finding supports the idea that, 
under the simplified assumptions of MONALISA, �� is set upstream and is a universal 
feature which depends only on control parameters, rather than plasma shape. Numerical 
simulation with the more sophisticated SOLEDGE2D code will be performed to further test 
these assumptions. Experimental measurements are currently being performed in TCV on 
plasmas with the same shape and control parameters but different divertor leg size with the 
aim of studying the interplay between upstream and divertor transport. Data from LP and IR 
are in good agreement and show an increasing trend for �� with ���� proving that, even after 
remapping, divertor geometry still plays an important role and, moreover, that upstream 
transport is impacted by the transport in the divertor region, which is a machine-specific 
feature. No clear trend of � was detected by either diagnostic: this is an even more striking 
result, suggesting the counterintuitive conclusion that the transport in the divertor is not 
influenced by its shape. Given the small values of � and the comparatively big errorbars, any 
conclusion on � is left to further investigations. This study should raise two main concerns: 
the first one is about the robustness of the assumption that �� is a sufficient tool to completely 
take geometry out of the equation; the second one is the complex interplay between transport 
around the main plasma and transport in the divertor region. The answer to these questions, 
together with refined measurements and a better understanding of the spreading factor, are 
essential steps towards a sustainable handling of the ITER divertor. 
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Tables 
 

 
Table 1: control parameters of MONALISA simulations in figure 1 and results of the fit [2]. 
For all cases 8F = 210	?d, �� = 1.4	!, !N F = 100	gh, 0 from TCV #51262 at W = 0.7	:. 
 
 
 ���� ����� � 	�a	l�;m) Shot numbers −14	�� 3.4 2.5 – 2.9 ∗ 10<e 51258, 51260, 51262 0	�� 2.4 2.6 – 3 ∗ 10<e 51279, 51332, 51333 28	�� 3.7 2.8 – 3.3 ∗ 10<e 51323, 51324, 51325 
 
Table 2: summary of experimental conditions of considered TCV database. All the shots were 
in L-mode, ohmic heating, 8� = 210	?d, �� = 1.4	!, �ef = 4, ? = 1.6.	 	
 
  

Simulation 23(�9:;<) �iV1� drift 4 × � drift ���� (a.u.) ��	l��) �	l��) 0211 1 0 0 1.75 ∗ 10e 4.63 1.82 0214 1 1 0 1.35 ∗ 10e 4.61 1.74 0219 4 0 0 7 ∗ 10o 8.43 3.83 



 

 

Figures 
 

 
 
Figure 1: Example of output of MONALISA simulations. OSP parallel heat flux profiles 
remapped at the OMP (same magnetic equilibrium, different transport parameters).  
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Figure 2: �� values from multi-machine database obtained fitting MONALISA numerical 
profiles plotted as a function of the value theoretically predicted for a purely diffusive 
cylindrical plasma. 
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a)   b) 
 
Figure 3: a) solid lines: separatrix and parallel connection lengths of two TCV equilibria with 
different divertor leg size. b) flux expansion map for a TCV reference equilibrium.  
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b) 
 
Figure 4: Experimental results from TCV of  �� (a) and � (b) as a function of ���� (blue dots 
for LP, red stars for IR). Black squares with dashed lines show the trends predicted by 
MONALISA. 
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