000233943 001__ 233943
000233943 005__ 20181203024924.0
000233943 022__ $$a0360-5442
000233943 02470 $$2ISI$$a000415769300102
000233943 0247_ $$a10.1016/j.energy.2015.06.104$$2doi
000233943 037__ $$aARTICLE
000233943 245__ $$aMulti-objective optimization of a sugarcane biorefinery for integrated ethanol and methanol production
000233943 269__ $$a2017
000233943 260__ $$c2017
000233943 300__ $$a10
000233943 336__ $$aJournal Articles
000233943 520__ $$aThe present study evaluates a sugarcane biorefinery producing ethanol through juice fermentation and methanol via gasification of sugarcane lignocellulosic residues and liquid fuel synthesis. Two technologies of gasification named entrained flow and circulating fluidized bed are compared. Flowsheet modeling and thermo-economic analysis methods are applied, followed by a multi-objective optimization based on a genetic algorithm. The optimum Ethanol Methanol biorefinery design options are compared with other previously studied sugarcane biorefineries. The results show that the biorefinery's energy efficiency increases significantly with the integration of a methanol production plant in a conventional ethanol distillery. The configuration using an entrained flow gasifier presents lower conversion efficiency than the one using a circulating fluidized bed gasifier. However, for the entrained flow gasifier configuration, the size of the methanol production process could be bigger since more heat is available for the ethanol process favouring the integration with the ethanol plant. Higher energy efficiency due to increase of methanol production leads to a higher total investment for both gasification technologies. The cost analysis shows that the calculated methanol production cost is 30% higher than its current market price. Environmental incentives for biofuels could change this scenario but are not in the scope of this study. (c) 2015 Elsevier Ltd. All rights reserved.
000233943 6531_ $$aBiomass
000233943 6531_ $$aProcess simulation
000233943 6531_ $$aHeat integration
000233943 6531_ $$aBioethanol
000233943 6531_ $$aSugarcane bagasse gasification
000233943 6531_ $$aMethanol synthesis
000233943 6531_ $$aprocess_design
000233943 6531_ $$aSNF_Wood2CHem
000233943 700__ $$uUniv Estadual Campinas, UNICAMP, Sch Food Engn, Cidade Univ Zeferino Vaz,Rua Monteiro Lobato 80, BR-13083862 Campinas, SP, Brazil$$aAlbarelli, Juliana Q.
000233943 700__ $$uPolitecn Torino, Corso Duca Abruzzi 24, I-10129 Turin, Italy$$aOnorati, Sandro
000233943 700__ $$uEcole Polytech Fed Lausanne, STI IGM IPESE, Stn 9, CH-1015 Lausanne, Switzerland$$aCaliandro, Priscilla
000233943 700__ $$uEcole Polytech Fed Lausanne, STI IGM IPESE, Stn 9, CH-1015 Lausanne, Switzerland$$aPeduzzi, Emanuela
000233943 700__ $$uUniv Estadual Campinas, UNICAMP, Sch Food Engn, Cidade Univ Zeferino Vaz,Rua Monteiro Lobato 80, BR-13083862 Campinas, SP, Brazil$$aMeireles, M. Angela A.
000233943 700__ $$uEcole Polytech Fed Lausanne, STI IGM IPESE, Stn 9, CH-1015 Lausanne, Switzerland$$aMarechal, Francois
000233943 700__ $$uEcole Polytech Fed Lausanne, STI IGM IPESE, Stn 9, CH-1015 Lausanne, Switzerland$$aEnsinas, Adriano V.
000233943 773__ $$q1281-1290$$j138$$tEnergy
000233943 8560_ $$ftheodoros.damartzis@epfl.ch
000233943 909C0 $$xU12691$$0252481$$pIPESE
000233943 909CO $$pSTI$$particle$$ooai:infoscience.tind.io:233943
000233943 917Z8 $$x265046
000233943 937__ $$aEPFL-ARTICLE-233943
000233943 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000233943 980__ $$aARTICLE