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Fig. 1. Our adaptive hand tracking algorithm optimizes for a tracking model on the fly, leading to progressive improvements in tracking accuracy over time.
Above: hand surface color-coded to visualize the spatially-varying confidence of the estimated geometry. Insets: color-coded cumulative certainty. Notice how
in the last frame all parameters are certain. Below: histograms visualize the certainty of each degree of freedom, that is, the diagonal entries of the inverse of
the covariance estimate from: (a) data in the current frame Σ∗, or (b) the information Σ̂ accumulated through time by our system.

We present a new algorithm for real-time hand tracking on commodity depth-
sensing devices. Our method does not require a user-specific calibration
session, but rather learns the geometry as the user performs live in front of
the camera, thus enabling seamless virtual interaction at the consumer level.
The key novelty in our approach is an online optimization algorithm that
jointly estimates pose and shape in each frame, and determines the uncer-
tainty in such estimates. This knowledge allows the algorithm to integrate
per-frame estimates over time, and build a personalized geometric model
of the captured user. Our approach can easily be integrated in state-of-the-
art continuous generative motion tracking software. We provide a detailed
evaluation that shows how our approach achieves accurate motion tracking
for real-time applications, while significantly simplifying the workflow of
accurate hand performance capture. We also provide quantitative evaluation
datasets at http://gfx.uvic.ca/datasets/handy
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1 INTRODUCTION

In our everyday life we interact with the surrounding environment
using our hands. A main focus of recent research has been to bring
such interaction to virtual objects, such as the ones projected in
virtual reality devices, or super-imposed as holograms in AR/MR
headsets. Performance capture is also essential in film and game
production for pre-visualization, where motion can be transferred
in real-time to a virtual avatar. This allows directors to plan shots
more effectively, reduce turn-around times and hence costs. For
these applications, it is desirable for the tracking technology to be
robust, accurate, and have a seamless deployment, since performance
capture can happen at an animator’s desk, on a movie set, or even
“in the wild”, where the user might not be aware of its operative
requirements (e.g. advertising or security).
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Hand tracking from monocular depth. Recent developments
in hand motion capture technology have brought us a step closer
to achieving effective tracking, where hardware solutions such as
data-gloves, reflective markers and multi-camera setups have been
shelved due to their invasiveness and cumbersome setup. Hence, a
single camera has become the standard acquisition device, where
depth cameras have taken a solid lead over color imagery to over-
come the many challenges of hand-tracking [Supancic et al. 2015].
Modern techniques (e.g. Taylor et al. [2016]) often rely on discrim-
inative techniques (e.g. Valentin et al. [2016]) to identify a coarse
pose, followed by a generative stage (e.g. Tkach et al. [2016]) to
refine the alignment and obtain a precise pose estimate.

Tracking templates and personalization. Since depth imagery
provides incomplete 3D data of the tracked object, generative track-
ers attempt to register a geometric template, also referred to as a
tracking model, to 3D data so to minimize alignement residuals. The
more accurately a model fits the observed user, the better tracking
accuracy can be achieved [Taylor et al. 2016; Tkach et al. 2016].
The process of accurately generating a user-specific tracking model
from input data is referred to in the literature as calibration or per-
sonalization. Calibrating a template from a set of static poses is a
standard component in the workflow of facial performance cap-
ture [Cao et al. 2015; Weise et al. 2011], and the work of Taylor et al.
[2014] pioneered it within the realm of hand tracking. However,
current methods such as [Taylor et al. 2016] and [Tkach et al. 2016]
suffer a major drawback: the template must be created during a
controlled calibration stage, where the hand is scanned in several
static poses (i.e. offline).

While appropriate for professional use, a calibration session is a
severe drawback for seamless deployment in consumer-level appli-
cations. Therefore, inspired by recent efforts in facial performance
capture that calibrate templates while tracking [Bouaziz et al. 2013;
Li et al. 2013], in this paper we propose a pipeline for online model
calibration. The approach we present has been tailored to monocu-
lar acquisition, where we tackle the significant technical challenges
created by missing data due to self-occlusions.

Contributions. Our core contribution is a principled way to inte-
grate per-frame information into an online real-time pose/shape
tracking algorithm: one that estimates the hand’s pose, while si-
multaneously refining its shape. That is, as more of the user’s hand
and articulation is observed during tracking, the more the tracking
template is progressively adapted to match the performer, which in
turns results in more accurate motion tracking. From a single frame
only a subset of the shape degrees of freedom can be estimated, for
example, it is difficult to estimate the length of a phalanx when ob-
serving a straight finger. Our technique automatically estimates the
confidence in per-frame parameter computations, and leverages this
information to build a tracking model that selectively accumulates
confident parameter estimates over time. Assuming a reasonable
performance by the user, our system typically constructs a fully
calibrated model within a few seconds, while simultaneously track-
ing the user in real time. Perhaps more importantly, however, if the
user is “unreasonable”, holding his/her hand in an ambiguous pose

(e.g. fingers unbent), the system maintains its shape uncertainty
until a constraining pose is adopted.

The key technical component of our solution is a recent tool from
control theory – the Levenberg-Marquardt Kalman Filter (LMKF)
of [Skoglund et al. 2015]. Although it has long been known [Bell
and Cathey 1993; Bellaire et al. 1995] that there are strong links
between Levenberg-style algorithms and the Kalman filter, and that
Kalman filters are useful to maintain uncertainty in visual tracking
and SLAM [Strasdat et al. 2012], only recently have the advantages
of both views been combined. This paper shows, in both qualitative
and quantitative performance evaluations, that the LMKF enables
practically useful online calibration. Overall, our solution yields a
fully automatic, real-time hand tracking system that is well-suited
for consumer applications.

2 RELATED WORKS

Due to the vast amount of work in the area of body, face and hand
tracking we respectively refer the reader to the recent works of
Bogo et al. [2015], Cao et al. [2016] and Taylor et al. [2016] for a
complete overview. In this section we focus our attention on gener-
ative hand tracking and model calibration. Model personalization
is a core ingredient in generative motion tracking [Pons-Moll and
Rosenhahn 2011]. Due to the large number of hand self-occlusions,
the low signal-to-noise ratio in current depth sensors, a globally
unconstrained pose, and the similar appearance of fingers make the
personalization of a hand model a harder problem than face or body
model calibration; see [Supancic et al. 2015].

Offline model calibration. Albrecht et al. [2003] pioneered the
construction of realistic (skin, bone and muscles) personalized mod-
els. They proposed a pipeline for the registration of a 3D mesh
model to RGB data manually pre-processed by the user. Reducing
the amount of manual interaction required from the user, Rhee et al.
[2006] showed how skin creases and silhouette images can also be
used to guide the registration of a model to color imagery. Taylor
et al. [2014] introduced a more automatic pipeline, generating per-
sonalized hand models from input depth sequences where the user
rotates his hand while articulating fingers. More closely related to
ours is the work by Tan et al. [2016]. They show how to robustly
personalize a hand model to an individual user from a set of depth
measurements using a trained shape basis such the one proposed
by Khamis et al. [2015]. The calibration pipeline, although robust
and efficient, is not fully automated as the user needs to manually
pick the set of frames over which the calibration optimization is
performed. In facial calibration, Weise et al. [2011] asked users to
assume a set of standard facial expressions to match standard poses
in the Facial Action Coding System (FACS) of Ekman and Friesen
[1977]. Inspired by these approaches, Taylor et al. [2016] recently
proposed an analogous offline hand calibration method, but the
question “which is the set of optimal hand poses that allows to
properly capture the hand’s geometry?” has yet to be addressed.
Hence, none of the above methods is suitable or easily adaptable to
the kind of consumer-level applications that we target.
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Fig. 2. (Per-frame regression)We abstract the hand shape/pose estima-
tion problem from a single frame into the one of a simpler 2D stick-figure.
Note, however, that this illustration is not hand-crafted, but is derived from
numerical optimization executed on these simplified datasets. When the
finger is straight (left), it is difficult to estimate the length of individual
phalanges as the optimization problem is ill-posed. With a bent finger (right)
the problem is better conditioned. We analyze the landscape of the registra-
tion energy E (β[1]), and observe how estimation uncertainty relates to the
width of the local minima valley. This uncertainty, the posterior distribution
of shape parameters after computing their estimate from the data in the
current frame, can be estimated through a quadratic approximation Ẽ (β[1]),
derived from the Hessians of the registration energies.

Onlinemodel calibration. In [de La Gorce et al. 2011], the authors
introduced a (non real-time) model-based approach for hand track-
ing from a monocular RGB video sequence. Hand pose, texture and
lighting are dynamically estimated, while shape is determined by
optimizing over the first frame only. Recently Makris and Argyros
[2015] proposed a model-based approach to jointly solve the pose
tracking and shape estimation problem from depth measurements
in an online framework. They solve for the cylindrical geometry
of a hand through render-and-compare evaluations over a set of
frames with particle swarm optimization (PSO). Their pipeline runs
in real-time (30fps), but lacks the degree of robustness and accu-
racy desirable for consumer level applications, and does not address
uncertainty. More sophisticated approaches to information agglom-
eration such as the ones for face tracking/modeling by Bouaziz et al.
[2013], Li et al. [2013] and Thies et al. [2015], where shape estima-
tion is performed over the whole set of frames, allow to obtain more
accurate results, while guaranteeing real-time performances. Thies
et al. [2015] jointly optimize face identity and expression during
calibration stage and keep identity fixed during tracking. The work
of Zou and Tan [2013], although in a different applicative domain,
is also related to ours, as they solve for SLAM by considering un-
certainties when aggregating information through time. Gu et al.
[2017] propose a holistic approach for aggregating per-frame mea-
surements. They demonstrate how an LSTM layer in a CNN allows
to maintain an online estimate that surpasses the performance of a
more standard kalman filter approach.

Online algorithms offer other key advantages compared to offline
methods: (1) the ability to offer immediate feedback to the user
on the quality of the result [Izadi et al. 2011], (2) the potential to
dynamically adapt to transparently hot-swap users [Bouaziz et al.
2013], and (3) reduced storage and computational resources, as
information is integrated frame-by-frame, in a streaming fashion.
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Fig. 3. (Cumulative regression) We visualize several temporally sorted
frames of input datadn , the uncertainty ellipsoid Σ∗n estimated by per-frame
regression, and the online uncertainty estimate Σ̂n . For illustration purposes,
we only display the two-dimensional ellipsoids representing the covariance
of β[1] and β[2]. Although Σ∗1 = Σ∗5, observe how Σ̂1 ≻ Σ̂5: in the last frame
we have a confident estimate as the information from frames 2 : 4 has been
integrated. Further, notice how even though the parameter β[2] was not
observed directly in any of the presented frames, its value was inferred from
the highly-certain measurements (β[1])n=2 and (β[1] + β[2])n=4.

3 ONLINE MODEL CALIBRATION

We now describe our joint calibration and tracking algorithm, which
combines the Levenberg-style optimization of previous hand track-
ers with the uncertaintymaintenance framework of Kalman filtering.
Previous hand tracking work has made use of temporal smoothing
priors to propagate pose information from previous frames, without
the use of filtering. However this approach cannot be used for shape
because it is so weakly constrained in any given frame, and because
its temporal prior is so strong, as shape parameters are persistent
over time: we observe the same user performing in front of the
camera for thousands of frames. However, sufficient information to
estimate certain shape parameters is simply not available in certain
frames. For example, by observing a straight finger like the one
in Figure 2-(left), it is difficult to estimate the length of a phalanx.
Therefore, knowledge must be gathered from a collection of frames
capturing the user in different poses.

As we illustrate in Figure 2 and Figure 4, the confidence in regressed
shape parameters is conditional on the pose of the current frame.
Rather than manually picking a few frames in different poses as

θ[1]

θ[2]

π

π
Fig. 4. A visualization of the co-
variance estimate for phalanx
lengths {β[1], β[2] } as we vary
phalanx bend angles {θ[1], θ[2] }.
A confident measurement of β[1]
is only available when θ[1] is bent,
while a confident measurement of
β[1] + β[2] is available when θ[2]
is bent. The covariance ellipsoids
are centered at the corresponding
{θ[1], θ[2] } location.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 243. Publication date: November 2017.



243:4 • A. Tkach et. al.

x̂n = arg max
xn

log (p (x∗n |xn ) p (xn |x̂n−1)
)︸                            ︷︷                            ︸

L(xn )

p (x∗n |xn ) = exp
(
− 1

2 (x
∗
n − xn )

T Σ∗n
−1 (x∗n − xn )

)
p (xn |x̂n−1) = exp

(
− 1

2 (xn − x̂n−1)
T Σ̂−1

n−1 (xn − x̂n−1)
)

Σ̂−1
n =

∂2L
∂x 2

n

����x̂n
≈



√
Σ∗n
−1√

Σ̂−1
n−1


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√
Σ∗n
−1√

Σ̂−1
n−1


= Σ∗n

−1
+ Σ̂−1

n−1

Table 1. Split cumulative regression – Kalman Filter (KF)

in [Taylor et al. 2016], we show how propagation of not just the
shape estimate, but also its uncertainty allows reliable calibration
even if the initial poses fail entirely to constrain some shape dimen-
sions. Additionally, the temporal priors of previous work are easily
incorporated in the LMKF formulation.

Input data and shape model. The input data are a sequence of
depth frames Dn , which are segmented via a wristband [Tagliasac-
chi et al. 2015] to produce a point cloud dn ⊂ R3. The pose vector in
frame n is θn , and our shape modelM (θ ; β ) is the sphere mesh of
Tkach et al. [2016]. Shape is encoded via scalar length parameters β
instead of sphere positions; see Figure 10 and [Remelli et al. 2017].

Estimation. Let xn = [θn ; βn] denote the model state: the vector of
coalesced pose and shape parameters at framen. Our goal in tracking
is to produce the best estimate x̂n , at frame n, of the state xn , given
all the data seen previously, d1, ...,dn . Additionally, we want to
estimate not just the state, but the parameters of the probability
distribution over the state p (xn |d1..n ). Thus, if we write

p (xn |d1..n ) ≈ N (xn | x̂n , Σ̂n ), (1)

we are saying that xn approximately follows a normal distribution
with mean x̂n and covariance Σ̂n . When we display a tracked hand
to the user, we will most likely just draw the hand with pose and
shape parameters x̂n , which sometimes leads to x̂n being called “the
estimate of xn”, but it is more correctly “the estimate of the mean
of the distribution p (xn )”, and similarly with Σ̂n .

It is generally computationally intractable to estimate the param-
eters conditioned on all the previous history d1..n at every frame
(although in Section 3.4 we compute some related quantities as a
baseline), so the estimation is typically expressed in terms of an
per-frame term p (xn |dn ), which describes the components due only
to information in frame dn and cumulative term p (xn |d1, ...,dn−1).
Different approximations for this term lead to different methods,
denoted split cumulative and joint cumulative below.

3.1 Per-frame estimate – p (xn |dn )

The distribution p (xn |dn ) is, by Bayes’ rule, proportional to the
product of a data term and a prior p (dn |xn )p (xn ), which is naturally
related to the traditional energy formulations by identifying the

x̂n = arg max
xn

log (p (dn |xn ) p (xn |x̂n−1))︸                            ︷︷                            ︸
L(xn )

p (dn |xn ) = exp
(
− 1

2 (dn − F (xn ))
T (dn − F (xn ))

)
p (xn |x̂n−1) = exp

(
− 1

2 (xn − x̂n−1)
T Σ̂−1

n−1 (xn − x̂n−1)
)

Σ̂−1
n =

∂2L
∂x 2

n

����x̂n
≈



−
∂F (x̂n )
∂xn√
Σ̂−1
n−1



T 

−
∂F (x̂n )
∂xn√
Σ̂−1
n−1


= Σ−1

n + Σ̂−1
n−1

Table 2. Joint cumulative regression – Iterated Extended KF (IEKF)

negative log likelihood with the energy. Consider the energy:

E (xn ) =
∑
τ ∈T

Eτ (dn ,xn ) (2)

Where the terms T ensure that:
d2m data points are explained by the model
m2d model lies in the sensor visual-hull

smooth recorded sequence is smooth
pose-prior calibrated hand pose is likely

shape-prior calibrated hand shape is likely
pose-valid semantics: collisions and joint limits

shape-valid semantics: finger order and connectivity
The energy terms in the objective function are detailed in [Tkach
et al. 2016] and [Tagliasacchi et al. 2015], with the exception of
shape-prior and shape-valid that are discussed in Section 3.5. Given
E as above, we can write

p (xn |dn ) ∝ exp(−E (xn )), (3)
but to perform propagation, we will need a more compact form,
for example a Gaussian approximation. A natural choice is the
Laplace approximation: a Gaussian with its mean at the mode of (3)
(see Appendix A.1) and covariance chosen to match a second-order
expansion of E about that mode. The mode computation is the
standard energy minimization

x∗n = arg min
xn

E (xn ) (4)

which can be solved by nonlinear optimization given an initialization
x0
n (obtained from a discriminative method or from the solution of
the previous time-step), and indeed this is the same minimization
performed by current state-of-the-art hand trackers. The covariance
matrix Σ∗n of the Laplace approximation is the inverse of the Hessian
of E, and as we are using a Gauss-Newton solver, E (x ) is of the form
∥dn − F (xn )∥

2, so we may make the G-N approximation of the
Hessian in terms of the Jacobian of F̄ (xn ) = dn − F (xn ), yielding

Σ∗n =
(
∂F̄ (x ∗ )
∂x

⊤ ∂F̄ (x ∗ )
∂x

)−1
. (5)

Thus, after processing the information in a frame dn , the sought-
after quadratic approximation of posterior distribution of model
parameters is

p̃ (xn |dn ) ≈ N
(
x∗n , Σ

∗
n
)
, (6)

so the “per-frame” posterior parameters are x̂n = x∗n , Σ̂n = Σ∗n .
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Fig. 5. We evaluate our real-time calibration framework on twelve different subjects. For each user we show a frame in a (more-or-less) rest pose configuration,
as well as a different pose selected from the recorded sequence. These results are better appreciated by watching our Video [04:03].

3.2 Split cumulative estimate – p (xn |d1..n )

The per-frame distribution in Section 3.1 encodes the uncertainty
in pose and shape solely due to the data in frame n. To aggregate
information from previous frames, we would like a simple form of
the distribution p (xn |d1..n ), for example a Gaussian:

p (xn |d1..n ) ≈ N (x̂n , Σ̂n ) (7)

Then, given values of the parameters x̂n−1, Σ̂n−1 at the previous
timestep, we must update them to incorporate the new information
in frame n. This leads to the following pair of inductive update
equations:

N (xn |x̂1, Σ̂1) = N (xn |x
∗
1 , Σ
∗
1) (8)

N (xn |x̂n , Σ̂n ) = N (xn |x̂n−1, Σ̂n−1)N (xn |x
∗
n , Σ
∗
n ) (9)

By applying the product of Gaussians rule [Petersen et al. 2008], we
obtain update equations for x̂n and Σ̂n :

x̂n = Σ∗n (Σ̂n−1 + Σ∗n )
−1x̂n−1 + Σ̂n−1 (Σ̂n−1 + Σ∗n )

−1x∗n

Σ̂n = Σ̂n−1 (Σ̂n−1 + Σ∗n )
−1Σ∗n =

(
Σ∗n
−1
+ Σ̂−1

n−1
)−1 (10)

In Appendix B.1, we shown howEquation 10 is equivalent to the Kalman
Filter (KF) update equations in Table 1, with measurement x∗n , and
measurement noise covariance Σ∗n . This optimization, which we
refer to as split cumulative is arguably the simplest way of achiev-
ing an online parameter regression: by treating the results of the
per-frame solve N (x∗n , Σ

∗
n ) as the measurements in a KF.

3.3 Joint cumulative estimate – p (xn |d1..n )

The optimization in Tab. 1 does not provide any information about
the current estimate of the parameters x̂n to the independent solve
described in Section 3.1. This could be problematic, as in this case
Eq. 2 does not leverage any temporal information aside from initial-
ization, while relying on a sufficiently good initialization to compute
N (x∗n , Σ

∗
n ). We propose to coalesce the cumulative and per-frame

optimization resulting in the joint cumulative regression scheme
in Table 2. The optimization in Table 2 can be expressed in least-
squares form, and embedded in Equation 2 through the term:

Eiekf = ∥Σ̂
−1/2
n−1 (xn − x̂n−1)∥

2
2 (11)

In Appendix B.2 we link this update to LM [Skoglund et al. 2015],
demonstrating that optimizing the objective in Table 2 with a Lev-
enberg Marquardt method is equivalent to an Iterated Extended
Kalman Filter (IEKF) with measurement update dn . In a practical set-
ting, this observation creates a very simple way to encode IEKF-like
behavior within existing LM optimization codebases.

3.4 Joint multiframe (batch/offline) estimate

While we focus on an online/streaming algorithm, we also describe
an offline baseline calibration procedure – inspired by the work
of [Taylor et al. 2014] – where multiple frames in the input sequence
are simultaneously considered.

Offline-Hard. To achieve this, Equation 2 is modified to consider
N frames, each with its own pose parameters θn , but with the same
underlying shape β , resulting in what we refer to as Offline-Hard
calibration:

arg min
β, {θn }

N∑
n=1

∑
τ ∈T

Eτ (dn , [θn , β]) (12)

Such optimization is initialized with a single β0, and in our ex-
periments, we noticed how this resulted in reduced convergence
performance and a propensity for the optimization to fall into local
minima.

Offline-Soft. Therefore, we introduce the Offline-Soft calibration,
where the constraint that a single β should be optimized is enforced
through a soft penalty:

arg min
β, {θn }

N∑
n=1

∑
τ ∈T

Eτ (dn , [θn , βn]) + ωβ

N∑
n=1
∥βn − β ∥

2 (13)
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E
β

Σ
−

1

ring attachment-y – β[25] middle middle-length – β[7] middle attachment-z – β[23]

Fig. 6. We illustrate the formulation in Section 3 on the calibration of four different degrees-of-freedom on the Handy/Teaser dataset. (top) Frames are
indexed by n and we display: ground-truth value β̄ , per-frame estimate β ∗n and cumulative estimate β̂n ; the scale for these quantities is relative to β̄ , and
shown on left-hand side of each axis. In the same plot, we also visualize the inverse of the diagonal entry of the covariance matrices (i.e. certainty) for per-frame
Σ∗n and cumulative Σ̂n estimates; the scale for these quantities is on the right-hand side of each plot. (bottom) We also display the pose corresponding to a
selection of frames in the sequence (dashed); please note the correlation between pose and uncertainty.

The initializations β0
n are derived from the per-frame optimization

of Equation 2, while the penalty weight is set to a large value (ωβ =

10e4). The advantage of Offline-Soft over Offline-Hard can be clearly
observed in Figure 8, where the former achieves a performance
comparable to the one of the (overfitting) per-frame optimization.
Finally, note that in practice we do not consider every frame as
this large problem would not fit into memory, but instead we sub-
sample at a ≈ 1/20 rate, the same subsampling is used for Kalman
measurement updates in our online solution to avoid a bias in the
comparisons.

3.5 Shape regularizers

Hand shape variation can be explained in a low dimensional space
whose fundamental degrees of freedom include variation like uni-
form scale, palm width, and finger thickness [Khamis et al. 2015].
In our paper we follow the ideas presented in [Remelli et al. 2017],
and build a latent-space encoding hand shape variability through
anisotropic scaling. By setting ωshape-space≪1, this prior acts as a
soft regularizer and does not prevent the algorithm from computing
a tight fit:

Eshape-space = ∥β − (β̄ ◦ Iβ̃ )∥2 (14)

where β̃ ∈ R3 is a latent vector encoding relative changes in hand
height, width and sphere thickness with respect to the default tem-
plate β̄ , while I is a matrix mapping latent DOFs to the correspond-
ing full-dimensional DOFs β[i]; see Figure 10. Since our shape-prior
has a small weight, unfeasible hand-shape configurations are still
possible, such as a finger floating in mid-air, or when the natural
order of fingers {index,middle, ring, pinky} has been compromised.
We overcome this problem by a set of quadratic barrier constraints
that are conditionally enabled in the optimization when unfeasible
configurations are detected (encoded via χc (β ) ∈ {0, 1}):

Eshape-valid =
C∑
c=1

χc (β )∥
〈
β ,κ
〉
∥22 (15)

For example to avoid middle and index fingers from permuting, one
such constraint is written in the following form, and χ0 (β ) = 1 only
when an invalid configuration is detected:

χ0 (β )∥βidx-base-x − βidx-base-rad − βmid-base-x + βmid-base-rad∥
2
2

4 EVALUATION

To evaluate the technical validity of our approach we verify its
effectiveness by applying it to a new dataset acquired through com-
modity depth cameras (Sec. 4.1); corroborate the formulation of
our optimization on a synthetic 3D dataset (Sec. 4.2); analyze its
robustness through randomly perturbing the algorithm initializa-
tion (Sec. 4.3); and attest how our method achieves state-of-the-art
performance on publicly available datasets (Sec. 4.4 and Sec. 4.5).

4.1 Calibration dataset: Handy/GuessWho? – Fig. 5

We stress-tested our system by qualitatively evaluating our cali-
bration technique with data acquired from twelve different users
performing in front of an Intel RealSense SR300 camera (a consumer-
level time-of-flight depth sensor). Snapshots of the twelve calibra-
tion sequences are reported in Figure 5. While ground truth infor-
mation is not available, these datasets will enable comparisons to
our method through the use of empirical metrics; e.g. Ed2m and
Em2d [Tkach et al. 2016], or the golden-energy [Taylor et al. 2016].

4.2 Synthetic dataset: formulation analysis – Fig. 6

For synthetic data the ground truth shape parameters β̄ are read-
ily available, and the sphere-mesh modelM (θ , β ) is animated in
time with the θ̄n parameters of the complex motions in the Handy
dataset [Tkach et al. 2016].
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Fig. 7. Mean and standard deviation for ground-truth calibration residuals
as we vary the algorithm’s initialization with a random perturbation of
standard deviation σ . We evaluate the residuals on (top) synthetic depth
maps, as well as (bottom) on the raw depth maps. (right) the exemplars
drawn from the σ = 0.4 perturbation used in the evaluation.

The following metric measures average ground-truth residuals (in
millimeters):

Eβ =
1
|M |

∑
m∈M

���β[m] − β̄[m]
��� (16)

For ground-truth comparisons, analogously to [Taylor et al. 2016],
we selected a subset of shape parameters in Figure 10:M = {0:16, 19,
22, 25, 28, 45:74}. This is necessary as sphere-centres on the palm
can move without affecting the tracking energy – a null-space of our
optimization. The tracking algorithm is initialized in the first frame
by θ̄0. In Figure 6, we report an experiment analogous to that of
Figure 3 but on a full 3D sequence. Consider Figure 6b, where we
report the runtime estimates for the length of the middle-finger’s
middle-phalanx; the subscript [7] will henceforth be implied. Con-
gruously to the discussion in Section 3, the phalanx length estimates
computed in frames where the finger is bent are given a large weight.
Per-frame estimates β ∗n can often oscillate away from the ground
truth, but these incorrect estimates are associated with a small
weight. Our algorithm estimates these per-frame uncertainties Σ∗n ,
and accordingly updates the online cumulative estimates β̂n and Σ̂n .

4.3 Synthetic dataset: robustness – Fig. 7

We evaluate the robustness of the algorithm by analyzing its con-
vergence properties as we vary the magnitude of perturbations. We
provide two experiments: synthetic and real. The real dataset consists
of depth maps {Dn } measured by an Intel Realsense SR300 sensor,
where we track motion with the multi-view stereo (MVS) calibrated

model from [Tkach et al. 2016] to estimate a sequence of pose pa-
rameters {θn }; the shape parameters β̄ of this user are known with
good confidence thanks to the MVS data. In the synthetic dataset,
depth images {Dn } are generated by animating the sphere-mesh
modelM (θn , β̄ ) and then rasterizing the model as in Section 4.2.
To achieve this, random initializations for the user-personalized
models are drawn from the Gaussian distribution N (β̄, σ ). A few
examples of such perturbations for σ = .4 are visualized in Figure 7.
In our experiments, we draw fifteen random samples per each value
of σ , and compute mean and standard deviation of the measured
ground truth residuals Eβ .

As each sample requires the re-tracking of the entire sequence (≈ 20
seconds) with a new initialization, the two plots in Figure 7 amount
to roughly four hours of footage. For this reason, in Video [03:16]
we only display a few examples of calibration and apply a random
perturbation every few seconds. Notice that although we still have a
non-zero average residual of≈ 1mm, the video shows how themodel
is an excellent fit to the synthetic data. In both experiments, Offline-
Hard performs worse than Offline-Soft for the reasons discussed in
Section 3.4. With the large (σ = .4) perturbations Offline-Soft still
had some troubles converging to the correct results, as per-frame
pose initializations were too significantly wrong; in this regard, we
believe discriminative pose re-initializers such as [Oberweger et al.
2015] could be helpful to increase the performance of both offline
calibration algorithms.

Technically we could not display the per-frame algorithm perfor-
mance in Figure 7, since it does not provide a single final estimate
of shape parameters. To do this, we employ the model parameters
it estimated in the last frame of each sequence. In the last frame
the error is low, as each frame is initialized with the values from
the previous frame; see Video [03:41]. Note how per-frame calibra-
tion performs excellently, even outperforming Offline-Hard. This is
because, thanks to our carefully designed shape priors, per-frame
calibration is quite robust; see Video [03:41]. This is essential in
cumulative calibration, as the true value of a parameter can be re-
covered only if accurate measurements are available in at least some
poses. The per-frame algorithm should also not be mistaken for
tracking algorithm (where shape parameters are fixed) which is
twice more efficient (calibration executes at 30 Hz, while tracking
at 60 Hz) and, in general, much more robust.

It is difficult to differentiate the split vs. joint cumulative variants in
the synthetic dataset, as calibration converges very effectively when
it can rely on precise measurements. Overall, on the sensed dataset
our joint cumulative calibration performs the best. Our split variant
performs very well when per-frame consistently provides an accu-
rate solution (e.g. on the synthetic sequences). Nonetheless, we no-
ticed that how with more challenging motions, the joint-cumulative
can aid the per-frame solver by providing a temporal regulariza-
tion. This is beneficial when dealing with an uncooperative user,
or to perform calibrations in sequences that were not specifically
designed for this task (e.g. fast motion, long-term occlusions).
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Fig. 8. Evaluation on the NYU dataset from [Tompson et al. 2014] reporting
the percentage of frames with average (top) and max (bottom) ground-truth
marker-error less than ε .

4.4 Marker-based evaluation on NYU dataset – Fig. 8

Although several marker-based datasets are available, such as [Qian
et al. 2014], [Sharp et al. 2015] and [Yuan et al. 2017], state-of-the-art
generative methods have focused on the NYU [Tompson et al. 2014]
and Handy [Tkach et al. 2016] datasets for quantitative evaluation.
On the NYU dataset, to properly compare to Taylor et al. [2016], we
evaluate the metrics on the first 2440 frames (user #1), and consider
only markers on finger joints. This dataset allow us to compare our
method (and its variants) to a number of other algorithms includ-
ing: the PSO tracker by Sharp et al. [2015], the calibration methods
by Khamis et al. [2015] and Tan et al. [2016], the subdivision tracker
of Taylor et al. [2016], the cylindroid tracker by Tagliasacchi et al.
[2015], the sphere-mesh tracker by Tkach et al. [2016], the Gaussian
tracker of Sridhar et al. [2015], and discriminative methods such as
those of Tompson et al. [2014], Tang et al. [2015] and Oberweger
et al. [2015]. Our online algorithm achieves very competitive track-
ing performance while being the first capable of calibrating the
user-personalized tracking model online, rather than in an offline
calibration session like Taylor et al. [2016]. Notice how the best
performance is achieved by either: (1) the per-frame optimization,
where per-frame overfitting takes place, or (2) by offline calibra-
tion techniques such as Offline-Soft or [Taylor et al. 2016]. This
is expected, as offline algorithms jointly consider all available in-
formation, while online/streaming algorithms can only integrate
information one frame at a time.

ε
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д
)

Offline-Hard – Eq. 12
Offline-Soft – Eq. 13
Per-frame – Eq. 2
Split cumulative (KF) – Tab. 1
Joint cumulative (IEKF) – Tab. 2
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[Taylor et al. 2016]
[Tkach et al. 2016]
[Sharp et al. 2015]

Fig. 9. Evaluation on the Handy/Teaser dataset, reporting the percentage
of frames with an average Ed2m data-to-model energy below ε .

4.5 Dense evaluation on the Handy dataset – Fig. 9

Another way to evaluate the quality of tracking/calibration is to
compare the depth map Dn (i.e. sensor point cloud) to the tracking
model depth map D̄ (θ , β ) (i.e. model point cloud); see [Tkach et al.
2016]. The model depth map is obtained by renderingM (θ , β ) with
the same intrinsic/extrinsic parameters of the sensor. The follow-
ing metric measures the average magnitude of data-to-model ICP
correspondences:

End2m =
1
|dn |

∑
pj ∈dn

∥pj − ΠD̄ (θ,β ) (pj )∥2 (17)

where Π is an operator computing the closest-point projection of
points in the sensor’s point cloud, onto the point-cloud associated
with the synthetic depth-map D (θ , β ). This metric is dense, as it
computes residual of an entire geometry model rather than just
a sparse set of markers. If Ed2m ≈ 0 (up to sensor noise) in every
frame, then the personalized model is a seemingly perfect dynamic
replica of the user’s hand. The Handy dataset from [Tkach et al.
2016] enables these type of comparisons and includes rendered
depth maps for [Tagliasacchi et al. 2015], [Sharp et al. 2015], as well
as the state-of-the-art method of [Taylor et al. 2016]. Further, note
how this dataset considers a range of motion substantially more
complex than the one in the NYU dataset. Like in earlier comparisons,
the per-frame technique performs best as it overfits to the data,
by generating a collection of βn instead of a single tuple β . Our
techniques calibrate a model with performance comparable to that
of [Tkach et al. 2016], where a high-quality MVS point cloud with
manual annotations was used for calibration.

5 CONCLUSIONS

From an application point of view, our approach significantly im-
proves on the usability of real-time hand tracking, as it requires
neither controlled calibration scans nor offline processing prior to
tracking. This allows easy deployment in consumer-level applica-
tions. From a technical point of view, we introduce a principled
approach to online integration of shape information of user-specific
hand geometry. By leveraging uncertainty estimates derived from
the optimization objective function, we automatically determine
how informative each input frame is for improving the estimates of
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Fig. 10. The degrees of freedom of our optimization, where use a cartesian
right-handed coordinate frame for translational DOFs. For pose parame-
ters, global translation is represented by θi | |i ∈ [0, 1, 2] and rotation by
θi | |i ∈ [3, 4, 5]. We then color code DOFs according to whether they rep-
resent flexion, twist, and abduction. For shape parameters, we color code
DOFs for lengths, radii, 3DOFs vertices (x,y,z), 2DOFs vertices (x,y), and
passive DOFs (linearly dependent).

the different unknown model parameters. Our approach is general
and can be applied to different types of calibration, e.g., for full body
tracking. More broadly, we envisage applications to other difficult
types of model estimation problems, where unreliable data needs to
be accumulated and integrated into a consistent representation.

Limitations and future works. The intrinsic limitation of our
online approach as well its offline counterparts is reliance on rea-
sonable tracking quality during calibration. If tracking fails, the
model quality is compromised as shown in the Video [07:18]. Cur-
rently, our optimization relies on heavy parallelization and high-end
GPU hardware – we use a 4GHz i7 equipped with an NVIDIA GTX
1080Ti. In future work we want to reduce computational overhead
to facilitate deployment on mobile devices. To obtain a complete
personalized tracking model, the user needs to perform a suitable
series of hand poses. As discussed above, if a finger is never bent,
the estimate of phalanx lengths will be unreliable. Currently, the
system provides limited visual feedback to the user to guide the
calibration. In the future, we aim to design a feedback system that
provides visual indication of the most informative hand poses given
the current model estimate. For example one could create a dictio-
nary containing a suitable pose for estimating each parameter with
high certainty. During calibration the user is prompted to show hand
pose corresponding to the lowest certainty parameter. Other inter-
esting avenues for future work include extending our approach to
handle hand-object or hand-hand interactions, adapting the method
to other tracking scenarios such as full body tracking, and studying
the perceptual relevance of tracking accuracy to further optimize
the performance of our approach.

ACKNOWLEDGMENTS

We would like to thank Tom Cashman for his help executing quan-
titative comparisons, as well as Marco Tarini, Baptiste Angles, and
Daniel Rebain for their help proofreading the paper. This work is
supported by the SNF grant #200021-153567, the National Science
and Engineering Research Council of Canada (NSERC) Discovery
grant #2016-05786, and the Google/Intel Industrial Research Chair
in 3D Sensing.

REFERENCES

Irene Albrecht, Jörg Haber, and Hans-Peter Seidel. 2003. Construction and anima-
tion of anatomically based human hand models. In Proc. Symposium on Computer
Animation (SCA).

Brian Anderson and John Moore. 1979. Optimal filtering. Englewood Cliffs.
Bradley M Bell and Frederick W Cathey. 1993. The iterated Kalman filter update as a

Gauss-Newton method. In IEEE Transactions on Automatic Control.
R Louis Bellaire, Edward W Kamen, and Serena M Zabin. 1995. New nonlinear iterated

filter with applications to target tracking. In SPIE Intl. Symposium on Optical Science,
Engineering, and Instrumentation.

Federica Bogo, Michael J Black, Matthew Loper, and Javier Romero. 2015. Detailed
full-body reconstructions of moving people from monocular RGB-D sequences. In
Proc. Intl. Conf. on Computer Vision (ICCV).

Sofien Bouaziz, Yangang Wang, and Mark Pauly. 2013. Online modeling for realtime
facial animation. In ACM Transactions on Graphics (Proc. SIGGRAPH).

Chen Cao, Derek Bradley, Kun Zhou, and Thabo Beeler. 2015. Real-time high-fidelity
facial performance capture. In ACM Transactions on Graphics (Proc. SIGGRAPH).

Chen Cao, Hongzhi Wu, Yanlin Weng, Tianjia Shao, and Kun Zhou. 2016. Real-time
facial animationwith image-based dynamic avatars. InACMTransactions on Graphics
(Proc. SIGGRAPH).

Martin de La Gorce, David J Fleet, and Nikos Paragios. 2011. Model-based 3D hand
pose estimation from monocular video. In Pattern Analysis and Machine Intelli-
gence (PAMI).

Paul Ekman and Wallace V Friesen. 1977. Facial Action Coding System. Consulting
Psychologists Press, Stanford University, Palo Alto.

Jinwei Gu, Xiaodong Yang, Shalini De Mello, and Jan Kautz. 2017. Dynamic Facial
Analysis: From Bayesian Filtering to Recurrent Neural Network. In Proc. Computer
Vision and Pattern Recognition (CVPR).

Jindřich Havlík and Ondřej Straka. 2015. Performance evaluation of iterated extended
Kalman filter with variable step-length. In Journal of Physics: Conference Series.

Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
and others. 2011. KinectFusion: Real-time 3D reconstruction and interaction using
a moving depth camera. In Proc. ACM User Interface Software and Technology.

Sameh Khamis, Jonathan Taylor, Jamie Shotton, Cem Keskin, Shahram Izadi, and
Andrew Fitzgibbon. 2015. Learning an efficient model of hand shape variation from
depth images. In Proc. Computer Vision and Pattern Recognition (CVPR).

Hao Li, Jihun Yu, Yuting Ye, and Chris Bregler. 2013. Realtime Facial Animation with
On-the-fly Correctives. In ACM Transactions on Graphics (Proc. SIGGRAPH).

Alexandros Makris and A Argyros. 2015. Model-based 3D hand tracking with online
hand shape adaptation. In Proc. British Machine Vision Conference (BMVC).

Jorge Nocedal and Stephen Wright. 2006. Numerical optimization. Springer Science &
Business Media.

Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. 2015. Hands deep in deep
learning for hand pose estimation. In Proc. Computer Vision Winter Workshop.

Kaare Brandt Petersen,Michael Syskind Pedersen, and others. 2008. Thematrix cookbook.
Technical University of Denmark.

Gerard Pons-Moll and Bodo Rosenhahn. 2011. Model-based pose estimation. In Visual
analysis of humans: Looking at People. Springer.

Chen Qian, Xiao Sun, YichenWei, Xiaoou Tang, and Jian Sun. 2014. Realtime and robust
hand tracking from depth. In Proc. Computer Vision and Pattern Recognition (CVPR).

Edoardo Remelli, Anastasia Tkach, Andrea Tagliassachi, and Mark Pauly. 2017. Low-
Dimensionality Calibration through Local Anisotropic for Scaling for Robust Hand
Model Personalization. In Proc. Intl. Conf. on Computer Vision (ICCV).

Taehyun Rhee, Ulrich Neumann, and John P Lewis. 2006. Human hand modeling from
surface anatomy. In Proc. Symposium on Interactive 3D graphics and games.

Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Taylor, Jamie Shotton, David
Kim, Christoph Rhemann, Ido Leichter, Alon Vinnikov, YichenWei, and others. 2015.
Accurate, robust, and flexible real-time hand tracking. In Proc. ACM Special Interest
Group on Computer-Human Interaction (CHI).

ACM Transactions on Graphics, Vol. 36, No. 6, Article 243. Publication date: November 2017.



243:10 • A. Tkach et. al.

Time Measurement

x̂0
n = x̂n−1 Kn = P0

n J
T (JP0

n J
T + R)−1

P0
n = Pn−1 +Q x̂n = x̂0

n + Kn (zn − Jx̂0
n )

Pn = (I − Kn J )P
0
n

Table 3. Kalman Filter update equations (with A = I ).

Martin A Skoglund, Gustaf Hendeby, and Daniel Axehill. 2015. Extended Kalman filter
modifications based on an optimization view point. In Intl. Conference on Information
Fusion (Fusion).

Srinath Sridhar, Franziska Mueller, Antti Oulasvirta, and Christian Theobalt. 2015. Fast
and Robust Hand Tracking Using Detection-Guided Optimization. In Proc. Computer
Vision and Pattern Recognition (CVPR).

Hauke Strasdat, José MM Montiel, and Andrew J Davison. 2012. Visual SLAM: why
filter?. In Image and Vision Computing.

James S Supancic, Grégory Rogez, Yi Yang, Jamie Shotton, and Deva Ramanan. 2015.
Depth-based hand pose estimation: data, methods, and challenges. In Proc. Intl. Conf.
on Computer Vision (ICCV).

Andrea Tagliasacchi, Matthias Schröder, Anastasia Tkach, Sofien Bouaziz, Mario Botsch,
and Mark Pauly. 2015. Robust Articulated-ICP for Real-Time Hand Tracking. In
Computer Graphics Forum (Proc. Symposium on Geometry Processing).

David J. Tan, Thomas Cashman, Jonathan Taylor, Andrew Fitzgibbon, Daniel Tarlow,
Sameh Khamis, Shahram Izadi, and Jamie Shotton. 2016. Fits like a glove: Rapid and
reliable hand shape personalization. In Proc. Computer Vision and Pattern Recogni-
tion (CVPR).

Danhang Tang, Jonathan Taylor, Pushmeet Kohli, Cem Keskin, Tae-Kyun Kim, and
Jamie Shotton. 2015. Opening the black box: Hierarchical sampling optimization
for estimating human hand pose. In Proc. Intl. Conf. on Computer Vision (ICCV).

Jonathan Taylor, Lucas Bordeaux, Thomas Cashman, Bob Corish, Cem Keskin, Toby
Sharp, Eduardo Soto, David Sweeney, Julien Valentin, Benjamin Luff, and others.
2016. Efficient and precise interactive hand tracking through joint, continuous opti-
mization of pose and correspondences. In ACM Transactions on Graphics (Proc. SIG-
GRAPH).

Jonathan Taylor, Richard Stebbing, Varun Ramakrishna, Cem Keskin, Jamie Shotton,
Shahram Izadi, Aaron Hertzmann, and Andrew Fitzgibbon. 2014. User-specific hand
modeling from monocular depth sequences. In Proc. Computer Vision and Pattern
Recognition (CVPR).

Justus Thies, Michael Zollhöfer, Matthias Nießner, Levi Valgaerts, Marc Stamminger,
and Christian Theobalt. 2015. Real-time expression transfer for facial reenactment.
ACM Trans. Graph. 34, 6 (2015), 183–1.

Anastasia Tkach, Mark Pauly, and Andrea Tagliasacchi. 2016. Sphere-meshes for real-
time hand modeling and tracking. In ACM Transactions on Graphics (Proc. SIGGRAPH
Asia).

Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken Perlin. 2014. Real-time con-
tinuous pose recovery of human hands using convolutional networks. In ACM
Transactions on Graphics (TOG).

Julien Valentin, Angela Dai, Matthias Nießner, Pushmeet Kohli, Philip Torr, Shahram
Izadi, and Cem Keskin. 2016. Learning to navigate the energy landscape. In Interna-
tional Conference on 3D Vision (3DV).

Thibaut Weise, Sofien Bouaziz, Hao Li, and Mark Pauly. 2011. Realtime performance-
based facial animation. In ACM Transactions on Graphics (Proc. SIGGRAPH).

Greg Welch and Gary Bishop. 1995. An introduction to the Kalman filter. Technical
report.

Shanxin Yuan, Qi Ye, Bjorn Stenger, Siddhand Jain, and Tae-Kyun Kim. 2017. BigHand2M
Benchmark: Hand Pose Dataset and State of the Art Analysis. In arXiv preprint
arXiv:1704.02612.

Danping Zou and Ping Tan. 2013. COSLAM: Collaborative visual slam in dynamic
environments. In Pattern Analysis and Machine Intelligence (PAMI).

A OVERVIEW ON KALMAN FILTERS

Kalman Filter (KF). Following the notation in [Welch and Bishop
1995], let us denote the latent state of a discrete-time controlled
process as xn ∈ RN , a generic measurement as zn ∈ RM and let us

Time Measurement

x̂0
n = x̂n−1 Kn = P0

n J
T
n (JnP

0
n J

T
n + R)

−1

P0
n = Pn−1 +Q x̂n = x̂0

n + Kn (zn − Fn )

Pn = (I − Kn Jn )P
0
n

Table 4. Extended Kalman Filter update equations (with linear F̃ ).

consider the following linear stochastic difference equations

xn = Axn−1 +wn−1 (18)
zn = Jxn +vn (19)

where w is a normally distributed process noise p (w ) ∼ N (0,Q ),
and v is a normally distributed measurement noise p (v ) ∼ N (0,R).
The matrix A provides a linear estimate for state updates, while J
maps the state xn to the measurement zn . Given a generic frame
n, let us define an initial (a priori) state estimate x̂0

n , together with
an improved (a posteriori) state estimate x̂n accounting for the mea-
surement zn . We can then define a priori and a posteriori estimate
error covariances as

P0
n = E[(xn − x̂0

n )
T (xn − x̂

0
n )] (20)

Pn = E[(xn − x̂n )T (xn − x̂n )]. (21)

The Kalman Filter (KF) estimates the latent state xn of a discrete con-
trol linear process by minimizing the a posteriori error covariance.
In particular it estimates the process through a predictor-corrector
approach: given a generic time n the filter first estimates the process
state (time update equation) and then obtains feedback in the form
of noisy measurements (measurement update equation). Let us now
particularize the system above to our framework, where the latent
state of our system corresponds to hand parameters and the mea-
surement corresponds to the solution of Equation 2. An estimate
of the current hand parameters is given by the one of the previous
time-step up to Gaussian noise, that is xn = xn−1 + wn−1, while
the noisy measurement corresponds to the state itself, meaning
that J = I (note that in order to highlight the similarities to other
Kalman filter formulations we will maintain the notation J). Our
discrete-time process can simply be written as

xn = xn−1 +wn−1 (22)
zn = Jxn +vn (23)

resulting in the time/measurement updates in Table 3; see [Welch
and Bishop 1995].

ExtendedKalmanFilter (EKF).The Extended Kalman Filter (EKF)
extends the KF to the case in which the process to be estimated
and/or the measurement relationship to the process are not linear:

xn = F̃ (xn−1,wn−1) (24)
zn = F (xn ,vn ) (25)

where F̃ relates the current latent state xn to the previous time
step one xn−1 and F relates the current latent state xn to measure-
ment zn . The EKF simply estimates the latent state of such system
by means of linearization of process and measurement equations
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Table 5. Iterated EKF measurement update equations.

around the current estimate; see [Welch and Bishop 1995] for a
detailed overview. We can apply this framework to ours and, differ-
ently from the linear case, consider now the input depth map dn
as system measurement. The function F (·) therefore maps state xn
to measurement zn by applying shape and pose parameters to the
template hand model and computing the closest model points to
sensor data points, while as discussed in the previous section F̃ (·)
is a simple identity mapping. We can write the non-linear process
and measurement equations associated to our framework as:

xn = xn−1 +wn−1 (26)
zn = F (xn ) +vn (27)

By defining Fn = F (x̂0
n ) and Jn [i, j] = ∂F[i]/∂x[j] (x̂

0
n ), the EKF

update equations can be written as reported in Table 4; see [Welch
and Bishop 1995].

Iterated ExtendedKalman Filter (IEKF). The EKF performs well
for systems with mildly nonlinear measurement functions, but if
the measurement equation is strongly nonlinear the performance
of the filter deteriorates; see [Havlík and Straka 2015]. To address
this problem, we can perform measurement updates in several steps,
where in each one we linearize the measurement function F around
the updated value iteration x̂ in , leading to the Iterated Extended
Kalman Filter (IEKF) formulation [Havlík and Straka 2015]. The
time update equation for IEKF is analogous to the one in Table 4,
while the measurement update is reported in Table 5.

Extended Information Filters (EIF). In order to ease the deriva-
tions of the upcoming section let us observe that the EKF mea-
surement updates can also be rewritten in the equivalent Extended
Information Filter form [Anderson and Moore 1979]; see Table 6. We
introduce this formulation in order to ease the upcoming derivations.

Ex. Kalman Filter Ex. Information Filter

Hn = (Pn )
−1

Kn = P0
n J

T
n (JnP

0
n J

T
n + R)

−1 Hn = H0
n + JTn R

−1 Jn

x̂n = x̂0
n + Kn (zn − Fn ) Kn = Hn

−1 JTn R
−1

Pn = (I − Kn Jn )P
0
n x̂n = x̂0

n + Kn (zn − Fn )

Table 6. Analogy of EKF and EIF.

for i = 1...imax

H i
n =

1
r (rH

0
n + J iTn J in )

K i
n =

r
r H

i
n
−1
J iTn

x̂ i+1
n = x̂0

n + K
i
n (zn − F

i
n − J in (x̂

0
n − x̂

i
n ))

end

x̂n = x̂ in

Table 7. Iterated EIF update equations.

Note that in order to do that we need to assume the measurement
noise to be independent and identically distributed (i.i.d.) across
samples, therefore R = rI where r ∈ R+ and I is the identity matrix.
Further, similarly to EKF, we can write the iterated version of an
EIF, as reported in Table 7.

A.1 Laplace Approximation

To derive our uncertainties, we start by converting the data terms
d2m and m2d of Equation 2 into probabilistic form:

p (dn |xn ) = exp
(
− 1

2 (dn − F (xn ))
T (dn − F (xn ))

)
(28)

By temporarily omitting the frame index n for conveniency, our
problem is rewritten as a maximum likelihood optimization:

x∗ = arg max
x

logp (d |x ) = arg max
x

L(x ) (29)

We nowperform a second-order Taylor expansion of the log-likelihood
of the data L(x ) around the optimal solution x∗:

L(x ) ≈ L̃(x ) = L(x∗) +
∂L(x ∗ )
∂x ∆x + 1

2∆x
T ∂2L(x ∗ )

∂x 2 ∆x + h.o.t. (30)

where ∆x = x −x∗, and let ∂f (x ∗)/∂x indicate the partial derivative
of f (x ) evaluated at x∗. We rewrite F̄ (xn ) = dn − F (xn ) for brevity.
Note how the Jacobian and the Hessian are respectively zero and
positive definite at our optimal point x∗ (see [Nocedal and Wright
2006, Sec. 10.2]):

∂L(x ∗ )
∂x = −F̄ (x∗)T

∂F̄ (x ∗ )
∂x = 0 (31)

∂2L(x ∗ )
∂x 2 ≈ −

∂F̄ (x ∗ )
∂x

T ∂F̄ (x ∗ )
∂x ≜ −Σ∗−1

≺ 0 (32)

From Equation 30, using p̃ (d |x ) = exp(L̃(x )), we can then derive
the approximated posterior distribution:

p̃ (d |x ) = exp
(
− 1

2 (x − x
∗)T Σ∗−1 (x − x∗)

)
= N

(
x∗, Σ∗

) (33)

B DERIVATIONS

B.1 Derivation for Section 3.2

Let us consider the Kalman Filter measurement update equations
introduced in Table 4, recalling to the reader that we are considering
the case in which the measurement zn = x∗n is in the same space of

ACM Transactions on Graphics, Vol. 36, No. 6, Article 243. Publication date: November 2017.



243:12 • A. Tkach et. al.

the estimated state x̂n , thus when J is the identity matrix.
x̂n = x̂ 0

n + P
0
n (P

0
n + R )

−1 (zn − x̂ 0
n )

= (P 0
n + R ) (P

0
n + R )

−1x̂ 0
n + P

0
n (P

0
n + R )

−1 (zn − x̂ 0
n )

= R (P 0
n + R )

−1x̂ 0
n + P

0
n (P

0
n + R )

−1zn

Pn = ((P 0
n + R ) (P

0
n + R )

−1 − P 0
n (P

0
n + R )

−1)P 0
n = R (P

0
n + R )

−1P 0
n

Note how setting zn = x∗n , P0
n = Σ̂n−1 and R = Σ∗n the measurement

update equations coincide with Equation 10 for product of two
Gaussians, showing how the inter-frame regression algorithm is
indeed equivalent to a KF.

B.2 Derivation for Section 3.3

Focusing on the optimization associated to Table 2, let us consider
a generic Gauss-Newton iterative update which reads:

x i+1
n = x in − ( J̄Tn J̄n )

−1 J̄Tn F̄n (34)
observing that

J̄n =
[
−J in
Σ̂−1/2
n−1

]
F̄n =

[
dn − F in

Σ̂−1/2
n−1 (x in − x̂n−1)

]
(35)

we obtain what follows:
J̄Tn J̄n = J in

T
J in + Σ̂−1

n−1 = A−1

J̄Tn F̄n = −J
i
n
T
(zn − F

i
n ) + Σ̂−1

n−1 (x
i
n − x̂n−1)

where F in = F (x in ) and J in =
∂F
∂xn

(x in ). Hence, expanding the matrix
products in (34), we can write:

x i+1
n = x in +

B︷              ︸︸              ︷
AJ in

T
(dn − F in ) −AΣ̂

−1
n−1 (x

i
n − x̂n−1) =

= x̂n−1 + B − AΣ̂−1
n−1 (x

i
n − x̂n−1) + AA−1 (x in − x̂n−1) =

= x̂n−1 + B + A(−Σ̂−1
n−1 + J in

T J in + Σ̂−1
n−1) (x

i
n − x̂n−1) =

= x̂n−1 + B + AJ in
T J in (x

i
n − x̂n−1) =

= x̂n−1 +
(
J in
T J in + Σ̂−1

n−1

)−1
J in
T︸                         ︷︷                         ︸

K i
n

(
dn − F in − J in (x̂n−1 − x in )

)
.

Recalling the definition of the a priori estimate x0
n = x̂n−1, setting

H0
n = Hn−1 and denoting Σ̂−1

n−1 = rHn−1 we can now see that such
an iterative update is equivalent to the update of the IEIF from Table
7 for measurement zn = dn . Finally, under the assumption of the
measurement noise to be i.i.d. across samples, we can conclude that
the optimization from 7 is indeed equivalent to an IEKF.
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