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Abstract
In order to have a better closure for magnetohydrodynamic (MHD) equations, a common
approach is to obtain the ion fluid pressure tensor by directly computing the moments of an ion
distribution function, obtained by a particle-in-cell solver of the Vlasov or Boltzmann equation.
This is the so-called hybrid approach. Long MHD simulations are required for problems such as
investigating the properties of the sawtooth cycle. In such long hybrid simulations, collisions are
required to relax the distribution function after violent MHD events, and to obtain the self-
consistent neoclassical transport. In this paper, we present a new approach to ion self-collisions,
based on temperature- and velocity-shifted Maxwellian distributions. It is shown that the
approach emulates the effect of the background reaction, without the need to explicitly
implement it. Arbitrariness in the choice of the closest Maxwellian is removed. The model
compares very well with binary collision Monte-Carlo simulations. The practical implementation
as a Fokker–Planck module in a hybrid kinetic/MHD simulation code is discussed. This requires
an additional manipulation in order to conserve energy and momentum.

Keywords: collisions, background reaction, hybrid kinetic/magnetohydrodynamics simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

Although purely fluid models of the plasma dynamics are
intrinsically limited by the closure problem, this issue can be
partly overcome by coupling the fluid magnetohydrodynamic
(MHD) dynamics to an ion kinetic solver. The moments of the
ion distribution function can be used to close the momentum
equation. This results in models such as that of [1, 2], where
electrons evolve as a fluid, while the ions are evolved kineti-
cally. The XTOR-K code [3] implements such a hybrid model:
it consists of a two-fluid MHD solver based on the XTOR-2F
code [4], self-consistently coupled to a 6D nonlinear kinetic
particle-in-cell (PIC) full-f solver. The particle trajectories are
integrated along their gyromotion by means of a Boris–
Buneman scheme [5], thus, all finite Larmor radius effects and
the associated nonlinearities are taken into account.

The hybrid approach allows efficient modelling of
MHD instabilities while retaining important kinetic effects,
such as the resonances between the bounce motion of
suprathermal particles and the MHD modes. More specifi-
cally, it allows a study into the effect of suprathermal ions in
burning plasmas, such as the alpha particles resulting from
fusion reactions or the fast particles generated by the heating
systems, on the MHD dynamics. The fast particles can
modify the stability of preexisting instabilities, e.g. sawteeth
[6] and Alfvén eigenmodes [7], or trigger new instabilities,
e.g. the fishbone instability [8]. The detail of the full non-
linear dynamics can only be investigated using numerical
tools. In [6], the sawtooth period ts is estimated to be in the
range t< <50 s 140s s for ITER ignited discharges. It is
important to determine the sawtooth period in ITER with
more precision because it is known that longer sawtooth
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periods increase the risk that the sawtooth crash triggers a
neoclassical tearing mode [9, 10], an instability detrimental
to the overall plasma confinement.

On such long time scales, the effect of collisions becomes
important. First, collisions are responsible for the neoclassical
effects, which have an impact on the dynamics of tearing
modes [11]. Second, collisions allow relaxation of the ion
distribution function after a sawtooth crash, which may cause
significant deviations with respect to a Maxwellian. Finally,
collisions are also responsible for the thermalization of the
alpha particles, which adopt a slowing down distribution.
This paper discusses the implementation of an ion self-col-
lision operator in the XTOR-K code.

There has been a lot of effort in developing models for
simulating collisions in plasmas. Among numerous others,
two popular methods applicable to long time simulations are
the Takizuka–Abe binary collision method [12] (hereafter
denoted by TA algorithm) and the df with evolving back-
ground method of Brunner et al [13]. Both methods allow to
model accurately the effect of the deviation df with respect to
the background Maxwellian distribution, while conserving
energy and momentum. The df method is not adapted to the
XTOR-K case, since the latter evolves the total distribution
function f. The TA method has the drawback that it is not well
adapted to the parallel environment of XTOR-K. Indeed, in
XTOR-K, the particle positions and velocities are initialized
on each process and then remain on their initialization process
until the end of the simulation. In other words, the paralleli-
zation is done by domain cloning, as opposed to domain
decomposition. The TA algorithm implements binary colli-
sions with particles in the neighborhood of a target particle,
which requires to sort all the particles according to their
positions and reaffect them to different processes, an opera-
tion that is very expensive in communications, CPU time and
memory.

Instead, we have decided to take the simpler approach
of Langevin collisions on a Maxwellian distribution.
A priori, such an approach suffers from the fact that it is not
momentum/energy conserving, and that it does not properly
take into account the reaction on the background plasma
(herafter simply denoted background reaction) from colli-
sions with df . In this paper, we show how to cure these flaws
by properly choosing the Maxwellian, and how to imple-
ment the resulting algorithm in the parallel environment of
XTOR-K. The paper is organized as follows. In section 2,
the algorithm we propose to treat self-collisions is detailed in
a local in space, three-dimensional in velocity space fra-
mework. It is then justified with a few examples in
sections 3, 4 and 5, by comparison to analytical formulæ as
well as to the TA algorithm. In section 6, the issue of the
implementation of the Fokker–Planck module in the XTOR-
K code is investigated. Section 7 discusses the possible
pitfalls of the implementation. Finally, conclusions are
drawn in section 8.

2. Self collision algorithm

The general kinetic equation for the distribution function of a
species a with collisional Coulomb interaction is

[ ] ( )å= 
f

t
f f

d

d
, , 1a

b
ab b a

where the sum is on all species b and the collision operator is
the Landau operator given by [14, 15]
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2 , Λ is the Coulomb loga-

rithm, = -u v va b and ( ) ( )= -u uuU u u1 2 .
From now on, unless specified otherwise we consider

only self-collisions and drop all species indices a and b. The
Landau operator can be rewritten in the form of a Fokker–
Planck operator as
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The friction F and diffusion D are given by
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and h, g are the Rosenbluth potentials [16],

( ) ( )
∣ ∣

( )ò= ¢
¢ -

¢h fv v
v v

v
1

d , 63

( ) ( )∣ ∣ ( )ò= ¢ ¢ - ¢g fv v v v vd . 73

The effect of the collision operator(3) on the distribution
function can be computed with particles using a Langevin
formulation rather than directly in the continuum. We adopt
the following so-called Euler–Maruyama scheme,

( ) ( ) ( )D = D + Dt tv F v d v 8g

with =dd DT and g a random number drawn from a
Gaussian distribution with unit variance. Recall that a sto-
chastic equation of the form ( ) ( ) ( )= +x f x t g x w td d d ,

where ( ) ( )ò= ¢W t w td
t

0
designates the Wiener process, does

not have any meaning per se. This is essentially because the
Wiener process is not differentiable and advances by an
infinity of infinitesimal jumps, hence one does not know
whether ( )g x should be evaluated with the value of x before
or after the jump (or a combination of the two). This ambi-
guity leads to the famous Itō/Stratonovich controversy, the
solution to which is exposed with remarkable clarity in
reference [17]. We use the Itō rule, which corresponds to the
simple choice where ( )d v is evaluated with the value of v
before the kick. Such a choice leads to the evolution of the
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distribution converging to equation (3) in the limit D t 0
and  ¥N [17, 18].

The difficulty of evaluating F and D lies in the fact that
the Rosenbluth potentials cannot be computed analytically for
arbitrary distributions. Since they are known for Maxwellian
distributions, we restrict ourselves to the case where the dis-
tribution function is the sum of a shifted Maxwellian and a
small perturbation:

( ) ( )d= +f f T fV, . 9M

Note that we do not constrain the momentum and energy,
carried by df , to vanish. In this case the collision operator,
which is bilinear in f, is linearized to give

[ ] [ ( ) ] [ ( )] ( )d d= +  f f f T f f f TV V, , , , , , 10M M

since [ ( ) ( )] = f T f TV V, , , 0M M , and the remaining non-
linear term is neglected under the assumption ∣ ∣ df f 1M .

The first term in equation (10) represents scattering of df
from a Maxwellian background while the second term
represents the background reaction of df on the Maxwellian,
which is essential to ensure the properties of energy and
momentum conservation. In other words, the first term
represents the action of the Maxwellian on a test particle, and
the second term ensures that all momentum and energy lost
by the test particle is transferred to the bulk. The first term is
easy to implement because the Rosenbluth potentials, hence F
and D, are known for Maxwellian distributions. However
only approximate forms are known for the background
reaction [13, 19], and they are not straightforward to imple-
ment in a full-f algorithm.

The main point of the present work is that it is possible to
conserve energy and momentum by implementing only the
first term. However, instead of choosing ( )f T V,M as the
background Maxwellian, we choose ( )d d+ +f T T V V,M ,
where dT and dV are chosen so as to enforce energy con-
servation. In a full-f framework, the implemented collision
operator becomes

[ ] [ ( ) ] ( ) d d+ + f f f T T fV V, , , . 11M

By expanding the shifted-temperature Maxwellian, ( +f TM
) ( )d d d+ +T f T fV V V, ,M M, we see that

[ ] [ ( ) ] [ ( )] ( ) d d+  f f f T f f f TV V, , , , , , 12M M M

where we have again neglected a nonlinear term. This
expression is similar to equation (10) except that dfM instead
of df is used in the background reaction term. Obviously, the
two are different, otherwise we would have ( )d= +f f T TM ,
which would mean that df would vanish. However, despite
the difference between df and dfM, we will use equation (11)
for its simplicity of implementation as well as for its energy
and momentum conservation properties. Before testing this
approach in relevant situations, we now detail the method to
obtain the effective temperature and velocity

( )dº +T T T , 13eff

( )dº +V V V. 14eff

First, the quantities are normalized: temperature and
density to their initial (or reference) values T0, n0, velocity to

= T mv 20 0 , energy to T0, time to p= t m T4 20 0
2 1 2

0
3 2

( )Ln Z e0
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2
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where the three g represent three independent calls to the
Gaussian, ˜ ˜=e v v3 and ( )e e e, ,1 2 3 is orthonormal. Defining

˜ºX Tv , the friction and diffusion coefficients for colli-
sions on a Maxwellian with temperature T and velocity shift
V read [16]
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During a collision step, the velocity increment is
˜ ˜D = D +F tv v Qv , where Q represents the diffusion terms

and has the properties á ñ =Q 0 and ( )á ñ = + DD̂ D tQ 22 ,
the mean being understood in an ensemble average sense. Hence,
the average energy variation ( )áD ñ º á + D - ñ v v v2 2 is

( ) ( )áD ñ = D + D  T t F tv V; , , 202 2

( ) ˜ ( ˜) ( ˜) ( ˜) ( )º + +^ T F D Dv V; , 2v v 2 v v . 21

The quantity ( ) Tv V; , is, in an ensemble average sense and to
lowest order in Dt, the energy variation of a particle with
velocity norm ṽ.

Similarly, the average momentum variation áD ñP is

( ) ( )áD ñ = D T tP v V; , , 22

( ) ˜
˜

( ˜) ( )º T Fv V
v

; ,
v

v . 23

For energy and momentum to be conserved, the average over
the distribution function of  and  must vanish. Therefore,
we define the effective temperature Teff and the effective
velocity shift Veff as the solution to the system
( ( ) ( )) = T TV V, , , 0, where ( ) (˜ )º á ñ T TV v V, ; , f ,

( ) (˜ )º á ñ T TV v V, ; , f , the mean ·á ñf being now under-
stood as an average on the distribution function f.

Numerically, Teff and Veff are found by means of a
Newton algorithm, given that the Jacobian of the system
depends on the partial derivatives of F, D̂ and D with
respect to T and V, which are known analytically. The
expressions for  , and their partial derivatives are provided
in appendix A. Because the Newton algorithm converges very
rapidly, a limited amount of sums on the distribution are
required at each time step. Since Teff and Veff do not change
much between two time steps and a very good precision is not

3

Plasma Phys. Control. Fusion 59 (2017) 054005 T Nicolas et al



required in its evaluation, the Newton iterations converge
typically in one to three iterations.

The approach using Teff and Veff has two advantages, in
addition to conserving energy and momentum by definition.
First it does not require any speculation on the form of the
background reaction term, and bypasses the problem of its
practical implementation. Second, it removes the arbitrariness
in the definition of the closest Maxwellian function to com-
pute the coefficients of the first term of equation (10). Indeed,
in a full-f framework, one could decide to take

( )d = -f f f T V,M , where T is given by the variance of the
distribution and V is its average velocity, but this can lead to
very large errors if there is a small number of very fast par-
ticles which make a small contribution to the number dis-
tribution function and to the momentum but a large
contribution to the energy. Instead, one could take for the
Maxwellian the distribution that minimizes the norm

( ) -f f T V,M , but then the definitions of T, V and df
depend on the choice of the norm. In our approach, this issue
is removed. In section 5, it will be shown that in the afore-
mentioned case where the distribution is the sum of a Max-
wellian bulk and of fast particles with a large contribution to
the energy, our algorithm finds an effective temperature
which is very close to the temperature of the bulk.

Even when Teff and Veff are used, there is still a variation
in the total energy and momentum after the collision step,
which is due to the fact that we neglected the Dt2 error
introduced by the friction, and to the PIC noise. TheDt2 error
is a systematic positive error and can be eliminated by
applying a particle dependent correction dF to the friction,
given by the condition ( ) ˜d d+ D + D =F F t F t2 v 02 2 .
Therefore, the correction to the friction is

⎛
⎝⎜

⎞
⎠⎟

˜
˜

( )¬ -
D

- +
D

F
t

F tv
1 1

2

v
. 24

The sign of the solution to the quadratic equation is chosen so
that the correction vanishes in the limit ofD =t 0. IfDt is too
large, this correction may not be applicable for the particles
with a small velocity ~v, since <F 0. When this is the case,
the correction is simply not applied to these particles, which
does not affect the results significantly if the fraction of such
particles is small. In the present work, we take

< D <t0.01 0.1, sufficiently small so that the correction can
always be applied. Finally, in order to ensure energy con-
servation exactly, and to correct any momentum generated in
the process, we apply the following transformation to the
velocity at the end of each time step:

( ) ( )¢ ¬ á ñ +
¢

¢ - á ¢ñ ¢



v v v v , 25f f

where = á ñ - á ñ v v2 2 denotes the variance of the distribu-
tion, and primed (resp. unprimed) quantities refer to quantities
taken after (resp. before) the collision step. This ensures exact
energy and momentum conservation. Other models use this
renormalization, see e.g. [21]. The difference with [21] is that
the latter conserves energy and momentum without properly

taking into account the background reaction, contrary to our
approach. In addition since equation (25) is always applied,
the usefulness of equation (24) to correct the friction is
questionable. However, in some cases, the sytematic positive
error introduced by the friction causes ¢  in equation (25)
to be always smaller than 1, leading to a non-physical energy
transfer between one part of the distribution and the other.
This can lead to large errors (see section 5), so that the cor-
rection to the friction must be implemented as well.

The following three sections test the algorithm described
above, hereafter denoted Teff algorithm, in three different
cases, by comparing it to analytic formulæ and to the Taki-
zuka–Abe binary collision algorithm. Before turning to the
results, we make a short comment on the relative numerical
performance of the two methods. For the present study, our
algorithm is roughly 4 times faster than the TA algorithm.
However, none of the algorithm was optimized numerically,
because the goal of the present paper is only to assess the
intrinsic properties of the new algorithm. The TA algorithm
can be made faster by adopting the statistics of Nanbu [22–
25] in the velocity change in a binary collision. By con-
sidering the cumulative effects of several collisions, the sta-
tistics can be shown to depart from Gaussian statistics, and
taking this into account, larger time steps can be used.
However, as emphasized in the introduction, the TA algo-
rithm would be orders of magnitude more expensive than ours
in the parallel environment of XTOR-K, which uses domain
cloning.

3. Case of a sum of two Maxwellian distributions
with different temperatures

The rate of energy transfer between two Maxwellian dis-
tributions of species a and b with temperature Ta and Tb and
no relative velocity is given in [20] (Chapter 5). In the case of
species of same mass and charge, it is, in our normalization:

( )
( )

p
=

-
+

n
T

t

n n T T

T T

3

2

d

d

2
, 26b

b a b a b

a b
3 2

which can be integrated numerically with the constraint of
energy conservation

( )∣ ( )+ = + =n T n T n T n T . 27a a b b a a b b t 0

To compare the numerical solutions of this equation with
the results produced by the Teff algorithm described in
section 2, we initialize two Maxwellian distributions

( )=f f T , 0a a aM and ( )=f f T , 0b b bM with different tempera-
tures and join them in a single distribution = +f f fa b. In
principle, we could represent the different densities of the two
distributions by attaching different weights to the particles.
However, in view of the implementation in the XTOR-K
code, where all particles have the same constant weight, the
density ratio is actually equal to the ratio of the number of
particles in each of the distributions. That is, if fa is repre-
sented with Na particles and fb with Nb particles, then the
densities na and nb to be used in equations (26) and (27) are
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given by =n n N Na b a b and + =n n 1a b . The latter equal-
ity comes from our normalization.

A priori, the Teff algorithm should work well only when
one of the distributions, say fb, represents a small perturbation
to the other one, that is, if N Nb a and/or if ∣ ∣ -T T Tb a a.
However, we will see that it works well even when it is not
the case for some choice of parameters, so we do not make
this assumption in the following.

In order to increase the reliability of our results, we also
make the comparison with the TA algorithm [12], which
reproduces equation (2) exactly in the limit of D t 0,

 ¥N . In section 5 where analytical formulæ are not
known, this is the most reliable way to test our algorithm, but
even in the present case, it is useful because we do not expect
the temperature curves to follow the solution of
equations (26) and (27) exactly. Indeed, in the relaxation
process, the distributions dynamically deviate from a Max-
wellian distribution, so that the analytical formulæ no longer
describe the temperature relaxation with high accuracy.
Nonetheless, they should give the correct initial slope.

We can compute the effective temperature analytically in
the case of two Maxwellian distributions with different tem-
peratures. It is given by equating the energy transfer of spe-
cies a and b on the effective Maxwellian with temperature Teff

and density + =n n 1a b . For symmetry reasons, we can take
=V 0eff in this section. Therefore, Teff is the solution to

( ) ( )
( )-

+
+

-
+

=n
T T

T T
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T T

T T
0. 28b
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3 2

eff

eff
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When =n 0b , =T Taeff , so we can expand Teff in the para-
meter d º n nb a as

( ) ( )d d d= + + + T T T T . 29aeff 1
2

2
3

By solving order by order and defining D º -T T Tb a,
[ ( )]º + D -Y T T1 2 a

1, we find

( )= DT TY , 301
3 2

( ) ( )= - + - +T T Y Y Y Y3 11 11 3 . 31a2
4 3 2

This formula works reasonably well up to ~n nb a. Using this
result, we can estimate the error in the energy transfer rate
between the two distributions (in fact the first order of
equation (29) is sufficient for this purpose). We have to compare
the correct rate ( ) ( )- +n n T T T Ta b a b a b

3 2 with the actual rate
in the simulation, ( )( ) ( )+ - +n n n T T T Tb a b b beff eff

3 2. The
ratio between the latter and the former is, to order 1 in δ,

( ) ( )d+ DK T1 , 32
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Hence, the lowest order correction to the energy transfer rate is
small, of order ( )DT n nb a

2 , which makes the algorithm robust
for reasonable values ofDT . Heuristically, we can interpret this
result as the fact that for larger densities nb, Teff becomes larger,

reducing the effectiveDT seen by the fb part of the distribution,
but the density of the target distribution increases in the same
time, which restores the correct energy transfer rate to order
DT 2. From equation (33), we can predict that even for =n nb a,
the Maxwellian energy transfer rate for small DT will be
modelled well by our algorithm because the error is at second
order in DT . However, it should break down for DT Ta, if
the condition n nb a is not met.

The results of simulations of relaxation between two
Maxwellian distributions can be seen in figure 1, for

=n n 0.1b a , =T T 2b a (a), =n n 0.5b a , =T T 2b a (b),
=n n 1b a , =T T 2b a (c), =n n 0.1b a , =T T 0.5b a (d),
=n n 0.5b a , =T T 0.5b a (e), =n n 1b a , =T T 0.5b a (f).

The value of Na in all these simulations is =N 10a
5. The two

values of DT are chosen so that ( ) DK T 1. In order to
improve readability, only the analytical result is plotted for fa,
since Ta can always be deduced from Tb and conservation of
energy (which is exact in all the algorithms used in this
paper). It is seen that our algorithm and the TA algorithm
produce very similar results, almost undistinguishable. It can
be verified that the discrepancy with the result of
equations (26) and (27) is indeed due to the deviation from
the Maxwellian distribution. It disappears if at each time step,
the distributions are replaced with Maxwellian distributions
with temperature given by the variance of the distribution.

We can also compare the deviation of the distribution
with respect to the Maxwellian ( )d = -f f f Ta a a aM and

( )d = -f f f Tb b b bM . Figure 2 shows the result for the dis-
tribution function in vx, for =n na b and ( ) ( )=T T0 2 0b a at

=t t 150 . It is seen that the deviation is virtually identical for
the TA algorithm and the Teff algorithm.

Finally we push the algorithm outside its domain of
validity identified above by using =n nb a and DT Ta,
namely =T T10b a. The result can be seen in figure 3. The
energy transfer rate is too large at first, which is consistent
with the positivity of K, see equation (33). However, on the
long run, as DT becomes smaller and Teff becomes closer to
Ta, the algorithm behaves much better and once again
reproduces the results of the TA algorithm.

We conclude that the Teff algorithm is efficient at simu-
lating the relaxation of two Maxwellian distributions, not only
in obtaining the correct energy transfer rates, but also in
reproducing the correct shape for df . It is remarkable that the
algorithm performs very well even if the condition n nb a or
D <T Ta is not met.

4. Case of a sum of two Maxwellian distributions
with different velocities

In this section we investigate the case where the fa and fb parts
of the distribution have different average velocities. First, we
take fb to represent a cold beam with significant momentum:
T Tb a, ∣ ∣á ñ > Tvb f ab

, <n nb a. This can be thought of as
the interaction between the bulk plasma and particles from a
neutral beam, just after ionization by the plasma. Again, we
compare the results with the TA algorithm. Figure 4 shows

5
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the data obtained with =n n 0.1b a and =n n 0.5b a . In both
cases the initial velocity difference is =V 10vx b, 0.

In figures 4(a) and (b), the density of the beam is small.
As expected, the beam directed energy is isotropized first, so
that its temperature increases rapidly. Meanwhile, it transfers
its energy and momentum to the Maxwellian bulk. Both Teff

and Veff follow closely the temperature and velocity values of
the fa part of the distribution. The small discrepancy with Ta
and Va allows for the conservation of energy and momentum.
There is a noticeable difference in the maximum temperature

reached by the beam between the two models, but the initial
energy and momentum transfer rates are virtually equal. The
time necessary to relax to a single Maxwellian distribution is
almost the same, albeit a bit shorter for the Teff algorithm.

However, in figures 4(c) and (d), where the beam density
is comparable to the bulk density, the difference between the
two models becomes significant. The initial energy and
momentum transfer rates are no longer equal, and the effec-
tive temperature and velocity depart noticeably from their
values for the fa part of the distribution. Nonetheless, the

Figure 1. Comparison between the Teff algorithm, the binary collision algorithm of [12], and the analytical formula of [20]. The parameters
are as follows: (a) =n n 0.1b a , =T T 2b a , (b) =n n 0.5b a , =T T 2b a , (c) =n n 1b a , =T T 2b a , (d) =n n 0.1b a , =T T 0.5b a , (e)

=n n 0.5b a , =T T 0.5b a , (f) =n n 1b a , =T T 0.5b a .

Figure 2. Deviation df from the Maxwellian distribution for the Teff

algorithm compared to the TA algorithm.

Figure 3. Comparison between the Teff and the TA algorithms in the
case =n nb a, =T T10b a.

6
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overall time to relax to the Maxwellian distribution has the
good order of magnitude.

In order to estimate the domain of validity of the algo-
rithm, we compare the initial momentum transfer rates for
different values of the density ratio and the velocity differ-
ence. Figure 5 displays the ratio between ∣ ∣ =tVd d t 0 in the TA
algorithm to the same quantity for the Teff algorithm, for

=T T 10b a (a), =T Tb a (b), =T T2b a (c) and =T T10b a (d).
When data points are left blank in figure 5(b), it means that
the Newton algorithm to find Teff and Veff does not converge,
due to the difficulty to find a good guess. Each data point is
obtained by averaging the momentum transfer rate over 100
points to reduce the PIC noise. The contour drawn in white on

the figure corresponds to a ratio of 0.75, that is, the Teff

algorithm overestimates the transfer rate by about one third.
Except for T Tb a (d), the region where the overestimation is
less than one third is defined by <n n0.2b a or ∣ ∣ <V 2b . In
other words, the density ratio can be large provided that the
velocity shift is small, and the velocity shift can be large
provided that the density ratio is small.

In practice, the most frequent applications verify the
small density condition (e.g. beam injection) and/or involve
subsonic flows ∣ ∣ V 1b with small temperature discrepancies.
Therefore, the Teff algorithm can be used in such practical
applications.

5. Case of alpha particles

In this section, we investigate the slowing-down properties of
alpha particles, which represents an important situation in
view of the simulation of burning plasmas. It is well-known
that alpha particles deposit most of their energies on electrons.
However, as the alpha particles are slowed down, this
becomes less true. Let us study the ratios of the self-collision
slowing-down frequency of an alpha particle na a

s (on the
thermalized Helium ash) to the slowing-down frequency on
the main bulk ion nas

i and to the slowing-down frequency of
the electrons nas

e (see [26]). Assuming a plasma containing
10% of Helium, (the maximum value allowed in ITER to
prevent fuel dilution [27]), one obtains:

( )
( )

( )n
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where ºb b bT mv 2th, is the thermal velocity of the species
β, and =aZ 2 is the Helium charge number. For an ion at
3.5 MeV and = = =aT T T 10 keVi e , the ratios are approxi-
mately equal to

( ) n
n

n
n

a a

a

a a

a
0.01, 0.3 36s

s
e

s

s
i

and most of the collisions lead to heating the electrons, as is
well-known. After the ions have slowed down to ´ a5 vth, ,
the ratios are

( ) n
n

n
n

a a

a

a a

a
0.7 0.3, 37s

s
e

s

s
i

so that self-collisions, although still smaller than collisions on
main ions and on electrons, contribute to the slowing-down.

The point here is not that self-collisions have a large
impact on the slowing-down of alpha particles, but rather, that
it is better to check that the Teff collision algorithm does not
introduce spurious effects when the distribution has a large
tail of fast particles. Indeed, the algorithm is applied in the
same way regardless of the shape of the distribution function.

The distribution is initialized with =N 10a
5 particles of a

Maxwellian distribution at rest and with temperature =T 1a ,

Figure 4. Comparison between the Teff algorithm and the binary
collision algorithm of [12]. Temperature evolution in (a), (c),
velocity evolution in (b), (d). The parameters are as follows: (a) and
(b): =n n 0.1b a , (c) and (d): =n n 0.5b a .

Figure 5. Ratio of ∣ ∣ =tVd d t 0 in the Teff algorithm to the same
quantity in the TA algorithm, for =T T 10b a (a), =T Tb a (b), and

=T T2b a (c).
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and an energy Dirac delta of =N 10b
3 particles with isotropic

velocity distribution at =v 350 . This corresponds to 1% of
alpha particles at 3.5 MeV in a 10 keV plasma. With such
parameters, the total energy of the distribution is significantly
larger than the energy of the bulk fa, despite the smallness of
the fast particles density.

The comparison between the Teff and TA algorithms is
shown in figure 6. The time step is D =t 0.1 for the Teff

algorithm and D =t 0.5 for the TA algorithm. The temper-
ature of the bulk Ta, of the alpha particles (more precisely the
quantity á ñ2 3 v f

2
b
) and the effective temperature Teff are

plotted. The dotted and dash-dotted curves represent the
results of the Teff algorithm when the correction to the friction,
equation (24), is not applied. As anticipated in section 2, if
only equation (25) is used, energy and momentum are con-
served, but the price to pay is a large error in the energy
transfer rate between the fast particles and the bulk. This error
vanishes in the limit D t 0, but it would require prohibi-
tively small time steps. Instead, implementing equation (24)
restores the correct transfer rates, and the time evolution of
the distribution becomes virtually identical to the one of the
TA algorithm.

Also remarkable is the fact that the effective temperature,
Teff , follows closely Ta, the temperature of the bulk, during the
whole evolution. That way, the relevant physical process is
simulated: the fast particles, which are weakly collisional, and
in particular almost do not interact with each other, mainly see
the slow part of the distribution, which corresponds to fa with
temperature Ta. The small difference between Teff and Ta
ensures the conservation of energy, that is, that all the energy
lost by the fast particles is transferred to the bulk.

6. Implementation in the XTOR-K code

We intend to implement the Teff algorithm in the XTOR-K
code. This requires to go a step further, from the 3D model

detailed above to the full 6D implementation. There are three
issues here. The first is parallelization. The second is that the
algorithm involves sums on particles which are not located at
the same point in space. The last issue is conservation of
energy and momentum in the XTOR-K sense.

Regarding the first issue, parallelization means that the
particles in a cell of the mesh do not a priori belong to the
same process. As mentioned in the introduction, this is a
serious issue in the case of the TA algorithm, because it
means that the particles must be sorted and reaffected to the
processes according to their positions, an operation that is
very expensive in communications, CPU time and memory.
However, the Teff algorithm only involves sums over the
particles, which can always be computed separately on each
process, and then summed using message passing interface
(MPI) routines such as MPI_Reduce or MPI_Allreduce.
Thus, this first issue is easy to solve using the standard tools
of parallel computing.

Regarding the second issue of non-locality, it is a matter
of trade-off between the PIC noise and the approximation
made by using particles at different locations to define the
parameters of the effective Maxwellian distribution. If they
are defined on a very small spatial scale, they are better
localized, but the number of particles may not be large
enough to obtain a sufficiently small PIC noise. Recall that
the PIC noise is proportional to N1 , where N is the number
of samples. On the contrary, if we define them on a too large
spatial scale, the PIC noise is efficiently reduced, but the
spatial variations are no longer modelled accurately. A rea-
sonable trade-off is to compute Teff and Veff on the same
( )jR Z, , mesh that is used to compute the fluid moments of
the kinetic particles. The cells of this mesh contain typically a
few thousands to tens of thousands of particles, which is
sufficient to obtain an acceptably small PIC noise. Also, as we
have seen, in most cases of interest, Teff is close to the
temperature of the bulk of the distribution, so its characteristic
scale length is the same as that of the bulk temperature and it
varies smoothly on the mesh if the latter does. Note that in
addition to Teff and Veff , an other parameter defines the
Maxwellian distribution: its density neff . The density neff is
taken to be simply proportional to the number of particles in
the cell.

The last issue of energy and momentum conservation
arises because despite the exact energy and momentum con-
servation properties of the Teff algorithm in the three dimen-
sional velocity space, the fluid energy and momentum are not
conserved in the XTOR-K sense. Indeed, the momentum and
energy at a grid point ( )a bR Z, in the ( )R Z, space, and for a
toroidal mode number4 n are given by

( )å=ab ab vWj , 38n
i

i n i, , ,

( )å=ab ab vW , 39n
i

i n i, , ,
2

where the sum is on all particles and the weight functions
abWi n, , , which depend on the positions of the particles,

Figure 6. Relaxation of fast alpha particles on a cold bulk.

4 The moments are Fourier discretized in the toroidal direction.
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quantify how much each particles is contributing to the
moment in the cell. After a collision, the particle velocities are
changed without their positions being affected, and one sees
that there is no reason for abj n, and ab n, to be equal after the
collision step to their value before collision. In order to
conserve energy and momentum in this sense, it is possible to
transform the velocities in the same spirit as equation (25),
according to the following transformation:

( )ml¢ ¬ ¢ +v v , 40i i i i

where primed quantities still denote the quantities after a
collision step. In the 6D PIC code, equation (40) replaces
equation (25). The quantities li and mi are linearly inter-
polated at the position ( )jR Z, , of the particles from the
coefficients l l= åab ab

j-en n
n

,
i and m m= åab ab

j-en n
n

,
i ,

so as to reduce the number of coefficients to compute and
store.

The coefficients lab n, and mab n, are determined using the

constraints ¢ =ab abj jn n, , and ¢ =ab ab n n, , . This results in a
coupled nonlinear system, which we will now write explicitly.
The linear interpolation gives the nth Fourier component of li

as

(
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where abui, (resp. abti, ) is the coefficient of the linear inter-
polation in the R (resp. Z) direction (see figure 7). The
coefficients abui, and abti, both vanish if the point ( )R Z,i i is
not inside the square ( ) ( ) ( )a b a b a b+ + +R Z R Z R Z, , , , , ,1 1 1
( )a b+R Z, 1 . For every particle indexed by i, only four coeffi-
cients abIi, are nonzero, and å =ab abI 1i, .

From now on, we do not write the mode number index n,
in order to obtain a lighter notation. It is understood that the
system of equations we will obtain for the λ and m coeffi-
cients must be solved for every value of n. Using the trans-
formed expression equation (40) for the new velocities, we
obtain the following set of equations for the coefficients lab
and mab:
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a b
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with

( )å= ¢a b ab ab a b¢ ¢ ¢ ¢ W Iv , 44J

i
i i n i; , , ,

( )å=a b ab ab a b¢ ¢ ¢ ¢ W I , 45J

i
i n i; , , ,
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i

i i n i i, ;
2
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i

i i n i i, ; , , , ,
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i n i i, ; , , , ,

and we used the symmetry relation =a b a b ab¢ ¢ ¢¢ ¢¢ , ;

a b a b a b¢¢ ¢¢ ¢ ¢ , ; , . Equations (42) and (43) are a coupled non-
linear system, which can be solved using standard iterative
techniques, such as the Newton–Krylov method, which is
already used in the solver of the fluid part of XTOR-K [4]. The
initial guess l = 1 and m = 0 can be used in the iterative
method. If some cells are not populated enough, they may cause
the whole system to be singular. When this is the case, it is
sufficient to remove the corresponding nodes from the system
and to set l = 1 on these nodes. As in the first part of the
algorithm, the computation of Teff and Veff , determining the
coefficients of the nonlinear system only requires MPI_reduce
type communication, because they are obtained as a sum over all
the particles in a cell (equations (44)–(48)).

Finally, we sum up the implementation of the Teff algo-
rithm in the XTOR-K case, including the communications
between processes:

(i) On each process, the sums ̄ , ̄, and their derivatives
with respect to T and V, are computed in every cell of
the (R,Z) mesh for every toroidal mode n.

(ii) A call to MPI_Reduce sums the values of all the
processes, and the values obtained are used at each
iteration of the Newton process. At the end of this
process, the values of neff , Teff and Veff are known at the
center of the cells of the (R,Z) mesh for every toroidal
mode n.

(iii) The values of neff , Teff and Veff are broadcasted to all the
processes.

(iv) The friction and diffusion coefficients are computed,
according to the value of neff , Teff and Veff at the
location of each particle, obtained from neff , Teff and Veff

at the center of the cells of the mesh by interpolation.
The friction is corrected according to equation (24).
However exact conservation of momentum and energy
is not ensured using equation (25) at this stage.

Figure 7. Definition of the coefficients for the linear interpolation.
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(v) For each value of the mode number n, the coefficients
of the nonlinear system (42) and (43), J , J ,  , 
and  , are computed on each process.

(vi) The total coefficients are obtained via MPI_reduce.
(vii) The nonlinear system is solved in parallel using

iterative Newton–Krylov technique. The coefficients
lab and mab are obtained at every node of the ( )R Z,
grid and broadcasted to all the processes.

(viii) Transformation equation (40) is applied to each particle
using the local li and mi, linearly interpolated from the
grid quantities lab and mab.

7. Discussion

To the authors’ knowledge, the present approach has never
been proposed, let alone used in a parallel full-f PIC code.
Consequently, there remains a large number of unknowns
regarding its applicability to the XTOR-K code. The present
section lists the questions that will have to be clarified upon
implementing the method in the code.

First, it is worth emphasizing that only a few cases for the
shape of the distribution function have been studied here.
They were chosen for their relevance (heating by a fast beam
or by the alpha particles) and for the ease in initializing the
distribution function with Maxwellian distributions. The
results are found to be very good in these cases: the condi-
tions for the model to reproduce the correct energy and
momentum transfer rates, as well as the correct df , are not
very restrictive. Even when the conditions are not met, and
the transfer rates are wrong by a large amount, the overall
relaxation times are roughly correct (see figures 4 (c) and (d)).
However, this does not guarantee that all possible shapes for
the distribution function will give satisfying results provided
that the density of df is small. In particular, one of the main
objectives of the collision module in the XTOR-K code is to
reproduce the ion-driven neoclassical transport self-con-
sistently. Neoclassical transport results from the collisional
friction between passing and trapped particles. Passing par-
ticles can have a large parallel momentum, unlike trapped
particles, which are constrained to have a slow precessional
motion in the toroidal direction. This induces a discontinuity
of the distribution function at the trapped/passing boundary
in the ( ) ^v , v plane, which is relaxed by collisions. The
specific shape of the distribution function is responsible for
the detailed properties of the neoclassical transport, and the
present study does not assure that neoclassical transport will
be modelled correctly. Nonetheless, the good results obtained
here allow for some optimism. Also, analytical formulæ exist
in a lot of cases, so it will be possible to assess the quality of
the results quantitatively when the collisions are implemented
in the XTOR-K code.

Even before turning to neoclassical transport, the present
study does not say anything about classical transport, which
takes place accross a uniform magnetic field in the presence
of density and temperature gradients. The benchmarking of

the algorithm versus classical and neoclassical transport the-
ory is left as future work.

Last but not least, we have not discussed in this paper the
issue of multi-species collisions. The XTOR-K code is meant
to evolve kinetically several different species of ions, while
electrons are always kept in the fluid part of the code. Col-
lisions on electrons can readily be handled in the following
way: their velocity and temperature being available from the
fluid, one merely needs to give the ions Langevin kicks for
the corresponding electron Maxwellian, without the slightest
consideration of energy and momentum conservation in a first
step; in a second step, the energy and momentum lost by the
ions is computed and entirely given to the electrons. The
electron distribution function is supposed to remain Max-
wellian all the time. If there are multiple kinetic ion species, a
similar approach could be adopted, where for each species the
Maxwellian considered is the effective Maxwellian found in
the ion-collision step. Under certain conditions, such as on the
density and/or mass discrepancies, it may even be possible to
generalize the Teff algorithm to multispecies collisions, so that
all species collide on the same effective Maxwellian dis-
tribution. This is left as future work.

8. Conclusion

In this paper, we have shown that it is possible to write an
energy and momentum conserving self-collision algorithm by
requiring the particles to collide on a single Maxwellian
distribution, which is shifted in temperature and velocity.
These shifts are what allows to model the background reac-
tion satisfactorily. In all the cases analyzed, including the
interaction between shifted or non-shifted Maxwellian dis-
tributions with different temperatures, and a distribution with
a tail of fast ions, the algorithm compares very well with the
binary collision algorithm of [12], which is exact in the limit

 ¥N ,D t 0. Contrary to the latter, our algorithm can be
implemented in a 6D domain cloning PIC code, without
requiring to sort the particles belonging to different processes
at each collision time step. Only calls to MPI_Reduce type
routines with the operator sum are required in order to get all
the quantities required by the algorithm. Compared to the
local three-dimensional in velocity space algorithm, there is
an additional computational price to pay to recover energy
and momentum conservation in the six-dimensional case,
which is the resolution of a large nonlinear system. We do not
expect this price to be prohibitive.
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Appendix A. Expressions for ,  and their
derivatives

We detail here the expressions of  and , as well as their
partial derivatives with respect to T and V. The quantities ̄
and ̄, as well as the Jacobian of the system, are obtained by
applying the operator ·á ñf on the respective quantities, in order
to obtain the average over the distribution. We recall the
notation ∣ ∣= -X Tv V .

The explicit expressions for  and  are:

( )
( )=

-
p

-


X X

T X

e erf
, A.1

X4 2

( ) ( ) ( )f
= - -

X

X T
v V . A.2

3 3 2

The derivatives of  are given by

( ) ( )
p

¶
¶

=
- -

T

X

T

4 1 e
, A.3

X2

3 2

2

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

( ) ( ) ( )
p

p¶
¶

=
-

+ --
T X

X

XV
v V8

1
1

4
e

erf

8
. A.4X

3 2 2 3

2

The temperature derivative of  is given by
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Finally, the off-diagonal terms, ¶ ¶ Vi j with ¹i j, are
given by
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