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The MHD model enables derivation and analysis of the rich structure of geodesic acoustic modes
(GAMs) and zonal modes in axisymmetric magnetic confined plasmas. The modes are identifiable
from a single dispersion relation as two branches of slow magnetosonic continua. The lower frequency
branch can be identified as a zonal flow, which in the simplified limit of static plasmas, has vanishing
magnetic component. It is shown in this contribution that axisymmetric, and lesser known non-
axisymmetric, zonal modes can be derived from MHD and kinetic models. The work provides a
comprehensive derivation of the GAMs and zonal flow continua in static and stationary toroidally
rotating plasmas, and investigates the exact solution and structure of a generalised family of zonal
modes.

I. INTRODUCTION

Geodesic modes (GAMs) and zonal flows (ZFs) are well
known to be connected to the transport properties of
confined plasmas [1–3]. Both modes are usually consid-
ered to be axisymmetric in axisymmetric confined plas-
mas. It is perhaps less well known that both modes are
two roots of a single dispersion that can be derived from
an ideal MHD model [4]. Importantly, the ideal MHD
model provides a means of calculating the electromag-
netic corrections of these dominantly electrostatic con-
tinuum modes, and reveal the global characteristics of
the modes. While standard gyrokinetic models struggle
with these features, the MHD results of Ref. [5] appear
to agree with experimental measurements of GAMs using
magnetic probes. Also, perhaps little known is the effect
that equilibrium toroidal plasma rotation (e.g. generated
by momentum input from neutral beam injection) has on
GAMs and ZFs. In addition to enriching the magnetic
spectrum and global structure of the modes, toroidal ro-
tation modifies their oscillation frequencies, despite the
fact that the modes ordinarily have zero toroidal mode
number, and are hence not Doppler shifted by a factor
nΩ when viewing in the laboratory frame (here n is the
toroidal mode number, and Ω is the toroidal rotation
frequency). This is of particular importance for zonal
flows, which in the absence of toroidal rotation, have zero
frequency, and thus would be undetectable by magnetic
probes if the toroidal plasma rotation were zero. In ad-
dition to theoretical identification [4] of low frequency
n = 0 zonal modes in rotating plasmas, experiments at
JET frequently observe low frequency n = 0 modes near
the transition between L-mode and H-mode (see e.g. the
n = 0 mode of Figure 1 in Ref. [6]). These modes, which
do not scale with the sound frequency, are colloquially
known as M-modes [7] because of their (M)agnetic char-
acteristics.

The inclusion of toroidal plasma rotation in stability
modelling illustrates that in addition to connections be-

tween GAMs, zonal flows and turbulence, such contin-
uum modes also interact with MHD instabilities. In Ref.
[8] it was shown that continuum modes oscillating at the
Brunt-Väisälä [9] frequency directly impacts the stabilily
threshold of the internal kink mode, and that inconsistent
treatment of the effect of toroidal rotation on the contin-
uum mode would lead to erroneous results. The mode os-
cillating at the Brunt–Väisälä frequency is in fact a finite
n zonal mode, which arises as one of two roots [10] from a
dispersion relation that also defines the geodesic acoustic
mode. In Ref. [5] the electromagnetic global structure
of these two modes was allucidated, both for cases of
n = 0 and for non-axisymmetric modes. In the limit of
vanishing toroidal rotation the zonal mode coincides with
the zero frequency non-axisymmetric modes identified by
Goedbloed in Ref. [11]. Similar modes in rotating plas-
mas have recently [12] been identified numerically using
the FINESSE [13] code. In the current paper we present
an instructive derivation of finite n GAMs and ZF con-
tinua in the presence of toroidal rotation. After that
we focus on the low frequency zonal flow mode for n = 0
and finite n, and show that its mode structure can be ob-
tained exactly in the limit of vanishing toroidal rotation
using an ideal MHD model and with a drift kinetic-MHD
model. In addition to the academic interest of exact fi-
nite n zonal flows, the work provides an important step
towards identifying the interaction between continuum
modes and kinetic instabilities, particularly in the pres-
ence of equilibrium plasma rotation.

The paper is organised as follows. In Section II we de-
rive zonal flow and GAM mode continua in toroidal rotat-
ing plasmas in the electrostatic limit of the MHD model.
A brief kinetic description of equilibria with toroidal ro-
tation is also outlined, and it is shown that the paral-
lel component of the momentum equation of ideal MHD
does not have to be imposed. Section III contains an ex-
act treatment of zonal flows for the MHD model with
vanishing toroidal rotation. In addition section III is
dedicated to illustrating the mode structure, and it is
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shown that the concept of convective cells associated with
n = 0 zonal flows also follows for non-axisymmetric zonal
flows. In section IV it is shown that the results of Sec-
tion III are reproduced using a fully electromagnetic drift
kinetic-MHD model. Section V is dedicated to summaris-
ing what has been shown in the paper, for a discussion
on precisely how non-axisymmetric zonal flows couple to
instabilities, and briefly the next steps to be taken in
describing kinetic-MHD instabilities in rotating plasmas.

II. MHD MODEL OF CONTINUUM MODES IN
TOROIDALLY ROTATING PLASMAS

In this section we review plasma equilibria with
toroidal rotation assuming an isothermal description of
the plasma, and then derive GAM and zonal flow con-
tinua in a rotating plasma. A kinetic derivation of
the equilibrium is an important first step for a kinetic-
MHD study into zonal flows, since the magnetic equilib-
rium equations must be shown to be compatible with
the linearly perturbed equations that describe kinetic
MHD instabilities and continua. A particular feature
of kinetic-MHD is that a momentum equation parallel
to the magnetic field is not required, so the below equi-
librium derivation starts from kinetic theory, and thus
does not impose from the start the parallel momentum
equation of ideal MHD.

A. MHD rotating equilibria

An axisymmetric equilibrium field of the form

B = F (ψ)∇φ+ ∇φ×∇ψ

is assumed where φ is the toroidal angle, ψ the poloidal
flux and F is a flux function. A kinetic treatment
in strongly E × B flowing plasmas in all collisionality
regimes has shown [14] that the distribution of ions or
electrons (generically species j) conform to a Maxwellian

Fj =
nj(ψ)

(2πTj(ψ))
3/2

exp

(
− Erot
Tj(ψ)

)
. (1)

in modified energy,

Erot =
mjw

2
‖

2
+ µB − mjΩ

2R2

2
+ qjΦ1, (2)

where w‖ is the parallel fluctuation velocity, and µ =

mjw
2
⊥/(2B) is the magnetic moment. As will be seen

the density and pressure distributions of the ions and
electrons are not flux functions, but the distributions are
isothermal, i.e. Tj = Tj(ψ). The electric field that occurs
in the equilibria of such plasmas are expanded in orders
of larmor radius

E = −∇Φ0 −∇Φ1

and it is found that the perpendicular flow velocity U⊥
is related to the leading order electric field E0 = −∇Φ0

via Ohm’s law E0 +U⊥×B = 0 while the leading order
parallel flow vector is identified by the condition that the
leading order flow is purely toroidal, specifically

U = R2Ω(ψ)∇φ with Ω = −dΦ0

dψ
. (3)

The purely toroidal flow of Eq. (3) prevents magnetic
pumping, a feature that arises if the flow moves in a direc-
tion of varying magnetic field strength. It is clearly seen
that Eq. (3) readily obeys Ohm’s law, incompressibility
at equilibrium ∇ ·U = 0, and the continuity equation.

The fact that Erot depends on the centrifugal effect
Ω2R2 indicates that moments of the distributions of ions
will not be flux functions (due to R not being a flux
function) when Ω 6= 0. In contrast, due to their low
mass, electrons would not significantly feel the centrifu-
gal contribution−mjΩ

2R2/2 in Erot. However, the quasi-
neutrality assumption of the plasma would require that
ions and electrons experience the same displacement due
to finite Ω. This apparent anomaly is solved by con-
sideration of a higher order (in Larmor radius) electric
potential Φ1. This is undertaken by first noting that the
density function nj is not the particle density, while the
density itself is obtained by integration over velocity

nj = 2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥
nj(ψ)

(2πTj(ψ))
3/2

exp

[
− 1

Tj(ψ)

(
mjw

2
‖

2
+
mjw

2
⊥

2
− mjΩ

2R2

2
+ qjΦ1

)]
.

This gives:

nj(ψ, θ) = nj(ψ) exp

(
mjΩ

2R2

2T
− qjΦ1

Tj

)
.

We will see that Φ1 will reduce the outward shift of ions,
and increase the outward shift of electrons in order that
the plasma is shifted in unison. Note also that the pres-
sure for each species can easily be constructed

Pj =

∫
dw3Fj

1

2

(
w2
‖ +

w2
⊥
2

)
= exp

(
mjΩ

2R2

2Tj
− qjΦ1

Tj

)
×∫

dw3 1

2

(
w2
‖ +

w2
⊥
2

)
nj(ψ)

(2πTj(ψ))
3/2

exp

(
− E
Tj(ψ)

)
This clearly gives

Pj(ψ, θ) = nj(ψ)Tj(ψ) exp

(
mjΩ

2R2

2Tj
− qjΦ1

Tj

)
= nj(ψ, θ)Tj(ψ),

where the poloidal dependence enters via R(ψ, θ), the
poloidal angle θ being arbitrary at this point. The only
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way in which electrons can be brought into line with the
ion centrifugal effect is with the potential

Φ1(ψ, θ) = Φ1(ψ)

(
R

R0

)2

.

We now use quasi-neutrality equation
∑
j qjnj = 0 to

find Φ1. If we neglect hot ions, and let qi = e and qe = −e
then quasi-neutrality (QN) is solved trivially and exactly
by ni = ne, which requires that

exp

(
miΩ

2R2

2Ti
− eΦ1

Ti

)
= exp

(
meΩ

2R2

2Te
+
eΦ1

Te

)
,

or

miΩ
2R2

2Ti
− eΦ1R

2

TiR2
0

=
meΩ

2R2

2Te
+
eΦ1R

2

TeR2
0

.

The electron mass can be ignored, and upon simple re-
arrangement we find,

Φ1 =
miΩ

2R2
0

2e

Te
Ti + Te

,

which on substituting into either the ion or electron den-
sities (or pressures) we have

ni,e = n exp

(
miΩ

2R2

2(Te + Ti)

)
,

Pi,e = nTi,e exp

(
miΩ

2R2

2(Te + Ti)

)
, (4)

where we again we recall that ni = ne = n has al-
ready been assumed. From the above it is seen that
for Ti = Te, the centrifugal shift of the ions has been
halved by the electrostatic effect, and the net radial shift
of the electrons meets that of the ions. In order to ex-
plicitly obtain Φ1 for the more general case where we
have arbitrary bulk ion charge qi = Zie and also hot
ions included with charge qh = Zhe we have to expand
the exponentials assuming small argument. This clearly
gives (on dropping the electron mass) the QN equation
(niZi + nhZh − ne = 0):

niZi

(
miΩ

2R2

2Ti
− ZieΦ0R

2

TiR2
0

)
+ ne

eΦ1R
2

TeR2
0

+

nhZh

(
mhΩ2R2

2Th
− ZheΦ1R

2

ThR2
0

)
= 0,

which simply yields,

Φ1 =
R2

0Ω2

2e

{
nhZhmh

Th
+ niZimi

Ti

ne

Te
+ Zini

Ti
+ nhZh

Th

}
.

Let us now consider the perpendicular momentum
equation, which is universally valid for microscopic and

macroscopic flows that are dominantly due to E × B
motion [15]:

ρ
dU

dt

∣∣∣∣
⊥

= J ×B +
[
(P⊥ − P‖)κ−∇⊥P⊥

]
(5)

where ρ =
∑
j ρj and P =

∑
j Pj , and

d

dt
=

∂

∂t
+U ·∇,

which in the isotropic pressure limit conforms to the per-
pendicular components of the standard momentum equa-
tion of ideal MHD equation. In contrast, the parallel
component of the ideal MHD momentum equation is not
always reliable, though for many studies the parallel com-
ponent of the momentum equation is either not required,
or is substituted by a kinetic treatment. The lack of
use of the parallel momentum equation for linear kinetic-
MHD problems is described in Section IV. Despite the
obvious existence of parallel electric fields arising from
Φ1, it is shown below that the parallel analogue of Eq.
(5) is valid for the strongly rotating isotropic equilibrium
problem, and that qausi-neutrality is accounted for ex-
actly for multiple species of ions and electrons. As well as
verifying a solid base for kinetic-MHD stability/continua
problems, the remainder of this subsection also serves to
identify properties and definitions that will be relied on
later.

From

∇P =

(
∇ψ

∂

∂ψ
+ ∇θ

∂

∂θ
+ ∇φ

∂

∂φ

)
P,

B = F∇φ+ ∇φ×∇ψ

and using the definition for the Jacobian J

J−1 = ∇ψ · (∇θ ×∇φ) (6)

we obtain

b ·∇P =
1

JB

(
FJ
R2

∂

∂φ
+

∂

∂θ

)
P, (7)

where b = B/B and ∂P/∂φ = 0 due to axisymmetry.
Consider the total pressure that we have derived in the

kinetic analysis:

P =
∑
j

njTj exp

(
mjΩ

2R2

2Tj
− qjΦ1R

2

TjR2
0

)
.

Since ∂R/∂φ = 0, we have,

b ·∇P =
1

JB
∑
j

njTj
∂

∂θ
exp

(
mjΩ

2R2

2Tj
− qjΦ1R

2

TjR2
0

)

=
1

JB
∑
j

Pj(ψ, θ)

(
mjΩ

2

2Tj
− qjΦ1

TjR2
0

)
∂R2

∂θ
.
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Employing nj = Pj/Tj , and ρj = mjnj it follows that

b ·∇P =
R

JB
∂R

∂θ

Ω2
∑
j

ρj −
2Φ1

R2
0

∑
j

qjnj

 .

Now, from QN we have
∑
j qjnj = 0 so that the term

involving Φ1 in b ·∇P cancels. Also, since ρ =
∑
j ρj we

finally have

b ·∇P = ρ
RΩ2

JB
∂R

∂θ
. (8)

It remains to calculate the parallel component of ρ(U ·
∇)U ,

b · {ρ(U ·∇)U} = ρ
1

R
b ·
{
U
∂

∂φ
(Ueφ)

}
,

where eφ is the unit vector in the toroidal direction.
Defining the unit vector in the (major) radial direction

eR ≡
∇R

|∇R|
= −deφ

dφ

we then have the inertia that balances the centrifugal
force due to toroidal rotation (U · ∇)U = −Ω2ReR.
Thus,

b · {ρ(U ·∇)U} = −ρRΩ2b ·∇R

where we have used |∇R| = 1. Now, using

∇R =
∂R

∂θ
∇θ +

∂R

∂ψ
∇ψ and b =

F∇φ+ ∇φ×∇ψ

B

together with the definition of the Jacobian (6) we have

b ·∇R =
1

JB
∂R

∂θ

so that finally we have

b · {ρ(U ·∇)U} = −ρRΩ2

JB
∂R

∂θ
. (9)

This is a useful result in itself, however, we can equate
Eqs. (9) and (8) and thus obtain from the kinetic treat-
ment presented in this section:

b · {ρ(U ·∇)U} = −b ·∇P. (10)

This equation describes parallel force balance and we
note that the Larmor radius correction to the electric
field, i.e. on Φ1 does not appear explicitly in the equa-
tion, but its effect is crucial. To conclude, in the isotropic
pressure limit, the kinetic treatment of strongly rotating
plasma equilibria overviewed here is consistent with the
full ideal MHD momentum equation at equilibrium,

ρ(U ·∇)U = J ×B −∇P.

From this robust basis we are ready to investigate an ideal
MHD description of GAMs and zonal flows in rotating
plasmas, and a kinetic treatment later on.

B. GAMs and Zonal flows in isothermal ideal
MHD rotating plasmas

For a description of linear perturbed ideal MHD in a
rotating plasma we follow the approach by Frieman and
Rotenburg [16]. In this work, a Lagrangian displacement
ξ is employed, which can be defined in terms of the La-
grangian perturbed fluid velocity as

∆U ≡ dξ

dt
=
∂ξ

∂t
+U ·∇ξ

where the perturbed Lagrangian flow ∆U is related to
the Eulerian perturbed vectors X (including the fluid
velocity) as ∆X = δX + ξ ·∇X so that Ohm’s law

δE⊥ = −U × δB − δU ×B

can be written in terms of ξ via the Eulerian perturbed
fluid velocity

δU =
∂ξ

∂t
+U ·∇ξ − ξ ·∇U .

Using this definition of the displacement allows the ideal
MHD equations of so called stationary plasmas to be
identical to those of ideal linear perturbed MHD equa-
tions of static plasmas, except for a change to the mo-
mentum equation:

ρ

[
∂2ξ

∂t2
+ 2(U ·∇)

∂ξ

∂t
+ (U ·∇) [(U ·∇)ξ]

]
−

∇ · [ρξ(U ·∇)U ] = δJ ×B + J × δB −∇δP (11)

where

δB = ∇× (ξ ×B) = ∇× (ξ⊥ ×B)

and thus from Amperes law

δJ = ∇× δB = ∇× [∇× (ξ⊥ ×B)],

and the full perturbed pressure follows from ideal MHD’s
equation of state:

δP = −ξ ·∇P − ΓP∇ · ξ

with Γ the adiabatic index.
The advantages of using the Frieman and Rotenburg

[16] for mode analysis are tremendous, especially for an
investigation of electrostatic modes, where from the start
specific forms of the displacement ξ can be chosen so that
δJ = 0 and δB = 0. In particular, it will be shown below
that GAMs and zonal flow continua in rotating plasmas
can be derived intuitively, rigourously and briefly. First
some identities are required. We employ the cylindrical
coordinate system (R,Z, φ), which is right handed, but
unconventional in order [17], and referring to the last
subsection,

U = RΩeφ,

U ·∇ξ = Ω(inξ − eZ × ξ),

U ·∇(U ·∇ξ) = −n2Ω2ξ − 2inΩ2eZ × ξ,
(U ·∇)U = −Ω2ReR,
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where ξ = ξ̂(θ, ψ) exp(inφ−iωt) has been assumed, eZ =
∇Z, eR = ∇R and eφ = R∇φ . Clearly, we thus have in
the momentum equation ∂ξ/∂t = −iωξ and ∂2ξ/∂t2 =
−ω2ξ. It is then straightforward to show that

−ρ
[
(ω − nΩ)2ξ − 2i(ω − nΩ)ΩeZ × ξ

]
+ ∇ · (ρΩ2ξ)ReR

= (δB ·∇)B + (B ·∇)δB −∇(δB ·B)+

∇ (ξ ·∇P + ΓP∇ · ξ) . (12)

Note that the last term on the left hand side of the above
equation is often put on the right hand side, and consid-
ered an applied force. The frequency ω − nΩ ≡ ωD is
clearly the mode frequency in the rest frame of the equi-
librium plasma. Finally, as will be seen, it is desirable to
write the momentum equation in terms of the perturbed
pressure δP . From δP = −ξ ·∇P −ΓP∇ · ξ it is easy to
show that

−ρω2
Dξ +

[
ξ ·∇(ρΩ2)− ρ Ω2

ΓP
(δP + ξ ·∇P )

]
ReR

+ 2iρωDΩeZ × ξ + ∇δP

= (δB ·∇)B + (B ·∇)δB −∇(δB ·B). (13)

Following Bussac et al [18] it is often convenient to
write the total displacement as

ξ = ξp + αB

with the property ξp · ∇φ = 0. Clearly αB is closely
related (but not identical) to ξ‖ = b · ξ, and nota-
tions will be interchanged where convenient. In Section
III where static (non-rotating) plasmas are considered,
it will be shown that zonal modes are exactly electro-
static, and there are no flows across magnetic flux sur-
faces. While full electromagnetic calculations have been
made for GAMs and zonal modes [5], analysis of the
continuum mode frequencies in rotating plasma are re-
covered on setting ξψp = ξp · ∇ψ = 0 and δB = 0 in
Eq. (13). Let us now examine the perturbed pressure
δP = −ξ ·∇P −ΓP∇ ·ξ, a quantity that will ultimately
be eliminated. With ξψp = 0, Eq. (8) and Eq. (7), we
obtain

δP =− ΓP

[
1

J

(
∂

∂θ
+ q

∂

∂φ

)
α+ ∇ · ξp

]
− ρRΩ2

(
ξθp +

F

qR2
α

)
∂R

∂θ
.

where ξθp = ξp ·∇θ. We now wish to simplify the per-

turbed pressure. It can be shown that δBφ = −∇ ·
(ξpF/R

2), so that on letting (see earlier discussions)

δBφ = 0 and ξψp = 0, we have ∇ · ξp = ξθpR
−2∂R2/∂θ to

relevant order. At this point it is assumed that all fluctu-
ating quantities adopt the form X = X̂(ψ, θ) exp(inφ −
imθ). Choosing the singular location q = m/n, the per-

turbed pressure is

ˆδP (ψ, θ) =− ρR
[
ω2
s

(
F

qR

∂α̂

∂θ
+ 2ξ̂θp

∂R

∂θ

)
+Ω2

(
ξ̂θp +

F

qR2
α̂

)
∂R

∂θ

]
[1 +O(ε2)], (14)

with the sound frequency ω2
s = ΓP/(ρR2), and where

ε is the local inverse aspect ratio, such that RB/F =
1 + O(ε2). Another important related quantity is the
Mach number M , which we define as,

M2 =
ρΩ2R2

2P
=

ΓΩ2

2ω2
s

. (15)

Now, assuming M ∼ 1 or less, and α−1∂α/∂θ ∼ O(ε0),
the last term in Eq. (14) can be neglected to leading
order in ε, so that

ˆδP (ψ, θ) = −ρR
[
ω2
s

(
F

qR

∂α̂

∂θ
+ 2ξ̂θp

∂R

∂θ

)
+ Ω2ξ̂θp

∂R

∂θ

]
.

(16)
Returning to the equation of motion, and dotting Eq.

(13) with b (neglecting ξp · b ≈ Rξθp(ε/q)2), and taking
δB = 0, yields:

−ρω2
DαB =−

[
ξ ·∇(ρΩ2)− ρ Ω2

ΓP
(δP + ξ ·∇P )

]
ReR · b

− b ·∇δP − 2iρωDΩ(eZ × ξ) · b.

An initial simplification can be made by noting that
the terms in the above equation that are proportional
to eR · b are proportional to (∂R/∂θ)2 ∼ ε2R2. Ne-
glecting these higher order (in ε) terms, using b ·
eZ × ξ = −ξθp(F/(RB))∂R/∂θ, b · ∇δP = exp(inφ −
imθ)(1/(JB))∂ ˆδP/∂θ, RB/F = 1 + O(ε2) and on sub-
stituting Eq. (16), gives to leading order in ε:

qω2
Dα̂B =

∂

∂θ

[
ω2
s

(
F

qR

∂α̂

∂θ
+ 2ξ̂θp

∂R

∂θ

)
+ Ω2ξ̂θp

∂R

∂θ

]
− 2iqωDΩ

∂R

∂θ
ξ̂θp . (17)

Now, we expect α to have dominant neighbouring side-
band harmonics, so we search for a solution to Eq. (17)
in the form

α̂(ψ, θ) = α̂(−1)(ψ) exp(−iθ)+α̂(0)(ψ)+α̂(+1)(ψ) exp(iθ),

With R = R0(1 + ε cos θ) and R0 the radius of the
magnetic axis, such that F = R0B0(1 + O(ε2)) where
B0 is the magnetic field on the magnetic axis, then
∂R/∂θ = −(εR0/2)[exp(iθ) + exp(−iθ)]. Substituting
α̂ into Eq. (17) and Fourier analysing gives,

α̂(0) = 0

ω2
DqB0α̂

(1) =
ω2
s

q
α̂(1)B0 + εR0ξ̂

θ
p

(
ω2
s +

Ω2

2
+ qωDΩ

)
ω2
DqB0α̂

(−1) =
ω2
s

q
α̂(−1)B0 + εR0ξ̂

θ
p

(
ω2
s +

Ω2

2
− qωDΩ

)
,
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so that to leading order in ε the parallel displacement
has no flute component. Substituting these results into
α̂ succinctly gives to leading order in ε:

α̂B0 = −
2qεR0ξ̂

θ
p

ω2
s − q2ω2

D

[(
ω2
s +

Ω2

2

)
cos θ + qωDΩi sin θ

]
,

(18)
where the Ω2 cos θ term arrives due to centrifugal effects,
and the ωDΩ sin θ term arrives due to the coriolis effect.
Both centrifugal and coriolis effects ultimately influence
the continua, as will be seen. Finally, substitution of
Eq. (18) into Eq. (16) yields the lowest order pressure
fluctuation:

ˆδP = −
ρR2

0εξ̂
θ
p

ω2
s − q2ω2

D

[
q2ω2

D(2ω2
s + Ω2) sin θ

−2qωDΩω2
s i cos θ

]
. (19)

We are now ready to obtain the continua, which are
conveniently obtained by applying a vorticity operator
(see Refs. [19, 20]):

V (X) =
1

2π

∫ π

−π

dθ i exp(imθ)

m
q|∇ψ|J∇ ·

[
X ×∇φ

B ·∇φ

]
.

(20)
on the equation of motion X(ψ, θ, φ), where X is Eq.
(13). On letting X take the form X = Y + ∇δP with
Y = Yψ∇ψ + Yθ∇θ + Yφ∇φ one then solves

V =
q|∇ψ|
im

1

2π

∫ π

π

dθ

{
∂

∂ψ

[
ˆδP
∂

∂θ

(
J
q

)
−
(
J
q

)
Ŷθ

]
+im

[
ˆδP

∂

∂ψ

(
J
q

)
−
(
J
q

)
Ŷψ

]}
= 0,

(21)

where to leading order (neglecting non-orthogonality of
coordinates at the required order in ε):

Ŷψ = |∇ψ|−2
[
−ρω2

Dξ̂ +
(
ξ̂ ·∇(ρΩ2)−

ρ
Ω2

ΓP
( ˆδP + ξ̂ ·∇P )

)
ReR + 2iρωDΩeZ × ξ̂

]
·∇ψ,

Ŷθ = |∇θ|−2
[
−ρω2

Dξ̂ +
(
ξ̂ ·∇(ρΩ2)−

ρ
Ω2

ΓP
( ˆδP + ξ̂ ·∇P )

)
ReR + 2iρωDΩeZ × ξ̂

]
·∇θ.

It turns out that the expression in the second set of square
parenthesis in Eq. ( 21) is small, especially for ξψp = 0,
and will be neglected henceforth. Thus, it is sufficient to
solve, ∫ π

π

dθ

[
ˆδP
∂

∂θ

(
J
q

)
−
(
J
q

)
Ŷθ

]
= 0, (22)

which in the notation employed in Ref. [5], coincides with

A1 = 0. Letting Ŷθ = Ŷ1 + Ŷ2 + Ŷ3 + Ŷ4 we may write:

Ŷ1 = |∇θ|−2
(
−ρω2

Dξ̂
)
·∇θ

Ŷ2 = |∇θ|−2
[
ξ̂ ·∇(ρΩ2)

]
R∇R ·∇θ

Ŷ3 = |∇θ|−2
[
−ρ Ω2

ΓP
( ˆδP + ξ̂ ·∇P )

]
R∇R ·∇θ

Ŷ4 = |∇θ|−2
(

2iρωDΩeZ × ξ̂
)
·∇θ.

Using results already stated above (e.g. that ∇R ·∇θ =
|∇θ|2∂R/∂θ), and with ω2

A = B2/(ρR2), then at leading
order,

−
(
J
q

)
Ŷ1 =

r2B0

R0
ξθp
ω2
D

ω2
A

−
(
J
q

)
Ŷ2 =

r2B0

R0
ξθp

Ω2M2

ω2
A

(−2 sin2 θ)

−
(
J
q

)
Ŷ3 =

r2B0

R0
ξθp

Ω2(Ω2 + 2q2ω2
D)

ω2
A(ω2

s − q2ω2
D)

sin2 θ

−
(
J
q

)
Ŷ4 =

r2B0

R0
ξθp

q2ω2
DΩ2

ω2
A(ω2

s − q2ω2
D)
×

4

[
sin2 θ +

i

qωDΩ

(
ω2
s +

Ω2

2

)
sin θ cos θ

]
.

It is seen that the coriolis effect will survive through the
sin2 θ contribution in Ŷ4, while all other Ω2 contributions
in Ŷ are due to centrifugal effects. Centrifugal effects also
arise in the remaining term of the vorticity, namely,

ˆδP
∂

∂θ

(
J
q

)
=
r2B0

R0
ξθp×

2

[
q2ω2

D(2ω2
s + Ω2) sin2 θ − 2iqωDΩω2

s cos θ sin θ
]

ω2
A(ω2

s − q2ω2
D)

,

where Eq. (19) and ∂J /∂θ ≈ −(2r/B0) sin θ has been
used. The coriolis contribution in the above equation
(proportionial to −2iqωDΩω2

s sin θ cos θ) will not survive
integration over θ in the vorticity of Eq. (22). In the limit
of vanishing Ω, standard ideal MHD results are obtained,
such that continua comprise only contributions from Ŷ1
and the first term in the equation for ˆδP∂(J /q)/∂θ
above.

Finally substituting these results into Eq. (22) gives
the continuum equation:

ω2
D − Ω2M2

ω2
A

+
Ω4 + 4q2ω2

Dω
2
s(1 + 4M2/Γ)

2ω2
A(ω2

s − q2ω2
D)

= 0, (23)

where the definition (15) for the Mach number M has
again been used. Now, clearly, Eq. (23) has two roots
for ω2

D. The low frequency root, or zonal root, under the
limit ωD << Ω, is

ω2
D(zonal) =

1

1 + 2q2 + 8q2M2/Γ
Ω2M2

(
1− 1

Γ

)
. (24)
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The high frequency root, or GAM root, is easily obtained
in the limit of M << 1, or specifically for ω2

D ∼ ω2
s �

Ω2M2, for which one obtains the small rotation correc-
tion to the GAM frequency,

ω2
D(GAM) = ω2

s

[
1

q2
+ 2

(
1 +

4M2

Γ

)]
.

This subsection has reviewed continuum modes in ro-
tating plasmas with finite (or zero) mode number n, and
has hopefully provided a clear passage for obtaining high
and low frequency continua. Since it is now clear that
the low frequency mode of Eq. (23) is a true continuum
mode, whose frequency diminishes to zero as Ω vanishes,
a new calculation can confidently be commenced in static
plasmas, where a zonal mode with zero mode frequency
is sought, and an exact calculation for the mode vector
provided.

III. EXACT ZONAL MODES IN STATIC IDEAL
MHD PLASMAS

We are now ready to solve the zonal mode problem in
static plasmas. While in the last section magnetic fluc-
tuations were assumed small, and perturbed flows (or
displacements) were assumed to exist only on rational
surfaces, it will be shown below that for a static equilib-
rium plasma (Ω = 0), the ω = 0 zonal mode is exactly
electrostatic, and cross field flows are exactly zero. Since
one normally thinks of zonal flows, rather than zonal dis-
placements, and since we expect to obtain ω = 0, it is
more intuitive to write the MHD equations in terms of
perturbed velocity δU than in terms of displacements.
Linearising the MHD equations in the absence of equi-
librium flow, one obtains

−ρω2δU = j × ˙δB + δ̇j ×B −∇ ˙δP (25)

˙δB = ∇× (δU ×B) (26)

δ̇j = ∇× ˙δB (27)

˙δP = −δU ·∇P − ΓP∇ · δU (28)

∇ · ˙δB = 0, (29)

where ẋ = ∂x/∂t and ∂2δU/∂t2 = −ω2δU (following
from normal modes ∼ exp(−iωt), and where Ohm’s law
δE + δU ×B = 0 has been applied.

In the work of Ref. [5], electromagnetic effects are self-
consistently considered in order to obtain global GAMs
and zonal flows. However, as already seen, calculation of
the continuum mode frequencies do not require magnetic
fluctuations. In addition, it will be seen here that in the
absence of toroidal rotation, the zonal branch is exactly
electrostatic. It should thus be possible to see how the
magnetic fluctuations can set to zero via identifying the
correct velocity fluctuation. To this end, it is instructive
to write down the contravariant magnetic field compo-
nents in terms of the contravariant velocity fluctuations
δUψ = δU ·∇ψ, δUθ = δU ·∇θ and δUφ = δU ·∇φ

for a straight field line coordinate system with jacobian
J = qR2/F (as will be assumed again henceforth):

˙δB
ψ

=
1

J

[
inq +

∂

∂θ

]
δUψ,

˙δB
θ

= − 1

J

[
∂δUψ

∂ψ
+ in(δUφ − qδUθ)

]
,

˙δB
φ

= − 1

J

[
∂

∂ψ
(qδUψ) +

∂

∂θ
(qδUθ − δUφ)

]
, (30)

where modes have toroidal dependence ∼ exp(inφ),
which is of course exact for this linear system, perturbed
about an axisymmetric equilibrium. Note that Bussac’s
[18] choice of displacement ξ = ξp+αB (or indeed veloc-
ity) is no longer convenient, nor necessary. It is seen that

˙δB
ψ

and ˙δB
θ

can be set simultaneously to zero only if
δUψ = 0, i.e. that there are no flows across flux surfaces.
It remains to obtain the flow components δUφ and δUθ,
together with δUφ and δUθ, these latter two components
defining the parallel velocity,

δU‖ = δU · b =
1

BJ
(qδUφ + δUθ)

where the covariant velocity components are defined via
δU = δUφ∇φ + δUθ∇θ + δUψ∇ψ. For δUψ = 0, the
parallel velocity can be written simply in terms of the
contravariant velocities:

δU‖ =
F

B

[
δUφ + q

(
R2B2

F 2
− 1

)
δUθ

]
, (31)

where δUφ = R2δUφ, δUθ = (qR/F )2∇ψ2δUθ and
δUψ = −(qR/F )2(∇θ ·∇ψ)δUθ.

Finally, with δUψ = 0, then Eq. (28) yields ˙δP =
−ΓP∇ · δU . Thus, both the equation of motion and the
adiabatic equation of state are then satisfied by ω2 = 0
and ∇ · δU = 0. To summarise, the ideal MHD model
of Eqs. (25) - (29) hold exactly for

ω = 0, δUψ = 0, n(δUφ − qδUθ) = 0,

∂δUφ

∂θ
= q

∂δUθ

∂θ
,

1

J

[
∂

∂θ

(
J δUθ

)
+ inJ δUφ

]
= 0,

(32)

where we are reminded that a mode with ω = 0 is the
zonal continuum mode obtained in Eq. (24) for vanish-
ing toroidal equilibrium rotation. The last identity in the
above follows from ∇ · δU = 0, while the second, third
and fourth identities follow from the respective electro-
static identities of Eq. (30). Clearly, to further explore
the spatial dependence of these zonal modes, one must
first specify the toroidal mode number of interest.

A. Axisymmetric Zonal Modes

On choosing axisymmetric (n = 0) zonal modes, Eq.
(32) requires that ∂(J δUθ)/∂θ = 0. With J = qR2/F ,
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then it follows that

δUθ(ψ, θ) = ˜δU
θ
(ψ)

R2
0

R2

with ˜δU
φ
(ψ) some arbitrary function of ψ. In addition,

from Eq. (32), ∂δUφ/∂θ = q∂δUθ/∂θ can be integrated
in θ to yield,

δUφ(ψ, θ) = qδUθ(ψ, θ)+ ˜δU
φ
(ψ) = q ˜δU

θ
(ψ)

R2
0

R2
+ ˜δU

φ
(ψ)

where the presently arbitrary constant of integration
˜δU
φ
(ψ) is related to Ferraro’s [21] law of isorotation.

Now, true n = 0 zonal flows do not propagate secularly
in the toroidal direction [1]. The flow forms a closed cir-
cuit, or convective cell, over one poloidal circuit, which

requires that ˜δU
φ
(ψ) = −q ˜δU

θ
(ψ). Hence, in summary,

δUθ(ψ, θ) = ˜δU
θ
(ψ)

R2
0

R2
, and δUφ = q ˜δU

θ
(ψ)

(
R2

0

R2
− 1

)
.

Finally, consider the perturbed electric field, which from
Ohm’s law (assuming δUψ = 0), is

δE = −q
(
δUθ − δUφ

q

)
∇ψ. (33)

Thus the n = 0 zonal mode has, on choosing that the
flow closes on itself, an associated electric field δE =

−q ˜δU
θ
(ψ)∇ψ with no poloidal dependence.

B. Non-axisymmetric Zonal Modes

We now turn to non-axisymmetric zonal modes. Equa-
tion (32) for n 6= 0 requires that

δUφ = qδUθ(ψ, θ),

i.e. the same result as for n = 0 zonal modes, except that

for n 6= 0, there is no isorotation contribution ˜δU
φ
(ψ).

It is thus seen from Eq. (33) that the electric field δE is
identically zero for n 6= 0 zonal flows, so that in addition
δU = δU‖b. Since electric fields and magnetic perturba-
tions are zero for the n 6= 0 case, then non-axisymmetric
zonal modes are strictly hydrodynamic phenomena.

Let us now investigate the exact spatial dependence of
the n 6= 0 zonal velocity. Substituting δUφ = qδUθ(ψ, θ)
into the ∇ · δU = 0 (the last relation in Eq. (32), we
find that (using J = qR2/F ):

∂

∂θ

(
R2δUθ

)
+ inqR2δUθ = 0.

The solution is necessarily δUθ = [f(ψ)/R2] exp(inφ −
inqθ), with f(ψ) an arbitrary function of ψ. Noting how-
ever, that δU must be periodic in θ, the solution requires
that nq is an integer, i.e. nq(ψ) = m with m integer. Any

particular (n,m) mode can exist only at its own rational
surface q(ψ) = m/n, so that summarising,

δUθ(ψ, θ, φ) = ˜δUδ(ψ − ψm,n)

[
R0

R(ψ, θ)

]2
exp(inφ− imθ),

δUφ =
m

n
δUθ,

where ˜δU is an arbitrary coefficient, δ(ψ − ψm,n) is a
Dirac delta function, and q(ψ = ψm,n) = m/n. The
plasma has of course an infinite number of rational sur-
faces, so there ia an infinite spectrum of these singularly
localised (in ψ) non-axisymmetric zonal modes. A final
point to note on the general structure of the n 6= 0 zonal
flows is that since the flow follows exactly the direction
of the magnetic field, and since the flow is confined to
an exact magnetic surface where q = m/n, then the flow
exactly closes on itself. Thus, while n = 0 and n 6= 0
zonal modes differ in that n = 0 modes have finite per-
pendicular velocity, and associated radial electric fields,
both n = 0 and n 6= 0 flows close on themselves and thus
can be considered convective cells.

Let us now examine the spatial dependence of the
n 6= 0 zonal mode using inverse aspect ratio analytic
expansion of the equilibrium. In particular, since the ex-
act poloidal dependence of the flow vectors is known, we
can calculate the amplitudes of sideband harmonics rela-
tive to a main harmonic δU(ψ) exp(−imθ). For example,
taking a leading order inverse aspect ratio (ε) expansion
for R, one obtains,

δUθ(ψ, θ, φ) ≈ ˜δUδ(ψ − ψm,n) exp(inφ)×
{−ε exp[−i(m− 1)θ] + exp[−imθ]− ε exp[−i(m+ 1)θ]} .

Finally, from Eq. (31), it is also possible to write the
total fluid perturbation as

δU =
qR2B

F
δUθb

=
qR0B(θ)b

F
˜δUδ(ψ − ψm,n) exp(inφ− imθ),

where it is again straightforward to obtain the sideband
harmonics. Higher order corrections are easily calcu-
lated, so that elongation, triangularity and toroidicity
(Shafranov shift) effects on the sidebands are tractable.

IV. EXACT ZONAL MODES UNDER
KINETIC-MHD MODEL

The problem in the last section is modified to include
kinetic effects. As before, toroidal rotation in the equi-
librium is neglected. Equations (25) - (29) are replaced
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with [22]:

− i
∑
j

ρj(ω − nω∗pj) ˙δU⊥ = j × ˙δB + δ̇j ×B+

( ˙δP⊥ − ˙δP ‖)κ−∇⊥ ˙δP⊥ (34)∑
j

qj ˙δnj = 0 (35)

˙δB = ∇× (δU⊥A ×B) (36)

δ̇j = ∇× ˙δB (37)

˙δf j = qjR
2 ˙δA

φ ∂Fj
∂Pφ

+ qj ˙δφ
∂Fj
∂E
−
µ ˙δB‖

B

∂Fj
∂µ

+ ˙δf jk,

(−iω + V jg ·∇) ˙δfjk = −i ˙δLj

(
ω
∂Fj
∂E
− n ∂Fj

∂Pφ

)
(38)

∇ · ˙δB = 0, , (39)

where Ẋ ≡ ∂X/∂t, qj the species charge, ω∗pj is the
fluid diamagnetic frequency [23] for species j, while δnj ,
δPj⊥ and δPj‖ are obtained by solving the drift kinetic
equation (38) for δfj (the perturbed distribution function
for each species j) in terms of the electromagnetic fields
and taking the relevant moments, as described later. In
addition, Fj is the equilibrium distribution function for
the species j, Pφ and E are the toroidal canonical mo-
menta and kinetic energy of a particle. Finally, V jg is the
guiding centre velocity for a particle of species j, which
also enters into the time derivative of the perturbed La-
grangian, defined as [24]:

˙δL = qj ˙δA · V jg − qi ˙δφ− µ ˙δB‖, (40)

where µ is the magnetic moment, and δA and δφ are as-
sociated with the perturbed electric field δE = −∇δφ−

˙δA as discussed in more detail below.
There are a few additional points to note before

progress is made. The first is that, as discussed further
below, in kinetic-MHD, only the perpendicular compo-
nents of the momentum equation are considered. The
parallel momentum equation of ideal MHD is essentially
replaced by the quasi-neutrality equation of Eq. (35),
which solves for the potential δφ that describes the par-
allel electric field δE · b = −b ·∇δφ. Note also in the
set of equations (34) - (39) that there are two types of
velocity perturbations, the relation between them is now
described. With the gauge b · ˙δA = 0, it can be seen
from the general perturbed electric field

δE = −∇δφ− ˙δA (41)

that δE · b = −b ·∇δφ. In addition, the gauge allows
the vector potential to be written as

˙δA = δU⊥A ×B, (42)

which thus explains that the definition of Faraday’s law
given in Eq. (36) is written in terms of the special ve-
locity perturbation δU⊥A, where one is free to allow

b · δU⊥A = 0. Meanwhile, the left hand side of the
perpendicular momentum equation depends on the total
perturbed E-cross-B velocity, which from Eqs. (41) and
(42) is

δU⊥ = −∇δφ×B
B2

+ δU⊥A, (43)

where for the ideal MHD case E‖ = 0, we clearly have
δU⊥ = δU⊥A due to δφ being zero.

The total perturbed velocity for species j is

δU j = δU⊥ + δU‖b

where, the perpendicular perturbed velocity δU⊥ is com-
mon to all particle species owing to it being the E-cross-B
flow. The parallel perturbed velocity is species depen-
dent, but the crucial point to reiterate is that the linear
kinetic-MHD stability problem is independent of δUj‖.
Instead of solving the parallel momentum equation of
ideal MHD, kinetic MHD instead treats the parallel dy-
namics intrinsic to the drift-kinetic equation, which is
manifested in (34) - (39) via the perturbed pressure com-
ponents, and in the δφ contribution to δU⊥. Precisely,
the parallel component of the momentum equation and
the adiabatic equation of state both employed in the ideal
model are replaced in the drift kinetic model by the drift
kinetic equation and quasi-neutrality. Nevertheless, if
knowledge of δUj‖ is desired, then after the kinetic-MHD
equations have been solved, the continuity equation for
each species j,

∂δρj
∂t

+ ρj∇ · δU j + δU j ·∇ρj = 0 (44)

valid to all orders in Larmor radius, can be inverted, to
yield δUj‖ in terms of the known variables δU⊥ and δρj .
We will do this at the end of this section for the zonal
modes under investigation here.

A. Axisymmeteric zonal modes under
kinetic-MHD model

In this section it is shown that the n = 0 zonal modes
derived using the MHD model are exact. Let us first
assume the ideal MHD fields, E‖ = 0 and δB = 0, in Eqs.
(34) - (39) to see if the kinetic model then exactly recovers
ideal MHD. Clearly, as seen from Eq. (43), with δφ = 0
the two definitions of perturbed velocity are conveniently
identical, i.e. δUA = δU . Hence ˙δB = ∇ × (δU ×B)
as is the case for the ideal MHD model, so that again on
assuming ideal MHD fields, δUψ should initially be taken
to be zero.

We now consider the drift kinetic equation of Eq. (38),
which must be treated carefully. We should not yet set
ω = 0 in the equation for δfjk in Eq. (38) because both
left and right hand sides contain ω and n, and both sides
might vanish (on setting ω = 0, n = 0) if an improper
treatment of the problem is made. It is first noted that
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with ˙δA = δU × B, the perturbed Lagrangian of Eq.
(40) is [25]:

˙δL =− qjδUψV jg · (∇φ− q∇θ)

− qjδUθV jg ·∇ψ − qj ˙δφ− µ ˙δB‖,

so that with δB‖ = 0, δφ = 0 and δUψ = 0, we have
˙δL = −qjδUθV jg · ∇ψ. The associated drift kinetic

problem was treated in the appendix of Ref. [23], where it
was found that on assuming ω much less than the bounce
frequency, the perturbed distribution function adopts the

form ˙δf jk(ψ, θ, φ, t) =
ˆ̇
δfjk(ψ, θ) exp(inφ − imθ − iωt)

with:

∂
ˆ̇
δfjk
∂θ

= iq

(
ω
∂Fj
∂E
− n ∂Fj

∂Pφ

)
ˆδU
θ ∂

∂θ
(Rv‖). (45)

A constant of integration must be evaluated by applying
boundary conditions to the drift kinetic equation at the
next order on Larmor radius (or more exactly in banana
width relative to the length scale of the mode in ques-
tion). On calculating the pressure moments associated

with ˙δf jk, substituting these into the momentum equa-
tion of Eq. (34), and undertaking the vorticity operator
V [X] of Eq. (20), one obtains the kinetically enhanced
inertia. In particular, one finds [23] for n = 0:

V [−iρω ˙δU⊥ − ( ˙δP⊥ − ˙δP ‖)κ+ ∇⊥ ˙δP⊥] ∝
− ρω2δUθ(1 + 1.6q2ε−1/2). (46)

The inertial enhancement 1 → 1 + 1.6q2ε−1/2 can be
compared with that of static ideal MHD 1→ 1+2q2 (see
Eq. (23) with Ω = 0 and M = 0) which in the ideal
MHD case arises from the compressibility contribution
−ΓP∇ · δU to δP . It might be of interest to note in
the context of zonal flows that the factor 1.6q2ε−1/2 was
independently obtained in Ref. [26] as a factor describing
non-linear residual zonal flow assuming a given source.

Returning to the problem at hand, for the case of ω =
0, and n = 0, then from Eq. (45) one obtains ˙δf jk = 0.

Furthermore, with ˙δA = δU ×B, it is easily shown that
δAφ = δUψ/R2. Again, assuming that ideal MHD results
hold, whereby δUψ = 0 and δB = 0, it is thus clear
from Eq. (38) that the total (fluid plus kinetic) perturbed

distribution function ˙δf j for each species is zero, and
hence so are their moments:

δ̇ρj = 0, ˙δP j⊥ = 0, and ˙δP j‖ = 0.

As a result of this, the continuity equation of Eq. (44)
simply yields ρj∇ ·δU j = 0. Since the momentum equa-
tion is indeed balanced with δB = 0, the kinetic-MHD
problem simply reverts to the ideal MHD problem al-
ready described, and the mode structure is exactly that
calculated in section IIIA.

(a): n = 0

(b): n =/= 0

FIG. 1: Showing schematically the trajectory of δU for (a)
n = 0 zonal flows, and (b) n=1 zonal modes on the q = 1
surface.

B. Non-axisymmetric zonal modes under
kinetic-MHD model

In this section on non-axisymmetric zonal modes we
again assume initially that the modes obey ideal MHD
such that δφ = 0, δB = 0, and for n 6= 0, δU = δU‖b,

or δUφ = qδUθ. Thus, from Eqs. (33) and (41),
˙δA =

(
qδUθ − δUφ

)
∇ψ = 0, and thus the perturbed

Lagrangian ˙δL is also zero.
With ˙δL = 0, δφ = 0, δB‖ = 0 and δAφ = 0, then

δfj = 0 for all species, and so are their moments. As
in the last subsection, the problem then reverts to the
ideal MHD problem, and the form of the flow components
follow those obtained in Section IIIB. Note that in the
case of n 6= 0, the modes are again purely hydrodynamic.

Now that the exact zonal mode structures have been
confirmed using kinetic-MHD, Fig. 1 plots schematically
typical trajectories for (a) an n = 0 zonal flow, and (b)
an n=1 zonal mode on the q = 1 surface. Note that in
both cases, the flows close on themselves. In the case of
n 6= 0, the flow closure is required mathematically, while
for n = 0, the flow closure has been imposed by choosing
a specific value for the iso-rotation [21], as discussed in
Section III.

V. CONCLUSIONS

This paper has attempted to provide a coherent pic-
ture of zonal modes in MHD and kineitc-MHD models
in axisymmetric magnetic confined plasmas. An obvious
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starting place was to show that the MHD model yields
zonal modes and GAMs as two branches of slow mag-
netosonic continua. This is more convincingly done in
toroidally rotating equilibria, where the zonal mode has
finite frequency in the rotating plasma frame, verifying
that zonal modes are genuine continuum modes. The
paper has shown a straightforward and clear method-
ology for obtaining mode continua in rotating plasma,
hopefully providing a useful reference for such calcula-
tions. The study in rotating plasmas identified that non-
axisymmetric zonal modes exist, and this in turn moti-
vated a study into the exact structure of zonal modes
using the ideal MHD model. It was shown that non-
axsymmetric zonal flows are purely hydrodynamic in
static plasmas, highly localised over flux label, and the
flows close on themselves, identically following magnetic
field lines on rational surfaces. The zonal flow closure, or
return flow, is a feature shared with n = 0 zonal flows,
as also discussed in this paper.

Much is already known about n = 0 zonal modes in
static equilibria. However, probably less well known, and
in part motivating some of the work contained in this pa-
per, is that n = 0 zonal modes do acquire a finite and po-
tentially measurable frequency in rotating plasmas. This
finite frequency could be connected with the n = 0 modes
observed on the tokamak threshold between L-mode and
H-mode [7]. One may ask about the relevance or im-
portance of highly localised n 6= 0 zonal modes. Under
the ideal MHD model, it is know that in plasmas with
equilibrium toroidal rotation, n 6= 0 zonal modes rotat-
ing at the Brunt Vaisala frequency couple with pressure
driven instabilities. This effect is seen by applying the
voticity operator of Eq. (20) on the momentum equa-
tion for the pressure driven instability. It is then found

that the inertia associated with the instability has an en-
hancement defined by Eq. (23). The dispersion relation
for the ideal MHD instability, whose effects of toroidal
rotation are almost exclusively confined to the inertial
enhancement, yields complex frequencies and thus mod-
ified growth rates [27]. These physical phenomena have
been verified in a detailed study of the internal kink mode
[8], where analytic work has carefully identified that cen-
trifugal and coriolis effects effects are physical, and where
benchmarking against a full MHD codes in which toroidal
rotation was self consistently included in the equilibrium
and the linearly perturbed MHD equations.

The mechanism for coupling between n 6= 0 zonal
modes and pressure driven instabilities is not yet known
in a rotating kinetic description of the plasma. But hav-
ing seen the important coupling effect in ideal MHD plas-
mas, we can expect crucial modifications in a more self
consistent kinetic-MHD description. A significant start
to this modelling has been made in the current paper
where kinetic MHD has been employed to verify the re-
sults obtained for zonal modes in ideal MHD plasmas,
and where ideal MHD rotating equilibria have been ver-
ified kinetically. It is hoped that these advanced ki-
netic studies will not only provide an interesting aca-
demic study into corrections to continua, and the struc-
ture of zonal modes, but might provide insight into ki-
netic damping of pressure driven instabilities, and new
means to control them empirically.
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