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Abstract

As storage hardware evolves, the systems and components which interact
with them must adapt as well. Outdated assumptions at the operating sys-
tem level necessitate a dramatic rethinking of the storage path as emerg-
ing storage technology offer performance speeds several orders of magnitude
faster than traditional hard disks. This thesis investigates the design space of
contemporary storage systems, in particular for non-volatile memory (NVM)
technology, and presents a survey of the techniques currently being employed
to build systems for NVM. We identify and examine relevant systems to de-
termine features applicable to building a storage extension for IX, a data-
plane operating system. We present the design and implementation of such
a system and detail the assumptions and principles we strove to incorporate.
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Chapter 1

Introduction

1.1 Overview

Advances in the modern computing world have rapidly made assumptions
in existing systems tragically obsolete. Improved technology such as 10-
100Gb/s Ethernet and specialized processors have necessitated a redesign of
traditional operating systems. One field where this phenomenon is particu-
larly pertinent is storage, in which rapidly advancing hardware innovations
are forcing a re-examination of storage abstractions and interfaces. New
non-volatile memory (NVM) technologies promising performance closer to
DRAM will require novel approaches to the existing storage paradigm. Sim-
ilarly, while Flash-based solid state drives (SSD) have existed for more than
a decade, the interface with which operating systems interact with these
devices still assume outdated disk-based mechanisms.

Simultaneously, event-driven, asynchronous approaches to programming
and data management have risen in popularity. The asynchronous strategies
outlined in the original C10k problem have found applicability in everything
from popular programming language foundations and frameworks [35, 52] to
widely deployed web applications [47, 66]. Additionally, the key value ab-
straction has become as ubiquitous as the relational databases of yesteryear,
and is emerging as the preferred form with which low-latency web applica-
tions interact with data.
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Tails at Scale and Killers at Large

The recent growth in large-scale multi-server distributed web applications
has caused latency, and in particular tail latency, to seize the attention of
both industry professionals and researchers. In the case of many Software-as-
a-Service (SaaS) offerings, providers face stringent service level agreements
(SLAs) in which failures to meet objectives, sometimes at the microsecond
scale, have economic repercussions [24]. The ubiquity of cloud computing,
made possible by the contributions of [13], have pushed latency to the fore-
ground of systems concerns; no longer a less marketable trait, latency holds
arguably more importance than bandwidth in the current computing climate
[62].

Many of the coping strategies for improving latency proposed a decade
ago [62] have yielded adequate results. Indeed replication and caching are
among the most common strategies applications and web services architects
employ to mitigate latency. However, these strategies come at a significant
cost. Both replication and caching require more resources, typically in the
form of fast volatile memory. In the need for low micro-second scale latencies,
some applications have taken the approach of over-provisioning large amounts
of DRAM to attain their latency requirements and relying on a background
process to periodically back-up data to persistent storage [66, 22, 76]. While
this two-tiered strategy has worked well so far, it is cost inefficient and even
unreliable in certain cases.

Moreover, it is not clear how to “solve” these latency concerns at the
microsecond scale. As noted recently by Barroso et. al. [7], strategies to
mitigate nanosecond and millisecond level latencies do not apply at the mi-
crosecond scale. Moreover, for large-scale services, seemingly insignificant
microsecond overheads build up to a “death by 1000 cuts”, making it critical
for systems to mitigate or eliminate these “killer” microseconds.

From Linux to in-IX

Systems designers have an imperative to harness the capabilities of the latest
state-of-the-art technologies to allow users to experience the performance im-
provements of low-latency hardware without imposing overheads that plague
existing operating systems. As Nanavati et. al. [50] note, the increased cost
of emerging non-volatile memory technologies coupled with their improved
throughput capabilities spell a complete reversal of the existing I/O design
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assumptions that storage is slow and cheap while ”compute” resources are
comparatively fast and more expensive. To build effective systems for these
technologies, a redesign of the conventional I/O stack is needed; modifying
Linux is not an option. As one Linux filesystem developer notes [21]:

“tuning Linux filesystems to work well on solid-state storage de-
vices is a lot like working on an old, clunky car. Lots of work
goes into just trying to make the thing run with decent perfor-
mance. Old cars may have mainly hardware-related problems,
but, with Linux, the bottleneck is almost always to be found in
the software. It is ... hard to give a customer a high-performance
device and expect them to actually see that performance in their
application.”

Incorporating these concerns and observations, our project sets out to
explore the performance possibilities of a new storage paradigm built within
IX [9], a high performance dataplane operating system. Just as IX sought
to reinvent the networking stack to provide low latency and high throughput
with minimal tradeoffs, we examine the impact of applying the same design
principles to I/O processing. As storage devices promise ever-decreasing
microsecond-scale latencies, we examine the possibility of building a storage
layer which employs an asynchronous event-based model to minimize I/O
latencies and maximize throughput. We seek to leverage the latest commer-
cially available hardware and interfaces to complement our design.

1.2 Outline

In this work, we set out to understand the issues and trade-offs in the modern
storage space when working with the latest hardware. We perform a survey
of research endeavours related to NVM and explore some state-of-the-art
storage designs. We investigate a few existing projects in the storage space
to draw inspiration for our design and justify our decision to implement a
key-value abstraction as our interface. We then outline our storage extension
for IX, a state-of-the-art networking dataplane kernel, and discuss the con-
siderations and inspirations that led us to our ultimate implementation. We
try to provide a modest evaluation, and explain the limitations that affected
these evaluations. Lastly, we discuss other relevant works in academia as well
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as how our work can be extended to other applications, and conclude with
the lessons we learned and insights we gained.
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Chapter 2

Motivational Background

Before we are able to discuss our work, we must first examine the context
in which it came to be. First we notice the divergence between existing
operating system assumptions and the latest developments in storage hard-
ware. We dissect some subtleties between state-of-the-art technologies in the
“non-volatile memory” sphere in an attempt to provide a clear backdrop for
our work and dispel any confusion. We then take an in-depth look at two
research endeavours that exemplify the kind of approach needed to tackle
the problem of designing a storage system. Lastly, we identify some design
trends and motivate our ultimate design directions.

2.1 Contemporary Storage — the Hardware-

OS mismatch

Historically, storage systems could safely assume that the underlying devices
operate at millisecond-scale latencies. Operating systems would submit I/O
operations to disk, and then context switch to execute other processes while
waiting for an interrupt from the storage interface to notify that the request
was completed. Moreover, most operating system I/O handling is designed to
be tightly coupled with the characteristics of the underlying storage device,
and I/O requests may be reordered and/or batched to obtain better sequen-
tiality on disk or exploit ever-growing hard drive disk (HDD) bandwidths
[38].

These assumptions may remain largely stable if systems continue to rely
on disks; latencies of HDDs have not dramatically changed over the years
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Figure 2.1: The layers within Linux’s storage stack (Source: [10])

[48]. But the advent of various flash-based storage technologies requires a re-
examination of OS-level I/O processing. While Flash technologies and solid
state drives (SSDs) have existed for a long time, operating system design has
not caught up to sufficiently make use of new hardware capabilities. NVMe,
or “Non-volatile Memory Express”, is a protocol specification for SSDs over
PCIe which is poised to replace legacy disk-based interconnects (SATA/SAS).
However, even though it has been under development since 2007, NVMe has
yet to see widespread adoption, at least at the datacenter level, making up
only 15% of enterprise SSD sales in the last year [55, 70]. Emerging “non-
volatile memory” hardware (also varyingly referred to as “storage class mem-
ory”) also entice with purported nanosecond-scale latencies [48], rendering
even PCIe too slow to provide appropriate connectivity.

Figure 2.1 illustrates the traditional Linux storage stack [10]. In order
to better understand the design decisions within a storage layer, we must
understand the underlying components and their interactions. Figure 2.2
gives a breakdown of performance between the various hardware. Note that
it is not currently clear what is the relationship, if any, between technologies

10



Figure 2.2: A comparison of storage hardware performance (Source: [2])

labelled as “NVM” and the NVMe protocol, which was designed with SSDs
over PCIe in mind.

2.1.1 Hardware

NVM

“Non-volatile memory” (NVM) has been used as an umbrella term for an
emerging set of technologies such as phase-change memory (PCM), memris-
tors, and spin-transfer-torque magnetic RAM (STT-MRAM). NVM is pur-
ported to offer raw performance at DRAM-like speeds with much higher
density, allowing for greater storage capacity. Moreover, it is designed to ex-
pose a byte-addressable interface, enabling possible DRAM-like “load-store”
interfaces. While it is currently unclear what is the ideal usage case and
environment for this technology, a slew of research effort has been under way
to find ways to integrate NVM into systems, including but not limited to file
systems [64, 74, 20] and databases [63, 58].

Flash-based SSDs

Flash technology has been around for more than a decade, but has only
recently seen increased adoption in datacenters due to diminishing cost-to-
capacity ratio; recent trends show that Flash capacity-per-dollar growth is
almost on par with that of hard disk [38]. Flash exhibits various properties
that require careful management and utilization. Typical NAND flash con-
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sists of chips of single-level cells (SLC)1 which can be programmed and read
in units of pages, but only erased in units of blocks. Once a page has been
written to, it must be erased to be reclaimed. However, since block sizes
are typically many multiples of a page, data placement and deletion must be
managed carefully. For instance, pages are usually 2-4KB while blocks may
be 128-256KB [1]. Moreover, each cell has a specific wear “lifetime”, i.e. the
number of times a cell may be erased and reprogrammed (typically referred
to as P/E cycles).

These characteristics mean that flash devices must be managed carefully
to optimize data placement and prevent cells from wearing unevenly. The
software component in SSDs, typically referred to as the Flash Translation
Layer (FTL), is not only responsible for translating logical block requests into
physical page numbers, but must also consider such “wear-leveling” issues.
The FTL must also perform garbage collection to reclaim sparsely used blocks
in the case of a space shortage, and may regroup existing pages and rewrite
them to other blocks. A technique commonly employed by FTLs is to manage
data in a log-structured way to leverage sequentiality for better performance
[68].

Another interesting property exhibited by SSDs is “internal parallelism.”
To cope with asymmetric read/write performance (writes are slower) and
per-chip bandwidth limitations, SSD architects introduced multiple channels
to enable reading and writing to several chips in parallel with isolated perfor-
mance [16]. In addition to increasing overall device bandwidth capabilities,
this also allows high latency procedures such as erase to be masked behind
other operations occurring in parallel. New “open-channel SSDs” offer expo-
sition of this parallelism directly to the overlying host system [57].

Applications designed for SSDs must be wary of issues such as write
amplification, in which certain write workloads patterns may cause the FTL
to trigger garbage collection or reorganize data. Conversely, applications may
also exploit internal parallelism inherent in SSD devices, provided that they
have a deep understanding of the internal SSD mechanisms [16].

1Multi-level and triple-level cells that can encode more bits per cell also exist [1]
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2.1.2 Interfaces

SATA/SAS

These two interfaces are the modern descendants of ATA and SCSI but are
commonly used interfaces for SSDs today. Originally designed with hard
disk drive semantics in mind (and in the case of SCSI, even older and more
diverse devices), these interfaces were made forward-compatible for SSDs and
typically feature a single request queue with a depth of 32.

NVMe

NVMe is the newest protocol specification for SSDs over PCIe. Among the
key features exposed by this set of standards is the availability of a large
number of concurrent submission/completion queues; NVMe can support
64k submission/completion queue pairs each with a depth of approximately
64k [54]. NVMe also exposes a namespace abstraction that specifies the range
of valid logical block addresses (LBAs), which enables one NVMe device to
support multiple namespaces [54].

Experiments conducted by others have shown that in a breakdown of
time spent in software processing, systems using SATA spend roughly 20%
more of their total I/O processing time in interface logic than systems using
NVMe [79]. Other benchmarks have revealed that NVMe exhibits between
1.5-3x better IOPS throughput than SAS, the state-of-the-art SCSI-based
interconnect [53].

2.2 Other Systems

Before we look at specific issues in the non-volatile memory and flash design
space, we examine two storage designs that serve a more generic purpose in
a broader scope. We encountered these systems in our quest for a suitable
model for our storage extension, and while neither directly relates to non-
volatile memory technologies, they both exhibit interesting system design
principles. Where one tries to design a way to achieve low latency persistent
storage without relying on high-performance hardware, the other depends on
more advanced hardware functionality to express features typically found in
software. We examine both in detail.
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2.2.1 RamCloud

RAMCloud is a highly available, strongly consistent, two-tiered storage sys-
tem designed to support mass-scale storage at micro-second scale latencies.
The authors state that their system is design to enable commodity servers
to achieve reads and writes and tens of microseconds. Reads are served
from DRAM while writes are persisted to secondary storage using a multi-
replication log-structured approach. Low latency writes are achieved by is-
suing multiple writes to a set of randomly selected replication servers, which
respond that the write “completed” once the data is stored in their local
DRAM while issuing asynchronous writes to their respective secondary stor-
age. Only one copy of data is stored in each server’s memory, as randomized
replication over backup servers provides fault tolerance and a fast recovery
process ensures high availability.

All data is stored in a log-structured fashion; 8MB log segments are se-
quentially written to in an append-only manner and organized in the same
way in both memory and on hard drive. Tombstone entries indicate that ex-
isting keys were modified or deleted, and a log cleaner is run periodically to
reclaim space that is no longer used. RAMCloud employs “two-level clean-
ing” in order to reclaim space from memory more frequently than cleaning
the log on disk, thus imposing less overhead for cleaning while gaining better
utilization from DRAM.

RAMCloud achieves fast recovery on node failure using interesting scala-
bility properties. When a node fails, multiple backup servers each containing
replica segments of the original node’s data transfer these segments to mul-
tiple “recovery masters.” By multiplexing both sides of the recovery process,
RAMCloud is able to ensure fast recovery of data from a crashed node. RAM-
Cloud leverages randomization in order to distribute its data and also select
recovery masters in a fault tolerant manner.

RAMCloud makes some bold assumptions about the future of networking
infrastructure, in particular the fact that ultra-low latency fabrics such as
Infiniband will be widely available. In order to achieve low microsecond-scale
latency, the authors assume RAMCloud will be deployed over Infiniband, and
implement their own transport layer leveraging Infiniband’s reliable queue
pairs. While they also implement two other forms of transport, including a
standard TCP-based one, they note that RAMCloud’s extremely low latency
performance relies heavily on the performance of Infiniband NICs and their
ability to bypass kernel processing.
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While RAMCloud leverages scalability to achieve low latency and fast
recovery, scalability is also somewhat of a limitation. Consider a cluster of
10 nodes, the minimum reasonable size to run this system on. By their own
(circa 2011) calculations, for a cluster of size n each node is capable of storing
500MB × n for a recovery time of 1 second (although per-node capacity
scales linearly with the acceptable amount of recovery time ). The total
storage capacity of this cluster would be 50GB, but given standard (2n+1)
replication standards, there should be at least 3 replicas of everything stored
in the system. This means that the system would only be capable of storing
15GB of “unique” data. For small to medium-sized enterprises, this kind
of infrastructure is unfeasible and expensive, as the cost of having multiple
servers to store partitions is compounded by the capacity limitation of how
much data can be actually stored.

2.2.2 Arrakis

Arrakis is a novel operating system that argues for the removal of the kernel
from the data path by relying on hardware virtualization support to grant
applications direct access to virtualized storage and networking interfaces.
The authors systematically identify areas of overhead in existing kernels,
noting that in both the storage and networking path much of the time is
spent de-mutiplexing and routing requests, copying data and checking access
control. They note that recent advances in hardware make it possible to
offload some of these tasks to the hardware interface directly. In the Arrakis
design, the kernel becomes a mere resource management layer that oversees
allocation of virtual network interface cards (VNICs) and virtual storage
interface controllers (VSICs) exposed by the underlying network and storage
devices. Arrakis leverages NIC queues and relies on protection mechanisms
such as transmit and receive filters to handle routing, rate limiting, and
access control for requests from the application level. DMA is used to ensure
zero-copy packet processing. Applications interact with their own virtualized
storage areas (VSAs) without requiring request translation or access control
mediation from the kernel.

The Arrakis storage design depends heavily on hardware technology such
as Single-Root I/O Virtualization (SR-IOV), which allows multiple guests on
a physical host to have direct access to a PCIe connected device. Applications
can thus directly interact with the virtual device exposed by SR-IOV, referred
to as a Virtual Storage Area (VSA) in the system, without needing to go
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through the kernel for I/O. Access control and address translation is also
handled by hardware (using IOMMU).

The authors evaluate their implementation with both a “native” asyn-
chronous interface as well as a POSIX-compliant one, noting that the POSIX
version performance slightly worse (9% less throughput). However, Arrakis
is not currently implementable on existing hardware; the authors admit that
they have had to emulate the desired VSIC behaviour in their prototype.
While they note that modern storage controllers, including FTLs in SSDs
and NVMe, do have most of the features they require, they are missing the
protection mechanism that enables separation of VSAs.

2.3 Suggestions and Solutions

Researchers have approached the problem of how best to leverage new low-
latency storage hardware from various angles, with a dizzying array of as-
sumptions and goals. Mittals and Vetter [48] have conducted a survey in
which they examine and categorize over 100 recent research publications in-
volving “non-volatile memory” by overall design goals and objectives. 11
different areas were identified, ranging from energy efficiency to checkpoint-
ing and error correction, although performance improvement was by far the
most popular. It is interesting to note from their study that there were
roughly the same number of proposals involving (NAND) Flash versus other
NVM technologies, even though only the former is currently commercially
available.

In order to leverage the low latency capabilities of NVM hardware, many
have advocated eliminating the kernel from the data path altogether; a num-
ber of storage applications have been proposed that directly interface with
hardware without intermediate abstraction layers [45, 20, 36]. However, re-
cent work [43] detailing the efforts of porting memcached to a persistent
memory interface offers a cautionary tale to those who underestimate the
effort of migrating existing programming paradigms to persistent memory
technologies. The authors note the immense difficulty of refactoring an ap-
plication with strong coupling of data structures and ingrained assumptions
about hardware behaviour, as well as detail their struggles determining what
data to persist and how to maintain backwards compatibility. The need for
an abstraction layer is palpable.

Moreover, with the volatility of hardware trends, it is unlikely that many
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of these research prototypes will remain stable in the future. Systems design-
ers must cope with the same issue in any case: allowing users to experience
the performance improvements of low-latency hardware without imposing
overheads that plague existing operating systems (i.e. Linux). One opinion
that does seem to meet some consensus is that modifying Linux to adapt
to new technologies is impractical. While some attempts have been made
to make Linux more NVMe/SSD-friendly [10, 11], they do not address the
fundamental issues in the I/O path in Linux [71]. For example, the asyn-
chronous I/O completion model that Linux uses to perform other tasks while
waiting for slow disk operations is completely incompatible with SSDs and
faster storage media.

While there seems to be a lack of agreement what exactly the bright
future of storage technology may bring, several key design principles and
recommendations have been proposed. Although some of these points are not
very consistent or compatible with each other, we do our best to characterize
key approaches and outline how we have applied them to our system.

2.3.1 Abstract or Expose

On the spectrum of abstracting to exposing interfaces, there exist a variety
of approaches depending on the goals of the system. Storage disaggregation
systems [51, 37] tend to prefer abstracting and virtualizing storage resources,
while novel key-value stores designed for high performance favour aware-
ness of underlying hardware semantics [45, 6]. Some have even advocated
exposing the device driver interface directly to application developers [36],
echoing a continuing trend of applications demanding transparency in order
to implement specialized functionality based on their needs.

How closely our design should be tied to the underlying hardware seman-
tics was an issue with which we struggled. While a deep understanding of
the hardware is important in order to make informed design decisions, we
were hesitant to base too many components of our system on behaviour of
specific hardware technologies. The tradeoff between specificity of hardware
and being flexible to potentially support different types of storage media was
a difficult decision but we did our best to find a suitable middle ground (we
will detail the specific tradeoffs we made in subsequent sections).
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2.3.2 Asynchronous or Synchronous

There have been opposing opinions voiced about where and how best to
apply asynchronous processing. Some have pointed out that in the face of
very low latency storage devices, synchronous polling for I/O completion at
the operating system level is preferable to handling interrupts from the device
driver [80]. On the other hand, Barroso et. al. [7] argue that asynchronous
processing should be pushed down to the operating system level to ease the
burden of programmers having to struggle with asynchronous programming
paradigms.

We have opted to continue using the asynchronous semantics originally
implemented by IX, which we will describe in the following section. Although
asynchronous programming has its challenges, it is interesting to recall that
the event-based asynchronous paradigm was at some point promoted as a
simpler, more developer-friendly alternative for managing concurrency[59].

2.3.3 Byte or Block

Byte addressability poses new challenges that researchers from a variety of
fields are trying to tackle [5, 82, 20]. However, without actual physical devices
to experiment with, it is arguable how effective these largely theoretical and
emulated efforts are.

While many in the community seem to be advocating abandonment of the
traditional block-addressed interface and embracing byte-addressability [61,
19, 15], it is unclear what dangers might arise in building storage systems atop
persistent hardware that exposes a byte-addressable interface. For instance,
more careful error detection must employed, as any memory corruption a
program might introduce will be persistent in NVM. While new programming
models and data structures are being proposed [69, 75, 19] to cope with
potential persistence issues, without validation on the actual technology, it
is unclear how effective they will be.

We opted to work with NVMe, a more practical option, even though it
has not sparked as much interest in the research community as its name-
sake2. We felt that it was more valuable to obtain a prototype on an already
accessible technology rather than join the numerous speculators3. As IX,

2a cursory search of the ACM digital library shows that the difference in number of
results returned between “NVM” and “NVMe” is roughly 10x in favour of the former.

3the cruel irony that this technology was ultimately not attainable to us is something
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the technical foundation of our work, is designed for datacenters running
commodity hardware, basing our storage extension on some state-of-the-art
technology that has yet to reach mass market seems unsuitable.

that will be discussed in later sections.
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Chapter 3

Design Background

Here we describe two systems which influenced our design and implementa-
tion and the specific design aspects we adopted. We first describe IX, the
system which forms the architectural foundation of our work, and MICA, a
key-value store from which we borrowed specific design elements.

3.1 IX

3.1.1 Overview

IX is the main foundation on which our work is built and whose goals we
seek to extend to the storage plane. IX is a state-of-the-art dataplane operat-
ing system that provides simultaneous high throughput and low-latency while
preserving traditional kernel isolation and security guarantees [9]. Its authors
propose a reorganization of OS functionality by separating resource manage-
ment from network processing, delegating each to the control plane and dat-
aplane respectively. IX leverages Dune [8] to provide secure access (non-root
ring 0) to dataplane instances, and uses VT-x virtualization features to grant
applications access to hardware resources while providing three-way isolation
between the control plane, dataplane and application layer.

IX aggressively trades coarse-grained resource allocation for synchronization-
free primitives, thus achieving multi-core scalability. Cores are assigned ded-
icated NIC queues, memory pools and system call and user event arrays.
System calls are batched to reduce kernel crossings. In order to achieve low
latency, all packet processing “runs to completion” to eliminate overheads
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from interrupts and improve throughput. Adaptive batching at “every stage
of the network stack” allows the system to exploit gains from cache local-
ity and prefetching while avoiding pitfalls such as waiting for batches and
starving transmit queues. This is achieved by batching only during peri-
ods of congestion, and imposing a limit on batch size. The combination of
these two techniques also results in a overall reduction of queueing within
the system, instead pushing queue build-up to NIC edges.

IX is complemented by a library of event-based system calls that al-
low applications to perform asynchronous networking processing. Similar
to libevent or libuv, libix provides a set of non-blocking system calls
with zero-copy functionality. IX relies on this zero-copy API for communi-
cation between the dataplane and application layers. The dataplane maps
packets to read-only message buffers for the application to access; conversely
the application sends “scatter/ gather” lists of memory locations contain-
ing immutable content for transmission. A polling-based mechanism allows
IX to obtain responses to application or networking layers without relying
on interrupt mechanisms. Lastly, flow-consistent hashing of incoming traffic
eliminates synchronization and coherence between cores as each hardware
thread is given a dedicated receive and transmit NIC queue.

3.1.2 Design Influences

In addition to being the architectural foundation in which our storage ab-
straction resides, IX also embodies key design principles that our storage
implementation aspires to encompass:

event-based library to allow an asynchronous programming interface for
applications

batching for better throughput

dedicated resource allocation to reduce sharing/synchronization

We believe that these characteristics apply not only to the networking
stack, but are also relevant in the building of an efficient I/O path. The
extended queueing functionality exposed by NVMe lends itself suitably to
IX’s resource allocation strategy; each core is assigned a dedicated submis-
sion/completion queue for I/O, a direct analogue to a dedicated networking
receive/transmit queue.
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Figure 3.1: The IX run-to-completion loop (additions in grey).

3.2 MICA

3.2.1 Overview

Another system that heavily influenced our design was the MICA key-value
store [39]. MICA is a “holistic” in-memory key-value store designed to op-
timize request processing at every stage, from partitioning data for per-core
access to kernel bypass for networking processing. The authors of MICA
felt that existing (TCP-centric) approaches to handle network processing do
not offer sufficient performance, and note that strategies such as batching
improve throughput at the cost of higher latency. They instead propose a
co-designed solution using UDP in which clients have direct access to NICs
and can encode “filtering” information in the UPD port number of each
packet they send. Clients are assigned dedicated NIC queues to allow ef-
ficient packet processing by routing according to the filtering information
provided.

MICA allows for both “cache” and “store” modes, in which the former
trades random key eviction for performance while the latter preserves all
data unless explicitly removed by the user. To accomplish the former, MICA
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uses circular logs and “lossy” hashing which exhibit better insertion and hash
performance at the cost of potential key eviction. Circular logs insert new
items at the tail and evict or remove old or deleted items from the head,
thus occupying a constant amount of storage and eliminating the need for
expensive garbage collection or defragmentation mechanisms. Similarly, the
hash index may evict entries if its hash buckets are full for a particular index
value. The authors argue that key eviction is acceptable for an in-memory
cache system as many other existing applications operate under the same
principle.

The authors of MICA enable their cache implementation to support
“store” mode by extending their hash index with “bulk chaining” to pre-
vent evictions. The hash index maintains spare buckets to chain to the main
buckets when an overflow occurs. In store mode, MICA uses segregated
fits to manage memory allocation for key-value pairs, and boundary tags to
coalesce free space.

MICA partitions all data between available cores, and can grant per-core
EREW (Exclusive Read Exclusive Write) or CREW (Concurrent Read Ex-
clusive Write) access to key-value pairs depending on the desired read vs.
write performance. EREW eliminates inter-core coordination to serve re-
quests, while CREW handles (read) skew better by allowing multiple cores
to access the same data. Versioning is used in CREW mode to ensure cor-
rectness in concurrent accesses.

3.2.2 Design Influences

While MICA is predominantly designed for in-memory key-value operations
on small data (it does not support key-value pairs larger than one MTU), we
felt some of its design choices were applicable to our storage implementation.
We noticed that the MICA design was fairly analogous to the existing IX
architecture as both systems feature a zero-copy networking stack that largely
bypasses kernel processing; drawing from their structure for the storage layer
would integrate well into the existing IX architecture. We also observed that
MICA’s per-core EREW/CREW design would be suitable to apply to NVMe;
partitioning the range of available LBAs into per-core storage regions would
allow better parallelism and scalable storage.

We also drew inspiration from MICA’s “store” mode, specifically the use
of segregated fits for address allocation. Segregated fits is a common memory
management mechanism in which memory is divided into size classes and
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allocation needs are determined by finding a free entry in the appropriate size
class [78]. We initially believed that this would be appropriate to apply to our
system, as we want to support variable sized object storage, which requires an
efficient way to handle placement within the unstructured space of contiguous
logical blocks exposed by NVMe. While this would have given us a relatively
simple allocation strategy, we later realized that relying on segregated fits
alone was ill-suited for SSDs due to the nature of the underlying hardware
and flash management mechanisms.
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Chapter 4

Design

4.1 Design Overview

As mentioned in the previous section, we build our storage abstraction on
top of IX’s architectural foundation and principled design trade-offs. Apart
from infrastructure concerns, we also contended with numerous design deci-
sions regarding specific storage semantics. We considered a variety of storage
paradigms before deciding on a key-value abstraction. We felt that a simple
key-value interface would be more appropriate in today’s application land-
scape rather than the traditional set of file system abstractions [83]. Most
modern applications prefer to have finer-grain control over I/O access [3].
Moreover, user-space file systems have become more popular in recent years
[26, 73], as well as file systems implemented over a cluster of distributed ma-
chines abstracted into one storage device [30, 27, 14]. We felt that exposing
a key-value abstraction with simple put and get operations would be suffi-
ciently generic; more complex functionality can be built by composing these
operations.

Our storage system translates each get/put request for keys into requests
to read/write to the corresponding LBAs, and enqueues these requests to
be submitted to the device. Figure 3.1 shows the extension of the original
IX run-to-completion loop with storage components included. Like IX, our
system assumes one (trusted) application as the “user”. While security is an
interesting and important issue, we consider it outside of the scope of this
project and leave this area for future improvement. Moreover, we allow the
keyspace to be entirely determined by the user, thus avoiding the need to
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Figure 4.1: The metadata components of a block.

manage namespaces and handle potential key collisions.
Our system uses an in-memory index of metadata to handle translations

from user-provided keys to logical block addresses (LBAs). Aside from the
in-memory index, nothing else is stored in memory to limit the memory
footprint. Additionally, we make the following key design decisions in our
system:

No Caching Since we are building a persistent storage system, we are less
interested in providing caching for performance when there is a plethora
of (in-memory) key-value cache options already in existence. We were
more curious to see what sort of performance we could obtain by just
relying on the hardware/NVMe interface alone.

No Replication As the authors of [51] note, most applications implement
their own replication scheme depending on specific reliability/performance
requirements. Replication at the storage level introduces complexity
and reduces capacity without providing universal benefits.

Variable Length Key/Values this is a key usability feature for most ap-
plications and is critical to enable others to build on top of our abstrac-
tion.

4.2 Data Organization

We organize data and metadata on device as illustrated by Figure 4.1. We
choose a block size of 512 bytes, however NVMe allows this value to be
configured anywhere from 512B to 4KB [54]. Each metadata-data set is block
aligned, although data may span multiple contiguous blocks. The metadata
mainly tracks the key to LBA mapping. Metadata is currently limited to 128
bytes, as we felt any more would overwhelm the storage block.
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We chose to co-locate the metadata with the data segment to reduce
write overhead and avoid “read-modify-write” scenarios. More specifically,
decoupling metadata from data would likely lead to key-value pairs with
small values causing poor performance and potentially fragmentation, due
to our block-alignment design choice. Each update of a key-value pair would
require at least 2 I/Os in this scenario, and performance would be degraded
by issuing multiple writes. Decoupling metadata and data also complicates
the crash recovery process, as we will discuss in a later section.

As mentioned earlier, we follow MICA’s example and partition the keyspace
into per-core regions to enable EREW/CREW access. We believe that the
data partition model is both suitable to IX’s multi-core scalability design
goal as well as enabling us to leverage SSD parallelism. So far we have
implemented EREW mode.

4.3 Batching

Batching plays a major role in our design. As we use the same system call
batching mechanisms as IX, this allows us to apply batching to writes in
order to obtain better sequentiality. In order to avoid small, random writes,
we aggregate all writes issued within one system call batch into one write
request to device. Within each batch, we accumulate the write requests in a
scatter-gather list and wait until the entire batch has been processed in order
to issue one large write. Figure 4.2 provides a pictorial representation of the
scatter-gather list within a write batch. Note that to ensure block alignment,
data segments are zero-padded before writing to device.

Conventional wisdom argues that small, random writes are harmful for
SSD workloads, and that sequential writes should be favoured. Although a
few recent studies [16, 31] have questioned the absoluteness of this long-held
theory, the generally accepted view is that random writes are best avoided in
most circumstances. SSDs read and write in page units of typically 2-4KB
but erase in blocks, which are usually 128-256 KB [1]. However trends in
growing page sizes have resulted in pages as large as 16KB [28]. Because our
naive design mapped keys to logical blocks, in the event of a workload with
multiple writes of small values, SSD performance would quickly degrade.

Although it is possible that we lose the chance to take advantage of some
“internal parallelism” in many high performance SSDs by only issuing one
large write request at the end of every batch, we rely on our multi-core design
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Figure 4.2: The scatter-gather components of a batched write.

to exploit parallelism in SSDs. It is also possible that we lose some perfor-
mance in terms of reporting to users that their write requests completed;
however our batch processing of system calls renders this scenario less likely.
Future work could look at adaptively batching for write requests.

Since random reads are not problematic for flash devices, we do not cur-
rently batch reads.

4.4 Persistence

Although persistent storage systems typically write metadata or log updates
before actually applying the writes to storage [29, 49], our design makes
simultaneous updates for metadata and data on device. While this makes us
vulnerable to potential consistency issues, we feel this is the right tradeoff
for our system. We leverage the asynchronicity of our semantics and the
nature of flash to mitigate consistency issues. Suppose we are updating
an existing key. We only modify the in-memory index on the arrival of a
successful completion event, so if the write did not complete successfully,
then the previous LBA associated with the older version of this key remains
in the index as well as on the device. As we will describe in detail later, we
do not issue explicit erasures to the device; LBAs are reclaimed in the in-
memory allocation mechanism and redistributed as needed. Since flash does
not overwrite unless explicitly told so or when an LBA has been modified,
the stale value will remain on the device until the LBA is reassigned. Though
this may be problematic for index reconstruction in crash recovery, we use
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the version numbers to resolve conflicts.
Because we do not reclaim the previously used LBAs, the SSD will main-

tain their logical-to-physical mapping until we reallocate the LBAs.
We eschew in-place updates for a modified version of append-log writes,

the details of which we will describe later.

4.5 Crash Semantics

Currently our system supports only crash-fail semantics and a best-effort
variant of recovery in the event of corruption. Let us examine the possible
crash scenarios in our system:

Crash occurs before request is submitted to the NVMe queue Since
we keep no records of pending requests, it is up to the user to resubmit
the request.

Crash occurs while device queue is being processed We have no guar-
antees on whether the request, if it was a write, was flushed to the device
as this depends on specific hardware semantics.

Crash occurs after request completed Since the write has been persisted,
we will be able to reconstruct the in-memory index correctly using ver-
sioning.

Upon a system crash, our storage layer will try to reconstruct the in-
memory index by scanning the entire storage device. Since all metadata
is coupled with its corresponding data and identifiable by a block-aligned
magic value (as noted in Figure 4.1), we can do a check for data corruption
by checking the recorded value length against the actual length of the data
read from storage and validating the checksum stored in the metadata. For
example, if the stored length is different than the “actual” amount of data
found on the device, we report this to the user and continue scanning until we
find the next metadata block. Storing metadata and data together somewhat
eases the corruption detection process; in the case that metadata and data are
decoupled it would be probable to encounter situations where we are unable
determine where one logical data block started and another ended. In the
worst case, the integrity of the entire storage space could be compromised if
one metadata entry reported an incorrect value.
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Versioning also helps with providing some level of consistency. As men-
tioned previously, we do not explicitly overwrite anything on device until
the LBAs are reassigned to a new value. If the failure occurred some time
mid-way during a write and a corrupted version of some key-value pair is
persisted, we can ignore it and “rollback” to the previous version of the key-
value pair. Since LBAs are not logical freed until a write has been reported
successful, the previous version is guaranteed to be still on-device.

Unfortunately, we do not offer stronger data recoverability semantics like
other storage systems [60, 14]; this is an area for future improvement.
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Chapter 5

Implementation

Here we describe the additions to the IX ecosystem for our storage extension.
Our implementation adds approximately 1.5K lines of code to the existing
IX code base [23].

5.1 API Overview

We extend the existing user-level library libix as was implemented in origi-
nal IX; Table 5.1 shows the exact list of added system calls and user events.
Both get and put operations are “zero-copy” by design, in keeping with
IX’s goals to eliminate performance overheads from copying data between
user- and kernel-space. Read requests asynchronously return a pointer to
a kernel-managed in-memory buffer containing the result of the read; users
indicate that this memory may be reclaimed with the ixev get done system
call. Similarly, ixev put asynchronously returns the pointer to user-allocated
memory from whence the contents of the write were obtained, to ease memory
management from the user’s perspective (i.e. the user is thus not required to
keep track of which pointers correspond to what asynchronous write requests
that were submitted but not confirmed completed).

We based our device-related interactions on the functions exposed by
SPDK [72], in which read/write operations on the device only require a LBA
and LBA count, as well as appropriate callbacks for when the operation com-
pletes. SPDK also supports vectored reading and writing, whereby a scatter-
gatter list of entries is specified from which to read/write. We currently only
make use of vectored writes, but see applicability for vectored reads in the
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System Calls
Type Parameters Description
get key Reads data associated with key
get done addr Indicates addr can be reclaimed
put key, value, len Writes specified value associated with key

Event Conditions
Type Parameters Description
read key, data, len Returns results of read at data for length len.
wrote done key, value Indicates write completed and buffer holding value can be reclaimed

Table 5.1: The I/O system calls and event conditions added to the IX API.

case of extremely large values which may have issue being buffered in a con-
tiguous block of memory. The scatter-gather list contains three entries for
each key-value update: the metadata entry in the in-memory index, the user-
specified pointer corresponding to the data being written, and a zero-buffer
for padding to block-alignment. As mentioned previously, we batch all writes
to the device, thus the scatter-gather list contains entries for all the key-value
pairs being updated.

5.2 Index Management

As mentioned previously, we do not cache any values in memory but we main-
tain an index of existing keys and associated metadata, as well as track the
list of free LBAs. Key length is currently restricted to 110 characters/bytes
maximum in order to keep the metadata storage overhead low. Keys are
placed in the index according to their hash value modulo the size of the
index (which is bounded to limit memory usage). We use Google’s City-
Hash [18] for fast, well-distributed hashing of strings, and employ chaining
to handle collisions.

As illustrated by Figure 4.1, the length (in bytes) of the data portion is
also stored in the metadata, as well as a 32-bit CRC of the entirety of the
value and a version number. We had initially chosen a 16-bit checksum for
lower storage overhead but due to performance impact we adopted a faster
version of the CRC algorithm with precomputed 8-byte slices [12].

We briefly describe the key aspects and mechanisms of the index.
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Figure 5.1: Workflow for a put request

Index Creation

Upon start-up or recovery, the system must reconstruct the in-memory index
by scanning through the entire storage device. Our current implementation
loads one block at a time from device, checking that the metadata is well-
formed and validating the stored CRC. Although this may incur a second read
request for values that turn out to span multiple blocks (as an initial reading
of the metadata will reveal the exact length of the value), we make this trade-
off for simplicity and leave room for improvements later on. The system must
also examine the version number associated with each key, in case stale values
remain that have yet to be overwritten (as mentioned previously, we currently
do not explicitly erase anything on the device).

Index Updates

In order to provide some consistency semantics, we ensure that the in-
memory index is not updated until the write has been persisted. For each
write request, a new metadata entry is created with the requisite informa-
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tion, including an incremented version number if the key already exists in the
index. Once the write completes, the write callback updates in the index by
removing the old metadata entry associated with the key (if one exists) and
inserting the new metadata. As mentioned previously, if the write did not
propagate successfully on device, then the index (and underlying storage)
maintains the old value associated with an existing key.

Free Space Allocation

Since we batch all writes to the device, we make opaque LBA allocations
when all writes within the batch have been processed. Thus, the LBA “off-
set” that each key-value pair occupies within the batched write must be
computed when the write completes. Although this slightly complicates the
index management, this is a design trade-off we were willing to make in order
to obtain sequentiality. However, when we update the index for an existing
key, we “de-allocate” the blocks associated with it by adding them to the
freelist for re-use. Since we do not explicitly “erase” blocks, the previously
occupied LBA is only accessed again when it is assigned to another value.
Although there is the possibility that such a strategy can lead to some sort
of logical “fragmentation”, but since LBAs are translated to physical pages
by the SSD’s Flash Translation Layer (FTL), we are less concerned with this
issue. It is more important that we submit somewhat sequential requests to
the device, as the wear levelling and garbage collection mechanisms in FTLs
will move data anyway to reclaim erase blocks, and modify LBA to physical
page mappings in the process.

While we intended to use segregated fits, we now use a form of first fit
due to our batched writes mechanism. Since allocations are only made for
batches of writes, segregated fits is ill-suited as size classes are not applicable.
The freelist is a singly linked list of starting LBAs with an associated number
of free contiguous blocks. The list is organized in ascending LBA order, and
any coalescing occurs when blocks are freed. Allocations traverse the list
until a large enough chunk of contiguous blocks is found; space is always
allocated from the head of the block and the freelist entry is removed if
completed allocated or updated if there are still blocks within the entry
available. Note that we currently assume the NVMe namespace is large
enough for our allocation needs; we do not currently handle the case where
no freelist entry is large enough and batches must be divided to be allocated.
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Chapter 6

Evaluation

6.0.1 Caveats

Before embarking on a discussion of the evaluation of our system, we must
lay some explanatory groundwork. While the original intention was to exper-
imentally determine the performance capabilities of our system on an actual
NVMe device, due to logistical issues we were unable to obtain the (correct)
device in a timely fashion. While this was not a complete roadblock for
evaluation (as we could rely on emulation strategies much like many others’
work in this field), it did pose a few limitations on our design/experimental
hypotheses:

Persistence Without the device, we cannot be certain what is the exact
behaviour of the hardware under a physical failure. We model crashes
by interrupting and terminating the program, but it is unclear how the
actual device crash behaviour would impact our design and assump-
tions.

Write Atomicity The NVMe specifications describe an“Atomic Write Unit
Power Failure” which guarantees that a write request of this size will
be persisted to device in the event of a power failure. Although we were
not able to estimate a typical size for this value, having this informa-
tion would have influenced our consistency semantics and affected our
persistence evaluation.

Block Size Not being aware of the device page/block size also influenced
our design and subsequent evaluation. Although we chose a logical
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block size of 512 bytes, without being certain what this value is in
relation to the device page/block size we cannot claim any realism in
our results. An inappropriate logical block size could have non-trivial
impact on performance. For example, recall that writes and reads are
performed in units of pages but erasures are at the block level. In
order to avoid write performance degradation, it is preferable to write
units of pages or even blocks, but in modern devices page size may vary
from 2KB to 16KB. Our logical block size should reflect these physical
characteristics.

Device Performance Using the descriptions of SSD performance and be-
haviour in the related literature, we based our design on educated
guesses of how a physical device should behave given the workloads
and access patterns our system induces. For example, we assume
that our batched sequential writes should not incur as many expen-
sive background SSD processes as workload with numerous small, ran-
dom writes. Without a device we can neither confirm nor refute our
assumptions based on experimental evidence.

6.1 Experimental Methodology

We ran our experiments on either a Xeon E5-2637 @ 3.5Ghz or Xeon E5-
2650 @ 2.6 Ghz server with 64GB of memory. Our machine is presumably
configured with Intel x520 10GbE NICs (82599EB chipset), although we do
not utilize any networking functionality in these preliminary experiments.
The host operating system was Ubuntu 16.04.1 running on a 4.8.0-51 Linux
kernel.

As we did not have the appropriate hardware, we emulated a persistent
device by allocating an appropriately large RAM-backed file in system shared
memory (/dev/shm).

6.2 Preliminary Findings

More Caveats

Although our initial strategy was to introduce artificial delays to mimic the
behaviour of an actual device, two issues prohibited us from doing so in
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Figure 6.1: Time needed to reconstruct the index

practice. First, having a constant delay regardless of the size of the request
is unrealistic; while we could have adaptively chosen a delay based on the size
of the given request, it is unclear what would be an appropriate heuristic.
Second, the asynchronous timers we utilized to implement the delay were
unfortunately designed to be fairly coarse-grained and best effort in terms of
precision. We found that we were unable to specify any delay under 100µs
and have the timer actually respect this value. The combination of these
factors led us to remove artificial delays from most of our experiments and
instead focus on the performance characteristics and overhead of our software
implementation.

6.2.1 Persistence

We performed a perfunctory evaluation for persistence by issuing a large
number of writes sequentially and terminating the workload while it was
in progress. We then noted the correctness of the reconstruction process
by checking that the last key for which there was an acknowledgement of
successful persistence is indeed on the device.

We also profiled the index reconstruction process; Figure 6.1 shows our
results. Although our index initialization currently does not account for
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Figure 6.2: Software overhead for each type of request

device performance (as we removed all artificial delays), we note that the
software overhead of the index construction process is not egregious.

6.2.2 Software Overhead

In lieu of presenting latency capabilities of our emulated system, we instead
focus on measuring the software implementation overhead. Figure 6.2 shows
the performance for individual read and write requests without any artifi-
cial delays imposed. Note that due to an implementation restriction, we
are currently not able to issue reads larger than 2KB at this time (hence
the truncated results); code infrastructure is in place to return larger read
requests to user space as a scatter-gather list.

6.2.3 Batching

The performance characteristic we were most interested in for our system
was the effect of batching. Although we were fairly confident batching would
improve throughput, we wanted to quantitatively demonstrate the benefits.
As Figure 6.3 illustrates, the throughput gains are substantial up to a batch
size of roughly 1000.
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Figure 6.3: Throughput for batched reads and writes

We compare our system against running fio [4] on a RAM disk config-
ured with tmpfs. We did our best to align the fio parameters with our
IX configuration, choosing libaio as the I/O engine and restricting fio job
execution to a single core. The results are somewhat bizarre, as it would
appear libaio does not scale at all given larger batch sizes.

Although we evaluated writes both with the artificial delays and without,
it would seem that they have minimal impact beyond 100 requests per batch
and an outsized impact for batches below that threshold, and thus as men-
tioned before add little meaning to our evaluation. Delays were not induced
for reads due to the previously mentioned precision issue.

6.3 Evaluation Remarks

Our initial findings were neither laudatory nor even logical, but after carefully
examining the sources of bottleneck and adjusting the implementation, we
were able to obtain some presentable results.

Due to the fact that we did not have a physical device to experiment with,
we had difficulties coming up with reasonable and sound evaluation scenar-
ios. Although raw performance, in particular latency and throughput, were
most of interest to us, without a physical device these metrics are somewhat
meaningless.
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Chapter 7

Discussion

7.1 Related Work

Here, we outline some of the work that we felt was related to certain com-
ponents in our design. As our work is at the intersection of many areas of
research, we cast a broad eye in searching for research ideas that relate to
our own. These are a few note-worthy items that we encountered.

7.1.1 Key Value Stores

In our quest to build a key-value storage system, we naturally examined
several other contemporary key-value store implementations in the research
landscape. We chose a subset of relevant systems to present here:

Echo

Claiming to be the first “fine-grained, persistent key-value store” design for
SCM/NVM technologies, this system employs a two-level DRAM/NVM hy-
brid architecture. Threads initially process data in local stores in DRAM,
and then issue “commits” to a master store on NVM, which then persists the
data. Echo leverages the byte-addressability of NVM to achieve a lightweight
versioning scheme and provide some semblance of snapshot isolation. Every
commit of an existing key is considered a new version, and versioning is im-
plemented by modifying pointer; thus old data is never deleted. Moreover,
every get request for a key must be accompanied by a version number, in
order to allow some level of isolation between concurrent threads operating
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on the same key. We applied a similar approach of “lazily” versioning in
order to ensure some consistency and crash recovery properties, but do not
consider concurrency issues as we have exclusive writes.

This two-tiered approach is an interesting way of resolving the issue of
managing traditionally ephemeral semantics in persistent memory. For in-
stance, a lot of work is ongoing to investigate how pointers should be imple-
ment in persistent memory. Echo’s design works around this issue by using
database-like transactional semantics to separate volatile from non-volatile
memory.

SILT

SILT, or “Small Index Large Table”, is a flash-based key-value store that
aims to minimize DRAM usage by architecting a three-tiered storage system
[38]. They propose three differently structured storage systems for flash that
compose into an overall well-performing key-value store with low memory
utilization for the in-memory index as well as optimized writes and reads
for flash wear-levelling. Writes are first issued to a “LogStore” that uses the
index to map keys to offsets within the log. The LogStore has a fixed capacity
to limit index-growth/memory usage, and once full will become converted to
a “HashStore”. Because this store is organized in a hash table structure, it
does not require an index for key lookup but uses a small in-memory filter.
Once several HashStores have been created, they are bulk-merged into a
“SortedStore” which, as its name suggests, stores all keys in sorted order
and is indexed by a novel data structure.

This system is interesting due to its multi-staging design, but also demon-
strates the complexity needed to design a highly optimized system tightly
coupled with the characteristics of the underlying hardware. In contrast, we
opted for a single layer structure for simplicity and clarity, and instead leave
performance-centric optimizations to lower layers.

Custom Key Value Stores

The solution proposed by Marmol et. al. [44] takes an interesting approach
to the question of how best to integrate non-volatile memory technologies
into existing applications. They argue that since the underlying hardware
making up NVM is currently hard to characterize and subject to differences
in specifications and details, the best approach is to abstract a key-value-
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based library for applications to make use of, and then modify the library
implementation based on the specific underlying hardware. They outline
the fundamental features expected of key value stores and provide design
principles for creating a key-value library.

While abstracting a key-value interface seems like a useful approach, this
design does not address the fundamental obstacles in extracting better per-
formance from new memory technologies: the operating system stack. More-
over, expecting application developers to adapt implementations to different
device interfaces seems unlikely to become a reality. While we also expose a
key-value abstraction, our approach leverages a well-developed standard like
NVMe to handle device-specific issues rather than attempt to bring them
into our abstraction layer.

Industry Solutions

A few hybrid key-value stores have emerged as industry responses to the need
for cost-effective low-latency solutions. McDipper [46] is Facebook’s imple-
mentation of an SSD-based replacement for memcached. Twitter’s fatcache
[25] treats SSD storage as a large cache (as its name suggests) and applies
similar tactics as our system such as batching small writes and issuing them
to device in a log-structured manner.

7.1.2 NVMe

As mentioned previously, NVMe has not quite inspired the same volume of
research as visionary NVM technologies. In our review of current NVMe
applications in research, we found two main applications of NVMe that were
intriguing.

NVMeDirect

NVMeDirect [36] is a proposed user-level I/O framework that bypasses the
kernel to expose the storage device interface directly to applications. The
authors note that SPDK, an existing user-level library, has fundamental lim-
itations; since it migrates the device drivers into user-space, only one ap-
plication may make use of the device at a time. NVMeDirect multiplexes
the device interface so that many applications may utilize the same NVMe
device. Rather than directly exposing NVMe queues, NVMeDirect offers the
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“I/O handles” abstraction to allow applications to specify I/O policies, such
as latency guarantees or read/write prioritization. Other features include a
block cache for caching LBA translations, an I/O scheduler and a dedicated
completion thread to allow latency-critical applications to synchronously poll
for I/O completion.

Storage Disaggregation

Two recent projects in storage disaggregation both rely on NVMe to deliver
high performance storage at scale. Reflex [37] offers low-latency remote stor-
age in order to achieve better resource utilization within a datacenter. They
also build their system atop IX, but extend their system with a quality-of-
service scheduler. While we are more concerned with providing applications
an interface to persistent storage, Reflex’s main design goal is to enable ten-
ants in a datacenter to have differentiated service and finer-grained SLOs
specifications while achieving better resource utilization across the datacen-
ter by giving away any unused capacity to “best-effort” clients.

The authors of Decibel pursue a similar purpose by proposing a set of
storage abstractions in order to allow better isolation and more flexibility in
expressing performance requirements for tenant applications.

While this does not represent an exhaustive list of research endeavours
utilizing NVMe, we cannot help but feel that there is a lack of exploration
in the NVMe research space. To the best of our knowledge, few others have
attempted integrating NVMe into their system design; we are among the first
to leverage NVMe to build an operating system-level I/O abstraction.

7.1.3 Linux & Operating System I/O Paths

Some efforts have been made to address scalability issues in the Linux I/O
path. In particular, the singly-locked single request queue has been replaced
by multiple queues at the software level complemented by a single hardware
level queue [10]. While removing this lock has reportedly improved perfor-
mance, the single queue bottleneck remains due to the inherent nature of the
underlying hardware, in particular SATA/SCSI device drivers which only
support one I/O request queue.

A more recent development is the application of Open-Channel SSDs to
Linux [11]. Open-Channel SSDs are a new class of devices which directly
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expose the internals of SSDs by allowing the user to specify I/O scheduling
and data placement, in essence allowing them to implement their own FTL.

While these new advancements have been integrated in Linux [41, 42],
one could argue that they only exacerbate the issue of an over-burdened
monolithic kernel. A study conducted almost two decades ago found that
roughly 70% of the Linux source code was devoted to device drivers; as so
happens this subset of the source code was also the most error-prone [17].
One can imagine that adding support for more devices to support would not
help with either of those statistics.

Another approach to mitigate the OS overhead problem in I/O was pro-
posed by Shin et. a. [71]. They designed a modified I/O path to eliminate
extraneous context switching or interrupt handling by implementing a Hard-
ware Abstraction Layer to expose I/O functionality directly to upper layers
and apply an asychronous-esque model for processing I/O requests and com-
pletions.

While the performance numbers they report are somewhat uninspiring
( 600K IOPS), their system displays some interesting scalability characteris-
tics. They report that they are able to support 6 SATA SSDs concurrently
while Linux is supposedly unable to provide acceptable performance for more
than 3 SSDs. While we have yet to consider multi-device operation in our
system, our isolated cores design enables ease of extension should we pursue
this idea.

7.1.4 Positions and Opinions

During our “search” phase, we encountered many position papers that ulti-
mately shaped how we approached our design: here are but a few.

When Poll is Better Than Interrupt

As mentioned previously, contemporary operating systems typically imple-
ment asynchronous I/O completion; due to the assumption that storage de-
vices are slow, OS’s try to complete other work in the many milliseconds that
pass before an I/O completion is obtained from device. This assumption no
longer holds in the face of flash-based SSDs and other faster storage media.
Yang et. al. experimentally determined that a synchronous I/O completion
model incurs only half the latency of that of the asynchronous model, and
that throughput is also substantially improved [80]. Moreover, they offer
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a meticulous breakdown of kernel vs. device processing times, and provide
some theoretical notions of how each relate to the others. For example, they
note that for the SSDs they conducted experiments on, 1.4 µs is the thresh-
old of kernel overhead over which no useful work will be accomplished by a
context switch between device request and response time.

The Unwritten Contract of Solid State Drives

This survey details the “unwritten contract” of SSDs in an attempt to pro-
vide developers and researchers with basic guiding principles for building
their systems [31]. While there are a few well-known tenets of SSDs that we
described earlier, this paper outlines five “rules” for optimizing SSD perfor-
mance drawn from observing the characteristics implicit in SSD operation.
In particular, the authors note that writes to SSDs should either be large
enough to induce FTL “striping” into smaller sub-requests or there should
be enough small requests to exploit SSD parallelism; in either case individual
small requests should be avoided. Other guidelines include grouping data on
device according to similar “death times” (deletion time) and ensuring uni-
formity of data lifetime.

Although we took their request size guideline under advisement, unfor-
tunately some of the other advice offered do not translate well into practice.
For example, it is unclear how developers could design their applications
such that data with similar “death times” are grouped together. Moreover,
although the authors ascribe some vague sense of synergy between FTLs, file
systems or the operating system-level storage interface, and applications, it
is not clear how well we can depend on parties involved in each of these three
layers having a deep understanding of the interactions between their layers.
Interestingly, this paper makes almost no mention of NVMe and operating
system-level interfaces.

Don’t stack your Log on my Log

Conversely, while the previous paper aimed to provide guiding principles to
advise, the authors of this paper sought to “de-bunk” some commonly held
beliefs for designing applications for SSDs that were long-held to be beneficial
but ultimately not performance-optimal. In a prime example of the lack of
the transparency in the layers between storage and application, the authors
investigate the effects of overlaying logs-structured implementations in the
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FTL, file system and application layers.
Their results show that contrary to the popularly-held idea that log-

structuring data is beneficial for SSDs, in specific cases log-stacking may be
detrimental to performance due to duplication of processes such as garbage
collection. This supports the opinions held by the authors of the previous
paper that “logging is not a panacea” and should only be applied intelligently.

7.2 Future Work

7.2.1 Log-structuring

Recall from earlier sections our procedure for batching writes and our allo-
cation strategy for the LBA freelist: we aggregates writes and continuously
append to the range of LBAs unless there is a sufficient amount of reclaimed
space at an “earlier” LBA number. Although we did not set out to design
our system with these properties, we ultimately ended up with something
resembling a log-structured system [34]. As noted before, there is some con-
tention about whether this is appropriate, as SSD devices already feature a
log-structured management system [81]. We are hoping that subsequent ex-
perimental data will convey the performance benefits of our design decision.

7.2.2 Implementation Improvements

Although we tried to be as complete as possible in our implementation, it
is by no means a perfect prototype. Here are just a few ideas for modest
improvements that could be made:

Key Membership Testing Although we use a fast hash to determine key
membership in the index, in the event of a collision we must resort to
traversing the hash chain and comparing keys using standard strcmp.
Bloom filters are a performance-friendly way to test membership quickly
without having to traverse the index.

Key storage Although our design aspires to support variable key length,
we currently truncate it at 110 bytes in order to keep the metadata
storage overhead low. Future enhancements could include storing only
a hash or some other form of encoding the key.
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Read Size Restriction As mentioned in the previous section, due to an
implementation issue our system currently only supports reads up to
2KB, although writes may be arbitrarily sized. This creates a rather
lopsided (and incorrect) system, as users may write large values that
they cannot subsequently access. The restriction on reads may be lifted
by dividing up larger reads from device into scatter-gather list entries.

Improved Integrity Check Our implementation currently uses a basic CRC
(mostly adapted from [12]), as we made a tradeoff in slight favour of
performance over stronger integrity. However, profiling reveals that
the CRC still contributes a significant amount to the overall software
overhead. More sophisticated protocols exist that try to mitigate the
tradeoff between performance and integrity [65, 40, 67].

Our prototype implements EREW but can be extended to CREW using
the appropriate inter-core communications to route write requests. Our long-
term plan was to implement EREW mode first, and then extend our system
to CREW access by partitioning the LBA address space and using inter-core
communication to route write requests to the appropriate core. Indeed we
would have liked to examine the throughput capabilities of this approach, as
well as explore the performance impact of increased parallelism in our design,
as this is a well-studied aspect of SSDs [16].

7.2.3 Potential Directions

There is an emerging set of design principles called “Offline First”, in which
applications are designed with loss-of-connectivity in mind [56]. Proponents
of this paradigm argue that applications should be design with resilience to
loss of network connectivity and better capabilities for offline operation. One
could imagine that the IX infrastructure would be applicable to such design
principles; IX provides a fast path for networking and now storage with our
proposed design.

Another potential direction for the system could be to port directly to
NVM hardware by removing the block serialization we currently use. This
seems less likely; it is still unclear exactly what kind of semantics NVM will of-
fer. In contrast, NVMe is an industry-backed set of standards that is already
seeing greater adoption. For example, Intel’s datacenter storage offerings
make use of NVMe interfaces and their latest 3D XPoint (purportedly PCM-
based) product line requires NVMe-compliant controllers [32, 33]. Moreover,
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the general opinion is that PCIe will be too slow for NVM’s nanosecond-scale
latencies, and either NVMs should reside directly on the memory bus [69] or
new protocols will be needed [77].

As mentioned previously, we assume a single trusted application is run-
ning on top of IX. Further work could be done to examine the role IX should
play in terms of managing access control and permissions checking for remote
requests for data.
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Chapter 8

Conclusion

We have presented a prototype of a key-value abstraction which incorpo-
rates into the IX architecture, implemented using a variety of techniques
both within the existing design principles of IX and borrowed from various
other systems. In our search for appropriate approaches, we examined a
panoply of existing work, from in-memory key-value stores to storage disag-
gregation. While we initially made many “sweeping simplifications” with the
goal of obtaining a simple prototype on which to iterate, we soon discovered
that providing persistence and some minimal guarantees of consistency were
non-trivial undertakings. Pursuing a storage system without the adequate
background left us vulnerable to drawbacks in our design and implementation
process, and at times forced us to go back and re-examine our assumptions.
Moreover, lacking the physical device around which many of our assump-
tions are made, we struggled with devising an appropriate performance model
against which to validate our hypotheses.

However, with guidance from experts (both in literature and real life),
we implemented a prototype which we hope will demonstrate the benefits of
IX’s design approaches to I/O processing. Moreover, we showed a novel use
case for NVMe to illustrate the untapped potential of this technology. We
put forward our design in the humble hopes that others will draw from the
observations we made in order to build new systems for NVMe and other
emerging storage innovations.
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