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Abstract Negative index materials are artificial structures whose refractive index has a
negative value over some frequency range. These materials were postulated and investigated
theoretically by Veselago in 1964 and were confirmed experimentally by Shelby, Smith,
and Schultz in 2001. New fabrication techniques now allow for the construction of negative
index materials at scales that are interesting for applications, which has made them a very
active topic of investigation. In this paper, we report various mathematical results on the
properties of negative index materials and their applications. The topics discussed herein
include superlensing using complementary media, cloaking using complementary media,
cloaking an object via anomalous localized resonance, and the well-posedness and the finite
speed propagation in media consisting of dispersive metamaterials. Some of the results have
been refined and have simpler proofs than the original ones.

Keywords Superlensing · Cloaking · Finite speed propagation · Complementary media ·
Negative index metamaterials.

Mathematics Subject Classification (2010) 35B34 · 35B35 · 35J05 · 35Q60.

1 Introduction

Negative index materials (NIMs) are artificial structures whose refractive index has a neg-
ative value over some frequency range. These materials were postulated and investigated
theoretically by Veselago in 1964 [45] and their existence was confirmed experimentally
by Shelby, Smith, and Schultz in 2001 [44]. New fabrication techniques now allow for the
construction of NIMs at scales that are interesting for applications, which has made them
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a very active topic of investigation. NIMs have attracted a lot of attention from the scien-
tific community, not only because of potentially interesting applications, but also because
of challenges involved in understanding their peculiar properties due to the sign-changing
coefficients in the equations modeling the phenomena.

Concerning the electromagnetic wave, wave phenomena in the time harmonic regime are
modeled by Maxwell equations{ ∇ × E = ikμH in R

3,

∇ × H = −ikεE + j in R
3.

(1.1)

Here ε and μ are 3 × 3 matrix-valued functions corresponding to the permittivity and per-
meability of the medium, respectively, j is the density of charge, k > 0 is the frequency, and
i is the pure imaginary complex number (i2 = −1). NIMs fall into the region in which both
ε and μ are negative (in the matrix sense); for a standard material, both ε and μ are positive.
Concerning the acoustic wave, phenomena in the time harmonic regime are modeled by the
Helmholtz equation

div(A∇u) + k2�u = f in R
d , (1.2)

with d = 2, 3 where A is a d × d matrix-valued function and � is a function that describes
the properties of the medium. For NIMs, A and � are negative; for a standard material, both
A and � are positive. In the acoustic quasistatic regime k = 0, the medium is therefore
characterized by the matrix A. This regime will be discussed in detail in this paper to illus-
trate the phenomena and mathematical ideas used to investigate NIMs with an exception in
Section 5 where only the electromagnetic setting is considered. Facts related to the finite
frequency regime and the electromagnetic setting are also mentioned.

To correctly investigate these equations, one adds some loss (friction or damping effects)
into the region of NIMs and then studies these equations as the loss goes to 0. Mathemat-
ically, the study of media consisting of NIMs faces two difficulties. First, the equations
describing the wave phenomena have sign-changing coefficients; hence, the ellipticity and
the compactness are lost in general. Second, a localized resonance, i.e., the field (the solu-
tion) explodes in some regions and remains bounded in some others as the loss goes to
0, might appear. In this paper, we report various mathematical results on the properties
of NIMs and their applications. The topics are superlensing using complementary media
(Section 2), cloaking using complementary media (Section 3), cloaking an object via
anomalous localized resonance (Section 4), and the well-posedness and the finite speed
propagation properties of electromagnetic waves in the time domain for media consisting
of dispersive metamaterials (Section 5). Concerning the first three topics, refined results in
comparison with the original works will be presented. Other aspects on NIMs, such as the
stability of NIMs and cloaking a source via anamlous localized resonance, will be men-
tioned briefly in the last section (Section 6) in which we also discuss future directions. This
report can be considered as a companion to the one in [27] written in 2015 in which super-
lensing using complementary media, cloaking using complementary media, and the stability
of NIMs and cloaking a source via anomalous localized resonance are discussed in the spirit
of the original works.

2 Superlensing Using Complementary Media

Superlensing using NIMs was suggested by Veselago in his seminal paper [45]. In this
paper, he considered a slab lens with ε = μ = −I , where I denotes the identity matrix,
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and investigated its lensing property using ray theory. Later, the study of cylindrical lenses
in the two-dimensional quasistatic regime, the Veselago slab lens, cylindrical lenses, and
spherical lenses in the finite frequency regime were respectively suggested and examined
by Nicorovici, McPhedran, and Milton [37]; Pendry [39, 40]; and Pendry and Ramakrishna
[42, 43] for constant isotropic objects.

In this section, we present superlensing schemes in the spirit of [23] in which we estab-
lished superlensing using complementary media for arbitrary objects. The superlensing
schemes in [23] are inspired by the ones suggested in [37, 39, 40, 43] but different from
there. The lenses in [23] also have their roots from [22] in which complementary media
were defined and investigated from mathematical point of views. It was shown later in [28]
that the modification proposed in [23] in comparison with [37, 39, 40, 43] was necessary in
order to achieve superlensing (see also Section 4).

We next mathematically describe superlensing using complementary media. Let Br

denote the ball in R
d centered at the origin and of radius r > 0. We first consider the

quasistatic acoustic setting in a two-dimensional, bounded domain. To magnify m times
(m > 1) an arbitrary object in Br0 with r0 > 0, one uses a lens consisting of two layers as
follows. The first layer in Br1 \ Br0 is characterized by the identity matrix I , and the second
one in Br2 \ Br1 is characterized by the matrix −I . Here r1 and r2 are defined by

r1 = m1/2r0 and r2 = mr0. (2.1)

Different choices for r1 and r2 are possible. Nevertheless, there are some restrictions on
them. In particular, r1/r0 cannot be too close to 1 (see Remark 2.2). The choice considered
in (2.1) has the advantage that the system is somehow stable for small loss (see (2.3)) and
our proof of superlensing is quite simple in this case.

Assume that the object inside Br0 is characterized by a symmetric, uniformly elliptic,
matrix-valued function a, i.e., for some constant � ≥ 1,

�−1|ξ |2 ≤ a(x)ξ · ξ ≤ �|ξ |2 for a.e. x ∈ Br0 and for ξ ∈ R
2,

and the medium outside Br2 is homegeneous and, hence, is characterized by the identity
matrix I . Then, with the loss being described by a small, positive parameter δ, the medium
considered is characterized by Aδ := sδA,1 where

A =
{

a in Br0 ,

I otherwise,
and sδ =

{ −1 − iδ in Br2 \ Br1 ,

1 otherwise,
for δ ≥ 0. (2.2)

The superlensing property of the considered lens is confirmed by the following theorem.

Theorem 2.1 Let 0 < δ < 1, � be a smooth, bounded, open subset of R2, f ∈ L2(�), and
set r3 = r22/r1. Assume that Br3 ⊂⊂ � and supp f ⊂ � \ Br3 , and let uδ ∈ H 1

0 (�) be the
unique solution of the equation

div(Aδ∇uδ) = f in �.

We have
‖uδ − û‖H 1(�) ≤ Cδ1/2‖f ‖L2(�) (2.3)

and
‖uδ − û‖H 1(�\Br3 ) ≤ Cδ‖f ‖L2(�), (2.4)

1A0 plays the role of A in (1.2).
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for some positive constant C independent of f and δ. In particular,

uδ → û in H 1(� \ Br3) as δ → 0. (2.5)

Here û ∈ H 1
0 (�) is the unique solution of the equation

div(Â∇û) = f in �, where Â =
{

a(·/m) in Br2 ,

I otherwise.

Proof We first prove (2.3). The key idea of its proof is to construct a solution u0 ∈ H 1
0 (�)

to the equation div(A0∇u0) = f in �. To motivate the construction of u0 ∈ H 1
0 (�) below,

we first assume that there exists such a solution u0. Let u1,0 be the reflection of u0 in Br2

through ∂Br2 via the Kelvin transform F associated with ∂Br2 , i.e.,

u1,0(x) = u0 ◦ F−1 for x ∈ R
2 \ Br2 , where F(x) := r22x/|x|2 for x ∈ R

2. (2.6)

Note that F respectively transforms ∂Br1 onto ∂Br3 and ∂Br0 onto ∂Br2 ; the constant r3
appears naturally here. Since �u0 = 0 in Br2 \ B̄r1 and in Br1 , it follows that

�u1,0 = 0 in Br3 \ B̄r2 and in R
2 \ B̄r3 .

Moreover, by taking into account the continuity u0 and its flux on ∂Br2 and ∂Br3 , we have

u1,0 = u0 and ∂ru1,0 = −∂ru0|int = ∂ru0|ext on ∂Br2

and
u1,0|ext = u1,0|int and ∂ru1,0|ext = −∂ru1,0|int on ∂Br3 .

Here and in what follows, for a smooth, bounded, open subset D ofRd , on its boundary ∂D,
u|ext and u|int denote the restriction of u inRd \D̄ and the restriction of u inD, respectively,
for an appropriate function u. We also denote [u] as the quantity u|ext − u|int on ∂D and
use similar notations for A∇u · ν for an appropriate function u where A is a matrix and ν is
the unit normal vector on ∂D directed to the exterior of D.

Let u2,0 be the reflection of u1,0 in Br3 through ∂Br3 via the Kelvin transform G

associated with ∂Br3 , i.e.,

u2,0(x) = u1,0 ◦ G−1 for x ∈ Br3 , where G(x) := r23x/|x|2 for x ∈ R
2. (2.7)

We then have
div(Â∇u2,0) = 0 in Br3 (2.8)

u2,0 = u1,0|int and ∂ru2,0 = ∂ru1,0|int on ∂Br3 .

The definition of Â in Br3 appears naturally here. Since Â = I in Br3 \ Br2 by the choices
of r1 and r2 (G ◦ F(∂Br0) = ∂Bmr0 = ∂Br2 ), it follows from (2.8) that

�u2,0 = 0 in Br3 .

Set

w0 =
{

u0 in � \ B̄r2 ,

u2,0 in Br2 .
(2.9)

Then,

div(Â∇w0) = f in � \ ∂Br2 , [w0] = 0 on ∂Br2 , and [Â∇w0 · ν] = 0 on ∂Br2 .

(2.10)
It follows that w0 ∈ H 1

0 (�) is a solution of

div(Â∇w0) = f in �. (2.11)
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We derive that
û = w0 in �.

Inspired by the heuristic arguments above, we define

u0 =

⎧⎪⎪⎨
⎪⎪⎩

û in � \ Br2 ,

û ◦ F in Br2 \ Br1 ,

û ◦ G ◦ F = û(m ·) in Br0 .

(2.12)

It is clear from the definition of û that

�u0 = f in (� \ B̄r2) ∪ (Br2 \ B̄r1) and div(a∇u0) = 0 in Br1 . (2.13)

Moreover, one can check that

[u0] = 0 and [s0A∇u0 · ν] = 0 on (∂Br2 ∪ ∂Br1). (2.14)

Combining (2.12), (2.13), and (2.14) yields that u0 ∈ H 1
0 (�) is a solution of the equation

div(A0∇u0) = f in R
2.

We have

div (Aδ∇(uδ − u0)) = − div ((Aδ − A0)∇u0) = iδ div(χBr2\Br1
∇u0) in �, (2.15)

where χD denotes the characteristic function of a given subset D of R2. Applying (2.21) of
Lemma 2.1 below, we have

‖uδ − u0‖H 1(�) ≤ C‖∇u0‖L2(Br2\Br1 ) ≤ C‖f ‖L2(�).

This yields, by (2.15) and (2.21) of Lemma 2.1 again,

‖uδ − u0‖H 1(�) ≤ Cδ1/2‖f ‖L2(�),

which is (2.3).
We next establish (2.4). Similar to the definition of u1,0 and u2,0, we define u1,δ in

R
2 \ B̄r2 and u2,δ in Br3 as follows

u1,δ = uδ ◦ F−1 in R
2 \ B̄r2 and u2,δ = u1,δ ◦ G−1 in Br3 .

As above, one can verify that

�u1,δ = 0 in Br3 \B̄r2 , u1,δ = uδ on ∂Br2 , (1+ iδ)∂ru1,δ = ∂ruδ|ext on ∂Br2 , (2.16)

div(Â∇u2,δ)=0 inBr3 , u2,δ =u1,δ on ∂Br3 , and ∂ru2,δ =(1+iδ)∂ru1,δ|int on ∂Br3 .

(2.17)
Define

ûδ =

⎧⎪⎪⎨
⎪⎪⎩

uδ in � \ Br3 ,

uδ − (u1,δ − u2,δ) in Br3 \ Br2 ,

u2,δ in Br2 .

(2.18)

One can check that

div
(
Â∇(ûδ − û0)

)
= 0 in � \ (∂Br2 ∪ ∂Br3).

Moreover, by (2.16) and (2.17), one has

[ûδ−û0]=uδ−u1,δ =0, [Â∇(uδ−û0)·er ]= Â∇(uδ|ext−u1,δ)·er = iδ∂ru1,δ|int on ∂Br2 ,

and

[ûδ−û0]=u1,δ−u2,δ =0, [Â∇(uδ−û0)·er ]=∂r (u1,δ|int −u2,δ)=−iδ∂ru1,δ|int on ∂Br3 .
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From Lemma 2.2 below, it follows that

‖ûδ − û0‖H 1(�\(∂Br2∪∂Br3 )) ≤ C
(
‖δ∂ru1,δ|int‖H−1/2(∂Br3 ) + ‖δ∂ru1,δ|ext‖H−1/2(∂Br2 )

)
≤ Cδ‖f ‖L2(�).

In the last inequality, we use (2.3). Since ûδ = uδ in � \ B̄r3 , assertion (2.4) follows.
The proof is complete.

Remark 2.1 Assertion (2.5) in a more general setting, the setting of complementary media,
is given in [22]. In [22], sδ is defined by −1 + iδ in Br2 \ Br1 ; nevertheless, this point is
not essential. The proof of (2.3) also has its roots from [22]. The idea is to use reflections
to derive Cauchy’s problems from the original equation with sign-changing coefficients
and then use the unique continuation principle; see, e.g., [41]. This can be applied to a
general structure via the change of variable rule; see Lemma 2.3 below. Assertion (2.4)
is new in comparison with [22] whose method only yields δ1/2 instead of δ as the rate
of the convergence. The key ingredient in the proof is the introduction of the auxiliary
function ûδ . This auxiliary function was introduced in the technique of removing localized
singularity by the author to handle the localized resonance associated with NIMs in cloaking
and superlensing applications; see our previous work [23, 25], Section 3, and Remark 2.2.
Interestingly, it is also useful even in stable cases for improving the convergence rate. The
motivation of (2.4) comes from simulations obtained in the master project of Droxler at
EPFL under the supervision of Hesthaven and the author.

Remark 2.2 The choice of r1 and r2 in (2.1) is not strict for ensuring (2.5). In previous work
[23], we showed that it is possible to choose

r1 = m1/4r0 and r2 = m1/2r1.

In fact, the approach in [23] also works for the choice

r1 ≥ m1/4r0 and r2 = m1/2r1. (2.19)

Instead of introducing û as in (2.18), we define ûδ as follows

ûδ =

⎧⎪⎪⎨
⎪⎪⎩

uδ in � \ Br3 ,

uδ − (u1,δ − u2,δ) in Br3 \ Bmr0 ,

u2,δ in Bmr0 .

(2.20)

Recall that, if v ∈ H 1(BR3 \ BR1) satisfies �v = 0 in BR3 \ BR1 for 0 < R1 < R2 < R3,
then

‖v‖H 1/2(∂BR2 ) + ‖∂rv‖H−1/2(∂BR2 )

≤ C
(
‖v‖H 1/2(∂BR1 ) + ‖∂rv‖H−1/2(∂BR1 )

)α (
‖v‖H 1/2(∂BR3 ) + ‖∂rv‖H−1/2(∂BR3 )

)1−α

,
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with α = ln(R3/R2)/ ln(R3/R1)
2. Using this inequality, one can prove that

‖u1,δ − uδ‖H 1/2(∂Bmr0 ) + ‖∂r (u1,δ − uδ)‖H−1/2(∂Bmr0 ) ≤ Cδα‖v‖H 1(�\Br3 ),

with α = ln(r3/r2)/ ln(r3/r1) which is greater than or equal to 1/2 by (2.19) and the fact
that r3 = r22/r1. Applying the approach used in the proof of (2.3), one can reach (2.5)
in the case in which α > 1/2, which is equivalent to r1 > m1/4r0. The case in which
α = 1/2, corresponding to the choice r1 = m1/4r0, requires further arguments; in this case,
the convergence in (2.5) is replaced by the weak convergence. The interested reader can find
the details in [23, the proof of (2.36)].

In the proof of Theorem 2.1, we used the following stability result on uδ .

Lemma 2.1 Let d ≥ 2, δ0 > 0, 0 < r1 < r2, � be a smooth, open subset of Rd with
Br2 ⊂⊂ �, let A be a uniformly elliptic, matrix-valued function defined in �, and let
g ∈ H−1(�)3. Set Aδ = sδA, where sδ is defined in (2.2). For 0 < δ < δ0, there exists a
unique solution vδ ∈ H 1

0 (�) of

div(Aδ∇vδ) = g in �.

Moreover,

‖vδ‖2H 1(�)
≤ C

δ

∣∣∣∣
∫

�

gv̄δ

∣∣∣∣ (2.21)

and

‖vδ‖2H 1(�)
≤ C

δ

∣∣∣∣�
∫

�

gv̄δ

∣∣∣∣ + C‖g‖2
L2(�)

. (2.22)

Here C denotes a positive constant independent of g and δ.

Here and in what follows, for a complex number z, we denote �z and�z as the imaginary
part and the real part of z, respectively.

Remark 2.3 Various variants of Lemma 2.1 are used in the study of NIMs; see, e.g., [22,
28]. In inequality (2.22), one only considers the imaginary part of

∫
�

gv̄δ . This is useful for
improvements on the convergent rate of cloaking effects considered later in Sections 3 and 4.
Nevertheless, the proof presented below is quite standard and in the same spirit.

Proof Multiplying the equation of vδ by v̄δ (the conjugate of vδ), integrating by parts, and
considering the imaginary part and the real part of the obtained expression, one has

‖∇vδ‖2L2(�)
≤ C

δ

∣∣∣∣
∫

�

gv̄δ

∣∣∣∣ .
This implies (2.21) by the Poincaré inequality.

2This inequality can be obtained from the following representation of v in BR3 \ BR1 :

v(r, ϑ) = a0 + b0 ln r +
∞∑

n=1

∑
±

(an,±rn + bn,±r−n)e±inϑ in BR3 \ BR1 .

See also [31, Lemma 6].
3H−1(�) denotes the dual space of H 1

0 (�).
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To obtain (2.22), we proceed as follows. Multiplying the equation of vδ by v̄δ ,
considering the imaginary part, one has

‖∇vδ‖2L2(Br2\Br1 )
≤ C

δ

∣∣∣∣�
∫

�

gv̄δ

∣∣∣∣ . (2.23)

We claim that

‖vδ‖L2(Br2\Br1 ) ≤ C
(
‖∇vδ‖L2(Br2\Br1 ) + ‖g‖L2(�)

)
. (2.24)

Assuming this, we obtain

‖vδ‖H 1(Br2\Br1 ) ≤ C
(
‖∇vδ‖L2(Br2\Br1 ) + ‖g‖L2(�)

)
.

This implies, by the trace theory,

‖vδ‖H 1/2(∂Br2∪∂Br1 ) ≤ C
(
‖∇vδ‖L2(Br2\Br1 ) + ‖g‖L2(�)

)
.

Using the equation of vδ in �\Br3 and in Br1 , we derive from the standard theory of elliptic
equations that

‖vδ‖H 1((�\Br2 ))∪Br1 ) ≤ C
(
‖∇vδ‖L2(Br2\Br1 ) + ‖g‖L2(�)

)
,

and the conclusion follows from (2.23).
It remains to prove (2.24), which we establish by contradiction. Suppose that there exist

a sequence δn → 0 (by (2.21)) and a sequence gn → 0 in L2(�) such that

1 = ‖vδn‖L2(Br2\Br1 ) ≥ n
(
‖∇vδn‖L2(Br2\Br1 ) + ‖gn‖L2(�)

)
, (2.25)

where vδn is the solution corresponding to δn and gn. By the trace theory, one has

‖vδn‖H 1/2(∂Br2∪∂Br1 ) ≤ C

for some positive constant C independent of n. This in turn implies that

‖vδn‖H 1(�) ≤ C.

Without loss of generality, one can assume that vδn converges to v0 ∈ H 1
0 (�) weakly in

H 1(�) and strongly in L2(Br2 \ Br1). Moreover,

div(A0∇v0) = 0 in � and v0 is constant in Br2 \ Br1 .

Since, by multiplying the equation of v0 with v̄0 and integrating by parts,∫
�

A0∇v0 · ∇v0 = 0,

and v0 is constant in Br2 \ Br1 , it follows that∫
�

|∇v0|2 = 0.

We derive that v0 = 0 in � since v0 ∈ H 1
0 (�). This contradicts the fact that

∫
Br2\Br1

|v0|2 =
limn→+∞

∫
Br2\Br1

|vδn |2 = 1.

The following lemma is standard and was used in the proof of Theorem 2.1.

Lemma 2.2 Let d = 2, 3, � be a smooth, open subset of Rd , and let A be a symmetric,
uniformly elliptic, matrix-valued function defined in �, and let f ∈ L2(�). Let D ⊂⊂ �
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be a smooth, bounded, open subset of Rd , let g ∈ H 1/2(∂D), and h ∈ H−1/2(∂D). Assume
that v ∈ H 1(� \ ∂D) satisfies⎧⎪⎪⎨

⎪⎪⎩
div(A∇v) = f in � \ ∂D,

[v] = g and [A∇v · ν] = h on ∂D,

v = 0 on ∂�.

Then,
‖v‖H 1(�\∂D) ≤ C

(‖f ‖L2(�) + ‖g‖H 1/2(∂D) + ‖h‖H−1/2(∂D)

)
,

for some positive constant C depending only on D, �, and the ellipticity of A.

The approach used in the proof of Theorem 2.1 can be extended to the finite frequency
regime as well as higher dimensions. The additional tool is the following change of variables
rule; see, e.g., [22, Lemma 2].

Lemma 2.3 Let d ≥ 2, D1 ⊂⊂ D2 ⊂⊂ D3 be three smooth, bounded, open subsets of Rd .
Let a ∈ [L∞(D2 \ D1)]d×d , σ ∈ L∞(D2 \ D1), and let T be a bijective from D2 \ D̄1 onto
D3\D̄2 such that T ∈ C1(D̄2\D1) and T −1 ∈ C1(D̄3\D2). Assume that u ∈ H 1(D2\D1)

and set v = u ◦ T −1. Then

div(a∇u) + σu = f in D2 \ D1,

for some f ∈ L2(D2 \ D1), if and only if

div(T∗a∇v) + T∗σv = T∗f in D3 \ D2. (2.26)

Assume in addition that T (x) = x on ∂D2. Then

v = u and T∗a∇v · ν = −a∇u · ν on ∂D2. (2.27)

Here

T∗a(y) = DT (x)a(x)∇T (x)T

| det∇T (x)| and T∗σ(y) = σ(x)

| det∇T (x)| , where x = T −1(y).

(2.28)

Let a be a symmetric, uniformly elliptic, matrix-valued function and σ be a bounded
complex function both defined in Br0 such that �σ > c > 0 and �� ≥ 0 in Br0 for some
c > 0. Assuming (2.1), we have the following result which is a variant of Theorem 2.1 in
the finite frequency regime in both two and three dimensions.

Theorem 2.2 Let d = 2, 3, 0 < δ < 1, k > 0, R0 > r3, f ∈ L2(Rd), and set r3 = r22/r1.
Assume that supp f ⊂ BR0 \Br3 , and let uδ be the unique outgoing solution of the equation

div(Aδ∇uδ) + k2�δ = f in R
d ,

where (Aδ,�δ) = (sδA, s̄δ�) and

A,� =

⎧⎪⎪⎨
⎪⎪⎩

a, σ in Br0 ,

F−1∗ I, F−1∗ 1 in Br2 \ Br1 ,

I, 1 otherwise,

and sδ =
{ −1 − iδ in Br2 \ Br1 ,

1 otherwise.
(2.29)

We have
‖uδ − û‖H 1(BR) ≤ CRδ1/2‖f ‖L2(Rd ) (2.30)
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and
‖uδ − û‖H 1(BR\Br3 ) ≤ CRδ‖f ‖L2(Rd ), (2.31)

for some positive constant CR independent of f and δ. In particular,

uδ → û in H 1
loc(R

d \ Br3) as δ → 0.

Here, û is the unique outgoing solution of the equation

div(Â∇û) + k2�̂û = f in R
d , where Â, �̂ =

{
m2−da(x/m), m−dσ (x/m) in Br2 ,

I, 1 otherwise.

Recall that a solution v ∈ H 1
loc(R

d \ BR) of the equation

�v + k2v = 0 in R
d \ BR,

for some R > 0, is said to satisfy the outgoing condition if

∂rv − ikv = o(r− d−1
2 ) as r = |x| → +∞.

Proof The proof of Theorem 2.2 is similar to the one of Theorem 2.1 by using Lemma 2.3
and applying variants of Lemmas 2.1 and 2.2; see, e.g., [22, Lemma 1] or [30, Lemma 2.1]
for variants of Lemma 2.1 which is of the form |uδ|2H 1(BR)

≤ CR

δ

∣∣� ∫
Rd f ūδ − I (uδ)

∣∣ +
CR|f |2

L2 , where I (uδ) = limR→+∞
∫
∂BR

k|uδ|2. The details are left to the reader.

Remark 2.4 Superlensing using complementary media is justified mathematically for the
electromagnetic wave [29]. The idea of using reflections is also useful in establishing
superlensing using hyperbolic metamaterials, an interesting type of metamaterials, [7]

Remark 2.5 Using the change of variables in Lemma 2.3, one can design a general super-
lensing scheme in which one does not require F (and also G) to be a Kelvin transform, and
the lens is not required to be radially symmetric; see [22, Theorems 1 and 2 and Corol-
lary 2] and [29, Theorem 2] for a discussion on the acoustic and electromagnetic settings,
respectively.

3 Cloaking Using Complementary Media

Cloaking using complementary media was suggested by Lai et al. [19]. The idea is to cancel
the effect of an object by its complementary medium, a concept considered in [42]; see [22]
for a discussion of this concept from mathematical point of views. The study of cloaking
using complementary media faces two difficulties. Firstly, this problem is unstable since the
equations describing the phenomenon have sign-changing coefficients; hence, the ellipticity
and the compactness are lost in general. Secondly, localized resonance might appear, as
shown in simulations in [19].

Cloaking using complementary media was mathematically justified for acoustic waves
[25] and for electromagnetic waves [31]. The schemes that were used in [25] and [31] are
inspired by the work of Lai. et al. and the study of complementary concept in [22, 29].
Nevertheless, these schemes are different from the ones in [19]. The modification, men-
tioned below, is necessary, as shown in the acoustic setting in [28]; without the modification,
cloaking might not be achieved (see also Section 4, Proposition 4.1, in particular, and the
comments following).
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Let us describe how to cloak the region B2r2 \ Br2 for some r2 > 0 in the spirit of [25].
We first consider the quasistatic regime. Assume that the cloaked region is characterized by
a matrix a, which is symmetric and uniformly elliptic in B2r2 \ Br2 . The cloaking device
consists of two parts. The first one, in Br2 \ Br1 , makes use of reflecting complementary
media to cancel the effect of the cloaked region, and the second one, in Br1 , fills the space
that “disappears” from the cancelation by the homogeneous medium. For the first part, we
modify the strategy in [19]. Instead of B2r2 \ Br2 , we consider Br3 \ Br2 for some r3 > 0 as
the cloaked region in which the medium is given by the matrix

ae =
{

a in B2r2 \ Br2 ,

I in Br3 \ B2r2 .

We assume that
ae ∈ C1(B̄r3 \ Br2). (3.1)

The complementary medium in Br2 \ Br1 is given by

−
(
F−1

)
∗ ae,

where F : Br2 \ B̄r1 → Br3 \ B̄r2 is the Kelvin transform with respect to ∂Br2 . Concerning
the second part, the medium in Br1 is given by(

r23/r22

)d−2
I, (3.2)

which is also different from that suggested by Lai et al. [19]. The reason for this choice is
to ensure that

G∗F∗A = I in Br3 , (3.3)

where A is defined in (3.4) below. In two dimensions, the medium in Br1 is I , as used by Lai
et al. [19], while it is not I in three dimensions. With the loss, the medium is characterized
by Aδ := sδA, where

A =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ae in Br3 \ Br2 ,

F−1∗ ae in Br2 \ Br1 ,(
r23/r22

)d−2
I in Br1 ,

I otherwise,

and sδ =
{ −1 − iδ in Br2 \ Br1 ,

1 otherwise,
for δ ≥ 0.

(3.4)
Let � be a smooth bounded open subset of Rd with Br3 ⊂⊂ �, and let f ∈ L2(�).

Denote uδ, û ∈ H 1
0 (�), respectively, the unique solution of

div(Aδ∇uδ) = f in � and �û = f in �. (3.5)

The cloaking property of this scheme is given in the following theorem.

Theorem 3.1 Let d = 2, 3, 0 < δ < 1, and f ∈ L2(�) with supp f ⊂ � \ Br3 . Let
uδ, u ∈ H 1

0 (�) be the uniques solutions defined by (3.5). For any 0 < α < 1, there exists
� > 0, depending only on r2, α, and the ellipticity and the Lipschitz constants of ae such
that if r3 > �r2 then

‖uδ‖H 1(�) ≤ Cδ(α−1)/2‖f ‖L2(�), (3.6)

and
‖uδ − û‖H 1(�\Br3 ) ≤ Cδα‖f ‖L2(�), (3.7)
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for some positive constant C independent of δ and f . In particular, we have

uδ → û in H 1(� \ B̄r3) as δ → 0. (3.8)

For an observer outside Br3 , the medium in Br3 given by Aδ looks as the homogeneous
one by (3.6) for small δ: one has cloaking.

Proof Set
β = (2 + α)/3.

We have, by Lemma 2.1,
‖uδ‖H 1(�) ≤ C Data(f, δ), (3.9)

where

Data(f, δ) := 1

δ

∣∣∣∣�
∫

�

f ūδ

∣∣∣∣ + ‖f ‖L2(�). (3.10)

As in the proof of Theorem 2.1, define u1,δ ∈ H 1
loc(R

d \Br2) and u2,δ ∈ H 1(Br3) as follows

u1,δ = uδ ◦ F−1 in R
d \ Br2 and u2,δ = u1,δ ◦ G−1 = uδ ◦ F−1 ◦ G−1 in Br3 .

We have, by Lemma 2.3,

div(A∇u1,δ)=0 inBr3\B2r2 , u1,δ =uδ on ∂Br2 , and (1+iδ)A∇u1,δ =A∇uδ|ext on ∂Br2 .

Let A be a Lipschitz extension of ae in Br3 such that A(0) = I and let wδ ∈ H 1
0 (Br3) be

such that

div(A∇wδ) = 0 in Br3 \ ∂Br2 and [A∇wδ · ν] = iδA∇u1,δ on ∂Br2 .

Then
‖wδ‖H 1(Br3 ) ≤ CδData(f, δ)1/2. (3.11)

Applying a three-sphere inequality [25, Lemma 1] to (u1,δ − uδ)χBr3\Br2
− wδ in Br3

4 and
using (3.11), we obtain, if � is sufficiently large, that

‖uδ − u1,δ‖H 1/2(∂B2r2 ) + ‖∂r (uδ − u1,δ)|ext‖H−1/2(∂B2r2 ) ≤ CδβData(f, δ)1/2. (3.12)

In the spirit of (2.20), we define

ûδ =

⎧⎪⎪⎨
⎪⎪⎩

uδ in � \ Br3 ,

uδ − (u1,δ − u2,δ) in Br3 \ B2r2 ,

u2,δ in B2r2 .

(3.13)

We have
�(ûδ − û) = 0 in � \ (∂Br3 ∪ ∂B2r2),

[ûδ − û] = 0 on ∂Br3 , [∂r (ûδ − û)] = −iδ∂ru1,δ|int on ∂Br3 ,

and
[ûδ − û] = uδ − u1,δ, [∂r (uδ − û)] = ∂r (uδ|ext − u1,δ) on ∂B2r2 .

By Lemma 2.1, we obtain from (3.9) and (3.12) that

‖ûδ − û0‖H 1(�) ≤ Cδβ Data (f, δ)1/2. (3.14)

By (3.10), this implies, since β > 1/2, that

‖ûδ‖H 1(�\Br3 ) ≤ C‖f ‖L2(�). (3.15)

4Recall that χD denotes the characteristic function of a subset D of Rd .
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We derive from (3.10) and (3.15) that

Data(f, δ) ≤ Cδ−1‖f ‖2
L2(�)

(3.16)

and from (3.14) and (3.15) that

‖ûδ − û‖H 1(�) ≤ Cδβ−1/2‖f ‖L2(�). (3.17)

Up to this point, the analysis is in the spirit of [25], and we now add some new ingredients
to derive the desired conclusions. We have, by (3.17),∣∣∣∣

∫
�

f ¯̂uδ −
∫

�

f ¯̂u
∣∣∣∣ ≤ Cδβ−1/2‖f ‖2

L2(�)

and, by multiplying the equation of û with ¯̂u and considering the imaginary part,

�
∫

�

f ¯̂u = 0.

It follows from (3.10) that

Data(f, δ) ≤ Cδβ−3/2‖f ‖2
L2(�)

.

From (3.14), we obtain

‖ûδ − û‖H 1(�) ≤ Cδ3β/2−3/4‖f ‖L2(�).

Repeating this process, one reaches, for n ≥ 1, that

Data(f, δ) ≤ Cnδ
β(1+1/2+···+1/2n−1)−(1/2+···+1/2n)−1‖f ‖2

L2(�)

and

‖ûδ − û‖H 1(�) ≤ Cnδ
β(1+1/2+···+1/2n)−(1/2+···+1/2n+1)‖f ‖L2(�),

where Cn is a positive constant independent of δ and f . The conclusion follows by taking
n large enough.

Remark 3.1 One of the crucial steps of this proof is to introduce the function û. In general
u1,δ − uδ explodes in the region Br3 \ B2r2 . A numerical simulation of this fact is given
in the work of Lai. et al. [19]. A mathematical illustration of this phenomenon can be seen
from the explicit representation of uδ − u1,δ in Br3 \ B2r2 using separation of variables; see
[25, Proof of Theorem 1]. The definition of û is inspired by the concept of the normalizing
energy used in the study of the Ginzburg-Landau equation; see, e.g., [4].

We next present the result in the finite frequency regime. Assume that the cloaked region
is characterized by a matrix a that is symmetric, uniformly elliptic and a bounded complex
function σ that satisfies �σ > c > 0 and �σ ≥ 0 both defined in B2r2 \ Br2 . As in the
spirit of the zero-frequency case, we consider the layer Br3 \ Br2 as the cloaked region that
is characterized by

ae, σe =
{

a, σ in B2r2 \ Br2 ,

I, 1 in Br3 \ B2r2 .

The cloaking device consists of two parts. The first one, the complementary layer in Br2 \
Br1 , is characterized by

−
(
F−1

)
∗ ae,−F−1∗ σe.
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Concerning the second part, the medium in Br1 is given by(
r23/r22

)d−2
I, (r23/r22 )d . (3.18)

Again, the reason for this choice is to ensure

G∗F∗A = I and G∗F∗� = 1 in Br3 , (3.19)

where A and � are defined in (3.20). We will assume that (3.1) holds. Set Aδ := sδA and
�δ := s̄δ�, where, for δ ≥ 0,

A,� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ae, σe in Br3 \ Br2 ,

F−1∗ ae, F
−1∗ σe in Br2 \ Br1 ,(

r23/r22

)d−2
I, (r23/r22 )d in Br1 ,

I, 1 otherwise,

and sδ =
{ −1 − iδ in Br2 \ Br1 ,

1 otherwise.

(3.20)
Let k > 0, f ∈ L2(Rd) with compact support and denote uδ, û ∈ H 1

loc(R
d), respectively,

the unique outgoing solutions of

div(Aδ∇uδ) + k2�δuδ = f in R
d and �û + k2û = f in R

d . (3.21)

Here is the variant of Theorem 3.1 for the finite frequency regime, which confirms the
cloaking property of the scheme considered.

Theorem 3.2 Let d = 2, 3, k > 0, 0 < δ < 1, R0 > r3, f ∈ L2(Rd) with supp f ⊂
BR0 \Br3 . Let uδ, u ∈ H 1

loc(R
d) be the unique outgoing solutions defined by (3.21). For any

0 < α < 1, there exists � > 0, depending only on r2, α, and the ellipticity and the Lipschitz
constants of ae such that if r3 > �r2 then

‖uδ‖H 1(BR) ≤ Cδ(α−1)/2‖f ‖L2(Rd ), (3.22)

and
‖uδ − û‖H 1(BR\Br3 ) ≤ Cδα‖f ‖L2(Rd ), (3.23)

for some positive constant C independent of δ and f . In particular, we have

uδ → û in H 1
loc(R

d \ B̄r3) asδ → 0. (3.24)

Proof The proof of Theorem 3.2 is in the spirit of Theorem 3.1 with a crucial point being
the establishment of (3.12) in the finite frequency regime. This can be done as follows. On
one hand, we have, by [33, Theorem 2],

‖uδ − u1,δ‖H(∂B2r2 )

≤ C‖∂r (uδ − u1,δ)|ext‖α
H(∂Br2 )

(
‖uδ − u1,δ‖H(∂B4r2 ) + ‖uδ|ext − u1,δ‖H(∂Br2 )

)1−α

.

(3.25)
for some positive constant τ depending only on r2 and the ellipticity and the Lipschitz of
ae. Here we denote

‖v‖H(∂Br ) := ‖v‖H 1/2(∂Br )
+ ‖A∇v · ν‖H−1/2(∂Br )

.

On the other hand, we obtain, by [31, Lemma 6], that

‖uδ − u1,δ‖H(∂B4r2 ) ≤ Ck‖uδ − u1,δ‖ξ

H(∂B2r2 )‖uδ − u1,δ‖1−ξ

H(∂Br3 ), (3.26)
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where ξ = ln (r3/(4r2)) / ln (r3/(2r2)). Combining (3.25) and (3.26) yields (3.12) if � is
sufficiently large. The rest of the proof is in the spirit of Theorem 2.1. The details are
omitted.

Remark 3.2 Previous given proof of cloaking using complementary media [25] can be
extended to the finite frequency regime. Nevertheless, the size of the cloaked object (the
cloaked region) is small as k is large. In [33], we extended the approach in [25] for the finite
frequency regime in which the size of the object can be independent of the frequency k. In
fact, we showed that there exists λ0 > 1 depending on the ellipticity and the Lipschitz of ae

such that one can cloak an object inside Bλ0r2 \ Br2 ; nevertheless, λ0 can be smaller than 2
but one can choose a large r2 to compensate this. The proof given here is again in the spirit
of the work [31] in which cloaking using complementary media for electromagnetic waves
is investigated.

Remark 3.3 Using the change of variables in Lemma 2.3, one can design a general cloaking
scheme in which one does not require F (and also G) to be a Kelvin transform and the
cloaking device is not necessary to be radially symmetric; see [31] for a discussion in the
electromagnetic setting.

4 Cloaking an Object via Anomalous Localized Resonance

In this section, we present another cloaking technique using NIMs namely cloaking an
object via anomalous localized resonance. The advantage of this cloaking technique over
the one using complementary media is that the cloaking devices used here are independent
of the cloaked object. This cloaking technique was suggested in [28] and inspired from [21,
24]. In the two-dimensional case, it was shown in [28] that the negative index layer of the
lens considered in Section 2 can act like a cloaking device for a finite size object near by;
see Fig. 1. More precisely, in the quasistatic regime, we have

Theorem 4.1 Let d = 2, 0 < r0 < r1 < r2, x1 ∈ ∂Br1 , and x2 ∈ ∂Br2 . Set r3 := r22/r1 and
C := (

B(x1, r0) ∩ Br1

) ∪ (
B(x2, r0) ∩ (Br3 \ Br2)

)
, assume that Br3 ⊂⊂ � and let ac be a

symmetric uniformly elliptic matrix-valued function defined in C. Define

Ac =
{

ac in C,

I otherwise,
and sδ =

{ −1 − iδ in Br2 \ Br1 ,

1 otherwise.
(4.1)

Given f ∈ L2(�) with supp f ⊂ � \ Br3 , let uδ, û ∈ H 1
0 (�), respectively, be the unique

solution to the equations

div(Aδ∇uδ) = f in � and �û = f in �. (4.2)

For any 0 < α < 1, there exists r0(α) > 0 that depends only on α, r1, and r2, such that if
r0 < r0(α) then

‖uδ − û‖H 1(�\Br3 ) ≤ Cδα‖f ‖L2(�), (4.3)

where C is a positive constant independent of f , δ, r0, x1, and x2.

Proof Set
β = (2 + α)/3.
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Fig. 1 The red lens layer will
cloak the blue region C. An
observer outside Br3

(r3 = r22 /r1) sees neither the red
layer nor the blue regions

We have, by Lemma 2.1,

‖uδ‖H 1(�) ≤ C Data(f, δ), (4.4)

where

Data(f, δ) := 1

δ

∣∣∣∣�
∫

�

f ūδ

∣∣∣∣ + ‖f ‖2
L2(�)

. (4.5)

As in the proof of Theorem 2.1, define u1,δ ∈ H 1
loc(R

2 \Br2) and u2,δ ∈ H 1(Br3) as follows

u1,δ = uδ ◦ F−1 in R
2 \ Br2 and u2,δ = u1,δ ◦ G−1 in Br3 .

Set

S = (
Br3 \ Br2

) ∩ (
B(x2, r0) ∪ G ◦ F(B(x1, r0) ∩ Br1)

)
.

By Lemma 2.3, we have

u1,δ − uδ = 0 and ∂ru1,δ|ext − ∂ruδ = −iδ∂ru1,δ|ext on ∂Br2 \ ∂S, (4.6)

and

u2,δ − u1,δ = 0 and ∂ru2,δ|int − ∂ru1,δ = iδ∂ru1,δ|int on ∂Br3 \ ∂S. (4.7)

Applying Lemma 2.3, we obtain

�u1,δ = 0 in Br3 \ Br2

and

�u2,δ = 0 in Br3 \ (
(G ◦ F)(B(x1, r0) ∩ Br1)

)
.

Recall that

�uδ = 0 in (Br3 \ Br2) \ C. (4.8)

Denote x3 ∈ ∂Br3 the image of x1 by F . The new key ingredient in comparison with
the approach used in the proof of Theorem 3.1 is the fact that there exist two constants
R2, R3 > 0 such that if r0 is small enough and if one defines

O2 = Br2 ∪ {|z − x2| < R2}, O3 = Br3 \ {|z − x3| < R3}, and O = O3 \ O2,

then

‖u1,δ − uδ‖H 1/2(∂O2)
+ ‖∂r (u1,δ − uδ)‖H−1/2(∂O2)

≤ Cδβ‖uδ‖H 1(Br3 ) (4.9)

and

‖u2,δ − u1,δ‖H 1/2(∂O3)
+ ‖∂r (u2,δ − u1,δ)‖H−1/2(∂O3)

≤ Cδβ‖uδ‖H 1(Br3 ). (4.10)
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The details of the proof of this fact, which are out of the scope of this survey, are given in
[28, Section 3.1]. Define

ûδ =

⎧⎪⎪⎨
⎪⎪⎩

uδ in � \ O3,

u2,δ − (u1,δ − uδ) in O,

u2,δ in O2.

(4.11)

Then, ûδ ∈ H 1 (� \ ∂O) with ûδ = 0 on ∂� is a solution of the equation

�ûδ = f in � \ ∂O.

This implies, by (4.9) and (4.10),

‖ûδ − û‖H 1(�\∂O) ≤ Cδβ‖uδ‖H 1(Br3 ). (4.12)

Since β > 1/2, it follows from (4.5) that

‖ûδ‖H 1(�\∂O) ≤ C‖f ‖L2(�). (4.13)

This in turn implies that

Data(f, δ) ≤ Cδ−1‖f ‖2
L2(�)

(4.14)

and

‖ûδ − û‖H 1(�\∂O) ≤ Cδβ−1/2‖f ‖L2(�). (4.15)

Involving the arguments used in the last part of the proof of Theorem 3.1, we have, for
n ≥ 1,

Data(f, δ) ≤ Cδβ(1+···+1/2n−1)−(1+···+1/2n)−1‖f ‖2
L2(�)

and

‖ûδ − û‖H 1(�\∂O) ≤ Cδβ(1+···+1/2n)−(1/2+···+1/2n+1)‖f ‖L2(�).

The conclusion follows by taking n sufficiently large.

Remark 4.1 As mentioned, one of the key ingredients are (4.9) and (4.10). This is based on
a three-sphere inequality with a partial information; see [24, Section 3.1]. The proof of this
result also involves the properties of conformal maps. A variant of these inequalities holds
for the Helmholtz equation in two dimensions. Due to the use of the conformal maps in two
dimensions, we do not know if the variants of (4.9) and (4.10) hold for three dimensions.
Nevertheless, a modification of the cloaking construction can be made to obtain a cloaking
device that can cloak some finite region near by. The modification is based on the concept
of doubly complementary media that was first introduced in [24] with its roots in [22]. The
interested reader can find a detailed discussion in [28].

Invoking ideas similar to those in the proof of Theorem 4.1, we establish, see [28, Propo-
sition 3.2], that

Proposition 4.1 Let d = 2, 0 < δ < 1, 0 < r0 < r1 < r2, and x3 ∈ ∂Br3 with r3 = r22/r1.
Assume that Br3 ⊂⊂ � and let f ∈ L2(�) with supp f ⊂ � \ Br3 . Let ac be a symmetric
uniformly elliptic matrix-valued function defined in B(x3, r0)∩Br3 . Let uδ ∈ H 1

0 (�) be the
unique solution of (3.21) where

div(sδA∇uδ) = f in �.
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Here A is given by (3.4) where

ae =
{

ac in B(x3, r0) ∩ Br3 ,

I in (Br3 \ Br2) \ B(x3, r0).

There exists r∗ > 0 depending only on r1 and r2 such that if r0 < r∗, then

uδ → û in L2(� \ Br3). (4.16)

Here û ∈ H 1
0 (�) is the unique outgoing solution to the equation

div(Â∇û) = f in �, where Â =
{

ac in B(x0, r0) ∩ Br3 ,

I otherwise.
(4.17)

From (4.16) and (4.17), one concludes that the object in Br3 \ Br2 is not cloaked by its
complementary medium in Br2 \ Br1 as suggested in [19] and as is usually accepted in the
literature.

5 Electromagnetic Wave Propagation in Media Consisting of Dispersive
Metamaterials

The fundamental Maxwell’s equations—without source—are{
∂tD(t, x) = ∇ × H(t, x),

∂tB(t, x) = −∇ × E(t, x),
for t ∈ R, x ∈ R

3, (5.1)

where E ∈ R
3 (resp. H ∈ R

3) is the electric (resp. magnetic) field and D ∈ R
3 (resp.

B ∈ R
3) is the electric (resp. magnetic) induction field. In order to close the system (5.1),

one adds constitutive relations that express D and B as functions of E and H . For disper-
sive media, these relations are frequency dependent. Taking these constitutive relations into
account, the corresponding system of (5.1) in the time domain has the form{

εrel(x)∂tE(t, x) + (λee ∗ E)(t, x) + (λem ∗ H)(t, x) = ∇ × H(t, x),

μrel(x)∂tH(t, x)+(λme ∗ E)(t, x)+(λmm ∗ H)(t, x)=−∇ × E(t, x),
t ∈ R, x ∈ R

3,

(5.2)
where ∗ stands for the convolution with respect to time t . Here the following conven-
tions/assumptions are imposed on εrel , μrel , and λij for i, j ∈ {e,m}:
εrel and μrel are two 3×3 real symmetric uniformly elliptic matrices defined in R3. (5.3)

and

λ̂ij , λij ∈ L1
loc

(
R, L∞(R3)3×3

)
, and λij is real-valued, for (i, j) ∈ {e,m}2 .

(5.4)
In this section, for a time-dependent quantityX(t, x), its temporal Fourier transform is given
by

X̂(ω, x) := 1√
2π

∫
R

X(t, x)eiωt dt, for ω ∈ R, x ∈ R
3. (5.5)

Let χij be the susceptibilities that characterizes the dispersive effects of the medium. The
connection between λij and χij is

λ̂ij (ω, x) := −iωχ̂ij (ω, x), for (i, j) ∈ {e,m}2, ω ∈ R, x ∈ R
3. (5.6)
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The permittivity ε and the permeability μ of the medium are given by

ε̂ := εrel + χ̂ee and μ̂ := μrel + χ̂mm. (5.7)

The details of deriving (5.2) from (5.1) using the appropriate assumptions on dispersive
media are given in [34, Section 2].

Two fundamental assumptions physically relevant to the model, causality and passivity,
are imposed.

Causality the effect cannot precede the cause, i.e., the present states of the system depend
only on its states in the past. Mathematically, one requires

λij (t) = 0, for all t < 0 and for all (i, j) ∈ {e,m}2. (5.8)

Under this assumption, we have, for (i, j) ∈ {e,m}2,

(λij∗X)(t, ·) =
∫ t

−∞
λ(t−τ, ·)X(τ, ·) dτ =

∫ ∞

0
λ(τ, ·)X(t−τ, ·) dτ, for t ∈ R. (5.9)

Passivity One assumes, for almost every x ∈ R
3, for almost every ω ∈ R, and for all

X ∈ C
65, that6

Re

([
λ̂ee(ω, x) λ̂em(ω, x)

λ̂me(ω, x) λ̂mm(ω, x)

]
X · X

)
≥ 0, (5.10)

Assumption (5.10) means that the medium is dissipative, i.e., it does not produce electro-
magnetic energy by itself.

In the anisotropic case (χem = χme = 0), condition (5.10) is equivalent to7

ω Im ε̂(ω), ω Im μ̂(ω) ≥ 0, for almost all ω ∈ R. (5.11)

Condition (5.11) ensures that when small loss is added, the problem associated with the out-
going (Silver-Müller) condition at infinity is well-posed (see, e.g., [29]). Adding a small loss
is the standard mechanism to study phenomena related to metamaterials in the frequency
domain. Nevertheless, condition (5.11) does not exclude the ill-posedness in the frequency
domain when the loss is 0 (see [26, Proposition 2]). As one sees later, even if the prob-
lem is ill-posed in the frequency domain for some frequency, the well-posedness is roughly
ensured for the problem in the time domain under the causality and passivity conditions
mentioned above (see Theorem 5.1).

One of typical classes of dispersive anisotropic media (χme = χem = 0) satisfying the
condition (5.4), the causality (5.8), and the passivity (5.10) is the class of media obeying
Lorentz’ model. For a homogeneous isotropic medium, the susceptibilities χee and χmm are
of the form (see, e.g., [15, (7.51)])

χ̂ (ω) =
n∑

�=1

ω2
p,�

ω2
0,� − ω2 − 2iγ�ω

I, for ω ∈ R, (5.12)

5Here C denotes the set of complex numbers.
6Here · stands for the Euclidean scalar product in C

6.
7Here for a 3 × 3 matrix A, we denote A ≤ 0 if Ax · x ≤ 0 for all x ∈ R

3.
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where ωp,� (resp. ω0,� and γ�) are positive (resp. non-negative) material constants
(recall that I is the identity matrix). Using the residue theorem, one can show (see, e.g.,
[15, (7.110)]) that for t ∈ R one has

χ(t) = √
2πϑ(t)

n∑
�=1

ω2
p,�

sin(ν�t)
ν�

e−γ�t I3 and

λ(t) = √
2πϑ(t)

n∑
�=1

ω2
p,�

d
dt

(
sin(ν�t)

ν�
e−γ�t

)
I3,

(5.13)

where ν2� = ω2
0,� − γ 2

� (if ω0,� > γ�) and ϑ is the Heaviside function, i.e., ϑ(t) = 1 if t ≥ 0

and ϑ(t) = 0 otherwise. Here λ is defined in such a way that λ̂(ω) = −iωχ̂(ω) for ω ∈ R.
We study (5.2) under the form of the initial problem at the time t = 0, assuming that the

data are known in the past t < 0. Set

(λij � X)(t, ·) :=
∫ t

0
λ(t − τ, ·)X(τ, ·) dτ, for t > 0. (5.14)

For X = E or H , under the causality assumption (5.8)–(5.9), one has for t > 0 that

(λij ∗ X)(t, ·) =
∫ t

0
λij (t − τ, ·)X(τ, ·) dτ +

∫ 0

−∞
λij (t − τ, ·)X(τ, ·) dτ

= (λij � X)(t, ·) +
∫ 0

−∞
λij (t − τ, ·)X(τ, ·) dτ. (5.15)

Hence, if the data are known for the past t < 0, then the last term is known at time t > 0.
With the presence of sources, one can then reformulate system (5.2) under the form⎧⎪⎪⎨
⎪⎪⎩

εrel(x)∂tE(t, x) + (λee � E)(t, x) + (λem � H)(t, x) = ∇ × H(t, x) + fe(t, x),

μrel(x)∂tH(t, x) + (λme � E)(t, x) + (λmm � H)(t, x) = −∇ × E(t, x) + fm(t, x),

E(0, x) = E0(x), H(0, x) = H0(x),

(5.16)
for t > 0 and x ∈ R

3. Here E0 and H0 are the initial data at time t = 0, and fe, fm are
given fields that can be considered as “effective” sources since they also take into account
the last terms in (5.15).

Set

u :=
[

E

H

]
, u0 :=

[
E0
H0

]
, f :=

[
fe

fm

]
, Au :=

[ ∇ × H

−∇ × E

]
, (5.17)

� :=
[

λee λem

λme λmm

]
and M :=

[
εrel 0
0 μrel

]
. (5.18)

System (5.16) can then be rewritten in the following compact form:{
M(x)∂tu(t, x) + (� � u)(t, x) = Au(t, x) + f (t, x),

u(0, x) = u0(x),
for t > 0, x ∈ R

3. (5.19)

Define

H := L2(R3)3 × L2(R3)3 and V := Hcurl(R
3) × Hcurl(R

3), (5.20)

equipped with the standard inner products induced from L2(R3)3 and Hcurl(R
3). One can

verify thatH and V are Hilbert spaces.
We also denote

M6(L
∞(R3)) as the space of 6 × 6 real matrices whose entries are L∞(R3) functions.

(5.21)
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In what follows, in the time domain, we only consider real quantities.
Concerning the well-posedness of (5.19), we prove, see [34, Theorem 3.1],

Theorem 5.1 Let T ∈ (0, +∞), u0 ∈ H, f ∈ L1(0, T ;H), and � ∈ L1 (0, T ;
M6(L

∞(R3)
)
. Assume that (5.3), (5.4), (5.8) and (5.10) hold. There exists a unique weak

solution u ∈ L∞(0, T ;H) of (5.19) on (0, T ). Moreover, the following estimate holds

〈Mu(t, ·), u(t, ·)〉H ≤
(

〈Mu0, u0〉1/2H + C

∫ t

0
‖f (s, ·)‖H ds

)2

in (0, T ), (5.22)

where C is a positive constant depending only on the coercivity of M .

The notion of weak solutions for (5.19) is

Definition 5.1 Let T ∈ (0, +∞), u0 ∈ H and f ∈ L1(0, T ;H). A function u ∈
L∞(0, T ;H) is called a weak solution of (5.19) on [0, T ] if
d

dt
〈Mu(t, ·), v〉H+〈(� � u)(t, ·),v〉H=〈u(t, ·),Av〉H+〈f (t, ·),v〉H in (0, T ) for allv ∈ V,

(5.23)
and

u(0, ·) = u0. (5.24)

Remark 5.1 One can easily check that if u is a smooth solution and decays sufficiently at
infinity, then u is a weak solution by integration by parts, and that if u is a weak solution
and smooth, then u is a classical solution.

We next discuss the finite speed propagation for (5.19). In what follows, B(a, R) stands
for the ball in R

3 of radius R > 0 and centered at a ∈ R
3. Set

c(x) := γe(x)γm(x), for x ∈ R
3, (5.25)

where γe(x) and γm(x) are the largest eigenvalues of εrel(x)−1/2 and μrel(x)−1/2, respec-
tively. According to assumption (5.3), c(x) is bounded above and below by a positive
constant. For a ∈ R

3 and R > 0, we denote

ca,R := ess sup
x∈B(a,R)

c(x). (5.26)

The following result is on the finite speed propagation of (5.19); see [34, Theorem 3.2]:

Theorem 5.2 Let R > 0, a ∈ R
3, and u0 ∈ H. For T > R/ca,R , let f ∈ L1(0, T ;H) and

� ∈ L1(0, T ;M6
(
L∞(R3)

)
. Assume that (5.3), (5.4), (5.8), and (5.10) hold,

suppu0 ∩ B(a,R) = ∅, (5.27)

and

supp f (t, ·) ∩ B(a, R − ca,Rt) = ∅, for almost every t ∈ (0, R/ca,R). (5.28)

Let u ∈ L∞(0, T ;H) be the unique weak solution of (5.19) on (0, T ). Then

supp u(t, ·) ∩ B(a, R − ca,Rt) = ∅, for almost every t ∈ (0, R/ca,R). (5.29)
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We briefly mention here the ideas of the proofs of Theorems 5.1 and 5.2. The construct
of a solution in Theorem 5.1 is based on the Galerkin method. One of the key observations
is the following inequality∫ t

0
〈(� � v)(s, ·), v(s, ·)〉H ds ≥ 0, for v ∈ L∞(0, T ;H), t ∈ (0, T ). (5.30)

Similar observations in the acoustic setting were used in different contexts; see, e.g., [35,
36]. The inequality (5.30) plays an important role in deriving the following estimate for an
approximate solution un after multiplying the equation of un by un and integrating by parts,
which gives

〈Mun(t, ·), un(t, ·)〉H ≤ 〈Mun(t = 0, ·), un(t = 0, ·)〉H + 2
∫ t

0
‖f (s, ·)‖H‖un(s, ·)‖H ds.

(5.31)
By Gronwall’s lemma, this in turn implies the desired estimate for a solution u obtained via
the standard compactness argument; see, e.g., [12]. The uniqueness of u is quite standard
as in the standard wave equations after noting (5.30). The proof of Theorem 5.2 is standard
via (5.30) if one knows that the solution u is regular. To overcome the lack of the regularity
of u, we consider the function

U(t, x) :=
∫ t

0
u(s, x) ds, for t ∈ [0, T ), x ∈ R

3

and show that

suppU(t, ·) ∩ B(a, R − ca,Rt) = ∅, for almost every t ∈ (0, R/ca,R). (5.32)

This yields the desired conclusion. As far as we know, the proof of finite speed propagation
for energy solutions is not presented in standard references on partial differential equations.

6 Other Topics and Future Directions

Some interesting aspects of NIMs are not discussed in this survey, such as the stability of
NIMs and cloaking a source via anomalous localized resonance, because we have nothing
new to add to these topics. The stability of NIMs in the frequency domain for acoustic
waves was investigated by Costabel and Stephan in 1985 [11] using the integral method.
Later, this problem was studied by the integral method and the pseudo-differential operators
theory [38] and by the T -coercivity approach (see [5, 6] and the references therein). In
these works, the well-posedness was established in the Fredholm sense in H 1, meaning
that the compactness holds; the existence and the uniqueness are not discussed. Recently
[26], we introduced a new approach to study the stability aspect of NIMs. More precisely,
we investigated the well-posedness of the Helmholtz equations involving sign-changing
coefficients. Our approach involved the study of Cauchy problems, which are derived by
reflections in the spirit of the proofs presented in Sections 2, 3, and 4 using the change of
variables formula in Lemma 2.3. We then proposed various methods to study these Cauchy
problems. One method was via the prominent work of Agmon, Douglis, and Nirenberg
[1] (via Fourier analysis or fundamental solutions) and others were based on variational
methods/multiplier techniques. In consequence, we can unify and extend largely known
works. In particular, we proved that (see [26, Corollary 1]) the well-posedness holds if,
under some smoothness assumptions,

A+ > A− on � or A+ < A− on �,
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for all connected component � of the sign-changing coefficient interface, A+ is the restric-
tion of A in the region A > 0, and A− is the restriction of −A in the region A < 0. We also
showed that the complementary property of media is almost necessary for the occurrence
of resonance (see [26, Proposition 2]). A numerical algorithm in the spirit of this approach
was also studied in [2].

The second aspect we do not discuss in this survey is cloaking a source via anomalous
localized resonance. This cloaking technique is relative due to the fact that the power, which
is roughly speaking the standard energy of the fields in the region of NIMs multiplied by
the loss, must be normalized for the cloaking purpose. This phenomenon was observed by
Milton and Nicorovici in [21] (see also [20]) for a symmetrical radial structures in a two-
dimensional quasistatic regime and was considered in a general setting, the setting of doubly
complementary media in [24, 30] for the acoustic regime (see also [3, 9, 17] for related
results in some specific settings). It has been shown [24, 30] that (i) cloaking a source via
anomalous localized resonance appears if and only if the power blows up; (ii) the power
blows up if the source is located “near” the plasmonic layer made of NIMs; and (iii) the
power remains bounded if the source is far away from the plasmonic layer. It is worth noting
that there is no connection between the blow up of the power and the localized resonance
in general [32]. Finally, we want to mention that the design of metamaterials poses new and
interesting problems that are being extensively investigated in the litterature; see [8, 10, 14,
18] and the references therein.

An interesting direction concerning NIMs or more generally metamaterials is to study
these metamaterials in the time domain. For example, it would be interesting to understand
conditions under which the energy of solutions of the Maxwell equations considered in
Section 5 decays in any bounded domain; this is known for (standard) positive index media.
Another interesting question would be to investigate the limiting amplitude principle, which
concerns the behavior of the fields in the time domain generated by a harmonic forcing
term for large time. In some particular settings, the limiting amplitude principle was already
considered in [13, 16], but the question for a general setting remains open.

Acknowledgements This paper is an extended version of the lecture given by the author at VIASM annual
meeting in 2017 at Vietnam Institute for Advanced Study in Mathematics. The author warmly thanks the
institute for the hospitality.
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9. Bouchitté, G., Schweizer, B.: Cloaking of small objects by anomalous localized resonance. Quart. J.
Mech. Appl. Math. 63, 437–463 (2010)

10. Chen, Y., Lipton, R.: Resonance and double negative behavior in metamaterials. Arch. Ration. Mech.
Anal. 209, 835–868 (2013)

11. Costabel, M., Stephan, E.: A direct boundary integral equation method for transmission problems. J.
Math. Anal. Appl. 106, 367–413 (1985)

12. Evans, L.C.: Partial Differential Equations Graduate Studies in Mathematics, vol. 19. American
Mathematical Society, Providence (1998)

13. Gralak, B., Tip, A.: Macroscopic Maxwell’s equations and negative index materials. J. Math. Phys. 51,
052902 (2010)

14. Guenneau, S., Zolla, F.: Homogenization of 3D finite chiral photonic crystals. Phys. B: Condens. Matter
394, 145–147 (2007)

15. Jackson, J.D.: Classical Electrodynamics. Wiley, NY (1999)
16. Cassier, M., Hazard, C., Joly, P.: Spectral theory for Maxwell’s equations at the interface of a

metamaterial. Part I: generalized Fourier transform. Comm. Partial Diff. Equat. 42(11), 1707–1748
(2017)

17. Kohn, R.V., Lu, J., Schweizer, B., Weinstein, M.I.: A variational perspective on cloaking by anomalous
localized resonance. Comm. Math. Phys. 328, 1–27 (2014)

18. Kohn, R.V., Shipman, S.P.: Magnetism and homogenization of microresonators. Multiscale Model
Simul. 7, 62–92 (2008)

19. Lai, Y., Chen, H., Zhang, Z.Q., Chan, C.T.: Complementary media invisibility cloak that cloaks objects
at a distance outside the cloaking shell. Phys. Rev. Lett. 102, 093901 (2009)

20. Milton, G.W., Nicorovici, N.A., McPhedran, R.C., Podolskiy, V.A.: A proof of superlensing in the qua-
sistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance. Proc.
R. Soc. Lond. Ser. A 461, 3999–4034 (2005)

21. Milton, G.W., Nicorovici, N.A.P.: On the cloaking effects associated with anomalous localized reso-
nance. Proc. R. Soc. Lond. Ser. A 462, 3027–3059 (2006)

22. Nguyen, H.-M.: Asymptotic behavior of solutions to the Helmholtz equations with sign changing
coefficients. Trans. Am. Math. Soc. 367, 6581–6595 (2015)

23. Nguyen, H.-M.: Superlensing using complementary media. Ann. Inst. H. Poincaré Anal. Non Linéaire
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