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Abstract: The architecture, environment and construction industry is facing, on the one hand, ambitious 
environmental regulations for low carbon and net zero energy buildings, and on the other hand, the emergence 
of new techniques such as parametric assessment and cloud computing. As a result, there is a dramatic increase 
of performance analysis and collected data during the building design phase. However, previous research 
highlighted major weaknesses of current building performance simulation -BPS- software regarding its ability to 
represent and explore input and output data, to interact with it, and to extract valuable data patterns and 
analyses. Therefore, this research aims to identify suitable visualization techniques that might increase the 
usability and the knowledge extracted from building simulation dataset. 
To that end, an interdisciplinary approach has been set up. First, a literature review allowed to characterize the 
specificities of BPS dataset, namely their heterogeneous nature -discrete, ordinal, categorical, and continuous-, 
their different correlation levels and their medium size. Second, key tasks that should be performed by BPS tools 
to support the design process are identified: exploration, solutions generation and evaluation. Then, two data 
visualization techniques that accept the BPS dataset specificities and that enable to perform these key tasks 
were selected within the information visualization research field: Decision Tree and Parallel Coordinates. Third, 
these techniques were applied to an extensive BPS dataset, generated from a series of parametric building 
simulations based on a high-performance building to be, called the smart living building. Finally, a qualitative 
comparison between the selected visualization techniques was conducted so as to reveal their strengths and 
weaknesses. This comparison highlights Parallel Coordinates as the most promising approach. 
 
Keywords: building performance simulation tools, datasets, data visualization, data exploration. 

Introduction 

The built environment is a major greenhouse gas contributor with 33% of the world emissions 
(UNEP 2009a, 2009b). Recent international agreements such as the UN Conference on 
Climate Change in Paris in 2015 (UNFCCC 2015) leads each stakeholder to implement and 
strengthen their local environmental regulations all over the next century. Therefore, the 
complexity of these regulations is continually rising, as their targets are more and more 
ambitious. For instance, the future 2020 European Union directive (EU - EPBD 2010) will 
require every building to generate more energy than it will consume, that is to say to reach 
the Net Zero Energy Building -NZEB- level (Sartori et al. 2012). Some countries like France are 
already working to integrate energy and carbon lifecycle targets in their future regulations 
(Plan Bâtiment Durable 2014). By doing so, the Architecture, Engineering and Construction 
industry will have to assess every process and material involved into a building project, and 
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not only the ones that consume energy during the building operational phase, as was the case 
so far. 

In order to support all these new regulations, the Building Performance Simulation -
BPS- research and development field is playing a key role, by developing new methods and 
software enabling energy and lifecycle performance to be taken into consideration as early 
as possible in the design process. During the last decade, many improvements in BPS tools 
followed a new trend: developing workflows by coupling energy simulation algorithms with 
other techniques (Østergård et al. 2016). The aim is to support the design process based on 
BPS datasets, generated parametrically from a baseline architectural model. Researchers 
start to consider the dataset exploration itself as a powerful decision making process. A new 
proactive usage of BPS tools is possible, with the fast creation of design alternatives and their 
performance assessment and exploration with data visualization techniques -DVT-. The first 
promising results have been highlighted in previous research (Jusselme et al. 2016, Miyamoto 
et al. 2015, Naboni et al. 2013). 

However, at the same time, the assessment of thousands of variants increases the 
complexity of data interpretation. A study based on 28 interviews of building performance 
optimization experts (Attia et al. 2013) highlights that 75% of them do not have a proper 
graphical user interface -GUI- to process the assessment results, visualize patterns and 
explore input and output data. Most of the experts develop their own custom script to 
interpret results, with basic visualization techniques such as Pareto front, scatter plot, line 
graph, bar chart and time series. From the interviewee point of view, optimization techniques 
are mostly used to explore the design space of alternative solutions, which is in fact more 
relevant than finding the best one. Despite this exploration emphasis, one can notice that in 
Attia’s paper, no cited DVT are dynamic as they do not allow the user to interact with the GUI 
in a proactive way. The purpose of the present paper is specifically to bridge different 
research fields that have not really been connected so far: the BPS engineering and the data 
visualization domain. Which would be the suitable DVT that should be integrated by BPS tools 
in order to support a data driven design? 

The first section will be dedicated to the characterisation of BPS datasets. What are 
their main characteristics? Thanks to this knowledge, requirements will be set up to qualify 
how DVT might be suitable to explore this data. In the second section, DVT are highlighted via 
a literature review. These techniques are ranked according to their ability to fulfil the 
requirements defined in the first section. In the third section, a case study allows the 
implementation of the two most promising techniques. Finally, the last section compares the 
strengths and weaknesses of the two implemented techniques. 

Requirements for data visualization techniques 

DVT address a large spectrum of data, but their usability is highly dependent on the 
characteristics of the data. Thus, the purpose of this section is first to define the BPS dataset 
specificities. Secondly, tasks that should be performed by decision making tool to support the 
design process are identified. Datasets specificities and tasks will be used as requirements (RX) 
for the data visualization techniques selection. They are identified from (R1) to (R8) within 
this section. 

Dataset characteristics 

BPS datasets are the result of simulations that estimate the output value for a given 
combination of dimensions. They usually include ten to twenty dimensions (Jusselme et al. 
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2016, Miyamoto et al. 2015) and several output values representing the performance of each 
design alternative. 
A literature review of techniques that allowed to create BPS datasets has been done. Among 
these techniques, one can cite approaches involving parametric analyses (Hollberg and Ruth 
2016, Jusselme et al. 2016, Lolli et al. 2017), those dealing with sensitivity and uncertainty 
analysis (Heeren et al. 2015, Hopfe and Hensen 2011, Tian 2013), methods that include a 
multivariate regression (Catalina et al. 2013, Hygh et al. 2012), and those that include meta-
modelling (Eisenhower et al. 2012, Manfren et al. 2013). 

Based on their method and findings, one can make the following points: 
BPS datasets are characterized by input values defining building parameters that are 
chosen to feed the workflow, and output values, which are the BPS assessment results. 
Inputs are discrete values composed by ordinal -e.g. the Thermal transmittance: U=1 
W/m2.K- and categorical data -e.g. the type of insulation: Rockwool-. Outputs are 
continuous -e.g. the CO2 emissions: 10 Kg CO2eq./m².y-, discrete and categorical data -
e.g. Thermal comfort: Good-. 
Inputs and outputs can be correlated -e.g. photovoltaic panel surface and energy 
performance- and non-correlated -e.g. photovoltaic panel surface and heating demand-. 
The datasets have a medium size: they are too big to be understandable with traditional 
graphical tools, but not enough to be associated with the “big data”, which deals with 
terabytes of information. Datasets coming from BPS are generally sized from hundreds 
to hundreds of thousands -100k- of design alternatives. Indeed, in Naboni’s research 
(Naboni et al. 2013), a parametric analysis involving 8 parameters induced the 
calculation of 221’184 design alternatives. 
As a conclusion, the main characteristics of BPS datasets are their heterogeneous 

nature (R1), their different correlation levels (R2) and their medium size (R3). 

Tasks required by BPS tool users 

In early design stages, designers do not require accurate simulation results, but rather “an 
understanding of the relative effect on performance due to changes in design alternatives” 
(Bambardekar and Poerschke 2009). The priority for the designer is to get “a qualitative and 
overall design direction”.  Such a tool should allow the visual exploration and assessment  of 
the potential solutions’ space, and should be able to generate new solutions if required. A key 
remaining challenge is to focus the attention of the designer on the important parameters 
and to integrate simulation feedback into his design process (Ibarra and Reinhart 2009, 
Reinhart et al. 2012). According to Huot, numerous studies about design process highlighted 
three main activities: exploration, solution generation and evaluation (Huot 2005). An 
appropriate decision-making tool should integrate these tasks, allowing for a smooth user-
machine interaction. 

Exploration 
Exploration brings together the prior learning of the designer and the external data that he 
will have to gather and assess on the subject. Exploration allows the designer to better 
understand the constrained problems -correlations, patterns- by tuning parameters. 
Here is a more detailed list of tasks that the designer should be able to execute: 

Dataset overview (R4): being able to get an overview on the whole dataset, with all its 
dimensions at a glance. 
Impact of parameters (R5): identifying the parameters with the highest impacts on the 
assessment results. 
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Similarity task (R6): identifying the strength of correlations between input and output, 
patterns and clusters. 
Frequency task (R7): identifying the most represented parameter values. 

Solutions generation 
Generating a solution is defined as filtering the database in order to keep only one design 
alternative that complies with a set of constraints. As previously exposed, the designer should 
be able to take decisions based on feedback from BPS software, rather than his prior 
experience (Bambardekar and Poerschke 2009). These solutions can then be compared and 
the best one is selected, according to the designer’s own preferences and other criteria such 
as norms.  

Filtering task (R8): being able to set constraints -e.g. norms, cost, preferences- based on 
parameter values, in order to filter out the undesired alternatives. 

Evaluation 
The third step consists in selecting the most convenient solution among the solutions space. 
It is up to the designer to assess the solutions, giving more importance to some criteria. The 
evaluation is permanent during the creative process, often raising the need to take the first 
two steps over again. 

Filtering task (R8): determine a set of parameter values that define a building design, 
i.e. make a final decision. 

Data visualization techniques specifications 

Multidimensional DVT should allow the comparison of the quality of several solutions. They 
should also fit the designer’s creative process. Choosing a set of parameters defining a 
building can be seen as an under-constrained configuration task: no optimal solution exists, 
and the final choice depends on both qualitative -aesthetic preference, comfort- and 
quantitative criteria -performance threshold-. Such tasks involve both the human and the 
machine: the user is actively involved in the decision-making process and needs to choose 
among a set of acceptable solutions. A constraint is a condition that has to be met for the 
solution to be valid. It is usually a numerical value representing cost, or performance. 

In summary, thanks to the dataset characteristics and to the user needs previously 
explored, we were able to set the following key requirements for visualization techniques 
applicable to BPS multidimensional dataset: R1 Dataset size <100k; R3 Data type; R4 Overview; 
R5 Impact; R2, R6 Similarity/Correlations; R7 Frequency; R8 Filtering. These specifications will 
be used in the next chapter in order to qualify different DVT. 

Overview and selection of data visualization techniques 

This section explores mainly bibliographic references of datasets which are not in the field of 
architecture or building performance, but still relevant for this study. Data visualization is a 
powerful way to provide the user with insights and useful information about very complex 
problems (Agrawal et al. 2006). Adding interaction techniques to such displays allows the user 
to explore the dataset and solve problems in real time. Particular attention should be taken 
when establishing a compromise between the amount of information, simplicity and accuracy, 
especially in the case of multivariate DVT (Chan 2006). As opposed to fully automated systems, 
Mixed Initiative Systems -MIS- involve the user in the problem resolution process [Horvitz 
1999]. MIS are useful in optimization problem solving, since "non-expert users [...] prefer an 
incremental and interactive procedure to build solutions rather than a completely automated 
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approach." (Cortellessa 2006). DVTs play an important role in Mixed Initiative user interfaces, 
as they give the user visual cues and information, reducing his cognitive load (Pu and Lalanne 
2002).  

A first overview 

A selection of DVT applicable to multivariate and multidimensional data has been established 
by means of a literature review. Table 1 summarizes the potential of each technique to fulfil 
the requirements that have been listed in the previous section -R1-8-. A qualitative ranking is 
proposed by rating each DVT according to its potential to fulfil the requirements: “+” is 
associated with a high potential to meet the requirement and is credited with 2 points, “-” 
means that the requirement may be hard but is not impossible to meet, and credited with 1 
point. “ø” means that the DVT cannot fulfil the requirement, and is credited with -1 point. At 
the end, each DVT is ranked according to the resulting sum of all individual scores.  

 
Table 1. A comparison of data visualization techniques for Building Performance Simulation dataset. 

Scoring: +=easy to reach (2pts); -= hard to reach (1pts); ø: impossible to reach (-1pts) 
Parallel 

Coordinates 

 

Parallel 
Sets 

 

Scatterplot 
Matrix 

 

Decision Tree 
 

 

Dendrogram 
 

 

Force 
Directed 

 

Requirements  (Davies 
2017a) 

(Davies 
2017b) 

(Bostock 
2017a) 

(Schumacher 
2017) 

(Bostock 
2017b) 

(Bostock 
2017c) 

R1 Size <100k + + + + - - 
R3. Data type + ø - + + + 
R4 Overview + + - - - - 
R5 Impact - - - + - - 
R2-6 Similarity - - + - - - 
R7 Frequency + + - - - - 
R8 Filtering + + + - - - 
Score (points) 12 9 10 10 8 8 

With a few visual enhancements -alpha blending, jittering, frequency encoding-, the 
first four DVTs can handle 100’000 design alternatives. Parallel Coordinates and Parallel Sets 
allow the assessment of the correlation between adjacent dimensions, i.e. they require the 
user to reorder the dimensions if non-adjacent. While both of these visualization methods 
are the best at assessing the frequency of a given parameter value amongst the one selected 
in Table 1, there is a significant drawback with Parallel Sets related to their inability to handle 
continuous parameters, making them useless for a BPS dataset. In contrast, the Scatterplot 
Matrix is designed for continuous values, and representing categorical dimensions results in 
heavy over-plotting. In this case, jittering and alpha blending can improve the visualization to 
some extent. However, the number of dimensions should stay under 10 to remain readable. 

The Decision Tree is, on the other hand, the most suitable to show the impact of 
parameters. Dendrogram and Force directed do not scale well with the dataset size, as they 
need to represent each design alternative as a node, and thus require a lot of space in order 
to display all the data. Decision Tree, Dendrogram and Force directed are not appropriate to 
compare the similarity between dimensions, but are a good way to find clusters of design 
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alternatives. However, they do not implement a filtering interaction, and thus require the use 
of link and brush interactions with an external filtering method. 

Harrison et al. recently expanded on previous work by studying the perception of 
correlations in Parallel Coordinates compared with eight other visualization techniques: 
scatterplots, stacked areas, stacked lines, stacked bars, donuts, radar charts, line plots, and 
ordered line plots (Harrison et al. 2014). 1687 participants took part in the test, using a 
crowdsourcing platform. The task was to judge the strengths of different correlations. Their 
results are consistent with the work from Li et al. (Li et al. 2008), in which scatterplots depict 
correlations better than Parallel Coordinates. 

In the end, considering the score, Parallel Coordinates seems to be the most suitable 
for the visualization of a BPS dataset. In second position, the choice is directed towards the 
Decision Tree, as it can handle well more than 10 mixed categorical and continuous 
dimensions. The next sections give a deeper description of the most promising techniques 
according to the scoring of Table 1, and a qualitative analysis regarding the tasks they should 
help complete. 

Parallel Coordinates 

Parallel Coordinates (Inselberg and Dimsdale 1990) are the most popular visualization 
method to represent multivariate multidimensional data. They are applied to a large set of 
multidimensional problems (Rodriguez and Nancy 2016) in many fields -e.g. life sciences, 
engineering and finance- (Heinrich and Weiskopf 2013). In practice, such datasets contain up 
to some 10-15 dimensions (Kosara et al. 2006). Moustafa (Moustafa 2011) states that Parallel 
Coordinates are becoming an "essential tool for visualizing hyper-dimensional numerical data 
from almost all real life applications [...]". 

They use a parallel layout for axes: the horizontal spatial position is used to separate 
axes, and the vertical spatial position is used to express the value along each aligned axis. 
Each data item is depicted as a polyline intersecting all the axes. Parallel Coordinates allow 
the user to set constraints: filtering the dataset is done by selecting a range of values for each 
parameter -i.e. brushing-. Parallel Coordinates can be used to select a set of parameter values 
that define a building design and to assess whether the solution is valid, i.e. the output values 
from the output axis are below a given threshold -e.g. price, comfort, or energy consumption-.  

Parallel Coordinates can be displayed in other layouts: vertical, and star layouts. The 
star layout is better when there are inliers in the data: "homogenous records [...] appear as 
distinct star shape" (Moustafa 2011). A connecting line between two entities shows the 
relationship between two axes in an explicit way: this is especially pertinent to spot trends 
(Munzner and Maguire 2015) and can be used to identify an individual data item. 

Parallel Coordinates are well suited for the type of tasks that we mentioned in the 
previous section. Without the use of any enhancement method, the number of items is 
limited to a few hundreds. 100’000 items can be represented by adding clutter reduction 
methods such as jittering or alpha blending to the polylines. Parallel Coordinates can assist in 
the identification of highly discriminant dimensions (Moustafa 2011).  Parallel Coordinates 
allow the easy assessment of the strength of correlations. The lines connecting the 
dimensions enable the identification of correlated dimensions: a high positive correlation is 
characterized by a set of parallel segments, while a negative correlation is characterized by a 
set of segments crossing over at a single point. However, this only allows pairwise comparison 
between neighbouring axes. Visible patterns depend on the ordering of axes; this requires 
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the user to test all possible configurations of axes, which becomes time consuming as the 
number of dimension increases. 

Parallel Coordinates are helpful in data mining tasks such as the identification of clusters 
and the exploration of class properties. They allow the user to identify the most represented 
parameter values. For the larger datasets, jittering and alpha blending can be used to restore 
the frequency information. 

Decision tree 

Decision trees are a great decision support tool. Rather than being a true exploratory tool, 
they make it possible to "[...] break down a complex decision-making process into a collection 
of simpler decisions, thus providing a solution which is often easier to interpret." (Safavian and 
Landgrebe 1990). The first step in the construction of a decision tree is a learning phase. It is 
initiated taking a set of vectors as input, each belonging to a known class: several machine-
learning algorithms will then help to determine which attributes best divide the data between 
the classes, based on impurity measures. As an example, the C4.5 algorithm is an Information 
Gain algorithm. It selects the parameters that best split the target class into the purest 
possible children nodes. In other words, the parameters with the highest scores are the ones 
that best divide the samples between two classes. It places the most important parameters 
closer to the root of the tree. By adding collapsible nodes to the decision tree, only the most 
important parameters are initially shown to the user. In order to get a full set of parameter 
values, he has to click on the children nodes until he reaches a leaf. 

Tree nodes can be visually enhanced with two types of visual cues: a colour coding -
green or red- can, for example, show the ratio of each class included in the leaves represented 
by the node. The size of a node can indicate the amount of design alternatives included in the 
subset. 

The decision tree is not highly scalable in terms of dimensionality.  As stated by (van 
den Elzen and van Wijk 2011), "For a decision tree to be understandable, its complexity should 
be low, which can be measured by the following metrics: (1) the total number of nodes; (2) 
total number of leaves; (3) tree depth; (4) number of attributes used”. Small trees containing 
fewer attributes are therefore preferred. This method imposes a ranking of parameters, and 
is thus optimal for assessing the impact of parameters on performance. Each node represents 
a parameter value, and the depth in the tree depends on the impact, allowing the user to 
quickly detect the most important parameters. The decision tree only shows the strength of 
the relationship between the class and the parameters. There is no relationship between the 
rate of correlation of two attributes and their position in the tree. 

The smart living building as a case study 

The previous chapter allowed us to select two DVT that look promising according to our 
understanding of the literature. Here, the purpose is to apply these DVT to the dataset of a 
case study in order to analyse their advantages and drawbacks in a real-like situation. 

The dataset that has been chosen was generated in the frame of the smart living 
building, which is currently under design. This building will be built by 2021 in Fribourg, 
Switzerland. Its aim is to achieve the 2050 goals of the 2000-watt society vision (Jochem et al. 
2004). In order to guide designers towards these performance targets, a new decision making 
method has been developed (Jusselme et al. 2016), coupling parametric energy analysis, 
lifecycle assessment and sensitivity analysis. In this paper, a dataset of 25’000 design 
alternatives has been created using the same workflow, and a lifecycle analysis has been 
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performed on each, in order to quantify their Global Warming Potential -GWP- impact. As a 
result, the dataset encompasses the description of the 25’000 design alternatives with 17 
parameters, e.g. window to wall ratio, windows properties, insulation level, photovoltaic 
power, HVAC system, structure type and so on. According to the Swiss norm (SIA 2011), the 
objective that the building has to achieve is a footprint below 12,6 Kg CO2eq/m² year. 

We implemented the two visualization prototypes presented below using the client-
side web technology stack: HTML, CSS, SVG and Javascript. Since we planned to test the 
visualizations with several datasets, we needed a flexible approach. 

Here is a summary of our requirements: 
being able to switch between several datasets. 
being able to add visual encodings to a visualization method. 
being able to handle large datasets without compromising the user experience. 
implement several interaction methods such as clicks and brushing. 

To represent the data we chose the D3 Javascript library (Bostock 2017d), since it is 
widely used, provides a good documentation, and meets all the above requirements. 

Implementation of the Parallel Coordinates 

According to the literature review, a few visual enhancements were added: jittering reduces 
over-plotting, and allows the increase of the visual perception of distribution for each 
parameter. We added a colour coding: each polyline is coloured according to its compliance 
to the target. In the example, polylines are coloured in green if their GWP is below 12.6 Kg 
CO2eq/m² year, red if above the target. Brushing interaction makes it possible to filter the 
dataset by selecting a range of values for a given parameter. The user is able to reorder the 
axes in order to assess the correlation between specific dimensions. 

 

     
Figure 1. Visualization of the smart living building dataset with Parallel Coordinates (on the top), zoom on input 

parameters (bottom left) and zoom on output performance indicator: Global Warming Potential (GWP, 
bottom right). 
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Implementation of the Decision Tree 

In order to represent our dataset as a Decision Tree, we first had to compute it with the C4.5 
algorithm, using a modified version of LearningJS (Yandong 2017). The Decision Tree data was 
stored as a JSON file. The user is able to click on a node in order to reveal its children nodes, 
until he reaches a leaf. A leaf represents a completely homogenous set of design alternatives: 
it contains only valid, or non-valid design alternatives. Nodes are scaled according to the 
number of design alternatives they represent. Each node is coloured according to the most 
represented class inside it: it is green if it contains mostly valid design alternatives, red if it 
contains mostly non-valid design alternatives. 

Figure 2. Visualization of the smart living building data set with a Decision Tree. 

Qualitative comparison 

In this section, we perform a -non-quantitative- comparative analysis of the two most 
promising DVTs for our use case, namely the Parallel Coordinates plot and the Decision Tree. 
First, both methods can handle a medium-sized dataset. The Decision Tree is more scalable 
since it only represents aggregates of design alternatives. On its part, the Parallel Coordinates 
plot requires specific clutter reduction techniques -jittering, alpha blending- in order to 
increase its readability. 

Both methods can represent mixed categorical and continuous dimensions. The 
number of dimensions is more limited with the Decision Tree, since a large number will 
inevitably increase the depth of the tree, and thus its complexity. Discrepancies in the user's 
mental model can appear when the dimensions include several types -categorical, ordinal or 
continuous- and the cognitive load increases when the amount of parameters gets too large. 
In Parallel Coordinates, these problems can be addressed by reducing the amount of axes 
displayed, or by allowing the user to distinguish between the continuous and categorical axes 
with a specific layout for each type. Unlike the Decision Tree, the Parallel Coordinates plot 
gives an overview on the whole dataset -i.e. on each design alternative- at a glance. 

Regarding the ability to perform the tasks described in Table 1, the Decision Tree is 
better suited to show the impact of parameters. It first displays the parameters that best 
divide the data between the two output classes; an identification of clusters, based on one 
parameter, is a trivial task. Parallel Coordinates can show the same information, but in a less 
explicit way: parameters axes can be laid out horizontally according to an impact criterion 
such as the Information Gain (Safavian and Landgrebe 1990). The C4.5 algorithm (Quinlan 
1992) would be suitable to do that. 

Parallel Coordinates allow the identification of similarities between dimensions, while 
the Decision Tree does not. The effectiveness of Parallel Coordinates for this task is highly 
dependent on the order of axes. Interaction techniques should be implemented to allow the 
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user to reorder them. The Decision Tree is best to identify families of design alternatives 
sharing a similar output class. 

In the Decision Tree, nodes can be scaled according to the amount of samples included 
inside them.  With two output categories, each node gives two choices and groups parameter 
values according to this criterion. Thus, a node can represent one or many categories, and 
does not allow a clear identification of the frequency for each category. Parallel Coordinates 
show the frequency for each individual category, but the add of jittering and alpha-blending 
is needed to resolve the over-plotting problems. 

A valid solution can be found at any level of the Decision Tree: filtering stops, when the 
output class of design alternatives under a given node, is homogenous -only valid, or only 
non-valid design alternatives-. However, this technique is too directive for the user: it forces 
him to follow a predefined sequence of decisions, returned by the algorithm used to generate 
the tree, and does not give him a good overview on the solution space. The user has to click 
on many nodes before being able to assess the validity of a given solution. Moreover, the 
output range cannot be visualized individually for each design alternative. For example, it is 
impossible to show only the references that are really close to the output threshold -Pareto 
front-, or those that are slightly above. The Parallel Coordinates plot offers a broad range of 
filtering possibilities with the brushing interaction implemented on each axis. However, 
selecting a range of values makes little sense for categorical parameters, as there is no ranking 
between them. For categorical parameters, the brushing method should be replaced with a 
set of checkboxes. 

In synthesis, Parallel Coordinates enable a highest flexibility in the dataset exploration 
and then a better ability to perform tasks useful to support the design process. Decision tree 
is easier to use, but more limited in terms of data exploration. It is worth to notice that this 
comparison informs us about the technical possibilities of the different DVT, but a usability 
assessment with their impact evaluation on the design process would be useful to confirm 
their real added value. 

Conclusions 

Human-computer interactions and specifically the information visualization research field 
already developed data visualization techniques enabling the exploration of large and high-
dimensional datasets. However, BPS datasets have particular characteristics. They embed 
multivariate and multidimensional data, which have different levels of correlations and a 
medium size, generally up to a hundred thousand design alternatives. In addition, the dataset 
analysis aims to support the design process through specific tasks that might allow to explore, 
generate or evaluate solutions based on designer’s requirements. By crossing DVT and BPS 
user requirements, a first selection of techniques has been made in this paper. Parallel 
Coordinates, Parallel Sets, Scatterplot Matrix, Decision Tree, Dendrogram and Force Directed 
techniques have been compared, and a qualitative ranking according to our understanding of 
the literature review allowed the selection of the two most promising of them, namely the 
Parallel Coordinates and the Decision Tree. 

These two DVT have been implemented via the smart living building dataset as a case 
study. Overall, the Parallel Coordinates plot seems best suited since it gives a better overview 
on the database, and it is more flexible in terms of number of dimensions. However, it 
requires adding specific visual encodings -jittering, alpha blending- and interaction methods 
-hiding and moving axes, filtering- in order to be able to perform the tasks described 
previously. The Decision Tree is less convenient as it cannot represent dimensions without 
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imposing a ranking to the user, does not give a clear overview on the database, is not 
appropriate to show the details of individual design alternatives, and does not fit the 
designer’s creative process well. 

Parallel Coordinates might be implemented in future BPS tools in order to increase the 
usability of the dataset they generate. Further research would be required to perform a 
quantitative and qualitative user centred assessment of a broader user population exploring 
a BPS dataset with Parallel Coordinates. Also, the real impact of Parallel Coordinates to direct 
the design decisions still have to be done. 
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