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Abstract

In clinical practice it is of vital importance to track the health of a patient’s cardiovascular

system via the continuous measurement of hemodynamic parameters. Cardiac output (CO)

and the related stroke volume (SV) are two such parameters of central interest as they are

closely linked with oxygen delivery and the health of the heart. Many techniques exist to

measure CO and SV, ranging from highly invasive to noninvasive ones. However, none of the

noninvasive approaches are reliable enough in clinical settings. To overcome this limitation,

we investigated the feasibility and practical applicability of noninvasively measuring SV via

electrical impedance tomography (EIT), a safe and low-cost medical imaging modality.

In a first step, the unclear origins of cardiosynchronous EIT signals were investigated in

silico on a 4D bioimpedance model of the human thorax. Our simulations revealed that

the EIT heart signal is dominated by ventricular activity, giving hope for a heart amplitude-

based SV estimation. We further showed via simulations that this approach seems feasible in

controlled scenarios but also suffers from some limitations. That is, EIT-based SV estimation

is impaired by electrode belt displacements and by changes in lung conductivity (e.g. by

respiration or liquid redistribution). We concluded that the absolute measurement of SV by

EIT is challenging, but trending – that is following relative changes – of SV is more promising.

In a second step, we investigated the practical applicability of this approach in three experi-

mental studies. First, EIT was applied on 16 mechanically ventilated patients in the intensive

care unit (ICU) receiving a fluid challenge to improve their hemodynamic situation. We sho-

wed that the resulting relative changes in SV could be tracked using the EIT lung amplitude,

while this was not possible via the heart amplitude. The second study, performed on patients

in the operating room (OR), had to be prematurely terminated due to too low variations in

SV and technical challenges of EIT in the OR. Finally, the third experimental study aimed at

testing an improved measurement setup that we designed after having identified potential

limitations of available clinical EIT systems. This setup was tested in an experimental protocol

on 10 healthy volunteers undergoing bicycle exercises. Despite the use of subject-specific 3D

EIT, neither the heart nor the lung amplitudes could be used to assess SV via EIT. Changes in

electrode contact and posture seem to be the main factors impairing the assessment of SV.

In summary, based on in silico and in vivo investigations, we revealed various challenges

related to EIT-based SV estimation. While our simulations showed that trending of SV via the

EIT heart amplitude should be possible, this could not be confirmed in any of the experimental
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Abstract

studies. However, in the ICU, where sufficiently controlled EIT measurements were possible,

the EIT lung amplitude showed potential to trend changes in SV. We concluded that EIT

amplitude-based SV estimation can easily be impaired by various factors such as electrode

contact or small changes in posture. Therefore, this approach might be limited to controlled

environments with the least possible changes in ventilation and posture. Future research

should scrutinize the lung amplitude-based approach in dedicated simulations and clinical

trials.

Keywords: electrical impedance tomography, EIT, cardiac output, stroke volume, noninva-

sive, continuous, hemodynamic monitoring, cardiovascular diseases, bioimpedance model,

simulations.
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Zusammenfassung

Die kontinuierliche Messung von hämodynamischen Parametern zur Überwachung des Herz-

Kreislauf-Systems ist von entscheidender klinischer Bedeutung. Das Herzzeitvolumen (HZV)

und das verwandte Schlagvolumen (SV) sind zwei wichtige Parameter, da sie eng mit der

Sauerstoffzufuhr und dem Gesundheitszustand des Herzens verbunden sind. Die gegen-

wärtigen Verfahren zur Messung von HZV und SV reichen vom hochinvasiven bis hin zum

nichtinvasiven Ansatz, wobei sich im klinischen Umfeld keiner der nichtinvasiven Ansätze als

ausreichend verlässlich erwiesen hat. Deshalb haben wir die Machbarkeit und Praxistauglich-

keit der nichtinvasiven SV-Messung mittels elektrischer Impedanztomografie (EIT) – einem

sicheren und kostengünstigen Bildgebungsverfahren – untersucht.

In einer ersten Phase wurde der unklare Ursprung von kardiosynchronen EIT-Signalen in

silico an einem 4D-Bioimpedanzmodell des menschlichen Thorax untersucht. Unsere Si-

mulationen zeigten, dass die ventrikuläre Aktivität das EIT-Herzsignal dominiert, was für

eine herzamplitudenbasierte SV-Schätzung spricht. Zudem scheint dieser Ansatz in kontrol-

lierten Szenarien machbar, weist aber auch einige Einschränkungen auf. Die EIT-basierte

SV-Schätzung wird nämlich durch Verschiebungen des Elektrodengürtels und Veränderungen

der Lungenleitfähigkeit (z. B. durch Atmung oder Flüssigkeitsumverteilung) beeinträchtigt.

Wir kamen zum Schluss, dass die absolute SV-Messung via EIT schwierig ist, das Trending –

d.h. relative SV-Änderungen zu verfolgen – hingegen vielversprechender.

In einer zweiten Phase haben wir unseren Ansatz in drei experimentellen Studien untersucht.

Zunächst wurde EIT an 16 mechanisch beatmeten Patienten auf der Intensivstation (ICU)

gemessen, bei welchen die Hämodynamik mittels Volumengabe beeinflusst wurde. Die resul-

tierenden relativen SV-Änderungen konnten mit der EIT Lungenamplitude verfolgt werden,

wobei dies mit der Herzamplitude nicht möglich war. Die zweite Studie wurde im Operati-

onssaal (OP) durchgeführt; musste aber wegen zu geringen SV-Änderungen und technischer

Einschränkungen der EIT vorzeitig beendet werden. In einer dritten Studie wurde eine neue

Messanordnung erprobt, welche entworfen wurde, um Einschränkungen von klinischen EIT-

Systemen zu überwinden. Diese wurde an 10 Probanden getestet, die ein Versuchsprotokoll

mit Fahrradübungen ausführten. Trotz dem Einsatz von personenspezifischer 3D EIT konnten

weder Herz- noch Lungenamplituden zur SV-Bestimmung verwendet werden. Veränderun-

gen des Elektrodenkontaktes und der Körperhaltung scheinen diese Bestimmung zu sehr zu

beeinträchtigen.
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Zusammenfassung

In der vorliegenden Arbeit wurden mittels in silico und in vivo Untersuchungen verschiedene

Herausforderungen der EIT-basierten SV-Schätzung aufgezeigt. Obwohl unsere Simulationen

zeigten, dass die relative SV-Messung mittels Herzamplitude möglich sein sollte, konnte dies

in keiner der experimentellen Studien bestätigt werden. Auf der ICU, wo kontrollierte EIT-

Messungen möglich waren, zeigte jedoch die Lungenamplitude Potential für SV-Trending. Wir

kamen zum Schluss, dass die amplitudenbasierte SV-Schätzung mittels EIT durch verschiede-

ne Faktoren wie Elektrodenkontakt oder Körperhaltung beeinträchtigt werden kann. Deshalb

ist dieser Ansatz auf Umgebungen beschränkt, wo Ventilation und Körperhaltung möglichst

kontrolliert und unverändert bleiben. In Zukunft sollte der lungenamplitudenbasierte Ansatz

in speziellen Simulationen und klinischen Studien genauer untersucht werden.

Stichwörter: elektrische Impedanztomografie, EIT, Herzzeitvolumen, Schlagvolumen, nichtin-

vasiv, kontinuierlich, hämodynamisches Monitoring, Herz-Kreislauf-Erkrankung, Bioimpe-

danzmodell, Simulationen.
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Résumé
En milieu clinique, monitorer l’état de santé du système cardiovasculaire d’un patient par la

mesure en continu de ses paramètres hémodynamiques est d’importance primordiale. En

effet, le débit cardiaque (DC) et le volume d’éjection systolique (VES) sont deux paramètres

capitaux liés à l’apport d’oxygène et à l’état de santé du cœur. Qu’elles soient invasives ou non,

il existe de nombreuses techniques de mesure du DC et du VES. Néanmoins, aucune approche

non-invasive n’est suffisamment fiable en milieu clinique. Pour pallier cette limitation, nous

avons étudié la faisabilité et l’applicabilité pratique de la mesure non-invasive du VES par la

tomographie d’impédance électrique (TIE), une technique d’imagerie médicale sûre et peu

coûteuse.

Dans un premier temps, les origines ambiguës des signaux TIE cardiosynchrones ont été étu-

diées in silico au moyen d’un modèle de bioimpédance 4D du thorax humain. Nos simulations

ont montré que le signal provenant du cœur est principalement lié à l’activité ventriculaire, ce

qui laisse présumer la possibilité d’une estimation du VES basée sur l’amplitude cardiaque. De

plus, nous avons montré par simulation que cette approche est envisageable dans des condi-

tions contrôlées et en tenant compte de certaines limitations. En l’occurrence, l’estimation du

VES basée sur la TIE est influencée par le déplacement de la ceinture d’électrodes et par les

changements de conductivité pulmonaire (p. ex. dus à la respiration ou à la redistribution de

liquides). Nous avons conclu que la mesure absolue du VES basée sur la TIE est difficile, mais

que le monitorage de tendances est plus prometteur.

Dans un second temps, l’applicabilité pratique de la TIE a été étudiée dans le cadre de trois

études expérimentales. Premièrement, la TIE a été appliquée dans une unité de soins intensifs

(USI) sur 16 patients sous ventilation mécanique recevant un bolus liquidien pour l’améliora-

tion de leur situation hémodynamique. Nous avons montré que les changements relatifs du

VES pouvaient être suivies au moyen de l’amplitude pulmonaire de la TIE, alors que ce n’était

pas possible par l’amplitude cardiaque. La seconde étude, effectuée en salle d’opération, a

dû être arrêtée prématurément en raison de variations trop faibles du VES et de contraintes

techniques liées à la TIE. Enfin, la troisième étude avait pour objectif de tester une technique

de mesure améliorée que nous avons conçue après avoir identifié les limites potentielles des

systèmes cliniques TIE existants. Cette technique a été testée dans le cadre d’un protocole

expérimental sur 10 volontaires sains faisant des exercices physiques contrôlés. Malgré une

utilisation de TIE 3D spécifique par sujet, ni les amplitudes cardiaques, ni les amplitudes

pulmonaires, n’ont pu être utilisées pour évaluer le VES. Les principaux facteurs entravant
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Résumé

l’évaluation du VES semblent être les changements de posture et le contact des électrodes.

En résumé, à partir d’études in silico et in vivo, nous avons identifié divers contraintes liées à

l’estimation du VES basée sur la TIE. Bien que nos simulations aient montré la faisabilité du

monitorage de tendances du VES par la TIE au moyen de l’amplitude cardiaque, cela n’a pas pu

être confirmé lors de nos études expérimentales. Toutefois, dans l’USI, où les mesures étaient

suffisamment contrôlées, l’amplitude pulmonaire de la TIE a montré un certain potentiel pour

le monitorage des tendances du VES. Nous en avons conclu que l’estimation du VES basée sur

les amplitudes de la TIE peut facilement être influencée par divers facteurs tels que le contact

des électrodes ou les changements de posture. Par conséquent, cette approche pourrait être

limitée aux environnements contrôlés, en minimisant les changements de ventilation et

de posture. Les recherches futures devraient minutieusement étudier l’approche basée sur

l’amplitude pulmonaire dans le cadre de simulations et d’essais cliniques spécifiques.

Mots-clefs : tomographie d’impédance électrique, TIE, débit cardiaque, volume d’éjection

systolique, non-invasif, surveillance en continu, monitorage hémodynamique, maladies car-

diovasculaires, modèle de bioimpédance, simulations.

viii



Contents
Acknowledgements i

Abstract (English/Deutsch/Français) iii

List of Figures xv

List of Tables xix

List of Abbreviations xxi

I Introduction and Background 1

1 Introduction 3

1.1 Problem Statement and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization of the Manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Stroke Volume and Cardiac Output 7

2.1 Cardiovascular Physiology in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Cardiovascular System and Hemodynamic Parameters . . . . . . . . . . . 7

2.1.2 Factors Affecting Stroke Volume and Cardiac Output . . . . . . . . . . . . 9

2.2 State of the Art of Cardiac Output Monitoring . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Invasive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Minimally-Invasive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Noninvasive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Comparison and Validation of Cardiac Output Measurements . . . . . . . . . . 16

2.4 The Quest for the Ideal Cardiac Output Monitoring Device . . . . . . . . . . . . 17

3 Electrical Impedance Tomography 19

3.1 Principle of Thoracic EIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Impedance Measurements to Assess Tissue Properties . . . . . . . . . . . 20

3.1.2 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Separation of Ventilation and Cardiosynchronous Activity . . . . . . . . . 25

3.2 Previous Work on EIT-Based Stroke Volume Estimation . . . . . . . . . . . . . . 26

3.3 Controversial Origins of Cardiosynchronous EIT Signals . . . . . . . . . . . . . . 28

ix



Contents

II Investigating Cardiovascular EIT via Simulations on a Bioimpedance Model 29

4 Bioimpedance Models 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Hemodynamic 4D Bioimpedance Model of the Human Thorax . . . . . . . . . . 32

4.2.1 MRI Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Static Thorax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.3 Dynamic Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.4 Dynamic Aorta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.5 Dynamic Lungs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.6 Simplified Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Practical Aspects of Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Investigations on the Origins of Cardiac EIT Signals 39

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.2 Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Feasibility and Limitations of EIT-Based Stroke Volume Measurement 43

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.1 Dynamic Bioimpedance Model . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.2 Simulations Performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.3 SV Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.4 Analysis and Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 48

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3.1 EIT Heart Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3.2 Analysis I - Absolute SV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3.3 Analysis II - Relative SV - Trending . . . . . . . . . . . . . . . . . . . . . . . 55

6.3.4 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

x



Contents

III Investigating EIT-Based SV Monitoring in Clinical Environments 59

7 Rationale for Clinical EIT Measurements 61

8 Measurements in the Operating Room 63

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.2.1 Study Protocol and Data Acquisition . . . . . . . . . . . . . . . . . . . . . 63

8.2.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.3.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.3.2 Hypothesis 1: Absolute SV with Patient-Independent Calibration . . . . 72

8.3.3 Hypothesis 2: Absolute SV with Patient-Specific Calibration . . . . . . . . 73

8.3.4 Hypothesis 3: Relative SV with Patient-Independent Calibration . . . . . 75

8.3.5 Hypothesis 4: Relative SV with Patient-Specific Calibration . . . . . . . . 75

8.3.6 Analysis Restricted to Patients with High Variations in SVRef . . . . . . . . 77

8.3.7 Limitations, Challenges and Future Work . . . . . . . . . . . . . . . . . . . 77

8.3.8 Rationale for the Premature Termination of This Study . . . . . . . . . . . 78

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9 Measurements in the Intensive Care Unit 81

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.2.1 Study Protocol and Data Acquisition . . . . . . . . . . . . . . . . . . . . . 82

9.2.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2.3 Signal Processing and Data Analysis . . . . . . . . . . . . . . . . . . . . . . 83

9.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.3.1 Hemodynamic Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.3.2 EIT Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3.3 SV Trending Performance of EIT . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3.4 Comparison to the Clinical Study in the Operating Room . . . . . . . . . 88

9.3.5 Comparison to Simulations and Previous Studies . . . . . . . . . . . . . . 89

9.3.6 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

IV Towards an Optimized Measurement Setup for EIT-Based SV Monitoring 91

10 Considerations for an Improved Measurement Setup 93

10.1 Practical Limitations of Available Clinical EIT Systems . . . . . . . . . . . . . . . 93

10.2 Finding a Setup Better Suited for EIT-Based SV Monitoring . . . . . . . . . . . . 94

10.3 The Challenge of Comparing Different Measurement Setups . . . . . . . . . . . 97

xi



Contents

11 A Versatile Noise Performance Metric for EIT Algorithms 99

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

11.1.1 State of the Art in Hyperparameter Selection . . . . . . . . . . . . . . . . . 100

11.1.2 Practical Aspects and Limitations of the State of the Art . . . . . . . . . . 101

11.1.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

11.1.4 Image Reconstruction for Difference EIT . . . . . . . . . . . . . . . . . . . 102

11.1.5 Structure of This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11.2.1 SNR Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11.2.2 Validation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

11.3.1 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

11.3.2 Practical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

11.3.3 Open Geometry Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.4.1 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.4.2 Practical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

11.4.3 Open Geometry Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11.4.4 Algorithm Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . 115

11.4.5 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

12 Experimental Evaluation of an Improved Measurement Setup 119

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

12.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

12.2.1 Study Protocol and Study Population . . . . . . . . . . . . . . . . . . . . . 120

12.2.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

12.2.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

12.2.4 Subject-Specific EIT Image Reconstruction . . . . . . . . . . . . . . . . . . 123

12.2.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

12.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

12.3.1 General Overview of EIT Data . . . . . . . . . . . . . . . . . . . . . . . . . . 126

12.3.2 Hypothesis 1: Absolute SV with Subject-Independent Calibration . . . . 128

12.3.3 Hypothesis 2: Absolute SV with Subject-Specific Calibration . . . . . . . 129

12.3.4 Hypothesis 3: Relative SV with Subject-Independent Calibration . . . . . 131

12.3.5 Hypothesis 4: Relative SV with Subject-Specific Calibration . . . . . . . . 131

12.3.6 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 132

12.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xii



Contents

V Conclusions 135

13 Synthesis 137

13.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

13.2 Summary of Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

13.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

13.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

VI Appendix 145

A Investigations on Aortic Blood Pressure Measured via EIT 147

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.2.1 Hemodynamic 3D Thorax Model . . . . . . . . . . . . . . . . . . . . . . . . 149

A.2.2 Bioimpedance Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.2.3 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.2.4 Hemodynamic Simulation Experiments . . . . . . . . . . . . . . . . . . . 154

A.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B Ensemble Averaging and Signal Quality Estimation 161

C Measurements in the Operating Room: Additional Figures 163

D Measurements in the Intensive Care Unit: Additional Figures 169

E Measurements on Healthy Volunteers: Additional Figures and Tables 177

Bibliography 187

Curriculum Vitae 203

xiii





List of Figures
2.1 Cardiovascular system and the heart . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Main factors affecting heart rate, stroke volume and cardiac output . . . . . . . 9

2.3 Comparison of cardiac output monitoring techniques . . . . . . . . . . . . . . . 11

2.4 Principle of right heart catheterization and thermodilution . . . . . . . . . . . . 12

3.1 Typical acquisition and processing steps used for thoracic EIT . . . . . . . . . . 19

4.1 4D bioimpedance model of the human thorax . . . . . . . . . . . . . . . . . . . . 33

4.2 4D models of the heart and the aorta . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Aortic radius as a function of the distance from the aortic valve . . . . . . . . . 36

5.1 Cardiosynchronous activity images of heart signal contribution . . . . . . . . . 41

5.2 EIT images of heart signal contribution . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Contributors to the heart signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Block diagram of the simulation framework . . . . . . . . . . . . . . . . . . . . . 45

6.2 Block diagram of the SV estimation algorithm . . . . . . . . . . . . . . . . . . . . 45

6.3 Heart ROI detection example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4 Trending analysis example by means of four-quadrant plots . . . . . . . . . . . 50

6.5 EIT heart amplitude ∆σH vs simulated SV . . . . . . . . . . . . . . . . . . . . . . 51

6.6 SVEIT influenced by belt displacement . . . . . . . . . . . . . . . . . . . . . . . . 52

6.7 Relative error of SVEIT resulting from electrode detachment . . . . . . . . . . . . 53

6.8 SVEIT influenced by changes in hematocrit and lung air volume . . . . . . . . . 54

6.9 Conceptual explanation of the heart-lung conductivity contrast (HLC) . . . . . 55

6.10 Trending ability of ∆SVEIT influenced by belt displacement . . . . . . . . . . . . 56

8.1 Block diagram of measurement setup in the OR . . . . . . . . . . . . . . . . . . . 64

8.2 Block diagram of the data analysis and hypotheses testing . . . . . . . . . . . . 67

8.3 Distribution of SV reference measurements for each patient . . . . . . . . . . . 70

8.4 Examples of activity images for three patients . . . . . . . . . . . . . . . . . . . . 71

8.5 Example recording of the measurements in the OR . . . . . . . . . . . . . . . . . 71

8.6 Examples of estimated SVEIT vs SVRef for H1 and H2 . . . . . . . . . . . . . . . . 73

8.7 Examples of estimated ∆SVEIT vs ∆SVRef for H3 and H4 . . . . . . . . . . . . . . 75

8.8 Performance of two patients with highest variations in SVRef for H2 and H4 . . 77

xv



List of Figures

9.1 Block diagram of measurement setup in the ICU . . . . . . . . . . . . . . . . . . 82

9.2 Hemodynamic variations for each patient recorded in the ICU . . . . . . . . . . 85

9.3 EIT analysis example for patient V17 of the ICU study . . . . . . . . . . . . . . . 85

9.4 Trending analysis for all measurements in the ICU . . . . . . . . . . . . . . . . . 87

9.5 Trending analysis of the ICU measurements limited to reliable data . . . . . . . 88

10.1 Electrode positions more suitable for EIT-based SV monitoring . . . . . . . . . 94

10.2 Genetic algorithm used to find a better stimulation and measurement pattern 95

10.3 Forward sensitivities for three different stimulation and measurement patterns 96

11.1 Three hyperparameter selection approaches commonly used in EIT . . . . . . 100

11.2 Block diagram of the SNR framework . . . . . . . . . . . . . . . . . . . . . . . . . 103

11.3 Overview of the SNR simulation experiments . . . . . . . . . . . . . . . . . . . . 108

11.4 Noise performance for different GN reconstructions . . . . . . . . . . . . . . . . 110

11.5 Noise performance for different GREIT reconstructions . . . . . . . . . . . . . . 110

11.6 Noise performance for various cases of GN reconstructions . . . . . . . . . . . . 111

11.7 Noise performance of practical experiments with fixed noise figure . . . . . . . 112

11.8 Noise performance of practical experiments with fixed SNR . . . . . . . . . . . 112

11.9 SNR applied to an open geometry example . . . . . . . . . . . . . . . . . . . . . 113

12.1 Temporal evolution of the experimental protocol . . . . . . . . . . . . . . . . . . 120

12.2 Block diagram of the setup of measurements performed on healthy volunteers. 121

12.3 EIT electrode placement with 3D thorax image and 3D thorax model . . . . . . 122

12.4 Block diagram of the data analysis on healthy volunteers. . . . . . . . . . . . . . 124

12.5 3D EIT images of respiration for the same measurement of all volunteers . . . . 126

12.6 ECG-gated 3D EIT images for the same measurement of all volunteers . . . . . 127

12.7 3D EIT example images for ten measurements of the same volunteer . . . . . . 127

12.8 SVEIT vs SVRef with subject-specific calibration . . . . . . . . . . . . . . . . . . . 128

12.9 Temporal evolution of SVRef, heart rate and EIT-based features for subject S03 . 130

12.10 Trending ability of ∆SVEIT vs ∆SVRef by means of four-quadrant plot . . . . . . 131

A.1 Thorax and heart model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.2 Simple geometric heart model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.3 Block diagram of the simulation framework . . . . . . . . . . . . . . . . . . . . . 153

A.4 Block diagram of the PAT and SNR experiments . . . . . . . . . . . . . . . . . . . 155

A.5 Example relationship between the estimated and simulated aortic PAT values . 156

A.6 Relative error and aortic contribution for different algorithm configurations . . 158

A.7 Relative error and aortic contribution as a function of GREIT weighting radius 158

C.1 Best possible fits for absolute SV with patient-independent calibration (H1) . . 164

C.2 Best possible fits for absolute SV with patient-specific calibration (H2) . . . . . 165

C.3 Best possible fits for relative SV with patient-independent calibration (H3) . . . 166

C.4 Best possible fits for relative SV with patient-specific calibration (H4) . . . . . . 167

xvi



List of Figures

D.1 Ensemble averaged EIT analysis for patient V05 . . . . . . . . . . . . . . . . . . . 169

D.2 Ensemble averaged EIT analysis for patient V06 . . . . . . . . . . . . . . . . . . . 170

D.3 Ensemble averaged EIT analysis for patient V07 . . . . . . . . . . . . . . . . . . . 170

D.4 Ensemble averaged EIT analysis for patient V08 . . . . . . . . . . . . . . . . . . . 171

D.5 Ensemble averaged EIT analysis for patient V09 . . . . . . . . . . . . . . . . . . . 171

D.6 Ensemble averaged EIT analysis for patient V10 . . . . . . . . . . . . . . . . . . . 172

D.7 Ensemble averaged EIT analysis for patient V11 . . . . . . . . . . . . . . . . . . . 172

D.8 Ensemble averaged EIT analysis for patient V12 . . . . . . . . . . . . . . . . . . . 173

D.9 Ensemble averaged EIT analysis for patient V13 . . . . . . . . . . . . . . . . . . . 173

D.10 Ensemble averaged EIT analysis for patient V14 . . . . . . . . . . . . . . . . . . . 174

D.11 Ensemble averaged EIT analysis for patient V15 . . . . . . . . . . . . . . . . . . . 174

D.12 Ensemble averaged EIT analysis for patient V16 . . . . . . . . . . . . . . . . . . . 175

D.13 Ensemble averaged EIT analysis for patient V18 . . . . . . . . . . . . . . . . . . . 175

D.14 Ensemble averaged EIT analysis for patient V19 . . . . . . . . . . . . . . . . . . . 176

D.15 Ensemble averaged EIT analysis for patient V20 . . . . . . . . . . . . . . . . . . . 176

E.1 Temporal evolution of SVRef, heart rate and EIT-based features for subject S01 . 178

E.2 Temporal evolution of SVRef, heart rate and EIT-based features for subject S02 . 178

E.3 Temporal evolution of SVRef, heart rate and EIT-based features for subject S04 . 179

E.4 Temporal evolution of SVRef, heart rate and EIT-based features for subject S05 . 179

E.5 Temporal evolution of SVRef, heart rate and EIT-based features for subject S06 . 180

E.6 Temporal evolution of SVRef, heart rate and EIT-based features for subject S08 . 180

E.7 Temporal evolution of SVRef, heart rate and EIT-based features for subject S09 . 181

E.8 Temporal evolution of SVRef, heart rate and EIT-based features for subject S10 . 181

xvii





List of Tables
3.1 Overview of clinical EIT devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Tissue conductivity and composition . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Simulated physiological parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Errors of SVEIT for belt displacement . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Errors of SVEIT for electrode detachment . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Errors of SVEIT for changes in hematocrit and lung air volume . . . . . . . . . . 53

6.5 Trending performance of ∆SVEIT for belt displacement . . . . . . . . . . . . . . . 56

6.6 Trending performance of ∆SVEIT for changes in hematocrit and lung air volume 57

6.7 Synthesis of feasibility and limitations for absolute and relative SVEIT . . . . . . 58

8.1 List of features extracted from EIT for SV estimation . . . . . . . . . . . . . . . . 66

8.2 Ranking critera and acceptance thresholds for OR analysis . . . . . . . . . . . . 69

8.3 Overview of patients enrolled for measurements in the OR . . . . . . . . . . . . 70

8.4 Hypothesis 1 - Goodness of fit for absolute SV with patient-independent calibration 72

8.5 Hypothesis 2 - Goodness of fit for absolute SV with patient-specific calibration 73

8.6 Hypothesis 3 - Goodness of fit for relative SV with patient-independent calibration 74

8.7 Hypothesis 4 - Goodness of fit for relative SV with patient-specific calibration . 76

12.1 Overall performance of EIT-based SV estimation on healthy volunteers . . . . . 129

13.1 Overview of experimental EIT studies performed in this thesis . . . . . . . . . . 140

A.1 Tissue composition of different structures in the bioimpedance model . . . . . 151

E.1 Absolute SV via subject-independent calibration on healthy volunteers . . . . . 182

E.2 Absolute SV via subject-specific calibration on healthy volunteers . . . . . . . . 183

E.3 Relative SV via subject-independent calibration on healthy volunteers . . . . . 184

E.4 Relative SV via subject-specific calibration on healthy volunteers . . . . . . . . . 185

xix





List of Abbreviations
CAI cardiosynchronous activity image

CO cardiac output

ECG electrocardiogram

EDV end diastolic volume

EIT electrical impedance tomography

ESV end systolic volume

FEM finite element model

HLC heart-lung (conductivity) contrast

HR heart rate

ICU intensive care unit

MRI magnetic resonance imaging

NF noise figure

NP noise performance

OR operating room

PAC pulmonary artery catheter

PAP pulmonary artery pressure

PCA pulse contour analysis

PEEP positive end-expiratory pressure

ROI region of interest

SV stroke volume

SVV stroke volume variation

TD thermodilution

xxi





Part IIntroduction and Background

1





1 Introduction

1.1 Problem Statement and Motivation

The human body consists of roughly 75 ·1012 cells which all require oxygen in order to survive.

The heart plays a vital role in supplying this oxygen as it pumps oxygen-enriched blood from

the lungs to the remaining organs in the body. One key factor influencing this oxygen delivery

is the cardiac output (CO), i.e. the amount of blood ejected by one of the lower heart chambers

(ventricles) in one minute [48]. By way of example, in a resting adult each ventricle pumps 4−7

liters of blood per minute and during severe physical exertion this value can raise five-fold

to 25−35 L/min [92]. On the other hand, in a diseased cardiovascular system, CO can be

compromised such that the oxygen delivery is insufficient which can pose a lethal threat.

As reported by the world health organization (WHO) cardiovascular diseases (CVDs) are the

main reason for death on a world-wide scale. It was estimated that in 2015, CVDs were the

cause of death for 17.7 million people, which accounts for 31 % of all deaths that year [163].

One of the research priorities in order to decrease morbidity and mortality due to CVDs is to

monitor trends and risk factors of these diseases [162]. Therefore, it is of great interest to have

medical devices which allow the continuous measurement of hemodynamic parameters such

as blood pressure, heart rate and CO, to name but a few. Among these parameters CO is of

particular interest as it is closely linked with the oxygen delivery and the health of the heart.

However, compared to most of the other hemodynamic parameters, CO is more difficult to

measure since blood is being dispersed as it travels away from the heart [37], i.e. the local

blood flows through the arms, legs or to the neck represent only a portion of the total CO

which itself needs to be measured directly in the heart or at its outflow tract (i.e. ascending

aorta). In contrast, heart rate or blood pressure can be measured accurately enough in the

periphery (e.g. arm or finger). For these reasons the challenge of developing a reliable CO

measurement technique is considered as the “Holdy Grail” of hemodynamic monitoring

according to Critchley [37]. CO can be expressed as the stroke volume (SV), i.e. the blood

ejected by one ventricle for each heartbeat, multiplied by the heart rate (HR): CO = SV×HR.

While the HR can be assessed easily via an electrocardiogram (ECG), the challenge resides in

3



Chapter 1. Introduction

reliably measuring SV.

A myriad of technologies exist to estimate CO. However, right heart thermodilution, the

technology considered as clinical gold standard has a limited accuracy [37] and requires highly

invasive catheterization. This intervention is controversial as it can cause complications

and has not shown to help reducing mortality [72, 128, 35]. Even though less invasive and

noninvasive techniques are available [79, 99, 34, 129], they do not fulfill the requirements of

an “ideal” hemodynamic monitoring device as defined by Vincent et al. [152] and detailed in

the next chapter. Furthermore, a recent meta-analysis of noninvasive CO monitoring devices

by Joosten et al. [87] has found that none of these devices is reliable enough when used in

clinical settings. Therefore, the quest for the “ideal” CO monitoring devices continues.

To this end, the present thesis aims at investigating the potential of electrical impedance

tomography (EIT) as a tool to noninvasively estimate SV and thus CO. Being a low-cost and

nonionizing medical imaging modality, EIT is an appealing candidate for the continuous

monitoring of CO. In brief, it consists of a belt of electrodes applied around the thorax, which

measures electrical impedances by injecting weak alternating currents [52, 2, 80]. These

measurements are transformed into tomographic images which represent changes in intra-

thoracic impedance. EIT is commonly used to monitor lung function in order to optimize

regional ventilation or to diagnose lung diseases [52]. In contrast, the EIT-based assessment of

cardiovascular activity is at an earlier stage of research [9]. The few studies published, which

address the estimation of SV and CO via EIT [155, 114, 113, 41] are limited in various aspects

and all raise the need for further investigations, in particular for measurements on humans in

clinical studies. Moreover, the exact origins of cardiac EIT signals are unclear and discussed

controversially in the literature [20, 118, 11]. This is an important issue to be addressed, since

an appropriate and reliable processing algorithm can only be developed and validated if the

source of the underlying signals is well understood.

1.2 Thesis Objectives

The present thesis aims at investigating the potential of EIT to noninvasively estimate SV, with

particular focus on its practical applicability. More specifically, this thesis aims at meeting the

following objectives:

a) To investigate the origins of cardiovascular EIT signals by means of simulations on a

bioimpedance model of the human thorax;

b) To show the feasibility and potential limitations of EIT-derived SV monitoring by means

of simulations on the same model;

c) To perform measurements on patients in clinical environments with currently available

EIT systems and test whether the model-based findings can be validated experimentally;

d) To identify potential limitations of current clinical EIT systems related to SV monitoring,

suggest an improved measurement setup and evaluate it experimentally.
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1.3. Organization of the Manuscript

1.3 Organization of the Manuscript

This manuscript is structured in five parts:

• Part I provides and introduction by describing the motivation and main objectives of

the present thesis (Chapter 1), the background related to the physiology and the state

of the art of CO monitoring devices (Chapter 2), as well as the technical aspects of EIT

(Chapter 3);

• Part II first presents the creation of a bioimpedance model of a human thorax (Chapter 4),

which is used in simulations to investigate the origins of cardiac EIT signals (Chapter 5),

and to study the feasibility and limitations of EIT-based SV estimation (Chapter 6);

• Part III describes two clinical studies by first giving a rationale for performing measure-

ments on patients (Chapter 7), followed by presenting the two studies, one performed

in the operating room (Chapter 8), and the other in the intensive care unit (Chapter 9);

• Part IV starts by describing the limitations of currently available clinical EIT devices and

suggesting an improved setup (Chapter 10), followed by presenting a novel approach

allowing to fairly compare EIT image reconstructions from different setups (Chapter 11).

Finally, the testing of the improved measurement setup in an experimental study on

healthy volunteers is presented (Chapter 12);

• Part V concludes this thesis by providing a synthesis and suggestions for future work

(Chapter 13).

In addition, the appendices in Part VI contain: A simulation-based study to investigate the

feasibility of aortic blood pressure measurement via EIT (Appendix A); The mathematical

aspects of ensemble averaging and the related signal quality estimator (Appendix B); Additi-

onal figures of the clinical study in the operating room (Appendix C); Additional figures of

the clinical study in the intensive care unit (Appendix D); Additional figures and tables of the

experimental study on healthy volunteers (Appendix E).
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2 Stroke Volume and Cardiac Output

In this chapter we first give a brief introduction into cardiovascular physiology with parti-

cular focus on stroke volume (SV) and cardiac output (CO). Then we present the different

technologies currently available for the measurement of CO ranging from the highly invasive

gold standard reference to noninvasive approaches. After mentioning some aspects to be

considered when comparing CO measurements of different devices, we list the requirements

for an ideal CO monitoring device and the reasons why EIT might be an appropriate candidate.

2.1 Cardiovascular Physiology in a Nutshell

In the following, we give a brief background to cardiovascular physiology necessary to un-

derstand the basic mechanisms related to SV and CO. The reader interested in more detail is

referred to the books by Levick [92], Nichols et al. [107] or Westerhof et al. [159].

2.1.1 Cardiovascular System and Hemodynamic Parameters

The cardiovascular system comprises the heart, the blood and the blood vessels. Its main

function is the transport of substances (including oxygen, water and nutrients) to the tissues

and the washout of metabolic waste products (including carbon dioxide) from these tissues.

Other functions are the distribution of hormones and the regulation of body temperature [92].

The central organ of the cardiovascular system is the heart. As shown in Figure 2.1a, it is a

hollow organ consisting of specialized muscular tissue forming four chambers (two atria and

two ventricles) and containing four valves (two inlet and two outlet valves) which enable an

unidirectional blood flow. From an engineer’s perspective, the heart represents two synchro-

nized pumps (each with one atrium, one ventricle and two valves) connected in series via

the blood vessels to one circulatory system, as illustrated in Figure 2.1b. The right part of the

heart – the first pump – supplies the lungs with deoxygenated blood (black) returning from

the systemic circulation, whereas the left part – the second pump – collects oxygenated blood

(red) from the lungs and distributes it among the different organs in the systemic circulation.
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(a) (b)

Figure 2.1 – (a) Structure of the heart: pink/gray indicating oxygenated/deoxygenated blood,
respectively. AoV/PuV stands for aortic/pulmonary valve. (b) Illustration of the cardiovascular
system which can be separated into pulmonary and systemic circulation. The first carries
deoxygenated blood (black) from the right ventricle (RV) to the lungs and returns oxygenated
blood (red) to the left atrium (LA). The latter feeds all systemic organs with oxygenated blood
from the left ventricle (LV) and returns deoxygenated blood back to the right atrium (RA). The
figure (a) is from Fig. 1.4 in [92] and (b) from Fig. 1.5 in [92], both © 2010 JR Levick.

The performance, and thus the health of the cardiovascular system, can be assessed via so-

called hemodynamic parameters. One such parameter already introduced in the previous

chapter is the CO, i.e. the amount of blood volume pumped by the heart through the circulation

in one minute. CO is the product of heart rate (HR) and stroke volume (SV): CO = HR ·SV. SV is

the amount of blood ejected per contraction by one ventricle during the cardiac phase called

systole. In contrast, during the second phase called diastole, the ventricles relax and are being

refilled partly due to atrial contraction. As a result of this alternation between diastole and

systole the blood pressure in the arteries is pulsatile, i.e. typical systemic pressure values vary

from a minimum (diastolic value) of 80 mmHg to a maximum (systolic value) of 120 mmHg

[92]. The gradient of mean blood pressure (∆P ) between the aorta (PAO) and the vena cava

(PVC) is the driving force for blood flow through the systemic circulation:

CO = Q̇ = ∆P

RT
= PAO −PVC

RT
, (2.1)

where Q̇ denotes the blood flow (equivalent to CO) and RT the total vascular resistance. While
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Factors Affecting Heart Rate Factors Affecting Stroke Volume

Cardiac Output (CO)    =    HR    ⋅ SV

Heart Rate (HR) Stroke Volume (SV) = EDV - ESV

AfterloadContractility

End Systolic Volume (ESV) End Diastolic Volume (EDV)

Sympathetic 

and 

Parasympathetic 

Activity

Hormones

Preload

Figure 2.2 – Main factors affecting heart rate and stroke volume and thus cardiac output.
Adapted and simplified from [16, Figure 19.35].

PAO is in the range of 100 mmHg, PVC is close to zero. Thus, the total vascular resistance of the

systemic circulation is in the order of RT ≈ 20mmHg ·min/L (= 100mmHg/(5L/min)) [92]. In

contrast, the total vascular resistance of the pulmonary circulation is much smaller because

pulmonary blood vessels are much shorter and wider. This explains why the blood pressure in

the lungs is about seven-fold lower than systemic blood pressure [92]. Further particularities

of the pulmonary circulation can also be found in the thesis of Proença [118].

2.1.2 Factors Affecting Stroke Volume and Cardiac Output

The main factors affecting CO are illustrated in Figure 2.2. On the one hand, CO is proportional

to the HR which in turn is decreased by parasympathetic activity, increased by sympathetic

activity and further influenced by various hormones [92, 16]. On the other hand, CO is propor-

tional to the SV which is mainly influenced by the three factors listed in the following:

1. Contractility (or inotropy) is the force of contraction of the heart muscle. It is mainly

controlled by activity of the sympathetic nervous system and hormones. An increase

in contractility leads to a more forceful contraction, which in turn leads to a higher SV

through a decrease in end systolic volume (ESV).

2. Afterload is defined as the load against which the ventricles have to contract to eject

blood. It is closely linked to the total vascular resistance RT and the mean arterial

pressure (MAP), i.e. an increase in RT leads to an increase in MAP which opposes

ventricular ejection and thus results in a reduced SV because of a higher ESV.

3. Preload is an equivalent term for end diastolic volume (EDV). It determines to what

extent the cardiac muscle is stretched prior to contraction. As stated by the law of

Frank-Starling: the higher this stretch the more powerful the contraction (increased

contractility) and thus the higher the SV (until an optimal point is reached). Preload is

influenced by venous return (i.e. venous blood flowing back to the heart) which in turn
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is influenced by various factors such as the volume of circulating blood, respiration-

induced changes in pressure or gravity.

Based on these mechanisms CO is regulated primarily to meet the metabolic demand of

the different tissues in the body. For example, during exercise CO can rise five-fold of the

baseline level to adequately supply the muscles with oxygen and other substances [92, 16]. In

contrast, in patients suffering from heart failure, CO is impaired which results in insufficient

perfusion. This cardiac insufficiency is due to damage or overloading of the heart which can be

caused by diverse pathological conditions, of which two examples are given hereafter. First, in

cardiac ischemia the blood supply of the heart muscle (myocardium) is restricted which results

in decreased contractility. This is usually caused by obstructed blood flow in the coronary

arteries (atherosclerosis) [16]. Second, elevated blood pressure (in the systemic or pulmonary

circulation) leads to an increased afterload and thus impairs ventricular ejection. To cope

with this situation the heart wall thickens (concentric hypertrophy) and eventually the affected

ventricle begins to fail [92].

While the two abovementioned examples alter the CO usually over a longer period of time,

there are situations in which the CO can be deteriorated within a short period. An example are

patients who undergo high-risk surgical procedures. In this type of patients, the continuous

monitoring and early optimization of their hemodynamic condition (including CO) after

surgery has been shown to be very important as it results in significantly reduced mortality

[89, 116]. These findings encourage the development of measurement devices which enable

the continuous measurement of CO and do not necessitate invasive procedures such as

right-heart catheterization (presented in the next section).

2.2 State of the Art of Cardiac Output Monitoring

In the following, we list and briefly describe different techniques used to measure cardiac

output (CO) and stroke volume (SV). The techniques are grouped into (highly) invasive

(Section 2.2.1), minimally-invasive (Section 2.2.2) and noninvasive methods (Section 2.2.3), as

also shown in Figure 2.3. The more interested reader is referred to the book chapters by Critch-

ley [37] and Levick [92], or to different review articles on this subject [79, 99, 34, 129, 87, 124].

2.2.1 Invasive Methods

Fick’s Principle

The first method to measure CO was proposed by Adolf Fick in 1870 [92]. It is based on the

principle that in steady state, the oxygen removed from the alveoli in the lungs is equal to

the oxygen uptake by the pulmonary bloodstream. From this it follows that one can assess

pulmonary blood flow Q̇ and thus CO (in L/min) by dividing the rate of alveolar oxygen uptake
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Continuous Application

In
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Invasive
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CCO via PACTD via PAC

Ultrasound 

Flow Probe

Transesophageal

Ultrasound

PCA

Transthoracic 

Ultrasound

Fick’s Method

Indirect Fick 

Method

Bioimpedance 

and -reactance
niPCA

Intermittent Application

Figure 2.3 – Comparison of different techniques available for CO monitoring by means of their
invasiveness and their applicability for continuous measurements. TD: thermodilution; PAC:
pulmonary artery catheter; CCO: continuous cardiac output; PCA: pulse contour analysis;
niPCA: noninvasive pulse contour analysis. Note that ultrasound flow probes are applicable in
animal experiments only.

(V̇O2 , in mL/min) by the arteriovenous oxygen difference (CAO2
−CVO2

, in mL/L):

CO = Q̇ = V̇O2(
CAO2

−CVO2

) . (2.2)

While V̇O2 can be measured noninvasively via spirometry, the measurement of arterial CAO2
and

venous oxygen concentration CVO2
require catheterization. In particular, CVO2

needs to be

measured in the right ventricle or main pulmonary artery and thus requires highly invasive

right heart catheterization. Besides, this technique is further limited in that it cannot measure

rapid changes in hemodynamics as performing one single measurement takes between 5 to

10 minutes [92]. The indirect Fick method, described later on in Section 2.2.3, represents a

noninvasive alternative as it estimates CO via rebreathed gases (i.e. CO2).

Thermodilution via Pulmonary Artery Catheter (PAC)

With the invention of the Swan-Ganz catheter in the year 1971 [56], the technique of PAC

thermodilution has become widely used and is still today considered as the clinical gold-

standard method for CO measurements [87, 37, 124]. This specific catheter is inserted via a

vein through the right heart into the pulmonary artery, as also illustrated in Figure 2.4a. A CO

measurement is initiated by injecting an injectate of known temperature and volume – usually

cold saline or dextrose [124] – in the right ventricle (via the proximal port of the catheter, 1©
in Figure 2.4a). Then, the CO is determined via the resulting temperature changes in the
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Figure 2.4 – (a) Schematic example of a Swan-Ganz catheter (with 1© the proximal port for
injection and 2© the thermistor at the tip) inserted into the heart (RA: right atrium, LA: left
atrium, RV: right ventricle, LV: left ventricle, PA: pulmonary artery, AO: aorta). Adapted from
[118]. (b) Thermodilution (TD) exemplified by means of the temporal evolution of (Top) the
injectate concentration and (Bottom) the resulting change in temperature measured either
directly in the PA ( green) or in the systemic circulation ( blue). The CO is inversely
proportional to the shaded area under the curves which represent the duration of transit of
cooled blood times the mean temperature change [124].

pulmonary artery (measured with a thermistor at the tip of the catheter, 2© in Figure 2.4a),

i.e. CO is inversely proportional to the area under the curve of the temperature change as

illustrated in Figure 2.4b. This is known as the Stewart-Hamilton principle and is extensively

described in the work by Reuter et al. [124] and Levick [92].

In contrast to the Fick’s principle, CO can be measured via PAC thermodilution within 30

seconds and successive measurements can be performed rapidly. Nonetheless, these measu-

rements are not continuous and their number is limited by a maximally allowed volume of

injectate [124].

Continuous Cardiac Output (CCO) via PAC

To overcome the limitation of intermittent measurements, a modified version of the Swan-

Ganz catheter has been developed. It includes a second thermistor and a heating filament

in the proximal port of the catheter ( 1© in Figure 2.4a). This heating is switched on and off

in a pseudorandom binary sequence and the resulting temperature gradients ( 1© vs 2© in

Figure 2.4a) are analyzed [79]. Even though the CO measurements via the CCO method are

continuous, they are limited by a non-negligible time lag of up to 12 minutes and are therefore

not applicable to assess fast hemodynamic changes [124].
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Ultrasound Flow Probe – The True Gold Standard

As also mentioned above, PAC thermodilution is considered as the clinical gold-standard

method [34]. However, strictly speaking this is not true as it is rather the most accepted

reference method which can have high errors of up to ±30 % [37]. Lower errors of less than

±5 % could be achieved by placing an ultrasound flow probe around the aorta (or pulmonary

artery), which can be considered as a true gold standard [37, 124]. Yet, under no circumstances

this highly invasive procedure is possible in humans and its use is limited to animal studies.

Therefore, to this day, there exists no true gold standard for CO measurements in human

studies [87, 37, 79].

2.2.2 Minimally-Invasive Methods

The clinical usefulness of the PAC has been questioned and it has been shown in multicenter

clinical trials that its use can lead to complications and that it is not reducing mortality

[72, 128, 35]. Therefore, alternative and less invasive methods, have been developed which are

described hereafter. These are usually referred to as minimally-invasive, and are defined as

those methods which do not require central venous catheterization [34].

Pulse Contour Analysis (PCA)

In pulse contour analysis (PCA), arterial pressure is measured and CO is derived from the area

under the systolic part of the pressure curve (which is related to SV via the systemic vascular

resistance) or a comparable approach. Currently available systems can be grouped into those

with and without the need for calibration via transpulmonary indicator dilution [99].

One system of the first group, the PiCCO (Pulsion, Munich, Germany) needs to be calibrated

using transpulmonary thermodilution [124], which involves the administration of the injec-

tate via central venous access1. The injectate then travels through the right heart, pulmonary

circulation, left heart, aorta and is finally measured in the femoral artery (see Figure 2.4b).

Another system, the LiDCO (LiDCO Ltd., Cambridge, UK) uses transpulmonary lithium indica-

tor dilution for calibration, which is less sensitive to temperature but influenced by electrolyte

and hematocrit concentrations [79]. Moreover the LiDCO system only requires access to a

peripheral artery and vein, making it less invasive [124].

Two systems of the second group, FloTrac-Vigileo (Edwards Lifesciences, Irvine, USA) and

MostCare-PRAM (Vytech Health, Padua, Italy), do not rely on an external calibration and thus

solely require central or peripheral arterial access. While the FloTrac requires patient data for

internal calibration [79, 99], the MostCare system does not require any external data [99].

Once in place (and calibrated), all systems provide estimations of SV, CO and other he-

1Note that because of the need for central venous access, the PiCCO system is the only PCA system which is
strictly-speaking not minimally-invasive, according to the definition of Clement et al. [34].
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modynamic parameters including SV variations (SVV), a valuable estimate to assess fluid-

responsiveness of ventilated patients [100]. The PiCCO and LiDCO systems can further provide

estimates for extravascular lung water (a measure of pulmonary edema) and global end-

diastolic volume (a measure of cardiac preload), which cannot be obtained from PAC-based

thermodilution [124]. Nonetheless, all of the PCA systems rely on an arterial pressure signal of

good quality which is not always available, e.g. the signal has shown to be distorted in up to

30 % of patients in the intensive care unit (ICU). Moreover, there the measurements can be

severely impaired by arrhythmias and aortic valve disease [34].

Transesophageal Ultrasound

CO can also be determined from an ultrasound device placed in the esophagus in two different

ways. First, in transesophageal echocardiography, CO is assessed from blood flow in the heart

measured via Doppler ultrasound (across a cardiac valve or in a ventricular outflow tract) and

the cross-sectional area of the measurement site. This approach is limited to intermittent

measurements which are – in addition – time consuming and operator dependent as they re-

quire a high level of skills and knowledge. Although unsuitable for routine CO monitoring, this

technique allows for a fast diagnosis of heart function in critical hemodynamic situations [79].

Second, in transesophageal aortic Doppler ultrasound, the blood flow through the descending

aorta is measured and combined with the aortic cross-sectional area. CO values further need

to be scaled with a constant factor to correct for the not-measurable portion of flow from the

arteries branching of more proximal to the heart (e.g. coronary and brachiocephalic arteries).

While this technique provides continuous CO measurements, its correct operation also re-

quires a lot of experience and training [37]. Both of the aforementioned ultrasound-based

techniques are limited by their operator dependency [79] and mainly restricted to the use in

intra-operative and intensive care scenarios [37].

2.2.3 Noninvasive Methods

Indirect Fick Method

Analogously to the Fick’s principle using oxygen measurements as stated in Equation (2.2),

CO can also be estimated via carbon dioxide concentrations, i.e. CO = V̇CO2

/(
CACO2

−CVCO2

)
.

This is known as the indirect Fick or partial CO2 rebreathing method and is implemented in

the NICO system (Novametrix Medical Systems, Wallingford, USA). While this measurement

can be performed noninvasively, it is limited to intubated and ventilated patients as it requires

a rebreathing extension loop to be attached to the ventilator [86]. Due to these limitations and

insufficient accuracy NICO is rarely used in the ICU [34].

Another noninvasive alternative is the estimation of CO solely via the oxygen uptake V̇O2 as sug-

gested by Stringer et al. [143]. They observed that Equation (2.2) can be simplified since, during

physical exercise, the arteriovenous oxygen difference (CAO2
−CVO2

) increases linearly with V̇O2
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normalized by the maximal oxygen uptake V̇O2-max. V̇O2 and V̇O2-max are thus sufficient to es-

timate CO with an experimentally-derived equation2, CO = V̇O2

/(
57.21+104.7

V̇O2

V̇O2-max

)
[143].

This approach is for example implemented in the MetaMax 3B device (CORTEX Biophysik

GmbH, Leipzig, Germany) which was used in this thesis (see Chapter 12).

Noninvasive Pulse Contour Analysis (niPCA)

With the niPCA technique the arterial pressure waveform is estimated fully noninvasively.

The subsequent calculation of CO and other hemodynamic parameters is similar to its in-

vasive equivalent, the aforementioned PCA approach. The two systems CNAP (CNSystems

Medizintechnik AG, Graz, Austria) and ClearSight/NexFin (Edwards Lifesciences, Irvine, USA)

estimate the pressure waveform via a finger cuff and the volume clamp method [34, 129], i.e.

the distension of the digital artery is measured via photoplethysmography and is controlled to

be kept constant by applying an external counter-pressure which in turn is proportional to

the arterial pressure. A third system, the T-Line TL-200 (Tensys Medical Inc., San Diego, USA)

uses a tonometer placed on the wrist to assess radial artery pressure, similar to manual pulse

palpation [34, 129]. For calibration, all three systems use patient data and the CNAP further

requires a brachial cuff. As their invasive counterparts, niPCA systems also rely on a pressure

signal of high quality. This can be highly impaired in the case of peripheral hypoperfusion or

finger oedema [129]. Moreover, these approaches are sensitive to sensor displacement caused

by movement of the patient’s arm or fingers [129, 34].

Transthoracic Doppler Ultrasound

In transthoracic Doppler ultrasound a probe is placed on the chest and blood flow is measured

in the ventricular outflow tracts, ascending aorta or pulmonary artery. As for the transesop-

hageal techniques, this is also operator dependent and necessitates a lot of experience and

training. Additionally, it cannot be used for continuous monitoring. Yet, it is considered as the

most accurate technique available for the use in the ICU according to the recent review by

Clement et al. [34]. Moreover, it is popular in pediatrics due to its non-invasiveness and for

the reason that in small children a signal of higher quality can be obtained [37].

Thoracic Electrical Bioimpedance

In impedance cardiography (ICG) the electrical bioimpedance of the human thorax is measu-

red via four electrodes placed around the neck and the upper abdomen. CO is then derived

from cardiosynchronous pulsatile changes in bioimpedance [40]. Since its discovery in 1966

by Kubicek et al. [90] various advancements have been made regarding the equations for CO

estimation [15, 40]. Nonetheless, the origins of the ICG signal remain controversial and unclear

2Note that the coefficients differ from the original equation in [143] because of differences in units. Here
V̇O2-max, V̇O2 and CO are all expressed in L/min.
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[42, 40] and the initial hypothesis that aortic blood volume changes are the main contributor

to the ICG signal has been questioned by Patterson [111]. Moreover, this technique is prone to

electrical interferences of other devices and is influenced by changes in lung water. As clearly

stated by Critchley [37] and Clement et al. [34] the use of ICG in clinical scenarios is highly

unreliable and has even been abandoned.

Bioreactance represents an alternative approach to ICG which is considered to be less sensitive

to lung water and electrical interferences [34, 129]. This is because – unlike ICG – it does not

estimate CO from the amplitude but from the phase shift of the bioimpedance signal [140]. As

with ICG, bioreactance suffers from the unclear signal origins and is still sensitive to electrical

interferences [129]. In contrast to ICG, more promising results were obtained in clinical

environments but still require further evaluation [34, 37].

2.3 Comparison and Validation of Cardiac Output Measurements

As mentioned in Section 2.2.1, the clinically accepted reference method (PAC thermodilution)

has a high measurement error of up to ±30 % [37]. Therefore, the question arises as to what

extent CO values measured via different approaches are comparable. In a recent study Lamia

et al. [91] compared five CO measurement techniques (PAC thermodilution, bioreactance

via NICOM, PCA via LiDCOplus, FloTrac, and PiCCOplus) during post-surgery in 21 cardiac

patients. They found that even though the devices measured similar mean CO values, they

significantly differed in terms of bias and precision values when compared relative to each

other. Yet, all five devices investigated showed a good ability in trending, i.e. to follow changes

in CO values. In a similar manner, Pironet et al. [115] compared four CO measurement

techniques (including aortic flow probe and transpulmonary thermodilution) in seven pigs.

While all CO measurements were highly repeatable with an error below 7 %, the different

techniques showed a poor agreement.

These findings highlight the challenging nature of obtaining reliable CO measurements and

emphasize the need for assessing the ability of a device to follow relative changes (trending).

Another reason for trending is that in most of the clinical situations an absolute CO value is

not of primary interest. However, the ability to track changes is very important, i.e. after an

intervention (e.g. fluid challenge or drug administration) knowing the relative CO change

with respect to before is essential [99, 34, 152]. By way of example, when the CO changes from

5 L/min to 6 L/min in response to an intervention, it is more important – and often sufficient –

to know the relative change of 20 % rather than the absolute values in L/min. Trending ability

can be assessed via four-quadrant or polar plot analysis as extensively discussed by Critchley

[37] and Saugel et al. [130]. For the different reasons stated by Saugel et al. [130], four-quadrant

plot analysis was used in this thesis and is described in more detail later on in Section 6.2.4 at

the time of first use.
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2.4 The Quest for the Ideal Cardiac Output Monitoring Device

In the previous sections we presented the most common techniques available to measure

CO along with their assets and drawbacks. However, as already alluded to in the previous

chapter, none of the currently available techniques fulfills the ten requirements for an “ideal”

hemodynamic monitoring device which were specified by a consensus of sixteen renowned

physicians. According to Vincent et al. [152] the “ideal” device:

(1) Provides measurement of relevant variables;

(2) Provides accurate and reproducible measurements;

(3) Provides interpretable data;

(4) Is easy to use;

(5) Is readily available;

(6) Is operator-independent;

(7) Has a rapid response-time;

(8) Causes no harm;

(9) Is cost-effective;

(10) Should provide information that is able to guide therapy.

All of the techniques presented in Sections 2.2.1 and 2.2.2 are limited in that they “cause

harm”, i.e. they are at least minimally-invasive. Even though, the noninvasive techniques

in Section 2.2.3 would overcome this limitation, none of these devices has been found to

be reliable enough in clinical settings according to the meta-analysis by Joosten et al. [87].

Therefore, on the quest for the ideal CO monitoring device, we investigate to what extent

thoracic EIT can be used to fulfill as many of the abovementioned requirements as possible.

As low-cost and noninvasive medical imaging modality, EIT does already meet requirements

(8) and (9). Yet, how many of the other requirements can it fulfill? Does it prove to be a reliable

technique for continuous and unsupervised CO monitoring?

Before addressing these questions, we first introduce the basic principle and technical aspects

of EIT in the following chapter.
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3 Electrical Impedance Tomography

In this chapter we introduce electrical impedance tomography (EIT), the medical imaging

modality investigated in this thesis. While we provide only a brief overview, the more interested

reader is referred to the book by Holder [80] or the review articles by Adler et al. [2, 9] and

Frerichs et al. [52] (including its extensive supplementary material).

After giving a brief historical and clinical background, we describe the typical acquisition

and processing steps used in thoracic EIT. These steps are illustrated in Figure 3.1 and com-

prise the impedance measurements performed by the EIT device (Step 1, Section 3.1.1),

the reconstruction algorithms transforming these measurements into a sequence of tomo-

graphic images (Step 2, Section 3.1.2), and the separation of these into cardiosynchronous

and ventilation-related changes (Step 3, Section 3.1.3). In Section 3.2 we discuss previous

approaches by other research groups to estimate SV from cardiosynchronous EIT images (Step

4). The chapter is concluded in Section 3.3 by addressing the issue of the unclear origins of

cardiosynchronous EIT signals.

EIT 

Device

Image

Reconstruction

Step 1 Step 2 Step 3 (a) Ventilation

Time

(b) Cardiosynchronous

Hemodynamic 

Parameter 

Estimation

SV, PAP, etc.

Step 4

Source 

Separation

Figure 3.1 – Typical acquisition and processing steps used for thoracic EIT. Filtering in step 3 is
applied to separate (a) ventilation-related and (b) cardiosynchronous activity. The images in
(a) and (b) show the conductivity change ∆σ of (a) one breath (inspiration vs full expiration)
and (b) one heartbeat (end systole vs end diastole). Note that (a) and (b) share the same
colorbar but are scaled individually to their corresponding minimum and maximum because
cardiosynchronous activity in (b) is about factor 10 weaker than ventilation shown in (a).
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3.1 Principle of Thoracic EIT

EIT is not only used for medical applications but also in geophysics [127] or industrial applica-

tions [168, 80]. However, this chapter only covers the clinical application of EIT, in particular

the measurement of time-difference EIT on the chest [52, 9]. As also illustrated in Figure 3.1,

in thoracic EIT, electrodes are applied around the thorax to measure the impedance of the

underlying biological tissues. These impedances measured on the body surface are then fed

into an advanced mathematical reconstruction algorithm, which results in an image sequence

showing the temporal change in thoracic electrical impedance. The observed change is due to

the difference in impedance of the underlying tissues which is caused by different phenomena

such as variations in lung (i.e. air) and blood volume or organ movement. Even though the

resulting spatial resolution is low [132, 160], EIT enables a fast acquisition at typically up to

50 frames1 per second. Additional characteristics such as portability, low-cost and the use of

nonionizing radiation make EIT an appealing candidate for bedside patient monitoring.

Since the introduction of the first thoracic impedance camera in 1978 by Henderson and

Webster [75], a lot of research has been going on to investigate and further improve EIT [80, 9].

Most of the clinical research focuses on monitoring regional ventilation in view of optimizing

ventilator settings in mechanically ventilated patients or diagnosing chronic lung diseases

[52, 9]. Nevertheless, EIT has not yet fully found its way into clinical practice and still requires

large multicenter trials for its validation [52]. The release of two commercial EIT devices in

this decade (Dräger Medical in 2011, Swisstom in 2013) are a cause for hope that EIT will have

its breakthrough into daily practice in the near future, provided that it proves clinically useful.

3.1.1 Impedance Measurements to Assess Tissue Properties

Thoracic time-difference EIT is based on the fact that the electrical impedance of tissues differ,

e.g. the lungs filled with air at end of inspiration are much less conductive than the lungs at

end of expiration. To measure these differences in impedance, ns electrodes are placed on

the body surface (usually on one single transversal plane) and small alternating currents in

the kHz range are injected between different pairs of electrodes. For these measurements a

compromise between frequency and amplitude of the injected current and the complexity of

the electronic design has to be made by keeping in mind the safety regulations [82]. On the

one hand, higher frequencies are preferable due to a lower skin-electrode impedance and a

higher maximal permitted current [82, 2]. On the other hand, the complexity of the analog

circuitry and the effects of parasitic capacitances are lower at smaller frequencies. Numerous

EIT devices exist but most of them are mainly used for research purposes (see [53, page 19] for

an extensive list). The devices of primary interest for this thesis are those five with certification

for clinical monitoring as listed in Table 3.1.

Another important aspect of EIT systems is the so-called stimulation and measurement

1Note that the terms EIT frame and EIT image are used interchangeably.
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3.1. Principle of Thoracic EIT

Table 3.1 – Overview of EIT devices available for clinical measurements. With ns as the
number of electrodes, fF M as the maximal possible frame rate, f I as the stimulation frequency
and Skip as the number of inactive electrodes in between the two ones actively measuring
voltage/injecting current. For more details see [118, page 45], [52, Table E1.1] or [53, page 19].

Device Name ns Type of Electrodes fF M (Hz) f I (kHz) Skip

Swisstom BB2 32 Textile belt, active 50 195a Skip 4a

Dräger PulmoVista™ 500 16 Elastic belt, passive 50 80−130 Adjacentb

Timpel ENLIGHT™ 800 32 Individual, passive 50 125 Skip 3

CareFusion Goe MF II 16 Individual, passive 48 5−500 Adjacentb

Maltron Sheffield MK 3.5 8 Individual, passive 25 2−1600 Adjacentb

Note: a Even though the hardware would allow the configuration of different settings these cannot be
modified in the current version of the software; b Adjacent is a synonym for skip 0.

pattern, i.e. the selection of one or more pairs of electrodes used to inject a current and those

electrode pairs used to measure the resulting voltages. With ns electrodes placed around

the thorax, various ways of measuring the thoracic impedance exists. These patterns range

from rather complex but optimal patterns [80, 94] to simpler patterns with pair drive [2, 80]

as explained hereafter. While the former require more complex hardware with multiple and

well-calibrated current sources, the latter can be build with one single current source and one

voltage measurement channel via the use of time-multiplexing. Since the second approach

is used in all the clinical EIT devices listed in Table 3.1 it is described in more detail in the

following by the example of the so-called adjacent stimulation pattern (pair drive with skip 0).

This particular stimulation pattern (adjacent or skip 0) is illustrated and explained in Figure 3.2.

For this pattern, the total number of impedance measurements nd required to generate one

EIT image is equal to the number of electrodes ns (i.e. the number of current injections)

times the number of pairwise differential voltage measurements (ns − 3, when excluding

those in contact with the current source). Consequently, nd = ns(ns −3) = 208 impedance

measurements need to be acquired and this procedure is repeated to record up to fF = 50

frames per second. In most of the clinical devices this is done via time-multiplexing, i.e. each

of the nd measurements is performed one after the other2. While this approach simplifies the

hardware and reduces the cost of the device it also has its disadvantages. Assuming a system

with ns = 32 electrodes, injecting currents at f I = 100kHz and imaging at fF = 50 frames per

second which sequentially acquires nd = 928 measurements. The time remaining for a single

measurement is not more than roughly two periods ( 1
fF nd

≈ 2 1
f I

) of which one is lost due to

switching transients [2]. Besides, sequential data acquisition is known to introduce artefacts

when the EIT frame rate is not substantially higher than the frequency of the physiological

phenomena observed [165, 166]. Another issue is that 3 out of 5 of the clinical EIT systems

2With the exception of the Timpel device which performs all voltage measurements in parallel but still uses
time-multiplexing for current injections as stated in [52, Table E1.1].
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Figure 3.2 – Schematic illustration of ns = 16 electrodes applied to a human thorax (with heart
H and lungs L) shown in transversal view. The two illustrations exemplify the adjacent stimula-
tion pattern (pair drive with skip 0) with the (a) first and (b) last 13 impedance measurements
acquired for one EIT frame. In (a) the current is injected between electrodes {1,2} and the
resulting 13 voltages are measured between the remaining electrode pairs. This is repeated
14 times for current injections between {2,3} , {3,4} , . . . , {15,16}, until finally, (b) the current is
injected between electrodes {16,1} and the resulting 13 voltages are measured between the
remaining electrode pairs. All the 13 voltage measurements of each of the 16 current injections
result in a set of nd = 13 ·16 = 208 measurements acquired for one single EIT image.

listed in Table 3.1 use the adjacent stimulation pattern, known for its low performance in

terms of sensitivity and signal-to-noise ratio (in the center) [134, 8]. Better performance in

this regard can be expected from the two devices with 32 electrodes, which have a certain

number – known as skip – of inactive electrodes in between the active pairs, i.e. Timpel with

skip 3 or Swisstom with skip 4. These are still not the optimal patterns [80, 8] but improve the

performance of the device while keeping its complexity low.

3.1.2 Image Reconstruction

The current section covers the mathematical aspects on how the aforementioned nd impe-

dance measurements obtained for each EIT frame are transformed into tomographic images.

To this end, the nd measurements of one EIT frame are stored in the vector v ∈Rnd .

We have Ω as the body under measurement (i.e. the thorax in 3D) with boundary ∂Ω and

internal conductivity distribution σ(x) as a function of the spatial variable x . The scalar

potential φ(x) inside the body is related to σ(x) via the continuum version of Kirchhoff’s law3

[80, 7]:

∇· (σ(x)∇φ(x)
)= 0 for x ∈Ω\∂Ω. (3.1)

3This is by using the quasi-static approximation assuming that the magnetic field can be neglected due to the
use of low current frequencies [80]. Furthermore, it is only valid for isotropic media. More general definitions can
be found in [7] or [80].
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3.1. Principle of Thoracic EIT

The boundary conditions are given by the current density J (x), the outward unit normal to ∂Ω

denoted as n and xe ∈ ∂Ω as the set including all positions of current injecting electrodes:

σ(x)
∂φ(x)

∂n
=

J (x) 6= 0 for x ∈ xe ,

J (x) = 0 for x ∈ ∂Ω\ xe .
(3.2)

Using Equations (3.1) and (3.2) to calculate the scalar potential φ(x) inside a body Ω with

conductivity distribution σ(x) is known as the forward problem described hereafter.

Forward Problem

The aforementioned equations can only be solved analytically for very simple geometries and

conductivity distributions [80]. However, for more practical cases numerical methods are

used which requires both the geometry and the conductivity to be discretized. To this end, the

body is typically represented as a finite element model (FEM) of a mesh with ne tetrahedral

elements and the element-wise conductivity vector σ ∈ Rne [7, 80]. The forward model can

be expressed by the operator F (·) which provides the vector v containing nd surface voltage4

measurements for a given conductivity distribution σ.

However, in EIT the problem is the opposite: it is an inverse problem where we seek the

internal conductivity distribution σ for a given set of surface measurements v . As the number

of surface measurements nd is (much) lower than the number of internal conductivities ne

it is an ill-posed problem. In addition, in EIT the physics of the probing energy is diffusive

which results in wide variations of sensitivity across the body, i.e. EIT is much more sensitive

to conductivity changes near its electrodes (e.g. variations in skin-electrode impedance) than

to changes deeper in the body (e.g. variations in heart or aorta volume). Solving this inverse

problem requires regularization which is addressed in the next section.

In the following, we first consider an important principle typically applied for the recon-

struction of clinical data: difference EIT. In time difference EIT difference data is used to

provide more robust images. That is, both the conductivity and the surface measurements

are expressed as changes with respect to a working point (called reference or baseline), i.e.

∆σ=σ−σr and d =∆v = v − vr . In doing so the reconstructed images are less affected by

imperfections which remain stable during the measurement, such as electrode errors, differen-

ces in channel gains or mismatch between model and real body shape [1, 29, 2]. The reference

measurement vr is usually defined as the temporal mean over a section of the recording and

is implicitly related to σr , i.e. vr = F (σr ).

As we only seek to reconstruct changes ∆σ with respect to σr , we can further simplify the

4Note that the EIT raw data v are usually available as voltages and not necessarily as impedances. As they
are related by a simple scaling factor – the amplitude of the injected current – we use the following three terms
interchangeably: voltage measurements, impedance measurements or raw measurements.
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Chapter 3. Electrical Impedance Tomography

problem by linearizing the function F (σ) in its current operating point σr [80, 93, 7]:

F (σ) ≈ F (σr )+ J∆σ, with [J ]i , j =
∂[d ]i

∂[∆σ] j

∣∣∣∣
σr

, (3.3)

where J ∈Rnd×ne is the Jacobian or sensitivity matrix, with its elements [J ]i , j representing the

sensitivity of the i th surface voltage measurement to a conductivity change in the j th model

element. We can now attempt to estimate the change in intra-thoracic conductivity ∆σ̂:

∆σ̂= argmin
σ

||(v −vr )− (F (σ)−F (σr ))||2 −σr ≈ argmin
∆σ

||d − J∆σ||2 . (3.4)

However, this will not lead to a satisfying solution as we are dealing with an ill-posed and

ill-conditioned problem which requires regularization.

Regularized Inverse Problem

The reconstruction is regularized by introducing additional constraints which allow for nume-

rically stable results and make them more robust to interference and noise [80, 93]. A usual

approach is Tikhonov regularization which seeks the estimate ∆σ̂ by using the matrix P which

penalizes noisy images:

∆σ̂= argmin
∆σ

{||d − J∆σ||2W +λ2 ||∆σ||2P
}

, (3.5)

where:

• W ∈Rnd×nd is the weighting matrix used to attenuate measurements which are classi-

fied as unreliable, e.g. too noisy. W can be adapted to either completely remove failing

electrodes [97] or attenuate measurements classified as noisy [71, 98].

• The hyperparameter λ ∈R controls the amount of regularization, and can be seen as a

trade-off parameter between image robustness and accuracy [2]. In many cases, this

choice can be described as a “resolution-noise performance trade-off”.

• The regularization matrix P ∈Rne×ne can be chosen in various ways [80, 2], such as:

i) When set equal to the identity matrix (P = I ), zeroth-order Tikhonov regularization

is used. This simply penalizes for too high amplitudes of ∆σ̂ [5];

ii) By setting P based on edge-sensitive spatial filters (e.g. Laplacian) the recon-

structed image is penalized for sharp edges and thus forced to smoothness [5];

iii) The NOSER prior [33] calculated from J penalizes elements with higher sensitivity.

Equation (3.5) can be further simplified to matrix form:

∆σ̂= (
J T W J +λ2P

)−1
J T W d = Rd , (3.6)

where the reconstruction matrix R ∈Rne×nd now allows to obtain an EIT image ∆σ̂ via a one
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3.1. Principle of Thoracic EIT

single matrix multiplication with the difference data d . This is known as one-step Gauss-

Newton (GN) reconstruction, a typical algorithm used for reconstructing clinical EIT in real-

time. Another typical approach is the GREIT algorithm which is extensively described in [6, 66].

Various other algorithms (non-linear, recursive, etc.) exist, which would exceed the scope of

this work. The interested reader is referred to [10, 80, 7].

Issues Concerning Hyperparamter Selection

When creating and configuring an EIT reconstruction algorithm, a key decision is the selection

of an appropriate value for the hyperparameterλ. This value is often chosen empirically, which

is, however, not the solution of choice when one wants to compare two different types of algo-

rithms. To do this more systematically, different approaches exist which automatically choose

λ. Yet, none of these work well when one wants to compare measurement configurations

which differ in electrode position, electrode number or skip pattern.

This particular issue has been investigated in more detail in the present thesis and is presented

later on in Chapter 11. There, we also review the existing methods to select λ along with

the related problems and then present our novel approach able to overcome some of these

problems.

3.1.3 Separation of Ventilation and Cardiosynchronous Activity

Before analyzing EIT images for hemodynamic parameters, there is a third processing step

required. This is the extraction of cardiosynchronous changes, which need to be separated

from ventilation-induced impedance variations (see Step 3 in Figure 3.1). This is challenging,

since the former are about one order of magnitude lower than the latter and are thus also

more sensitive to measurement errors [52]. To perform this step, various approaches have

been proposed in literature as listed in the following:

• The simplest method is to perform a temporary breath-hold (apnea) [47]. While this

approach is often used in animal experiments it is not necessarily applicable in clinical

scenarios. Moreover, the hemodynamic changes resulting from apnea (e.g. hypoxic

vasoconstriction, absence of ventilation-induced SV variations) are not always desirable.

• Another method is the use of frequency domain filtering (e.g. high-pass or comb filters)

[106]. Even though adaptive filters can be used, their ability to track variations in heart

rate may not be sufficient enough.

• A third approach known as ECG-gated ensemble averaging consists in aligning the data

to a trigger reoccurring at cardiac frequency (e.g. the ECG’s R-peak) and averaging the

aligned data to one representative cardiac cycle (see Appendix B). Ensemble averaging

can be interpreted as a comb filter at cardiac frequency and its harmonics [139]. Aver-

aging N heartbeats attenuates noise by a factor of
p

N [122, 139]. In previous studies

usually 100 to 200 heartbeats were averaged leading to an attenuation of 10 to 14 [106].
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While ensemble averaging is efficient and easy to implement, it can neither be used in

cases of cardiac arrhythmia nor to assess ventilation-induced variations of SV.

• A more advanced approach based on the decomposition via principal component ana-

lysis has been proposed by Deibele et al. [43] and was further developed by Pikkemaat

[112, 113]. While these methods provide continuous (i.e. beat-to-beat) cardiosynchro-

nous EIT image sequences they could not be successfully applied in clinical measure-

ments.

In the current thesis, ECG-gated ensemble averaging was the method of choice because of its

simplicity and effectiveness when used on clinical data.

3.2 Previous Work on EIT-Based Stroke Volume Estimation

After having isolated the cardiosynchronous changes, the resulting EIT image sequences can

be processed in view of hemodynamic parameter estimation (see Step 4 in Figure 3.1). In the

current section we review previous work with particular focus on EIT-based SV estimation.

Compared to lung-related EIT, only little work has been published on the topic of cardiovascu-

lar EIT. Most of the studies targeted regional pulmonary perfusion which can be assessed using

injections of hypertonic saline as contrast agent [18, 50] or other – more indirect – approaches

listed in [52]. Besides this, Solà et al. [137] reported on the feasibility of estimating central

blood pressure via EIT using the pulse wave velocity principle in the descending aorta. Two

older studies address the signal interpretation [46] or suggest a better belt placement [154] for

cardiac imaging. Very recently, Proença et al. [120] have successfully shown the measurement

of pulmonary artery pressure via the pulse wave velocity assessed in the lung region. Apart

from that, most of the remaining literature in cardiovascular EIT concentrated on the estima-

tion of SV or CO via EIT which is presented hereafter in more detail.

(a) In 2000 Vonk Noordegraaf et al. [155] were the first to report on the estimation of SV

via EIT. Using pulmonary artery catheter thermodilution as a reference they trained

their algorithm on 23 patients. The calculations are based on the impedance change

from a region hypothesized to stem solely from ventricular activity. However, they

could not find a direct correlation between SV and this impedance change. Without

further reasoning they included a timing parameter as a second variable into their

model to achieve a better fit. The algorithm was then successfully validated on 11

healthy volunteers showing an error of 0.7±5.4 mL, when compared to cardiac MRI as

SV reference. In contrast to the traditional transversal EIT belt placement, they placed

the electrodes in an oblique plane, which is expected to improve the separation of atrial

and ventricular activity in the EIT images [154]. Data was measured using the Sheffield

mark I system [27] and processed after ECG-gating of 200 cardiac cycles.

(b) Some years later, in 2006, Zlochiver et al. [173] suggested to avoid the generation of

images by using a parametric reconstruction approach. Hence, an ellipsis representing
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the left ventricle was optimized to best fit the impedance values measured. The SV was

then simply estimated as the changes in volume of this ellipsis. A major drawback of

this study is the use of the controversial ICG technique (see Section 2.2.3) as reference

measure for SV. Furthermore, the approach is highly dependent on anatomical a priori

knowledge. In a later publication the same group presented a theoretical study – again by

using parametric EIT – showing the feasibility of SV estimation via six internal electrodes

of an implanted pacemaker device [102].

(c) In 2014 Pikkemaat et al. [114] demonstrated the feasibility of estimating SV in 14 pigs

via the heart-related impedance change by using a subject-specific one-point calibra-

tion. In certain animals they observed an unclear scaling of the heart amplitude and

hypothesized that it might be related to lung volume and also to the relative position of

the heart with respect to the EIT electrode plane. Due to these unresolved issues they

underlined the need for further investigations. Moreover, they questioned the accuracy

of thermodilution PCA as their SV reference and suggested using a second measurement

technique for validation purposes. Data was measured using the Dräger EIT Evaluation

Kit 2 and processed after PCA-based decomposition [112, 113].

While not available in the corresponding publication [114], in his thesis [113], Pikkemaat

also reports on the analysis of the lung-related impedance change zSVp . In experi-

ments where SV was modulated by changing the ventilation settings (the positive end-

expiratory pressure – PEEP), zSVp showed a higher correlation with SV (r = 0.69) when

compared to the heart amplitude zSVc (r = 0.64). On the other hand, when SV was

modified using Dobutamine – a positive inotropic agent – zSVp correlated less with SV

(r = 0.61) than zSVc (r = 0.64).

(d) Very recently da Silva Ramos et al. [41] performed investigations in twelve pigs where

EIT-based SV was estimated from the systolic amplitude in the lung region (∆Zsys). Large

variations in SV were induced via hemorrhagic shock and subsequent fluid challenges.

∆Zsys was compared to SV reference measurements from transpulmonary thermodilu-

tion and showed an acceptable trending ability (91.2 % concordance rate). In contrast,

absolute SV measurements were only accurate when taking into account body dimen-

sions. Data was measured using the Timpel ENLIGHT™ device and processed after

ECG-gating with a fixed time window of unknown length.

(e) Maisch et al. [96] were not estimating SV itself but its variations induced by ventilation

(known as SVV) and showed the feasibility of measuring this quantity in eight pigs

by means of EIT. Measuring SVV is of interest since it can be used to assess fluid re-

sponsiveness and therefore help to improve the intravascular volume of mechanically

ventilated patients [99]. Similar to the aforementioned method of central blood pressure

estimation [137], this approach exploits signal information from the descending aorta.

In 2017 Trepte et al. [148] reported on further investigations on 30 other animals where

EIT-based SVV estimation showed to be feasible in healthy lungs but comprised in acute

lung injury. In both studies data was measured using the Timpel ENLIGHT™ device.
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All the studies presented above show the necessity for further investigations and validations,

in particular for measurements on humans in real clinical environments – the main goal of

this thesis.

3.3 Controversial Origins of Cardiosynchronous EIT Signals

An important aspect to consider when aiming for EIT-derived hemodynamic parameter

estimation is the origins of cardiovascular EIT signals. As previously mentioned for ICG

(see Section 2.2.3), the issue is similar for cardiovascular EIT, namely that the exact origins of

the signals are unclear [106] and different interpretations exist [20].

For example, it is still widely assumed that the cardiosynchronous signals in the lung region

mainly reflect pulmonary perfusion which is not entirely correct as discussed by Hellige and

Hahn [74] and Adler et al. [11]. Moreover, the EIT heart signal is not solely caused by changes

in ventricular blood volume but mainly affected by cardioballistic effects of the heart as shown

in a recent simulation-based study by Proença et al. [119].

Therefore, before immediately starting to develop algorithms for hemodynamic parameter

estimation, it is of advantage to better understand the genesis of those signals. One approach

to this is by performing simulations on bioimpedance models – as it is already done for ICG

[149, 40, 42]. Afterwards, appropriate algorithms shall be created and verified with the aid of

the knowledge gained from these simulations.

To this end, we investigated cardiovascular EIT based on simulations on a bioimpedance

model of the human thorax which is presented in the subsequent chapters.
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4 Bioimpedance Models

4.1 Introduction

4.1.1 Motivation

In the previous chapter, we have mentioned the lack of understanding and the controversial

interpretations existing regarding the origins of cardiovascular EIT signals. To partly overcome

this issue we have created bioimpedance models of the human thorax which are presented in

the current chapter. Simulations on these models allow for the virtual measurement of EIT

data of which some would simply be impossible to obtain from real EIT recordings.

In contrast to the in vivo approach, the virtual – in silico – EIT measurements can be performed

with a quasi unlimited number of different configurations (electrode placements, EIT device

settings, etc.) simultaneously. Moreover, in view of gaining more understanding about the

EIT signal origins, the simulation-based approach allows to individually deactivate certain

structures (e.g. heart, aorta, etc.) and thus simulate the individual influence of each structure.

Finally, having the bioimpedance model linked to a hemodynamic model, further allows to

study the feasibility and limitations of EIT-based hemodynamic monitoring.

In the next section we review existing work on bioimpedance models and then present the

models created and used throughout this thesis.

4.1.2 Related Work

Upon initiation of the present research, only a few studies were available which reported

on bioimpedance simulations for EIT [76, 164]. However, these studies did not investigate

conductivity changes resulting from cardiovascular but from respiratory activity.

While in the work by Proença et al. [119] a dynamic 2.5D bioimpedance model was presented

and used to investigate the genesis of cardiac EIT signals, this model is limited by its lack of

dimensionality, i.e. a fully 3D model is necessary to simulate scenarios like belt displacements,
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or to assess effects resulting from out-of-EIT-plane sensitivity, etc.

During the course of the present thesis, other groups have developed 4D (3D+t ) bioimpedance

models specifically targeted to simulate EIT measurements of cardiovascular changes:

• Dinkelbach and Stender [44] have created a 4D model of a porcine thorax from dynamic

CT scans with high resolution. They placed EIT belts of 16 electrodes at five different

transversal planes located around the center of mass of the left ventricle. In view of

EIT-based CO monitoring, they correlated each EIT pixel with left ventricular blood

volume changes and concluded the following. First, electrode belts located at the level of

the ventricular center of mass or lower – towards the apex of the heart – are most suited

for CO estimation via EIT. Second, belt level variations of ±4 cm along the craniocaudal

axis, “only slightly impaired” their results in terms of correlation index.

• Murphy et al. [105] and Arshad et al. [13] have made use of the 4D XCAT model [133] – a

4D phantom of the human thorax for multimodality imaging research – to investigate

the feasibility of EIT-based CO monitoring. They both use the reconstructed heart area

(of the difference EIT signal between end diastole and end systole) as surrogate measure

for SV. While they observe a strong correlation between this feature an the simulated

SV, they also reveal a non-negligible influence of respiration, which they suggest to

overcome by using breath-gating.

Besides, in the field of impedance cardiography (ICG) various bioimpedance models have

been created and simulations have been performed to investigate the unclear origins of the

ICG signal [40]. An overview of such studies is given in the review by de Sitter et al. [42].

The objective of the present work was the development of a 4D bioimpedance model for EIT

which allows to (a) gain more understanding about the cardiovascular EIT signals, and (b) to

investigate the feasibility and limitations of EIT-based SV monitoring.

4.2 Hemodynamic 4D Bioimpedance Model of the Human Thorax

In the following sections we describe the creation of the hemodynamic 4D (3D+ t ) bioimpe-

dance model as also shown in Figure 4.1. First, we present the MRI data this model is based on

(Section 4.2.1), and then, each of the structures the model contains: the heart (Section 4.2.3),

the aorta (Section 4.2.4) and the lungs (Section 4.2.5).

4.2.1 MRI Data

The models presented hereafter are based on the following three magnetic resonance imaging

(MRI) recordings which were performed on a human volunteer (62 kg, 178 cm, 28 years old) in

supine position during expiratory breath-hold:
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• (M1) A batch of 2D transverse plane scans covering the thorax outline from the di-

aphragm up to the apices of the lungs;

• (M2) Two 2D batches of dynamic cardiac cine scans showing the whole heart in short

axis or in four chamber long axis view, covering 25 frames of the cardiac cycle;

• (M3) Dynamic 2D scans located at four different placements along the aorta revealing

the distension of the aortic cross section with at least 60 frames / heart cycle.

4.2.2 Static Thorax

The thorax outline was segmented from the MRI scan M1 by a region-growing algorithm

using OsiriX [125] and then meshed to a smoothed 3D volume with Netgen [131]. Using the

open-source EIT software toolbox EIDORS [5], five EIT belts – each comprised of 64 electrodes

– were applied at different levels along the craniocaudal axis as follows (see also Figure 4.1a):

(1) the TM (transversal middle) belt was placed at the average level of the heart, which is in

between the 9-th and 10-th thoracic vertebra; The belts (2) TH (transversal high) and (3) TL

(transversal low) were placed 3.5 cm higher and lower than TM, which is at the level of the

8-th (for TH) or in between the 10-th and 11-th (for TL) thoracic vertebra; The remaining two

belts, (4) TMH (transversal middle-high) and (5) TLM (transversal low-middle), were placed

1.75 cm higher and lower than TM, corresponding to the 9-th (for TMH) or 10-th (for TLM)

thoracic vertebra level. To ensure accurate calculations, the FEM was refined in the vicinity of

the electrodes with the approach described by Grychtol and Adler [65].

Additionally, a sixth belt, OM (oblique middle) is available (see Figure 4.1b). This electrode

placement was obtained by tilting the TM belt by 30° from transverse to coronal, as suggested

for improved cardiac EIT by Vonk Noordegraaf et al. [154]. In the current thorax model, the

TH
TMH

TM
TLM

TL

(a) Transversal Belts (b) Oblique Belt

Figure 4.1 – 4D bioimpedance model of the human thorax with (a) transversal and (b) oblique
electrode belt placements (see text Section 4.2.2). The EIT electrodes are shown in light blue.
The static thorax model contains the following dynamic structures: heart with atria (dark blue)
and ventricles (red), aorta (gray) and both lungs (green). Please note that for the sake of clarity
only 32 (instead of 64) electrodes are shown per belt.
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OM belt placement is approximated in that it was created by combining electrodes already

available from the transversal belts. Even though this approximative approach might lead to

slight positioning errors, it was preferred since it significantly reduces computation time.

Based on observations from the MRI scans, the intra-thoracic background conductivity is

composed of a mixture of 48 % muscle, 47 % fat and 5 % bone (Table 4.1), which is in line with

observations from thoracic CT scans [117].

Table 4.1 – Tissue conductivities and composition of the different structures present in the
bioimpedance model.

Structure Tissue Composition Tissue Conductivity: σTissue (S/m)

Background Muscle, Fat, Bone f (0.384,0.0435,0.0211) = 0.206

Heart (Endocardium) Blood 0.710

Heart (Epicardium) Myocardium 0.238

Aorta Blood 0.710

Lungs Blood, Lung Alveolar Tissue f (0.710,0.100) [118, p. 89]

Note: All values are at 200 kHz and based on the public database provided by Hasgall et al. [73].

4.2.3 Dynamic Heart

The heart is represented by a 4D surface model of its four chambers: left/right atria/ventricles,

as also shown in Figure 4.2a. For each of these structures a dynamic representation of its inner

and outer boundaries (i.e. the endo- and epicardium) were segmented from the dynamic MRI

scans M2 with the approach by Hoogendoorn et al. [81] as described in [21].

This model was further improved in view of altering the ventricular volumes, i.e. to obtain

different SVs. To this end, the volumes of the left (LV) and right ventricle (RV) were artificially

modified over the entire cardiac cycle as follows. For both ventricular structures a median line

was defined ranging from its apex to the center of its semilunar valve at end diastole. Then,

to alternate the ventricular volume, all vertices of the corresponding model were displaced

radially to the aforementioned median line. This leads to either shrinking or dilating of

the corresponding ventricle. To obtain a specific ventricular volume the abovementioned

procedure is applied in an iterative manner until the volume of the scaled ventricles matches

the desired volume. Besides, for each iterative step, the endocardial structure is scaled first

and then the epicardial structure is adapted keeping a constant volume difference between the

two structures and thus ensuring the quasi incompressibility of myocardial tissue [156, 17].

With this approach, end systolic (ESV) and end diastolic volumes (EDV) of both, left and right

ventricles, can be adjusted artificially. Moreover, the SV of the left and right heart were defined

to be identical: SVR = EDVR −ESVR = SVL = EDVL −ESVL. Besides, a constant difference of

EDVR −EDVL = 28mL was set to account for the physiological difference between left and
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(a) (b) (c)

Figure 4.2 – (a) The 4D heart model in end diastole with the epicardia of the atria (blue), the
right (yellow) and left (red) ventricle. The epicardia are slightly transparent such that the
underlying endocardia are visible. (b) Circular model of the aorta (> indicate three belt levels)
with the distension dynamics r1(t ) to r5(t ) at five locations (red arrows) which were combined
to obtain (c) the time- and position-dependent aortic radius modulation curve rA(t , lA), shown
at three different positions ( blue, red, black: lA = 0, 15.8 or 31.6 cm) along the aorta.

right ventricular volume observed in the MRI scans.

Epicardia and endocardia are assigned with myocardial and blood conductivity as listed in

Table 4.1.

4.2.4 Dynamic Aorta

The volume of the aorta was extracted from MRI scan M1 by applying a volumetric snake

segmentation [169]. Then, the centreline of the aorta was obtained by skeletonization of this

volume. Finally, the aortic model was constructed by interconnecting 29 circles equidistantly

spaced on this centreline (Figure 4.2b), which all allow individual modulation of their radii.

To determine the temporal development of the aortic radius, an aorta-specific 2D+ t snake

segmentation [77] was applied to the MRI scans M3, leading to a measure of aortic radius

at five different locations along the aorta (r1(t ) to r5(t ) in Figure 4.2b). These were averaged

to one single normalized aortic waveform PA(t), and combined with the radius of the aorta

in relaxed state RA(lA) (at a position lA from the aortic valve, see Figure 4.3), resulting in the

aortic radius modulation function rA(t , lA) depicted in Figure 4.2c and defined as follows:

rA(t , lA) = RA(lA)

[
1+DISTA ·PA

(
t − lA

PWVA

)]
, (4.1)

where PWVA denotes the aortic pulse wave velocity at which the pressure wave travels along

the aorta, and DISTA the maximal relative radial distension of every single aorta circle. DISTA

was simplified as constant value of 10 %, which is more conservative than the 12 % observed
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Figure 4.3 – Aortic radius as a function of the distance lA from the aortic valve in two states:
minimal ( blue) and maximal distension ( red).

in the MRIs and in the range of normotensive subjects [83].

The individual modulation of the 29 aortic radii based on Equation (4.1), in combination with

different PWVA settings, thus allows the simulation of different systemic blood pressure values.

The aorta model is assigned uniformly with the conductivity of blood (Table 4.1).

4.2.5 Dynamic Lungs

The spatio-temporal representation of the electrical conductivity in the lungs is based on a

detailed model of the pulmonary circulation proposed by Proença et al. and further explained

in [118, 121].

This model allows the simulation of different levels of pulmonary artery pressure (PAP) and

various types of pulmonary hypertensive conditions: PAH (pulmonary arterial hypertension),

PHLHD (pulmonary hypertension due to left heart disease), HAPE (high altitude pulmonary

edema), CTEPH (chronic thromboembolic pulmonary hypertension).

4.2.6 Simplified Models

At an earlier stage of the present thesis, a simplified version of the current model was available.

This includes a heart model mainly consisting of two cropped ellipsoids (Section A.2.1), a

static lung model (Section A.2.1) and the aorta model already described above (Section 4.2.4).

This first version of the model was used in a study, in which different EIT measurement settings

were investigated in view of measuring systemic blood pressure via the aortic pulse arrival

time. This study is available in Appendix A.
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4.3 Practical Aspects of Simulations

In order to perform virtual EIT measurements with the dynamic bioimpedance model pre-

sented above, for each moment in the cardiac cycle simulated, the static thorax model

(Section 4.2.2) is assigned a different conductivity, thus incorporating the dynamics of the

model. Each of the structures (aorta, heart, etc.) is processed in a prioritized order, and all FEM

elements having their center of mass within the 3D surface of the corresponding structure

[95] are assigned its conductivity.

The approach of using a static thorax model was chosen for the reason that forward solving

can be much faster when performed always on the same model. Besides, time consuming and

complex mesh deformations can be avoided and there is no risk of potential artefacts arising

from mesh variability [4].

To minimize quantization errors arising from this approach, the static thorax mesh was refined

in the vicinity of moving structures and the refinement level adapted to the magnitude of

displacement of the corresponding structure. In our particular case, the default maximal edge

length of the finite elements of 5 mm was reduced to 2 mm and 1 mm close to the border of

the heart and the aorta, respectively. The local mesh refinement of the volume mesh was

performed using the gmsh software [59].

Finally, to allow for faster computation times, a parallel forward solver – similar to [19] – was

used. One cardiac cycle could thus be simulated within less than 30 min, instead of the initial

2 h.

4.4 Limitations and Future Work

One could criticize different aspects of the current model. In the following, we attempt to list

such limitations which could be improved in future work:

• General Aspects

– The entire model is based on data from only one single healthy subject in supine

position.

– The current model is based on MRI scans in expiratory breath-hold and no changes

related to respiration (except for changes in alveolar lung conductivity) can be

simulated. Even though thorax excursions due to respiration have shown to be

small [170], organ deformation and displacement resulting from respiration have

shown to be more important [170] and should be taken into account.

– As thoroughly studied by Gaw [57] and other researchers, the conductivity of blood

is anisotropic and depends on the orientation of the red blood cells. The changes in

blood conductivity resulting from blood flow should thus be considered in future
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models. This is also stated as a requirement in the review by de Sitter et al. [42] (for

the application of ICG).

– Additionally, skeletal muscles have shown to be a big contributor to the impedance

signal [111] and are suggested to be included in models according to de Sitter et al.

[42]. Even though this is for the application of ICG, with an electrode placement

different to that of EIT, it might be worth considering this aspect.

– Further cardiosynchronous conductivity changes which should be considered in a

more extensive model are listed in [11].

• Dynamic Heart

– Even though the current dynamic heart model enables the simulation of different

SVs, these changes were generated fully artificially with a manual initialization

of the median line (see Section 4.2.3). The use of a statistical heart model (e.g. a

publicly available one [151]) covering realistic variations of a larger population,

would be more representative.

– The abovementioned displacement and deformation of the heart resulting from

its interaction with the breathing lungs would be worth considering. Using an

existing model would be a good starting point: e.g. the XCAT model [133].

• Dynamic Aorta

– Currently, the distension of the aortic radii is only modulated in time but not in

amplitude. A more advanced circulatory model (similar to the one of the lungs

[118]) could be combined with the existing geometric model to a more realistic

representation of the aorta.

– The aorta is represented by blood conductivity only. For being more precise, a

different conductivity should be assigned to the aortic wall.

• Dynamic Lungs

– Limitations concerning the lung model are discussed by Proença [118, page 103].

• Model Validation

– The present model is further limited in that it could only be partially validated.

That is, the findings from simulations on the pulmonary model regarding EIT-

derived PAP estimation performed by Proença et al. [121] have been confirmed

by practical measurements [120]. However – although directly derived from real

MRI scans – neither the heart nor the aorta model were validated against real EIT

measurements which is recommended for future work.

Despite these limitations, the bioimpedance model was successfully applied to investigate

the origins of cardiac EIT signals, as well as the feasibility and challenges of EIT-based SV

estimation, which is described in the two subsequent chapters.
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Chapter 5. Investigations on the Origins of Cardiac EIT Signals

5.1 Introduction

As alluded to in the previous chapters, one remaining issue regarding cardiovascular EIT is

the poor understanding of the signal origins. A better understanding of the cardiac EIT signal

genesis is crucial for the development of reliable algorithms in view of advancing EIT towards

daily clinical use.

To do so, we performed simulations on the 4D hemodynamic bioimpedance model presented

in the previous chapter. In particular, we investigated the origins of EIT signals in the heart

region for two different electrode belt placements commonly used in cardiac EIT.

5.2 Methods

5.2.1 Simulations

The current simulations were performed on the bioimpedance model consisting of the

static thorax model (Section 4.2.2) in combination with the dynamic models of the heart

(Section 4.2.3), aorta (Section 4.2.4) and lungs (Section 4.2.5). Using this model, EIT impe-

dance measurements were simulated for two electrode belts placed either in a transversal

plane at the level of the heart (TM belt, see Figure 4.1a) or in an oblique plane by tilting the

TM belt by 30° from transverse to coronal (OM belt, see Figure 4.1b) – initially suggested by

Vonk Noordegraaf et al. [154] for a better separation of atrial and ventricular activity in cardiac

EIT.

Simulations were performed on 32 equidistantly spaced electrodes with a skip 4 measurement

pattern [53]. EIT images were reconstructed using the GREIT algorithm with the recommended

settings [6] and a noise figure (NF) of 0.5 [62].

First, for each belt, one heart cycle was simulated with all structures (ventricles, atria, lungs

and aorta) contributing to the intra-thoracic impedance change. Then, to investigate the

individual signal contribution, each structure was simulated independently. This lead to the

simulation of five different heart cycles per belt placement: (a) all structures active, or only

the (b) ventricles, (c) atria, (d) lungs or (e) aorta. This assumes that the superposition of all

individual simulations (b) to (e) is equal to the simultaneous simulation of all structures (a).

5.2.2 Signal Analysis

For each of the cardiac cycles simulated, a cardiosynchronous activity image (CAI) was calcula-

ted. These images were computed via the pixel-wise standard-deviation in the time domain

and thus represent the signal strength – i.e. the cardiosynchronous EIT activity – at each single

pixel.

Then, the heart region was determined from the CAI of simulation (a), where all structures
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Figure 5.1 – Images of cardiosynchronous activity (CA) for (a) all structures together and
(b) to (e) all structures separately: (Top) transversal and (Bottom) oblique belt placement.
The delineated regions represent the heart ( red), the ventricles ( green), and the atria
( yellow).

Figure 5.2 – EIT images showing the conductivity difference (end systole relative to end
diastole) for (a) all structures together and (b) to (e) all structures separately: (Top) transversal
and (Bottom) oblique belt placement. The delineated regions represent the heart ( red), the
ventricles ( green), and the atria ( yellow).

were active. To this end, one pixel of the heart region was manually selected and the region

automatically extended to all pixels of the CAI image above a certain threshold (25 % of the

maximal amplitude).

Finally, the contribution of each individual structure to the global impedance change in the

heart region was determined by summing up all pixels of the corresponding CAI in that region.

5.3 Results and Discussion

Figure 5.1 shows the cardiosynchronous activity for both belt placements and all different

simulations. The corresponding EIT difference images are shown in Figure 5.2. It can be

observed that the heart region ( red) obtained from (a) coincides more with ventricular

( green) and less with atrial activity ( yellow).

The contribution of each structure (b) to (e) to the overall cardiac EIT signal (a) is illustrated in

Figure 5.3. For the transversal belt the cardiac signal originates for: 77.4 %, 9.7 %, 7.4 %, 5.5 %,

and for the oblique belt for: 82.6 %, 9.7 %, 4.5 %, 3.3 % from ventricular, atrial, pulmonary or

aortic activity, respectively. The ratios between ventricular and atrial contribution do not vary
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Figure 5.3 – Bar chart showing the percentage to which each structure is contributing to the
EIT heart signal for transversal and oblique belt placements.

considerably between transversal (77.4%/9.7% = 8.0) and oblique belts (82.6%/9.7% = 8.5).

This is not in line with the findings by Vonk Noordegraaf et al. [154] since an oblique belt

placement did not lead to a significantly improved separation between atrial and ventricular

activity in the EIT heart region. Nevertheless, the use of an oblique belt slightly reduces the

pulmonary and aortic activity and thus also marginally increases ventricular contribution in

the heart region.

5.4 Limitations and Future Work

The current findings are limited in that only one specific scenario with fixed EIT device

settings and hemodynamic parameters was simulated. If this research question gains higher

importance, different hemodynamic parameters and belt placements should be investigated.

Besides, the current analysis relies on the assumption that the superposition of individual

simulations of each structure (simulations (b) to (e)) is equal to simulating all structures at the

same time (simulation (a)). This is strictly speaking wrong, but can be valid to a certain extent.

To verify the validity of this approach, the CAI of simulation (a) was compared to the CAI of the

superposition of simulations (b) to (e). The mean relative error in the heart region was found

to be less than 2.2 %, which justifies the use of this assumption for this particular analysis.

5.5 Conclusion

In view of gaining more understanding about the signal origins of EIT signals in the heart

region we performed simulations on the 4D bioimpedance model.

Our findings reveal that – for two commonly used belt placements – the EIT heart signal is

dominated by ventricular activity (≥77% contribution). In contrast to previous studies [154],

we could not observe a substantially better separation between ventricular and atrial activity

when using an oblique instead of a transversal belt placement, but to a small extent less

contribution from pulmonary and aortic activity.
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Chapter 6. Feasibility and Limitations of EIT-Based Stroke Volume Measurement

6.1 Introduction

6.1.1 Objectives

As shown in the previous chapter, the EIT heart signal is strongly dominated by ventricular

activity. This gives hope for the feasibility of an EIT-based SV monitor, which is investigated in

detail in the present chapter by means of simulations on the bioimpedance model.

The goal of these investigations is two-fold. First, we study the feasibility of EIT-based SV

monitoring. Then, we investigate and quantify potential limitations and challenges one could

face in experimental and clinical scenarios when assessing SV by means of EIT.

6.1.2 Motivation

In the past, several studies have investigated the feasibility of EIT-based SV either via simulati-

ons [173, 119, 44, 105, 13] or real measurements [155, 114, 113, 41]. However, only a few studies

describe limitations and challenges related to cardiovascular EIT monitoring, in particular

concerning the monitoring of SV. Patterson et al. [110] concluded that, in healthy volunteers,

the cardiac EIT signal depends strongly on electrode position, lung volume and posture. In pig

experiments, Pikkemaat et al. [114] observed variations in the subject-specific scaling of the

cardiac EIT signal, which were interpreted to stem from lung volume or heart and belt position.

In a simulation study, Arshad et al. [13] showed a strong respiration-related dependence in the

EIT heart signal.

As accurate monitoring results are of importance for reliable diagnostics, we investigate to

what extent SV monitoring via EIT can be impaired. Specifically we seek to estimate the

amount of uncertainty introduced into this EIT-based hemodynamic parameter due to the

variability in realistic clinical and ambulatory scenarios. To do so, we first list potential

confounding factors and then study how seriously some of these factors affect the estimation

of SV. The four confounding factors selected are: (1) electrode belt displacement, (2) electrode

detachment, (3) changes in hematocrit, and (4) changes in lung air volume.

In the current study we perform simulations on the 4D thoracic bioimpedance model presen-

ted in Chapter 4. This allows a systematic and individual investigation of potential confoun-

ding factors, which is practically impossible in real measurements. As mentioned above, the

few limitations reported for SV monitoring via EIT are mainly based on observations from

real measurements. This is thus – to the best of our knowledge – the first work systemati-

cally identifying and quantifying potential challenges for EIT-based SV monitoring, based on

simulations on a bioimpedance model.

44



6.2. Methods

6.2 Methods

In the following, we first refer to the dynamic bioimpedance model used to perform EIT

simulations. Next, we list potential confounding factors and describe the four potentially

harmful ones investigated, together with other simulation parameters. Then we explain the

signal processing steps used to estimate SV from EIT image sequences. Finally, we describe

the analysis applied to evaluate and quantify the decrease in performance resulting from each

of the confounding factors.

6.2.1 Dynamic Bioimpedance Model

The current simulations were performed on the bioimpedance model consisting of the

static thorax model (Section 4.2.2) in combination with the dynamic models of the heart

(Section 4.2.3), aorta (Section 4.2.4) and lungs (Section 4.2.5). These models and the simula-

tion framework are also illustrated in Figure 6.1.

All simulations were performed on each of the five transversal belts with 32 electrodes using

a bipolar stimulation pattern with four inactive electrodes between the two ones actively

measuring voltage/injecting current, also known as skip 4 [55] and employed by the Swisstom

BB2 device.

Heart 
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Figure 6.1 – Block diagram of the simulation framework and the possible parameters to be
adjusted in the bioimpedance model: heart rate (HR), stroke volume (SV), hematocrit (Ht),
pulmonary artery pressure (PAP), lung filling factor (FF). This framework further allows the
simulation of electrode displacement and detachment. EIT image sequences of a full cardiac
cycle are reconstructed for each simulation.
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Figure 6.2 – Block diagram of the analysis used to estimate SV from EIT image sequences.
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6.2.2 Simulations Performed

Physiological Parameters

In view of mimicking physiological meaningful SV variations, different cases of changes in

preload, afterload and inotropy were simulated. Initially proposed in [119, 118] and adapted

to the current model, this lead to eleven values of SVRef as listed in Table 6.1.

Table 6.1 – Simulated physiological parameters adapted from [119, 118]: end diastolic (EDV)
and end systolic volume (ESV), stroke volume (SVRef) and pulmonary artery pressure (PAP).

Description EDV (mL) ESV (mL) SVRef (mL) PAP (mmHg)

Preload (large decrease) 85.9 39.9 46.0 12.06

Preload (moderate decrease) 99.0 45.6 53.4 12.71

Preload (small decrease) 112.0 51.3 60.7 13.35

Inotropy (decrease) 140.6 79.8 60.8 13.37

Afterload (increase) 135.4 74.1 61.3 13.41

Baseline 125.0 57.0 68.0 14.00

Afterload (decrease) 119.8 45.6 74.2 14.55

Inotropy (increase) 114.6 39.9 74.7 14.59

Preload (small increase) 140.6 59.9 80.8 15.13

Preload (moderate increase) 156.3 62.7 93.6 16.25

Preload (large increase) 171.9 65.6 106.3 17.38

Note: All simulations assumed a constant heart rate (HR = 80bpm) and PAP was calculated assuming a
constant pulmonary vascular resistance (Rt = 0.0662mmHg · s/mL): PAP = Rt ·SVRef ·HR/60+8mmHg

Investigations on Potential Confounding Factors

When measuring EIT in realistic clinical or ambulatory scenarios, various factors – external

(i.e. affecting the EIT system) or internal (i.e. affecting the human body under measurement) –

can alter the EIT data measured and thus also the SV estimates derived thereof.

In the following, we first attempt to elucidate possible factors affecting cardiovascular EIT

measurements. These are: (1) electrode displacement: shifting during a measurement or

misplacement between different measurements; (2) issues with electrode contact, e.g. de-

tachment or drying out of contact gel; (3) changes in blood conductivity due to changes in

hematocrit; (4) changes in lung conductivity due to respiration, liquid redistribution, extra-vas-

cular lung water, etc.; (5) respiration-induced thorax excursion, displacement and deformation

of heart, lungs and other tissues; (6) posture- and gravity-induced changes such as organ

and liquid redistribution; (7) electronic noise and disturbances; (8) impedance changes due

to the pulsatile reorientation of red blood cells [57] or other anisotropic structures, e.g. the

myocardium [11].
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While (5) and (7) can – at least partly – be reduced and averaged with the proper filtering

technique (i.e. ECG-gated ensemble averaging), (6) might be less important when targeting

bedside EIT. Due to its complexity and the assumed equally importance of the other remaining

factors, (8) was not investigated in the present work.

The remaining four potential confounding factors (1), (2), (3), and (4) were studied and are

described in more detail hereafter:

1. Electrode belt displacement: When using an EIT system where all electrodes are in-

cluded in a belt, the whole of electrodes can be displaced in longitudinal (up/down)

direction or rotated (left/right). This problem can occur during the same measurement

or between different measurements where the belt needs to be reapplied – without ne-

cessarily having the knowledge of the exact belt position of the preceding measurement.

For an EIT system based on self-adhesive electrodes only the latter can apply.

The TM belt (located at the height of the ventricles, see Figure 6.1) is considered as the

“baseline” belt placement to which all the other displacements are being compared to.

By using the other four belts (TL, TLM, TMH, TH) a up- and downward displacements

of 1.75 and 3.5 cm were simulated.

For rotational belt displacements, two levels of magnitude were simulated by shifting the

belt by 0.5 or 1.0 electrode spacing to the left/right, respectively. At the present thorax

circumference of about 90 cm these shifts correspond to rotational displacements of 1.4

and 2.8 cm, respectively.

2. Electrode detachment: The contact of certain EIT electrodes with the human body

can be or become bad for various reasons (movement of the patient via internal or

external influence, drying of electrode gel, pectus excavatum, etc.). To ensure reliable

EIT images, the measurements related to these electrodes need to be removed prior to

reconstruction. To this end, we simulated the detachment of each single electrode and

all possible pairs of electrodes, leading to
(32

1

)+ (32
2

)= 528 combinations. Failing electro-

des are compensated during EIT image reconstruction with the algorithm described in

[97].

3. Lung air volume changes: Due to respiration, intra-thoracic conductivity distribu-

tion changes significantly between in- and expiration. To this end, we simulated four

different lung air volume levels: (1) forced expiration, (2) expiration, (3) between in-

and expiration, and (4) inspiration. These four levels, corresponding to filling factors

of FF = [1.3,2.0,3.0,4.8], were simulated using lung alveolar tissue conductivities of

σL = [0.12,0.10,0.08,0.06] S/m according to [126]. Even though respiratory activity nor-

mally involves other changes (i.e. deformation and/or displacement of lungs, heart and

thorax [170]) the current model simulates breath-hold and does therefore only support

changes in σL.

4. Hematocrit changes: The percentage of red blood cells in the blood – known as hemato-
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crit – does significantly influence the electrical conductivity of blood σB. To investigate

the influence of hematocrit-related changes, we simulated five physiological hematocrit

levels (Ht = [35,40,45,50,55] %), which were transformed to the corresponding blood

conductivity levels (σB = [0.87,0.78,0.70,0.63,0.56] S/m) according to [58].

EIT Image Reconstruction

Following the pipeline illustrated in Figure 6.1: the raw data resulting from simulations were

reconstructed into EIT images using the GREIT algorithm [6] with the recommended parame-

ters and a noise figure (NF) of 0.5 [62]. The reconstruction is based on a coarse version of the

forward model with uniform conductivity and uses the TM belt placement.

6.2.3 SV Estimation

The present approach to estimate SV from EIT image sequences is based on hypothesis that

the amplitude of the EIT heart signal is proportional to the SV, as also reported by other groups

[114, 155]. The algorithm used is fully automatic and consists of the following three steps also

illustrated in Figure 6.2: (1) determination of the heart ROI, (2) estimation of the heart sum

signal amplitude ∆σH as SV surrogate measure, and (3) the calibration function.

The heart ROI detection is exemplified in Figure 6.3 and performed as follows. First, each

pixel is assigned to the heart or non-heart region according to its phase at cardiac frequency

(similar to the lung ROI detection in [120, 118]). Second, the potential timing of end systole is

identified as the minimum of the sum signal of all potential heart pixels. Thirdly, a difference

image (end diastole minus end systole) is calculated. Finally, the heart region is identified

as the biggest region with positive amplitude in this difference image where all pixels with

an amplitude below an automatically determined threshold [109] got removed. The heart

amplitude ∆σH is then computed from the sum signal in the aforementioned heart ROI as

the amplitude between end diastole and end systole. The calibration transforming ∆σH from

arbitrary units into SVEIT expressed in mL is described in the next section.

6.2.4 Analysis and Performance Evaluation

To investigate the performance of the EIT-based SV estimates, different figures of merit were

defined to quantitatively assess the errors caused by the aforementioned confounding factors.

The influence of each of the confounding factors is assessed by comparing to the baseline

configuration: TM belt, no belt displacement, no detached electrode, σL = 0.10 S/m (FF = 2.0)

and σB = 0.70 S/m (Ht = 45%).

The conductivity amplitude in the heart region ∆σH (computed as described in Section 6.2.3),

is transformed into SV values expressed in mL as follows. We first compute the linear fit

( fH (x) = a ·x +b) between the simulated SV values SVRef and the EIT-derived heart-amplitude
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6.2. Methods

Figure 6.3 – Example output of the algorithm used for detecting the heart ROI (dotted lines in
images) as described in Section 6.2.3. CAI stands for cardiosynchronous activity image (i.e. the
pixel-wise standard deviation in the temporal domain). The phase image depicts the phase
shift ϕ of the first harmonic at cardiac frequency fc proportional to cos

(
2π fc t +ϕ)

, where
t = 0 is defined as end diastole.

∆σH of the baseline configuration. All ∆σH are then transformed into SV values with exactly

the same calibration function, i.e. SVEIT = fH (∆σH). This allows to investigate the influence

of the different confounding factors while assuming an initial calibration of the EIT vs a SV

reference.

In a first analysis (Analysis I), based on Bland-Altman analysis [12], we quantify the abso-

lute εAbs and relative error εRel between the estimate SVEIT of the current vs the baseline

configuration. Besides, the correlation coefficient r between SVEIT and SVRef is computed.

Measurements are considered as reliable if the 95 % confidence interval of εRel does not exceed

±10%, which is one third of the ±30% error reported for invasive thermodilution and thus

assumes averaging of at least three reference measurements as typically done in practice [37].

In a second analysis (Analysis II), we analyze the trending ability of the EIT-based SV values,

that is the ability of SVEIT to track changes in SV, but not absolute values of SV. To this end, we

first compute the changes of SV from an initial starting measurement and obtain the SV chan-

ges ∆SVEIT and ∆SVRef, respectively. Then we plot ∆SVEIT vs ∆SVRef in a four-quadrant plot, a

common methodology to assess trending ability [37, 130] (see examples in Figure 6.4). The

four-quadrant plot was chosen over the polar plot because of its more intuitive interpretability

and the fact that only noisy but not the most discordant measurements are excluded [130]. We

further quantify the trending ability by means of (1) the angular error εα and (2) the angular

concordance rate CR. (1) εα is defined as the angle between the identity line (∆SVEIT = ∆SVRef)

and the line from the origin to the point (∆SVRef, ∆SVEIT); (2) CR represents the percentage of

measurements with an angular error within a given threshold of εα ≤±30%, which is more

restrictive than the traditional concordance rate (including all measurements lying in the

1st and 3rd quadrant). According to Critchley et al. [38] the following criteria are required to

ensure acceptable trending ability: CR > 92%, mean angular error <±5°, confidence interval

of angular error <±30°.
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Figure 6.4 – Illustrative examples of trending analysis by means of four-quadrant plots [37, 130].
Three cases were artificially generated: (a) the best case with no single outlier (CR = 100 %) and
an angular error within the accepted limits defined in Section 6.2.4; (b) mediocre case with CR
within the accepted limits but with a too high deviation and bias of εα; (c) worst case where
both CR and the εα are unacceptable. In all plots the exclusion zone (gray shaded square area)
was set to ±10mL.

6.3 Results and Discussion

6.3.1 EIT Heart Amplitude

Before analyzing SVEIT values, we first examine the relationship between the uncalibrated

heart amplitude ∆σH and the reference SVRef. This is because the analysis of ∆σH can reveal

more information which might not be apparent in SVEIT, as certain information might get lost

during the calibration from ∆σH to SVEIT.

Figure 6.5 shows the heart amplitude ∆σH for the eleven SVRef and five belt placements

simulated. For all placements, a high correlation (r ≥ 0.998) was observed between ∆σH and

SVRef, which is in line with other simulation-based studies [44, 105]. However, one can also

observe that there is an inferior limit of detection where ∆σH crosses the SVRef axis. This limit

(SVMin) varies from 20 mL (for the lowermost belt) to 40 mL (for the uppermost belt). It is

hypothesized that SVMin is given by the ratio of signal strength between ventricular versus

other signal sources (e.g. lungs, atria, aorta), which are attenuating the former. The lower

the belt is placed the lower SVMin due to the stronger ventricular and lower pulmonary signal

contribution and vice versa. The apparent high variations of ∆σH arising from changes in belt

placement, in particular the resulting error on SVEIT, are analyzed hereafter.

6.3.2 Analysis I - Absolute SV

Belt Displacement

The influence of up/down and left/right electrode belt displacement are shown in Figure 6.6

and the resulting errors are listed in Table 6.2. It can be observed that after all types of belt

displacement SVEIT still remains highly correlated with SVRef (r ≥ 0.99 in Table 6.2, which is in
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Figure 6.5 – EIT-derived heart amplitude ∆σH as a function of simulated stroke volume SVRef

for five different transversal belt placements: TH, TMH, TM, TLM, TL (see Figure 6.1).

line with other simulation-based studies [44, 105].

However, the up- and downwards belt shifts introduce a significant bias in SVEIT, i.e. a down-

wards shift leads to an increase and a upwards shift to a decrease of SVEIT, respectively. This

can be explained by the increase of ventricular and decrease of the pulmonary signal contri-

bution when shifting the belt downwards, whereas the opposite applies for an upwards shift.

This bias can get as high as 28.2 % and as low as −29.2 % when shifting the belt downwards or

upwards by 3.5 cm, respectively.

In contrast, the errors caused by the rotational belt shifts are smaller: i.e. a leftwards shift of

2.8 cm results in a bias of 13.4 % whereas the bias for rightwards shifts is highest at 1.4 cm with

only −5.3 %. The asymmetry of errors observed between left and right shifts is assumed to

be due to the non-central position of the heart and the uneven distribution of lung volume

between left and right.

Table 6.2 – Absolute error (εAbs), relative error (εRel) and correlation coefficient (r ) of SVEIT

for different electrode belt displacements when compared to the baseline configuration. Cell
shadings indicate whether the acceptance criteria (see Section 6.2.4) are met (green) or not
(red).

Up/Down Displacement Left/Right Displacement

↑ 3.5 cm ↑ 1.8 cm ↓ 1.8 cm ↓ 3.5 cm ← 2.8 cm ← 1.4 cm → 1.4 cm → 2.8 cm

εAbs (mL) −20.9±6.1 −11.2±3.1 10.7±2.4 19.7±3.7 9.6±2.7 5.0±1.4 −3.8±1.2 −2.2±0.5

εRel (%) −29.2±1.6 −15.6±0.8 15.2±0.7 28.2±2.1 13.4±1.0 7.1±0.7 −5.3±0.8 −3.4±1.3

r 0.9987 0.9993 0.9995 0.9984 0.9995 0.9998 0.9993 0.9990
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Figure 6.6 – Influence on SVEIT by (a) up/down and (b) left/right electrode belt displace-
ments. The relationship of reference SV (SVRef) and EIT-based SV estimates (SVEIT) is shown
in the upper plots. The lower plots depict the relative error between SVEIT and the baseline
configuration.

Electrode Detachment

The relative errors in SVRef resulting from the detachment of one or two electrodes are shown

in Figure 6.7. The errors were calculated over the eleven SVRef simulated and are visualized

per electrode to show the influence for each of the electrodes individually. Table 6.3 further

lists the error statistics for a selection of eight electrodes when involved in the removal of two

electrodes.

The overall error is −1.08±1.23 % (−0.78±0.95 mL) when removing one electrode (Figure 6.7a)

and −2.28±1.79 % (−1.66±1.44 mL) when removing two electrodes (Figure 6.7c), respectively.

However, it has to be noted that detaching electrodes (1 to 4, 31 and 32) located in the ventral

left region – close to the heart – results in higher errors (see also Figure 6.7b). These findings

highlight the importance of a good electrode contact in the ventral region. In practice this

can be quite challenging, especially for EIT systems having the electrodes included in a belt,

where electrode contact is often impaired in the sternum region (e.g. pectus excavatum). This

issue might be party circumvented by using more sophisticated simulation and measurement

patterns or even by adapting them in real-time.

Changes in Hematocrit and Lung Air Volume

Figure 6.8a shows how changes in hematocrit influence SVEIT. The corresponding errors

are listed in Table 6.4. An increase in blood conductivity σB – resulting from a decrease

in hematocrit – leads to a higher SVEIT and in return, a decrease in σB to a lower SVEIT.

Nevertheless, the errors remain rather low, i.e. over the entire physiological range of Ht from

35 % to 55 %, the relative bias changes only from 2.3 % to −3.4 %.
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1
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Figure 6.7 – Relative error of SVEIT resulting from the detachment of (a) a single electrode or (c)
all possible pairs of electrodes. The error statistics shown are calculated over the 11 SV states
simulated. The transversal EIT plane in (b) shows the position of the 32 electrodes (in green)
and highlights the ones with higher errors (in red).

Table 6.3 – Absolute error (εAbs), relative error (εRel) and correlation coefficient (r ) of SVEIT

resulting from the detachment of 2 electrodes when compared to the baseline configuration.
Cell shadings indicate whether the acceptance criteria (see Section 6.2.4) are met (green) or
not (red).

Elec. 1 Elec. 5 Elec. 9 Elec. 13 Elec. 17 Elec. 21 Elec. 25 Elec. 29

εAbs (mL) −3.4±1.4 −2.1±1.4 −1.5±1.2 −1.3±1.0 −1.1±1.0 −1.0±1.0 −1.2±1.1 −1.1±1.1

εRel (%) −4.8±1.4 −2.9±1.6 −2.1±1.5 −1.7±1.3 −1.5±1.3 −1.3±1.3 −1.6±1.3 −1.6±1.4

r 0.9975 0.9968 0.9973 0.9978 0.9979 0.9978 0.9977 0.9976

In contrast, changes in lung alveolar tissue conductivityσL – resulting from changes in lung air

volume between normal inspiration and forced expiration – have a higher influence on SVEIT.

This is depicted in Figure 6.8b and also listed in Table 6.4. Normal inspiration (σL = 0.06 S/m)

compared to normal expiration (baseline state) introduces a relative bias of 8.0 %. On the

other hand, full expiration (σL = 0.12 S/m) lowers the bias to −3.2 %.

Table 6.4 – Absolute error (εAbs), relative error (εRel) and correlation coefficient (r ) of SVEIT for
changes in hematocrit and lung air volume when compared to the baseline configuration. Cell
shadings indicate whether the acceptance criteria (see Section 6.2.4) are met (green) or not
(red).

Hematocrit Changes Lung Air Volume Changes

σB = 0.56 σB = 0.63 σB = 0.78 σB = 0.87 σL = 0.06 σL = 0.08 σL = 0.12

(Ht = 55%) (Ht = 50%) (Ht = 40%) (Ht = 35%) (FF = 4.8) (FF = 3.0) (FF = 1.3)

εAbs (mL) −2.6±1.4 −1.2±0.7 1.0±0.6 1.8±1.1 6.1±3.9 2.9±1.7 −2.4±1.4

εRel (%) −3.4±1.0 −1.5±0.5 1.4±0.5 2.3±1.0 8.0±3.3 3.9±1.4 −3.2±1.2

r 0.9997 0.9996 0.9995 0.9995 0.9996 0.9997 0.9993
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Figure 6.8 – Influence on SVEIT by changes in (a) hematocrit and (b) lung air volume. The
relationship of reference SV (SVRef) and EIT-based SV estimates (SVEIT) is shown in the upper
plots. The lower plots depict the relative error between SVEIT and the baseline configuration.

Summary

Among the potential confounding factors investigated for absolute SV measurement, we

could show that up- and downwards electrode displacements have the highest influence

in terms of relative error, i.e. a shift of 1.8 or 3.5 cm can already introduce a relative error

bias of about 15 or 30 %, respectively. These findings call into question the feasibility of

absolute SV measurements by means of single plane (2D) EIT without recalibrating upon each

displacement or reattachment of the EIT belt. The use of two EIT planes (3D) [66] might help

to reduce the sensitivity on belt displacements in the craiocaudal direction, and thus reduce

the error on SV estimation in case of belt shifts. However, a subject-specific calibration is still

necessary, as the absolute heart impedance signal remains influenced by various other factors

(thorax morphology, lung conductivity, etc.), as also shown in experimental findings on pigs

[114, 41].

Rotational belt shifts of one electrode spacing (i.e. 2.8 cm) can introduce relative errors with a

bias of up to 13 %. This highlights the importance of a correct belt placement and the necessity

to have an accurate enough reconstruction model with possibly updating it (in real-time)

according to the thorax morphology [147].

Furthermore, changes in lung alveolar tissue conductivity σL resulting simply from a respi-

ratory cycle have shown to introduce a high bias in relative error ranging from 8 % to −3 %

(from normal inspiration to full expiration). The higher the SV the higher the influence of

this effect. This is because – unlike suggested by other researchers [114, 155] – changes in EIT

heart impedance are not solely related to changes in cardiac blood volume but scaled by a

heart-lung-conductivity contrast and other factors (see Figure 6.9 for illustration and detailed

explanation). Other factors such as heart displacement due to respiration or postural changes

and changes of σL due to edema, pneumothorax or posture-induced liquid redistribution
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were not taken into account but might even worsen the current results.

These findings reveal further challenges of EIT-based SV monitoring and call for more detailed

and targeted studies to assess the influences of these different confounding factors to show

the extent and the conditions under which EIT-based SV is feasible in clinical scenarios at all.

The current outcomes are in line with the findings in [45, 41]. That is, absolute SV is hard, but

trending should be possible. Therefore, we performed a second analysis presented in the next

section assessing the trending ability of EIT-based SV.

SVEIT ∝ SVReal 𝜎𝐻 − 𝜎𝑃

HLC

− SVMin

Lung Conductivity:
𝜎𝑃 = 𝑓(𝜎𝐿, 𝜎𝐵 , … )

Heart Conductivity:
𝜎𝐻 = 𝑓(𝜎𝐵, 𝜎𝑀, … )

Influences on Heart-Lung-Conductivity Contrast (HLC)

• Lung Air Volume  
↑↑ ⇒ 𝜎𝑃 ↓↓ ⇒ HLC ↑↑ ⇒ SVEIT ↑↑

↓↓ ⇒ 𝜎𝑃 ↑↑ ⇒ HLC ↓↓ ⇒ SVEIT ↓↓

• Hematocrit  
↑↑ ⇒ 𝜎𝐻 ↓↓, 𝜎𝑃 ↓ ⇒ HLC ↓ ⇒ SVEIT ↓

↓↓ ⇒ 𝜎𝐻 ↑↑, 𝜎𝑃 ↑ ⇒ HLC ↑ ⇒ SVEIT ↑

Figure 6.9 – Conceptual explanation of the heart-lung conductivity contrast (HLC) influencing
the EIT-based heart impedance signal used for estimating SVEIT. During a cardiac cycle heart
tissue is spatially replaced by lung tissue and vice versa (black arrows). These changes in
conductivity are assumed to be the main contributor to the EIT-based heart signal. Unlike
sometimes assumed, this signal and thus SVEIT cannot be directly proportional to the real
blood volume change SVReal as it is (1) scaled with the HLC and (2) limited to an inferior level of
detection SVMin (due to ringing and overlapping of other signal sources like the lungs or atria).
HLC is defined as the difference of heart conductivity σH (depending on blood conductivity
σB and myocardial conductivity σM ) and lung conductivity σP (depending on lung alveolar
tissue conductivity σL and blood conductivity σB). An increase in lung air volume leads to an
increase in HLC and thus to an augmented SVEIT, and vice versa. On the other hand, increasing
hematocrit levels (Ht ↑ ⇒ σB ↓) lead to a decrease in σH and a less strong decrease of σP . The
result is a slight decrease in HLC and a reduced SVEIT. It needs to be stressed out that this
remains a simplified explanation as the heart impedance signal can be influenced by further
factors such as heart motion [119], out-of-(EIT-)plane motion of the heart, σB dependence on
blood flow [57], anisotropy of the myocardium, etc. [11].

6.3.3 Analysis II - Relative SV - Trending

In this section we address the question whether trending of SV via EIT is feasible, i.e. can we

follow the changes in SV over time after an initial calibration with SV0. For the subsequent

analysis the baseline (SVRef = 68.0mL) was chosen as calibration value.

Belt Displacement

The trending ability after up/down and left/right belt displacement are shown in Figure 6.10a

and Figure 6.10b, respectively, by means of four-quadrant plots with the corresponding errors
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listed in Table 6.5. All concordance rates CR are at 100 % and thus fulfill the first requirement

for trending according to Critchley et al. [38]. The second requirement of an angular error bias

of less than 5° is only fulfilled for the 1.8 cm downwards shift and all left/right shifts. However,

the angular bias resulting from a 3.5 cm downwards or 1.8 cm upwards shifts are only close

above the threshold and might lead to a sufficient enough trending performance, given that

the CR and the confidence interval of εα are well within the acceptable limits.

Figure 6.10 – Trending ability of ∆SVEIT vs ∆SVRef as influenced by (a) up/down and (b) left/-
right electrode belt displacements. The gray shaded area depicts the zone in which measure-
ments are considered as unsuitable for trending analysis.

Table 6.5 – Trending performance by means of angular error (εα) and concordance rate (CR)
of SVEIT as influenced by electrode belt displacements. Cell shadings indicate whether the
acceptance criteria (see Section 6.2.4) are met (green) or not (red).

Up/Down Displacement Left/Right Displacement

↓ 3.5 cm ↓ 1.8 cm ↑ 1.8 cm ↑ 3.5 cm ← 2.8 cm ← 1.4 cm → 1.4 cm → 2.8 cm

εα (°) 7.1±3.0 4.3±1.8 −5.7±1.7 −12.5±1.3 4.8±1.7 2.4±1.1 −1.3±1.6 1.3±2.1

CR (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Changes in Hematocrit and Lung Air Volume

The εα and CR resulting from changes in hematocrit and lung air volume are shown in Table 6.6

and do all fulfill the requirements for trending as specified in Section 6.2.4.

Summary

These outcomes give hope for EIT-based trending of SV but at the same time reveal the strong

influence of up/down belt displacements – especially on the angular bias. Besides, multiple

confounding factors could simultaneously deteriorate SVEIT (e.g. up and left belt displacement

together with lung air volume changes) and thus worsen the current results. To reduce these

influences we suggest the use of 3D EIT and an adaptation of the reconstruction model to the
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Table 6.6 – Trending performance by means of angular error (εα) and concordance rate (CR)
of SVEIT as influenced by hematocrit and lung air volume changes. Cell shadings indicate
whether the acceptance criteria (see Section 6.2.4) are met (green) or not (red).

Hematocrit Changes Lung Air Volume Changes

σB = 0.56 σB = 0.63 σB = 0.78 σB = 0.87 σL = 0.06 σL = 0.08 σL = 0.12

(Ht = 55%) (Ht = 50%) (Ht = 40%) (Ht = 35%) (FF = 4.8) (FF = 3.0) (FF = 1.3)

εα (°) −2.2±1.0 −0.9±1.2 1.4±1.4 2.4±1.7 4.6±1.6 2.2±1.0 −1.6±1.9

CR (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

thorax geometry, as alluded to in the previous section.

6.3.4 Limitations and Future Work

The present work is restricted by different limitations of the bioimpedance model (as lis-

ted in Section 4.4) such as the lack of respiration-related displacements and deformations.

Incorporating those into the model might allow to obtain more detailed insights. Besides,

posture-induced heart displacement, lung liquid distribution, pneumothorax or edema should

be studied as they could be additional confounding factors for EIT based SV monitoring.

Moreover, it needs to be stressed out that the exact origins of the EIT heart signal remain

unclear and that ventricular SV is not the only signal contributor. There are other effects

such as heart motion [119], flow-induced reorientation of red blood cells [57], myocardial

anisotropy, etc. [11]. If the magnitudes of the other contributors are strong and they do not

change proportional to SV, the heart signal will not be a reliable source to estimate SV from.

Even though we have only investigated a part of all possible confounding factors on a model

with certain limitations, we believe to have revealed some important challenges for SV via EIT

mostly due to belt displacements and the heart-lung-conductivity contrast.

Future clinical studies aiming for SVEIT should concentrate on the use of 3D EIT, constant

posture and ventilator settings – if applicable – to avoid most of the confounding factors

observed here from occurring, and then – in a next step – investigate the influence of each of

the factors individually.

6.4 Conclusion

In this chapter, we focus on the feasibility of EIT-based SV monitoring and the uncertainty

introduced into this measurement due to variability in configuration and physiology which

occur in experimental and clinical use.

To this end, we investigated the four confounding factors potentially deteriorating SVEIT: (1)

electrode belt displacement, (2) electrode detachment, changes in (3) hematocrit and (4) lung
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air volume. Based on simulations on a 4D bioimpedance model, we could show how seriously

each of these factors affect the estimation of relative or absolute SV, as also summarized in

Table 6.7.

Although SVEIT has shown to correlate well with the simulated reference SVRef, the amplitude-

based feature to assess SV is highly sensitive to – mostly up/down – belt displacements and to

variations in lung air volume. Although these limitations might be partly overcome by using

3D EIT, our results indicate that the absolute measurement of SV via EIT remains extremely

challenging. Nonetheless, we can conclude that the trending ability of SVEIT – that is following

changes in SV after an initial calibration – remains promising.

Table 6.7 – Findings of the SV analyses performed for the four confounding factors investigated.
The results are classified according to the percentage falling within the acceptance criteria:
3 100 % (good); 7 ≥ 75% (mediocre); 77 < 75% (bad).

Absolute SV Relative SV - Trending

Analysis I Analysis II

1. Belt displacement

{
up/down

left/right

77 77 or 7a

7 3

2. Electrode detachment 3 (not applicable)

3. Hematocrit changes 3 3

4. Lung air volume changes 77 3

a If the acceptance limit for the angular bias is relaxed from <±5 % to <±10 %.
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7 Rationale for Clinical EIT Measure-
ments

In the previous chapters we presented simulations on a bioimpedance model performed to in-

vestigate the feasibility and potential limitations of EIT-based SV monitoring. The conclusions

are that even under these very controlled conditions, the absolute measurement of SV without

a patient-specific calibration is hardly possible. However, using a patient-specific calibration

or simply tracking changes of relative SV (i.e. trending) is more promising. Yet, electrode (belt)

displacement or lung conductivity changes can impair the EIT-derived SV measurements.

Even though we made an attempt to include clinically-relevant limitations in our simulations,

our bioimpedance model does by far not include all of the possible physiological and practi-

cal limitations. As the practical applicability is of main interest in the present thesis, in the

following chapters, we investigate to what extent the abovementioned findings can be trans-

lated into real-world measurements. While other research groups have investigated similar

approaches in pig experiments [114, 113, 41], we are primarily interested in the applicability

in humans. Therefore, we made use of clinically available EIT devices and performed two

clinical trials which are presented in the following two chapters.

In particular, the study in Chapter 8 compares EIT-based SV to thermodilution measurements

before and after the induction of anesthesia of patients in the operating room (OR), where

large per-patient variations in SV were expected. In Chapter 9 transpulmonary thermodilution

is used as reference and SV is measured before and after fluid challenge (i.e. the injection of

fluid into the circulation to improve the hemodynamic situation) of patients in the intensive

care unit (ICU), where a very controlled measurement environment was expected.
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8 Measurements in the Operating Room

8.1 Introduction

In the present study we investigate the feasibility of noninvasively measuring SV in the ope-

rating room (OR). Some patients undergoing major operational procedures in the OR are

equipped with a right heart catheter to monitor their central hemodynamics. The presence of

this catheter allows the measurement of CO – and thus SV – via pulmonary-artery thermodilu-

tion [56], the clinical reference method for CO determination (see Section 2.2.1).

In the following, we present a clinical study, where changes in SV before and after the induction

of general anesthesia are assessed by means of EIT and compared to pulmonary-artery ther-

modilution. Based on this data, we test four hypotheses H1 to H4, namely whether EIT can be

used to measure (H1) absolute SV with a patient-independent calibration, (H2) absolute SV

with a patient-specific calibration, (H3) relative SV with a patient-independent calibration, or

(H4) relative SV with a patient-specific calibration.

8.2 Methods

8.2.1 Study Protocol and Data Acquisition

The current study was performed on eleven patients (8 male/3 female, weight: 79.8±18.4kg,

height: 172.0±9.4 cm, BMI: 26.8±5.1 kg/m2). It was approved by the local ethics committee

of the canton of Vaud, Switzerland (CER-VD, 2015-00203) and registered at clinicaltrials.gov

(NCT02639468). All participants provided written informed consent. It is worth noting that

initially measurements on a total of 30 patients were planned but the study had to be prematu-

rely terminated because of technical issues and too low intra-patient SV variations as further

detailed in the discussion in Section 8.3.8.

All measurements were performed in the OR facilities of the University Hospital Lausanne

(CHUV, Lausanne, Switzerland). Upon arrival in the OR, the patients were equipped with the
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Figure 8.1 – Block diagram of the measurement setup in the OR. For each measurement the
EIT images are averaged to one representative cardiac cycle (Imgs) from which heart (ROIH)
and lung regions (ROIL) are extracted. These are further used to extract various features for SV
estimation. The outlier-free reference measurements are averaged to SVRef.

EIT SensorBelt (Swisstom AG, Landquart, Switzerland) – a textile belt integrating 32 active

EIT electrodes [157] – and connected to the BB2 EIT device (Swisstom AG, Landquart, Switzer-

land). Hemodynamic data (including ECG, CO, systemic and pulmonary blood pressure) were

measured using a MP50/X2 monitor (Philips, Eindhoven, the Netherlands) and recorded via

the ixTrend software (ixellence GmbH, Wildau, Germany). This is also illustrated in Figure 8.1.

In total, twelve measurements of CO were performed per patient: six prior and six after

induction of general anesthesia. For each of these measurements, three CO reference measu-

rements via thermodilution were acquired and averaged.

8.2.2 Data Analysis

Preprocessing

First, EIT and hemodynamic data were manually aligned in the time domain with the help of

deliberate spikes induced via synchronous tapping on EIT and ECG electrodes at the beginning

and at the end of each recording. Then, EIT samples were interpolated in the time domain to

correct for the sporadic loss of certain EIT frames. Furthermore, a clock drift between the EIT

and the hemodynamic signals of around 0.1 s/h was observed and corrected for.

For each of the twelve CO measurements, three thermodilution injections were performed.

Each CO reference value CORef was then obtained from the average of these three injections.

If at least one of the three injections deviated more than 10 % [37] from the average it was

excluded and CORef recomputed as the average from the remaining injections. If there were

two remaining injections, again not deviating more than 10 %, the reference measurement was

considered as valid, otherwise it was excluded from analysis. The corresponding SV reference

measurements SVRef were obtained by dividing CORef by the instantaneous heart rate obtained

from ECG.

As also illustrated in Figure 8.1, EIT data was averaged via ECG-gated ensemble averaging

(see Section 3.1.3) to one representative cardiac cycle per measurement. To do so, all data

were first high-pass filtered (4th-order Butterworth with fc = 0.75 ·HR/60, with HR as the
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current heart rate) and aligned to the ECG’s R-peaks located in the range from the start of

thermodilution injections until 25 s later. EIT raw voltages were reconstructed into sequences

of images with 32×32 pixels using the GREIT algorithm [6] with the recommended parameters

in combination with the 2.5D model of an adult human thorax available in the EIDORS toolbox

[5]. Then, for each resulting EIT image sequence, heart and lung regions were determined

using the following algorithms: the heart was detected as described in Section 6.2.3 and the

lungs via the algorithm proposed by Proença et al. [120, 121].

Feature Extraction

To extensively investigate EIT-based SV monitoring, and not solely testing the initial hypothe-

sis (that the EIT heart amplitude is proportional to SV), a variety of features were extracted

from the EIT images (representing one averaged cardiac cycle per measurement). Among

others, these include features known from the literature such as the heart amplitude [114, 155],

lung amplitude [41, 113], and heart region size [105, 13]. As shown in Table 8.1 the features are

categorized in six groups (I) to (VI), which are based on: (I) raw voltage data; (II) the tempo-

ral average of absolute EIT images; (III) the temporal signal within the heart, lung or entire

image; (IV) the temporal derivative of the signal in the heart or lung; (V) the cardiosynchro-

nous activity image (CAI, see example in Figure 8.1); (VI) geometrical information of the heart

or lung. In the following, we list some particular considerations for certain (groups of) features:

• Features 2, 3, and 4 (group II) are based on the temporal average of absolute EIT images.

These images were very roughly approximated by reconstructing the EIT raw data

against a zero reference (null vector).

• The features of the temporal signals in the lung, heart or entire image region (5 to 10,

group III) estimate the amplitude during cardiac systole in different ways. Additionally,

features 11 to 14 (group IV) estimate the amplitudes of the corresponding temporal

derivatives.

• Features 15 to 24 make use of the cardiosynchronous activity image, that is the pixel-

wise standard deviation in the time domain, representing cardiosynchronous activity

during one cardiac cycle (see EIT image in Figure 8.1 for an example). Using this image,

the heart or lung amplitude (15 to 17 and 18 to 20, group V) or the corresponding centers

of gravity (21 to 24) are being calculated.

• All features which limit their analysis to the heart or lung ROI made use of an averaged

ROI per subject. To do so, the individual ROIs resulting from the twelve measurements

were merged to one single averaged ROI (including all pixels ≥50 % (educated guess) of

maximal amplitude in the average). This was used to reduce possible variations in the

corresponding features, induced by undesirable changes of the ROIs. Obviously, this

does not apply to features 25 and 26, as they represent changes in the size of these ROIs.

Even though some of these features might not have a direct – physiological – relation with

changes in SV, they were investigated for the sake of completeness. In a next step, for a more
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detailed analysis, the number of features was reduced to a set of basic features which are

either likely to be linked to SV or assumed to be necessary for normalization of changes in

heart-related amplitude. Finally, this basic set was extended by creating various combinations

of the features, which lead to the following three sets of features:

(1) All features include features 1 to 26.

(2) Basic features include only features 1 to 6, 8, 10, 11, 13, 15, 18, 25, and 26.

(3) Extended features include the basic features and: (a) The reciprocal (1/x) of each feature;

(b) All previous features (including the reciprocals) multiplied with three “main” features

either known from the literature to represent changes in SV (tAmpH and tStdH) [114, 155]

or expected to be helpful for normalizing non-SV-related changes (AvgCG); (c) The

ratio of all identical heart vs lung features (i.e. tStdH/tStdL, CaiSmH/CaiSmL, etc.), also

expected to be useful for normalization of non-SV-related changes of amplitudes.

The features are stored in a matrix per patient p: F p ∈Rn f ×nm , with nm = 12 measurements

and a total of n f features depending on the feature set: (1) n f = 26, (2) n f = 14, or (3) n f = 102.

Table 8.1 – List of features extracted from EIT image sequences and used for SV estimation.

Group ID Name Description

I 1 VtgG Sum over temporal average of raw voltages used for image reconstruction

II 2 AvgCG Sum over temporal average of absolute EIT images

II 3 AvgCH Sum over temporal average of absolute EIT images in heart ROI

II 4 AvgCL Sum over temporal average of absolute EIT images in lung ROI

III 5 tAmpH Amplitude (max-min) of temporal signal in heart ROI (similar to [114, 155])

III 6 tStdH Standard deviation of temporal signal in heart ROI

III 7 tIqrH Inter quartile range of temporal signal in heart ROI

III 8 tStdL Standard deviation of temporal signal in lung ROI (similar to [41, 113])

III 9 tIqrL Inter quartile range of temporal signal in lung ROI

III 10 tStdG Standard deviation of overall temporal signal

IV 11 ddtSH Standard deviation of temporal derivative of signal in heart ROI

IV 12 ddtIH Inter quartile range temporal derivative of signal in heart ROI

IV 13 ddtSL Standard deviation of temporal derivative of signal in lung ROI

IV 14 ddtIL Inter quartile range temporal derivative of signal in lung ROI

V 15 CaiSmH Sum of cardiosynchronous activity image in heart ROI

V 16 CaiMxH Maximum of cardiosynchronous activity image in heart ROI

V 17 CaiMdH Median of cardiosynchronous activity image in heart ROI

V 18 CaiSmL Sum of cardiosynchronous activity image in lung ROI

V 19 CaiMxL Maximum of cardiosynchronous activity image in lung ROI

V 20 CaiMdL Median of cardiosynchronous activity image in lung ROI

VI 21 CogXH Center of gravity (X-coordinate) of cardiosynchronous activity in heart ROI

VI 22 CogYH Center of gravity (Y-coordinate) of cardiosynchronous activity in heart ROI

VI 23 CogXL Center of gravity (X-coordinate) of cardiosynchronous activity in lung ROI

VI 24 CogYL Center of gravity (Y-coordinate) of cardiosynchronous activity in lung ROI

VI 25 szRoiH Size (number of pixels) of heart ROI (similar to [105, 13])

VI 26 szRoiL Size (number of pixels) of lung ROI
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Figure 8.2 – Block diagram of the data analysis and hypotheses testing.

To study the feasibility of SV estimation via EIT, four different hypotheses H1 to H4 were

defined and tested as described in this section and also illustrated in Figure 8.2. In particular,

we tested whether it is possible to measure absolute SV or relative changes in SV with either a

patient-independent calibration (identical for all subjects) or an individual (patient-specific)

calibration. Such calibrations are necessary to transform the features (available in arbitrary

units) into physiological meaningful SV values expressed in mL.

We hypothesize that the measured changes in SV can be estimated from linear combinations

of the extracted features. Based on this hypothesis, the EIT-based SV estimates SVEIT were

obtained from a linear regression model: fκ(X ) =κ0 +∑nv

i=1κi Xi , with the vector κ contai-

ning nv +1 model coefficients and the matrix X ∈ Rnv×nn with nv selected features for nn

measurements. X was assigned with all possible combinations of nv features available in the

aforementioned matrix F p ∈Rn f ×nm , containing a total of n f features for nm measurements

per patient p. The model was trained and evaluated against the reference measurements in

vector r p ∈ R1×nm , containing nm reference measurements (SVRef) for each patient p. The

training and evaluation of the linear model depends on the hypothesis as described hereafter:

(H1) Hypothesis 1 – Absolute SV with Patient-Independent Calibration

We hypothesize that EIT can be used to assess absolute SV (in mL) with one single –

patient-independent – calibration.

For this case a leave one out (LOO) calibration was performed. That is, for each patient c

an individual model was trained: κ̂c = argminκ

(∣∣y − fκ(X )
∣∣2

)
(with y and X containing

reference values from r p and nv selected features from F p , for all patients p except for

the current one c). Then, this model was used to obtain SV estimates for the current

patient c: ŷ c = fκ̂c (X ), where X now contains nv features from the current patient c.

The estimates ŷ c and the corresponding reference measurements r c of all patients were

assigned to SVEIT and SVRef, respectively. Then, the goodness of fit between SVEIT and

SVRef was evaluated by means of Bland-Altman analysis [12]. The first figure of merit

FOM1 is defined as the absolute maximum of the limits of agreement LOAmax, and

the second FOM2 as the standard deviation of the absolute error εAbs resulting from

Bland-Altman analysis. The results were then ranked first by the lowest FOM1 and then

by the lowest FOM2, i.e. the fit with lowest FOM2 among all fits having the lowest FOM1

was considered as best.

67



Chapter 8. Measurements in the Operating Room

(H2) Hypothesis 2 – Absolute SV with Patient-Specific Calibration

We hypothesize that EIT can be used to assess absolute SV (in mL) with a patient-specific

calibration.

This case is very similar to H1, except for the model training. That is, in the first step, the

model was trained with X and y from the current patient c and not – as for H1 – from all

other patients. The figures of merit are identical to those in H1.

(H3) Hypothesis 3 – Relative SV (Trending) with Patient-Independent Calibration

We hypothesize that EIT can be used to assess changes of SV (in %) relative to an initial

state and with one single – patient-independent – calibration.

When aiming for trending of SV, we are not interested in the absolute value (in mL) but in

the change (in %) relative to an initial baseline value SV0. To this end, both, the reference

vector r p and feature matrix F p were expressed relative to their corresponding baseline

values as follows. The relative reference vector was defined as r̃ p = (r p − r p
0 )/r p

0 , where

r p
0 is the patient-specific baseline value SV0

1. Similarly, each feature in each row of the

relative feature matrix F̃ p was individually set relative to its corresponding baseline

value. Then, the model was trained analogously to H1, except that y was assigned with

values from r̃ p and X with values from F̃ p .

The estimates ŷ c and the corresponding reference measurements r̃ c of all patients were

denoted as ∆SVEIT and ∆SVRef, respectively. Then, the goodness of fit between ∆SVEIT

and∆SVRef was evaluated via trending analysis by means of four-quadrant plots [37, 130],

also explained in Section 6.2.4. FOM1 is defined as the angular concordance rate CR

and FOM2 as the absolute maximum of the limits of agreement LOAmax of the angular

error εα. The results are then ranked first by the highest FOM1 and then by the lowest

FOM2, i.e. the fit with lowest FOM2 among all fits with highest FOM1 is considered as

best. Besides, all CR values above the acceptable threshold [38], i.e. between 92 and

100 %, were considered as equal for this ranking. Moreover, the exclusion zone was set

to ±10 %.

(H4) Hypothesis 4 – Relative SV (Trending) with Patient-Specific Calibration

We hypothesize that EIT can be used to assess changes of SV (in %) relative to an initial

state and with a patient-specific calibration.

For H4, the model was trained analogously to H2, except that y assigned with relative

reference values from r̃ p and X with relative features from F̃ p (as described for H3). The

figures of merit are identical to those in H3, with FOM1 = CR and FOM2 = LOAmax.

Besides the ranking based on FOM1 and FOM2 as described above for each hypothesis indivi-

dually, a third criterion was introduced. This criterion checks whether all coefficients of the

linear modelκc (except for the offsetκc
0) have an identical sign, i.e. thatκc

1 of all patients c are

either all positive or all negative, and so on for κc
2, ..., κc

nv
. This assures that the information

1In the current implementation SV0 was defined as the average of the three lowest values of SVRef.
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Table 8.2 – Ranking criteria and acceptance thresholds for the four hypotheses analyzed.

Hypothesis 1 and 2 Hypothesis 3 and 4

1st ranking All prefer solutions with coefficient κ having identical signs

2nd ranking (FOM1) Lowest max
∣∣LOAεAbs

∣∣ Highest min{CR,92%}

3rd ranking (FOM2) Lowest std(εAbs) Lowest max
∣∣LOAεα

∣∣
Acceptance thresholds εAbs with LOA ≤±10mL

CR ≥ 92%
εα with bias ≤±5%
εα with LOA ≤±30%

Note: LOA stands for 95 % limits of agreement and std(·) denotes the standard-deviation operator. The
LOAx are defined as [mean(x)−1.96 · std(x),mean(x)+1.96 · std(x)].

of each feature is considered coherently for all patients, e.g. an increase in heart amplitude

tAmpH leads to an increase in SVEIT for all patients (coefficients have identical sign) and not

to a decrease in some and an increase in the other patients (coefficients have not identical

sign). This criterion is stronger than FOM1 and FOM2 in that, independently of FOM1 and

FOM2, solutions with model coefficients having an identical sign for all patients are higher

ranked (see also Table 8.2). In doing so more realistic and practical solution are favored over

solutions with a – most probably – coincidentally high FOM.

Moreover, in the current analysis, absolute errors εAbs of SVEIT vs SVRef are considered accep-

table if their 95 % limits of agreement do not exceed a threshold of ±10 mL (= 15%2 of the

average SVRef). On the other hand, trending via four-quadrant plot analysis of ∆SVEIT vs

∆SVRef is considered acceptable according to the limits defined by Critchley et al. [38], which

are CR≥92% and εα with a bias ≤±5° and the 95 % limits of agreement not exceeding ±30°.

These acceptance thresholds are summarized in Table 8.2. Finally, to test different orders of

complexity, a varying number nv of model coefficients κwas used, either: (a) only 1 (b) 1 and

2, and (c) 1, 2 and 3.

In summary, as also illustrated in Figure 8.2, we test the four hypotheses H1 to H4 each for

three different orders of model complexity (a) to (c) and three features sets (1) to (3), resulting

in nine tests for each hypothesis.

8.3 Results and Discussion

In the following sections we first give a general overview concerning data quality, outliers,

dropout rate and show some examples of EIT images. Then, we specifically address the

investigations of each of the four hypotheses H1 to H4.

2This is by assuming that averaging of a PAC thermodilution doublet leads to an error of 15%, which might be
optimistic as it is only slightly above the ±13 % error reported for an averaged triplet [124, 142].
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Figure 8.3 – Distribution of SV reference measurements for each patient shown as (a) absolute
values SVRef or (b) variations ∆SVRef relative to the mean value. The gray shaded area depicts
the measurement error to be expected when optimistically assuming that the ±30 % error
reported for thermodilution [37] reduces to ±10 % after averaging of three measurements.

Table 8.3 – Overview of patients and the reasons for which some got excluded from the analysis.

Description Number of Patients Percentage

Technical issues with SVRef catheter 1 9 %

Cardiac arythmia 1 9 %

Low cardiac signal 2 18 %

Remaining patients for analysis 7 64 %

Total 11 100 %

8.3.1 General Overview

From the eleven patients enrolled in the study, four had to be excluded from analysis for

different reasons; For one, the SVRef measurements from the right heart catheter were missing;

Another had cardiac arrhythmia impairing ECG-gated averaging; Finally, two more patients

were excluded as they had very low cardiac signals in the EIT images (see Figure 8.4) most

likely due to the EIT belt placed too low/high with respect to the heart. This corresponds to a

dropout rate of 4/11 = 36%, as also listed in Table 8.3.

From the remaining seven patients, all SV reference measurements SVRef are shown in Fi-

gure 8.3. One can observe, in particular in Figure 8.3b, that for most patients the variations

in SVRef are rather low and they barely exceed the ±10 % error expected from thermodilution.

Therefore, a limited analysis can be expected due to these low variations in SVRef.

In Figure 8.5, an example of analysis from one patient is given by means of cardiosynchronous

activity images (including heart ROI), the temporal heart signal as well as the overall EIT signal,

the heart rate and the reference measurements SVRef.

In the following sections we analyze each of the four hypotheses in more detail.
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Figure 8.4 – Images of cardiosynchronous activity (CA) for three different patients showing
(a) one example with high activity in the heart region ( red), and (b) and (c), two examples
with too low activity in the heart region ( red) which had to be excluded from analysis. The
ratio of cardiac vs total activity is less than 10 % for (b) and (c) and more than 40 % for (a).

Figure 8.5 – Typical recording example of one patient (P09) showing (Top) cardiosynchronous
activity images (see Figure 8.4) with the heart ROI ( red) for all twelve measurements
with the corresponding heart signals ∆σHrt below (temporal axis normalized to one cardiac
cycle). CO1.1 to CO1.6 denote CO/SV measurements prior to anesthesia and CO2.1 to CO2.6
those after induction of anesthesia. (Middle) The total EIT impedance signal mainly showing
respiratory activity starting with spontaneous respiration, followed by some apnea sequences
with manual ventilation and ending with mechanical ventilation. (Bottom). Time course of
the heart rate (red) and the CO/SV reference measurements. The gray shaded areas indicate
the duration of each thermodilution measurement during which the EIT data were averaged
and analyzed.
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Table 8.4 – Absolute error εAbs between SVEIT and SVRef for the best possible fits for H1 (absolute
SV with patient-independent calibration) for each feature set (basic, all, extended) and number
of features studied.

Model Complexity – Number of Features

1 Feature 1–2 Features 1–3 Features

basic
εAbs =−0.16±11.12mL(

AvgCG

) εAbs =−0.16±11.12mL(
AvgCG

) εAbs =−0.16±11.12mL(
AvgCG

)
all

εAbs =−0.16±11.12mL(
AvgCG

) εAbs =−0.16±11.12mL(
AvgCG

) εAbs =−0.16±11.12mL(
AvgCG

)
extended

εAbs =−0.16±11.12mL(
AvgCG

) εAbs = 0.79±9.57mL(
AvgCG/ddtSH,1/ddtSH

) εAbs =−0.42±7.79mL(
CaiSmH · tAmpH,

tAmpH/VtgG,VtgG ·AvgCG

)
Note: The features used to obtain the best possible performance shown, are given in the parentheses
below the error. The corresponding figures are available in Figure C.1 in the appendix. All errors with
their 95 % limits of agreement exceeding ±10 mL (= 15% of the average SVRef) are shaded in red. The
errors εAbs are given as Mean±Std and the 95 % limits of agreement correspond to
[Mean−1.96 ·Std,Mean+1.96 ·Std].

8.3.2 Hypothesis 1: Absolute SV with Patient-Independent Calibration

Table 8.4 shows the best possible fits (in terms of absolute error εAbs) for the different model

complexities and feature sets tested for H1. When using either all or the basic features,

despite the possibility of using up to three features, one single feature remains enough. AvgCG

turns out to be the most appropriate feature to represent absolute values of SVRef. As for the

extended case, with more complex feature combinations (always including AvgCG) the error

can be further reduced. However, this feature – the global conductivity AvgCG – is not likely to

represent changes in SV but rather – if at all – an approximative baseline level around which

the SV of each particular patient will vary. Thus, using this feature simply “lifts” the estimates

SVEIT of most patients close to the mean level of SVRef but does not really follow the variations

in SV (see also example in Figure 8.6a). Besides, all of the errors exceed the defined limit of

acceptance of ±10 mL.

Our analysis suggests that the most appropriate feature would be the global conductivity

(AvgCG), which is highly unlikely to be reliable for SV estimation, since AvgCG is known to be

influenced by other factors such as the end-expiratory lung volume [78]. Therefore, based on

the current data and analysis, we reject hypothesis H1. As also discussed in Chapter 6, it is

known that numerous factors such as thorax morphology [41], belt placement or heart position

[114] are influencing the estimated features, and do require a patient-specific calibration.

Therefore, we investigate in the next section, whether such a calibration can lead to better

results.
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(a) (b)

Figure 8.6 – Examples of estimated SVEIT vs SVRef showing the best possible goodness of fit for
one single feature and the basic feature set for (a) H1 or (b) H2. The (†) indicates solutions
with model coefficients κ not having identical sign for all patients.

8.3.3 Hypothesis 2: Absolute SV with Patient-Specific Calibration

Table 8.5 shows the best possible fits (in terms of absolute error εAbs) for the different model

complexities and feature sets tested for H2. One can observe that the heart amplitude related

feature tAmpH is present in most of the cases. This is in line with the literature [155, 114]

Table 8.5 – Absolute error εAbs between SVEIT and SVRef for the best possible fits for H2 (absolute
SV with patient-specific calibration) for each feature set (basic, all, extended) and number of
features studied.

Model Complexity – Number of Features

1 Feature 1–2 Features 1–3 Features

basic
εAbs = 0.00±4.06mL (†)(

tAmpH

) εAbs = 0.00±3.38mL (†)(
tAmpH,AvgCH

) εAbs = 0.00±2.85mL (†)
(tStdG, tStdL, szRoiH)

all
εAbs = 0.00±4.06mL (†)(

tAmpH

) εAbs = 0.00±3.37mL (†)(
tAmpH,CogXH

) εAbs = 0.00±2.71mL (†)
(tStdG,CaiSmL,CaiMdL)

extended
εAbs = 0.00±4.01mL (†)(

tAmpH ·CaiSmH
) εAbs = 0.00±3.05mL (†)(

tAmpH · szRoiL,
ddtSH/ddtSL)

εAbs = 0.00±3.28mL
(tStdH, tStdG,
tStdG · tStdH)

Note: The features used to obtain the best possible performance shown, are given in the parentheses
below the error. The corresponding figures are available in Figure C.2 in the appendix. The
(†) indicates solutions with model coefficients κ not having identical sign for all patients, a criterion
defined in Section 8.2.2. None of the errors exceed the defined threshold of ±10 mL (= 15% of the
average SVRef). Solutions are shaded in yellow if the coefficients κ do not have identical sign (†) and in
green if they do. The errors εAbs are given as Mean±Std and the 95 % limits of agreement correspond
to [Mean−1.96 ·Std,Mean+1.96 ·Std].
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Table 8.6 – Concordance rate CR and angular error εα resulting from four-quadrant plot
analysis between ∆SVEIT and ∆SVRef for the best possible fits for H3 (relative SV with patient-
independent calibration) for each feature set (basic, all, extended) and number of features
studied.

Model Complexity – Number of Features

1 Feature 1–2 Features 1–3 Features

basic
CR = 90.5%

εα =−0.1±23.4°
(tStdH)

CR = 92.3%
εα =−4.7±21.8°
(tStdH,CaiSmH)

CR = 92.3%
εα =−4.7±21.8°
(tStdH,CaiSmH)

all
CR = 90.5%

εα =−0.1±23.4°
(tStdH)

CR = 97.4%
εα =−5.2±18.4°
(tStdH,CaiMdH)

CR = 100.0%
εα =−6.8±14.2°

(tStdH, tStdL,CaiMdH)

extended
CR = 93.0%

εα = 0.0±22.6°(
tAmpH/ddtSH

) CR = 100.0%
εα =−7.5±15.6°

(tStdH ·CaiSmH,1/ddtSH)

CR = 100.0%
εα =−7.5±15.6°

(tStdH ·CaiSmH,1/ddtSH)

Note: The features used to obtain the best possible performance shown, are given in the parentheses
below the error. The corresponding figures are available in Figure C.3 in the appendix. Performances
falling outside the thresholds (CR ≥ 92%, εα with bias <±5° and 95 % limits of agreement <±30°) are
shaded in red. The errors εα are given as Mean±Std and the 95 % limits of agreement correspond to
[Mean−1.96 ·Std,Mean+1.96 ·Std].

and our initial hypothesis that the EIT heart amplitude is – among others – modulated by SV.

Nevertheless, except for one case shown in Table 8.5, no solution could be found where the

model coefficients κ have the same sign for all patients. Yet, for the most simple solution

shown in Figure 8.6b, except for one patient (P09), all model coefficients have identical sign

(results not shown). This particular patient has the lowest variations in SVRef, which makes it

difficult to correctly train the linear model and could explain this outlier. Furthermore, P12

shows lower variations in SVEIT than in SVRef. But the variations in SVRef are low and close

to the measurement error of the reference device. Therefore, it is not clear whether the low

variations in SVEIT are normal (i.e. the physiological SV does not change but SVRef does due to

measurement errors) or whether, for this patient, tAmpH is not sensitive to changes in SV.

The heart amplitude tAmpH alone might be a reliable feature for EIT-based SV estimation –

given an individual (patient-specific) calibration. However, based on the current data with low

variations in SVRef, it is not possible to show this. Nonetheless, based on the current analysis,

hypothesis H2 is confirmed, as a complex combination of three features (tStdH, tStdG, and

tStdG · tStdH) leads to an acceptable performance with calibration coefficients of same sign.
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(a) (b)

Figure 8.7 – Examples of estimated ∆SVEIT vs ∆SVRef by means of four-quadrant plots showing
the best possible goodness of fit for (a) one single feature of the basic feature set for H3 and (b)
for three features of the extended feature set for H4.

8.3.4 Hypothesis 3: Relative SV with Patient-Independent Calibration

Table 8.6 shows the best possible fits (in terms of concordance rate CR and angular error εα)

for the different model complexities and feature sets tested for H3. Similar to the previous

hypothesis (H2), also for H3, features related to the heart amplitude, tAmpH or tStdH, lead

to the best possible results. None of the solutions have an angular error εα within the limits

of acceptance. When only considering the concordance rate (as also done in recent pig

experiments [41]), already the most basic solution using solely tStdH (also shown in Figure 8.7a)

leads to an angular concordance rate CR close to the threshold of acceptance (CR ≥ 92%).

However, it needs to be highlighted that for certain patients (e.g. P09 or P10), the variations in

∆SVRef are much stronger than the corresponding variations in ∆SVEIT. But again, due to the

low variations in SVRef, it is difficult to conclude whether the lack of variation in ∆SVEIT for

these particular patients is because of measurement errors in∆SVRef or∆SVEIT (but hypothesis

H3 still holds) or the heart amplitude tStdH not being sensitive to changes in SV for these

patients (hypothesis H3 does not hold).

When only considering the concordance rate CR, already the feature tStdH alone might be

sufficient for the relative measurement of SV via EIT with a patient-independent calibration.

But again, the variations in SVRef are too low to confirm this. However, as all errors εα are

above the threshold of acceptance, we reject hypothesis H3 for the current data and analysis.

8.3.5 Hypothesis 4: Relative SV with Patient-Specific Calibration

Table 8.7 shows the best possible fits (in terms of concordance rate CR and angular error εα)

for the different model complexities and feature sets tested for H4. While five out of the nine
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Table 8.7 – Concordance rate CR and angular error εα resulting from four-quadrant plot
analysis between ∆SVEIT and ∆SVRef for the best possible fits for H4 (relative SV with patient-
specific calibration) for each feature set (basic, all, extended) and number of features studied.

Model Complexity – Number of Features

1 Feature 1–2 Features 1–3 Features

basic
CR = 93.0% (†)
εα =−2.7±22.1°

(CaiSmL)

CR = 100.0% (†)
εα =−6.8±12.3°(

CaiSmL,VtgG

) CR = 100.0% (†)
εα =−2.5±9.0°(

tAmpH, tStdL, tStdG
)

all
CR = 93.0% (†)
εα =−2.7±22.1°

(CaiSmL)

CR = 100.0% (†)
εα =−2.8±12.2°

(CaiMxL,CaiMdL)

CR = 100.0% (†)
εα =−2.0±7.8°(

tAmpH,AvgCH,CogXH

)

extended
CR = 97.3% (†)
εα =−5.2±13.9°(

tAmpH/ddtSH
)

CR = 100.0% (†)
εα =−2.9±9.8°(

tAmpH ·CaiSmH,
tAmpH ·CaiSmL

)
CR = 97.4%

εα =−1.1±14.1°
(tStdH, tStdG,
tStdG · tStdH)

Note: The features used to obtain the best possible performance shown, are given in the parentheses
below the error. The corresponding figures are available in Figure C.4 in the appendix. Performances
falling outside the thresholds (CR ≥ 92%, εα with bias <±5° and 95 % limits of agreement <±30°) are
shaded in red. The (†) indicates solutions with model coefficients κ not having identical sign for all
patients, a criterion defined in Section 8.2.2. Solutions with errors within the acceptable thresholds are
shaded in yellow if the model coefficients κ do not have identical sign (†) and in green if they do. The
errors εα are given as Mean±Std and the 95 % limits of agreement correspond to
[Mean−1.96 ·Std,Mean+1.96 ·Std].

solutions show a trending performance within the acceptance criteria, only one solution has

model coefficients κ with the same sign for all patients. Yet, it is questionable whether this

particular case (shown in Figure 8.7b) and making use of a complex combination of three

features (tStdH, tStdG, and tStdG · tStdH), is not simply coincidentally leading to reasonable

results on the current data (overfitting). Besides, when investigating the single feature tStdH

(among the best features for H3 but not for H4), its performance (CR = 88.4%, εα = 1.4±23.7°)

is lower when compared to H3 shown in Figure 8.7a, i.e. lower CR and higher εα. This slight

decrease in performance when going from (H3) subject-independent to (H4) subject-specific

calibration, shows the difficulty to obtain a reasonable individual calibration for patients with

low variations in SVRef.

The observations on H4 are also impaired by the issue of too low variations in SVRef and only

one complex combination of three features (tStdH, tStdG, and tStdG ·tStdH) leads to acceptable

performances but remains questionable due to possible overfitting. Therefore, based on the

current data and analysis hypothesis H4 is confirmed.
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(a) (b)

Figure 8.8 – Performance from analysis limited to the two patients with highest variations
in SVRef using the systolic heart amplitude tAmpH for (a) of SVEIT vs SVRef for H2 (absolute
SV with patient-specific calibration), and (b) of ∆SVEIT vs ∆SVRef for H4 (relative SV with
patient-specific calibration).

8.3.6 Analysis Restricted to Patients with High Variations in SVRef

It has been observed that for most patients the variations in SVRef are low which can impair

the model fitting and lead to the unrealistic calibration coefficients. When restricting the

analysis to solely the two patients with highest variations in SVRef (P05 and P06) and using

the heart amplitude tAmpH as a feature, it can be shown that H2 is feasible (Figure 8.8a)

but the performance of H4 still falls narrowly3 outside the acceptance criteria (Figure 8.8b).

Nevertheless, these results are based on a fraction of all measurements (19 out of more than

100) and are too few to draw any conclusions.

8.3.7 Limitations, Challenges and Future Work

The biggest limitation of the present study is that the SV reference measurements SVRef of each

patient are varying too little in between different measurements. The induction of anesthesia

does have a less strong effect on the SV than expected during the planning of the study.

The current analysis is further limited in that the EIT images were reconstructed using a

single – patient-unspecific – reconstruction model. Nonetheless, using the image data directly

reconstructed by the EIT device (which uses proprietary patient models adapted to height,

weight and gender of the patient) did not lead to any improvements (results not shown).

To avoid a too low cardiac signal, the EIT belt should be placed at the height where most

ventricular activity is present. Given that sufficient time is available for preparation, this could

3This is mainly caused by one outlier measurement from P05 located in the 2nd quadrant. When calculating εα
via the median and the inter-quartile range (IQR) we obtain an acceptable error of εα = 1.5±13.4° (median± IQR).
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be determined in advance via echocardiography or by means of EIT in an iterative procedure.

Another issue resides in performing EIT measurements in the OR which has shown to be

challenging due to: high electromagnetic noise from a variety of other devices, undesired

touching or moving of the patient during a measurement, time pressure, etc. At least the latter

two could probably be avoided when performing measurements in a different environment

such as the intensive care unit for example.

8.3.8 Rationale for the Premature Termination of This Study

As mentioned in Section 8.2.1, 30 patients were initially planned to be enrolled in the present

study. However, after a total of 11 patients4 the study was prematurely terminated for the

following reasons. As mentioned before, for most of the patients the variations in SVRef are too

low, i.e. only three patients have at least one measurement above and one below the 10 % error

specified for SVRef (see Figure 8.3). Extrapolating this ratio (only data of 3 out of 11 patients,

i.e. 27%, is exploitable) to the initially planned requirement of at least 13 patients with high

enough variations in SVRef meant that at least 48 patients would have needed to be measured.

However, this was not feasible for various reasons (including limitations in time and other

resources) which lead to the decision of prematurely terminating the present study.

8.4 Conclusion

In view of noninvasively measuring SV via EIT, we performed a study on patients in the OR. For

each patient, up to twelve SV estimates obtained from ECG-gated EIT images were compared

to SV reference measurements from right heart thermodilution. With the aim of achieving high

variations in SV, measurements were performed before and after induction of anesthesia. A

variety of SV-related features were extracted from the EIT images and all possible combinations

of up to three features were used to train a linear model in an exploratory fashion.

From the eleven patients enrolled in this study four had to be excluded from analysis due to:

(a) technical issues with the SV catheter; (b) cardiac arrhythmia which impair the averaging

method (ECG-gating) used for EIT; (c) too low cardiac signals caused by a too high/low

placement of the EIT belt. This corresponds to a dropout rate of 36 %.

In the remaining seven patients we tested the four different hypotheses H1 to H4, i.e. whether

EIT can be used to measure (H1) absolute SV with a patient-independent calibration, (H2)

absolute SV with a patient-specific calibration, (H3) relative SV with a patient-independent

calibration, or (H4) relative SV with a patient-specific calibration. The current findings dis-

prove H1 and H3, and corroborate H2 and H4. That is, both absolute and relative SV are only

possible via a patient-specific calibration. However, these results (of H2 and H4) are either

4Strictly speaking thirteen patients were measured in total. The eleven patients mentioned in Section 8.2.1
already exclude the first two patients with unusable data which were measured with an old EIT device being very
sensitive to electromagnetic noise in the OR.
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based on complex combinations of features likely to be coincidentally leading to reasonable

results (model overfitting) or have unrealistic calibration coefficients (not having the same sign

for all patients and thus not coherently exploiting the information of each feature). Moreover,

it has been observed that for most patients the variations in SVRef are low which can impair

the model fitting and lead to the aforementioned unrealistic calibration coefficients. In the

literature, neither patient-independent nor patient-specific calibration functions are available.

Therefore, a high number of measurements and large variations in SV are required for every

single patient in order to properly validate these hypotheses.

In future studies, a different protocol leading to higher SV variations – for every single pa-

tient – should be designed. Besides, in view of reducing the high dropout rate, performing

measurements in a less challenging environment than the OR would be of advantage. And,

to improve the signal strength in the heart region, the EIT belt should be placed based on

echocardiography measurements or 3D EIT should be applied.
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9 Measurements in the Intensive Care
Unit

9.1 Introduction

In this chapter we present a clinical study aiming at the noninvasive assessment of changes in

SV via EIT in intensive care unit (ICU) patients. It is common practice in ICUs to administer a

certain amount of fluid, to improve the hemodynamic situation of those patients which are

expected to be fluid responsive. This is because an increase in blood volume will lead to an

increased venous return and thus right heart preload, which in turn results in an increased SV

via the Frank-Starling mechanism (see Section 2.1.2).

In the present study, EIT measurements were performed before and after this so-called fluid

challenge. These are compared to SV measurements obtained via transpulmonary thermo-

dilution which were performed in parallel to EIT. We then test whether EIT can be used to

track relative SV changes induced by this fluid challenge or – in other words – whether EIT

can assess if a particular patient is responsive to an administration of fluid. In contrast to the

previous study, solely the feasibility of tracking SV via a subject-independent calibration is

tested since only three measurements are available per patient.

In particular we test the two hypotheses that the amplitude of the temporal signal in either (a)

the heart or (b) the lung region can be used to assess changes in SV by means of EIT. As detailed

in Section 3.2, the first hypothesis has initially been proposed by Vonk Noordegraaf et al. [155]

and was also tested in pig experiments by Pikkemaat et al. [114, 113] with mixed outcomes.

He further tested the second hypothesis which – depending on the type of experiment – led to

either a superior or inferior performance [113], when compared to the first hypothesis1. On

the contrary, in a recent publication, da Silva Ramos et al. [41] successfully showed the ability

of EIT to trend relative changes in SV via the EIT-derived lung amplitude when measured in

pigs. Given these partly contradictory findings from animal experiments, we test both (a) the

heart and (b) lung amplitude for their applicability to assess SV changes in ICU patients.

1This has not been reported in the corresponding publication [114] but in his thesis [113] which is only available
in German. As summarized in Section 3.2, the lung amplitude correlates better with SV than the heart amplitude
for PEEP experiments but the opposite applies for Dobutamine experiments.
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9.2 Methods

9.2.1 Study Protocol and Data Acquisition

The current study was performed on twenty patients. However, as for the first four patients no

ECG signal was recorded, only the last sixteen patients (12 male/4 female, weight: 80±11 kg,

height: 176±7 cm, BMI: 26±3 kg/m2) were considered for analysis. The study was approved

by the local ethics committee of Christan-Albrechts University Kiel, Germany (EC-Study-ID

D486/16) and registered at clinicaltrials.gov (NCT02992002). Due to the purely observational

nature of the study, a waiver of informed consent was granted by the ethics committee. The

study included ventilated patients in the ICU with the need of fluid administration and both

EIT and extended hemodynamic monitoring. In return, the following criteria lead to the

exclusion of patients: an age below 18 years, BMI >35 kg/m2, open lung injuries, instable

injuries of spine or skull, metallic implants in the thorax region (e.g. pacemaker).

All measurements were performed in the ICU facilities of the University Medical Center

Schleswig-Holstein (UKSH, Kiel, Germany). The patients were equipped with a 16 electrode

EIT belt placed around their chest at the level of the 4th to 5th intercostal space and connected

to the PulmoVista™ 500 EIT device (Dräger Medical, Lübeck, Germany). Hemodynamic data

(including ECG and systemic blood pressure) were measured using a Datex-Ohmeda hemo-

dynamic monitor (S/5, Datex-Ohmeda, Helsinki, Finland) and recorded via the S/5 Collect

software (Datex-Ohmeda, Helsinki, Finland). SV reference measurements were obtained

by averaging three transpulmonary thermodilutions performed with the PiCCO plus device

(Pulsion, Munich, Germany). This measurement setup is also illustrated in Figure 9.1.

For each patient three SV reference measurements (M1 to M3) were performed during the

following protocol: (M1) 30 minutes after application of the EIT belt and prior to the fluid

challenge via the injection of 500 mL of balanced electrolyte solution (Sterofundin ISO, B.

Braun, Melsungen, Germany); (M2) right after the fluid challenge; (M3) 30 minutes after (M2).

For those patients being fluid responsive, an increase in SV is expected from (M1) to (M2).

Moreover, if all of the injected liquid remains in the circulation, SVs of (M3) and (M2) are

expected to be comparable.

EIT

ECG

SV
SVRef

ROIL

ROIH

Imgs

PiCCO

Lung ROI 
Detection

Heart ROI 
Detection

ECG-Gated 
Ensemble 
Averaging

Figure 9.1 – Block diagram of the measurement setup in the ICU. For each SV measurement the
EIT images are averaged to one representative cardiac cycle (Imgs) from which heart (ROIH)
and lung regions (ROIL) are extracted. The amplitudes of the temporal signals in these two
regions are further compared to the SV reference measurement SVRef.
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9.2.2 Data Preprocessing

First, EIT and hemodynamic data were manually aligned in the time domain with the help of

deliberate spikes induced via synchronous tapping on EIT and ECG electrodes at the beginning

and at the end of each recording. Then, EIT samples were interpolated in the time domain to

correct for the sporadic loss of certain EIT frames. Furthermore, a clock drift between EIT and

hemodynamic signals was corrected for.

As also illustrated in Figure 9.1, EIT data was averaged via ECG-gated ensemble averaging (see

Section 3.1.3) to one representative cardiac cycle per measurement (M1 to M3). To do so, all

data were first high-pass filtered (4th-order Butterworth with fc = 0.75 ·HR/60, with HR as the

current heart rate) and aligned to all ECG’s R-peaks located in the 2 minute window centered

around the mean time of injection of the PiCCO thermodilution triplets. EIT raw voltages

were reconstructed into sequences of images with 32×32 pixels using the GREIT algorithm [6]

with the recommended parameters in combination with the 2.5D model of an adult human

thorax available in the EIDORS toolbox [5]. Then, for each resulting EIT image sequence, heart

and lung regions were determined using the following algorithms: the heart was detected as

described in Section 6.2.3 and the lungs via the algorithm proposed by Proença et al. [120, 121].

9.2.3 Signal Processing and Data Analysis

In contrast to the previous study presented in Chapter 8, here only three measurements are

available per patient. Moreover, absolute SV via a single calibration has shown to be difficult

(see Sections 6.3.2 and 8.3.2). Therefore, the analysis was restricted to solely investigate the

trending of relative SV changes via a subject-independent calibration.

As mentioned in the introduction, we tested the two hypotheses: whether SV can be assessed

by means of EIT via the signal amplitude in either (a) the heart [155, 114, 113] or (b) the lung

region [113, 41]. To do so, in each region, the amplitude was estimated in two different ways for

each of the averaged EIT image sequences (Imgs) and four features (∆σH,∆σL, tStdH and tStdL)

were computed as defined hereafter. First, the systolic heart (∆σH) or lung amplitude (∆σL)

were determined via the minimum and maximum of the temporal signal in the corresponding

region. Second, the temporal standard deviation of the heart (tStdH) or lung signal (tStdL)

were calculated over the entire cardiac cycle (systole and diastole) and are expected to be more

robust amplitude estimates. To allow for a fair comparison between the three measurements

of each patient (M1 to M3), the abovementioned amplitudes were calculated from the same

averaged heart and lung regions, denoted as ROIH and ROIL, respectively. The averaged

ROIs contain all pixels which are present in at least two out of the three individual ROIs, e.g.

ROIH = (ROIM1
H +ROIM2

H +ROIM3
H ) ≥ 2.

In a first step, the trending ability was tested for the total of 48 measurements (16 patients with

3 measurements each). To this end, each of the four amplitude features was transformed into

relative changes between the current measurement c and a baseline b: ∆SVb→c
EIT = (xc −xb)/xb ,
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where x represents the feature under test (∆σH, ∆σL, tStdH, or tStdL). The reference mea-

surements SVRef were transformed similarly and denoted as ∆SVRef. As further justified in

the results and discussion section, for each patient, the relative changes of the two transi-

tions M1 to M2 and M2 to M3 were tested, i.e. ∆SVM1→M2
Ref vs ∆SVM1→M2

EIT and ∆SVM2→M3
Ref vs

∆SVM2→M3
EIT were compared by means of four-quadrant plot analysis [37, 130], also explained in

Section 6.2.4. For the various reasons detailed by Saugel et al. [130], the four-quadrant plot was

preferred over the polar plot. The resulting trending performance was evaluated by means of

the angular error εα (angular deviation of each data point (∆SVRef,∆SVEIT) with respect to the

identity line) and the angular concordance rate CR (percentage of measurements with εα not

exceeding ±30°). According to the criteria defined by Critchley [37, 38], trending performance

is considered as acceptable if εα has a bias <±5°, its 95 % limits of agreement do not exceed

±30° and CR is ≥92 %2.

In a second step, the analysis was restricted to solely those measurements with consistent

heart and lung ROI and with low noise in the corresponding region. To do so, two types of

quality indices were introduced and used to reject outliers. First, the similarity measures JH

and JL compare the agreement of the current heart or lung ROI with the averaged ROI via

the so-called Jaccard index [84], e.g. JH = |ROIH ∩ROIH|/|ROIH ∪ROIH| . Second, the signal

quality indicators NH and NL estimate the average relative noise level in the heart and lung

regions from the relative deviation of each pulse used for ensemble averaging as explained

in Appendix B. Finally, all heart amplitude measurements (∆σH and tStdH) were excluded

as outliers if the corresponding JH < 75% or NH > 0.484. Lung amplitudes measurements

(∆σL and tStdL) were considered as outliers if the corresponding JL < 75% or NL > 0.750. The

thresholds of NH and NL were set such that at least 25 % of the “worst” measurements, i.e.

those with highest noise level, got excluded from analysis.

9.3 Results and Discussion

9.3.1 Hemodynamic Variations

The average changes in reference SV between the three measurements (M1, M2 and M3) are as

follows: the fluid challenge generally leads to an increase of SV (M2 vs M1: ∆SVM1→M2
Ref = 9.2%)

while 30 minutes after SV returns to its baseline level (M3 vs M1: ∆SVM1→M3
Ref =−0.3%). These

changes are shown in Figure 9.2 for each patient individually. As mentioned in the introduction,

a fluid challenge is leading to an increased SV in patients which are fluid responsive. The

subsequent return of SV to baseline can be explained by the type of fluid used for injection. It

is known that a few minutes after fluid challenge with crystalloids, only roughly 25 % of the

injected volume remain in the circulation [63], explaining the return of SV to its baseline level.

Moreover, the changes in ∆SVRef are generally low and rarely exceed the ±13 % error marked

2 It needs to be mentioned that the angular concordance rate used in the present analysis is more conservative
than the “traditional” concordance rate (assessing the ratio of “good” vs “bad” measurements located in the 1st
and 3rd vs 2nd and 4th quadrant) and based on which the ≥92 % acceptance limit was defined [37, 38].
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Figure 9.2 – Hemodynamic variations for the three measurements (M1 to M3) of each patient
showing (Top) the changes of SV reference measurements SVRef relative to M1 and (Bottom)
the corresponding heart rates. The dashed red lines in the upper graph show the ±13 % error
to be expected from averaging a triplet of thermodilution measurements [124, 142].

Figure 9.3 – EIT analysis example for patient V17. (Top) images of cardiosynchronous activity
(CA) for the three measurements M1 to M3 with the averaged ( ) and individual ( ) ROIs.
(Bottom) the corresponding temporal signals of conductivity change in the heart (black) and
lung (blue) regions with the minima and maxima used to estimate the amplitudes ∆σH and
∆σL.
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by the dashed red lines in Figure 9.2 and expected from averaged thermodilution triplets

according to [124, 142]. On average, the changes are highest from M1 to M2 (∆SVM1→M2
Ref =

9.2%) and lowest from M2 to M3 (∆SVM2→M3
Ref =−9.5%). This justifies the choice of analyzing

the trending ability from M1 to M2 and from M2 to M3, in order to get the most possible

measurements not falling within the error range of the reference device.

9.3.2 EIT Data Analysis

Figure 9.3 shows an example of analysis by means of cardiosynchronous EIT images with

delineated heart and lung regions together with the corresponding temporal signals and

the estimated amplitudes (∆σH and ∆σL). Equivalent figures for the remaining patients are

available in Appendix D in Figures D.1 to D.15. Based on these figures the ROI detection and

amplitude estimation was verified visually.

9.3.3 SV Trending Performance of EIT

The trending performance for all measurements and the four EIT-based amplitude features

is shown in Figure 9.4 by means of four-quadrant plot analysis. One can observe that for the

heart-related amplitudes shown in Figures 9.4a and 9.4b at least three measurements fall

within the 2nd or 4th quadrant, indicating a bad trending performance as also shown by the

low CR and high angular error εα. In contrast, using the lung-related amplitudes leads to a

better performance as shown in Figures 9.4c and 9.4d. In both cases all measurements fall

within the 1st and 3rd quadrant. Nevertheless, the 95 % limits of agreement of εα remain above

the ±30° threshold and do thus not indicate successful trending for all of the four cases.

When applying the outlier removal approach presented in Section 9.2.3, the following mea-

surements got excluded: 13 measurements of heart-derived amplitudes (∆σH and tStdH of

patients P09, P11, P12, P14, P16, P18 and P19) got removed due to too high noise in the heart

region (NH > 0.484) but none showed too high variations of the heart ROI. On the other hand,

9 measurements of lung-derived amplitudes (∆σL and tStdL of patients P09, P14, P16, P18 and

P19) got removed mainly due to too high noise (NL > 0.750) among which one also showed

too high variations of the lung ROI (with JL < 75%).

Figure 9.5 shows the restricted analysis on the remaining measurements. One can observe that

the performance of the heart-related features shown in Figures 9.5a and 9.5b still falls outside

the defined thresholds of acceptance. In contrast, using the reduced set of measurements of

the lung-derived amplitudes leads to an acceptable trending performance, in particular for

tStdL as shown in Figure 9.5d. Yet, when using ∆σL (Figure 9.5c), the performance falls closely

outside the limits of acceptance, both in terms of CR and εα.

Moreover, as in the previous chapter, a more extensive set of features (see Section 8.2.2) was

extracted from the EIT images and tested for their ability to trend changes in SV. However,

no noteworthy improvement in performance could be achieved (results not shown) when
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(a) ∆σH (b) tStdH

(c) ∆σL (d) tStdL

Figure 9.4 – Trending analysis between ∆SVEIT vs ∆SVRef by means of four-quadrant plot
analysis for two heart amplitude features ((a) and (b)) and two lung amplitude features ((c)
and (d)). The performance is assessed using the angular concordance rate CR and the angular
error εα. This analysis includes the total of 32 measurement points (from all 16 patients)
representing relative changes from M2 to M3 (with black border) and changes from M1 to M2
(no border). The exclusion zone was set to ±13 %, the error to be expected from averaging a
triplet of thermodilution measurements [124, 142]. The errors εα are given as Mean±Std and
the 95 % limits of agreement correspond to [Mean−1.96 ·Std,Mean+1.96 ·Std].

compared to the simple use of the lung-related feature tStdL.

Based on the present analysis we must reject the hypothesis that the EIT heart amplitude

(∆σH and tStdH) can be used for trending of SV. This is also the case when reducing the

measurements by excluding 41 % (13 out of 32) potential outliers. In contrast, our analysis

confirms that the EIT lung amplitude (tStdL) can be successfully used for noninvasive trending

of SV. However, this only applies to the analysis where 28 % (9 out of 32) of measurements with

high noise level were excluded and shows the sensitivity to noise-induced variability of this

approach. It needs to be highlighted that the reduced performance evaluation is based on

solely 7 measurements of 4 patients (for ∆σH and tStdH) and 8 measurements of 5 patients

(for ∆σL and tStdL).
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(a) ∆σH (b) tStdH

(c) ∆σL (d) tStdL

Figure 9.5 – Trending analysis between ∆SVEIT vs ∆SVRef by means of four-quadrant plot
analysis for two heart amplitude features ((a) and (b)) and two lung amplitude features ((c) and
(d)). The performance is assessed using the angular concordance rate CR and the angular error
εα. This analysis excludes outliers with high noise and an instable ROI. It includes a total of 19
(for (a) and (b)) and 23 (for (c) and (d)) measurement points representing relative changes from
M2 to M3 (with black border) and changes from M1 to M2 (no border). The exclusion zone was
set to ±13 %, the error to be expected from averaging a triplet of thermodilution measurements
[124, 142]. The errors εα are given as Mean±Std and the 95 % limits of agreement correspond
to [Mean−1.96 ·Std,Mean+1.96 ·Std].

9.3.4 Comparison to the Clinical Study in the Operating Room

In comparison to the study in the OR presented in Chapter 8, the current study in the ICU

leads to a more promising outcome (i.e. the lung amplitude allows for the trending of relative

SV changes). The main difference for these diverging results is hypothesized to stem from the

fact that the measurements in the ICU are much more stable in terms of ventilation settings

and less distorted by external influences such as touching or moving of the patient by medical

staff. For example, it has been shown by Vogt et al. [153] that changes in arm or torso position

in sitting subjects can have a significant effect on EIT images. In view of these findings, it is

also likely that EIT-derived amplitude estimates of the OR study are impaired by changes in

arm and torso position.
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9.3.5 Comparison to Simulations and Previous Studies

Our findings indicate that the trending of SV by means of EIT is not possible based on the heart

amplitude. This is not only in contradiction with the simulation-based findings presented

in Chapter 6 but also partly with the previous studies by Vonk Noordegraaf et al. [155] and

Pikkemaat et al. [114]. We hypothesize that in our case the heart-based SV estimation is

impaired by ventilation-induced out-of-EIT-plane movement of the heart and/or changes

in the heart-lung conductivity contrast (see Figure 6.9) caused by the injection of fluid or

other influences. None of these effects was considered in simulations which might explain

the contradictory results. While in the pig experiments by Pikkemaat et al. more accurate belt

placements might have lead to a less pronounced influence of the first effect in certain pigs, it

was mentioned as a main limitation for other pigs [114].

In contrast, SV trending via the lung amplitude is more promising, which would confirm

the recent work by da Silva Ramos et al. [41] but is at the same time partly in contradiction

with the mixed results obtained by Pikkemaat [113]. Besides, these two studies [113, 41] were

performed on pigs under laboratory conditions while our study is based on clinical data of

ICU patients under real-life conditions.

9.3.6 Limitations and Future Work

Although we performed measurements on 16 patients, most of them did not show large SV

variations in response to the fluid challenge, i.e. not many SV changes exceed the ±13 % error

expected from thermodilution. Therefore, in a future study more patients and in particular

those with higher SV variations should be included.

While our results suggest that the EIT lung amplitude is able to track changes in SV and thus

global perfusion, it is of utmost importance to underline the following. There is still the

widespread assumption that cardiosynchronous EIT signals in the lung region mainly reflect

pulmonary perfusion which is not entirely correct as discussed by Hellige and Hahn [74] and

Adler et al. [11], i.e. two pulmonary arteries with equal perfusion but different compliance

result in different pulsatile EIT signal amplitudes – despite equal perfusion! Even though

the present approach shows promise on the current data, further research – including long-

term measurements and various pathophysiological conditions – is required to reveal likely

limitations of this approach.

The current EIT images are based on one single – patient-independent – reconstruction model.

It is known that a mismatch between actual thorax shape and reconstruction model can

impact the measurements [64]. Therefore, it would be interesting to investigate to which

extent the measurements are improved when considering a patient-specific morphology for

EIT reconstruction.
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9.4 Conclusion

In view of noninvasive SV monitoring at the bedside we performed EIT measurements on six-

teen patients in the ICU. These measurements were performed before and after fluid challenge

which is known to increase the SV in those patients which are fluid responsive. Resulting chan-

ges in EIT-derived heart and lung amplitudes were then compared to SV changes obtained via

transpulmonary thermodilution.

Our analysis suggests that the trending of SV – i.e. following relative changes – by means of

EIT is not possible based on the heart amplitude, which is in contradiction with previous

studies by Vonk Noordegraaf et al. [155] and Pikkemaat et al. [114]. In contrast, SV trending

via the EIT-derived lung amplitude is more promising, but only after excluding 9 out of 32

(28 %) measurements considered as potential outliers with too high noise level. In this case

an acceptable trending performance with CR = 100% and εα =−1.6±11.9° is obtained. When

compared to pig experiments, our findings would confirm the recent work by da Silva Ramos

et al. [41] but are partly in contradiction with the mixed results obtained by Pikkemaat [113].

As these promising results are based on solely 8 measurements of 5 patients, further research

is required to validate this approach on more patients and in particular with higher variations

in SV. Moreover, it is known that the EIT lung amplitude is not merely related to pulmonary

perfusion [74, 11]. Therefore, this potential limitation needs to be further investigated in

dedicated clinical trials including long term measurements and addressing relevant pathop-

hysiological conditions. Nonetheless, continuous and noninvasive SV estimation might be

feasible in environments such as the ICU where controlled EIT measurements can be perfor-

med. Moreover, absolute SV estimates could be obtained by scaling the relative changes with

an initial calibration value (e.g. obtained via transthoracic echocardiography).
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Part IVTowards an Optimized
Measurement Setup for

EIT-Based SV Monitoring
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10 Considerations for an Improved Mea-
surement Setup

In this chapter we briefly review existing limitations of available EIT systems and discuss

potential approaches for finding a measurement setup better suited for EIT-based SV monito-

ring.

10.1 Practical Limitations of Available Clinical EIT Systems

The EIT systems currently available and certified for monitoring in clinical scenarios (see

Table 3.1) have certain limitations when aiming for SV monitoring via the heart amplitude.

First, most of these systems have the EIT electrodes embedded in a belt which restricts the

image reconstruction onto one single plane (2D). Yet, as shown in Chapter 6, the EIT-based

SV estimates are considerably influenced by the level at which the EIT belt is placed. This is

also indicated by the experimental measurements in the OR (see Chapter 8) where the data

from two patients had to be excluded from analysis due to a too low heart signal (presumably

caused by a too low/high EIT belt placement). Besides, even if the EIT belt was systematically

placed at the same level, the EIT heart signal can be altered by respiration- or posture-induced

(out-of-EIT-plane) heart displacement [170]. It is therefore assumed that the use of 3D EIT

would be of great benefit to minimize these undesired influences.

Second, all of the available clinical EIT systems are limited to a bipolar stimulation and

measurement pattern with one specific skip (i.e. number of inactive electrodes in between

the two ones actively measuring voltage/injecting current). Moreover, certain systems (e.g.

Göttingen Goe-MF II and Dräger PulmoVista™ 500) make use of the adjacent (skip = 0)

pattern, which is known to have the lowest performance in terms of sensitivity and signal-to-

noise ratio (in the center) [134, 8]. While the other systems use a skip > 0, to the best of our

knowledge, they do not provide a possibility to change it. Even though different skips can

theoretically be achieved by connecting the electrodes (of a skip 0 system) in a different order

[8], this is not always practicable as the resulting increase in raw voltage amplitudes leads to

saturation of the analog acquisition chain.
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Figure 10.1 – Two electrode placements assumed to be more suitable for EIT-based SV mo-
nitoring: (a) a patch of electrodes close to the heart, and (b) two transversal planes of 2×16
electrodes. See text in Section 10.2.

Thirdly, it is known from measurements on healthy subjects that the strength of cardiosyn-

chronous EIT signals decreases with increasing stimulation frequency [30]. On the other hand,

due to electrical safety considerations, the injected current and thus the signal-to-noise ratio

is lower at frequencies below 100 kHz [2]. However, only some devices allow changing this

frequency (e.g. Göttingen Goe MF II and Dräger PulmoVista™ 500) while others are fixed to a

given frequency (e.g. at present Swisstom BB2 is fixed to 195 kHz).

10.2 Finding a Setup Better Suited for EIT-Based SV Monitoring

Compared to the currently available EIT systems (primarily targeted for ventilation monitoring

in the lungs), we hypothesize that there is a measurement setup better suited for EIT-based

SV monitoring. In the following, besides addressing the abovementioned limitations, we also

justify the improved measurement setup used in the experimental study presented later on in

Chapter 12.

First, concerning the electrode positions, one can imagine that having a higher density of

electrodes in the left ventral region (i.e. a patch of electrodes on the chest close to the heart as

illustrated in Figure 10.1a) could lead to an improved sensitivity in the heart region. However,

given the same total amount of electrodes, this also results in less electrodes on the sides and

the back which in turn could be very sensitive to errors of this specific electrodes (detachment,

contact impedance issues). In addition, if one further wants to analyze pulsatile information

in the lungs, it is of advantage to have a setup not only targeted for measuring the heart.

Therefore, for the improved measurement setup (see Chapter 12) the electrodes were placed

on two transversal planes of 2×16 electrodes. This placement enables 3D EIT and is assumed

to at least partly overcome the abovementioned undesired influences such as out-of-EIT-plane

heart displacement.

Second, given a specific electrode placement has been found, there remains the challenge of
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Figure 10.2 – (Left) Block diagram of the genetic algorithm (GA) [158] used to find a better
stimulation and measurement pattern. The human thorax model (presented in Chapter 4)
with belts TL and TH and the 2×16 electrode placement shown in Figure 10.1b, was used
to evaluate the sensitivity in the heart region by means of the z-score (distinguishability
[8]). For each of the ni = 500 iterations of the GA, a population of np = 256 chromosomes
was evaluated. These are np vectors (with a fixed length of 32 each) representing possible
connections between the electrode ei and the EIT device cable ci (with i ∈ {1,32}). At the end
of each iteration, the chromosome were ranked (i.e. highest z first, lowest z last), the highest
ranked one was kept and the rest of the population was evolved in four steps: (1) 64 new
chromosomes were generated by exchanging two randomly chosen alleles in the 25 % highest
ranked chromosomes; (2) 64 new chromosomes were generated by randomly swapping all
alleles in the 25 % highest ranked chromosomes; (3) 64 new chromosomes were generated
by crossing over of two randomly chosen chromosomes; (4) The remaining 63 chromosomes
were generated randomly. (Right) The temporal evolution of the best solution found via the
GA ( blue) compared to skip 0 ( red), skip 4 ( black), and skip 6 ( gray).

finding the most suitable stimulation and measurement pattern, i.e. finding the particular

sequence and combination of the electrodes injecting currents and those measuring the

resulting voltages. Even worse, if one wanted to find the optimal solution, one would need

to simultaneously optimize the electrode positions and the stimulation and measurement

pattern while preferably considering real-live constraints from the EIT device used. Although

this is a fascinating subject, it is out of the scope of the present thesis.

Nonetheless, if one is limited to one of the commercially available EIT systems with bipolar

measurements and a fixed skip, this challenge gets simplified. When further considering the

aforementioned two-plane (2×16) electrode placement shown in Figure 10.1b, there is one

sole remaining degree of freedom influencing the stimulation and measurement pattern. This

is the way on how the 32 electrodes (e1 to e32) are connected to the 32 cables of the EIT device

(c1 to c32), also illustrated in Figure 10.1b. This issue is similar to the well-known traveling

salesman problem1. Therefore, in an attempt to solve it, a genetic algorithm (GA) was applied

which is very briefly presented and described in Figure 10.2. For more information regarding

GA one is referred to the book by Weise [158]. Even though this approach does not lead to

the optimal solution, it finds the best possible one within a reasonable amount of time. As

shown in Figure 10.2, the performance of the GA-based solution does not outperform a skip

1In the traveling salesman problem one is given a list of cities which the salesman has to visit. The goal is then to
find the shortest possible route that visits each city only once and returns back to the city of departure. Analogously
we have to find the best possible order (e.g. in terms of sensitivity in the heart region) on how to connect the 32
cables of our EIT device (c1 to c32) to the 32 available electrodes (e1 to e32).
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coronal y=1.50e-02

(a) Best stimulation and measurement pattern obtained via the GA

coronal y=1.50e-02

(b) Skip 4 pattern

coronal y=1.50e-02

(c) Skip 0 pattern

Figure 10.3 – Forward sensitivities [66] for the human thorax model (presented in Chapter 4)
with belts TL and TH and the 2× 16 electrode placement shown in Figure 10.1b for three
different stimulation and measurement patterns: (a) the best possible obtained via the genetic
algorithm approach, (c) skip 4, (b) skip 0. Columns from left to right show: sagittal plane
(x = 30cm), coronal plane (y = 10cm), transverse plane (z = 40cm, i.e. in between the two
electrode planes). All images use the same color scale.

4 pattern by more than 15 % (in terms of z-score). This is further shown in Figure 10.3 by

means of forward sensitivities [66]. The best solution found via the GA (Figure 10.3a) does not

significantly outperform a skip 4 pattern (Figure 10.3b). However, the latter two are clearly

more sensitive than a skip 0 pattern (Figure 10.3c). For the above reasons, and for the fact that

in practice complex cabling could decrease the performance of the best solution, the skip 4

pattern was chosen for the improved measurement setup and applied in the experimental

study (see Chapter 12).

Finally, a remark concerning the frequency of the injected EIT current. It would be of advantage

to use a stimulation frequency in the range of 100 kHz as this represents a trade-off between

the signal-to-noise ratio [2] and cardiosynchronous signal strength [30]. Yet, being restricted

to a specific EIT device (Swisstom BB2) a fixed stimulation frequency of 195 kHz was used for

the improved measurement setup.

In summary, we decided for the following improved measurement setup to be used in the ex-
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perimental study presented later on in Chapter 12: 2×16 electrodes placed on two transversal

planes (Figure 10.1b) with a skip 4 pattern and a stimulation frequency of 195 kHz with the

Swisstom BB2 device.

10.3 The Challenge of Comparing Different Measurement Setups

When one is aiming for an improved EIT measurement setup for a particular application (e.g.

SV monitoring), at a certain point it is essential to compare EIT images. These images can

be reconstructed with different algorithms or acquired with different measurement configu-

rations (e.g. measured with different skip patterns, electrode positions or even different EIT

devices). The aim is then to determine which of these setups has the best performance for a

particular application. However, to compare EIT images resulting from different setups, the

regularization parameter λ of the reconstruction algorithm must be set such that the compari-

son is fair, e.g. comparing algorithms with identical signal-to-noise ratios. As alluded to in

Section 3.1.2, this was not possible with the existing state of the art. Therefore, we developed a

novel approach which is presented hereafter in Chapter 11. It permits the comparison of EIT

reconstruction performance across different measurement setups. In the future this approach

should help to compare and thus find improved measurement setups for various applications.

While the next chapter in question mainly covers aspects of EIT image reconstruction, the

reader more interested in the evaluation of the improved measurement setup is directly

referred to the subsequent chapter (Chapter 12).
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Figure 11.1 – Three hyperparameter selection approaches commonly used in EIT: (a) L-curve
with (i) a classical form and (ii) a form often observed for higher data noise; (b) generalized
cross-validation (GCV); (c) noise figure (NF).

11.1 Introduction

As presented in Section 3.1.2, the reconstruction of EIT images uses inverse problem techni-

ques, which introduce additional constraints to stabilize the estimated images, and to make

them more robust to interference and noise [93, 80]. Most reconstruction schemes define a

hyperparameter (here λ) which controls the amount of regularization, and can be seen as a

trade-off parameter between image robustness and accuracy. In many cases, this choice can

be described as a “resolution-noise performance trade-off”.

In using regularization techniques, a key decision is the selection of an appropriate (or “best”)

value of the hyperparameter λ. From the various λ selection approaches which have been

proposed [62, 36], we review three commonly used in EIT. A key challenge with all these

approaches is that they work within a given measurement configuration (electrode number

and position, and stimulation and measurement pattern). They thus offer little guidance in

scenarios in which measurement configurations need to be compared, for example when

optimizing an EIT configuration for a specific experimental or clinical application. To address

this requirement, this chapter proposes and evaluates a novel noise performance metric.

11.1.1 State of the Art in Hyperparameter Selection

We review three state-of-the-art techniques to select regularization hyperparameters. The

most widely cited is the L-curve technique, proposed by Hansen [70]. It is based on finding
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a best compromise between the data mismatch, D(m̂) = ‖v −F (m̂)‖ and the regularization

penalty P (m̂). The classical form of the L-curve is shown in Figure 11.1a(i); values are obtained

by calculating the solution over the full range of λ values and plotting each point. Point L is the

L-curve point, which represents the “best” compromise between D(·) and P (·), in the sense

that changes in λ from L increase one penalty without improving the other (L can be precisely

defined in terms of the curvature). In region A, as λ→ 0, the image becomes increasingly

noisy, and P (·) increases without significant improvement in D(·). Conversely, in region B , as

λ increases, D(·) increases without significant improvement in P (·). Finally, for large λ, the

best choice is simply to choose the values which minimizes P (·) without considering the data

at all (region C ). Thus, the L-curve can be thought of as having a “chair” shape. While the L

region is well defined when the noise levels are low, in many applications with higher data

noise the curve appears more like Figure 11.1a(ii), and point L can be difficult to calculate

robustly [62].

Another approach is to use a cross-validation scheme, such as generalized cross validation

(GCV) [61]. These are motivated by searching for a solution which is best able to predict

measured values. The concept of GCV is illustrated in Figure 11.1b. A solution is calculated

without each data value in turn, and the prediction error due to each missing data value is

then evaluated. The best λ predicts data with the lowest cross-validation error, represented

by the minimum of the GCV-function G(λ). GCV estimates have not seen much use in EIT;

a common claim has been that the GCV tends to underestimate λ, i.e. to provide under-

regularized solutions [62].

The third approach, the noise figure (NF), is illustrated in Figure 11.1c. It is defined as the ratio

of signal-to-noise ratio (SNR) of the input (raw data v) to that of the output (reconstructed

image m̂) [3]; NF = SNR[v ]/SNR[m̂]. Here, SNR is defined in terms of image amplitude rather

than energy, as SNR[x] = mean[x]/std[x]. NF is a useful parameter to compare algorithms

using the same measurement configuration (for example, to compare to the original Sheffield

backprojection algorithm, an EIT algorithm is recommended to have NF = 0.5 [6]). Limitations

of the NF are mentioned at the end of the next section.

11.1.2 Practical Aspects and Limitations of the State of the Art

A common limitation associated with the L-curve, GCV and other approaches from the mathe-

matical inverse problem literature is that the optimal λ is defined for each data measurement.

From an engineering point of view this is not practical. Instead, the value would be set either

when an algorithm or system is designed or manufactured, or perhaps when a system is tuned

for a specific application. Thus λ should be best for an expected range of data, rather than for

one specific set of measurements. Another consideration is that in practice, a “best” algorithm

is defined in terms of user-level performance parameters, such as SNR, resolution, position

accuracy (e.g. [6]). It is not clear how, for example, the L-curve optimal point relates to the

user-level performance. One further application requirement is the need to compare the
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performance of different measurement system configurations. If we wish to compare different

hardware settings, electrode placements, or stimulation and measurement patterns, then

the measured data will necessarily differ. It is not possible to simply use the same numeric

value of λ between the different configurations. In order for the comparison between the

configurations to be meaningful, the setting of a given performance parameter must be the

same, so that other figures of merit can be compared fairly. Most commonly, this means setting

approaches to have equal noise performance (NP), i.e. the amount of measurement noise

(present at the input) reflected in the images (the output of reconstruction).

One common parameter of this type has been the NF. Unfortunately, as shown later in the

present chapter, NF does not work well for the comparison of different measurement configu-

rations, such as for example a larger skip (separation between stimulation and measurement

electrodes).

11.1.3 Proposed Approach

We are faced with the challenge of defining a hyperparameter selection strategy which is

appropriate for: 1) choosing a suitable λ for a measurement system and a given application,

and 2) fairly comparing different systems or different configurations of the same system. In

the present chapter we primarily focus on 2) driven by the motivation of possible scenarios

encountered in practice: having a 32 electrode EIT system with the capability to use different

stimulation and measurement patterns, we would like to know which one is the best pattern

e.g. to image the lungs or the heart. In a next step, we might want to compare the performance

of the first device to a second device with only 16 electrodes. Once an equal NP is established

for all algorithms of these diverse configurations, the image quality can be compared in terms

of resolution, position errors, or other figures of merit.

To this end we develop a NP metric called SNR which describes the expected image noise.

This noise parameter is calculated for a given measurement system configuration which is

defined to include: the stimulation and measurement patterns and the electrode positions.

11.1.4 Image Reconstruction for Difference EIT

In this chapter we focus on difference EIT, as typically used in clinical applications for stability

reasons. In difference EIT a reference voltage vr is subtracted from the voltage measurement

v yielding the difference data d . The result of reconstruction m̂ thus represents the change in

conductivity relative to a reference state. For small changes in conductivity the problem may

be linearised as follows:

m̂ = R(λ)d = R(λ)(v −vr ), (11.1)

where R(λ) represents the reconstruction matrix which depends on the hyperparameter λ.

Such linearised one-step difference algorithms are commonly used in clinical EIT and many
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Figure 11.2 – Block diagram of the proposed framework evaluating the signal-to-noise ratio
(SNR) of nt likely conductivity targets leading to the averaged SNR.

approaches exist to derive R(λ).

11.1.5 Structure of This Chapter

This chapter is structured as follows: In the methods section we first present the SNR appro-

ach from the theory to its implementation. Then, we describe the simulation and practical

experiments performed to validate our approach. In the results, we compare the state of the

art (L-curve, GCV, NF) to the proposed method. In the discussion we consider some additional

observations of this work, followed by a conclusion.

11.2 Methods

11.2.1 SNR Framework

We first explain the general concept of the proposed SNR approach in the next section. Then we

present its specific solution for linearised one-step reconstruction, followed by its algorithmic

implementation.

General Concept

The suggested SNR measures the average signal-to-noise ratio in the image domain for several

objects of interest – hereafter referred to as targets. To do so the signal strength of each target

is compared to the amount of noise present in the images within the vicinity of each target.

Algorithms with equal SNR are thus defined to have equal noise performance (NP).

As illustrated in Figure 11.2 we evaluate the individual SNRs from nt likely targets distribu-

ted inside a given region of interest (ROI) of our model. The approach requires a model of

likely noise n, which is incorporated into the difference EIT data (d = F (m,n)) prior to recon-

struction (m̂ = R (d ,λ)). F (·, ·) represents the forward model transforming the conductivity

change m into the (noisy) difference voltage d , and R(·, ·) the reconstruction of d into the
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EIT image m̂ (i.e. the estimated conductivity change) while being controlled by the hyper-

parameter λ. For each of the nt targets, we estimate the expected signal and noise level in a

target-specific evaluation zone (TEZ). To this end, within the TEZ of a given target, we compute

the signal level S as the average of a noise-free image m̂s and the noise level N as the expected

root mean square (RMS) amplitude of a pure noise image m̂d . By design, the signal level

estimation should be independent of both the spatial resolution (i.e. amount of blurring), and

the possible position errors of the reconstruction. Thus, the TEZ is adapted to each target,

and is defined as the pixels which exceed one-fourth of the maximum amplitude of m̂s , as

suggested by [6]; the TEZ thus includes most of the visually significant image contributions. In

this way, the estimate S always captures a comparable portion of the target response in m̂s ,

independent of the spatial resolution of the reconstruction. The signal estimate S is further

scaled with a factor k = VTEZ/Vt which corrects for the ratio of blurring, i.e. the size of the

target response in the image domain VTEZ versus the effective target size Vt . This correction

factor k makes the signal estimate independent of the spatial resolution of reconstruction (i.e.

size of the TEZ) and the size of the target and thus allows a fair comparison between estimates

of different targets and/or algorithms.

The final NP metric SNR is expressed as the average SNR of all nt targets which leads to the

generalized equation:

SNR = Et

 k
∑np

i=1[z]i [m̂s]i√
En

[∑np

i=1[z]i [m̂d ]2
i

]
 , (11.2)

where En [·] denotes the expected value of the noise model (stochastic domain) and Et [·] the

expected value calculated over the finite set of nt targets. The target-specific vector z weighing

each of the np image elements by its area times its contribution to the TEZ (i.e. zi = 0 if image

element i is outside the TEZ) is further defined in the next section.

As mentioned before, most clinical EIT applications use one-step linearised reconstruction.

We therefore focus on this type of reconstruction and present a particular solution for Equa-

tion (11.2) hereafter.

Solution for Linearised Reconstruction

When using a linear model and assuming n as additive noise (characterized by a covari-

ance Σn), we have ds = J ms , and dn = J ms +n, where ds ,dn ∈ Rnd are the difference EIT

measurements and J ∈Rnd×ne is the Jacobian matrix (with nd as the number of EIT voltage

measurements and ne the number of finite elements in the forward model). The two images
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of interest, m̂s ,m̂d are thus calculated using Equation (11.1):

m̂s = Rds = R J ms (11.3)

m̂d = R(ds −dn) = Rn. (11.4)

From these images we estimate the signal level S from m̂s and noise level N from m̂d , with the

analysis being restricted to the TEZ. To this end, we make use of the normalized weighting

vector z ∈Rnp which contains, for each image element i (e.g. pixel), its area ai multiplied by a

binary number ci (equals 0/1 if outside/inside the TEZ), yielding zi ∝ ai ci , with
∑

zi = 1. For

the sake of simplicity, the following equations are limited to one single target but extended to

multiple targets at the end of this section. The signal level S is defined as the average of m̂s

within the TEZ:

S = k
np∑

i=1
[z]i [m̂s]i = k z t m̂s = z̃ t R J ms , (11.5)

where z̃ = kz = (VTEZ/Vt )z with VTEZ =∑
ai ci , i.e. the total area of all image elements within

the TEZ, and Vt the volume of the conductivity target. The squared noise level N2 is defined as

the weighted mean square amplitude of m̂d :

E
[
N2]= E

[
np∑

i=1
[z]i [m̂d ]2

i

]
= E

[||Dm̂d ||2
]

, (11.6)

where D is a diagonal matrix with [D]i i =p
zi yielding:

E
[
N2]= E

[
tr

[
Dm̂d m̂T

d DT ]]= E
[
tr

[
DT Dm̂d m̂T

d

]]
= E

[
np∑

i=1
[D]2

i i [m̂d m̂T
d ]i i

]
= E

[
np∑

i=1
[z]i [m̂d m̂T

d ]i i

]
= E

[
z t diag(m̂d m̂T

d )
]= E

[
z t diag(Rnnt R t )

]
= z t diag(RΣnR t ). (11.7)

The choice of calculating the noise from the diagonal entries of RΣnR t rather than from the

full covariance matrix stems from the fact that we are estimating N as the RMS amplitude

along the spatial dimension (i.e. for each image element). If the full covariance matrix were

used, noise would be estimated as the RMS amplitude (along the stochastic dimension) of a

conductivity change spatially averaged over the TEZ (E
[
(z t m̂d )2

]= z t RΣnR t z), and would

sum over the off-diagonal entries in the covariance matrix. In this case, off-diagonal entries

with opposite sign would reduce the estimated noise within the TEZ. This would lead to an

overestimated SNR, especially in reconstruction algorithms with high spatial resolution when

compared to lower resolution algorithms.
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Combining Equation (11.5) and (11.7) leads to the SNR of one single target:

SNR = S√
N2

= z̃ t R J ms√
z t diag

(
RΣnR t

) . (11.8)

We further extend this to multiple targets with their changes in conductivity M ∈Rne×nt and

the corresponding evaluation zones Z , Z̃ ∈ Rnp×nt , where each column in M contains the

conductivity change of one target (e.g. ms), Z the TEZ of this target (e.g. z) and Z̃ its scaled

version (e.g. z̃). This leads a vector of nt SNRs:

SNR = diag
(

Z̃ t R J M
)®√

Z t diag
(
RΣnR t

)
, (11.9)

where ® denotes the Hadamard division (element-wise division). For uncorrelated and uni-

form noise, where Σn is a diagonal matrix with Σn =σ2
n I , this can be simplified to:

SNR = diag
(

Z̃ t R J M
)®(

σn

√
Z t diag

(
RR t

))
. (11.10)

The final SNR is then calculated as the mean of all targets SNR = 1
nt

∑nt

i=1 [SNR]i , in order to

obtain the average NP inside the ROI. The expressions in Equation (11.9) and (11.10) are

comparable to the SNRout defined by Adler et al. [3] but evaluated in a restricted region of the

image – the TEZ – and averaged over multiple targets.

Algorithm Implementation

For a given application including a model of the likely body shape, the Jacobian J and –

provided a given λ – the reconstruction matrix R(λ) are known. With Equation (11.9) and

(11.10) the SNR is then calculated by the following steps.

1. In the region where the conductivity changes of interest are to be observed (ROI) we

distribute nt targets of desired size and amplitude in our model, leading to M .

2. For each target, we reconstruct an image m̂s of which we determine the one-fourth

amplitude pixels. These pixels define the evaluation zone (TEZ) in the image domain,

leading to nt TEZs contained in Z and Z̃ .

3. Depending on the desired noise characteristics we compute SNR using Equation (11.9)

or (11.10) and average to obtain SNR.

11.2.2 Validation Experiments

To validate the approach proposed, a number of simulation experiments were performed on a

human thorax model. To this end, the aforementioned algorithm was implemented in Matlab

using the open-source EIT toolbox EIDORS [5] and is freely available since release version
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3.9 [10]. To illustrate the approach on measured data, a commercial EIT system was used to

perform measurements on a resistor phantom. Finally, a simulation on an open geometry

model was carried out to evaluate the potential of the SNR approach for other fields of EIT

such as geophysics.

Algorithm Parameters

For the implementation of the proposed method in thoracic EIT applications, we recommend

an ROI extending to 50% of the distance from the center of mass to the boundary as illustrated

in Figure 11.3b. The therein contained nt = 200 uniformly distributed spherical targets are

positioned at the level of the electrodes and have a relative radius rt of 5% of the medium

radius Rm . Moreover, SNR was calculated using Equation (11.10) with σn = 1. The choice of

these parameters is justified in the discussion section.

In order to tune an EIT reconstruction algorithm to a desired SNR i.e. selecting the hyperpara-

meter λ of R(λ), a bisection search technique was applied [62].

Image Reconstruction

In the present chapter we use two reconstruction algorithms widely used for thoracic EIT:

GREIT with the recommended settings [6] and one-step Gauss-Newton (GN) with a Laplace-

prior [93, 80].

Simulation Experiments

The simulation experiments are illustrated in Figure 11.3 and described hereafter. A 3D extru-

ded model of a human thorax (shown in Figure 11.3a) was used with realistic conductivities

(σBackground = 0.20 S/m,σLungs = 0.13 S/m,σHeart = 0.55 S/m) [73]. A set of representative

difference EIT voltages dr was generated by changing the conductivity of the left lung and

the heart by 10% and -5%, respectively. The right lung was left unchanged. An example of a

reconstructed EIT image is shown in Figure 11.3c. To mimic a realistic scenario, additive white

Gaussian noise N (0,1E-5) was added to the difference data simulated, with which n f = 10000

realizations of a noisy EIT voltages dn were generated. These EIT data were reconstructed with

various algorithms R(λ) whose hyperparameter λ was selected based on different strategies:

(a) a given SNR, (b) a given noise figure (NF) [3, 62], (c) the L-curve criterion (LCC) [70, 68],

or (d) the generalized cross-validation (GCV) [68]. The latter two were implemented in EI-

DORS using Hansen’s Regularization Tools [69] and λ was selected as the median value of n f

hyperparameters resulting from applying the LCC or GCV to each of the noisy EIT voltages

individually.

Additionally, the reliability of the different hyperparameter selection approaches was inves-

tigated for various scenarios by changing (a) the number and (b) position of electrodes, (c)
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Figure 11.3 – Overview of the simulation experiments: (a) 3D model of human thorax with
lungs (blue) and heart (red) and (b) its corresponding 2D model in medical orientation (with
ROI for SNR calculation as dashed black line). The difference voltages dr obtained after
forward solving are affected by n f realizations of additive white Gaussian noise N (0,1E-5)
and then reconstructed to n f noisy EIT images ∆σ. The noise level in the reconstructed
images is illustrated by one single noisy EIT image and further analyzed by the temporal root
mean square of all noisy EIT images as described in the following. (c) Example EIT image with
positive/negative conductivity change in left lung and heart, respectively. The green rectangles
depict the EIT electrodes. (d) Pixel-wise, temporal root mean squared amplitude (tRMSA) of
the n f noisy EIT image. This image shows the square root of the signal and noise power. The
region delineated in blue is used to generate (e) the tRMSA cross section showing a transversal
cut through the tRMSA image with the region outside the ROI shaded grey. It shows the ratio
of noise-affected signal level SN (left lung) vs. noise level N (right lung) and allows to estimate
an approximative SNR ≈ SN−N

N . In the above example with SN = 0.94 and N = 0.42 we estimate
SNR ≈ 1.24. Note that (c), (d), and (e) are normalized to maximal tRMSA.

the skip of the bipolar stimulation pattern (number of inactive electrodes in between the two

ones actively measuring voltage/injecting current), (d) the image resolution (i.e. number of

pixels) or (e) the reconstruction algorithm (GREIT or GN). Unless otherwise noted, per default,

data from 16 equidistantly spaced electrodes and bipolar stimulation with skip 0 (adjacent

stimulation pattern) were reconstructed using GN onto an image of 32×32 pixels.

For each of the scenarios simulated the NP is analysed visually, either on the so-called temporal

RMS amplitude (tRMSA) image or its resulting cross section plot described in the following.

The tRMSA image (see Figure 11.3d) is calculated as the pixel-wise RMS amplitude (in the

temporal domain) from the n f reconstructed noisy EIT images∆σ. The tRMSA image and the

corresponding cross section plot Figure 11.3e show the ratio of noise-affected signal (left lung)

vs. noise (right lung) and thus allow a visual analysis of the NP and its spatial distribution as

further detailed in Figure 11.3.

Practical Experiments

In a laboratory experiment a resistor phantom (Swisstom Mesh Phantom 32-HG) was con-

nected to the 32-electrode EIT belt of the Swisstom PioneerSet (Swisstom, Landquart, Swit-

zerland). The mesh phantom contains 160 resistors in a star-like arrangement of which four
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can be short-circuited by a pushbutton resulting in local conductivity perturbations [144].

The four pushbuttons A, B, C and D are located close to electrode 1, 9, 17 and 25 and lead to

a local increase in conductivity at the top, right, bottom or left of the reconstructed image,

respectively. Five measurements were performed, each with a different skip pattern: 0, 3, 4,

7 and 8. Data were recorded using the Swisstom STEMLab software (Version 2.3.2 rev 749).

At the beginning of each measurement four local changes in conductivity were generated by

consecutively pressing each of the pushbuttons (A, B, C, D) of the resistor phantom during 5

seconds. Then the phantom was left untouched while the recording continued for 2.5 minutes,

enabling the estimation of the device-specific noise characteristics.

Open Geometry Example

The previous experiments concentrate on the application of thoracic EIT where electrodes

are placed on a closed geometry. However, there are other uses of EIT, such as geophysics,

where the electrodes can be placed on an open geometry. In order to evaluate the potential

applicability of the SNR approach for such cases, simulations with 27 electrodes placed inside

a circular hole of a 2D model were performed. Two conductivity contrasts shown in Figure 11.9i

were reconstructed for three different skips using the GN algorithm with identical SNR. The

computation of SNR was based on 40 targets placed in the close vicinity around the electrodes

as shown by red dots in Figure 11.9i.

11.3 Results

11.3.1 Simulation Experiments

Figure 11.4 to Figure 11.6c show the noise performance of different scenarios and hyper-

parameter selection approaches resulting from the simulation experiments illustrated in

Figure 11.3.

Figure 11.4 shows the noise performance of GN reconstructions for four examples of skip

patterns and for different hyperparameter selection approaches: (a) a fixed noise figure

(NF = 0.5), (b) GCV, (c) LCC, (d) a fixed SNR of SNR1 = 2.20E-5, and (e) a two-fold higher

SNR2 = 4.41E-5.

Similar figures are shown for an identical SNR1 to depict how the noise performance as

influenced by: (a) the use of the GREIT – instead of GN – reconstruction algorithm (Figure 11.5),

(b) different image resolutions (Figure 11.6a), (c) varying electrode position and number

(Figure 11.6b), and finally, (d) different skips combined with varying electrode position and

number (Figure 11.6c).

All images in Figure 11.4 to Figure 11.6c are normalized to the maximal tRMSA (as illustrated

in Figure 11.3). The reason behind this normalization is that – independent of differences in

amplitude response of reconstruction – we would like to display and analyze differences in
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Figure 11.4 – Noise performance of GN reconstructions for four examples of skip pattern
(i)-(iv), and five approaches for hyperparameter selection, each shown in one row: (a) fixed
noise figure (NF = 0.5), (b) generalized cross-validation (GCV), (c) L-curve criterion (LCC),
(d) fixed SNR of SNR1 = 2.20E-5 (corresponds to NF = 0.5 at skip 0), and (e) fixed SNR of
SNR2 = 2 ·SNR1 = 4.41E-5. For each approach and skip we show (1) one single EIT image (all
with identical noise), (2) the temporal RMS amplitude (tRMSA) images, and (3) their cross
sections along the transverse axis of the zone delineated in the corresponding tRMSA image.
All images are normalized to their maximal tRMS amplitude as described in Figure 11.3.
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Figure 11.5 – Noise performance of GREIT reconstructions (with fixed SNR = 2.20E-5) for four
examples of skip pattern (i)-(iv). For each skip we show (1) one single EIT image (all with
identical noise), (2) the temporal RMS amplitude (tRMSA) images, and (3) their cross sections
along the transverse axis of the zone delineated in the corresponding tRMSA image. All images
are normalized to their maximal tRMS amplitude as described in Figure 11.3.

NP and thus the ratio of signal level at each pixel relative to the maximal noise-affected signal

level.

11.3.2 Practical Experiments

Figure 11.7 depicts EIT images of an identical conductivity change measured on a resistor

phantom for five different skip patterns and reconstructed using an algorithm with a fixed NF.

Similar images reconstructed with a fixed SNR are shown in Figure 11.8a. As per default, the

calculation of SNR for these images is based on Equation (11.10) with σn = 1. In contrast,
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Figure 11.6 – Noise performance of GN reconstructions (with fixed SNR = 2.20E-5) for:
(a) three examples with a skip 3 and an image resolution of: (i) 48×48, (ii) 56×56, (iii) 64×64.
(b) three examples with a skip 5 and varying electrode position and number, where (i) and (ii)
have 16 and (iii) 24 non-equidistantly spaced electrodes.
(c) three examples of varying electrode position and number, and skip pattern: (i) 32 electrodes
with skip 3, (ii) 24 electrodes distributed more ventrally with skip 5 and (iii) 24 electrodes
distributed more dorsal with skip 7.
For each scenario we show one single EIT image (all with identical noise), and the correspon-
ding cross sections of the tRMSA images on the right. All images are normalized as described
in Figure 11.3.
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Figure 11.7 – Conductivity changes ∆σ measured on a resistor phantom for five different skip
patterns and reconstructed using GREIT with a fixed noise figure (NF = 0.5). Pressing button B
on the phantom leads to a local conductivity perturbation close to electrode 9 (right of image).
This perturbation is identical for all skip patterns, such that differences in the resulting images
can be attributed to differences in image reconstruction. All images are normalized identically
to the maximal absolute amplitude of all five images.
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(b) fixed SNR: non-uniform noise (Σn =ΣEst)

Figure 11.8 – Conductivity changes ∆σ measured on a resistor phantom for five different skip
patterns. Pressing button B and C on the phantom leads to a local conductivity perturbation
close to electrode 9 (right of image) and electrode 17 (bottom of image), respectively. The
images were reconstructed using GREIT with a fixed SNR of (a) SNR1 = 3.22E-6 or (b) SNR2 =
5.16E-3, both corresponding to a NF = 0.5 at skip 0. The difference in SNR between (a) and (b)
is due to the different noise covariances used: (a) Σn = I or (b) Σn =ΣEst. The green dotted
ellipses highlight the zone where differences in image artefacts are observed. All images in
one row are normalized identically to the maximal absolute amplitude of all five images.
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images in Figure 11.8b show the effect of taking into account the device-inherent noise

characteristics (SNR calculation is based on Equation (11.9), with Σn equal to the estimated

noise covariance ΣEst).

11.3.3 Open Geometry Example

Figure 11.9 – Example of 27 electrodes placed inside an open geometry. (i) Shows the nt = 40
targets used to calculate the SNR (red dots) and the two conductivity changes simulated
(bluish elements) which were reconstructed with GN algorithms having an identical SNR for
three different skips: (ii) 1, (iii) 2 and (iv) 7. The images of the reconstructed conductivity
changes ∆σ in (ii) - (iv) are normalized to the maximal absolute amplitude of all three images.

Figure 11.9 ii-iv shows images of the open geometry conductivity change reconstructed for

three different skip patterns with identical SNR and noise.

11.4 Discussion

In this chapter we suggest a novel noise performance (NP) metric which allows for a fair

comparison of EIT reconstruction algorithms with different measurement configurations (i.e.

skip pattern, number and position of electrodes, etc.). We validated its applicability based on

three experiments: 1) simulations on a human thorax model, 2) practical measurements on a

resistor phantom, and 3) simulation of an open geometry example. The results obtained are

discussed in detail hereafter.

11.4.1 Simulation Experiments

Figure 11.4a reveals that the NF approach leads to a very inhomogeneous NP, as the noise

level decreases with increasing skip. It thus cannot be used to achieve a similar NP between

algorithms with unequal measurement configurations (e.g. different skips). The higher the

skip, the more regularized and thus smoothed the result is, when aiming for the same NF.

On the other hand, for the GCV (Figure 11.4b) a similar NP can be observed among all four

skips, with the exception of skip 0 (i) where the noise level is increased by roughly 50%. This

is improved with the LCC (Figure 11.4c) which shows a more homogeneous NP between

all skips. Furthermore one can observe that GCV tends to regularize less (smaller λ, higher

noise level), which is a known characteristic [146]. However, the latter two approaches (1)

require actual data including noise and (2) can only be applied to reconstruction algorithms

using Tikhonov-type regularization, i.e. GN but not GREIT. This is why both do not fulfil our

113



Chapter 11. A Versatile Noise Performance Metric for EIT Algorithms

requirements of a versatile NP metric.

In contrast, the selection of λ with the SNR approach results in a comparable NP for both

SNR1 = 2.20E-5 (Figure 11.4d) or a two-fold higher SNR2 = 4.41E-5 (Figure 11.4e). This shows

that for the same scenario, the SNR is a robust way to obtain comparable NP between the

varying skips. Besides, the NP in the image domain can be flexibly adapted as demonstrated

by the two-fold increase in SNR from (d) SNR1 to (e) SNR2 which results in an approximate

two-fold increase in NP.

The use of GREIT instead of GN for reconstructing with a fixed SNR1 is shown in Figure 11.5

and reveals a spatial distribution of noise different to that of GN (Figure 11.4d). An attenuation

of noise close to the model border can be observed for images reconstructed using GREIT,

which is known as an inherent property of this algorithm [6]. Nonetheless, the noise level in the

ROI - the region in which we evaluate our NP - is closely comparable. This demonstrates the

versatility of our approach by its independence on those two commonly used reconstruction

algorithms.

Furthermore, the use of different image sizes as shown in Figure 11.6a confirms the immunity

of the SNR approach to changes in image resolution. In addition, it seems to be robust to

differences in electrode placement and number. This is shown in Figure 11.6b which depicts

the use of non-equidistantly spaced electrodes and a variation in their number for a constant

skip of 5. This is extended in Figure 11.6c where not only the electrode placement and number,

but also the skip is varied. The slightly lower noise level especially for case (i) is a desired

behaviour and can be explained by a higher spatial resolution achieved with 32 electrodes,

i.e. the same portion of conductivity change is concentrated into a smaller area. As the

resulting sum of the normalized impedance change in the TEZ (the signal level S) is lower for

32 electrodes, we also have a lower noise level to achieve the same SNR.

The tRMSA cross section plots confirm that the NP of the different scenarios shown in Fi-

gure 11.4d and Figure 11.5 to Figure 11.6c closely resemble each other. These simulation results

highlight the flexibility of the SNR approach in the example of thoracic EIT and corroborate

the use of SNR as valuable NP metric by fulfilling the requirements of being insensitive to the

1) measurement configuration (skip, electrode number and position), 2) image resolution and

3) reconstruction algorithm.

11.4.2 Practical Experiments

The aforementioned problems with a fixed NF, are confirmed in experimental measurements

as shown in Figure 11.7. These images show an increase in spatial blurring and a correspon-

ding decrease in noise level with increasing skip. Besides, one can observe a decrease in

conductivity change which is due to an increase in regularization with increasing skip. A pos-

sible solution is given by the SNR approach as depicted in Figure 11.8a, where, independent of

the skip, a similar NP is achieved. However, for a conductivity change at the right of the image
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(button B), artefacts can be observed (green dotted zone). These are present for a skip other

than 0 and primarily located at the top of the images, which corresponds to the vicinity of

electrode 1. We presume that these specific artefacts are an inherent property of the device

used, as it was already reported previously in [54]. When considering the device-specific

noise characteristics ΣEst by using Equation (11.9) for the SNR calculation, these artefacts

are reduced and the images in Figure 11.8b still show a comparable NP. This points out that

real EIT data are very likely to not have purely uniform noise among all channels [67]. At

the same time these results underline the versatility of the SNR approach to incorporate the

device-specific noise characteristics in order to calculate more realistic NPs.

In practice, for thoracic EIT measurements, we may predetermine the noise characteristics of

our device in the lab (e.g. on a resistor phantom) and later include this information to tune

the algorithm before applying it to image living beings.

11.4.3 Open Geometry Example

The images of the open geometry example (see Figure 11.9 ii-iv) show a visually comparable

NP. This simple example lets us assume that our approach has the potential to be used for

such applications of EIT. However, further investigations in this particular field are required,

e.g. regarding the selection of application-specific algorithm parameters (ROI, target size and

position, etc.).

11.4.4 Algorithm Parameter Selection

The SNR calculation depends on several parameters (ROI, nt , rt , Σn) which are discussed and

justified in the following.

ROI

In thoracic EIT we are primarily interested in respiration- or cardiovascular-induced con-

ductivity changes. It thus makes sense to have an ROI in the centre which covers big parts of

the lungs and heart as also shown in Figure 11.3(b). Depending on the application, this ROI

should be moved to the region(s) where conductivity changes of interest are most likely to be

observed and analysed.

Targets

The number of targets nt uniformly distributed inside the ROI is chosen high enough to

achieve a homogeneous estimate of NP over the entire region. However, a higher nt leads to

increased computation time which explains the suggested value of nt = 200 as compromise.

The relative target radius rt with 5% of the model diameter is justified with being inferior to

the inherent spatial resolution of EIT with 32 electrodes [160, 132].
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The Ideal SNR Value

Even tough the SNR value allows a fair comparison between different measurement confi-

gurations, its absolute value still is related to the noise characteristic (Σn) and thus depends

on factors influencing the voltage amplitude such as drive current, amplification gain, etc.

Therefore we cannot recommend a specific range of SNR values as ideal for clinical EIT appli-

cations. Nevertheless, we suggest to set SNR such that it corresponds to a NF in the range of

0.5–2 (necessarily calculated for 16 equidistantly spaced electrodes with adjacent stimulation,

i.e. skip 0) as suggested in [62].

11.4.5 Limitations and Future Work

In the present study we only consider the use of one-step linearised reconstruction algorithms.

Nevertheless, the approach could be extended for other reconstructions – by estimating the

noise response of the algorithm by means of Monte Carlo simulations – with the drawback of

significantly increased computation time.

Furthermore, we restrict the induced disturbances to additive noise, even though there is

evidence that this is not always appropriate for real EIT data [67, 49]. This choice is mainly

justified to facilitate statistical computations and allow for an analytic and thus computatio-

nally efficient solution. Moreover, this does not represent a drawback from the current state of

the art, as the NF relies on the same assumption. However, more sophisticated noise models

could be taken into account when using Monte Carlo simulations.

Despite the three dimensional nature of the EIT problem and the consequent need for 3D

reconstruction [31], almost all clinical chest EIT is measured and reconstructed in 2D [9]. For

this reason the analysis in this chapter was also restricted to 2D EIT imaging. However, the

SNR approach can be used for 3D EIT without significant modifications. In this case, the

TEZ is automatically adapted – via the one-fourth amplitude threshold – to a spherically-

shaped region containing the voxels of interest. Nonetheless, when comparing 2D vs 3D

reconstructions, the size of the TEZ (VTEZ) required for the correction factor (k = VTEZ/Vt )

must be adapted accordingly. The 2D case is only comparable to the 3D case, when its VTEZ

includes the area of the TEZ scaled with the slice thickness, which in turn needs to be set

empirically or estimated e.g. via an average sensitivity distribution.

Moreover, the current implementation estimates the SNR from spherical targets with uniform

conductivity change. However, the lung, the heart or other (parts of) anatomical structures

representing more realistic conductivity changes might be better suited targets and therefore

explored in the future. The introduction of targets with different shapes and conductivity

changes should not be an issue. The only modification necessary would be to normalize

each signal estimate S by a correction factor incorporating the relative change in conductivity

∆σ/σr of each target [6].
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11.5 Conclusion

In summary, in this chapter we developed a new measure of noise performance (SNR), which

permits comparison of EIT reconstruction performance across different measurement confi-

gurations. Results are validated by simulations and phantom measurements. This measure

offers advantages over current approaches (NF, LCC, GCV), as it is independent of 1) mea-

surement configuration (skip, electrode number and position), 2) image resolution and 3)

reconstruction algorithm.
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12.1 Introduction

In this chapter we investigate the feasibility of assessing SV in healthy volunteers.

While the two clinical trials presented in Chapters 8 and 9 use an invasive SV reference, they

have the major drawback that the individual – per-patient – variations in SV are low. In contrast,

much larger SV variations can be achieved in healthy subjects undergoing an experimental

protocol including strenuous physical exercise. In return, these measurements are limited

to the use of noninvasive SV reference devices. For the present study, ten healthy volunteers

underwent an experimental protocol including postural changes and cycling exercises. EIT-

based SV estimations were then compared to reference SV measured noninvasively via the

oxygen uptake V̇O2 .

In addition, we make use of a 3D EIT setup in combination with an individual – subject-specific

– reconstruction model generated by means of a commodity 3D camera. This is because

simulations and practical measurements have revealed certain limitations of current EIT

devices available for clinical monitoring, i.e. electrode belt displacement, heart displacement

or mismatch of the reconstruction model are known to negatively affect SV estimation.

12.2 Methods

12.2.1 Study Protocol and Study Population

Ten healthy adult volunteers (9 male/1 female, weight: 68.9±10.8 kg, height: 179.3±8.2 cm,

BMI: 21.3±2.0 kg/m2, age: 35.4±4.1 years) were enrolled in the study, of which all provided

written informed consent. The study was approved by the local ethics committee of the canton

of Vaud, Switzerland (CER-VD, 2017-00709).

This study was performed in the physiology laboratory facilities at the Swiss Center of Electro-

nics and Microtechnique (CSEM, Neuchâtel, Switzerland). There, the subjects underwent an

experimental protocol during approximately one hour including postural changes (lying flat,

Protocol Description – slightly modified
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T2
Lying 1

T3
Legs Up 1

T6
Lying 2

T1
Sitting 1

T4
Cycling 1

T5
Recovery 1

T8
Cycling 2

T9
Recovery 2
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Figure 12.1 – Temporal evolution of the experimental protocol consisting of the thirteen tasks
(T1 to T13) illustrated on top and the expected changes in SV shown below. The protocol
comprises different postures such as sitting (T1 and T12), lying in supine position (T2, T6
and T13), lying with legs up (T3 and T7), cycling in supine position (T4, T8 and T10) and the
subsequent recovery periods (T5, T9 and T11)
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lying with legs up, and sitting) and bicycle exercises (cycling in supine position). The thirteen

tasks (T1 to T13) performed, were expected to lead to SV variations as illustrated in Figure 12.1

and described hereafter. These SV variations are considered with respect to the baseline SV

level at the end of the three lying positions (T2, T6 and T13). While sitting (T1 and T12) a lower

SV is expected due to a decrease in cardiac preload. Similarly, while lying with legs up (T3 and

T7), a higher SV is expected. Moreover, after the transition from sitting to lying (T1 to T2 and

T12 to T13) a sharp increase of SV and subsequent decay to baseline is expected due to the

augmentation in cardiac preload caused by the sudden increase in central venous return [145].

Finally, the cycling exercises in supine position (T4, T8 and T10) are expected to increase the

SV, with a further – but temporary – augmentation during recovery (T5, T9 and T11) followed

by a steady decrease (as reported by Cumming [39] and also known for upright exercise [60]).

12.2.2 Data Acquisition

First, the volunteers were equipped with 32 self-adhesive gel electrodes (BlueSensor T-00-S,

AMBU, Ballerup, Denmark), placed on two planes with 16 electrodes each: one above and

one below the nipple line, as shown in Figure 12.3a. Second, to obtain a subject-specific

anatomical model and the correct electrode positions, the 3D surface of the subject’s thorax

was acquired using a dedicated software (ReconstructMe, version 2.5.1034, PROFACTOR

GmbH, Steyr-Gleink, Austria) in combination with a 3D camera (Kinect XBOX 360, Microsoft,

Redmond, USA). An example of such a 3D image is shown in Figure 12.3b. Then, the 32

electrodes were connected to a slightly modified version of the EIT SensorBelt (Swisstom

AG, Landquart, Switzerland) [157] in combination with the BB2 EIT device (Swisstom AG,

Landquart, Switzerland). To achieve this connection, the conductive textile was disconnected

from the active electrodes and instead, commercially available ECG cables were attached

and connected to the self-adhesive gel electrodes. The electrodes were arranged as shown

in Figure 12.3a, which results in the use of the “square pattern with skip 4” as suggested by

Grychtol et al. [66] for 3D EIT.

An ECG was recorded using the ECG100C module (Biopac Systems, Inc., Goleta, USA). Furt-

hermore, CO reference measurements were performed via the oxygen uptake V̇O2 and the

BB2 EIT

Biopac

ECG-Gated 
Ensemble 
Averaging

Lung ROI 
Detection

Heart ROI 
Detection

ECG

CO
SVRef

ROIL

ROIH

Imgs

Exercise
Bicycle

MetaMax 3B SV = CO / HR

Figure 12.2 – Block diagram of the measurement setup and the first processing steps resulting
in ECG-gated EIT images (Imgs) and the regions of heart (ROIH) and lung (ROIL).
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Figure 12.3 – (a) Placement of the 32 gel electrodes used for EIT: two planes of 16 electrodes
each are placed above and below the nipple line. (b) Example image of the 3D camera and
(c) the resulting 3D subject-specific model of the thorax including the electrodes (green
circles). L1 to L5 illustrate the five planes on which EIT data was reconstructed (see text in
Section 12.2.4).

method described by Stringer et al. [143] using MetaMax 3B (CORTEX Biophysik GmbH, Leip-

zig, Germany). To this end, a mask was placed on the subject’s face to measure air flow and

gas exchange. This measurement setup is also illustrated in Figure 12.2.

12.2.3 Data Preprocessing

First, EIT and hemodynamic data were manually aligned in the time domain with the help of

deliberate spikes induced via synchronous tapping on EIT and ECG electrodes at the beginning

and at the end of each recording. Then EIT samples were interpolated in the time domain to

correct for the sporadic loss of certain EIT frames. Furthermore, a clock drift between EIT and

ECG signals of around 0.1 s/h was observed and corrected for.

As also illustrated in Figure 12.2, EIT data was averaged via ECG-gated ensemble averaging

(see Section 3.1.3) to one representative cardiac cycle per measurement. To do so, all data

were first low-pass filtered (4th-order Butterworth with fc = 6.5Hz), then high-pass filtered

(4th-order Butterworth with fc = 0.75 ·HR/60, with HR as the current heart rate), and finally

aligned to the ECG’s R-peaks. To this end, the measurements of each of the thirteen tasks (T1

to T13 in Figure 12.1) were split into one-minute sequences and each sequence was averaged

to one cardiac cycle as mentioned above. Due to strong movement artefacts, data from the

cycling exercises (T4, T8 and T10) were excluded from analysis.

Besides, the continuous CO measurements were divided by the instantaneous HR and avera-

ged in the same one-minute intervals to obtain SV reference values SVRef. It has to be

noted that the CO reference device (MetaMax 3B) does only provide absolute CO values

(in L/min) if the maximal oxygen uptake (V̇O2-max) is known for each subject, i.e. CO =
V̇O2

/(
57.21+104.7

V̇O2

V̇O2-max

)
[143]. Since V̇O2-max was not evaluated in the present experimental
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protocol, it was estimated using the model suggested by Jackson et al. [85]:

V̇O2-max = (56.363+1.921 ·PAS−0.381 ·A−0.754 ·BMI+10.987 ·S)
W

1000
[L/min] (12.1)

Where PAS denotes the physical activity on the NASA/JSC scale [85], A the age in years, BMI

the body mass index in kg/m2, S the sex (0 female, 1 male), and W the weight in kg.

12.2.4 Subject-Specific EIT Image Reconstruction

For each volunteer, a subject-specific model for EIT image reconstruction was created. To do

so, the 3D surface of the thorax scan (acquired as described in Section 12.2.2 and shown in

Figure 12.3b) was processed in Blender (version 2.78c, Blender Foundation, Amsterdam, the

Netherlands) by cropping parts not located in the EIT planes of interest (e.g. arms and neck)

and transformed to a triangulated mesh. The electrode positions were then manually located

in the 3D scan. The thorax mesh was further resampled and smoothed using OpenFlipper

(version 3.1, Computer Graphics Group, RWTH Aachen, Germany) [104]. Finally, the electro-

des were placed on the mesh using the approach proposed by Grychtol and Adler [65] and

implemented in EIDORS [5]. An example of such a subject-specific thorax model is shown in

Figure 12.3c.

EIT data were reconstructed using the 3D GREIT algorithm [66] onto images with 32×32×5

voxels. The five image planes L1 to L5 used for reconstruction (see Figure 12.3c) are equally

spaced at a distance of half the spacing between the two electrode planes. L2 is placed at the

height of the upper, L4 at the height of the lower, and L3 in between the two electrode planes.

The algorithm was trained using roughly 10’000 targets located on eleven equidistantly spaced

levels: at each voxel location (on the five image planes L1 to L5) plus six more planes (one

located above L1, four in between L1 and L5, and one below L5). To focus image reconstruction

on the three central image planes (L2 to L4) the seven target planes located in the middle

contain twice as much targets than the two uppermost and lowermost target planes. To achieve

a comparable noise performance (independent of the geometry of the subject’s thorax) each

algorithm was set to have a fixed image SNR (SNR = 6.5×10−3) [25], which compares to an

average noise figure [3, 62] of NF = 0.53.

For each subject an individual background conductivity σBG was used for the reconstruction

model. σBG was obtained by finding the closest fit (in terms of absolute error) between

simulated voltages on the thorax model with homogeneous σBG and the temporal average

of measured raw EIT voltages during baseline (defined as the last minute of task T2). The

difference EIT images were then reconstructed with respect to the baseline andσBG was added

to each voxel. In this way, an approximative but simple absolute EIT reconstruction was

performed.
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Figure 12.4 – Block diagram of the data analysis. To test the four hypotheses (H1 to H4),
different features were extracted from the EIT images and potential outliers with high noise
or unstable heart and lung ROIs were removed. Then, the ability to estimate SV with these
features via a linear model was evaluated by means of Bland-Altman analysis (absolute SVEIT

in H1 and H2) or four-quadrant plot analysis (relative ∆SVEIT in H3 and H4).

12.2.5 Data Analysis

In the present study we tested four hypotheses (H1 to H4), namely whether EIT can be used to

either estimate absolute SV (H1 and H2) or to trend relative changes of SV (H3 and H4). For H1

and H3 we used a subject-independent and for H2 and H4 a subject-specific calibration. This

analysis is detailed in the current section and illustrated and briefly described in Figure 12.4.

First, from each EIT image sequence of the one-minute averages, the heart and lung regions

were determined using the following algorithms: the heart was detected as described in

Section 6.2.3 and the lungs via the algorithm proposed by Proença et al. [120, 121]. For

each subject an average heart and lung region was calculated and used for the subsequent

calculations. To this end, the current ROI (ROIi
H or ROIi

L) of the measurement i was averaged

to the per-subject average (ROIH or ROIL), i.e. ROIH or ROIL contain the biggest connected

regions of heart or lung voxels which are present in at least 50 % (determined heuristically) of

the individual ROIs.

Second, a variety of features were extracted from the EIT images: 1. ∆σH, the systolic heart

amplitude as the difference of maximum vs minimum in the temporal signal of the heart

region; 2. ∆σL, the systolic lung amplitude, same as ∆σH but for the lung region; 3. tStdH,

the heart amplitude as the standard deviation (STD) of the temporal signal in the heart

region; 4. tStdL, the lung amplitude, same as tStdH but for the lung region; 5. tStdG, the global

amplitude as the STD of the temporal signal of the sum over all voxels; 6. σG, the global

conductivity as the mean absolute value of all voxels; 7. VT, the average tidal volume as the

peak-to-peak respiratory amplitude from the sum signal over all voxels. The latter two were

calculated prior to ensemble averaging and high-pass filtering.

Then, assuming a linear relationship between changes in SV and these features, various linear

models were trained and evaluated to test the following four hypotheses:
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(H1) Absolute SV with subject-independent calibration: For each subject a linear model

was trained using all other subjects via leave-one-out cross-validation. The resulting

performance was evaluated by means of absolute error εAbs (in mL) between SVEIT and

SVRef resulting from Bland-Altman analysis [12] and correlation coefficient1 r between

SVEIT and SVRef. Measurements were considered as acceptable if r ≥ 0.7 (educated

guess) and the 95 % limits of agreement of εAbs did not exceed ±24 mL (= ±30 % – the

error reported for thermodilution measurements [37] – of the average SVRef).

(H2) Absolute SV with subject-specific calibration: This is identical to the first hypothesis

(H1), except that a linear model was trained for each subject individually.

(H3) Trending of relative SV with subject-independent calibration: For this and the next

hypothesis, the features as well as the reference SV were set relative to an initial baseline2.

This leads to the measurement of changes ∆SVEIT which are compared to changes in

the reference ∆SVRef by means of angular concordance rate CR and angular error εα
resulting from four-quadrant plot analysis [37, 130], also explained in Section 6.2.4.

For each subject a linear model was trained using all other subjects via leave-one-out

cross-validation. Measurements with CR ≥ 92%, a bias of εα ≤±5° and its 95 % limits of

agreement≤±30°, were considered as acceptable, according to the thresholds suggested

by Critchley et al. [38]. The exclusion zone of the four-quadrant plot was set to ±30 % –

the error for thermodilution measurements [37].

(H4) Trending of relative SV with subject-specific calibration: This is identical to the third

hypothesis (H3), except that a linear model was trained for each subject individually.

Finally, to limit the analysis to reliable data, four data quality measures were introduced

(identical with the approach in Section 9.2.3): (1) a similarity measure JH for the heart region

of interest (ROI) comparing the current ROIi
H of the measurement i to the per-subject average

ROIH via the so-called Jaccard index (JH = |ROIi
H ∩ROIH|/|ROIi

H ∪ROIH|) [84]; (2) the same

similarity measure as JH but for the lung ROI denoted as JL ; (3) NH and (4) NL as signal

quality indicators estimating the average noise level in the heart and lung region from the

relative deviation of each pulse used for ensemble averaging (see also Appendix B). Only

measurements with JH ≥ 75%, JL ≥ 75%, NH > 2.0 and NL > 2.0 were considered for analysis.

The threshold of NL and NH were determined based on visual analysis of ensemble averaged

signals.

Moreover, the raw EIT data of subject S07 showed severe issues with electrode contact impe-

dance leading to corrupted EIT images. It was therefore completely removed from analysis.

1Note that in contrast to the two previous studies (see Chapters 8 and 9), here the correlation coefficient r was
used as a valuable measure for the strength of linear relationship between SVEIT and SVRef. This is because only in
the current study sufficient measurements with high variations in SV are available for each patient.

2The baseline state was defined as the average of the measurements having the three lowest values of SVRef.
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12.3 Results and Discussion

12.3.1 General Overview of EIT Data

Figure 12.5 exemplifies respiratory activity of each volunteer by means of standard deviation

(SD) images. The strongest respiratory activity can be observed at the lower electrode plane

(L4) or in between the two planes (L3). Moreover, the two lung lobes appear separated in

the lower image planes (L3 to L5) and more unified in the upper planes (L1 to L2), which is

comparable to the observations by Karsten et al. [88].

Figure 12.6 shows ECG-gated EIT images by the example of one measurement (last minute of

the first recovery sequence – task T5) for the nine subjects analyzed. One can observe that

the potential heart regions (blue-white with ∆σ < 0) are located in the middle (L3) or lower

image plane (L4). On the contrary, the potential lung regions (red-yellow with ∆σ > 0) are

more present in the upper (L2) or middle image plane (L3). This is in line with the anatomy

(i.e. the large pulmonary arteries are located more cranial when compared to the heart, which

itself is lower, sitting right on the diaphragm) and observations by Smit et al. [135] who use a

high belt placement for cardiovascular EIT of the lungs. Besides, when compared to the other

subjects, S08 and S09 show only little activity in the heart with respect to the lung region. It is

assumed that for these subjects the lower electrodes were placed too high which decreases the

sensitivity in the heart region.

The ECG-gated EIT images shown in Figure 12.7 represent different tasks of the same subject.

One can observe a significant difference in spatial conductivity distribution between the

following three groups of recordings: (1) sitting in (a) and (j), (2) lying with legs up in (c),

and (3) the remaining recordings in supine position. These differences were observed for all

Figure 12.5 – 3D EIT images showing the respiration by means of standard deviation (SD)
images on the five planes L1 (highest) to L5 (lowest) for the nine volunteers (a) to (i), in supine
position. The images of each subject (each column) were scaled to an individual color scale
and show the last minute in the first recovery sequence (task T5). Prior to SD calculation the
images were filtered using a 2nd-order Butterworth bandpass with fc = {0.04,0.5}Hz.
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Figure 12.6 – ECG-gated 3D EIT images showing the conductivity difference (end systole vs
end diastole) on the five planes L1 (highest) to L5 (lowest) for the nine volunteers (a) to (i), in
supine position. The images of each subject (each column) were scaled to an individual color
scale and show the average of the last minute in the first recovery sequence (task T5).

Figure 12.7 – ECG-gated 3D EIT images showing the conductivity difference (end systole vs
end diastole) on the five planes L1 (highest) to L5 (lowest) for a selection of ten measurements
(a) to (j) of volunteer S05. All images are shown in a common color scale.

subjects and are hypothesized to stem from posture-induced heart and lung displacement as

well as gravity-induced liquid redistribution in the lungs. On the other hand, when limiting the

analysis to the third group of recordings (i.e. all tasks in supine position, except for lying with

legs up), the spatial conductivity distribution remains comparable while mainly the amplitude

changes.

The high variability observed between these three groups could lead to changes in the ROIs

and also their amplitudes which are not necessarily related to changes in SV. Therefore, to limit

our analysis to more controlled scenarios and to make it comparable with previous studies

[155, 114, 41] (all measured in supine position), only measurements of the last group were

considered, i.e. those recorded in supine position (T2, T5, T6, T9, T11 and T13). From the
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nine subjects remaining for analysis (S07 was excluded as mentioned before), a total of 242

one-minute sequences were available. From these, 11 (4.5 %) and 4 (1.7 %) were excluded

because of a too high noise level in the heart (NH > 2.0) and lungs (NL > 2.0), respectively.

Then, 76 (31.4 %) and 0 were excluded due to too high variability of the heart (JH < 75%)

and lung region (JL < 75%), as specified in Section 12.2.5, as specified in Section 12.2.5. The

remaining 151 (62.4 %) one-minute sequences represent controlled measurements (low noise,

stable heart and lung regions, all acquired in supine position), which were further used to

investigate the feasibility of EIT-based SV monitoring as presented in the next four sections.

12.3.2 Hypothesis 1: Absolute SV with Subject-Independent Calibration

In the current and the following section we report on the feasibility of EIT to determine

absolute values of SV (in mL).

Row (H1) in Table 12.1 shows the overall performance (in terms of absolute error εAbs and

correlation coefficient r ) for a selection of features tested when using a subject-independent

(leave-one-out) calibration. One can observe that for none of the eight features an acceptable

performance can be achieved. This confirms our previous observations and the findings

by other researchers [41, 114] that a subject-specific calibration is required for absolute SV

estimation.

Subject-specific performances for hypothesis (H1) are given in the appendix in Table E.1.

(a) (b)

Figure 12.8 – SVEIT vs SVRef for a subject-specific calibration in hypothesis (H2) with the
features (a) ∆σH or (b) ∆σH and ∆σH

σG
.
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Table 12.1 – Overall performance for a selection of features and the four hypotheses: (H1) abso-
lute SV via subject-independent calibration, (H2) absolute SV via subject-specific calibration,
(H3) relative SV via subject-independent calibration, and (H4) relative SV via subject-specific
calibration. (H1) and (H2) are evaluated in terms of absolute error εAbs and correlation coef-
ficient r between SVEIT and SVRef. (H3) and (H4) are evaluated in terms of angular error εα
and angular concordance rate CR between ∆SVEIT and ∆SVRef. The (†) indicates unrealistic
solutions with calibrations coefficients not having identical sign for all subjects. Cell shadings
indicate whether the acceptance criteria (see Section 12.2.5) are met (green), not met (red), or
met but with unrealistic calibration coefficients (yellow). The errors εAbs and εα are given as
Mean±Std and the 95 % limits of agreement correspond to [Mean−1.96·Std,Mean+1.96·Std].

Absolute SV Trending of Relative SV

(H1) Hypothesis 1 (H2) Hypothesis 2 (H3) Hypothesis 3 (H4) Hypothesis 4

εAbs (mL) r (1) εAbs (mL) r (1) εα (°) CR (%) εα (°) CR (%)

∆σH −0.5± 28.2 −0.424 0.0± 15.2 0.813 −5.3± 25.2 76.9 −1.0± 23.0 80.9

tStdH −1.0± 27.3 0.023 (†) 0.0± 14.3 0.836 −4.9± 26.5 73.8 (†) −3.9± 21.5 83.3

∆σL −0.4± 27.3 −0.023 (†) 0.0± 15.8 0.796 −12.1± 20.3 70.4 (†) −0.2± 22.5 84.6

tStdL −0.5± 28.1 −0.341 (†) 0.0± 17.1 0.755 −17.4± 16.7 70.2 (†) −5.8± 20.4 91.5

tStdG (†) −0.5± 28.2 −0.710 (†) 0.0± 16.8 0.766 (†) −15.6± 25.7 73.3 (†) 2.0± 24.2 74.4

∆σH, ∆σH
σG

−1.7± 30.4 −0.365 0.0± 10.4 0.917 −1.9± 20.4 83.9 1.0± 17.5 87.7

∆σL, ∆σL
σG

(†) −0.4± 28.4 −0.050 0.0± 10.3 0.920 −1.7± 21.7 84.2 1.3± 16.7 93.0

VT −0.4± 24.7 0.371 0.0± 9.7 0.929 −1.5± 18.5 89.8 −0.4± 15.3 94.7

12.3.3 Hypothesis 2: Absolute SV with Subject-Specific Calibration

Row (H2) in Table 12.1 shows the overall performance when using a subject-specific calibration.

When concentrating the analysis on the five amplitude features (∆σH, tStdH,∆σL, tStdL, tStdG),

one can observe that all of the overall errors have limits of agreement exceeding the ±24 mL

threshold (=±30 % of the average SVRef as specified in Section 12.2.5). Moreover, except for

∆σH, no uniform calibration could be found with either all positive or negative calibration

coefficients (marked with a (†)). The relationship between SVEIT and SVRef of the feature

∆σH is shown in Figure 12.8a. One can observe that at least for subject S03, SVEIT does not

at all follow the changes in SVRef. This particular case of S03 is illustrated in more detail in

Figure 12.9 (Middle) by means of the temporal evolution of SVRef in comparison to the two

features related to the heart amplitude (tStdH and ∆σH). The same figures for the remaining

subjects are available in Appendix E in Figures E.1 to E.8. It is obvious from these findings

that – for the present data – changes in the heart-related amplitude (tStdH or ∆σH) are not

solely related to changes in SV. This is in line with the findings from simulations (presented in

Chapter 6), that the EIT heart signal is influenced by other factors and – among others – scaled

with the heart-lung-conductivity contrast (difference of heart vs lung conductivity).

When taking into account the global conductivityσG to normalize the systolic heart amplitude

∆σH (i.e. SVEIT = κ0 +κ1 ·∆σH +κ2 ·∆σH/σG) the absolute error can be reduced to ±10.45 mL
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Figure 12.9 – (Top) Example of temporal evolution of reference stroke volume (black) and
heart rate (red) for the entire protocol comprised of tasks T1 to T13 (see Figure 12.1) for subject
S03. The beginning of each task is marked with a vertical line ( ) and the particular tasks
considered for analysis are shaded in light (lying) or dark gray (recovery). (Middle) One-minute
averages used for analysis showing SVRef and two EIT features: the systolic heart amplitude
(∆σH) and the temporal standard-deviation of the heart signal during one full cardiac cycle
(tStdH). (Bottom) Tidal volume VR (blue) measured by the reference device (MetaMax 3B) and
the one-minute averages of the global conductivity feature σG (green).

as shown in Figure 12.8b and listed in Table 12.1(H2). It is known from simulations (see

also Chapter 6) that the EIT heart amplitude is scaled by the aforementioned heart-lung-

conductivity contrast (HLC). As σG contains information about the lung conductivity, it is

hypothesized that it serves as a rough estimate of the HLC and thus allows for correction of

this scaling. While the exact physiological background is not fully understood, it still shows

that normalizing ∆σH by σG can lead to improved results. A similar reduction in error can be

achieved when normalizing the lung amplitude by σG. A possible reason might be that the

lung amplitude estimates are similarly affected by changes in global conductivity and thus

require normalization.

However, it needs to be mentioned that in the current protocol the EIT-derived tidal volume VT

is highly correlated with changes in SV (average corr. coefficient r = 0.85, range r ∈ [0.59,0.96])

as also shown by the low absolute error for VT in Table 12.1(H2). At the same time the global

conductivity σG is influenced by the tidal volume VT (VT ↑⇒σG ↓). Nonetheless, σG has other

influencing factors such as the content of liquid in the lungs (e.g. blood or water), the posture

(including the position of the torso and the arms [153]) and the contact impedance of EIT elec-

trodes (i.e. varying external pressure on electrodes can lead to changes in global conductivity

[51]). Based on the current protocol, it can neither be excluded nor fully confirmed that using

the normalized heart (∆σH/σG) or lung amplitudes (∆σL/σG) leads to an improved estimation

of SV (as in this protocol the latter is highly correlated to VT which in turn is related to 1/σG).
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(a) (b)

Figure 12.10 – Trending ability of ∆SVEIT vs ∆SVRef shown by means of four-quadrant plots for
the combination of the two features ∆σL and ∆σL

σG
and (a) a subject-independent calibration

for hypothesis (H3) or (b) a subject-specific calibration for hypothesis (H4). The exclusion
zone was set to ±30 %.

Subject-specific performances for hypothesis (H2) are given in the appendix in Table E.2.

12.3.4 Hypothesis 3: Relative SV with Subject-Independent Calibration

In the current and the following section we report on the feasibility of EIT to perform trending

of SV, that is following the relative change ∆SVEIT (in %) with respect to an initial baseline

value.

The performances obtained for a subject-independent (leave-one-out) calibration are listed

in Table 12.1(H3). For none of the features tested, an acceptable trending performance

can be obtained. An example is given in Figure 12.10a for the normalized lung amplitude

(∆σL,∆σL/σG) which leads to the best performance in terms of CR (when not considering VT).

Subject-specific performances for hypothesis (H3) are given in the appendix in Table E.3.

12.3.5 Hypothesis 4: Relative SV with Subject-Specific Calibration

The performances obtained when using a subject-specific calibration are listed in Table 12.1(H4).

While the four simple features (tStdH, ∆σL, tStdL and tStdG) do not lead to realistic calibration

factors with a same sign, ∆σH does. However, none of these features fulfill the trending requi-

rements in terms of εα and CR. This also applies to the normalized versions of (∆σH,∆σH/σG)

and (∆σL,∆σL/σG). Even though they have a CR very close to or above the acceptable 92 %,

they both exceed the acceptance threshold in terms of 95 % limits of agreement with [−33.3,

35.3]° and [−31.4, 34.0]°, respectively. The latter is also shown in Figure 12.10b.
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Subject-specific performances for hypothesis (H4) are given in the appendix in Table E.4.

12.3.6 Limitations and Future Work

This study is limited in that it was performed on healthy volunteers which restricts the refe-

rence SV to be measured with noninvasive devices. The SV reference measurement device

used is not considered as gold standard [37], as simply no noninvasive gold standard ex-

ists. Nonetheless, it is possibly among the most accurate when requiring continuous and

noninvasive measurements on healthy subjects performing physical exercise. Besides, in the

current experimental protocol, the tidal volume VT is highly correlated to SV (mainly during

post-exercise recovery). In addition, the reference method used to estimate SV relies on the

measurement of the oxygen uptake which in turn is related to VT. Therefore it is unclear

whether this does not even exacerbate the high correlation between VT and SV. To either

confirm or reject our hypothesis that σG is useful for normalizing ∆σH and ∆σL – and not

simply because it is related to VT – a different experiment protocol should be designed, where

SV is less correlated to VT.

The subject-specific EIT reconstruction model used was acquired in sitting position while EIT

images were mainly analyzed in supine position. In addition, big differences in the spatial

conductivity distribution were observed in EIT images between sitting and supine. To exclude

the potential influence of the reconstruction model on these differences, an additional model

in supine position (e.g. via MRI scans) should be created. Besides, when aiming for EIT-based

SV in different body positions, a deeper understanding of the observed differences is crucial.

One could further criticize the manual synchronization performed between EIT and ECG.

However, its accuracy was first tested in the laboratory and the error has shown to be below two

EIT frames (<±40 ms). Moreover, all ensemble averaged sequences were visually verified for

physiological meaningful time delays. Even though this approach is sufficient for amplitude-

based measures used in the present study, it is not accurate enough for EIT-based timing

measures [137, 120] which necessitates an EIT system synchronously measuring ECG [123].

12.4 Conclusion

In this work, we investigated the EIT-based estimation of SV in healthy subjects and compared

it to reference measurements derived from the oxygen uptake V̇O2 . Large variations in SV

were induced via postural changes and recovery after supine cycling exercise. To minimize

known influences of heart and belt displacement on EIT-based SV, 3D EIT with self-adhesive

gel electrodes in combination with a subject-specific reconstruction model was applied.

The ECG-gated 3D EIT images show large differences in spatial conductivity distribution

between sitting, lying with legs up and supine position. To limit the analysis to very isolated

and constant settings, only measurements in supine position were considered and 38.4 %
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of the remaining measurements were excluded due to high noise or unstable heart or lung

regions. The temporal amplitudes in the heart (∆σH and tStdH) [114, 155], the lungs (∆σL and

tStdL) [41, 113], or in the entire image (tStdG) were calculated but none of them showed an

accurate relation to the reference SVRef. Therefore, we cannot confirm the recent observations

made in pig experiments [114, 41, 113]. And this despite having used a subject-specific 3D

EIT measurement setup to minimize effects of electrode displacement or out-of-EIT-plane

movement of the heart.

Based on findings from simulations (see Chapter 6), the heart amplitude ∆σH normalized

by the global conductivity σG was included as a feature. The resulting linear combination

(SVEIT = κ0 +κ1 ·∆σH +κ2 · ∆σH
σG

) leads to more promising results. That is an overall error of

0.0±10.4 mL for absolute SV with a subject-specific calibration. When aiming for the trending

of relative changes in SV with the same type of calibration, we achieve a performance of

εα = 1.0±17.5° and CR = 87.7%. Similar results were obtained when using the lung amplitude

normalized by σG, i.e. SVEIT = κ0 +κ1 ·∆σL +κ2 · ∆σL
σG

. In contrast, both absolute and relative

SV do not seem to be feasible when using a subject-independent calibration.

However, in the current protocol, SV is highly correlated to the tidal volume VT, which in turn

is related to σG. The current findings should therefore be considered with caution since the

normalization attempts suggested might primarily lead to a satisfactory outcome because of

the relation between VT and σG. To either confirm or reject our hypothesis that ∆σH or ∆σL

normalized by σG lead to reliable SV estimates, a different experiment protocol is required,

where SV is less correlated to VT.

In conclusion, we could show that even with a subject-specific 3D EIT setup on healthy

volunteers, purely amplitude-based features are very unlikely to provide feasible SV estimates

in experimental conditions as they are influenced by other factors (such as lung and heart

conductivity, posture and electrode contact impedance). While the normalization of the

heart or lung amplitudes via the global conductivity shows promise on the current data, this

approach requires confirmation in different experimental protocols.
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13 Synthesis

The aim of the present thesis was to investigate the feasibility of noninvasively measuring

stroke volume (SV) via electrical impedance tomography (EIT), with particular focus on its

practical applicability. This was investigated in three different ways. First, the feasibility and

limitations of EIT-based SV estimation were studied in-silico by means of simulations on a

bioimpedance model of the human thorax (Part II). Second, two clinical trials were performed

to verify this approach in-vivo and under real-life conditions (Part III). Finally, in view of

overcoming potential limitations of currently available clinical EIT systems, an improved

setup was proposed and tested in an experimental protocol on healthy volunteers (Part IV).

In the following, we first list the major contributions, then summarize the key findings of the

present thesis, review its limitations and finally address the aspects requiring further research.

13.1 Thesis Contributions

The major contributions of this thesis can be summarized as follows:

1. The creation of a 4D bioimpedance model used to investigate the origins of EIT signals

[21] and the feasibility of estimating hemodynamic parameters via EIT [24, 23, 22].

2. The demonstration via simulations on this model that although the EIT heart amplitude

is dominated by ventricular activity [21], it does not represent blood volume changes

but rather the alternating spatial replacement of lung vs heart tissue [24].

3. The demonstration via simulations on the same model that measuring absolute SV is

extremely challenging but trending of relative SV changes is more promising [24].

4. The demonstration via two clinical studies that measuring absolute SV via EIT is unlikely

to be feasible, neither via the heart nor the lung amplitude.

5. The demonstration via the same studies that trending of SV is feasible via the lung

amplitude but not via the heart amplitude and only under very controlled conditions.
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6. The design of an improved measurement setup (ECG-gated 3D EIT) targeted for SV

estimation and intended to overcome potential limitations of available clinical EIT

systems.

7. The demonstration via experiments on healthy volunteers that even with this improved

setup, EIT-based SV is very challenging since amplitude-based estimates can easily be

impaired and that this approach might be limited to very controlled environments only.

8. The creation of a novel noise performance metric (SNR) which permits the comparison

of EIT reconstruction performance across different measurement setups [25].

13.2 Summary of Achievements

In-Silico EIT Measurements via Simulations on a 4D Bioimpedance Model

The first main achievement of this thesis is the creation of a 4D bioimpedance model of

the human thorax allowing for in silico measurements of cardiovascular EIT by means of

simulations (Chapter 4). The model contains representations of the heart, the aorta and the

lungs and reflects the electrical conductivity distribution during one cardiac cycle. It was

created in close collaboration with Dr M. Proença whose thesis [118] was focused on the

assessment of pulmonary artery pressure and who is the main architect of the lung model.

By means of simulations on this model we gained more insights into the origins of EIT signals

in the heart region (Chapter 5). It was found that the heart signal is dominated by ventricular

activity (≥77 %) giving hope for EIT-based SV estimation. We further observed that, unlike

suggested in the literature [154], the use of an oblique EIT belt placement does not lead to a

substantially better separation between ventricular and atrial activity.

In the next step, we studied – still in silico – whether the EIT heart amplitude could be used as

surrogate measure for SV (Chapter 6). Under isolated conditions the EIT-derived SV (SVEIT)

correlated very well (r > 0.99) with the reference SV. We further investigated four confounding

factors that could potentially deteriorate such measurements. Our analysis showed that

changes in hematocrit or detachment of electrode pairs do not substantially impair the

estimation of SV. On the other hand, longitudinal or rotational EIT belt displacements and

changes in lung air volume can have a severely deteriorating influence on SVEIT. The latter

can be explained by the fact that – unlike what is hypothesized in the literature [155, 114] – the

EIT heart amplitude does not represent blood volume changes but rather the effects of the

alternating spatial replacement of lung vs heart tissue. Therefore, the EIT heart amplitude is

scaled by the so-called heart-lung conductivity contrast and affected by variations in heart and

lung conductivity such as changes in lung air volume or lung liquid distribution. In addition,

these investigations revealed that the absolute measurement of SV is extremely challenging

even with a patient-specific calibration. In contrast, trending – that is following changes in SV

with respect to a baseline value – is more promising.
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Clinical Investigations on EIT-Based SV Monitoring

As the practical applicability was of main interest in this thesis, we investigated to what extent

the abovementioned findings could be translated into real-world measurements. To this end,

we performed two clinical studies which are summarized in Table 13.1 and explained hereafter.

In the first study, we performed measurements on patients in the operating room (OR) before

and after induction of anesthesia (Chapter 8). The EIT-based estimates were then compared to

right heart thermodilution, considered as the clinical gold standard measurement for cardiac

output (CO). From the eleven patients enrolled in the study, a total of four had to be excluded

from analysis due to technical reasons, arrhythmias or too low cardiac EIT signal. In the

remaining seven patients we tested different hypotheses addressing the absolute or relative

measurement of SV with a patient-independent or patient-specific calibration. To do so,

various features including heart and lung amplitudes were extracted from the EIT images and

combined to train a linear model for estimating SVEIT. Our findings suggest that the estimation

of both absolute and relative SV is – if at all – only feasible via a patient-specific calibration

and using information of the heart amplitude. And yet, this could not be fully confirmed as for

most patients the variations in SV were too low and fall below the typical error of the reference

device. In light of these circumstances the study was prematurely terminated.

The second study presented in Chapter 9 was performed in the ICU. Transpulmonary thermo-

dilution was used as reference and SV was measured before and after fluid challenge, which

is the injection of fluid into the circulation used to improve the hemodynamic situation of

patients [103]. As solely three measurements were available per patient, only the trending –

i.e. following relative changes – of SV with a patient-independent calibration was tested. Our

analysis suggests that this is not possible based on the heart amplitude but only via the lung

amplitude. For the latter an acceptable trending performance (CR = 100%, εα =−1.6±11.9°)

is obtained but only after excluding 9 out of 32 measurements considered as outliers with too

high noise level. These findings show promise for noninvasive and continuous trending of

SV via EIT in the ICU. Whereas they would confirm a recent study on pigs [41], they are in

contradiction with previous studies on pigs [113] and humans [155].

Investigations on an Improved Measurement Setup for EIT-Based SV Monitoring

Given the mixed results from the two aforementioned clinical trials and the limitations revealed

via simulations, a better suited measurement setup was investigated (Chapter 10). To this

end, we identified the limitations of available clinical EIT systems and proposed an improved

measurement setup which was realizable with an existing EIT device.

Investigations of different measurement setups revealed a shortcoming regarding EIT image

reconstruction; more specifically, the lack of a possibility to configure different reconstruction

algorithms so that they can be compared fairly. To overcome this limitation a novel measure

of noise performance (SNR) was developed. This new approach permits the comparison of
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Table 13.1 – Overview of experimental EIT studies performed in this thesis. PAC stands for
pulmonary artery catheter and TD for thermodilution.

Clinical study
in the OR

Clinical study
in the ICU

Experimental study
on healthy adults

EIT setup 2D, 32 electrodes
Swisstom BB2

2D, 16 electrodes
Dräger PulmoVista™ 500

3D, 2x16 electrodes
Swisstom BB2

SV reference PAC TD Transpulmonary TD Oxygen uptake V̇O2

SV variations Low Low High

Environment
Challenging:
moving and touching
patient is possible

Best possible:
not moving nor touching
patient

Close to best possible:
not touching subject but
changes of posture

Main findings
Too low variations in
SV and issues with EIT
signal quality

Amplitudes in lung but not
in heart region can be used
to trend SV

Neither lung nor heart
amplitudes reliably
estimate SV

EIT reconstruction performance across different measurement setups and was successfully

validated in simulations and measurements on a resistor phantom (Chapter 11). This measure

offers advantages over existing approaches, as it is independent of the measurement setup

(skip, electrode number and position), the image resolution and the reconstruction algorithm.

Finally, the aforementioned improved measurement setup was tested in an experimental

protocol on ten healthy adult volunteers (Chapter 12). To do so, ECG-gated 3D EIT with 2

planes of 16 electrodes in combination with a subject-specific reconstruction model was

applied and reference SV was estimated from the subject’s oxygen uptake V̇O2 . Large variations

in SV were induced by bicycle exercises and changes in posture. The latter revealed significant

differences in spatial conductivity distribution between sitting, lying with legs up and lying

supine. Therefore, the analysis was restricted to measurements in supine position with

low noise and stable heart and lung regions. Despite this very restricted analysis and the

use of an improved measurement setup, neither the heart nor the lung amplitude allowed

for an accurate estimation of SV. Only when incorporating the global conductivity σG for

normalizing those amplitudes, SV can be estimated with an acceptable performance. However,

this approach is questionable since the tidal volume VT is highly correlated to SV in the current

protocol and σG is known to be related to VT. Therefore, no clear conclusion is possible apart

from the one that neither lung nor heart amplitudes are reliable enough to assess SV in healthy

volunteers, even when a subject-specific 3D EIT setup was used.

Contradictions, Challenges and Perspectives of EIT-Based SV Monitoring

None of the three experimental studies could confirm our simulations or the previous findings

by Vonk Noordegraaf et al. [155] and Pikkemaat et al. [114], i.e. that the heart amplitude can

be used to assess SV via EIT. We hypothesize that in practice the heart-based SV estimation is

140



13.3. Limitations and Future Work

impaired by factors not considered in our simulations, such as the out-of-EIT-plane movement

of the heart. Only the study in the ICU raised hope that – under very controlled conditions – SV

can be assessed by EIT but via the lung amplitude. Even though this would confirm the recent

findings by da Silva Ramos et al. [41], it is partly in contradiction with those of Pikkemaat

[113]. Moreover, amplitude-based estimates have shown to be very sensitive to perturbations

such as postural changes (see Chapter 12) or even the arm position [153]. Unless a surrogate

approach is found which is immune to these perturbations (e.g. via normalized amplitudes),

EIT-based SV (purely via amplitude estimates) seems impractical in many – less controlled –

scenarios such as the OR or measurements on healthy volunteers.

In contrast, given rather controlled measurement conditions (e.g. in the ICU), where these

deteriorating influences might be less present, the two amplitude-based estimates still suffer

from limitations which have to be considered. First, the heart amplitude mainly represents

heart movement [119, 118] and is further scaled by the heart lung conductivity contrast and

thus influenced by changes in heart and lung conductivity (e.g. edema or posture-induced

liquid redistribution). Besides, in traditional 2D EIT setups, the amplitude can be influenced

by the heart moving out of the electrode plane. Second, the lung amplitude is known to

represent not pure perfusion but rather pulsatility [74, 11] and is therefore presumably unable

to assess SV in certain pathophysiological conditions.

In summary, EIT-based SV estimation seems unfeasible in most practical scenarios and in

particular those where postural changes or patient movement occur (e.g. in OR patients, or in

healthy volunteers performing cycling exercises). On the other hand, in very controlled scena-

rios – such as ventilated ICU patients – EIT might be applied to continuously track changes in

SV after having performed an initial calibration (e.g. via transthoracic echocardiography). Yet,

constant ventilator settings and posture are required and any change in those will likely imply

a recalibration.

13.3 Limitations and Future Work

Simulations and Bioimpedance Model

The current bioimpedance model was successfully used to reveal more about the origins of car-

diosynchronous EIT signals and to investigate not only the feasibility but also the limitations of

EIT heart amplitude-based SV estimation. Nonetheless, this model is limited in that it is based

on one single subject and that it does not incorporate respiration-related changes. Moreover,

it does not specifically include skeletal muscles [42] and blood flow-induced changes [57]

which are both worth considering in future research.

Our model-based simulations focused on the SV assessment via the heart-related amplitude.

Nonetheless, in the ICU study, the lung amplitude revealed to be a better SV estimate. There-

fore, the latter approach should be equally scrutinized by means of simulations to better reveal

potential limitations and issues. To do so, the extensive lung model (developed by Martin
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Proença [118] and already included in the current thorax model) should be used to study this

approach under various pathophysiological conditions.

Current and Future Experimental Studies

Each of the three experimental studies performed has its specific strengths and weaknesses

as summarized in Table 13.1. While the clinical studies measure reference SV with gold-

standard technologies, they suffer from low per-patient variations in SV and the use of single

plane (2D) EIT. On the contrary, the experimental study on healthy volunteers uses two-plane

(3D) EIT and shows high variations in SV whereas reference measurements were performed

noninvasively in a less accurate manner. Moreover, only the study in the ICU was recorded in

a sufficiently controlled environment as the other two suffer mostly from postural changes or

movement of the subject.

Should it be of interest to further pursue EIT-based SV estimation, we highly recommend

restricting the measurements to patients in very controlled environments (such as the ICU)

with a minimum of patient movement, no postural changes and fixed ventilator settings.

Moreover, higher variations in SV for each patient are needed and only reference devices

with a sufficiently high accuracy should be used (e.g. thermodilution). If this proves to be

successful, potential limitations should then be explored in more challenging environments.

Besides, the use of an EIT system with synchronous ECG measurement [123] is recommended

as it facilitates both data acquisition and analysis. Finally, if studies in animals are considered,

we suggest the use of an aortic flow probe as a must for SV reference measurements as this is

the only reference considered as true gold standard [37].

13.4 Conclusion

In conclusion, the present thesis investigated the noninvasive and continuous monitoring of

SV by means of EIT in two different ways.

First, a 4D bioimpedance model of a human thorax was created and used to study the feasibility

and limitations of SV estimation via the EIT-derived heart amplitude. Simulations on this

model have revealed that an absolute measurement of SV is challenging, but following trends

of relative changes is more realistic. Nonetheless, SV estimates obtained via this approach

remain impaired by changes in lung conductivity and electrode belt displacement.

Second, the practical applicability of this approach was tested in vivo in three experiments: a

clinical trial in the OR, another in the ICU and a third study on healthy volunteers. Yet, in none

of these studies the EIT-derived heart amplitude could be used to reliably estimate SV. This is

in contradiction with the literature and our simulations on the bioimpedance model, which

apparently lacks the inclusion of certain effects such as the out-of-EIT-plane movement of

the heart. On the other hand, in the ICU, relative changes of SV could successfully be tracked,
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albeit via the EIT-based lung amplitude. In general, EIT amplitudes have shown to be very

sensitive and impaired by various factors so that the approach might be limited to controlled

environments like the ICU with the least possible changes in ventilation and posture.

In future, the bioimpedance model should be extended and further simulations should scruti-

nize the feasibility and limitations of estimating SV via the lung amplitude. In addition, future

clinical research should concentrate on testing this approach in controlled environments with

higher variations in SV and under various pathophysiological conditions.
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Appendix A. Investigations on Aortic Blood Pressure Measured via EIT

A.1 Introduction

Hemodynamic parameters are key variables to understand and characterise the health of the

human cardiovascular system. Accurate measures of parameters such as heart rate, blood

pressure or cardiac output are crucial to help prevent, diagnose and treat circulation-related

diseases. As the majority of deaths worldwide are due to a failure of the cardiovascular

system [161], it is of great interest to have low-cost and reliable techniques available to assess

hemodynamic parameters noninvasively.

Still today, noninvasive blood pressure measurements are routinely performed using an

inflatable brachial cuff wrapped around the upper arm. However, this method has a number

of limitations such as the discontinuity of the measurements or the use of brachial pressure

as poor surrogate for aortic pressure [101]. An alternative approach is based on the pulse

wave velocity (PWV) principle: the PWV – the velocity at which the pressure pulse propagates

along the arterial tree – allows the continuous estimation of mean arterial pressure. PWV

can be measured at different locations and in various ways [14], but all require a reference

measurement for initial calibration. One possibility to noninvasively measure aortic PWV is

via the aortic pulse arrival time (PAT) by means of electrical impedance tomography (EIT),

as shown recently by Solà et al. [137]. Aortic PAT is defined as the arrival time of the blood

pressure pulse at a given aortic location. In particular, when measuring time series of aortic

pulses, PAT is calculated as the timing of the rising edge of these pulses.

Electrical impedance tomography is a safe, low-cost and noninvasive functional imaging

modality [80]. With a belt of electrodes attached around the thorax, thoracic bioimpedance

changes are measured. These measurements are then reconstructed into an image sequence

which depicts the change of intra-thoracic impedance, revealing lung- and heart-related

activity. The exploitation of EIT data for cardiovascular-related activity is still in its infancy [9].

However, the nonionizing and noninvasive nature of EIT makes it an appealing candidate for

continuous hemodynamic patient monitoring.

For the EIT-based estimation of mean aortic blood pressure, the temporal impedance changes

originating from the descending aorta are analysed. Due to the inherent low spatial resolution

of EIT [80], localizing the aorta, which has the size of roughly 5 % of the maximal thorax

diameter, represents a challenge. The strong impedance changes originating from the nearby

lungs and heart can lead to an elimination of the aortic information, unless EIT images are

acquired and processed appropriately. Moreover, the similarity in pulmonary and aortic signal

morphology [46] does not facilitate the separation of the two signal sources. The ability of

EIT to detect and localize aortic impedance changes can be investigated in simulations using

finite element models (FEMs). Such simulations have been applied in the field of impedance

cardiography [40, 150]. However, for EIT very few such simulations exist and most of them do

not include temporal changes and are thus limited to static models [164, 76]. At present, little

is known about the most appropriate measurement setting (electrode position, reconstruction

algorithm) which allows a reliable detection of the aortic signal in EIT. This emphasizes the
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need for further research in this particular field in order to bring cardiovascular EIT a step

closer towards clinical practice.

This work is aimed at understanding the effect of various components of an EIT system in the

ability to measure systemic blood pressure via the aortic signal, by comparing two commonly

used reconstruction algorithms and three traditional transversal EIT belt placements. In this

context, an MRI-based 3D hemodynamic model for cardiac EIT simulations of the human

thorax is presented. With a simulation-based approach, the influence of the different belt

placements and reconstruction algorithms on the capability to measure the aortic PAT is

investigated. This is examined by two experiments where 1) the error in EIT-based PAT

estimation is quantified and 2) the aortic signal contribution is measured.

This chapter is organized as follows. The methods are presented in Section A.2. The correspon-

ding results are detailed in Section A.3 and interpreted in Section A.4. Finally, in Section A.5,

conclusions on the results of this investigation are presented.

A.2 Methods

In Section A.2.1 the creation of the hemodynamic bioimpedance model is presented, starting

by describing the MRI recordings, followed by the description of each individual entity (static

thorax, dynamic aorta, heart and lungs). This is followed by the introduction of the simulation

framework (Section A.2.2) and the subsequent image reconstruction (Section A.2.3), which

combine the aforementioned model entities to simulate EIT impedance measures and images

(see also Figure A.3). Finally, in Section A.2.4 the two experiments investigating the possibility

to measure aortic PAT are presented.

A.2.1 Hemodynamic 3D Thorax Model

MRI Experiments

In order to create the dynamic 3D thorax model, three types of magnetic resonance imaging

(MRI) recordings were performed on a human volunteer (62 kg, 178 cm, 28 years old) during

expiratory breath-hold: (M1) A batch of 2D transverse plane scans covering the thorax outline

from the diaphragm up to the apices of the lungs; (M2) Two 2D batches of dynamic cardiac

cine scans showing the whole heart in short axis or in four chamber long axis view, covering

25 frames of the cardiac cycle; (M3) Dynamic 2D scans located at four different placements

along the aorta revealing the distension of the aortic cross section with at least 60 frames /

heart cycle.
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(a) (b) (c)

Figure A.1 – (a) 3D FEM of the human thorax with the lungs (blue), heart (red), aorta (green)
and the three different EIT belts (see text in Section A.2.1 ) TH, TM and TL (green rectangles).
(b) Circular model of the aorta (> indicate the belt levels) with the distension dynamics r1(t ) to
r5(t ) at five locations (red arrows) which were combined to obtain (c) the time- and position-
dependent aortic radius modulation curve rA(t , lA), shown at three different positions ( blue,

red, black: lA = 0, 15.8 or 31.6 cm) along the aorta.

Static Thorax

The thorax outline was segmented from the MRI scan M1 by a region-growing algorithm using

OsiriX [125] and then meshed to a smoothed 3D volume with Netgen [131]. Using the open-

source EIT software toolbox EIDORS [5], the application of three EIT belts – each comprised of

32 electrodes – was simulated at different levels along the craniocaudal axis as follows (see also

Figure A.1a): (1) the TM (transversal middle) belt was placed at the average level of the heart

model described later on, which is in between the 9-th and 10-th thoracic vertebra, the belts

(2) TH (transversal high) and (3) TL (transversal low) were placed 3.5 cm higher and lower than

TM, respectively. This corresponds to the level of the 8-th (for TH) or in between the 10-th and

11-th (for TL) thoracic vertebras. To ensure accurate calculations, the FEM was refined in the

vicinity of the electrodes as described by Grychtol and Adler [65].

Based on observations from the MRI scans, the intra-thoracic background conductivity is

composed of 48 % muscle, 47 % fat and 5 % bone (Table A.1).

Dynamic Aorta

The volume of the aorta was extracted from MRI scan M1 by applying a volumetric snake

segmentation [169]. Then, the centreline of the aorta was obtained by skeletonization of this

volume. Finally, the aortic model was constructed by interconnecting 29 circles equidistantly

spaced on this centreline (Figure A.1b), which all allow individual modulation of their radii.

To determine the temporal development of the aortic radius, an aorta-specific 2D+ t snake

segmentation [77] was applied to the MRI scans M3, leading to a measure of aortic radius

at five different locations along the aorta (r1(t ) to r5(t ) in Figure A.1b). These were averaged
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Table A.1 – Tissue composition of the different structures in the bioimpedance model.

Conductivity Range

Structure Tissue Composition σTissue (S/m) σED (S/m) σES (S/m)

Background Muscle, Fat, Bone 0.384, 0.0435, 0.0211 0.206 0.206

Aorta Blood 0.710 0.710 0.710

Lungs Lung 0.113 0.113 0.124

Ventricles (Heart) Blood, Myocardium 0.710, 0.238 0.573 0.494

Atria (Heart) Blood, Myocardium 0.710, 0.238 0.507 0.599

Note: σTissue denotes the conductivity of each tissue individually. σED (end diastole) and σES (end systole) denote
the resulting conductivity range when these tissues are combined in the final structures. All values are at 200 kHz
and based on [73].

to one single normalized aortic waveform PA(t), and combined with the radius of the aorta

in relaxed state RA(lA) (at a position lA from the aortic valve), resulting in the aortic radius

modulation function rA(t , lA) depicted in Figure A.1c and defined as follows:

rA(t , lA) = RA(lA)

[
1+DISTA ·PA

(
t − lA

PWVA

)]
, (A.1)

where PWVA denotes the aortic pulse wave velocity at which the pressure wave travels along

the aorta, and DISTA the maximal relative radial distension of every single aorta circle. DISTA

was simplified as constant value of 10 %, which is more conservative than the 12 % observed

in the MRIs and in the range of normotensive subjects [83]. The individual modulation of the

29 aortic radii based on Equation (A.1), in combination with different PWVA settings, thus

allows the simulation of different systemic blood pressure values.

The aorta model is assigned uniformly with the conductivity of blood (Table A.1).

Dynamic Heart

As an MRI-based full heart segmentation is a challenging task [172], the heart was simplified

by a geometric model mainly consisting of two cropped ellipsoids representing the atria and

ventricles as illustrated in Figure A.2a. To best mimic real heart behaviour, the model has only

a slight variation in total heart volume, no longitudinal shortening but radial compression as

observed at rest [32] and moderate exercise [141]. The six parameters configuring the model

(position of base, apex, AVPES, AVPED and both short axis dimensions of the AVP) are shown in

Figure A.2 and were determined by fitting the model to the outer heart contours in end diastole

and end systole and from manual measurements obtained from MRI scans M2. The model is

changed over time using one single variable – the ventricular volume VVentricles – whereas the

resulting atrial and total heart volumes are changed indirectly in a physiologically meaningful

range, as shown in Figure A.2b.
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The atria and ventricles are assigned a time-varying conductivity which is a combination of

blood and myocardium (Table A.1). By considering the myocardium as quasi-incompressible

[156, 167], this time-dependence is given by changes in the ratio of varying blood volume and

constant myocardial volume.

(a) (b) (c)

Figure A.2 – (a) A simplified two-dimensional illustration of the heart model with the atria
( blue) and ventricles ( red) at three instants t in time, where tED and tES correspond
to end diastole and end systole. The horizontal red line shows the atrio-ventricular valve
plane (AVP). The heart length lA−B, the ellipsoid centres (o: atrial, x: ventricular) and the
AVP size wAVP do not change over time. Modulation of the ventricular volume changes the
ventricular dimensions lV(t ) and leads to a displacement of the AVP. (b) Simulated changes of
atrial ( blue), ventricular ( red) and total heart volume ( black) over the cardiac cycle.
(c) Resulting FEM of the heart with the atria (blue) and ventricles (red) at end diastole (top)
and end systole (bottom).

Dynamic Lungs

The two lungs were segmented identically to the thorax and then meshed to a 3D volume

representation.

Dynamic changes in the lung regions during breath-hold were modelled using a pulmonary

artery distension reading PL(t) obtained from the MRI scans M3. The changes in lung con-

ductivity were simulated by propagating this distension pulse along the pulmonary circulation

with constant [107] velocity (PWVL):

σi (t ) =σL

[
1+∆σLMax ·PL

(
t − dPVi

PWVL

)]
, (A.2)

where σi (t) is the time-dependent conductivity of the i -th element in the FEM, located at

the distance dPVi from the pulmonary valve. The baseline lung conductivity σL (Table A.1) is

increased during the cardiac cycle by a maximum of ∆σLMax , which was set to 10 %, the worst

case value reported in the literature [108, 171, 28].
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Figure A.3 – Block diagram of the simulation framework. The dynamic models (heart, aorta
and lungs) are merged with the thorax model, simulated and reconstructed to images, while
parametrizing different hemodynamic parameters (ventricular volume VVentricles(t ), heart rate
HR, aortic PWVA and pulmonary pulse wave velocity PWVL).

A.2.2 Bioimpedance Simulations

Simulation Framework

To make use of the dynamic bioimpedance model introduced in the previous section, a flexible

simulation framework was developed. It allows the calculation of impedance measures and

the subsequent reconstruction of EIT images while parametrizing various hemodynamic and

EIT device-related parameters, using different reconstruction algorithms (Figure A.3). The

software is written in Matlab and based on EIDORS [5].

The electrical conductivities of the biological tissues were specified based on the IT’IS database

[73] at a frequency of 200 kHz and are shown in Table A.1.

Simulating Model Dynamics

For conductivity simulations, the thorax was meshed and locally refined in the regions where

moving structures are present (aorta and heart). Besides this refinement, the thorax mesh

(comprised of 1.13 million finite elements) contains no specific information about the un-

derlying organ structures. To then merge the dynamics of all individual meshes (aorta, heart,

lungs) into a single thorax mesh, at each moment in the cardiac cycle, the individual meshes

were mapped to the thorax mesh and the corresponding conductivity values were updated

(Figure A.3). Those elements left untouched by this mapping remained assigned with the

thoracic background conductivity mentioned in Section A.2.1 and shown in Table A.1.

All impedance measures were simulated for all three electrode belts (TH, TM and TL) – each

composed of 32 electrodes – using a quasi-adjacent stimulation pattern with 4 inactive elec-

trodes in between the two ones actively measuring voltage/injecting current [53].
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A.2.3 Image Reconstruction

The simulated impedance measurements were reconstructed to EIT images with the following

two difference reconstruction algorithms. These algorithms are based on inverse models

generated at the height of each belt from a coarse version (407 ·103 finite elements) of the

static thorax model.

• The GREIT algorithm [6] was trained with 4000 uniformly distributed stimulation targets.

These targets had a relative diameter of 0.015, which is approximately the size of a pixel

(1/64 ≈ 0.015) and half the minimal aorta radius (0.030). To investigate the performance

of the algorithm in detail, the noise figure (NF) and the weighting radius RW were varied.

The NF, which quantifies the extend to which measurement noise is amplified in the

resulting images, was set between 0.25 and 2.0 – a practically meaningful range [62].

RW, which determines the point spread function and thus the resolution, was varied

between 0.03 and 0.18. For the final analysis, in a first step, the influence of RW was

investigated with an NF fixed at 1.0. Second, the influence of NF was studied in more

detail by setting RW to the two values which showed best results in the first step.

• A one-step Gauss-Newton (GN) algorithm was used with a Laplace prior and a regulari-

zation hyperparameter λ chosen automatically to achieve the given NF as described by

Graham and Adler [62]. The NF was varied identically to GREIT.

Both algorithms reconstruct images of 64 × 64 pixels and an isotropic resolution of 4.6, 4.9 or

5.2 mm/pixel for the TL, TM and TH belt, respectively.

A.2.4 Hemodynamic Simulation Experiments

With the simulation framework introduced in the previous sections two different experiments

were performed. These are illustrated in Figure A.4 and described in more detail in the

following two sections. It has to be noted that the analysis of both experiments were reduced

to the pixels in the aortic region of interest ROIAorta, whose determination is explained in the

second experiment (SNR experiment, Section A.2.4).

All of the simulations were performed on a Unix machine running Matlab (version 8.0.0.783,

2012b), the EIDORS developer version (version 3.7.1+, SVN revision 4641) and Netgen (version

5.0.0).

PAT Experiment

The first experiment aimed at investigating the possibility to measure aortic pulse arrival

time (PAT), related to changes in systemic blood pressure. By modifying both the aortic and

pulmonary PWV over a wide and physiologically realistic range, different states of systemic

and pulmonary blood pressure were simulated. With this, the capability to determine aortic
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Figure A.4 – Block diagram of the two experiments performed. For a detailed description see
PAT experiment and SNR experiment both in Section A.2.4.

PAT variations from EIT images – while being least affected by changes in pulmonary PAT

– was investigated for different measurement settings (belt placement and reconstruction

algorithm configuration).

For this purpose, 36 instants in the cardiac cycle for 10 aortic and 4 pulmonary pulse wave

velocities were simulated in a range of PWVA = {2, . . . ,10} m/s and PWVL = {1.5, . . . ,2.5} m/s,

respectively. For each of the forty states simulated (all possible combinations of PWVA and

PWVL), the pixel-wise pulse arrival time (PAT) was calculated by fitting a tanh-model [136] onto

the rising slope of the temporal conductivity change. For each pixel at location x = (x, y), these

EIT-based estimates (PATEIT(x) ∈R40) were then compared to their references (PATRef ∈R40),

which are given by the known PWVA and the length of the aorta at the level of each belt. For

this purpose, a linear fit of PATEIT(x) onto PATRef was performed:

(â(x), b̂(x)) = argmin
a,b

||PATEIT(x)− (a ·PATRef +b)||22. (A.3)

The closeness of fit was evaluated using the metrics described below and illustrated in Fi-

gure A.5. The root-mean-square error σEIT(x), was computed as the deviation of the estimate

from the fit:

σEIT(x) =

√√√√∑40
i=1

[
PAT(i )

EIT(x)−
(
â(x) ·PAT(i )

Ref + b̂(x)
)]2

40−2
. (A.4)

The resulting absolute and relative timing error, εabs(x) and εrel(x), respectively, are given as in

Equation (A.5), where∆PATRef denotes the maximal range of PATRef, as illustrated in Figure A.5.

εabs(x) = 2σEIT(x)

â(x)
=⇒ εrel(x) = εabs(x)

∆PATRef
= 2σEIT(x)

â(x) ·∆PATRef
(A.5)

As the measurement of blood pressure with a PWV-based approach requires calibration, one

is not interested in a one-to-one relationship between PATEIT(x) and PATRef (â = 1), but in a

best linear relationship between them, i.e. pixels where the lung-induced variations lead to
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the smallest relative error εrel in aortic PAT estimate.

Figure A.5 – Illustrative example of the relationship between the estimated PATEIT and simu-
lated aortic PAT values PATRef for one pixel, showing the fitted linear regression ( black)
with the error range ( red) and the resulting absolute error εabs for a given estimated PAT
(PATEst). The variation of PATEIT at identical PATRef values is caused by undesired pulmonary
influences with different PWVL.

Finally, for comparing the results between the various measurement settings simulated (belt

placement and algorithm configuration), εrel(x) was reduced to a single figure of merit εrel.

This was defined as the average of those four neighbouring pixels (2×2 pixel region ≈ 1/3

of aorta area) inside the aortic region ROIAorta (described in the next section) having lowest

εrel(x) values.

SNR Experiment

As mentioned in the introduction the aortic signal is very weak. In order to exploit its infor-

mation, it is crucial to find pixels where it is present and at the same time least affected by

other signals (pulmonary or cardiac). Therefore, the second experiment aimed at quantifying

the strength of the aortic signal, relative to the overall signal, at the different aortic candi-

date pixels for the different measurement settings investigated (belt placements, algorithm

configuration).

For this purpose, 36 instants in the cardiac cycle with PWVA = 4.5 m/s, PWVL = 2.0 m/s were

simulated. In this experiment three different artificial scenarios were generated to investigate

the individual influence of each of the dynamic models (aorta, lungs and heart) by simulating

each source of impedance change separately. Therefore, for each scenario, either the dynamics

of (A) the aorta, (H) the heart or (L) the lungs, were simulated, whereas the other structures

were frozen to their end diastolic state.

For each of the three scenarios (A), (H) and (L) a so-called cardiosynchronous activity image
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CAI(x) was generated and denoted as CAIA, CAIH and CAIL, respectively. These were calculated

by the pixel-wise standard deviation in the time domain. In order to reveal those pixels with

highest contribution from the aorta, an aortic signal-to-noise ratio SNRA was defined as:

SNRA(x) = CAIA(x)

CAIA(x)+CAIL(x)+CAIH(x)
∈ [0,1]. (A.6)

Hence, the pixels of interest are those with a high SNRA and thus with a predominant contri-

bution of aortic signal – compared to pulmonary and cardiac influences. Therefore, the final

figure of merit SNRA was chosen – similar to the first experiment – as the average of those four

neighbouring pixels (2×2 pixel region) having highest SNRA values inside the aortic region

ROIAorta. This region of interest, to which the selection of the four best pixels is restricted, was

defined as these connected pixels where CAIA(x) is larger than 10 % of its maximal value.

A.3 Results

The dependence of both figures of merit εrel (first experiment) and SNRA (second experiment)

on the noise figure (NF) for three different reconstruction algorithm configurations are shown

in Figure A.6. Over the entire range GN shows a lower relative error εrel compared to the two

GREIT configurations. Starting from a NF of 0.5 (TH and TM) or 0.75 (TL), εrel of GN lies below

4.5 % and stabilizes for higher NFs. Regarding the aortic signal contribution, the TH and TM

belt placements in combination with GN show highest SNRA values, especially for a NF in the

range between 0.5 and 1.25.

The two specific GREIT weighting radii RW used in Figure A.6 (RW = 0.09 and RW = 0.03) were

selected based on Figure A.7 which shows the dependence of εrel and SNRA on RW. For certain

belt placements (SNRA for TL and TH, or εrel for TH) an RW of 0.09 shows best performance

whereas for TM in terms of timing an RW of 0.03 is favourable.

A.4 Discussion

Two simulation experiments were performed with the aim to 1) quantify the error in EIT-

derived PAT estimation and 2) measure the aortic signal contribution at different pixels of

the aortic region in EIT image sequences. The goal of these experiments was to investigate

the influence of different belt placements and reconstruction algorithms when aiming for an

EIT-based monitor of aorta pulsatility.

The first experiment shows the feasibility to estimate the aortic PAT with a minimal error εrel

of below 3.6 % or 4.3 %, for measurements performed with a TM or TH belt placement and

reconstructed with GN, starting from an NF of 0.5 upwards. These errors in terms of EIT-based

blood pressure estimation would translate to ±1.4 mmHg or ±1.7 mmHg, when conservatively

assuming a relationship of 1 mmHg/ms [138]. The TL belt placement follows from a NF of

0.75 upwards with an error lower than 4.3 %. In comparison, for images reconstructed with
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Figure A.6 – (Top row) Relative error εrel (the lower the better) and (Bottom row) aortic con-
tribution SNRA (the larger the better) as a function of the noise figure (NF) for the three
belt placements (TH, TM, TL) and three different algorithm configurations (Left column)
Gauss-Newton, (Middle column) GREIT with RW = 0.03 and (Right column) RW = 0.09.

(a) GREIT NF = 1 (b) GREIT NF = 1

Figure A.7 – (a) Relative error εrel (the lower the better) and (b) aortic contribution SNRA (the
larger the better) as a function of GREIT weighting radius RW for the three belt placements
(TH, TM, TL).
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GREIT and all three belt placements investigated, the error never falls below 7.6 %, which

would correspond to ±3.0 mmHg. However, this is the case for high NFs. At lower NFs, in

a range of NF between 0.5 and 1 – which is favourable in order to be more robust to noise –

εrel of GREIT is nearly three-fold higher compared to GN. As these comparisons are made for

the two algorithms having identical NFs and image size, the significant differences observed

are assumed to be due to a higher spatial smoothing of the GREIT algorithm. As alluded to

earlier in Section A.1, even a small influence of the much stronger lung or heart signals can

lead to a quasi-elimination of the aortic signal. To summarize, in terms of PAT error εrel, we

recommend the use of GN reconstruction and a NF of at least 0.5.

The second experiment reveals that images reconstructed with GN allow best to isolate the

aortic signal from the interfering ones (pulmonary and cardiac). This applies in particular to

the TM or TH belt placements where aortic signal contributions SNRA of up to 71 % or 68 % are

present (for NFs in the range of 0.5 to 1.0). In contrast, using GREIT, for all three belts analysed,

the SNRA stays below 50 % – or for NFs limited to 1.0 even below 43 %. These findings suggest

the use of GN reconstruction with a TM or TH belt placement.

Based on two different simulation experiments showing comparable results, a GN recon-

struction (with NF ≥ 0.5) is suggested for measuring aortic PAT. The few discrepancies between

SNRA and εrel probably stem from the lower specificity of the PAT experiment. Since the

cardiac-related activity is not changing between the forty different PAT states of the first expe-

riment, the timing error εrel can be small in pixels where an accurate aortic PAT estimation

is obtained despite a high cardiac contribution. The same applies for pixels having high

pulmonary signal influence and located close to the pulmonary valve, where the disturbing

PWVL-dependent variations are negligibly small. This could be improved by simulating diffe-

rent cardiac volume conditions and pulmonary pressure morphologies. However, the current

simulations are very time-consuming; the PAT experiment took nearly four days to compute.

This is also the reason why the present analysis was limited to a single stimulation pattern.

Thus, before performing further investigations, a more efficient implementation of the forward

solver is required.

Regarding the performance of GREIT, it needs to be emphasized that an appropriate adjus-

tment of the algorithm parameters (increased image size, modified point spread function)

might lead to improved results. This was, however, out of the scope of the present investiga-

tions and should be investigated in the future. Moreover, the current analysis did not take

into account any noise, which could alter the outcome when comparing the two algorithms.

Therefore, we suggest the development of an appropriate noise model and a subsequent noise

analysis for future work.

The results for GN suggest that a TM or TH belt placement is preferred over TL. This is

somewhat counter-intuitive as one would expect the lowest pulmonary activity for the TL

belt (see Figure A.1a). Nevertheless, the larger radial distension of the aorta and increased

sensitivity of changes originating from the aortic arch at higher belt levels are arguments in
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Appendix A. Investigations on Aortic Blood Pressure Measured via EIT

favour of a high belt placement. This might explain our observations from a signal strength

perspective as studied in the second experiment. Nevertheless, the rationale for the lower

timing errors at higher belt levels (as observed for GN from the first experiment), might be

biased by the aforementioned fact that belts placed closer to the pulmonary valve (PV) could

show lower timing errors.

As none of the results shows an aortic contribution SNRA of more than 71 %, we have to

expect pulmonary or cardiac influence in every pixel. A plausible explanation is the low spatial

resolution of EIT which leads to an overlap of different signal sources. This in turn might be

exaggerated for the pulmonary influence due to the simplistic model used for the lungs which

propagates a worst-case conductivity change of 10 % homogeneously throughout the entire

lung region. Therefore, improvements towards a more realistic lung model are suggested in

order to examine this in more detail.

In conclusion, the confirmation of the current findings by validating against real EIT-based

aortic PAT recordings should bring cardiovascular EIT another step closer towards clinical

practice.

A.5 Conclusions

Simulations on an MRI-based 3D hemodynamic thorax model were performed to investi-

gate the possibility to measure mean aortic blood pressure via EIT. In terms of both aortic

signal strength and EIT-based PAT estimation error, the present study suggests the use of

the Gauss-Newton algorithm (GN) (with a noise figure of NF ≥ 0.5) for image reconstruction

in combination with a transversal electrode belt placement at the level of the heart (TM) or

higher (TH). A more realistic lung model, the introduction of noise and the validation against

real EIT recordings are suggested for future research. This also implies the practical validation

of the method for estimating aortic blood pressure from EIT-derived pulse arrival time in

humans.
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B Ensemble Averaging and Signal Qua-
lity Estimation

Assuming SP ∈ Rnp×n f ×nc as a sequence of EIT images with np pixels and n f frames and nc

cardiac cycles aligned to a cardiosynchronous trigger (e.g. ECG’s R-peak or foot of pressure

wave). The averaged EIT sequence of one representative cardiac cycle S A ∈Rnp×n f is obtained

via ensemble averaging (see [122, chap. 3.5.1] or [139, chap. 4.3]) as follows:

[S A]p f =
1

nc

nc∑
i=1

[SP ]p f i , ∀p ∈ [1,np ] and f ∈ [1,n f ] (B.1)

The corresponding deviation SD ∈Rnp×n f of all averaged cardiac cycles is computed via the

standard-deviation calculated over all nc cycles:

[SD ]p f =
√

1

nc −1

nc∑
i=1

∣∣[SP ]p f i − [S A]p f
∣∣2, ∀p ∈ [1,np ] and f ∈ [1,n f ] (B.2)

The mean deviation image ID ∈Rnp is obtained by averaging SD over all n f frames:

[ID ]p = 1

n f

n f∑
i=1

[SD ]pi , ∀p ∈ [1,np ] (B.3)

The cardiosynchronous activity image (CAI) represents the root-mean squared (RMS) ampli-

tude and is computed via the pixel-wise standard-deviation over all n f frames:

[I A]p = [CAI]p =
√√√√ 1

n f −1

n f∑
i=1

∣∣∣∣∣[S A]pi −
(

1

n f

n f∑
j=1

[S A]p j

)∣∣∣∣∣
2

, ∀p ∈ [1,np ] (B.4)

The relative deviation at each pixel represented by IR ∈ Rnp is computed as the ratio of de-

viation vs activity, i.e. IR = ID ® I A , where ® denotes the Hadamard division (element-wise

division).

Finally, the relative noise level NR in a given region R ∈ {0,1}np is estimated via the relative
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Appendix B. Ensemble Averaging and Signal Quality Estimation

deviation weighted by the activity at each pixel within R :

NR =
np∑

i=1
[W ]i [IR ]i , with W = R ¯ I A

np∑
i=1

[R ¯ I A]i

(B.5)

Where ¯ denotes the Hadamard product (element-wise multiplication).

162



C Measurements in the Operating
Room: Additional Figures
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Appendix C. Measurements in the Operating Room: Additional Figures

H1: Absolute SV with Patient-Independent Calibration

Figure C.1 – SVEIT vs SVRef for best possible fit for hypothesis 1 (absolute SV with patient-
independent calibration) shown for each of the feature sets and number of features investiga-
ted. The absolute error εAbs resulting from Bland-Altman analysis is shown in the lower right
corner of each graph.
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H2: Absolute SV with Patient-Specific Calibration

Figure C.2 – SVEIT vs SVRef for best possible fit for hypothesis 2 (absolute SV with patient-
specific calibration) shown for each of the feature sets and number of features investigated.
The absolute error εAbs resulting from Bland-Altman analysis is shown in the lower right corner
of each graph.
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Appendix C. Measurements in the Operating Room: Additional Figures

H3: Relative SV with Patient-Independent Calibration

Figure C.3 – Four-quadrant plot analysis between ∆SVEIT vs ∆SVRef for best possible fits of
hypothesis 3 (relative SV with patient-independent calibration) shown for each of the feature
sets and number of features investigated. The concordance rate CR and angular error εα are
shown in the lower right corner of each graph.
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H4: Relative SV with Patient-Specific Calibration

Figure C.4 – Four-quadrant plot analysis between ∆SVEIT vs ∆SVRef for best possible fits of
hypothesis 4 (relative SV with patient-specific calibration) shown for each of the feature sets
and number of features investigated. The concordance rate CR and angular error εα are shown
in the lower right corner of each graph.
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D Measurements in the Intensive Care
Unit: Additional Figures

In the following we show the output from ensemble averaged EIT analysis for the three

measurements (M1 to M3) of the sixteen subjects (V05 to V20), with the exception of V17

which is already shown in the main text in Figure 9.3.

Figures D.1 to D.15 all show the following: (Top) images of cardiosynchronous activity (CA) for

the three measurements M1 to M3 with the averaged ( ) and individual ( ) ROIs. (Bottom)

the corresponding temporal signals of conductivity change in the heart (black) and lung (blue)

regions with the minima and maxima used to estimate the amplitudes ∆σH and ∆σL.

Figure D.1 – EIT analysis example for patient V05. See text in Appendix D for description.
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Appendix D. Measurements in the Intensive Care Unit: Additional Figures

Figure D.2 – EIT analysis example for patient V06. See text in Appendix D for description.

Figure D.3 – EIT analysis example for patient V07. See text in Appendix D for description.
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Figure D.4 – EIT analysis example for patient V08. See text in Appendix D for description.

Figure D.5 – EIT analysis example for patient V09. See text in Appendix D for description.

171



Appendix D. Measurements in the Intensive Care Unit: Additional Figures

Figure D.6 – EIT analysis example for patient V10. See text in Appendix D for description.

Figure D.7 – EIT analysis example for patient V11. See text in Appendix D for description.
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Figure D.8 – EIT analysis example for patient V12. See text in Appendix D for description.

Figure D.9 – EIT analysis example for patient V13. See text in Appendix D for description.
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Appendix D. Measurements in the Intensive Care Unit: Additional Figures

Figure D.10 – EIT analysis example for patient V14. See text in Appendix D for description.

Figure D.11 – EIT analysis example for patient V15. See text in Appendix D for description.

174



Figure D.12 – EIT analysis example for patient V16. See text in Appendix D for description.

Figure D.13 – EIT analysis example for patient V18. See text in Appendix D for description.
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Appendix D. Measurements in the Intensive Care Unit: Additional Figures

Figure D.14 – EIT analysis example for patient V19. See text in Appendix D for description.

Figure D.15 – EIT analysis example for patient V20. See text in Appendix D for description.
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E Measurements on Healthy Volunteers:
Additional Figures and Tables

In the following we show the temporal evolution of SVRef, heart rate and EIT-based features for

each of the nine subjects considered for analysis, with the exception of S03 which is already

shown in the main text in Figure 12.9 and S07 which was excluded from analysis as discussed

in Section 12.2.5.

This is followed by Tables E.1 to E.4 showing the overall and subject-specific performance for

a selection of features and the hypotheses (H1) to (H4) described in Section 12.2.5.

Figures E.1 to E.8 all show the following: (Top) Temporal evolution of reference stroke volume

(black) and heart rate (red) for the entire protocol comprised of tasks T1 to T13 (as described in

Figure 12.1). The beginning of each task is marked with a vertical line ( ) and the particular

tasks considered for analysis are shaded in light (lying) or dark gray (recovery). (Middle) One

minute averages used for analysis showing SVRef and two EIT features: the systolic heart

amplitude (∆σH) and the temporal standard-deviation of the heart signal during one full

cardiac cycle (tStdH). (Bottom) Tidal volume VR (blue) measured by the reference device

(MetaMax 3B) and the one minute averages of the global conductivity feature σG (green).

177



Appendix E. Measurements on Healthy Volunteers: Additional Figures and Tables

Figure E.1 – Temporal evolution of SVRef, heart rate and EIT-based features for subject S01. See
text in Appendix E for description.

Figure E.2 – Temporal evolution of SVRef, heart rate and EIT-based features for subject S02. See
text in Appendix E for description.
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Figure E.3 – Temporal evolution of SVRef, heart rate and EIT-based features for subject S04. See
text in Appendix E for description.

Figure E.4 – Temporal evolution of SVRef, heart rate and EIT-based features for subject S05. See
text in Appendix E for description.
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Appendix E. Measurements on Healthy Volunteers: Additional Figures and Tables

Figure E.5 – Temporal evolution of SVRef, heart rate and EIT-based features for subject S06. See
text in Appendix E for description.

Figure E.6 – Temporal evolution of SVRef, heart rate and EIT-based features for subject S08. See
text in Appendix E for description.
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Figure E.7 – Temporal evolution of SVRef, heart rate and EIT-based features for subject S09. See
text in Appendix E for description.

Figure E.8 – Temporal evolution of SVRef, heart rate and EIT-based features for subject S10. See
text in Appendix E for description.
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Appendix E. Measurements on Healthy Volunteers: Additional Figures and Tables

Table E.1 – Subject-specific and overall performance for a selection of eight features (a) to
(h) and hypothesis (H1) absolute SV via subject-independent calibration. The performance
between SVEIT and SVRef is evaluated in terms of absolute error εAbs and correlation coefficient
r . The (†) indicates unrealistic solutions with calibrations coefficients not having identical
sign for all subjects. Cell shadings indicate whether the acceptance criteria (see Section 12.2.5)
are met (green), not met (red), or met but with unrealistic calibration coefficients (yellow).

(a) ∆σH (b) tStdH (c) ∆σL (d) tStdL

εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1)

S01 18.7± 18.0 0.456 11.7± 17.8 0.358 21.6± 14.8 0.714 17.9± 17.9 0.467

S02 −39.5± 11.0 0.118 −38.9± 12.6 −0.144 −37.2± 13.0 −0.070 −39.4± 11.9 −0.035

S03 −7.9± 16.2 0.242 −12.8± 17.0 0.102 −9.1± 24.9 −0.786 −5.6± 21.3 −0.753

S04 30.5± 23.9 0.563 29.2± 23.4 0.426 30.6± 20.6 0.784 28.2± 24.3 0.358

S05 21.0± 23.1 0.696 22.9± 19.2 0.778 16.6± 24.0 0.172 19.9± 25.9 −0.167

S06 −10.5± 18.1 0.328 −13.4± 17.1 0.417 −3.6± 18.9 0.152 −7.5± 18.3 0.281

S08 −12.0± 20.9 0.720 −6.5± 15.2 0.958 −11.1± 18.8 0.598 −11.2± 20.4 0.482

S09 26.4± 15.8 0.893 30.8± 12.5 0.935 18.5± 16.1 0.356 22.0± 16.6 0.235

S10 6.3± 12.6 0.577 5.7± 10.6 0.639 2.1± 12.8 0.366 4.1± 13.6 0.161

All −0.5± 28.2 −0.424 −1.0± 27.3 0.023 −0.4± 27.3 −0.023 −0.5± 28.1 −0.341

(e) tStdG (f) ∆σH, ∆σH
σG

(g) ∆σL, ∆σL
σG

(h) VT

εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1)

S01 18.3± 18.6 0.363 17.1± 15.4 0.884 21.6± 12.3 0.833 15.1± 5.5 0.963

S02 −38.8± 11.2 −0.186 −52.4± 6.3 0.833 −39.4± 11.6 0.244 −39.8± 9.4 0.898

S03 −5.2± 18.3 −0.844 −8.3± 15.2 0.546 −15.9± 27.9 −0.684 −4.4± 13.5 0.590

S04 28.5± 25.2 0.069 29.9± 22.5 0.815 29.9± 20.0 0.803 25.9± 17.1 0.791

S05 19.3± 25.1 −0.600 25.0± 21.8 0.755 23.5± 19.5 0.870 24.2± 12.9 0.954

S06 −10.0± 18.9 −0.100 −8.7± 17.2 0.676 −4.9± 18.0 0.302 −8.6± 11.0 0.814

S08 −11.8± 21.5 0.093 −11.7± 19.2 0.650 −11.5± 17.2 0.698 −18.0± 11.8 0.860

S09 26.0± 16.7 0.649 28.1± 15.8 0.844 22.4± 12.8 0.768 25.0± 10.0 0.907

S10 5.6± 13.9 −0.139 5.1± 12.3 0.729 6.1± 11.8 0.543 11.9± 7.1 0.860

All (†) −0.5± 28.2 −0.710 −1.7± 30.4 −0.365 (†) −0.4± 28.4 −0.050 −0.4± 24.7 0.371
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Table E.2 – Subject-specific and overall performance for a selection of eight features (a) to (h)
and hypothesis (H2) absolute SV via subject-specific calibration. The performance between
SVEIT and SVRef is evaluated in terms of absolute error εAbs and correlation coefficient r . The
(†) indicates unrealistic solutions with calibrations coefficients not having identical sign for all
subjects. Cell shadings indicate whether the acceptance criteria (see Section 12.2.5) are met
(green), not met (red), or met but with unrealistic calibration coefficients (yellow).

(a) ∆σH (b) tStdH (c) ∆σL (d) tStdL

εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1)

S01 0.0± 16.9 0.456 0.0± 17.8 0.358 0.0± 13.3 0.714 0.0± 16.8 0.467

S02 0.0± 10.9 0.118 0.0± 10.9 0.144 0.0± 11.0 0.070 0.0± 11.0 0.035

S03 0.0± 16.1 0.242 0.0± 16.5 0.102 0.0± 10.2 0.786 0.0± 10.9 0.753

S04 0.0± 20.9 0.563 0.0± 22.9 0.426 0.0± 15.7 0.784 0.0± 23.6 0.358

S05 0.0± 17.5 0.696 0.0± 15.3 0.778 0.0± 24.0 0.172 0.0± 24.0 0.167

S06 0.0± 17.8 0.328 0.0± 17.1 0.417 0.0± 18.6 0.152 0.0± 18.1 0.281

S08 0.0± 14.9 0.720 0.0± 6.2 0.958 0.0± 17.2 0.598 0.0± 18.9 0.482

S09 0.0± 7.6 0.893 0.0± 6.0 0.935 0.0± 15.8 0.356 0.0± 16.5 0.235

S10 0.0± 11.2 0.577 0.0± 10.6 0.639 0.0± 12.8 0.366 0.0± 13.5 0.161

All 0.0± 15.2 0.813 (†) 0.0± 14.3 0.836 (†) 0.0± 15.8 0.796 (†) 0.0± 17.1 0.755

(e) tStdG (f) ∆σH, ∆σH
σG

(g) ∆σL, ∆σL
σG

(h) VT

εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1)

S01 0.0± 17.7 0.363 0.0± 6.8 0.934 0.0± 6.2 0.946 0.0± 5.1 0.963

S02 0.0± 10.8 0.186 0.0± 5.7 0.855 0.0± 6.1 0.831 0.0± 4.8 0.898

S03 0.0± 8.9 0.844 0.0± 11.8 0.701 0.0± 7.8 0.883 0.0± 13.4 0.590

S04 0.0± 25.2 0.069 0.0± 13.9 0.835 0.0± 13.9 0.834 0.0± 15.5 0.791

S05 0.0± 19.5 0.600 0.0± 9.2 0.925 0.0± 9.6 0.919 0.0± 7.3 0.954

S06 0.0± 18.7 0.100 0.0± 12.5 0.747 0.0± 12.8 0.731 0.0± 10.9 0.814

S08 0.0± 21.4 0.093 0.0± 14.2 0.751 0.0± 15.0 0.719 0.0± 11.0 0.860

S09 0.0± 12.9 0.649 0.0± 5.6 0.943 0.0± 9.6 0.825 0.0± 7.1 0.907

S10 0.0± 13.6 0.139 0.0± 9.3 0.738 0.0± 7.6 0.835 0.0± 7.0 0.860

All (†) 0.0± 16.8 0.766 0.0± 10.4 0.917 0.0± 10.3 0.920 0.0± 9.7 0.929
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Table E.3 – Subject-specific and overall performance for a selection of eight features (a) to
(h) and hypothesis (H3) relative SV via subject-independent calibration. The performance
between∆SVEIT and∆SVRef is evaluated in terms of angular error εα and angular concordance
rate CR. The (†) indicates unrealistic solutions with calibrations coefficients not having identi-
cal sign for all subjects. Cell shadings indicate whether the acceptance criteria (see Section
12.2.5) are met (green), not met (red), or met but with unrealistic calibration coefficients
(yellow).

(a) ∆σH (b) tStdH (c) ∆σL (d) tStdL

εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1)

S01 7.0± 22.0 66.7 −3.0± 23.8 100.0 −17.5± 4.5 100.0 −21.4± 3.7 100.0

S02 −19.5± 24.5 77.8 −32.9± 14.0 28.6 −6.2± 25.5 63.6 −14.1± 18.7 66.7

S03 −24.7± 8.5 80.0 −27.3± 10.1 60.0 −35.2± 6.4 20.0 −31.7± 6.7 60.0

S04 3.4± 21.5 88.9 −1.0± 23.9 88.9 −10.5± 16.0 100.0 −15.3± 17.2 100.0

S05 −7.0± 18.4 83.3 1.1± 19.9 100.0 −11.5± 22.5 80.0 −23.1± 12.1 50.0

S06 −18.2± 28.3 63.6 −10.7± 33.4 61.5 −7.6± 20.6 75.0 −19.1± 13.5 66.7

S08 −22.2± 11.5 80.0 −12.2± 11.5 100.0 −18.4± 14.4 50.0 −23.3± 11.5 40.0

S09 14.8± 15.8 80.0 18.5± 12.7 80.0 −16.4± 3.4 100.0 −16.4± 4.0 100.0

S10 17.9± 18.6 77.8 19.9± 17.7 66.7 −2.6± 24.8 75.0 2.7± 24.0 80.0

All −5.3± 25.2 76.9 −4.9± 26.5 73.8 −12.1± 20.3 70.4 −17.4± 16.7 70.2

(e) tStdG (f) ∆σH, ∆σH
σG

(g) ∆σL, ∆σL
σG

(h) VT

εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1)

S01 −22.8± 0.1 100.0 9.1± 8.5 100.0 9.6± 8.2 100.0 16.9± 8.1 100.0

S02 −21.1± 7.7 85.7 −6.4± 14.9 88.9 −4.3± 15.9 100.0 −9.3± 11.7 88.9

S03 −19.9± 7.7 100.0 −26.0± 2.3 100.0 −23.3± 3.3 100.0 −27.4± 7.2 40.0

S04 −23.7± 5.9 100.0 10.6± 14.0 87.5 6.4± 14.3 85.7 −2.7± 15.8 100.0

S05 −22.1± 11.4 50.0 −11.9± 4.6 100.0 0.6± 26.7 83.3 −15.7± 3.1 100.0

S06 0.6± 45.7 50.0 2.7± 20.6 83.3 5.4± 20.2 84.6 2.1± 17.7 92.3

S08 −26.0± 9.1 40.0 −29.3± 9.9 40.0 −35.0± 12.1 40.0 −4.0± 15.0 100.0

S09 −14.4± 2.0 100.0 0.1± 12.9 100.0 −3.0± 14.0 100.0 −10.4± 7.9 100.0

S10 −16.0± 2.0 100.0 16.1± 19.3 75.0 13.4± 20.6 71.4 21.2± 13.5 85.7

All (†)−15.6± 25.7 73.3 −1.9± 20.4 83.9 −1.7± 21.7 84.2 −1.5± 18.5 89.8
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Table E.4 – Subject-specific and overall performance for a selection of eight features (a) to (h)
and hypothesis (H4) relative SV via subject-specific calibration. The performance between
∆SVEIT and ∆SVRef is evaluated in terms of angular error εα and angular concordance rate CR.
The (†) indicates unrealistic solutions with calibrations coefficients not having identical sign
for all subjects. Cell shadings indicate whether the acceptance criteria (see Section 12.2.5) are
met (green), not met (red), or met but with unrealistic calibration coefficients (yellow).

(a) ∆σH (b) tStdH (c) ∆σL (d) tStdL

εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1)

S01 −6.2± 32.0 66.7 −24.8± 1.6 100.0 −8.7± 11.0 100.0 −2.6± 31.2 33.3

S02 −3.9± 24.9 81.8 −13.5± 15.7 100.0 −19.3± 8.2 100.0 −19.3± 8.2 100.0

S03 −14.5± 17.4 83.3 −22.3± 7.7 80.0 3.5± 18.7 85.7 3.7± 19.0 85.7

S04 1.7± 22.5 88.9 −0.2± 23.7 88.9 2.6± 17.5 100.0 −1.5± 20.8 100.0

S05 0.0± 23.4 85.7 1.9± 21.3 85.7 −21.0± 14.6 75.0 −9.6± 24.9 83.3

S06 4.0± 24.6 73.7 3.6± 26.2 66.7 10.3± 24.1 72.7 −2.8± 19.1 100.0

S08 7.0± 22.6 87.5 3.5± 8.0 100.0 6.8± 21.8 90.0 1.4± 21.4 100.0

S09 −4.5± 7.1 100.0 −3.0± 3.3 100.0 −21.4± 7.7 100.0 −23.9± 8.1 100.0

S10 −19.9± 16.1 66.7 −18.2± 16.2 66.7 −25.0± 10.6 66.7 −27.2± 4.0 66.7

All −1.0± 23.0 80.9 (†) −3.9± 21.5 83.3 (†) −0.2± 22.5 84.6 (†) −5.8± 20.4 91.5

(e) tStdG (f) ∆σH, ∆σH
σG

(g) ∆σL, ∆σL
σG

(h) VT

εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1) εAbs (mL) r (1)

S01 −22.6± 14.2 50.0 1.7± 8.9 100.0 1.5± 6.2 100.0 1.3± 4.8 100.0

S02 −3.4± 25.3 81.8 −1.0± 16.5 88.9 −6.3± 20.0 87.5 −2.5± 15.1 88.9

S03 −4.1± 7.2 100.0 −7.0± 18.7 83.3 −1.0± 12.8 100.0 −1.7± 25.7 85.7

S04 3.4± 24.5 81.8 0.4± 15.0 100.0 0.8± 15.0 100.0 −1.0± 16.0 100.0

S05 10.9± 29.2 60.0 −4.2± 10.3 100.0 −1.1± 6.0 100.0 −2.6± 6.4 100.0

S06 10.2± 23.3 75.0 5.4± 19.4 84.6 5.4± 20.8 83.3 1.8± 17.0 92.3

S08 −2.2± 23.1 60.0 10.7± 22.1 77.8 8.3± 18.9 90.0 4.6± 12.9 100.0

S09 −14.4± 9.5 100.0 −1.2± 2.4 100.0 −6.6± 15.5 100.0 −0.4± 9.0 100.0

S10 −26.2± 4.5 66.7 −14.7± 16.9 66.7 −1.7± 17.0 100.0 −8.4± 13.3 100.0

All (†) 2.0± 24.2 74.4 1.0± 17.5 87.7 1.3± 16.7 93.0 −0.4± 15.3 94.7
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4. Proença, M., Braun, F., Solà, J., Thiran, J.P. and Lemay, M. Noninvasive pulmonary artery
pressure monitoring by EIT: A model-based feasibility study. Med. Biol. Eng. Comput., 55(6):
949–963, 2017. DOI:10.1007/s11517-016-1570-1

5. Quandt, B.M., Braun, F., Ferrario, D., Rossi, R.M. et al. Body-monitoring with photonic
textiles: A reflective heartbeat sensor based on polymer optical fibres. J. R. Soc. Interface, 14
(128):20170060, 2017. DOI:10.1098/rsif.2017.0060

6. Quandt, B.M., Hufenus, R., Weisse, B., Braun, F. et al. Optimization of novel melt-extruded
polymer optical fibers designed for pressure sensor applications. Eur. Polym. J., 88:44–55, 2017.
DOI:10.1016/j.eurpolymj.2016.12.032
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