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Abstract: 

New scientific investigations of artificially structured materials and experiments have exhibit wave 

manipulation to the extreme. In particular, zero refractive index metamaterials have been on the 

front line of wave physics research for their unique wave manipulation properties and application 

potentials. Remarkably, in such exotic materials, time-harmonic fields have infinite wavelength 

and do not exhibit any spatial variations in their phase distribution. This unique feature can be 

achieved by forcing a Dirac cone to the center of the Brillouin zone (  point), as previously 

predicted and experimentally demonstrated in time-invariant metamaterials by means of accidental 

degeneracy between three different modes. In this article, we propose a different approach that 

enables true conical dispersion at   with twofold degeneracy, and generates zero index properties. 

We break time-reversal symmetry and exploit a time-Floquet modulation scheme to demonstrate 

a time-Floquet acoustic metamaterial with zero refractive index. This behavior, predicted using 

stroboscopic analysis, is confirmed by fullwave finite elements simulations. Our results establish 

the relevance of time-Floquet metamaterials as a novel reconfigurable platform for wave control. 
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A. Introduction: 

Near-zero refractive index metamaterials have been of great interest for researchers over the past 

few years 1–16. In electromagnetics, such materials force Maxwell’s equations to collapse to the 

Laplace differential equation (a special case of the Helmholtz equation) in the frequency domain, 

which effectively enforces a static wave profile to the time-harmonic electromagnetic field. 

Analogously, the wave equation for acoustic pressure in a zero-index fluid also transforms into the 

Laplace equation, and exhibits the same static wave behavior. It is therefore overt that waves in 

such artificial media experience infinite (or near infinite) phase velocity, hence they can be 

manipulated in very unique ways. For instance, taking into account the conservation of frequency 

(from the linearity of the wave equation) and the conservation of the parallel component of the 

wave vector k  at an interface, such materials can bend, steer and focus the direction of a 

wavefront, ideally without any angular dependence, as illustrated in Fig. 1. In addition, they exhibit 

unique scattering and transmission properties when they are embedded in other kinds of media. 

For instance, in photonics, a non-magnetic ( 1)   zero-epsilon ( 0)   photonic structure doped 

with a simple dielectric scatterer exhibits effective magnetic scattering features7. Both in acoustics 

and microwaves, a zero-index metamaterial (ZIM) can be engineered to function as a total reflector 

or a total transmitter depending on the parameters of the solid defect which is embedded within 

the artificial structure8,11,17. Such interesting properties were also recently introduced for electrons 

in artificial quantum lattices16. 

For such a material to exist, the dispersion relation must support a solution with near zero 

wavenumber at a non-zero frequency. One possibility to achieve this is to use periodic structures 

and create a Dirac cone at the   point of the Brillouin zone18–27. Such phenomenon in 

electromagnetics has been predicted and experimentally verified by forcing the periodic structure 

http://dx.doi.org/10.1063/1.5006542


to an accidental degeneracy point19–21,23,28-29, obtained by tuning some geometrical parameters in 

the lattice.  A recent article by M. Dubois, C. Shi et al23 has used this technique to experimentally 

prove the existence of a Dirac cone at the center of the Brillouin zone of an acoustic metamaterial, 

and demonstrate a double zero refractive acoustic index with reasonably good impedance matching 

with air. In these systems, the Dirac cone is never a two-fold degeneracy, which would correspond 

to an effective spin of ½, but is instead a three-fold degeneracy (effective spin 1), and the conical 

dispersion is always accompanied by a third slow band with a different mode symmetry, consistent 

with the fact that two-fold degeneracies at the   point must have parabolic dispersion in any time-

reversal invariant crystal30. Nevertheless, these effective bosonic systems are very interesting as 

they lead to several exotic tunneling and statistical properties inherent to spin 1 particles31,32. In 

the present article, we follow a completely different approach to achieve near zero response, and 

demonstrate true linear (effective spin ½) dispersion at the center of the Brillouin zone by breaking 

time-reversal symmetry, turning a static lattice into a time-Floquet crystal by applying a time-

Floquet modulation. 

 

B. The spatiotemporal periodic structure 

Initially introduced for quantum systems and studied in condensed matter physics33–35, time-

Floquet systems have been recently translated to the classical realm of wave physics. Time-Floquet 

metamaterials and time-Floquet crystals have been used to induce novel wave phenomena, such 

as topological protection, nonreciprocity and space-time boundaries36–43. These structures 

correspond to systems whose index of refraction is not only modulated periodically in space, like 

for regular crystals, but also in time. 
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Let us consider the metamaterial represented in Fig. 2. This Floquet acoustic crystal has already 

been discussed in another context for its unique and exotic topological properties36. It forms a 

hexagonal lattice constructed by coupled acoustic trimers connected together along the hexagonal 

bonds via small rectangular channels. The medium filling the acoustic crystal is silicone rubber 

RTV-602, which is a low loss material with density 2
0 990kg m    and compressibility 

10 1
0 9.824 10 Pa     44. The surrounding medium could be considered a denser material like 

steel, which imposes hard wall acoustic boundary conditions to the rubber (large impedance 

mismatch), and the cavity diameter is 1 cm with a thickness of 3 mm. Following 45, at low 

frequencies the trimer can be viewed as a lumped element acoustic pressure network featuring 

three parallel coupled L-C resonators, with acoustic capacitance of 0 0 0C V , i.e. we operate the 

system way below the first dipolar resonant frequency of the individual cavities (circa 60kHz). We 

modulate periodically in time the acoustic capacitance of each cavity as show in Fig. 2a at a angular 

frequency 2m mf  , with a modulation depth of C  and a phase i
m  different for each 

symmetric cavity  1, 2,3i  as shown in Fig. 2a so that the modulation will convey an effective 

spin to the trimer and break time-reversal symmetry. 

The Static and Stroboscopic Analysis: In the case of 0C   the system does not vary in time. 

The band structure of this case is shown in Fig. 3, where k  and J  correspond to the internal and 

external coupling coefficients of the structure (as indicated in Fig. 2a). From a standard tight 

binding model 46, it is straightforward to show that the distances of the bands at 0k  are directly 

dependent on the relative values of the internal and external coupling coefficients, as shown in the 

figure. The next step of the approach is to consider the effect of nonzero time-Floquet modulation 
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 0C  . In order to do this, we calculate the stroboscopic (Floquet-effective) Hamiltonian of the 

system: 

 

 log ( ),eff

j
H U T

T
   (1) 

where: 

 
0

( ) exp ( ) ,
t

U t j H t dt
 

  
 
T   (2) 

and T  is the time ordering operator. This effective Hamiltonian has the ability to describe the 

time evolution of the system at discrete times separated by T , in a similar way as a stroboscopic 

photography can sample the motion of a moving item. The dynamics of our system are actually 

much simpler than the ones of an arbitrary stroboscopic photographic shot: indeed, our 

Hamiltonian is not only time-dependent, but also time periodic with a time period of 2 /m mT  

. This information is crucial, because it implies that we can define a quasi band-structure that 

repeats itself along the frequency axis (Floquet theorem47) every mn   (where n is an integer). 

The repartition of the modal energy among the various Floquet Harmonics describes the frequency 

content of the Floquet mode. Next, we show the effect of the modulation on the quasi-band 

structure of the system. 

To simplify the design procedure, we start by isolating the upper two bands of the quasi band 

structure from the bottom four, in the limit of vanishingly small modulation depth. We will then 

focus only on what happens to the bottom four bands when the modulation depth is increased. For 

this purpose, let us define the dimensionless parameters: 0 2TQ J , 0 2MQ k , 

0T T mx Q   and 0M M mx Q    where 0  is the resonant frequency of the cavities and , , mJ k   
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the external coupling, the internal coupling and the modulation frequency, respectively. From the 

tight binding model36, it is straightforward to show that the condition that guarantees that the two 

upper bands remain isolated from the rest once folded along the frequency axis is: 

 

 
3 3 1 1

1 1 0.
2 2

T
T

M M T

x
x

x x x

  
      

  
  (3) 

 

We also stress that the condition described in Eq. 3 only takes into account the folding of the static 

band structure of the static lattice into the first temporal Brillouin zone,  providing a starting point 

for the design of a system with non-overlapping dipolar and monopolar bands at small modulation 

depths, but does not guarantee absence of band overlapping when the modulation depth gets too 

large. The physical meaning of the parameter Tx  is to quantify the empty frequency space left (not 

occupied) in the temporal Brillouin zone by the bands. Values of Tx  larger than 2 mean that some 

space is left in the temporal Brillouin zone, and under this condition only it is possible to find 

values of Mx  that will not fold the two upper bands on top of the four lower bands. This means 

that 2Tx    is a necessary but not sufficient condition to obtain separated bands, and the value of 

Mx  also has to be adjusted. In order to demonstrate the sway that the time-Floquet dynamics dictate 

to the system we set our structure with the following parameters (as an example): 0 200MHz,   

17.89MHz,m   2MHz,J   and 62.6MHzk   which result to 50,TQ   1.6,MQ   4.5,Tx   and 

0.1428Mx   (these values satisfy the condition set at Equation (3)) and we also define a 

dimensionless parameter that represents the depth of the time-modulation: 0Ty Q    (where 

0 0C C   ). It is evident that when we do not apply any time modulation ( 0)y   the 
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stroboscopic analysis coincides with the static analysis (as shown in Fig. 4a, which illustrates the 

same band structure as in Fig. 3, although folded along the frequency axis). As we increase the 

modulation depth, the upper two bands are not affected by the activation of the Floquet dynamics, 

due to the monopolar symmetry of the modes, which does not overlap with the dipolar modulation 

scheme. However, the rest of the bands (see green arrows) are strongly affected by the modulation, 

and become very flat, opening large bandgaps (as shown in Fig.4b for 2.12y  ), a phenomenon 

which has been utilized to create Floquet topological sound insulators36. Yet, if we continue to 

tune up the level of the modulation (for 3.134y  ), another interesting phenomenon occurs. The 

two bands highlighted with light green arrows in Fig. 4 get close to each other at the center of the 

Brillouin zone and form a Dirac cone, turning the sound insulator into a time-Floquet zero index 

acoustic metamaterial at the Dirac frequency. Fig. 4d shows the 3D graphic representation of the 

two bands of interest, demonstrating the existence of genuine conical dispersion over almost the 

entire Brillouin zone. It is remarkable that the dispersion of the massless Floquet Dirac phonons 

remains linear over a very large area of the Brillouin zone. 

 

C. The fullwave simulation 

So far, our investigations were only based on a toy model relying on the tight-binding stroboscopic 

Hamiltonian. We now turn to fullwave finite element simulations to corroborate the exact behavior 

of the system as a stroboscopic zero index structure. We set the parameters 

0 0/ / 9.745%,C C     with a time-modulation frequency of 1312.5Hzmf  , and coupling 

rates 6840Hz,k   and 209.38HzJ  . The tight binding model is an abstract mathematical tool, 

which describes the coupling interactions of complex structures. Such systems can be normalized 

over the maximum resonant frequency, or an arbitrary frequency value. Thus, what is important 
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for this kind of modeling is only the relative value of the coupling with respect to the resonance 

frequencies. This gives us the flexibility to observe the relative similarities of our simulation and 

our theoretical example in Section B, yet a different frequencies. It is verified that equation (3) 

stands also for the simulation. The computational tool we use to illustrate the time-Floquet 

dynamics of the system is the finite-element method with a truncation of the Floquet expansion of 

the acoustic wave equation to -1, 0 and +1 Floquet Harmonics45.  

At first, we compute the dispersion relation of the structure. Our results shown in Fig. 5a show the 

quasi-band structure obtained in the simulation for the four bands of interest and the two upper 

bands are indeed isolated (not shown in Fig. 5 for brevity). The graph of the dispersion follows the 

theoretical results of the band structure at Section B. Remarkably, the results are in excellent 

agreement with the analytical prediction, demonstrating the expected conical dispersion for 

frequency 21889Hzf   at 0.k  Fig. 6b shows the three dominant Floquet Harmonics associated 

with the two degenerate acoustic modes at  . The dominant frequency at which we have wave 

propagation in this system is the 0 Floquet Harmonic. This means that there is no significant energy 

conversion to adjacent Floquet Harmonics, consistent with the relatively low value of the 

modulation depth.  

 

Since we know the band structure of our model, we can now simulate acoustic pressure 

propagation in finite-size acoustic metamaterials, exciting the stroboscopic zero refractive index 

behavior for the specific Dirac frequency 21889Hzf   (Fig. 7 and 8). To excite finite sized 

systems with plane waves, we used two rectangular domains (labeled I and II in Fig. 6, 7), filled 

with water and located outside the metamaterials. Both the simulations in Fig. 6, 7 depict the 

scattering profile of the acoustic metamaterial for -1, 0 and +1 Floquet Harmonic acoustic pressure 
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fields. More specifically, in Fig. 6 the metamaterial forms a slab: the incident and reflected fields 

are illustrated in domain I and the transmitted field is illustrated in the domain II. Fig. 7 shows a 

similar simulation for which the metamaterial has the shape of a prism. For the simulation of Fig. 

7 it is shown that the transmitted field is actually a steered plane wave with transmitted wavefront 

determined by the direction of the output interface, a result which agrees well with the propagation 

theory of zero-index materials as described in Fig. 1a. We stress that the simulation in Fig. 7 is of 

a hard wall waveguide (domain I) connected to another waveguide (domain 2) of different width 

and geometry. Since the effective impedance of a waveguide depends on its cross-section, there is 

a mismatch between the two domains that does not exists in Fig. 6, and cause the transmission to 

the second domain in Fig. 7 to be slightly reduced when compared to Fig. 6. In either case, by 

looking at the scale bar, it is clear that the dominant frequency of the system remains at the 0 

Floquet Harmonic, which corresponds to the frequency of the incident acoustic field. 

Characterization of the material: We now move to a direct quantitative demonstration of zero 

index properties using the fullwave simulations. The simulation of a finite-thickness slab depicted 

in Fig. 6 can be used to extract an effective refractive index ( )effN  for the metamaterial and an 

effective acoustic impedance ( )effZ . The computation of the model of Fig. 6 gives us the 

transmission 21( )S  and reflection 11( )S  of the field. With these simulation results, it is 

straightforward to determine the characteristics of the material as a homogenous medium, by 

applying the equations 25,48,49: 

 

 
2 2
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2 2

0 11 21
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where d  is the slab thickness. The length d  has been selected to be d l  where l  is the lattice 

constant of the acoustic metamaterial, so that the extraction procedure is valid. When this condition 

is satisfied, a deviation of d  does not change the outcome of the effective index or the effective 

impedance, which confirms that ,eff effN Z  are meaningful effective parameters. These formulae 

give an acoustic impedance of (295.86 1050.7)kPa /effZ j s m    and an effective acoustic index 

of 0.0127 0.0056effN j   . It is evident that the system is not completely matched, since the 

effective impedance is different from the one of water (1500 kPa.s/m). This is due mainly to the 

hard walls along the interface between the metamaterial and the external space. As expected, the 

real part of the relative acoustic index is very close to zero. The non-zero imaginary part represents 

losses from the viewpoint of the zeroth order Floquet field: these losses are caused by the energy 

leakage to its neighbor Floquet harmonics, which carries away a small albeit noticeable amount of 

energy. 

 

D. Conclusion 

In this work, we have presented an active acoustic metamaterial that exhibits near zero refractive 

index. In contrast with the existing literature, we derived this peculiarity by activating time-Floquet 

dynamics and by tuning the time-modulation depth to a specific point that provides a quasi-band 

structure featuring a Dirac cone at the   point. Such structure possesses the advantage to be 

reconfigurable and to provide a unique platform for observation of acoustic waves with pseudo-

spin ½. Zero refractive index is achieved from just the dipolar modes in contrast with the existing 
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literature. This is feasible due to the dynamics of the time-modulated system. Contrary to static 

systems, here frequency is not conserved and the interactions between the dipolar mode of the zero 

harmonic and its two nearest neighboring harmonics (which are also dipolar) result in a conical 

dispersion at the center of the Brillouin zone. We also stress that our paper has focused on 

longitudinal waves, however it would be interesting to extend the concept to shear elastic waves. 

We believe that this study enriches the pre-existing research, highlighting the fascinating effects 

that a time-Floquet modulation can impart to a given structure and the extraordinary properties of 

waves in time-modulated acoustic, electromagnetic or mechanical metamaterials. This work was 

supported by the Swiss National Science Foundation (SNSF) under Grant No. 172487. 
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Figures 

 

 

 

 

Fig. 1: Graphical illustrations of the exotic properties of zero index materials. a) The 

propagation of a ray in a zero-index prism, b) a zero-index device that redirects a wave signal in 

between two waveguides. 
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Fig. 2: The considered spatiotemporal periodic structure. a) the unit cell of the periodic 

structure with the time modulation of the acoustic capacitance and the internal and external 

coupling coefficients, b) the complete periodic structure from a macroscopic point of view. The 

grey domains are filled with silicone rubber. The external boundaries are hard wall boundary 

conditions. 
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Fig. 3: The band structure of the static crystal. The bottom four bands are of dipolar nature, 

whereas the top two bands are of monopolar nature. 
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Fig. 4: The quasi band structure of the time-Floquet system as the modulation depth 

increases (the two bands that eventually form a Dirac cone at   are highlighted by the light green 

arrows). a) the band structure of the unmodulated system ( 0)y   (same as in figure 3, but folded), 

b) the band structure becomes flat as modulation increases ( 2.12)y  , c) at a specific modulation 

depth the Dirac cone appears in the center of the Brillouin zone ( 3.134)y  , d) a 3D graphical 

representation of the Dirac cone, showing its large spatial extent in the Brillouin zone (black 

hexagon).  
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Fig. 5: FEM simulation of the infinite space-time crystal. a) Band structure of the fullwave 

simulation for 0 0/ / 9.745%,C C     and 1312.5Hzmf  , and the formulation of the Dirac 

cone at 21889Hzf  , b) acoustic pressure of the modes at the Dirac frequency 21889Hzf    

(frequency components corresponding to the -1, 0 and +1 Floquet Harmonics). 
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Fig. 6: Fullwave simulation of a zero-index time-Floquet slab. Acoustic pressure field as it is 

reflected and transmitted by a rectangular metamaterial slab (domains I, II are filled with water). 
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Fig. 7: Fullwave simulation of a zero-index time-Floquet prism.  Acoustic pressure field as it 

is reflected and transmitted by a metamaterial prism, demonstrating zero-index properties at the 

fundamental harmonic frequency (domains I, II are filled with water). 
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