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Abstract
Machine-readable semantic knowledge in the form of taxonomies (i.e., a collection of is-a

edges) has proved to be beneficial in an array of Natural Language Processing (NLP) tasks

including inference, textual entailment, question answering and information extraction. Such

widespread utility of taxonomies has led to multiple large-scale manual efforts towards tax-

onomy induction such as WordNet and Cyc. However, manual construction of taxonomies

is time-intensive, and usually, requires substantial annotation efforts by domain experts.

Furthermore, the resulting taxonomies suffer from low coverage and are unavailable for spe-

cific domains or languages. Therefore, in recent years, there has been a growing body of

work, which aims to induce taxonomies automatically, either from unstructured text or semi-

structured collaborative content such as Wikipedia.

In this thesis, we focus on the task of automated taxonomy induction under a variety of dif-

ferent settings. We first focus on the task of inducing taxonomies from Wikipedia, which is

the largest and most popular publicly-available semi-structured resource of world knowledge.

More specifically, we introduce a set of novel heuristics aimed towards inducing a large-scale

taxonomy from the English Wikipedia categories network. We also propose a novel compre-

hensive path-based evaluation framework for taxonomies. Our experiments show that the

taxonomy induced using our approach significantly outperforms the state of the art across

edge-based as well as path-based evaluation metrics. Moreover, our experiments also demon-

strate that good performance of a taxonomy in traditional edge-based metrics does not always

translate to good performance in the path-based metrics.

Subsequently, we focus on the multilingual aspect of taxonomy induction from Wikipedia. We

propose a novel approach, which leverages the interlanguage links of Wikipedia to induce

taxonomies in other languages. Our approach first constructs training datasets for the is-a re-

lation in other languages. Off-the-shelf text classifiers are trained on the constructed datasets

and used in an optimal path discovery framework to induce high-precision, wide-coverage

taxonomies for all Wikipedia languages. Compared to the state of the art, our approach is

simpler, more principled, and results in taxonomies that are significantly more accurate across

both edge-based and path-based metrics. A key outcome of our work is the release of our

taxonomies across 280 languages, which are significantly more accurate than the state of the

art and provide higher coverage.
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Abstract

In the second part of this thesis, we focus on the task of taxonomy induction from unstructured

text. We propose a novel approach towards taxonomy induction from an input vocabulary

of seed terms that is extracted automatically from raw text. Unlike all previous approaches,

which typically extract singular hypernym edges for terms, our approach utilizes a novel

probabilistic framework to extract long-range hypernym subsequences. Taxonomy induction

from the extracted subsequences is cast as an instance of the minimum-cost flow problem on

a carefully designed directed graph. Through experiments, we demonstrate that our approach

outperforms the state-of-the-art taxonomy induction approaches across four languages. We

also show that our approach is robust to the presence of noise in the input vocabulary. Our

approach facilitates the relaxation of many simplifying assumptions, which were employed by

previous taxonomy induction approaches, such as clean input vocabularies of seed terms as

well as pre-determined sets of roots. As a result, our work serves to automate the process of

taxonomy induction from unstructured text in the true sense.

Finally, we introduce a task of discovering and generalizing lexicalized templates from the

titles of Wikipedia entities. The experimental results on this task demonstrate that taxonomies,

which perform better on our proposed path-based evaluation metrics, result in a more accu-

rate set of generalizations for a given set of entities.

In summary, this thesis proposes new approaches towards automated taxonomy induction. It

improves upon the state of the art in a variety of different settings. It also serves to relax many

of the simplifying assumptions that limited the applicability of prior approaches.

Keywords: taxonomy induction, knowledge acquisition, natural language processing, Wikipedia,

multilinguality, hypernym subsequences, minimum-cost flow optimization, generalization

templates, neural networks.
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Résumé
La représentation des connaissances sous forme de taxonomies (c.-à-d. une collection de liens

est-une) lisible par les machines, s’est avérée bénéfique pour un ensemble de tâches du traite-

ment automatique du langage naturel (TALN), comme par exemple l’inférence, l’implication

textuelle, les systèmes questions-réponses et l’extraction d’informations. Une telle utilisation

généralisée des taxonomies a conduit à de multiples efforts pour construire manuellement des

taxonomies à grande échelle, telles que WordNet et Cyc. Cependant, la construction manuelle

des taxonomies prend beaucoup de temps et nécessite généralement des efforts d’annotation

importants de la part des experts du domaine. En outre, les taxonomies qui en résultent

souffrent d’une couverture faible et ne sont pas disponibles pour des domaines ou des langues

spécifiques. C’est pourquoi, au cours des dernières années, un nombre croissant de travaux

ont visé à construire automatiquement des taxonomies, soit à partir de textes non structurés,

soit à partir de contenus collaboratifs semi-structurés tels que Wikipédia.

Dans cette thèse, nous nous concentrons sur la construction automatique de taxonomies

dans différents contextes. Dans un premier temps, nous nous penchons sur la construction de

taxonomies à partir de Wikipédia, qui est une ressource semi-structurée des connaissances,

la plus grande du monde, la plus populaire et disponible au public. Plus spécifiquement,

nous introduisons un nouvel ensemble d’heuristiques visant à construire une taxonomie à

grande échelle à partir du réseau de catégories du Wikipédia en anglais. Nous proposons

également un nouveau cadre d’évaluation complet des taxonomies fondé sur les séquences.

Nos expériences montrent que la taxonomie construite par notre approche surpasse de façon

significative l’état de l’art sur les mesures d’évaluation au niveau des liens et des séquences.

De plus, nos expériences démontrent que d’obtenir de bonnes performances au niveau des

liens n’engendre pas toujours une bonne performance dans les mesures d’évaluation basées

sur les séquences.

Par la suite, nous nous concentrons sur l’aspect multilingue de la construction automatique

de taxonomies à partir de Wikipédia. Nous proposons une approche novatrice, qui exploite les

liens interlangues de Wikipédia pour construire des taxonomies dans d’autres langues. Notre

méthode commence par construire des jeux de données d’apprentissage pour la relation

est-une dans les autres langues. Des classificateurs de texte standards sont entraînés sur ces

jeux de données et sont ensuite utilisés pour la découverte optimale de séquences afin de

construire une taxonomie de haute précision et à large couverture dans toutes les langues de
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Résumé

Wikipédia. Comparativement à l’état de l’art, notre approche est plus simple, plus systéma-

tique, et produit des taxonomies beaucoup plus précises sur diverses mesures d’évaluation

au niveau des liens et des séquences. L’un des principaux résultats de notre travail est la

publication de nos taxonomies dans 280 langues, qui sont beaucoup plus précises que l’état

de l’art avec une couverture plus élevée.

Dans la deuxième partie de cette thèse, nous nous concentrons sur la tâche de construction

de taxonomies à partir de textes non structurés. Nous proposons une nouvelle méthode de

construction à partir d’un vocabulaire de termes initiaux, extraits automatiquement du texte

brut. Contrairement à toutes les approches précédentes, qui extraient des liens hyperony-

miques singuliers pour les termes, nous utilisons un nouveau cadre probabiliste pour trouver

de longues sous-séquences d’hyperonymes. La construction de taxonomies à partir des sous-

séquences extraites est formulée comme un exemple du problème de flot à coût minimum

sur un graphe orienté soigneusement conçu. Au travers d’expériences, nous démontrons que

notre méthode surpasse les approches de construction automatique de taxonomies dans

quatre langues. Nous montrons également que cette technique est robuste à la présence de

bruit dans le vocabulaire d’entrée. Enfin, notre approche facilite l’assouplissement de nom-

breuses hypothèses simplificatrices, qui ont été utilisées dans le cadre d’approches antérieures

de construction de taxonomies, telles que des vocabulaires de termes initiaux non bruités ou

des ensembles de racines prédéterminés. Notre travail permet ainsi d’automatiser le processus

de construction de taxonomies à partir de textes non structurés au sens propre du terme.

Enfin, nous introduisons une tâche de découverte et de généralisation des modèles lexicali-

sés à partir des titres des entités de Wikipédia. Les résultats expérimentaux sur cette tâche

montrent que les taxonomies, qui donnent les meilleurs résultats sur les mesures d’évaluation

proposées au niveau des séquences, permettent d’obtenir un ensemble plus précis de généra-

lisations pour un ensemble donné d’entités.

En résumé, cette thèse propose de nouvelles approches pour la construction automatique

de taxonomies. Il améliore l’état de l’art dans une variété de contextes différents. Elle permet

également d’assouplir un bon nombre des hypothèses simplificatrices qui ont limité l’applica-

bilité des approches antérieures.

Mots clés : Construction automatique de taxonomies, acquisition de connaissances, traite-

ment automatique du langage naturel, Wikipédia, multilinguisme, sous-séquences d’hyperonymes,

problème du flot de coût minimum, modèles de généralisation, réseaux neuronaux.
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1 Introduction

“There is a set of clear-cut challenges, all centering around knowledge, that have received insufficient

attention in AI, and whose solution could bring the realization of Turing’s dream – the dream of a

machine we can talk with just like a person, and which is therefore (at least) our intellectual equal.

These challenges have to do with the representation of linguistically expressible knowledge, the role

of knowledge in language understanding, the use of knowledge for several sorts of commonsense

reasoning, and knowledge accumulation.”

Lenhart K. Schubert [116].

1.1 Overview

The acquisition of machine-readable semantic knowledge has been a fundamental challenge

in the field of Artificial Intelligence (AI). The importance of semantic knowledge in building

AI, which can achieve human-level performance in complex intelligence tasks, has been

continuously accentuated by a variety of different works over the past few decades [80, 81, 116].

Humans acquire and accumulate such knowledge by processing information from a variety of

media such as sensory-motor interactions and verbal dialogue [70, 116]. However, the transfer

of such knowledge from humans to automated intelligent systems is not straightforward by

any means. Due to its inherent complexity, this transfer is usually referred to as the knowledge

acquisition bottleneck [28].

Initial efforts towards loosening this knowledge acquisition bottleneck were mostly man-

ual and involved enormous human efforts aimed towards compiling large-scale knowledge

resources [86, 74, 124]. For example, CYC, a comprehensive knowledge base of everyday com-

mon sense knowledge, was constructed using a person-century of human effort that involved

codifying knowledge into millions of concepts and common sense axioms [74]. However,

despite such humongous efforts, the assembled knowledge resources typically suffered from

low coverage over specific domains and were usually unavailable for languages other than

English. Therefore, in recent years, there has been substantial interest in the acquisition of
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1.1. Overview

Figure 1.2 – A snippet of the taxonomy of the food domain (Chapter 7). The arrow (→)
represents an is-a relationship between the two terms.

Semantic databases encode knowledge in the form of facts, axioms and specific semantic

relations between concepts. They also differentiate between concepts that serve as

classes (e.g., fruit) and their instances (e.g., apple and banana). In contrast with term

hierarchies, the relations in semantic databases are greater in number and more specific

in their function. As a result, semantic databases are used in complex information

systems such as the Semantic Web [82]. Ontologies are the most prominent examples of

semantic databases.

Semantic databases offer the highest expressiveness, followed by the term hierarchies and

the term lists respectively. Higher expressiveness of a knowledge resource typically results

in greater complexity of its acquisition process. Figure 1.1 illustrates the relationship be-

tween the expressiveness of a knowledge resource and the complexity of its acquisition. As

shown in the figure, unlike the term hierarchies, the semantic databases explicitly encode

the relationship between the concepts SINGER and BAND using the specific semantic relation

member-of. A more detailed discussion of the different types of knowledge resources can be

found in Medelyan et al. [82] and Buitelaar and Magnini [17].

In this thesis, we focus on the automated acquisition of a specific type of term hierarchy, i.e., a

taxonomy. In the literal sense, the word “taxonomy” refers to a structure used for the purposes

of classification of things or concepts in a particular domain. In the formal sense, a taxonomy

is defined as a collection of is-a relations between terms or concepts, which represents a

complete and coherent tree-like hierarchy. A taxonomy comprising of is-a relations on terms

is referred to as a term taxonomy or a lexicalized taxonomy. A taxonomy consisting of is-a

relations on concepts is referred to as a concept taxonomy.

The process of automated acquisition of a taxonomy is referred to as automated taxonomy

induction. The induced taxonomies can be either specific to a particular domain (e.g., Sports

or Finance), or wide-scale spanning across multiple domains. Figure 1.2 shows a snippet of

the term taxonomy of the food domain induced in Chapter 7. Before we proceed with the

discussion on automated taxonomy induction, we first describe the is-a relation in more detail,

as it will serve us for the remainder of this thesis.
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Chapter 1. Introduction

1.2 The Is-A Relation

The is-a relation asserts that one term (or concept) is a generalization of another term (or

concept). In the Natural Language Processing (NLP) community, the is-a relation is frequently

referred to as the hypernymy relation. The inverse of is-a is typically referred to as the hy-

ponymy relation or the specialization relation. For example, the semantic relation is-a(apple,

fruit) can be equivalently expressed as follows: (1) fruit is a hypernym of apple, (2) apple is a

hyponym of fruit, (3) fruit is a generalization of apple, and (4) apple is a specialization of fruit.

In this thesis, we use is-a, hypernymy and generalization interchangeably. We now describe

other semantic relations that are closely related to the is-a relation:

• SubClass-Of: the subclass-of relation defines a subsumption relationship between two

classes (e.g., subclass-of (pop singer, singer)).

• Instance-Of: the instance-of relation defines the relationship between an example

instance and its class concept (e.g., instance-of (alicia keys, pop singer)). The class

concept is usually referred to as the type of the example instance.

• Part-of: the part-of relation (also referred to as the meronymy relation) defines the

relationship between a constituent part and its whole (e.g., part-of (finger, hand)).

• Geo-containment: the geo-containment relation defines the relationship between a

sub-region and its enclosing region (e.g., geo-containment(vaud, switzerland)).

• Synonymy: the synonymy relation defines the relationship between two terms that are

similar in meaning (e.g., (singer, vocalist)).

• Co-hyponymy: the co-hyponymy relation (also referred to as the sibling relation) defines

the relationship between two terms that generalize to the same class or concept (e.g.,

apple and orange are both hyponyms of fruit).

In this thesis, we use the definition of the is-a relation, which is provided by WordNet [86]. In

this definition, the relations subclass-of and instance-of are considered as valid is-a relations.

Other relations, i.e., part-of, geo-containment, synonymy and co-hyponymy are considered as

invalid is-a (or not-is-a) relations. Additionally, terms or concepts that are either unrelated

or do not fall under any of the above semantic relations are also considered to be in not-is-a

relationship. Table 1.1 shows examples of these semantic relations, and helps to summarize

this discussion.

1.3 Automated Taxonomy Induction

We now proceed with the discussion on the automated acquisition of taxonomies, also referred

to as automated taxonomy induction. More specifically, in Section 1.3.1, we discuss the utility
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is-a not-is-a

iphone→smartphone (instance-of ) finger�hand (part-of )

rose→flower (instance-of ) flower�plant (part-of )

switzerland→country (instance-of ) switzerland�europe (geo-containment)

lausanne→city (instance-of ) lausanne�vaud (geo-containment)

cricket→sport (instance-of ) story�tale (synonymy)

european country→country (subclass-of ) singer�vocalist (synonymy)

singer→artist (subclass-of ) apple�orange (co-hyponymy)

flower→plant organ (subclass-of ) johnny depp�brad pitt (co-hyponymy)

fruit→food (subclass-of ) computer�yogurt (unrelated)

smartphone→electronic device (subclass-of ) gas�water (unrelated)

Table 1.1 – Examples of valid is-a and invalid is-a (i.e., not-is-a) relations. The arrow →
represents an is-a relationship, whereas� represents a not-is-a relationship.

of taxonomies as well as motivate their automated acquisition. In Section 1.3.2, we provide a

brief overview of the main approaches towards automated taxonomy induction and discuss

their relative advantages and drawbacks.

1.3.1 Motivation

Intuitively, taxonomies serve to leverage added information in knowledge-intensive tasks.

The hyponyms inherit information from their direct as well as ancestor hypernyms, thus

eliminating the need to relearn all the relevant information. For example, the fact that “birds

fly” can be learned once, and inherited by all the descendant hyponyms of bird. Similarly,

given the query bird, an information retrieval system can also retrieve documents containing

the descendant hyponyms of bird, hence resulting in a greater recall.

As a matter of fact, taxonomies have been shown to be beneficial in a variety of NLP tasks

including information retrieval [21], inference and textual entailment [34, 33, 128], question

answering [44, 142], information extraction [12], query understanding [88, 54] and personal-

ized recommendations [145]. Moreover, they have supported numerous practical applications

such as information management [96], biomedical systems [67] and e-commerce [1]. A popu-

lar real-world example is IBM Watson, a state-of-the-art question answering system, which

employs the semantic type information present in taxonomies to restrict the set of answer

candidates [29]. In the game show Jeopardy!, IBM Watson consistently outperformed its

human opponents at the task of answering general knowledge questions [137].

WordNet is one of the prime examples of lexical knowledge bases that have been utilized

for their taxonomic information [86]. WordNet groups English words into sets of synonyms

(also referred to as synsets), and provides relational information about these synsets such

as hypernymy, hyponymy, and meronymy. WordNet has been cited more than 10,000 times

in the academic literature and has enjoyed widespread use in a variety of NLP-related and

real-world tasks.
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However, WordNet is compiled and maintained manually through extensive efforts by domain

experts. These manual efforts are extremely time-consuming and do not scale well to the

immense range of real-world knowledge. Furthermore, many knowledge domains are dynamic

(e.g., Politics or Sports), where new information is produced continuously. Such domains are

typically not present in WordNet because inclusion of such domains would require frequent

manual updates to maintain the correctness of WordNet. As a result, despite significant efforts,

WordNet is still incomplete and provides limited coverage in many domains [103, 51].

Such shortcomings hold true for most manually constructed taxonomies or knowledge re-

sources and have led to a surge of semi-automated and fully-automated approaches towards

taxonomy induction in recent years. In the next section, we provide a brief overview of these

approaches and discuss their relative advantages and drawbacks.

1.3.2 Main Approaches

Depending on the type of input, approaches towards automated taxonomy induction can be

broadly classified into three categories:

1. Fully-structured resources: the first line of work aims to automatically expand existing

manually-constructed fully-structured knowledge resources such as WordNet or Cyc.

These approaches typically consist of two steps: (1) discovery of relevant terms that are

missing in the existing resource, (2) appropriate placement of the discovered terms. For

example, Widdows [133] places missing terms in the regions of WordNet that contain

the most semantically-similar neighbors. Similarly, Snow et al. [120] add missing terms

to the WordNet by greedily maximizing the posterior conditional probability of a set of

textual evidence.

Advantages. These approaches typically achieve the highest accuracy, because they use

highly accurate resources that are manually compiled by domain experts. Additionally,

they also provide a high degree of ontologization, i.e., they contain well-defined con-

cepts and semantic relations. For example, WordNet provides sets of synonyms known

as synsets, which are connected to each other in a network of well-defined semantic

relations such as hypernymy and meronymy.

Drawbacks. The main drawback of these approaches is the lack of sufficient coverage.

Although multiple approaches were proposed to increase the coverage of such resources

by facilitating mass collaboration among the Internet users [113, 130, 131], none of these

efforts have achieved any significant advancements towards the aim of providing truly

wide-coverage resources.

2. Semi-structured resources: the second line of work aims to extract a wide-coverage

taxonomy from semi-structured resources such as Flickr [112], Wikitionary [83, 143]

or Wikipedia [109, 91, 30, 31, 39, 41]. Unlike fully-structured resources, the content of

semi-structured resources is only partially-structured into a fixed set of components
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such as Wikipedia pages, categories, Wikitionary definitions or Flickr image tags. Since

Wikipedia is by far the largest of these semi-structured resources, the most significant

of these approaches are the ones that extract taxonomies from Wikipedia. These ap-

proaches benefit from the large scale as well as the semi-structured nature of Wikipedia,

which enables the acquisition of highly accurate semantic knowledge through the appli-

cation of lightweight heuristics. Some of these approaches also combine the taxonomies

extracted from Wikipedia with WordNet, thus resulting in wide-coverage as well as

high-precision taxonomies [125, 50]. Chapter 2 provides a comprehensive survey of

taxonomy induction approaches from Wikipedia.

Advantages. Taxonomies induced from semi-structured resources provide significantly

greater coverage than those induced from fully-structured resources, while still main-

taining good accuracy [39]. Moreover, Wikipedia, the most popular semi-structured

resource used for taxonomy induction, is available in more than 280 languages, thus

facilitating the induction of wide-coverage taxonomies in multiple languages [31, 41].

Wikipedia is also continuously updated and maintained by a large number of users in

a collaborative fashion, therefore, resulting in the induction of up-to-date taxonomies

that provide good accuracy even in highly dynamic domains such as Politics.

Drawbacks. While these approaches provide much greater coverage than fully-structured

resources, they still lack coverage in highly specialized or niche domains such as Law or

Finance. Furthermore, the growth of Wikipedia has slowed over the recent years, thus

making it unlikely that such specialized domains will be covered in the future [126].

3. Unstructured resources: finally, the third line of work aims to extract taxonomies from

the simplest kind of resource, i.e., unstructured or raw text corpora. This line of work

is relatively recent and less studied, and has only received a few publications [68, 129,

5, 102, 40]. Taxonomy induction from unstructured text typically involves two steps:

(1) extraction of individual is-a relations between terms from unstructured text, (2) the

structured organization of terms into a taxonomy using the extracted is-a relations.

Chapter 5 provides a comprehensive survey of approaches that perform taxonomy

induction from unstructured text.

Advantages. The main advantage of taxonomy induction from unstructured text is that it

can be performed on arbitrary domains because domain-specific raw text can be easily

harvested on a large scale using the Web [19, 102]. As a result, these approaches typically

provide greater coverage than the previous approaches. Furthermore, the temporal

information present in most Web documents can be utilized effectively for inducing

taxonomies that are up-to-date with the latest information trends present in highly

dynamic domains [146, 77].

Drawbacks. Taxonomy induction from unstructured text is the most challenging of the

approaches mentioned above. Therefore, it suffers from multiple drawbacks. First, as

expected, the accuracy of taxonomies induced from unstructured text is significantly

lower than those induced from fully-structured or semi-structured resources. Second,
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the taxonomies induced from unstructured text provide a much lower degree of on-

tologization. More specifically, in contrast to other approaches that produce concept

taxonomies, taxonomy induction approaches that utilize unstructured text typically

produce term taxonomies. Finally, these approaches typically require a clean vocabulary

of terms as input [129, 16]. This requirement is not usually satisfied for most domains,

hence leading to a time-consuming step of manual cleaning of vocabularies.

Overall, these taxonomy induction approaches are complementary to each other. Approaches

that use fully-structured resources provide better accuracy and a greater degree of ontolo-

gization but lower coverage, whereas approaches that use unstructured text provide lower

accuracy and poor degree of ontologization but higher coverage. Approaches that use semi-

structured resources provide a “sweet spot in the middle”, i.e., they provide wide coverage

while still maintaining good accuracy and degree of ontologization. All three approaches have

been used effectively in NLP-related tasks as well as real-world intelligent applications. A more

detailed discussion of these approaches and their use cases can be found in Hovy et al. [52].

1.4 Thesis Objectives

In this thesis, we focus on two of the most widely-used as well as potentially impactful ap-

proaches towards automated taxonomy induction: (1) taxonomy induction from Wikipedia,

and (2) taxonomy induction from unstructured text. In each approach, our primary objective is

to improve upon the state of the art, resulting in the induction of taxonomies that have higher

accuracy and coverage. Furthermore, in each approach, we have specific key objectives, which

are described hereafter.

Taxonomy Induction from Wikipedia. The large-scale and high quality of Wikipedia con-

tent has enabled multiple approaches towards automated taxonomy induction over the past

decade [108, 109, 125, 91, 25, 50, 52, 78, 30, 31, 39, 41]. We propose the following key objectives

in taxonomy induction from Wikipedia:

• Path-level accuracy: before we proceed with this discussion, we first define the con-

cepts of edges and paths in the context of taxonomies. As mentioned in Section 1.1,

a taxonomy is defined as a collection of is-a relations between terms (or concepts).

However, a taxonomy can also be defined as a graph with terms (or concepts) as vertices,

and is-a relations as directed edges between the vertices. A path sampled from this graph

represents a long-range generalization, which transitively connects specific terms with

increasingly more general terms. For example, a taxonomy consisting of the is-a edges

apple→fruit and fruit→food, would provide the generalization path apple→fruit→food.

An ideal taxonomy should not only provide accurate is-a edges, but also be a good source

of accurate generalization paths. While taxonomies induced from Wikipedia have been

8
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able to achieve high edge-level accuracy (e.g., 85% from the English Wikipedia [30, 31]),

it is not uncommon for their generalization paths to traverse at least one or more

of the incorrect edges. Consequently, the resulting taxonomies transitively connect

concepts such as Natural language processing to many incorrect ancestor concepts

such as Physical body and Mass1, thus limiting their utility in practice. Moreover, the

evaluation of these approaches is strictly limited to edge-level measures, and completely

ignores the accuracy or quality of their generalization paths.

Objectives. In light of these shortcomings, the objective of this thesis is two-fold: (1)

introduce novel measures for evaluation of taxonomies that take into account the

accuracy and quality of their generalization paths, and (2) induce taxonomies that are

not only an accurate source of is-a edges but also generalization paths.

• Multilinguality: while many approaches that focus on the English Wikipedia have been

proposed in the past [108, 109, 125, 91, 50, 30, 39], the task of inducing multilingual

taxonomies from Wikipedia has received much less attention. A few systems have been

proposed including MENTA [25], YAGO3 [78] and MultiWiBi [31]. However, only one of

these systems, MultiWiBi, is fully-automated as well as self-contained in Wikipedia, i.e., it

does not require any manual labeling or external knowledge resources such as WordNet.

MultiWiBi taxonomies suffer from two major drawbacks. First, MultiWiBi taxonomies

achieve low accuracy in both edge-level and path-level measures for languages other

than English. Second, MultiWiBi taxonomies are generated using a complex set of

heuristics that are difficult to replicate.

Objectives. The objective of this thesis is to propose a novel approach towards inducing

multilingual taxonomies from Wikipedia, which significantly improves upon the state of

the art in both edge-level as well as path-level accuracy measures. Similar to MultiWiBi,

it is desirable that the proposed approach be fully-automated as well as self-contained

in Wikipedia. However, unlike MultiWiBi that uses complex heuristics, it is desirable

that the proposed approach be simpler, more principled and easy to replicate.

Taxonomy Induction from Unstructured Text. Compared to taxonomy induction from

Wikipedia, taxonomy induction from unstructured text is significantly harder. Therefore,

taxonomy induction approaches that use unstructured text suffer from multiple shortcomings.

We propose the following key objectives to mitigate some of these shortcomings.

• Accurate hypernymy extraction for general terms: as mentioned in Section 1.3.2, the

first step of taxonomy induction from unstructured text involves the extraction of hy-

pernymy (or is-a) relations. In the past literature, this extraction is typically performed

using lexico-syntactic patterns [47, 119, 98, 69, 141, 68, 94, 89, 129, 76, 5, 6, 118]. A lexico-

syntactic pattern is a generalized linguistic structure that indicates a certain semantic

relationship between its placeholder terms. For example, the lexico-syntactic pattern “X

1These examples are taken from http://wibitaxonomy.org [30].
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is a Y” indicates an is-a relationship between the terms X and Y (e.g., “apple is a fruit

that ...”). However, is-a extraction based on the lexico-syntactic patterns has a major

drawback, i.e., it becomes increasingly erroneous as the generality of terms increases,

mainly due to the increase in term ambiguity [129]. For example, the hypernyms for the

term fruit are likely to be less accurate and more ambiguous than the hypernyms for

the term apple, because fruit is more general than apple.

Objectives. One of the principal objectives of this thesis is to mitigate the aforementioned

drawback, by utilizing the ancestor hypernyms of specific terms (such as apple) to extract

more accurate hypernyms for general terms (such as fruit).

• Noisy input vocabulary: past approaches aimed towards taxonomy induction from

unstructured text have a constraint: they require a clean vocabulary of seed terms

as input [76, 15, 16]. This constraint is severely limiting because even the most ad-

vanced automated vocabulary extraction approaches output vocabularies that contain

numerous noisy terms [24]. As a result, a manual cleaning step of such automatically

extracted vocabularies is usually required, before the taxonomies can be induced [129].

Although some taxonomy induction approaches do not explicitly state this constraint,

they are still either evaluated only with clean vocabularies [68, 5, 102] or use a small-

scale automatically-extracted vocabulary, which is unlikely to contain noisy terms [94].

Moreover, none of these approaches are specifically designed from the ground up to

handle significant noise in the input vocabulary.

Objectives. The objective of this thesis is to propose a novel approach towards taxonomy

induction from unstructured text, which is robust to the presence of significant noise in

the input vocabulary, thus automating the induction process in the true sense.

• Automated root detection: taxonomies resemble tree-like hierarchies that are rooted

at higher-level terms (or concepts). For example, the taxonomy in Figure 1.2 is rooted at

the term food. Consequently, taxonomy induction approaches that utilize unstructured

text typically assume a set of one or more root terms as input [68, 76, 77, 129, 102].

If such a set is unavailable, some approaches adopt higher-level terms from existing

taxonomies (such as WordNet) as input root terms [129]. Although a few approaches

are capable of inducing taxonomies without a set of input roots, the final roots of their

induced taxonomies are neither evaluated quantitatively nor qualitatively [5, 75].

Objectives. The objective of this thesis is two-fold: (1) detect roots automatically during

taxonomy induction from unstructured text, thus alleviating the requirement of a set of

root terms as input, and (2) propose a framework for qualitative as well as quantitative

evaluation of automatically-detected roots.

1.5 Thesis Contributions

We now present the main contributions of this thesis. Each of these contributions addresses

one or more of the objectives mentioned in the previous section.

10



1.5. Thesis Contributions

• Taxonomy induction from English Wikipedia: we propose a novel fully-automated

approach towards taxonomy induction from the English Wikipedia. Wikipedia links

millions of entities (e.g., JOHNNY DEPP) with thousands of inter-connected categories of

different granularity (e.g., AMERICAN MALE FILM ACTORS, AMERICAN FILM PRODUCERS).

Our approach exploits the syntactic evidence present in the titles of these categories

to connect the Wikipedia entities with increasingly more general categories, hence

resulting in a wide-coverage taxonomy.

Furthermore, we also propose a novel, comprehensive framework for taxonomy eval-

uation, which focuses on the accuracy and granularity of longer generalization paths,

as opposed to individual is-a edges. Our experiments demonstrate that our taxonomy

provides generalization paths that are more than twice as accurate as the state of the

art. Additionally, our taxonomy provides specializations that are more than thrice as

accurate as the state of the art. The taxonomy is available at http://headstaxonomy.com.

This work has been published in the NLP conference COLING’16 ( Gupta et al. [39]).

• Multilingual taxonomy induction from Wikipedia: we propose a novel fully-automated

approach towards inducing multilingual taxonomies from Wikipedia. Given an English

taxonomy, our approach first leverages the interlanguage links of Wikipedia to construct

training datasets for the is-a relation in the target language. Character-level classifiers

are trained on the constructed datasets and used in an optimal path discovery frame-

work to induce high-precision, wide-coverage taxonomies in other languages. Our

experiments demonstrate that our approach significantly outperforms the state-of-the-

art, heuristics-heavy approaches in both edge-level and path-level evaluation measures

across six different languages.

This work is presented in Gupta et al. [41], which is accepted to appear in AAAI’18.

• Extraction of hypernym subsequences: we propose a novel probabilistic model that

extracts long-range hypernym subsequences such as apple→tropical fruit→fruit→food

from unstructured text in a fully-unsupervised and automated fashion. Our approach

utilizes the hypernyms of specific terms (such as apple) to choose more accurate hyper-

nyms for general terms (such as fruit). We evaluate our model using both manual and

automated evaluation methodologies. Our experiments demonstrate that our model

performs favorably against multiple baselines. To the best of our knowledge, this is the

first approach that extracts long-range hypernym subsequences from unstructured text.

• Taxonomy induction using flow network optimization: we propose a novel approach

towards inducing a taxonomy from a collection of potentially-noisy is-a edges or sub-

sequences. Our approach casts the task of taxonomy induction as an instance of the

minimum-cost flow optimization problem (MCFP) on a carefully-designed flow network.

Through experiments, we demonstrate that our approach outperforms state-of-the-art

taxonomy induction approaches across four languages. However, more importantly,

we also show that our approach is robust to the presence of significant noise in the
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input vocabulary. To the best of our knowledge, this noise-robustness has not been

empirically proven in any previous approach.

The previous two contributions (i.e., extraction of the hypernym subsequences and the flow

network framework) have been published in the Databases and Knowledge Management

conference CIKM’17 ( Gupta et al. [40]).

• Extensions to the flow network framework: we propose three extensions to the flow

network framework to enhance its capabilities. First, we introduce a parameter that

serves to control the branching factor of the output taxonomies, where the branching

factor is defined as the average number of hypernyms per term. Second, we present

two approaches aimed towards automated detection of appropriate roots for a given

vocabulary. We evaluate the efficacy of these approaches using artificially constructed

vocabularies from WordNet. To the best of our knowledge, this is the first attempt to-

wards automated detection of roots and their evaluation in the context of taxonomy

induction from unstructured text. Finally, we demonstrate that the flow network frame-

work enables the automated discovery of new vocabulary terms given an initial seed

vocabulary. An interesting outcome of this experiment is the induction of high-quality

taxonomies given a single input term such as cancer or fruit (Chapter 8).

• Generalization templates: before we proceed, we first define a generalized template

as a lexicalized linguistic template that contains placeholders, which can be replaced by

suitable fillers to generate titles of entities. For example, the generalization template

“Bank of X” can be used to generate the titles of entities such as BANK OF INDIA and BANK

OF SCOTLAND using the fillers “India” and “Scotland” respectively.

We introduce a novel task that aims towards selecting suitable generalizations for the

placeholder slot in a generalization template. For example, in the generalization tem-

plate “Bank of X”, the lexical fillers “India” and “Scotland” can be generalized to the

higher-order concept COUNTRIES. We propose a novel beam search-based approach

that uses a Wikipedia taxonomy to select suitable generalizations for the lexical fillers.

Our experiments demonstrate that the generalizations obtained using our English

Wikipedia taxonomy are significantly better than those obtained using the state-of-the-

art taxonomies. Although in this thesis we focus only on the generalization templates in

English, our approach is inherently language-independent and can be replicated easily

for other Wikipedia languages.

A qualitative description of this work is presented in the NLP conference COLING’16

( Gupta et al. [39]).

1.6 Thesis Outline

This thesis is divided into three parts. In the first part of the thesis, we focus on taxonomy

induction from Wikipedia. It is structured as follows:

12



1.6. Thesis Outline

• Chapter 2, Background and related work: in this chapter, we describe the various

components of Wikipedia. We also provide a comprehensive survey of the state-of-the-

art approaches used for taxonomy induction from Wikipedia.

• Chapter 3, Taxonomy induction from English Wikipedia: in this chapter, we present

our approach towards inducing a large-scale taxonomy from the English version of

Wikipedia. We also present our path-based framework for the evaluation of taxonomies.

• Chapter 4, Multilingual taxonomy induction from Wikipedia: in this chapter, we

present our approach for inducing large-scale taxonomies from Wikipedia in languages

other than English.

In the second part of the thesis, we focus on taxonomy induction from unstructured text. It is

structured as follows:

• Chapter 5, Background and related work: in this chapter, we provide an overview of

the state-of-the-art approaches towards taxonomy induction from unstructured text.

• Chapter 6, Extraction of hypernym subsequences: in this chapter, we present our

approach that extracts hypernym subsequences from unstructured text in a fully-

unsupervised fashion.

• Chapter 7, Taxonomy induction using flow network optimization: in this chapter, we

present our approach that employs flow network optimization to induce a taxonomy

from the extracted hypernym subsequences.

• Chapter 8, Extensions to the flow network framework: in this chapter, we extend the

taxonomy induction approach based on flow network optimization to support the fol-

lowing capabilities: (1) user-defined branching factor for seed terms, (2) automated root

detection, and (3) automated expansion of taxonomies by discovery of new vocabulary

terms. We also show some examples of the taxonomies, which are induced using our

approaches in a variety of settings.

The third part of this thesis, i.e., Chapter 9, Applications of taxonomies, focuses on the

applications of the induced taxonomies. It provides a brief survey of the state of the art and

introduces the task of generalization templates. The last chapter, i.e., Chapter 10, Conclusion,

concludes the thesis and proposes directions for further research.
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2 Background and Related Work

2.1 Overview

The large scale as well as the high quality of Wikipedia content has enabled a wide-variety of

knowledge acquisition approaches over the recent years, including thesauri extraction [11, 55],

taxonomy induction [108, 109, 30, 31, 39, 41] and ontology acquisition [140, 125, 50, 8, 91].

The extracted knowledge has been utilized in many NLP-related tasks including named entity

recognition [84, 97], word sense disambiguation [106, 92], computation of semantic similarity

between words [123, 107], document clustering [53], question answering [29, 3] and informa-

tion retrieval [57, 26, 27]. Acquisition of taxonomies from Wikipedia started with the pioneer-

ing work of Ponzetto and Strube [108], who demonstrated that a large-scale and high-quality

taxonomy could be extracted from Wikipedia using simple heuristics in a fully-automated

fashion. The extracted taxonomy achieved performance similar to manually-constructed

ontologies (such as WordNet) at the task of computing semantic similarity between words.

Since then, a steady body of research has focused on this direction, and a wide of variety of

approaches have been proposed.

In this chapter, we provide an overview of these approaches towards taxonomy induction from

Wikipedia. However, we first provide a brief introduction of Wikipedia and describe its main

components. We also discuss the key advantages offered by Wikipedia, which render it as a

particularly favorable candidate for large-scale knowledge acquisition.

2.2 Components of Wikipedia

Wikipedia is a publicly-available online repository of encyclopedic entries, which are com-

monly referred to as Wikipedia articles. Wikipedia is built and maintained in a collaborative

editing framework, which allows any user to edit any article. The collaborative editing frame-

work along with a large number of contributing users has resulted in Wikipedia becoming the

largest and the most popular source of reference knowledge on the internet [138]. Wikipedia

content is semi-structured, i.e., it is partially structured into a variety of components such as
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articles, categories, and infoboxes that interact with each other. In this section, we describe a

few of these components in detail, which are relevant for the task of taxonomy induction. A

larger list of components can be found in Wikipedia [135].

Wikipedia Articles. A Wikipedia article (or page) is an encyclopedic entry about a single

concept, where the concept represents a specific sense of a nominal string. For example, the

Wikipedia page SWITZERLAND refers to the country sense of the string “Switzerland”, whereas

SWITZERLAND (SOFTWARE) refers to the software sense. Wikipedia pages frequently refer to

entities (e.g., JOHNNY DEPP, LAUSANNE) or real-world concepts (e.g., ACTING, FRUIT). Entities

that are homonymous are associated with different pages, which are further disambiguated

by a disambiguation string (e.g., BRAD PITT vs. BRAD PITT (boxer)). Since Wikipedia pages

frequently refer to entities, the terms Wikipedia entities, Wikipedia pages and Wikipedia

articles are used interchangeably in the academic literature.

Wikipedia pages form the largest and the most important component of the knowledge

present in Wikipedia. More than 44 million Wikipedia pages are available across 280 different

languages [139]. Figure 2.1 shows a condensed version of the English Wikipedia page for the

entity JOHNNY DEPP.

Wikipedia Categories. A Wikipedia category groups related pages and categories into broader

categories. For example, the Wikipedia page JOHNNY DEPP is categorized into categories

such as CATEGORY:AMERICAN MALE FILM ACTORS and CATEGORY:AMERICAN FILM PRODUCERS,

whereas CATEGORY:AMERICAN FILM PRODUCERS is further categorized into CATEGORY:FILM

PRODUCERS BY NATIONALITY. Categories for the English Wikipedia page JOHNNY DEPP are

shown at the bottom in Figure 2.1. Similar to the Wikipedia articles, Wikipedia categories are

also collaboratively created and maintained by a large number of contributing users.

Interlanguage Links. Interlanguage links are hyperlinks that connect corresponding pages

(or categories) across Wikipedias in different languages. For example, the English Wikipedia

page for JOHNNY DEPP is linked to its equivalent versions in 49 different languages including

French (JOHNNY DEPP) and Greek (Τζόνι Ντεπ). Two nodes (i.e., pages or categories) linked

by an interlanguage link are referred to as equivalent to each other. Interlanguage links for

the English Wikipedia page JOHNNY DEPP are shown at the left side in Figure 2.1.

Internal Hyperlinks. Internal hyperlinks are links embedded in the text of Wikipedia pages,

which link to other Wikipedia pages. For example, the English Wikipedia page JOHNNY DEPP

links to the Wikipedia pages ACADEMY AWARD FOR BEST ACTOR and HOLLYWOOD. Some

examples of these links can be seen in the article text in Figure 2.1.
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such resources as well as other semi-structured resources, Wikipedia offers many unique

advantages, which are described hereafter.

• Knowledge acquisition bottleneck: one of the major reasons the knowledge acquisition

bottleneck exists (see Section 1.1 for definition) is because a large amount of world

knowledge is not explicitly mentioned in textual language. For example, the fact that

“birds fly” is not frequently expressed in the unstructured text. However, Wikipedia

explicitly encodes such knowledge, because the first lines of Wikipedia pages are usually

textual definitions [136, 92]. As a result, Wikipedia aids in mitigating the knowledge

acquisition bottleneck. In fact, this fact has already been exploited for knowledge

extraction by previous approaches [30].

• Ontologization: Wikipedia already provides a high degree of ontologization, because

its pages and categories refer to specific, unambiguous concepts or named entities.

• Semi-structured content: as discussed in the previous section, Wikipedia content is

partially structured into well-defined components such as pages, categories, and in-

foboxes. This partial structure facilitates the acquisition of semantic knowledge through

simple rule-based approaches such as heuristics that exploit the regularities in the

structure of Wikipedia content. In fact, the surge of such heuristics-based approaches,

chiefly enabled by Wikipedia, has been referred to as “the heuristic renaissance” [52].

• High quality and large scale: due to a large number of contributing users, Wikipedia

content is generally accurate, large-scale and covers most domains. In fact, it has

been estimated that Wikipedia content is the result of a cumulative human effort of

approximately 100 million hours, spread across millions of users [134].

• Dynamism: Wikipedia content is continuously updated and maintained by the con-

tributing users in a collaborative fashion. Consequently, Wikipedia serves as an up-

to-date and accurate source of knowledge even for highly dynamic domains such as

Politics or Sports.

• Multilinguality: Wikipedia is one of the largest multilingual knowledge repositories

ever constructed. Wikipedia is available in more than 280 languages, with at least

13 languages offering more than 1 million articles [138]. Furthermore, many of the

Wikipedia pages across different languages are connected by interlanguage links, which

can be utilized effectively for tasks such as multilingual taxonomy induction [31, 78, 41]

and construction of parallel corpora [2].

Overall, Wikipedia offers some unique features that enable the acquisition of high-quality,

large-scale, and multilingual knowledge using relatively simple heuristics-based methods1. In

the next section, we describe some of these methods that aim towards induction of taxonomies.

1A more detailed discussion of this topic can be found in Hovy et al. [52].
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that exploit the shallow structure of Wikipedia components such as categories and infoboxes.

More specifically, the categories-based heuristics of WikiNet utilize the syntactic structure of

the category labels, and the topology of the WCN to extract a variety of semantic relations.

The infoboxes-based heuristics extract attributes (e.g., place of birth) of entities from their

corresponding infoboxes in the Wikipedia pages. The extracted relations are mapped to other

languages using the interlanguage links, thus resulting in a multilingual semantic network.

Similar to WikiTaxonomy, WikiNet is also self-contained in Wikipedia. WikiNet achieves an

accuracy of 76.4% for the is-a relation, and up to 95.56% for other relations such as member-of.

2.4.3 YAGO

YAGO, an acronym for Yet Another Great Ontology, is a large-scale full-fledged ontology that is

derived through the unification of Wikipedia and WordNet [125]. Similar to WikiTaxonomy

and WikiNet, YAGO also employs heuristics that exploit the shallow structure of Wikipedia

categories and infoboxes to extract semantic relations. However, in contrast with WikiTaxon-

omy and WikiNet that are self-contained in Wikipedia, YAGO uses the taxonomic hierarchy

from WordNet as the source of higher-level hypernyms. More specifically, YAGO connects

Wikipedia pages with the synsets in WordNet using two simple heuristics:

• Assign the label instance-of (i.e., a valid is-a relation, see Section 1.2) to the WCN edges

between Wikipedia pages and their parent categories that have a plural lexical head. For

example, the edge JOHNNY DEPP→CATEGORY:AMERICAN MALE FILM ACTORS is labeled

as instance-of, because the lexical head of the string “American male film actors” is

“actors”, which is plural. The intuition behind this heuristic is that categories that have

a plural lexical head are more likely to be genuine classes or collections (e.g., CATE-

GORY:COUNTRIES) as opposed to entities or instances (e.g., CATEGORY:FRANCE) [136].

• map a WCN category to the WordNet synset, which denotes the most frequent sense

of the lexical head of the WCN category. For example, the Wikipedia Category CATE-

GORY:AMERICAN MALE FILM ACTORS is mapped to the most frequent WordNet synset

for the word “actor”. The frequencies for the senses are computed using a sense-tagged

corpus (i.e., SemCor [87]).

In addition to the above heuristics, YAGO also uses other heuristics to extract implicit relations

from the labels of WCN categories. For example, the category CATEGORY:1980 BIRTHS can be

used to extract the relation that its descendants were born in 1980. A more detailed discussion

of these heuristics can be found in Suchanek et al. [125]. YAGO integrates all extracted relations

into a unified knowledge base, which follows the semantics of a formal Semantic Web language

(i.e., RDF), and can be accessed by query languages such as SPARQL. YAGO contains more than

1.7 million entities and more than 15 million facts about these entities [140]. YAGO achieves a

high accuracy of >95% and has been employed in a wide variety of intelligent applications

including IBM Watson [29].
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YAGO2. YAGO is further extended to include spatial and temporal knowledge in Hoffart et al.

[50]. The resulting knowledge base is referred to as YAGO2. It contains 447 million facts about

9.8 million entities and achieves a high accuracy of 95%.

YAGO3. YAGO3 extends YAGO by combining the information present in WordNet as well as

Wikipedias in multiple languages into one coherent knowledge base [78]. Similar to YAGO and

YAGO2, YAGO3 achieve a high accuracy of >95% across ten different languages.

2.4.4 DBpedia

Similar to YAGO, DBpedia also aims to extract a fully-structured knowledge base from the

semi-structured content of Wikipedia [9]. DBpedia maps Wikipedia entities2 to a manually

constructed coarse-grained ontology of approximately 300 classes. This ontology is collabo-

ratively maintained and contains classes that corresponding to popular entity types such as

PERSON and ORGANIZATION. DBpedia employs a cascade of parsers to extract information

from different structured components of the Wikipedia pages such as redirects, interlanguage

links, categories, and infoboxes. Furthermore, the extracted knowledge is linked with existing

knowledge resources such as YAGO, Freebase and Cyc. Similar to YAGO, DBpedia knowledge

is also represented using the formal Semantic Web language RDF and can be accessed by

SPARQL. Multiple versions of DBpedia have been released over the years [9, 14, 73]. The latest

version of DBpedia consists of 1.46 billion facts about 13.7 million entities that are extracted

from Wikipedia editions of 111 different languages [73].

2.4.5 MENTA

MENTA is one of the first projects that aimed towards exploiting the multilingual nature

of Wikipedia [25]. MENTA integrates Wikipedia pages in multiple languages with WordNet

into a single coherent taxonomic hierarchy. To this end, MENTA uses a linker, which links

the Wikipedia categories with their equivalent WordNet synsets. The linker uses the Ridge

Regression model [13] trained over a small set of manually-labeled examples. The features of

the regression model are computed using a variety of information such as the term overlap

between Wikipedia categories and WordNet synsets, cosine similarity between the vectors of

descriptions of Wikipedia categories and WordNet synsets, and WordNet synsets picked by the

most frequent sense heuristic of YAGO. The application of the linker results in a unified graph

of Wikipedia categories and WordNet synsets, which is further partitioned to form equivalence

classes of entities. A Markov chain-based ranking approach is employed to construct the final

taxonomy. At the time of its creation, MENTA was presumably one of the largest multilingual

lexical knowledge bases and described 5.4 million entities in more than 270 languages.

2As mentioned in Section 2.2, we use Wikipedia pages, articles and entities interchangeably.
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2.4.6 MultiWiBi

The Multilingual Wikipedia Bitaxonomy Project (also referred to as MultiWiBi), is the most

recent approach towards taxonomy induction from Wikipedia [30, 31]. Similar to WikiTax-

onomy and WikiNet, but unlike YAGO, DBpedia and MENTA, MultiWiBi is self-contained in

Wikipedia, i.e., it does not require external resources such as WordNet or manually labeled

training examples for taxonomy induction. MultiWiBi proceeds in three steps:

• English bitaxonomy induction: in the first step, a bitaxonomy, i.e., a separate taxonomy

for Wikipedia pages and categories, is induced from the English WCN.

• Bitaxonomy projection: in the second step, a cascade of heuristics, which utilize the

interlanguage links and the topology of the WCN, is employed to map the taxonomic

relations from the English page taxonomy to the pages in a target language such as

French or German.

• Target language bitaxonomy induction: in the final step, starting from the mapped

page taxonomy, a full-fledged large-scale bitaxonomy is induced in the target language.

These steps are fully-automated and language-independent. Consequently, the execution of

these steps results in large-scale bitaxonomies for each of the Wikipedia languages. We now

describe the three steps in more detail.

English Bitaxonomy Induction. In the first step, MultiWiBi aims to identify lemmas that

are good candidate hypernyms for Wikipedia English entities. To this end, it syntactically

parses the first line of the Wikipedia pages, because the first line is usually considered to

be a textual definition [94]. For example, actor, producer and musician are extracted as

candidate hypernymy lemmas for JOHNNY DEPP from the first line of its Wikipedia page (see

Figure 2.1). The candidate hypernym lemmas are further disambiguated to Wikipedia entities

using a cascade of heuristically-motivated hypernym linkers. For example, the candidate

hypernym lemma actor is disambiguated to the Wikipedia entity ACTOR. This process results

in the extraction of a large number of hypernym edges that connect two Wikipedia entities

(e.g., JOHNNY DEPP→ACTOR). These hypernym edges form an initial taxonomy between the

Wikipedia pages. It is important to note that due to the requirement of syntactic parsing, this

step is language-specific and hence only performed for the English Wikipedia.

In the second step, MultiWiBi utilizes the English page taxonomy to induce a taxonomy over

the categories in the English WCN. To this end, it assumes that the generalization information

present in the page taxonomy is beneficial for taxonomizing the categories, and vice-versa.

More specifically, it assumes that a hypernymy relation is likely between two categories (or

pages), if hypernymy relations exists between their corresponding pages (or categories) in

the WCN. This idea is presented as the bitaxonomy algorithm, which aims to update the
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English lemma Translations
plane piano_cartesiano:0.20 piano:0.15 pialla:0.04 aeroplano:0.03 aereo:0.023 piano_astrale:0.02 . . .
car automobile:0.33 autovettura:0.11 automobili:0.05 auto:0.02 autovetture:0.01 vettura:0.01 . . .
key chiave:0.37 chiavi:0.03 chiave_crittografica:0.001 chiave_segreta:0.0005 . . .

Figure 2.4 – The English-Italian probabilistic translation table for lemmas extracted from
Wikipedia as published by Flati et al. [31]. The numbers indicate the translation probabili-
ties.

category (or page) taxonomy by exploiting the page (or category taxonomy) iteratively. The

page taxonomy is initially set to the taxonomy induced in the first step, and the algorithm is

run until convergence. As a consequence, MultiWiBi outputs a bitaxonomy, i.e., a separate

page taxonomy and a category taxonomy.

Bitaxonomy Projection. This step of MultiWiBi aims to exploit the interlanguage links in

Wikipedia to induce a taxonomy in an arbitrary target language (such as French). To this end, it

employs a simple rule (hereafter referred to as the projection rule): add a hypernymy edge be-

tween two nodes (page or category) in the target language, if a hypernymy edge exists between

their English equivalents. For example, the French hypernymy edge AUGUSTE→EMPEREUR

ROMAIN is induced from the English hypernymy edge AUGUSTUS→ROMAN EMPEROR, and the

interlanguage links AUGUSTUS↔AUGUSTE, ROMAN EMPEROR↔EMPEREUR ROMAIN.

The application of the projection rule results in the creation of an initial bitaxonomy in the

target language. However, this initial bitaxonomy only consists of hypernyms for pages (or

categories) that have an English equivalent in the Wikipedia. As a result, they suffer from low

coverage. Theoretically, similar to English bitaxonomy induction, a syntactic parser could be

used in the target language as well for extracting candidate hypernym lemmas by parsing the

first lines of the Wikipedia pages. However, high-quality syntactic parsers are only available

for a few languages. Furthermore, their accuracy varies significantly across different languages

and is usually lower for non-English languages [71, 72].

Therefore, MultiWiBi compensates for the lack of syntactic parsers in other languages by

constructing a probabilistic translation table of lemmas contained in the texts of Wikipedia

pages. To this end, it exploits the anchor texts of the internal hyperlinks of Wikipedia. Figure 2.4

shows an excerpt of the English-Italian translation table. This probabilistic translation is

constructed for every language and further utilized by heuristics that pick candidate hypernym

lemmas for Wikipedia entities in the target language. The exact details of the construction of

the probabilistic translation table, as well as the heuristics, are fairly complex and beyond the

scope of this thesis. For a full description, we would like to point the readers to the original

publication, i.e., Flati et al. [31].

Target Language Bitaxonomy Induction. The application of the above step results in the

induction of an initial bitaxonomy as well as a set of translated hypernym lemmas in the
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target language. Subsequently, the bitaxonomy algorithm is reapplied to produce the final

bitaxonomy in the target language.

Comparative Evaluation. A detailed comparative evaluation of MultiWiBi against the state

of the art can be found in Flati et al. [31]. We briefly summarize the results as follows. For

English, the bitaxonomies induced by MultiWiBi performs favorably compared to the state of

the art, achieving higher precision and coverage than most previous approaches. MultiWiBi

achieves 90.76% precision over pages and 90.65% precision over categories. MultiWiBi also

achieves high coverage, resulting in at least one hypernym for 94.78% of the pages and 98.26%

of the categories. While the precision of YAGO is higher than MultiWiBi for English categories

(93.58% vs. 90.65%), its coverage is significantly lower (56.74% vs. 98.26%).

MultiWiBi also reports the evaluation results for three other languages, i.e., French, Italian

and Spanish. For all three languages, MultiWiBi achieves 80%-85% precision, and 93%-96%

coverage. Similar to English, the precision of MultiWiBi taxonomies is slightly lower than

YAGO as well as DBpedia, but its coverage is significantly higher.

Despite, achieving slightly lower precision than YAGO and DBpedia, MultiWiBi has its advan-

tages: (1) MultiWiBi achieves significantly higher coverage over both pages and categories

than other approaches, thus resulting in a more useful resource. (2) MultiWiBi is the only

approach that is language-independent as well as self-contained in Wikipedia. A positive

consequence of the language-independence is that MultiWiBi taxonomies are available for all

Wikipedia languages.

2.5 Summary

In this chapter, we provided a brief overview of the state of the art of taxonomy induction

from Wikipedia. We described the main components of Wikipedia, and also discussed the

key advantages that Wikipedia offers over other resources. Finally, we discussed a few of the

past approaches aimed towards taxonomy induction from Wikipedia. These approaches differ

from each other in a variety of aspects. Some of these approaches aim towards the extraction of

taxonomies from Wikipedia (WikiTaxonomy, MENTA, MultiWiBi), whereas others aim towards

the extraction of a full-fledged ontology (WikiNet, YAGO, DBpedia). While WikiTaxonomy,

WikiNet, and MultiWiBi rely solely on Wikipedia, other approaches use external knowledge

resources such as WordNet. However, despite such significant efforts, the taxonomies induced

from these approaches still suffer from multiple shortcomings. In the next two chapters, we

describe some of these shortcomings and propose yet another approach towards taxonomy

induction from Wikipedia, which aims to address these shortcomings.
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3 Taxonomy Induction from English
Wikipedia

3.1 Overview

In the previous chapter, we described multiple past approaches that have been proposed

towards the induction of large-scale taxonomies from Wikipedia. However, despite substantial

progress, recent methods still produce taxonomies with glaring gaps in precision and coverage.

More importantly, even if the approaches correctly identify individual is-a edges with an

accuracy as high as 85% (i.e., MultiWiBi [31]), it is not uncommon for long-range generalization

paths to traverse at least some incorrect edges. Consequently, the resulting taxonomies

transitively connect entities (such as Natural language processing) to many ancestor categories

(such as Physical body, Mass)1 that are incorrect generalizations, thus limiting the utility of

such taxonomies in practice.

In this chapter, we propose a novel approach towards taxonomy induction from the English

WCN. Our approach exploits syntactic evidence present in the titles of Wikipedia categories to

connect entities (i.e., pages) with increasingly more general categories. Our approach draws

inspiration from many of the previous approaches including WikiTaxonomy, WikiNet, YAGO

and MultiWiBi (see Chapter 2). However, our approach is the most similar to WikiTaxonomy

and MultiWiBi due to two reasons: (1) similar to WikiTaxonomy and MultiWiBi, our approach

also aims towards the extraction of a taxonomy rather than a full ontology. (2) similar to

these approaches, our approach is also self-contained in Wikipedia, i.e., it does not require

additional knowledge resources such as WordNet.

Furthermore, we also propose a novel, comprehensive framework for taxonomy evaluation,

which focuses on the accuracy and quality of long-range generalization paths. We perform an

in-depth comparison of the taxonomy induced using our approach against the state of the

art (i.e., MultiWiBi), and show that our approach results in significant improvements in both

edge-level and path-level accuracy measures while maintaining similar coverage.

1Examples taken from MultiWiBi (http://wibitaxonomy.org).
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Child Node Parent Categories

ACADEMY AWARDS

CATEGORY:AMERICAN FILM AWARDS

CATEGORY:AWARDS ESTABLISHED IN 1929

CATEGORY:1929 ESTABLISHMENTS IN CALIFORNIA

CATEGORY:CINEMA OF SOUTHERN CALIFORNIA

CATEGORY:HOLLYWOOD HISTORY AND CULTURE

CATEGORY:ACADEMY AWARDS

CATEGORY:FILM AWARD WINNERS

CATEGORY:AWARD WINNERS BY SUBJECT

CATEGORY:ARTS AWARD WINNERS

CATEGORY:FILM PEOPLE

CATEGORY:FILM AWARDS

Table 3.1 – Examples of parent categories from the English WCN. Categories that are selected
as candidate generalizations are shown in bold. Other categories are discarded.

3.2 Our Approach

In this section, we present our approach towards taxonomy induction from the English

Wikipedia. Our approach aims to induce a unified taxonomy of pages and categories from the

English WCN. To this end, it employs a cascade of linguistically-motivated heuristics. Each of

these heuristics exploits the lexical information present in Wikipedia categories to generate a

set of candidate generalizations for the WCN nodes (i.e., pages and categories). As an example,

Table 3.1 shows two WCN nodes along with their parent categories from the English WCN.

Categories that would be selected as the candidate generalizations are shown in bold.

Our heuristics can be grouped into two categories based on the node type: category heuristics

pick candidate generalizations for categories, whereas page heuristics pick candidate gen-

eralizations for pages. Before we present our heuristics, we first specify some concepts and

notations that will serve us for the remainder of this section:

• E: the set of all English WCN edges.

• hc: lexical head of the title string of category c . For example, actors is the lexical head for

the category CATEGORY:AMERICAN MALE FILM ACTORS.

• Ca(n): set of all direct parent categories of a node n (page or category) in WCN, i.e.,

Ca(n) = {c | (n,c)∈E }. This does not include Wikipedia maintenance categories (e.g.,

CATEGORY:SPORTS AWARD STUBS), which are removed using a handful of blacklisted

keywords such as “articles”, “stubs”, “templates”, etc.

• Cpl(n): subset of parent categories (Ca(n)), whose titles have a plural lexical head,

such as CATEGORY:ADMINISTRATIVE DIVISIONS. As discussed in Section 2.4.3, cate-

gories with plural heads have played an important role in prior work on taxonomy

induction from Wikipedia because they are more likely to be genuine classes (e.g., CAT-

EGORY:COUNTRIES) as opposed to individual entities (e.g., CATEGORY:FRANCE). As a
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matter of fact, the Wikipedia guidelines for naming categories also specify that categories

that indicate sets of entities should have a plural lexical head [136].

• Lp: set of defining lemmas attached to the root copular verb in the first sentence of

the text of the Wikipedia page p. For example, Lp for JOHNNY DEPP is {actor, producer,

musician}, as described by its first line (cf. Figure 2.1): “John Christopher Depp II

(born June 9, 1963)[1] is an American actor, producer, and musician.”. As discussed in

Section 2.4.6, this construct was first introduced by MultiWiBi [31], who showed that

first line of page text can be used for generating candidate hypernym lemmas for the

Wikipedia entities.

3.2.1 Category Heuristics

We now describe the category heuristics in detail. For a Wikipedia category c, each category

heuristic aims to select zero or more categories that are suitable generalizations of c.

Same Head. Similar to the head-matching heuristic in previous work (i.e., WikiTaxonomy [108]),

for a category c, same head heuristic picks all categories c ′ ∈ Ca(c) as the candidate general-

izations, which have the same lexical head as c . For example, CATEGORY:AMERICAN ACTORS is

picked as candidate generalization for CATEGORY:AMERICAN CHILD ACTORS because they have

the same lexical head “actors”.

Global Head Support. Most previous approaches, such as WikiTaxonomy and MultiWiBi,

augment the same head heuristic with other heuristics that exploit the topology of the WCN.

However, we propose a novel high-precision heuristic global head support, which further

employs the lexical heads of categories to yield highly-accurate generalization edges between

Wikipedia categories.

We first define the global support (sup(h1,h2)) between a pair of lexical heads (h1,h2) as the

number of edges in E (i.e., the set of all English WCN edges), from a category with lexical head

h1 to a category with lexical head h2. A higher value of sup(h1,h2) indicates that a category

with lexical head h2 is likely to be a correct generalization for a category with lexical head h1.

Table 3.2 shows a sample of pairs of lexical heads and their global support values.

Given these definitions, for a category c, the global head support heuristic picks the category

c ′ ∈ Cpl (c) with the highest global support sup(hc ,hc ′) as the candidate generalization, if

sup(hc ,hc ′) is above a fixed threshold Tsup. In our experiments, Tsup = 5 achieved the best

results, providing wide coverage while maintaining precision.

We now illustrate this heuristic with an example. Assume that the child category (c) is CATE-

GORY:ACTORS, which has three direct parents in the original WCN: CATEGORY:ACTING, CAT-

EGORY:ENTERTAINERS and CATEGORY:THEATRICAL OCCUPATIONS. The global head support
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Lexical Head (h1) Lexical Head (h2) Global Support (sup(h1,h2))

actors

actors 8798

people 1238

men 142

entertainers 96

singers 96

biologists

biologists 199

scientists 101

people 11

oceanographers 11

scholars 2

Table 3.2 – Pairs of lexical heads and their global supports. Lexical heads with the highest
global support for actors and biologists are shown.

heuristic picks CATEGORY:ENTERTAINERS as the candidate generalization for CATEGORY:ACTORS,

because sup(“actors”,“entertainers”) is highest among candidate heads {“acting”, “entertain-

ers”, “occupations”} (as shown in Table 3.2).

Type Similarity. Before we present this heuristic, we first compute vector representations

for all the plural lexical heads in the WCN. More specifically, we compute the dimensions

of the vector representation for a lexical plural head h as the co-occurrence counts of plural

head h with every plural head h′ in WCN. The co-occurrence count between two plural heads

is defined as the number of pairs of categories with heads h and h′ which have at least one

common child (page or category). In other words, the co-occurrence count between two plural

lexical heads is defined as the number of instances, where categories with these heads are

co-parents of a WCN node. The vector representation of the plural lexical head h is referred

to as vh. Using these vector representations, we compute the type similarity (tsim(h1,h2))

between two plural heads h1 and h2 as the cosine similarity between −→vh1 and −→vh2 . Table 3.3

shows the lexical heads with the highest type-similarity for the lexical head artists.

Given these definitions, for a category c, the type similarity heuristic picks the category c ′ ∈
Cpl (c) as the candidate generalization, which has the lexical head h′ with the highest type

similarity tsim(h,h′), if the similarity is above a fixed threshold Ttsim. In our experiments,

Ttsim = 0.2 achieved the best results.

The global head support and the type similarity heuristics are similar to each other, and only

differ in the ranking function used (sup(h1,h2) vs. tsim(h1,h2)). The global head support

heuristic is more precise, whereas the type similarity heuristic has higher coverage, because

tsim(h1,h2) can be computed even between lexical heads that never co-occur in the WCN.
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Lexical Head (h2) Type-similarity (tsim(h1,h2))

watercolorists 0.903

songwriters 0.896

bluesman 0.895

etchers 0.889

animators 0.880

printmakers 0.874

muralists 0.873

parsons 0.865

· · ·

Table 3.3 – Lexical heads with the highest type-similarity for the lexical head (h1) artists.

Only Plural Parent. For a category c, if Cpl (c) contains only one category, the only plural

parent heuristic picks it as the candidate generalization. This heuristic follows from the fact

that categories that have a plural lexical head typically tend to be set categories [136].

Only Singular Parent. For a category c with a non-plural head hc , if Ca(c) contains only one

category, the only singular parent heuristic picks it as the candidate generalization. A similar

heuristic has been used by MultiWiBi [31].

The previous two heuristics result in the exclusion of the cases when a category with a non-

plural head is the only parent of a category with a plural head. The intuition behind this

exclusion is that such edges typically tend to be not-is-a edges because set categories can be

only generalized to other set categories.

Grouping Child Category. Categories with titles matching the pattern X by Y (e.g., CATE-

GORY:ACTORS BY NATIONALITY) usually indicate groupings of instances of class X by attribute

Y [90]. Following this observation, for a category c whose title matches the pattern X by Y, the

grouping child category heuristic picks the category with title X as the candidate generaliza-

tion, if it exists in the WCN. For example, using this heuristic, CATEGORY:ACTORS is picked as

the candidate generalization for CATEGORY:ACTORS BY NATIONALITY.

Grouping Parent Category. For a category c, the grouping parent category heuristic picks

those categories in Cpl (c) as candidate generalizations, whose titles match the pattern X by Y.

For example, CATEGORY:OCCUPATIONS BY TYPE is picked as the candidate generalization for

CATEGORY:LEGAL PROFESSIONS, because CATEGORY:OCCUPATIONS BY TYPE is the direct parent

of CATEGORY:LEGAL PROFESSIONS, and the title of CATEGORY:OCCUPATIONS BY TYPE matches

the pattern X by Y.
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Suffix Head. For a category c, the suffix head heuristic picks all categories c ′ ∈ Cpl (c) as

the candidate generalizations, if their lexical heads hc ′ are suffixes of hc . For example, CATE-

GORY:PEOPLE is picked as the candidate generalization for CATEGORY:SPORTSPEOPLE, because

“people” is suffix of “sportspeople”.

Lookahead Candidates. For a category c, the lookahead candidates heuristic picks its

grandparents (second-level ancestor categories) as the candidate generalizations, if they

satisfy the conditions in the SAME HEAD, GROUPING PARENT CATEGORY or SUFFIX HEAD heuristics.

Higher-level ancestors are ignored as they tend to be noisy and introduce semantic drift from

the original category.

Title Head. For a category c, the title head heuristic picks the category with the title hc as

the candidate generalization, if the lemma of hc is in top Tl % most frequent lemmas among

the defining lemmas Lp of the child pages of c. For example, CATEGORY:WRITERS is picked

as a candidate generalization for CATEGORY:LEGAL WRITERS, because many child pages of

CATEGORY:LEGAL WRITERS have “writer” as a defining lemma. In our experiments, Tl = 10

achieved the best results.

3.2.2 Page Heuristics

We now describe the page heuristics in detail. For a Wikipedia page p, each page heuristic

aims to pick zero or more suitable generalization categories from its direct parents in the WCN

(i.e., Ca(p)).

Exact Defining Lemma. For a page p, the exact defining lemma heuristic picks the category

c ∈ Cpl (p) as a candidate generalization, if the lemma of the lexical head of c is present in Lp .

For example, all parent categories of page JOHNNY DEPP with the lexical head “actors” are

picked as candidate generalizations, because “actor” is present in LJOHNNY DEPP.

Type-similar Lemma. For a page p, the type-similar lemma heuristic picks a category c ∈
Cpl (p) as the candidate generalization, if the type similarity between the lemmatized lexical

head of the category (hc ) and at least one of the defining lemmas in Lp is greater than the

fixed threshold Ttsim. For example, all parent categories of the page Johnny Depp with the

lexical head people are picked as the candidate generalizations because actor is present in

LJOHNNY DEPP and tsim
(
actors,people

) > Ttsim. Similar to the previous section, Ttsim is set to

0.2.

Plural Head. Similar to YAGO [125], for a page p, plural head heuristic picks all categories

in Cpl (p) as the candidate generalizations.
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Child Node Heuristic Number of edges Percent Contribution

Categories

Same head 1,666,049 87.5

Global head support 153,667 8.1

Type similarity 10,973 0.5

Only plural parent 27,916 1.47

Only singular parent 24,595 1.29

Lookahead 21,763 1.14

Grouping child category < 1000 < 0.05

Grouping parent category < 1000 < 0.05

Suffix head < 1000 < 0.05

Title head < 1000 < 0.05

Pages

Exact defining lemma 5,691,931 51.3

Type-similar lemma 3,584,712 32.3

Plural head 1,819,344 16.4

Table 3.4 – Relative contribution of page and category heuristics.

3.2.3 Taxonomy Construction

Up till now, we described the heuristics that are used to pick candidate generalizations for

pages and categories. We now describe our approach towards taxonomy construction, which

runs in three steps:

1. Application of heuristics. The heuristics, which are described in the previous sec-

tion, are applied to individual pages or categories in the order of decreasing edge-level

precision, where precision of the heuristics is computed using a manually-annotated

development set. The order of the heuristics is the same, in which they have been

presented in Section 3.2.1 & 3.2.2. For each node (i.e., page or category), the process

stops when one of the heuristics produces at least one generalization. Subsequently, the

remaining heuristics for that node are ignored.

Table 3.4 shows the relative contributions of each heuristic after this step. For pages,

the exact defining lemma heuristic generates the most number of edges followed by

the type-similar lemma and plural head heuristics. For categories, the same head

heuristic provides the highest number of edges. This result is expected because a large

number of lower-level2 WCN edges have the same lexical heads for both child and parent

categories (e.g., CATEGORY:AMERICAN MALE FILM ACTORS→CATEGORY:AMERICAN FILM

ACTORS). Furthermore, the WCN is a bottom-heavy graph, i.e., the number of lower-level

categories in WCN is significantly higher than the number of higher-level categories,

thus justifying the significantly greater contribution by the same head heuristic.

However, relying solely on the same head heuristic would result in a significantly lower-

quality taxonomy, due to the poor coverage at higher-level categories. For example, the

node CATEGORY:ACTORS cannot be further generalized using the same head heuristic.

In such cases, the other category heuristics play an important role. For example, the

2In this context, lower-level means closer to the leaves of the WCN.
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global head support heuristic picks CATEGORY:ENTERTAINERS as the generalization for

CATEGORY:ACTORS.

2. Transfer. Many concepts or entities have both page and category nodes in Wikipedia

(e.g., SWITZERLAND and CATEGORY:SWITZERLAND). For such concepts, the general-

izations discovered using the category heuristics can be transferred to the pages and

vice-versa. To realize this intuition, we first define the concept of equivalency between

a page and a category. A page and category are considered to be equivalent to each

other, if they have the same title after the lemmatization of each token. For example, the

category CATEGORY:AMERICAN ACTORS and the page AMERICAN ACTOR are considered

to be equivalent to each other. If a disambiguation string is specified in the title (e.g.,

biology in FAMILY (BIOLOGY )), it should also match post-lemmatization. For example,

the category CATEGORY:FAMILIES (BIOLOGY ) is equivalent to the page FAMILY (BIOLOGY ),

but not to the page FAMILY.

Given this definition, the pairs of categories and pages that are equivalent are discov-

ered, and the candidate generalizations generated by page (category) heuristics are

transferred to the equivalent category (page). This step adds 272,485 generalization

edges to the output taxonomy.

3. Simplification. Certain Wikipedia categories encode information that is orthogonal to

types. For example, CATEGORY:20TH-CENTURY ACTORS refers to time, because it groups

actors born in the 20th century. Similarly, CATEGORY:ACTORS FROM SINGAPORE refers

to the location and CATEGORY:ACTORS BY NATIONALITY refers to group-by attributes.

Such categories are usually redundant, as they represent extra information related to the

spatial or temporal domain that is orthogonal to type-based categorization. Therefore,

in this step, such categories are detected using a set of hand-crafted regular expressions

and eliminated, i.e., their children are linked directly to their parents, and the redundant

categories are removed. In total, 65% of the parent categories from the original WCN are

identified as redundant and removed. This step is hereafter referred to as simplification.

Figure 3.1 illustrates the taxonomy construction process with an artificial example. Fig-

ure 3.1(a) shows the candidate generalizations for the page TOM CRUISE and its parent cat-

egories. Different page heuristics (e.g., αp , βp and γp ) are used to propose the candidate

generalizations for the page TOM CRUISE. Assuming αp is ranked higher than βp and γp ,

generalizations proposed by αp are retained, whereas others are ignored. Fig. 3.1(b) shows

the taxonomy after the application of heuristics, which contains redundant category nodes

such as CATEGORY:PEOPLE BY STATUS and CATEGORY:MALE ACTORS FROM NY. Such redundant

categories are removed in the process of simplification, resulting in a more compact final

taxonomy (Fig. 3.1(c)).
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Male
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Figure 3.1 – Taxonomy induction phases. Black circles denote entities. White circles denote
categories. Dashed lines denote paths including possibly multiple edges. (a) Step 1: Page
heuristics (αp , βp and γp ) and category heuristics (αc , βc and γc ) are applied sequentially to
select candidate generalizations for each node (page or category), until one produces at least
one candidate (white circles). Gray nodes show candidates that would have been produced
by remaining heuristics. These nodes are ignored. (b) Step 2: Initial taxonomy after the
application of heuristics. Nodes that encode redundant information are detected (shown in
blue). (c) Final taxonomy after the removal of the redundant nodes.

3.3 Evaluation and Results

The taxonomy induced after the application of the steps mentioned in the previous section is

referred to as the HEADS taxonomy. In this section, we evaluate the HEADS taxonomy against

the state-of-the-art taxonomies induced from the English WCN. More specifically, we first

present edge-level evaluation using standard metrics such as precision and recall [110, 30].

Further, we demonstrate that, as popular as they might be, such metrics do not reflect the real

quality of a taxonomy. We propose a more comprehensive evaluation framework, which takes

into account the correctness of multi-edge generalization paths. Our experiments show that

performance along these newly-proposed dimensions is not necessarily correlated with the

edge-level metrics and cannot be estimated directly from them.

We compare the HEADS taxonomy against the taxonomies released by MultiWiBi, because

of two reasons: (1) unlike most other approaches, MultiWiBi and ours is self-contained in

Wikipedia. They do not require manually-labeled training examples or external resources,

such as WordNet or Wikitionary. (2) MultiWiBi is already shown to outperform most other

approaches (see Section 2.4.6).

Experimental Setup. HEADS taxonomy is constructed using a November 2015 snapshot of

the English Wikipedia. However, the taxonomies released by MultiWiBi are generated using the

October 2012 snapshot. Therefore, to perform a uniform comparison, we initially attempted
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Taxonomy WIBIE WIBIC HEADS

Nodes 3,414,512 597,179 4,580,662

Entities (E) 3,414,512 - 4,239,486

Categories (C ) - 597,179 341,176

Leaves 3,308,755 465,682 4,359,178

Edges (total) 3,859,717 594,917 11,648,975

E → E 3,859,717 - -

E →C - - 11,077,992

C →C - 594,917 570,983

Branching factor 1.13 0.996 2.54

WCCs 6,448 2,301 3,195

Largest WCC

Nodes
3,386,995 469,453 4,563,949

(99.2%) (78.6%) (99.6%)

Edges
3,838,286 469,453 11,634,161

(99.4%) (78.9%) (99.9%)

Table 3.5 – Topological properties of the HEADS and the MultiWiBi taxonomies. (WCC:
weakly connected component).

to re-implement the taxonomy induction approach of MultiWiBi. However, we were unable

to replicate the reported results. Moreover, the source code for MultiWiBi was not available

publicly and was not shared upon request. Therefore, we instead compared the HEADS

taxonomy directly against the entity and category taxonomies released by MultiWiBi [31].

These MultiWiBi taxonomies are hereafter referred to as WIBIE (for entities) and WIBIC (for

categories).

It is important to stress that MultiWiBi taxonomies are generated using an older snapshot

of Wikipedia. However, to the best of our knowledge, there is no evidence to suggest that

taxonomy induction is easier or harder on more recent vs. older snapshots. In fact, noisy edges

between categories such as JAPAN�660 BC can be found in both snapshots. Meanwhile, the

WCN has grown significantly, with more than twice as many categories (1.37M vs. 619K) and

20% more entities (4.7M vs. 3.8M), therefore, possibly adding to the complexity of the task.

3.3.1 Topological Properties

The main topological properties of the HEADS and the MultiWiBi taxonomies are shown in

Table 3.5. HEADS contains fewer categories and category→category edges than WIBIC , due

to the simplification step (see Section 3.2.3), which removes approximately 65% of parent

categories from the WCN. HEADS covers a larger number of entities than MultiWiBi tax-

onomies, but a direct comparison of absolute sizes is not necessarily meaningful, since the

three taxonomies are defined in different spaces (i.e., WIBIE has entity→entity edges, WIBIC

has category→category edges, while HEADS has entity→category and category→category

38



3.3. Evaluation and Results

is-a Edges not-is-a Edges

Nidaan→Indian films Chambezon�Geography

Psychiatrists→People Writing�Language

Catte Adams→Singer-songwriter Jan Ellis�Rugby union

SLR cameras→Cameras by type Visitor attractions in Bonn�Bonn

Table 3.6 – Examples of is-a and not-is-a edges from the gold standard.

edges). In addition, as already mentioned, MultiWiBi taxonomies are generated using an older

snapshot of Wikipedia.

As shown in Table 3.5, the largest weakly connected component in HEADS and WIBIE covers

over 99% of the nodes. HEADS has 50% fewer connected components than WIBIE , which

is desirable, as each component is an enclave of isolated entities, which cannot be further

generalized. WIBIC , which is an order of magnitude smaller than WIBIE and HEADS, has

even fewer connected components, but is overall less connected, with the largest connected

component containing only 78% of the nodes.

Finally, Table 3.5 also reports the branching factors of the three taxonomies, where the branch-

ing factor is computed as the average out-degree of a node in the taxonomy. The branching

factor of HEADS is significantly higher than the branching factor of MultiWiBi taxonomies,

which allows it to better account for multiple aspects of a concept or entity, e.g., JOHNNY DEPP

is both an actor and a film producer.

3.3.2 Edge-level Evaluation

We first compare HEADS and MultiWiBi taxonomies using the methodology introduced and

consistently followed in prior literature, namely computing the edge-level precision and recall

scores against a gold standard [110, 31]. For the construction of gold standard, 500 entities and

500 categories are randomly selected, and their parents in the WCN are annotated by three

human judges as is-a or not-is-a generalizations3. Table 3.6 shows some examples of these

edges along with their annotations. Precision and recall with respect to the gold standard

edges are computed for each sampled node, and then averaged over all the nodes in the gold

standard. Table 3.7 shows the precision and recall scores for HEADS and MultiWiBi taxonomies.

Compared to the MultiWiBi taxonomies, HEADS shows significantly lower precision and recall

scores in this evaluation. However, the losses can be largely attributed to two reasons. First,

many heuristics in HEADS taxonomy pick candidate generalizations that are not direct parents

of the child node in the WCN (e.g., grouping child category heuristic in Section 3.2.1). Such

generalizations are missing from the gold standard, and hence considered a loss of precision

and recall irrespective of their correctness. Similarly, the simplification step removes many

correct but redundant generalizations from the HEADS taxonomy, and replaces them with

3The inter-annotator agreement (i.e., Fleiss’ Kappa) was 0.52. Annotations were harmonized by majority voting.
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Taxonomy Edge type P R C A

WCN
E →C 78.5 100 100 90.2

C →C 80.7 100 97.0 84.0

HEADS
E →C 39.4 24.9 89.8 95.6

C →C 40.5 34.4 24.9 93.1

WIBIE E → E 84.1 79.4 92.6 78.9

WIBIC C →C 85.2 82.9 97.3 84.0

Table 3.7 – Edge-level evaluation. E→C represents entity→category edges, E→E represents
entity→entity edges, and C→C represents category→category edges. MultiWiBi results are as
reported by Flati et al. [30]. P: precision, R: recall, C: coverage, A: accuracy.

more compact generalizations. For example, in Figure 3.1, the simplification step replaces the

edge TOM CRUISE→MALE ACTORS FROM NY with TOM CRUISE→MALE ACTORS. Such cases

result in a loss of both precision and recall, because correct gold standard edges are removed

from the HEADS taxonomy, and replaced with other correct edges that are not present in the

gold standard.

Therefore, due to such issues, Table 3.7 also reports an additional edge-level metric, i.e.,

accuracy. In contrast to precision and recall, which are computed using a gold standard,

accuracy is computed by directly annotating the correctness of a random sample of 450 edges

from each taxonomy. Formally, accuracy is defined as the ratio of edges annotated as is-a

over the total number of edges sampled from a taxonomy. As shown in Table 3.7, HEADS

is more accurate than WIBIE for entities, though a direct comparison is not meaningful,

as WIBIE contains entity→entity edges and HEADS contains entity→category edges. For

category→category edges, HEADS achieves a fairly significant > 10% improvement in accuracy

compared to WIBIC taxonomy.

Finally, Table 3.7 also reports coverage, which is defined as the fraction of entities and categories

in a taxonomy with at least one generalization, independent of its correctness. HEADS shows

lower coverage on categories because 65% of categories in the WCN are filtered out due to the

simplification procedure.

3.3.3 Path-accuracy Evaluation

Motivation. Good performance at edge-level, though widely used as an indicator of quality

of a taxonomy [108, 90, 30], does not automatically translate into good performance at path

level. For example, the generalization path apples→fruits�vegetarians→people→organisms

is 75% edge-accurate (i.e., 3/4 edges are correct as indicated by the symbol →), but it can lead

to the wrong inference that apples are vegetarians and, in turn, people and organisms. In fact,

a single incorrect edge, i.e., fruits�vegetarians, causes a cascade of generalization errors for

fruits and all its descendants, and a cascade of specialization errors for vegetarians and all its

ancestors. Moreover, the addition of another correct edge organisms→things would increase
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WIBIE WIBIC +HE HEADS

Structure Government

↑Algebraic structure ... 23 more categories ... Apes

↑Category (mathematics) ↑Cinema by region ↑Humans

↑Sequence ↑Cinema by continent ↑People

↑Process (science) ↑North American cinema ↑Producers

↑Filmmaking ↑Cinema of the United States ↑American producers

↑Film producer ↑American film producers ↑American film producers

Johnny Depp Johnny Depp Johnny Depp

Table 3.8 – Upward generalization paths for JOHNNY DEPP in three taxonomies. Correct path
prefixes are shown in bold.

WIBIE WIBIC +HE HEADS

Law Concepts by field

↑Principle ↑... 9 more categories ...

↑Process (philosophy) ↑Computer programming ↑Systems

↑Abstraction (computer science) ↑Debugging ↑Operating systems

↑Software framework ↑Debuggers ↑Linux kernel features

DTrace DTrace ↑DTrace

Table 3.9 – Upward generalization paths for DTRACE in three taxonomies. Correct path
prefixes are shown in bold.

For evaluation, we first sample a set of 250 entities that are present in all three taxonomies (i.e.,

HEADS, WIBIE and WIBIC +HE ). Further, we sample one generalization path for each (entity,

taxonomy) pair, thus resulting in a total of 750 paths. Figure 3.2 shows the length distribution

of the generalization paths sampled from each taxonomy. As expected, paths sampled from

the HEADS taxonomy are shorter than MultiWiBi taxonomies due to the simplification step (cf.

Section 3.2.3). To compare the quality of these generalization paths, three human annotators

inspect each path starting from the entity and annotate4 the first incorrect generalization, thus

marking their correct path prefixes. Table 3.8 and 3.9 shows some examples of these sampled

paths along with their correct path prefixes.

We report two path-accuracy metrics: (1) the average length of CPP, which is hereafter referred

to as ACPP, and (2) the average ratio of lengths of CPPs to the full paths, which is referred to as

ARCPP. As an example, for the generalization path apple→fruit�farmer→human→animal

with the not-is-a edge fruit�farmer, the path length is 5, length of CPP is 2, and ratio of length

of CPP to total path is 0.4 (i.e., 2
5 ).

Intuitively, ACPP indicates the average number of upward generalization edges that can

be traversed in a generalization path sampled until the first wrong generalization edge is

encountered. Similarly, ARCPP indicates the average fraction of a generalization path that

4At least two annotators agreed for 93% of paths. All three annotators agreed for 53% of paths. Annotations are
harmonized using majority voting.
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Ancestor Descendant Annotation

CATEGORY:PLACES CATEGORY:EDUCATION IN MANCHESTER, CONNECTICUT 0

CATEGORY:PLACES CATEGORY:FLORENCE CATHEDRAL 1

CATEGORY:PLACES CATEGORY:FLUVANNA COUNTY, VIRGINIA 1

CATEGORY:POLITICIANS CATEGORY:DEFENCE MINISTRIES 0

CATEGORY:POLITICIANS CATEGORY:DISTRICT ATTORNEYS 1

Table 3.12 – Examples of (ancestor, descendant) pairs and their annotations. 0 indicates an
incorrect specialization, whereas 1 indicates a correct specialization.

Taxonomy Overall accuracy Per-node accuracy

WIBIE 24.3 23.0

HEADS (entity) 70.3 72.7

WIBIC 38.1 40.8

HEADS (category) 67.0 72.5

Table 3.13 – Accuracy of specializations. Results for entity and category descendants of HEADS

are reported separately.

HEADS, category nodes are manually mapped to equivalent entity nodes and vice-versa (e.g.,

Category:Places is mapped to the entity Place). The annotators judge the correctness of 10

randomly sampled descendants for each selected node in each of the three taxonomies.

Table 3.12 shows some examples of the sampled pairs along with their annotations. Table 3.13

shows the results of this experiment. Both overall and per-node accuracy are reported. Overall

accuracy is defined as the fraction of sampled (node, descendants) pairs that are correct,

whereas per-node accuracy is defined as the average ratio of correct descendants per node.

Results for entity and category descendants of HEADS are reported separately. The results

demonstrate that the descendants provided by HEADS are almost three times as accurate as

WIBIE , and almost twice as accurate as WIBIC .

3.4 Discussion and Related Work

In the previous chapter (Section 2.3), we discussed the unique advantages offered by Wikipedia

that enable the acquisition of high-quality semantic knowledge on a large scale using relatively

simple rule-based methods. Our approach serves to demonstrate some of these advantages in

a practical manner. For instance, the heuristics employed by our approach are effective, chiefly

because Wikipedia content is already meaningfully-structured into pages and categories.

Furthermore, due to the Wikipedia guidelines [136], the titles of the categories follow regular

syntactic patterns, which allow our heuristics to make simplifying assumptions that hold true

in most of the cases. Such factors enable our approach to acquire a wide-coverage high-quality

taxonomy using simple rule-based heuristics.

Our approach draws inspiration from many of the previous approaches towards taxonomy
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induction from Wikipedia (see Section 2.4 for a survey). Similar to most of the prior work, our

approach also aims to discard the WCN edges that are least likely to represent is-a relations.

Similarly, like most previous approaches, our approach is also heuristic-driven. Furthermore,

similar to WikiNet and YAGO, our approach also aims to exploit the syntactic structure of the

categories to choose suitable generalizations for WCN Nodes.

The first main contribution of our work is the introduction of novel heuristics. While a few of

our heuristics are adapted from previous work (as cited in Sections 3.2.1& 3.2.2), the rest of

our heuristics are introduced for the first time. The most important of these novel heuristics is

the global support heuristic, which enables the extraction of a large number of high-quality

is-a edges (Table 3.4). Our second contribution is the path-based framework, which proposes

the measures ACPP and ARCPP (Section 3.3.3) for evaluating the quality of a taxonomy. Exper-

imental results using the path-based framework demonstrate that performance of a taxonomy

on edge-level may not be correlated with the performance on the path-level. Indeed, HEADS

taxonomy achieves seemingly similar performance to MultiWiBi on edge-level metrics, but sig-

nificantly outperforms the MultiWiBi taxonomies on path-level metrics (Section 3.3.3 & 3.3.4).

Furthermore, HEADS taxonomy is a also significantly more accurate source of specializations

(Section 3.3.5). A key outcome of our work is the release of HEADS taxonomy, which is publicly

available at http://www.headstaxonomy.com. Figure 3.6 (page 49) shows a snippet of the

HEADS taxonomy.

During the course of this work, we also experimented with a few variants of our approach that

did not produce optimal results. For example, we trained a SVM classifier using the outputs of

the category (or page) heuristics as features, and a small manually-annotated set of edges as

training data. While the edge-level accuracy of this approach was similar to HEADS, it suffered

from poor path-level performance. The primary reason for this effect was the difficulty to

choose an appropriate classification threshold that would result in an appropriate level of

generality of the taxonomy roots. We also experimented with ancestor-level versions of many

of the heuristics presented in Section 3.2.1. However, we discarded them as they typically

produced noisy generalizations. Finally, we also experimented with the taxonomy prior to

the simplification step (Section 3.2.3). While the pre-simplification taxonomy produced good

results as well, we introduced the simplification step for mainly two reasons: (1) produce a

more compact and type-oriented taxonomy, (2) reduce the effort of annotations.

3.5 Summary

Whether built from scratch or derived by filtering existing data, automatically-constructed

taxonomies are accurate and useful only to the extent that they correctly assert not only short-

range but also longer-range generalizations or specializations among concepts or entities. In

this chapter, we presented a novel approach towards taxonomy induction from the English

Wikipedia categories network. Similar to previous approaches, our approach also employs a set

of heuristics to distill a unified taxonomy of pages and categories. However, our experiments
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show that our high-precision heuristics result in a taxonomy, which is significantly better than

the state of the art in edge-level accuracy as well as a variety of path-level evaluation metrics.

Implications. The work done in this chapter has multiple implications on the rest of this thesis.

First, the HEADS taxonomy is used in the next chapter to induce high-quality, large-scale tax-

onomies for other Wikipedia languages such as French. Second, some of the ideas formulated

during this work are used towards taxonomy induction from unstructured text (Chapter 6).

Finally, in Chapter 9, the task of generalizing linguistic templates demonstrates that the higher

path-level accuracy of HEADS taxonomy leads to significantly better generalizations than the

MultiWiBi taxonomies.

Limitations and Future Work. A key limitation of our work is that it is largely heuristic-driven.

As discussed in the previous section, our efforts to utilize a classifier with the heuristics as

features failed due to the difficulty of choosing an appropriate classification threshold. An

interesting future work would be to use such a classifier in conjunction with another classifier

that is specifically aimed towards detecting appropriate roots of the taxonomy.
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Figure 3.6 – A snippet of the HEADS taxonomy.
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4 Multilingual Taxonomy Induction
from Wikipedia

4.1 Overview

In the previous chapter, we proposed our approach that employs a novel set of heuristics to

induce a large-scale taxonomy from the English WCN (i.e., Wikipedia categories network).

We also demonstrated that the taxonomy induced using our approach (referred to as HEADS

taxonomy) significantly outperforms the state of the art in edge-level accuracy and path-level

evaluation measures. However, our approach has a severely-limiting constraint: it depends

heavily on the syntactic structure of Wikipedia categories. As a result, it is not easily extensible

to most other languages, which lack the availability of an accurate syntactic parser [71, 72].

MultiWiBi (described in Section 2.4.6) mitigated this constraint by constructing a probabilistic

translation table from the anchor texts of internal hyperlinks of Wikipedia. A set of complex

heuristics, which used the probabilistic translation table, was further employed to extract

candidate hypernym lemmas in languages other than English.

However, in this chapter, we propose a different and completely novel approach to compensate

for the lack of accurate syntactic parsers in other languages. Our approach is fully-automated,

language-independent, and self-contained in Wikipedia. Similar to MultiWiBi, it also starts

with a taxonomy induced from the English WCN. However, instead of relying on a set of

complex heuristics for transferring this taxonomy to a target language (such as French), our

approach first leverages the interlanguage links of Wikipedia to construct training datasets

automatically for the is-a relation in the target language. Off-the-shelf text classifiers are

trained on the constructed datasets and used in an optimal path discovery framework to

induce high-precision, wide-coverage taxonomy in the target language.

Our approach provides a significant advancement over the state of the art in multilingual

taxonomy induction from Wikipedia because of the following reasons:

• Most previous approaches such as MENTA or MultiWiBi rely on a set of complex heuris-

tics that utilize custom hand-crafted features. In contrast, our approach is simpler, more

principled and easily replicable.
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• Our approach significantly outperforms the state-of-the-art approaches across multiple

languages in both (1) standard edge-based precision/recall measures and (2) path-

quality measures. Furthermore, our taxonomies have significantly higher branching

factor than the state-of-the-art taxonomies without incurring any loss of precision.

• As a consequence of our work, we release presumably the largest and the most accurate

multilingual taxonomic resource spanning over 280 languages. We also release edge-

based gold standards for three different languages (i.e., French, Italian, Spanish) and

annotated path datasets for six different languages (i.e., French, Italian, Spanish, Chinese,

Hindi, Arabic) for further comparisons and benchmarking purposes.

4.2 Our Approach

We now describe our approach for inducing multilingual taxonomies from Wikipedia. Our

approach takes three inputs: (1) the HEADS taxonomy, which is a unified taxonomy of English

Wikipedia pages and categories induced in the previous chapter, (2) the interlanguage links

(described in Section 2.2), and (3) the WCN in the target language (such as French). Given

these inputs, our approach aims to induce a unified taxonomy of pages and categories for the

target language. It runs in three phases:

1. Projection phase: in the first phase, the interlanguage links are used to create a high-

precision, low-coverage taxonomy for the target language by simply projecting the is-a

edges from the HEADS taxonomy.

2. Training phase: in the second phase, the high-precision taxonomy is leveraged to train

classifiers that classify edges into is-a or not-is-a in the target language.

3. Induction Phase: in the final phase, a high-precision, high-coverage taxonomy is in-

duced in the target language by running optimal path search over the target WCN. The

probability of a WCN edge being is-a is computed using the trained classifiers and used

as edge weights during the optimal path search.

It is noteworthy that although we use the HEADS taxonomy in the projection phase, our

approach is compatible with any English taxonomy that consists of WCN nodes (i.e., pages or

categories). We now describe the three phases of our approach in more detail.

4.2.1 Projection Phase

Let Te be the given English taxonomy, which is the HEADS taxonomy in our case. Let G f be

the WCN and T f be the (initially empty) output taxonomy in the target language f (such as

French). For a node (i.e., page or category) n f ∈G f , which has the English equivalent1 ne , and

for which no hypernym exists yet in T f , we perform the following steps:

1Two nodes are considered equivalent, if they are linked by an interlanguage link (Section 2.2).
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1. Assign an is-a label to the edges in T f (i.e., the projected taxonomy in the target lan-

guage).

2. Assign a not-is-a label to all the edges in G f (i.e., the target WCN) that are not in T f but

originate from a node covered in T f .

For example, in Figure 4.1, the edge Auguste→Empereur Romain is assigned the is-a label, and

other WCN edges starting from Auguste (e.g., Auguste→Rome) are assigned the not-is-a label.

We note that the not-is-a labels, which are assigned during this phase, are not final; they are

only temporarily assigned for training the edge classifiers. The final labels are assigned in the

next phase (i.e., the induction phase). While, some edges that are assigned temporary not-is-a

labels may actually be correct is-a edges, this design ensures that most of the edges with the

assigned is-a label, are correct is-a edges, thus leading to training of classifiers that achieve

high accuracy.

Classifiers. To classify edges into is-a or not-is-a, we train classifiers using the constructed

training sets. We experiment with the following off-the-shelf text classifiers:

1. Bag-of-words TFIDF: given edge A→B , concatenate the features vectors for A and B

computed using TFIDF over the bag of words of their titles (e.g., “Empereur Romain” is

the title of category Empereur Romain) and train a linear Support Vector Machine over

the concatenated features. This method is hereafter referred to as Word TFIDF.

2. Bag-of-character-n-grams TFIDF: same as Word TFIDF, except TFIDF is computed

over bag of character n-grams3 (hereafter referred to as Char TFIDF).

3. fastText: a simple yet efficient baseline for text classification based on a linear model

with a rank constraint and a fast loss approximation. Experiments show that fastText

typically produces results on par with sophisticated deep learning classifiers [35].

4. Convolutional Neural Network (CNN): we use a single-layer CNN model trained on top

of word vectors as proposed by Kim [60]. We also experiment with a character version of

this model, in which instead of words, vectors are computed using characters and fed

into the CNN. These models are referred to as Word CNN and Char CNN respectively.

Finally, we experiment with a two-layer version of the character-level CNN proposed

by Zhang et al. [144], which is referred to as Char CNN-2l.

5. Long Short-term Memory Network (LSTM): we experiment with both word-level and

character-level versions of LSTM [49]. These models are hereafter referred to as Word

LSTM and Char LSTM respectively.

3n-values={2,3,4,5,6} worked best in our experiments.
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4.2.3 Induction Phase

In the last step of our approach, we discover taxonomic edges for nodes not yet covered in

the projected taxonomy (T f ). To this end, we first set the weights of Entity→Category and

Category→Category edges in the target WCN as the probability of being is-a (as computed

using the corresponding classifiers). Further, for each node n f that does not have a hypernym

in T f , we find the top k paths4 with the highest probabilities originating from n f to any

node in T f . The probability of a path is defined as the product of probabilities of individual

edges. If multiple paths with the same probabilities are found, the shortest paths are chosen.

The individual edges of the most probable paths are added to the T f , resulting in the final

taxonomy in the target language.

4.3 Evaluation and Results

We now evaluate the taxonomies induced using the approach described in the previous section.

Similar to the evaluation of the English taxonomy in the previous chapter (Section 3.3), we

evaluate our multilingual taxonomies against the state of the art using both edge-based and

path-based evaluation methods. More specifically, in Section 4.3.1, we compute standard

edge-level precision, recall, and coverage measures against a gold standard for three different

languages (i.e., French, Italian and Spanish). In Section 4.3.2, we perform a comprehensive

path-level comparative evaluation across six languages.

Analogous to the evaluation in the previous chapter, we compare our taxonomies against the

MultiWiBi taxonomies [31], because there are multiple similarities between MultiWiBi and

our approach:

• Only MENTA, MultiWiBi, and our taxonomies are constructed in a fully language-

independent fashion. Hence, they are available for all 280 Wikipedia languages.

• Unlike YAGO3, MENTA and most other approaches, MultiWiBi and ours are self-contained

in Wikipedia. They do not require manually labeled training examples or external re-

sources, such as WordNet or Wikitionary.

• MultiWiBi is already shown to outperform most previous approaches across multiple

languages [31].

4.3.1 Edge-level Evaluation

Experimental Setup. We create gold standards for three languages (French, Spanish and

Italian) by selecting 200 entities and 200 categories randomly from the 2015 WCN and annotat-

4k is set to 1 unless specified otherwise.
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ing their correctness5. Table 4.1 (page 57) shows a sample of annotated edges from the French

gold standard. In total, 4045 edges were annotated across the three languages.

For evaluation, we reuse the same metrics, which are used in Section 3.3.2 as well as Multi-

WiBi [31]: (1) Macro-precision (P ) defined as the average ratio of correct hypernyms to the

total number of hypernyms returned (per node), (2) Recall (R) as the ratio of nodes for which

at least one correct hypernym is returned, and (3) Coverage (C ) as the ratio of nodes with at

least one hypernym returned irrespective of its correctness.

Training Details. All neural network models are trained on Titan X (Pascal) GPU using the

Adam optimizer [61]. A grid search is performed to determine the optimal values of hyper-

parameters. For CNN models, we use an embedding of 50 dimensions. The number of filters

is set to 1024 for word-level models and 512 for character-level models. For Char CNN-2l

model, we use the same parameters used in Zhang et al. [144]. For LSTM models, we use an

embedding of 128 dimensions, and 512 units in the LSTM cell. We also experimented with

more complex architectures, such as stacked LSTM layers and bidirectional LSTMs. However,

these architectures failed to provide any significant improvements over the simpler ones.

Results. Table 4.2 shows the results for different methods including the state-of-the-art

approaches (i.e., MENTA and MultiWiBi) and multiple versions of our three-phase approach

with different classifiers. It also includes two baselines, i.e., WCN and UNIFORM. The WCN

baseline outputs the original WCN as the induced taxonomy without performing any filtering

of edges. UNIFORM is a uniformly-random baseline, in which all the edge weights are set to 1

in the induction phase (cf. Section 4.2.3).

Table 4.2 shows that all classifiers-based models achieve significantly higher precision than

UNIFORM and WCN baselines, thus showing the utility of weighing with classification proba-

bilities in the Induction phase. Interestingly, UNIFORM achieves significantly higher precision

than WCN for both entities and categories across all three languages, hence, demonstrating

that optimal path search in the Induction phase also contributes towards hypernym selection.

All classifier-based approaches (except Word TFIDF) significantly outperform MultiWiBi for

entities across all languages as well as for French and Spanish categories. Although MultiWiBi

performs better for Italian categories, Char TFIDF achieves similar performance (89.2% vs.

89.7%) 6.

Coverage is 100% for all the baselines and the classifiers-based approaches because at least one

path is discovered for each node in the induction phase, thus resulting in at least one (possibly

5Two annotators annotated each edge independently. Inter-annotator agreement (Cohen’s Kappa) varied
between 0.71 to 0.93 for different datasets.

6We note that entity edges are qualitatively different for MultiWiBi and other methods, i.e., MultiWiBi has
Entity→Entity edges whereas other methods have Entity→Category edges. Given that fact and the unavailability
of the gold standards from MultiWiBi, we further support the efficacy of our approach with a direct path-level
comparison in the next section.
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is-a not-is-a

Naissance à Omsk→Naissance en Russie par ville Naissance à Omsk�Omsk

Port d’Amérique du Sud→Port par continent Port d’Amérique du Sud�Géographie de l’Amérique du Sud

Table 4.1 – Examples of Annotated Edges (French).

Entity Category

Language Method P R C P R C

French

Original WCN 72.0 100 100 78.8 100 100

MENTA 81.4 48.8 59.8 82.6 55.0 65.7

MultiWiBi 84.5 80.9 94.1 80.7 80.7 100

UNIFORM 80.6 83.2 100 85.7 86.7 100

Word TFIDF 86.5 90.1 100 82.1 83.1 100

Char TFIDF 88.0 91.7 100 92.3 93.4 100

fastText 86.5 90.1 100 90.5 91.6 100

Word LSTM 87.8 91.5 100 91.6 92.7 100

Char LSTM 86.2 89.8 100 93.9 95.1 100

Word CNN 86.3 90.0 100 92.8 93.9 100

Char CNN 86.2 89.9 100 93.3 94.4 100

Char CNN-2l 87.7 91.0 100 92.2 93.3 100

Italian

Original WCN 74.5 100 100 76.2 100 100

MENTA 79.7 53.2 66.7 77.1 25.4 32.8

MultiWiBi 80.1 79.4 96.3 89.7 89.0 99.2

UNIFORM 77.7 81.6 100 86.6 88.3 100

Word TFIDF 90.0 94.4 100 84.1 85.7 100

Char TFIDF 88.4 92.8 100 89.2 90.9 100

fastText 86.8 91.1 100 87.3 89.0 100

Word LSTM 90.9 95.4 100 83.1 84.8 100

Char LSTM 89.8 94.4 100 83.3 83.8 100

Word CNN 89.6 94.3 100 83.1 84.8 100

Char CNN 92.6 97.2 100 86.9 88.7 100

Char CNN-2l 87.7 92.1 100 86.1 87.8 100

Spanish

Original WCN 81.4 100 100 80.9 100 100

MENTA 81.0 42.9 52.7 80.5 54.2 66.4

MultiWiBi 87.0 82.0 93.7 84.8 84.4 100

UNIFORM 88.0 90.7 100 83.0 85.0 100

Word TFIDF 89.9 92.7 100 78.9 80.8 100

Char TFIDF 92.5 95.4 100 88.3 90.4 100

fastText 93.0 95.9 100 88.9 91.0 100

Word LSTM 93.4 96.3 100 88.2 90.3 100

Char LSTM 92.3 95.3 100 88.8 90.3 100

Word CNN 92.9 95.8 100 87.6 89.7 100

Char CNN 92.9 95.8 100 92.9 95.1 100

Char CNN-2l 93.3 96.3 100 89.9 92.1 100

Table 4.2 – Edge-level precision (P), recall (R) and Coverage (C) scores for different methods.
MENTA and MultiWiBi results are as reported by Flati et al. [31]. The top 3 results are shown in
bold, and the best is also underlined.
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incorrect) hypernym for each node in the final taxonomy. These results also demonstrate that

the initial projected taxonomy (Section 4.2.1) is reachable from every node in the target WCN.

Word vs. Character Models. In general, character-level models outperform their word-

level counterparts. Char TFIDF significantly outperforms Word TFIDF for both entities and

categories across all languages. Similarly, Char CNN outperforms Word CNN. Char LSTM out-

performs Word LSTM for categories, but performs slightly worse for entities. We hypothesize

that this is due to the difficulty in training character LSTM models over larger training sets.

Entity training sets are much larger, as the number of Entity→Category edges are significantly

greater than the number of Category→Category edges (usually by a factor of 10).

Neural Models vs. TFIDF. CNN-based models perform slightly better on average, followed

closely by LSTM and TFIDF respectively. However, the training time for neural networks-based

models is significantly higher than TFIDF models. For example, it takes approximately 25

hours to train the Char CNN model for French entities using a dedicated GPU. In contrast, the

Char TFIDF model for the same data is trained in less than 5 minutes.

Therefore, for the sake of efficiency, as well as to ensure simplicity and reproducibility across

all languages, we choose Char TFIDF taxonomies as our final taxonomies for the rest of the

evaluations. However, it is important to note that more accurate taxonomies can be induced

by using our approach with neural-based models, especially if the accuracy of taxonomies is

critical for the application at hand.

4.3.2 Path-level Evaluation

In the previous chapter, we demonstrated that high edge-level precision may not always

translate to high path-level precision for taxonomies. We introduced the notion of length

of correct path prefix (CPP), i.e., the maximal correct prefix of a generalization path, as an

alternative measure of the quality of a taxonomy (see Section 3.3.3). We computed two metrics

based on the lengths of CPPs: (1) the average length of CPP (ACPP), and (2) the average ratio

of lengths of CPPs to the full paths (ARCPP). Following the same evaluation methodology, we

first randomly sample paths originating from 25 entities and 25 categories using the MultiWiBi

and Char TFIDF taxonomies7 for six different languages (i.e., French, Italian, Spanish, Arabic,

Hindi, and Chinese). For each path, we annotate the first wrong hypernym edge in the

upward direction. In total, we annotated 600 such paths across the six languages for the two

approaches (i.e., MultiWiBi and Char TFIDF).

Table 4.3 shows some examples of these sampled paths, along with their CPPs. Table 4.4

shows the comparative results. Char TFIDF taxonomies significantly outperform MultiWiBi

taxonomies, achieving higher ACPP for all languages and higher ARCPP for most languages.

7Same starting entities and categories are used for all taxonomies per language.
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MultiWiBi

Patrimoine mondial en Équateur� Conservation de la nature → Écologie → Biologie

→ Sciences naturelles → Subdivisions par discipline → Sciences → Discipline académique

→ Académie → Concept philosophique

Char TFIDF

Patrimoine mondial en Équateur → Patrimoine mondial en Amérique
→ Patrimoine mondial par continent → Patrimoine mondial → Infrastructure touristique
→ Lieu� Géographie → Discipline des sciences humaines et sociales

→ Sciences humaines et sociales → Subdivisions par discipline

Table 4.3 – Samples of generalization paths for French categories. Correct path prefix (CPP) for
each path is shown in bold.

Entity Category

Language Method AL ACPP ARCPP AL ACPP ARCPP

French
MultiWiBi 8.24 2.96 0.49 8.92 3.6 0.56

Char TFIDF 11.08 5.08 0.49 8.36 3.76 0.49

Italian
MultiWiBi 7.36 2.68 0.45 14.84 3.72 0.27

Char TFIDF 8.32 4.88 0.61 8.32 4.52 0.57

Spanish
MultiWiBi 7.04 3.08 0.55 12.08 4.08 0.36

Char TFIDF 12.8 5.0 0.48 12.76 5.28 0.48

Arabic
MultiWiBi 8.96 2.12 0.31 14.64 4.12 0.31

Char TFIDF 7.48 5.88 0.81 6.96 5.04 0.74

Hindi
MultiWiBi 7.72 1.88 0.27 7.4 1.8 0.36

Char TFIDF 10.28 4.92 0.47 8.0 2.44 0.38

Chinese
MultiWiBi 7.4 2.56 0.47 8.0 4.43 0.63

Char TFIDF 6.32 3.92 0.68 6.95 4.48 0.68

Table 4.4 – Comparison of average path length (AL), average length of correct path prefix
(ACPP), and average ratio of CPP to path lengths (ARCPP) for the MultiWiBi and Char TFIDF
taxonomies.

Therefore, compared to the state-of-the-art MultiWiBi taxonomies, Char TFIDF taxonomies

are a significantly better source of generalization paths across multiple languages.

However, the overall performance of the Char TFIDF taxonomies is still significantly worse

than HEADS taxonomy, which achieved an ARCPP of 0.87 (see Table 3.10). This effect is

expected, because Char TFIDF taxonomies are created through the projection of the HEADS

taxonomy. As a result, the errors in HEADS taxonomy would be propagated to the Char TFIDF

taxonomies, thus, resulting in accuracy of HEADS being an upper bound for Char TFIDF

taxonomies. This also suggests that hand-crafted language-specific features in conjunction

with an accurate syntactic parser, as used for the induction of HEADS taxonomy, could possibly

result in the induction of more accurate taxonomies for other languages as well.
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Word TFIDF Char TFIDF

dolphins, dolphins, miami s dol, s dolp, es dol

miami, entraîneur, des hins, dolph, hins d

Table 4.5 – Top features for the not-is-a edge ENTRAÎNEUR DES DOLPHINS DE MI-
AMI�DOLPHINS DE MIAMI.

Word TFIDF Char TFIDF

dolphins, américain, miami ur spo, r spor, eur sp

entraîneur, sportif, entraîneur tif am, if am, if amé

Table 4.6 – Top features for the is-a edge ENTRAÎNEUR DES DOLPHINS DE MIAMI→ENTRAÎNEUR

SPORTIF AMÉRICAIN.

4.4.1 Word vs. Character Models

To compare word and character-level models, we first report the validation accuracies8 for

Word TFIDF and Char TFIDF models in Figure 4.2, as obtained during the training phase (cf.

Section 4.2.2). Char TFIDF models significantly outperform Word TFIDF models, achieving

higher validation accuracies across six different languages. The improvements are usually

higher for languages with non-Latin scripts. This effect can be partly attributed to the error-

prone nature of whitespace-based tokenization for such languages. For example, the word

tokenizer for Hindi splits words at many accented characters in addition to word boundaries,

thus leading to erroneous features and poor performance. In contrast, character-level models

are better equipped to handle languages with arbitrary scripts, because they do not need to

perform text tokenization.

4.4.2 False Positives vs. False Negatives

To further compare word and character models, we focus on the specific case of French

categories. In Figure 4.3, we show the confusion matrices of Word TFIDF and Char TFIDF

model computed using the validation set for French categories. While, in general, both models

perform well, Char TFIDF outperforms Word TFIDF, producing fewer false positives as well as

false negatives. In fact, we noticed similar patterns across most languages for both entities

and categories.

We hypothesize that the superior performance of Char TFIDF is because character n-gram

features incorporate the morphological properties computed at the sub-word level as well

as word boundaries, which are ignored by the word-based features. To demonstrate this, we

show in Tables 4.5 & 4.6, the top Word TFIDF and Char TFIDF features of a not-is-a and an is-a

edge. These edges are misclassified by Word TFIDF but correctly classified by Char TFIDF.

8Validation set is constructed by randomly selecting 25% of the edges with each label (i.e., is-a and not-is-a) as
discovered during the projection phase.
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However, there is usually a trade-off between branching factor and precision in automatically

induced taxonomies [129]. Higher branching factor typically results in lowering of precision

due to erroneous edges with lower scores being added to the taxonomy. Prioritizing the

precision over the branching factor or vice-versa is usually determined by the specific use

case at hand. Therefore, it is desirable for a taxonomy induction method to provide a control

mechanism over this trade-off.

In our approach, the number of paths discovered (k) during the optimal path search in the

induction phase (Section 4.2.3), serves as the parameter for controlling this trade-off. As k

increases, the branching factor of the induced taxonomy increases because more paths per

term are discovered. To demonstrate this effect, we plot the values of precision and branching

factor of Char TFIDF taxonomies for varying values of k for French categories9 in Figure 4.4.

Precision and branching factors for the MultiWiBi taxonomy and the original WCN are also

shown for comparison purposes.

Char TFIDF significantly outperforms MultiWiBi, either achieving higher precision (k≤2) or

higher branching factor (k≥2). At k=2, Char TFIDF presents a sweet spot, outperforming

MultiWiBi in both precision and branching factor. For k≥3, Char TFIDF taxonomies start

to resemble the original WCN because most of the WCN edges are selected by optimal path

discovery. This experiment demonstrates that in contrast to MultiWiBi’s fixed set of heuristics,

our approach provides better control over the branching factor of the induced taxonomies.

4.5 Discussion and Related Work

The large-scale and high quality of Wikipedia content has enabled multiple approaches

towards knowledge acquisition and taxonomy induction over the past decade. The earlier

attempts at taxonomy induction from Wikipedia focused on the English language. These

include WikiTaxonomy, WikiNet, YAGO and the first versions of DBpedia and MultiWiBi. Later

attempts aimed to extend the taxonomy induction process to other languages by exploiting

the multilingual nature of Wikipedia content. These include MENTA, YAGO3, and the later

versions of DBpedia and MultiWiBi. Chapter 2 provides a survey of these approaches.

In the previous chapter (Chapter 3), we proposed an approach that induces a unified taxonomy

of entities and categories from the English WCN using a novel set of high-precision heuristics.

In contrast, our approach proposed in this chapter is language-independent and results in

taxonomies for all Wikipedia languages. Our approach borrows inspiration from many of the

past approaches. First, similar to most previous approaches, it also classifies WCN edges into

is-a or not-is-a. Second, similar to MultiWiBi, our approach also projects an English taxonomy

into other languages using the interlanguage links.

However, unlike the previous approaches, our approach does not employ any linguistic heuris-

tics or hand-crafted features. Instead, it uses standard text classifiers trained on an auto-

9Similar effects are observed for both entities and categories for all languages.
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matically constructed dataset to assign edge weights to WCN edges. Taxonomic edges are

discovered by running optimal path search over the WCN in a fully-automated and language-

independent fashion. The principled design of our approach leads to two advantages: (1)

our approach achieves 100% coverage, because unlike most heuristics, the text classifiers are

applicable for all nodes, and (2) the parameter k in the optimal path search framework helps

to regulate the precision vs. branching factor tradeoff, thus providing better control over the

structural properties of the induced taxonomies.

Although the approach presented in this chapter uses the HEADS taxonomy as the input

English taxonomy, theoretically it is general and replicable with any English taxonomy that

consists of WCN nodes. However, since our approach collects ancestors of WCN nodes in the

English taxonomy (Section 4.2.1), the high path-level accuracy of the HEADS taxonomy is a

major advantage as it ensures more accurate sets of ancestors.

Our experiments show that taxonomies derived using our approach significantly outperform

the state-of-the-art taxonomies, derived by MultiWiBi using more complex heuristics. We

hypothesize that it is because our model primarily uses categories as hypernyms, whereas

MultiWiBi first discovers hypernym lemmas for entities using potentially noisy textual features

derived from unstructured text. Categories have redundant patterns, which can be effectively

exploited using simpler models. This has also been shown in Chapter 3, where we employed

simple high-precision heuristics based on the lexical head of categories to achieve significant

improvements over MultiWiBi for English.

Additionally, for taxonomy induction in other languages, MultiWiBi uses a probabilistic trans-

lation table, which is likely to introduce further noise. However, the high-precision heuristics

described in Chapter 3 are not easily extensible to languages other than English, due to the

requirement of a syntactic parser for lexical head detection. Therefore, we present this ap-

proach that learns such features from automatically generated training data, hence resulting in

high-precision, high-coverage taxonomies for all Wikipedia languages. Figure 4.5 shows some

examples of generalization paths sampled from these taxonomies for ten different languages.

Our taxonomies contain more than 1 million is-a edges for 10 languages, and more than

100,000 is-a edges for 46 languages. For rest of the languages, taxonomies are smaller (i.e.,

less than 50,000 is-a edges), mainly due to the smaller sizes of their corresponding WCNs.

Nonetheless, our approach is still effective as it achieves 100% coverage over the WCNs by

design.

4.6 Summary

In this chapter, we presented a novel fully-automated approach towards multilingual taxonomy

induction from Wikipedia. Unlike previous state-of-the-art approaches, which are complex

and heuristic-heavy, our approach is simpler, principled and easy to replicate. Our approach

runs in three phases. In the first phase, our approach leverages an English Wikipedia taxonomy

and the interlanguage links of Wikipedia to project an initial taxonomy in the target language.
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In the second phase, it constructs a training dataset automatically for the is-a relation in the

target language. In the final phase, off-the-shelf text classifiers are trained on the constructed

datasets and used in an optimal path discovery framework to induce a high-precision as well

as wide-coverage taxonomy in the target language.

Taxonomies induced using our approach outperform the state of the art on both edge-level

and path-level metrics across multiple languages. Our approach also provides a parameter for

controlling the trade-off between precision and branching factor of the induced taxonomies.

Additionally, our experiments demonstrate that character-level models perform better than

their word-level counterparts at the task of classifying WCN edges because they are equipped

with features related to word boundaries and morphological information. A key outcome of

this work is the release of our taxonomies across 280 languages, which are significantly more

accurate than the state of the art and provide higher coverage.

Limitations and Future Work. The first key limitation of our approach is that it uses an

English taxonomy as the the source taxonomy for projection. This design could possibly

introduce a bias in the taxonomies induced in other languages. For example, this design

would favor the target language categories that have an English equivalent over categories

without an English equivalent. An interesting future work would be analyze the relative

distributions of interlanguage links across pages and categories in different languages, and

use that information to identify potentially-beneficial source languages other than English.

Another interesting approach could be to run taxonomy induction for all languages in iterative

fashion in a unified framework, such that the taxonomies induced in each language aids

the taxonomy induction all other languages. The second key limitation of our approach is

that only one specific approach for the construction of the negative examples are presented

in the training phase (Section 4.2.2). Experiments can be performed with other equivalent

approaches. For example, negative training examples can be generated by projecting not-is-a

edges from the source taxonomy. Finally, we only experimented with a few models for the

classification of edges. Many other classification models could be tried and may potentially

lead to improved results.
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Figure 4.5 – Sample Generalization Paths for the entity JOHNNY DEPP in ten languages.



Part IITaxonomy Induction from
Unstructured Text
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5 Background and Related Work

5.1 Overview

Taxonomy induction is a well-studied task, and multiple different lines of work have been

proposed in the prior academic literature. Early works on taxonomy induction utilize human-

compiled knowledge resources including fully-structured resources (such as WordNet) or semi-

structured resources (such as Wikipedia). Taxonomy induction approaches based on such

resources achieve good precision and hence have been used in a wide variety of NLP-related

tasks (Section 2.1). Additionally, the taxonomies extracted from Wikipedia are extremely

large-scale, consisting of millions of entities (see Chapters 2-4). However, despite their large

scale, such taxonomies still suffer from incomplete coverage over highly specialized domains

such as Law and Finance, because such domains are usually under-represented in external

knowledge resources. For example, WordNet is mostly limited to frequent nouns, adjectives,

verbs, and adverbs [42, 89]. Similarly, Wikipedia articles are disproportionately focused on

popular entities [65]. Furthermore, the utility of Wikipedia is further diminished by its slowed

growth [127].

To address such issues, another line of work has been proposed, which focuses on building

lexical taxonomies completely from scratch, i.e., unstructured or raw text such as domain-

specific corpus or Web. The main advantage of performing taxonomy induction from scratch

is that it can be performed on arbitrary domains because domain-specific text corpora can be

easily harvested on a large scale using the Web [19, 102]. Furthermore, most Web documents

provide temporal information that can be effectively utilized to induce up-to-date taxonomies

even in highly dynamic domains such as Politics [146, 77].

In this chapter, we provide a brief survey of the past approaches towards taxonomy induction

from unstructured text. These approaches typically consist of two main stages: (1) hypernymy

extraction, i.e., extraction of hypernymy (or is-a) relations between terms from unstructured

text, and (2) term organization, i.e., the structured organization of terms into a taxonomy, i.e.,

a coherent tree-like hierarchy. In Section 5.2, we discuss the past approaches aimed towards

the first stage, i.e., hypernymy extraction from unstructured text, whereas, in Section 5.3,
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Pattern Context Extracted Relation

NP is/was a NP “apple is a fruit” apple→fruit

NP such as NP “authors such as shakespeare” shakespeare→author

NP or/and other NP “carrots or other vegetables” carrot→vegetable

NP, especially NP “swiss cities, especially Zurich” zurich→swiss city

NP, e.g. NP “scientists, e.g. Einstein” einstein→scientist

Table 5.1 – Examples of lexico-syntactic patterns and extracted relations. NP indicates a
noun phrase.

we focus on the second stage, i.e., term organization. In Section 5.4, we describe a few

primary examples of end-to-end taxonomy systems that perform taxonomy induction from

unstructured text.

5.2 Hypernymy Extraction

The task of extraction of hypernymy relations from unstructured text has been relatively

well-studied in prior literature. Its approaches can be classified into two main categories:

Distributional approaches and Pattern-based approaches.

Distributional approaches use clustering to extract hypernymy relations from unstructured

text [100, 22, 111]. Such approaches draw primarily on the distributional hypothesis [46],

which states that terms that are semantically-similar appear in similar contexts. The main

advantage of distributional approaches is that they can discover relations, which are not

explicitly expressed in the unstructured text.

In contrast, pattern-based approaches utilize pre-defined rules or lexico-syntactic patterns

to extract terms and hypernymy relations from text [47, 98, 118]. Pattern-based approaches

were pioneered by Hearst [47], and have been fairly popular ever since. Patterns are either

chosen manually [47, 69] or learnt automatically via bootstrapping [119]. Table 5.1 shows

some examples of these lexico-syntactic patterns along with sample contexts as well as the

extracted hypernymy relations. Pattern-based approaches usually result in much higher

accuracies [94, 129]. However, unlike distributional approaches, which are fully unsupervised,

pattern-based approaches require a set of seed patterns to initiate the extraction process.

Furthermore, pattern-based approaches can only extract relations that are explicitly expressed

in unstructured text.

A third line of approaches towards hypernymy extraction uses machine learning classifiers,

which are trained on distributional features or pattern-based features or a combination of

both. For example, Snow et al. [119] search sentences containing two terms known to be

in a taxonomic relation, and further automatically learn patterns from their parse trees. A

classifier is trained based on such automatically-extracted pattern-based features, and used to

identify novel hypernym pairs. Velardi et al. [129] extract hypernyms from a domain corpus
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and the Web, by extracting definitional sentences such as “apple is a fruit” (apple→fruit). Defi-

nitional sentences are recognized by a domain-independent machine-learned classifier that

utilizes World Class Lattices (a form of regular expressions) trained on a dataset of Wikipedia

definitions [93].

A more detailed survey of hypernym extraction techniques from unstructured text can be

found in Wang et al. [132]. However, we describe a few of these techniques in detail, as they

are employed by our taxonomy induction approaches in the following chapters.

• WebIsA is one of the most notable efforts towards hypernymy extraction from unstruc-

tured text. WebIsA is a dataset of hypernymy relations in English extracted automati-

cally from the CommonCrawl web corpus using 59 hand-crafted lexico-syntactic pat-

terns [118]. WebIsA is extremely large-scale, consisting of more than 400 million1 hyper-

nymy relations in English. Moreover, it is publicly available and can be downloaded and

accessed via simple APIs2.

• PattaMaika implements pattern-based knowledge extraction using UIMA Ruta3, which

is a rule-based text annotation engine released by Apache [66]. Similar to WebIsA, Patta-

Maika is publicly available4, and has been used in previous works to extract hypernyms

for multiple languages including English, Italian, and Dutch [102].

• PatternSim is a general tool for information extraction based on lexico-syntactic pat-

terns. It has been used in a variety of tasks such as computation of semantic similar-

ity [101] and hypernymy extraction from English and French corpora [102]. Similar to

WebIsA and PattaMaika, it is also publicly available5.

Overall, the task of hypernymy extraction from unstructured text is relatively well-studied.

Many large-scale datasets as well as extraction systems have been publicly released and can

be reused in an ‘as-is’ fashion by taxonomy induction approaches.

5.3 Term Organization

We now proceed with the discussion of the second stage of taxonomy induction, namely the

structured organization of terms into a coherent tree-like hierarchy. Similar to hypernym

extraction, approaches towards structured organization of terms can also be divided into two

main categories: (1) clustering-based approaches, and (2) graph-based approaches.

1In contrast, the largest English taxonomies induced from Wikipedia comprised of approximately 12 million
hypernymy relations.

2http://webdatacommons.org/isadb/
3http://uima.apache.org/ruta.html
4http://ltmaggie.informatik.uni-hamburg.de/jobimtext/documentation/pattern-extraction-with-

pattamaika/
5https://github.com/cental/PatternSim
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Clustering-based approaches aim to cluster terms that are co-hyponyms, i.e., they share

the same hypernym. Typically, hierarchical clustering algorithms are employed to induce a

tree-like hierarchy of terms. For example, Song et al. [122] employs an adapted version of

hierarchical clustering for induction of large-scale taxonomies from a given set of keywords.

Another approach, Alfarone and Davis [5] clusters terms using the K-Medoids algorithm, and

computed the lowest common ancestor as the hypernym of a collection of terms.

Graph-based approaches cast the task of term organization as a graph optimization problem.

They first construct a noisy hypernym graph from the extracted hypernym relations. The

noisy hypernym graph is further pruned using a graph-based optimization algorithm, thus

resulting in the induction of the final taxonomy. Graph-based approaches are well-suited for

this task because taxonomies are essentially directed graphs with is-a edges between terms.

One of the first such approaches was proposed by Kozareva and Hovy [68], who discover

generalization paths from seed terms to a target root, by finding the longest path in a noisy

hypernym graph. Another prominent approach is Ontolearn Reloaded [129], which employs

the Chu-Liu/Edmonds’s optimal branching algorithm [58] on the noisy hypernym graph with

edge weights computed using the topology of the graph.

Both clustering-based and graph-based approaches have been effectively used in the prior aca-

demic literature for inducing taxonomies from unstructured text. A more detailed discussion

of these approaches can be found in Velardi et al. [129] and Wang et al. [132].

5.4 State-of-the-art Approaches

We now describe a few salient end-to-end systems that perform taxonomy induction from

unstructured text. Many of these systems use techniques or resources that are mentioned in

the previous sections.

5.4.1 Kozareva’s Method

Kozareva and Hovy [68] starts with an initial set of root terms (e.g., animal) and basic-level

terms6 (e.g., lion). It further employs lexico-syntactic patterns to harvest new candidate

hypernyms for the basic-level terms using the Web. This step is performed recursively for the

newly-harvested hypernyms until the root term is reached. Another set of lexico-syntactic

patterns are employed to validate the extracted hypernymy relations.

Validated hypernymy relations are aggregated, leading to the construction of an initial noisy

hypernym graph. The nodes in the noisy hypernym graph that have out-degree below a certain

threshold are discarded. Cycles are detected and removed from the noisy hypernym graph,

and the hypernymy relations constituting the longest paths between the basic-level terms and

the root term form the final taxonomy.

6A basic-level term corresponds to the basic-level categories as defined in Rosch [114].
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second phase, the terms are clustered using the K-Medoids algorithm, and the lowest common

ancestor of terms in a cluster is considered as their hypernym. In the third phase, a graph-

based optimal branching algorithm is employed to detect and remove potentially-incorrect

is-a edges. In the final phase, confidence scores are assigned to the is-a edges based on the

provenance of their discovery. Taxify performs favorably against Kozareva’s method as well as

Ontolearn Reloaded across five different domains.

5.4.4 SemEval Tasks

More recently, Bordea et al. [15, 16] introduced the first shared SemEval tasks on Taxonomy

Extraction Evaluation, thus providing a common ground for evaluation. These SemEval tasks

are referred to as TExEval [15] and TExEval-2 [16]. In both tasks, participants were provided

with a clean vocabulary of domain-specific terms and a root term and asked to perform

taxonomy learning by finding relations between pairs of terms. Resultant taxonomies were

evaluated using a variety of methods such as structural evaluation, comparison against a

gold standard as well as manual evaluation of edge-level accuracy. While TExEval task only

focused on taxonomy induction over English, TExEval-2 task introduced three more languages,

i.e., French, Italian and Dutch. INRIASAC, the top system in TExEval, uses features based on

substrings and co-occurrence statistics [36] whereas TAXI, the top system in TExEval-2, uses

lexico-syntactic patterns, substrings and focused crawling [102]. We now describe TAXI in

detail, because it is used for comparative evaluation in Chapter 7.

TAXI. TAXI is a state-of-the-art taxonomy induction system, which reached first place in all

the subtasks of the TExEval-2 task [102]. TAXI harvests candidate hypernyms using substring

inclusion and lexico-syntactic patterns from unstructured text corpora. TAXI also uses the

candidate hypernymy relations from the WebIsA database (see Section 5.2). It further utilizes

an SVM trained with edge-level features, such as frequency counts of candidate hypernyms and

substring inclusion, to classify edges as positive and negative. The edges that are classified as

is-a are added to the taxonomy. Panchenko et al. [102] also report that alternate configurations

of TAXI with different term-level and edge-level features as well as different classifiers such as

Logistic Regression, Gradient Boosted Trees, and Random Forests fail to provide improvements

over their approach. The key advantage of TAXI is that it is easily reproducible because its

source code, as well as the extracted hypernyms, are released publicly7.

5.5 Key Challenges

In the first chapter (Section 1.4), we mentioned some of the key shortcomings of taxonomy in-

duction approaches that utilize unstructured text. In this section, we reiterate those shortcom-

ings with additional context from the discussions presented in this chapter. Past approaches

7http://tudarmstadt-lt.github.io/taxi/
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towards taxonomy induction from scratch typically suffer from these shortcomings:

• Hypernymy extraction for general terms: hypernymy extraction approaches based on

the lexico-syntactic patterns usually become increasingly erroneous as the generality

of terms increases, mainly due to the increase in term ambiguity. This effect was docu-

mented by Ontolearn Reloaded [129]. In the next chapter, we further demonstrate this

effect using an empirical experiment.

• Noisy input vocabulary: most of the previous approaches, which are described in the

previous section, require a clean vocabulary of seed terms as input. This constraint

can be severely limiting because state-of-the-art automated vocabulary extraction ap-

proaches output vocabularies that contain numerous noisy terms. Although Taxify does

not explicitly state this constraint, it is still evaluated only with clean vocabularies.

• Automated root detection: Kozareva’s method, Ontolearn Reloaded and TAXI assume a

set of one or more root terms as input. If such a set is unavailable, Ontolearn Reloaded

employs higher-level terms from WordNet as the set of root terms. Although Taxify [5]

performs taxonomy induction without a set of input roots, the final roots of the induced

taxonomies are neither evaluated quantitatively nor qualitatively.

5.6 Summary

In this chapter, we provided a brief overview of the state of the art of taxonomy induction

from unstructured text. The main stages of taxonomy induction from unstructured text are

hypernymy extraction (Section 5.2) and term organization (Section 5.3). Hypernymy extraction

is well-studied in prior literature and is mainly performed using either distributional methods

or lexico-syntactic patterns. Although distributional methods are better equipped to extract

implicit relations, lexico-syntactic patterns typically result in a higher accuracy of the extracted

relations. The second stage, i.e., term organization, is performed using either clustering of

terms, or graph-based optimization approaches. Although many of these methods have been

utilized effectively for taxonomy induction, they still suffer from multiple shortcomings. In the

following chapters, we propose novel methods that attempt to address these shortcomings.

More specifically, in Chapter 6, we propose a novel model that utilizes the hypernyms of more

specific terms, to choose more accurate hypernyms for more general terms. In Chapter 7, we

introduce a novel flow network optimization-based approach towards term organization, that

is robust to the presence of significant noise in the input vocabulary. Finally, in Chapter 8,

we demonstrate that flow network optimization-based approach can be easily extended to

support automated detection of roots.
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6.1 Overview

As discussed in the previous chapter, taxonomy induction from unstructured text typically

consist of two main stages: (1) extraction of hypernymy relations from unstructured text, and

(2) the structured organization of terms into a taxonomy. The hypernym relations, which are

extracted in the first phase, are usually directly employed in the second stage. However, in this

chapter, we propose a novel approach that first extracts long-range hypernym subsequences

from the extracted hypernyms. A hypernym subsequence is defined as a series of one or more

contiguous hypernym edges (e.g., apple→fruit→food). Through experiments, we demonstrate

that the subsequences extracted using our approach are significantly more accurate compared

to multiple baselines. Moreover, in the next chapter, we demonstrate that the taxonomy

induction approaches, which utilize these extracted hypernym subsequences, perform much

better than equivalent approaches that solely rely on hypernym edges.

Since hypernymy extraction is relatively well-studied as well as orthogonal to our contribu-

tion, we assume the availability of a pre-existing database of hypernymy relations. More

specifically, we use WebIsA, which is one of the largest databases of hypernymy relations in

English (also described in Section 5.2). WebIsA contains more than 400 million hypernymy

relations in English. However, these relations tend to be very noisy, typically containing a

mixture of closely-related semantic relations such as hyponymy, meronymy, synonymy, and

co-hyponymy (see Section 1.2 for definitions of these semantic relations). For example, WebIsA

has more than 12,000 hypernyms for the term apple, including numerous noisy hypernyms

such as orange, everyone and smartphone. For each hypernymy relation, WebIsA also provides

the occurrence frequencies in the CommonCrawl corpus. The hypernymy relations with the

highest occurrence frequencies for the term apple are shown in Table 6.1.

In the remainder of this thesis, the noisy hypernymy relations present in WebIsA are referred

to as the candidate hypernyms. In the next section, we present our approach that extracts

hypernym subsequences from these candidate hypernyms.
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Candidate hypernym Occurrence frequency

company 5536

fruit 3898

apple 2119

vegetable 928

orange 797

tech company 619

brand 463

hardware company 460

technology company 427

food 370

Table 6.1 – WebIsA hypernyms for the term apple along with their occurrence frequencies [118].

Figure 6.1 – Normalized occurrence frequency and average rank vs. the height of the edge in
the paths sampled from WordNet.

6.2 Our Approach

6.2.1 Motivation

To motivate the extraction of hypernym subsequences, we first note that Table 6.1 includes

hypernyms of apple at different levels of generality, such as fruit and food. In fact, we observe

this pattern in the candidate hypernyms of most terms. This suggests that we can leverage

such information to not only extract the direct hypernyms of apple, but to also extract longer

hypernym subsequences, such as apple→fruit→food.

This becomes even more important given the result by Velardi et al. [129], who demonstrated

that hypernym extraction becomes increasingly erroneous as the generality of terms increases,

mainly due to the increase in term ambiguity. To further support this hypothesis, we perform

an experiment where we first randomly sample 100 paths from WordNet. For each edge

a→b in a sampled path, we plot the normalized occurrence frequency1 of “b as a candidate

hypernym for a” against the height of the edge (Table 6.1). We also plot the average rank of b

1Normalization is performed by dividing the frequency counts by the maximum.
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among candidate hypernyms of a, where candidate hypernyms are ranked by their normalized

occurrence frequencies in decreasing order.

Figure 6.1 shows the results of this experiment. Since edges in the WordNet are assumed to

be the ground truth, it is desired that they have a higher normalized frequency and lower

ranks. However, this small-scale experiment demonstrates that as the height of the edge

increases, the normalized frequencies decrease whereas the average ranks increase. Therefore,

the accuracy of candidate hypernyms is lower for more general terms that appear higher

in WordNet paths. Hence, for such terms, it makes sense to not solely base the hypernym

selection on the noisy set of candidate hypernyms. We can potentially improve the accuracy of

the selected hypernyms for general terms (such as fruit) by relying on hypernym subsequences

starting from more specific terms (such as apple). Those subsequences would be evidenced

by the less-noisy candidate hypernyms of the more specific terms.

In sum, extracting hypernym subsequences is both possible and potentially beneficial. The

remainder of this section describes our model that exploits this intuition.

6.2.2 Model

We now describe our model for extracting hypernym subsequences for a given term. We begin

with a general formulation using directed acyclic graphs (hereafter referred to as DAG), and

we make simplifying assumptions to derive a model for hypernym subsequences. We first

describe some notations, which will serve us for the rest of this section:

• t0: a given seed term, e.g., apple;

• lt : lexical head of any term t , e.g., lt =soup for t=chicken soup;

• E : Hypernym Evidence, i.e., the set of all the candidate hypernymy relations, in the form

of 3-tuples (hyponym, hypernym, frequency);

• Ek (t ): Hypernym Evidence for term t , i.e., the set of top-k candidate hypernyms for the

term t , which have the highest occurrence frequency counts (Table 6.1 shows a sample

from Ek (t ) for t=apple);

• Ek (t ,m): mth ranked candidate hypernym from Ek (t), where m ≤ k, and ranks are

computed by sorting candidate hypernyms in decreasing order of frequency counts;

• sim(ti , t j ): A similarity measure between terms ti and t j estimated using evidence E ;

• Gt : a DAG consisting of generalizations for a term t (Figure 6.2 shows an example of a

possible DAG for t=apple).

For a given term t0, we define the goal of our model as finding a DAG Ĝt0 , which maximizes
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Equation 6.1 transforms into:

Ĝt0 = argmax⋃b
i=1 Si

t0

b∏
i=1

Pr(Ek (t0)|Si
t0

)×Pr(Si
t0

) (6.2)

Estimation. We now describe the estimation of Pr(Ek (t0)|Si
t0

) and Pr(Si
t0

) for a hypernym sub-

sequence Si
t0

. In order to motivate the estimation of the conditional probability Pr(Ek (t0)|Si
t0

),

we start with an example. Consider a valid hypernym subsequence for the term apple, whose

candidate hypernyms are in Table 6.1:

apple → fruit → food → substance → matter → entity

At first sight, it might seem desirable for a candidate hypernym from Ek (t0) (e.g., fruit) to

have a high similarity with as many terms in the subsequence as possible. However, since the

similarity measure is estimated using the hypernym evidence E , it is plausible that terms such

as matter and entity have a low similarity with the candidate hypernym fruit, simply because

they are at a higher level of generality.

To avoid penalizing such valid subsequences, we let the conditional probability Pr(Ek (t0)|Si
t0

)

be proportional to the maximum similarity possible between the candidate hypernym and

any term in the subsequence (e.g., for the candidate hypernym fruit, the similarity is 1 as fruit

is in the subsequence). We aggregate those similarity values across the candidate hypernyms.

More formally, assuming subsequence Si
t0

= t0→hi 1→hi 2. . . hi n , where n is the length of Si
t0

,

we compute the conditional probability as:

Pr(Ek (t0)|Si
t0

) ∝
k∑

m=1
(λ1)m max

j∈[1,n]

(
sim(Ek (t0,m),hi j )

)
(6.3)

where λ1 (a fixed parameter) serves as a rank-penalty to penalize candidate hypernyms with

lower frequency counts.

We now proceed to compute Pr(Si
t0

), the other constituent of Equation 6.2. Towards that, we

assume that the subsequence Si
t0

is a collection of independent hypernym edges. Thus, Pr(Si
t0

)

becomes the product of the probabilities of the individual edges in Si
t0

:

Pr(Si
t0

) ∝ Pre (t0,hi 1)× (λ2)n
n−1∏
j=1

Pre (hi j ,hi ( j+1)) (6.4)
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where Pre (x1, x2) is the probability of an individual hypernym edge x1→x2 between terms x1

and x2; λ2 is a length penalty parameter.

Finally, we estimate Pre (x1, x2) as a log-linear model using a set of features f, weighted by the

learned weight vector w:

Pre (x1, x2) ∝ exp
(
w · f(x1, x2)

)
(6.5)

We also use this edge probability to compute the aforementioned similarity function (sim) as:

sim(xi , x j ) = max
(
Pre (xi , x j ),Pre (x j , xi )

)
(6.6)

Intuitively, Pr(Ek (t0)|Si
t0

) promotes subsequences, which contain a larger number of candidate

hypernyms from Ek (t0), whereas Pr(Si
t0

) promotes subsequences, which consist of individual

edges with a larger probability of hypernymy.

Subsequence Extraction. After inserting Equations 6.3 & 6.4 into Equation 6.2 and taking

logarithm, the objective function becomes:

Ĝt0 = argmax⋃b
i=1 Si

t0

b∑
i=1

[
log

k∑
m=1

(λ1)m max
j∈[1,n]

(
sim(Ek (t0,m),hi j )

)

+ logPre (t0,hi 1)+nλ2 +
n−1∑
j=1

logPre (hi j ,hi ( j+1))
] (6.7)

This objective function leads to the following search algorithm for the extraction of hypernym

subsequences:

1. For a given term t0, iterate over all candidate hypernyms in Ek (t0).

2. For each hc ∈ Ek (t0), perform a depth-limited beam search over the space of possible

subsequences by recursively exploring the candidate hypernyms of hc (i.e., Ek (hc )).

3. For each hc ∈ Ek (t0), choose the subsequence S with the highest score (i.e., log(Pr(Ek (t0)|S)×
Pr(S))).

4. Choose the top-b candidate hypernyms in a greedy fashion, based on their correspond-

ing subsequence scores.

While, in theory, we can iterate over all candidate hypernyms in Ek (t0), in practice, we employ
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an alternative two-phase execution that significantly improves the running time as well as

produces more meaningful subsequences. These two phases are described as follows.

Search Phase. Proceed as in the aforementioned steps. However, in the special case where a

candidate hypernym hc is a compound term and its lexical head lhc is also present in Ek (t0),

skip hc in step (1) of the algorithm. For example, for t0 = apple, candidate hypernyms tech

company, software company and hardware company are skipped in step (1) due to the presence

of company in Ek (t0) (see Table 6.1).

Expansion Phase. In this phase, we augment the subsequences extracted in the search

phase to account for skipped compound terms. We focus on the case where the lexical

head of the skipped compound terms occurs in a subsequence. In that case, we expand

the incoming edge of the lexical head with zero or more of those compound terms. For

example, in the subsequence apple→company→organization, a potential expansion of the

edge apple→company is: apple→American software company→software company→company.

However, special attention has to be taken while generating these expansions. For example,

the expansion apple→American software company→British software company→company is

invalid due to the co-hyponymy edge American software company→British software company.

In contrast, the expansion apple→American software company→software company→company

is a valid expansion. To avoid invalid expansions, we restrict the possible expansions to the

cases where the set of pre-modifiers of a compound term is a superset of its hypernym’s

pre-modifiers (e.g., {American, software }⊃{software}).

We generate all possible expansions for each edge and rank them by averaging a TF-IDF-

style metric across the pre-modifiers of compound terms in each expansion. The goal of our

approach for ranking the potential expansions is two-fold:

1. promote the pre-modifiers, which frequently appear in the evidence Ek (t0).

2. penalize the noisy pre-modifiers unrelated to t0 that frequently occur in compound

terms (e.g., several, other, etc.).

To achieve these goals, we compute the TF score of a pre-modifier as its average frequency

of occurrence in the candidate hypernyms Ek (t0). We compute IDF as the average frequency

of occurrences of the pre-modifier in Ek (t) for a random term t . Finally, we choose the

top-ranked expansion per edge.

To illustrate the result of the previous steps, we show in Table 6.2 an example of extracted

subsequences along with their expanded versions for the food domain. Intuitively, the two-

phase execution serves to distinguish between two different forms of generalization:
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Initial subsequences

mortadella→sausage→meat→food

laksa→soup→dish→food

Expanded subsequences

mortadella→large italian sausage→sausage→processed meat→meat→food

laksa→spicy noodle soup→noodle soup→soup→dish→food

Table 6.2 – Examples of hypernym subsequences found during the search phase, and their
expanded versions.

1. Type-based generalization, which provides core types as generalizations. Examples

of such core types include company and organization in the hypernym subsequence

apple→company→organization.

2. Attribute-based generalization, which enriches type-based generalization edges. For

example, apple→american software company→software company→company enriches

the type-based generalization edge apple→company.

In our experiments, we observed that models, which distinguish between these two forms of

generalizations, performed consistently better than models that attempted to unify them. We

hypothesize that it is because these two types of generalization are fundamentally different. In

comparison with the type-based generalization edges, attribute-based generalization edges

are more likely to be correct, because of the condition of the same lexical head. Hence,

attribute-based generalization edges do not require the same strength of evidence as the

type-based generalization edges.

Our hypothesis is further corroborated by the observation that type-based and attribute-

based generalizations can also be noticed in the taxonomies induced from the Wikipedia

categories networks. For example, the generalization path for Johnny Depp sampled from the

HEADS Taxonomy (cf. Table 3.8) contains the subsequence JOHNNY DEPP→AMERICAN FILM

PRODUCERS→AMERICAN PRODUCERS→PRODUCERS, which evidences the two different forms

of generalization. Similar patterns can be observed in multiple languages (Figure 4.5), thus,

further supporting our hypothesis.

6.2.3 Features

We now describe the edge features that we employ for estimating the probability of a hyper-

nymy relation between two terms (cf. Equation 6.5). Each edge feature is a function, which

takes two terms (i.e., hyponym and hypernym) as input, and return a float value. Edge features

can be further divided into three categories based on the data needed for their computation:
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Counts-based Features. These features mainly use the frequency counts of the hypernyms

found in the hypernym database (cf. Table 6.1). We use the following count-based features:

• Normalized Count (n f ): As the name suggests, for the pair (xi , x j ), this feature returns

the normalized frequency count of x j in the hypernym Evidence for xi (i.e., Ek (xi )).

More specifically, n f (xi , x j ) = freq(xi ,x j )
max

m
freq(xi ,xm ) , where freq(xa , xb) is the frequency count of

xb in Ek (xa).

• Normalized Diff (nd ): this feature computes an asymmetric hypernymy score based

on the frequency counts. It returns the difference of the normalized counts in the two

directions (xi → x j and x j → xi ), i.e., nd (xi , x j ) = n f (xi , x j )−n f (x j , xi ). Intuitively, the

normalized diff feature helps in down-ranking noisy relations such as synonyms and

co-hyponyms (e.g., apple and orange) because they usually receive high-frequency

counts in both directions. A similar feature is also used by Panchenko et al. [102].

String-based Features. These features mainly use the term strings of the hyponyms and the

hypernyms in their computation. We use the following string-based features:

• Substring Beginswith: For the pair (xi , x j ), this features returns 1 if xi begins with x j ,

otherwise returns 0. For example, (sportspeople, sports) will receive the value 1, whereas

(sports, people) will receive the value 0.

• Substring Endswith: For the pair (xi , x j ), this features returns 1 if xi ends with x j ,

otherwise returns 0. For example, (sportspeople, people) will receive the value 1, whereas

(sports, people) will receive the value 0.

• Substring Contains: For the pair (xi , x j ), this features returns 1 if xi contains x j , other-

wise returns 0. For example, both (sportspeople, sport) and (sportspeople, people) will

receive the value 1.

• Length Ratio: this feature returns the ratio of lengths of the hypernym term to the

hyponym term.

Generality-based Features. We introduce two novel features for explicitly incorporating the

generality or abstractness of a term in our model. To this end, we first define the generality g (t )

of a term t as the log of the number of distinct hyponyms present in all candidate hypernymy

relations (E); i.e., g (t ) = log(1+|x | x→t ∈ E |). We also define the generality of an edge as the

difference in generality between the hypernym and the hyponym: ge (xi , x j ) = g (x j )− g (xi ).

We now describe the generality-based features that use these definitions:

• Generality Diff (gd ): Intuitively, this feature aims to promote edges at the right level of

generality and penalize edges, which are either too general (e.g., apple→thing) or too
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specific (i.e., edges between synonyms or co-hyponyms, such as apple→orange). To

realize this intuition, we first sample a random set of terms and collect the edges with

the highest Normalized diff (nd ) for these terms (hereafter referred to as top edges). We

compare the distribution of generality (i.e., ge ) for the top edges vs. the distribution of

generality for a set of randomly sampled edges.

Further, we make the assumption that it is more likely to sample the generality of a

correct edge (i.e., edge at right level of generality) from the distribution of top edges

as compared to random edges. Hence, given Dt and Dr as the Gaussian distributions

estimated from the samples of generality for top edges and random edges respectively,

we define the feature as: gd (xi , x j ) = PrDt

(
ge (xi , x j )

)−PrDr

(
ge (xi , x j )

)
.

• Generality Probability (gp ): The computation of this feature is similar to the previous

feature. However, in the final equation, only the first constituent computed using the

top edges distribution is used, i.e., gp (xi , x j ) = PrDt

(
ge (xi , x j )

)
.

The relative weights for the features (w in equation 6.5) are estimated using a support vector

machine (hereafter referred to as SVM) trained on a manually annotated set of 500 edges (50

terms, 10 edges per term).

6.3 Evaluation and Results

The subsequence extraction approach presented in the previous section is hereafter referred to

as SubSeq. In this section, we evaluate the quality of subsequences extracted by SubSeq using

two different evaluation methodologies. First, in Section 6.3.1, we perform automated evalua-

tion using WordNet as a source of ground truth hypernym edges. Second, in Section 6.3.2, we

perform manual annotations to assess the quality of the subsequences.

Before we proceed with the evaluations, we first introduce two baselines for comparison

purposes. Similar to SubSeq, these baselines also utilize beam search to discover long-range

hypernym subsequences for a given starting term using the candidate hypernyms. However,

in contrast with SubSeq, which aims to maximize the objective function in Equation 6.7, these

baselines aim to maximize the product of probabilities of individual edges in the subsequence.

In other words, the objective function for these baselines is Pr(Si
t0

) instead of Pr(Ek (t0)|Si
t0

)×
Pr(Si

t0
) (cf. Equation 6.2).

The first baseline uses only the Normalized Count feature (n f in the previous section) as the

probability of an individual edge. It is hereafter referred to as TopEdge. The second baseline

uses the SVM for computing the probability of an individual edge. It is hereafter referred to as

TopEdge+SVM. These two baselines are collectively referred to as the edge-based baselines.
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6.3.1 Automated Evaluation

Experimental Setup. In this experiment, we evaluate the quality of hypernym subsequences

extracted by the edge-based baselines as well as SubSeq, using a fully automated approach.

Our evaluation requires two inputs: (1) a source for ground truth hypernyms for seed terms,

and (2) a vocabulary of seed terms, for which hypernym subsequences can be extracted.

We use WordNet as the source of ground truth hypernyms. In contrast with the candidate

hypernymy database, which is automatically extracted from unstructured text, the WordNet

is constructed manually by domain experts. As a result, it is highly accurate and usually

considered the gold standard for hypernymy extraction and taxonomy induction tasks [133,

120, 10]. For a given term, WordNet provides multiple synsets, where each synset corresponds

to a unique sense of the term. Other synsets are provided as the hypernyms for each synset.

For example, the WordNet synsets for the term apple apple include the “fruit” sense as well

as “tree” sense. The hypernym for the synset corresponding to the “fruit” sense is “edible

fruit”, whereas the hypernym for the synset corresponding to the “tree sense” is “fruit tree”.

Incidentally, the “company” sense of apple is not present the WordNet, which serves to show

its low coverage and hence, the need for automated taxonomy induction approaches.

To construct a vocabulary of seed terms, we randomly sample 100 terms from the food vocabu-

lary released by the Taxonomy Extraction Evaluation task of SemEval 2016 (i.e., TExEval-2 [16]).

During sampling, terms that are not present in the WordNet are ignored, because their ground

truth hypernyms cannot be extracted.

For each sampled term, we extract hypernym subsequences of different lengths using SubSeq

as well as the TopEdge and TopEdge+SVM baselines. To evaluate these subsequences, we also

extract a hypernym path for the sampled terms using the WordNet. If multiple hypernym

paths are found in WordNet for a seed term, the hypernym path containing the synset “food”

is considered as the ground truth.

Table 6.3 shows examples of these hypernym subsequences of different lengths for two terms

(i.e., blintz and oat) as well as the hypernym paths sampled from the WordNet. For a hypernym

subsequence S with the corresponding WordNet path W , we compute two scores: (1) precision,

which is defined as the ratio of number of terms present in both S and W to the number of

terms present in S, (2) recall, which is defined as the ratio of present in both S and W to the

number of terms present in W .

We report four evaluation metrics in this evaluation: (1) average precision@1 (P@1), which

is defined as the average precision of the highest ranked subsequence returned by the sub-

sequence extraction method (i.e., SubSeq or the edge-based baselines), (2) average recall@1

(R@1), which is defined as the average recall of the highest ranked subsequence returned

by the subsequence extraction method, (1) average precision@5 (P@5), which is defined as

the average precision of the top-5 subsequences returned by the subsequence extraction

method, (2) average recall@5 (R@5), which is defined as the average recall of the top-5 ranked
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Model Length (n) Subsequence

TopEdge

2 blintz→goody

3 blintz→goody→thing

4 blintz→goody→ulead→editor

5 blintz→goody→ulead→social networking →networking→part

6 blintz→goody→ulead→editor→storyliner→role

2 oat→food

3 oat→crop→thing

4 oat→crop→total loss→partial loss→loss

5 oat→cereal grain→grain→balanced diet→diet→factor

6 oat→cereal→industry→field of life→other carrier→carrier

TopEdge+SVM

2 blintz→thin pancake

3 blintz→homemade jewish food→food→exclusive info

4 blintz→homemade jewish food→food→exclusive info→stats from the world

5 blintz→dish→hit→home run→run

6 blintz→homemade jewish food→food→supply→keyword→beta test→test

2 oat→cereal grain→grain

3 oat→cereal grain→grain→supply

4 oat→cereal grain→grain→balanced diet→diet

5 oat→cereal grain→grain→balanced diet→diet→factor

6 oat→cereal grain→grain→supply→keyword→beta test→test

SubSeq

2 blintz→homemade jewish food→food

3 blintz→homemade jewish food→food→supply

4 blintz→thin pancake→pastry→snack food→food

5 blintz→homemade jewish food→food→supply→necessity→thing

6 blintz→homemade jewish food→food→supply→keyword→beta test→test

2 oat→cereal grain→grain

3 oat→cereal grain→grain→supply

4 oat→cereal grain→grain→complex carbohydrate→carbohydrate

5 oat→cereal grain→grain→complex carbohydrate→carbohydrate→essential nutrient→nutrient

6 oat→cereal grain→grain→supply→keyword→beta test→test

WordNet N/A
blintz→pancake→cake→baked goods→food

oat→grain→foodstuff→food

Table 6.3 – Examples of hypernym subsequences of different lengths extracted using TopEdge,
TopEdge+SVM and SubSeq approaches. Hypernym paths sampled from the WordNet are also
shown.

subsequences returned by the subsequence extraction method. All averages are performed

per seed term.

Results. Figure 6.3 shows the comparative values of the evaluation metrics for the three

subsequence extraction methods. The results demonstrate that SubSeq consistently outper-

forms both TopEdge and TopEdge+SVM baselines for all values of subsequences lengths, thus

demonstrating the efficacy of our subsequence extraction approach. Furthermore, TopE-

dge+SVM also consistently outperforms TopEdge, which demonstrates the benefit of using

the SVM trained with multiple features over a single feature.

The experimental results also show that as the subsequence length increases, the precision

metrics decrease, whereas the recall metrics increase. This effect can be intuitively explained
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Model n=3 n=4 n=5

Micro Macro Micro Macro Micro Macro

TopEdge 0.45 0.42 0.34 0.36 0.16 0.18

TopEdge+SVM 0.61 0.62 0.39 0.37 0.22 0.22

SubSeq 0.89 0.88 0.67 0.65 0.51 0.50

Table 6.4 – Micro-averaged and macro-averaged precision values for subsequences of different
lengths extracted by SubSeq and the edge-based baselines.

the Equation 6.2 (i.e., Pr(Ek (t0)|Si
t0

)). A similar effect can be observed for most subsequences

up to length 5. As the subsequence length is further increased, precision decreases for SubSeq

subsequences as well, as is corroborated by the results in Figure 6.3.

The automated evaluation performed in this section demonstrates that the SubSeq model

produces hypernym subsequences, which are significantly more accurate than the edge-based

baselines. In the next section, we further corroborate our findings by performing a manual

evaluation of the subsequences.

6.3.2 Manual Evaluation

In the previous section, we compared the subsequences extracted by SubSeq with the subse-

quences extracted by the edge-based baselines. We also plotted the precision and recall values

for different subsequences lengths in Figure 6.3. However, it is noteworthy that the absolute

values of precision in Figure 6.3 are low (< 0.25). This can be partly attributed to the low cover-

age of WordNet. Since we perform an automated evaluation using WordNet as a gold standard,

it is quite possible that many correct hypernyms are marked as incorrect, just because they

are absent from the WordNet. This is further exacerbated by the fact that WordNet typically

does not contain noun compounds (e.g., complex carbohydrate), thus resulting in lowering of

computed precision and recall scores.

Therefore, to mitigate these shortcomings of the automated evaluation, in this section, we

perform a direct manual evaluation of the hypernym subsequences returned by different

models. To this end, we sample 60 hypernym subsequences (20 per model) for lengths= 3,4,5

and manually annotate the correctness of each hypernym2.

Table 6.4 summarizes the results of this evaluation. Micro-averaged and macro-averaged

precision for different (model, subsequence length) pairs are reported separately. Similar to the

previous evaluation, this evaluation also demonstrates that SubSeq significantly outperforms

the edge-based baselines. As expected, the precision decreases as the subsequence length

increases. The results of this experiment indicate that the relative precision scores obtained in

the automated evaluation correlate well with those computed in the manual evaluation.

2Two annotators independently annotated each hypernym. The inter-annotator agreement (Pearson’s correla-
tion coefficient) was 93.8%.
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Overall, these experiments demonstrate that SubSeq outperforms the edge-based baselines in

both automated and manual evaluation. Hence, we safely conclude that SubSeq is a better

approach for extracting generalization subsequences. In the next chapter, we demonstrate that

the superior quality of hypernym subsequences extracted by SubSeq results in the induction

of more accurate taxonomies.

We note that we do not employ the path-level metrics introduced in Section 3.3.3 (i.e., ACPP

and ARCPP) for the evaluation of the subsequences, mainly due to the following reasons: (1)

the extracted subsequences are usually much shorter than the generalization paths sampled

from the Wikipedia taxonomies. (2) Hypernym extraction from unstructured text is prone

to noise, which would render ACPP and ARCPP excessively penalizing. (3) The hypernym

subsequences are only intermediate results, which are further aggregated and filtered for

the induction of final taxonomy. The discussion related to taxonomy induction from the

hypernym subsequences is presented in the next chapter.

6.4 Analysis

In this section, we perform a variety of experiments to gain further insights into the SubSeq

model. More specifically, in Section 6.4.1, we demonstrate the effects of various features used

for the computation of individual edge probabilities. In Section 6.4.2, we study the effect of

various parameters on the performance of SubSeq. Finally, in Section 6.4.3, we analyze the

effect of the expansion phase employed during the extraction of hypernym subsequences.

6.4.1 Feature Analysis

In Section 6.2.3, we described the different features used by SubSeq and the edge-based base-

lines for computation of individual edge probabilities. TopEdge+SVM and SubSeq methods

use the SVM, which is trained over these features using a manually annotated set of 500 edges

(50 terms, 10 edges per term). In this Section, we perform an experiment to analyze the relative

performance of these features. To this end, we compute the values of all the features for the

set of 500 edges. For each feature, we first sort the edges (per term) by the feature value in

descending order. Further, we select top-k edges for varying values of k ∈ [1,10], and compute

precision@k using the manually annotated set as the ground truth.

Figure 6.4 plots the results of this experiment. Precision@k for edges sorted by the SVM proba-

bilities are also plotted. In general, the count-based features achieve the highest precision,

followed by generality-based and string-based features. SVM achieves better performance

than all individual features, thus demonstrating its usefulness in computing more accurate

edge probabilities. The utility of the SVM was also corroborated by the experiments in the

previous section, which demonstrated that TopEdge+SVM consistently outperforms TopEdge.

For k = 10, all features achieve the same precision, because all the edges per term are selected.
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7 Taxonomy Induction Using Flow
Network Optimization

7.1 Overview

As discussed in the previous chapters, taxonomy induction from unstructured text consists of

two main stages: (1) extraction of hypernymy relations from unstructured text, and (2) the

structured organization of terms into a taxonomy. In this chapter, we focus on the second stage,

namely the structured organization of terms into a taxonomy. We propose a novel approach

that casts the task of structured organization of terms as an instance of the minimum-cost

flow optimization problem [4, 63]. Unlike previous approaches that assume the availability of

a clean vocabulary of input terms (see Section 5.4 for a survey), our approach is specifically

designed from the ground up to handle significant noise in the input vocabulary. We describe

our approach in detail in the remainder of this chapter.

7.2 Our Approach

Given a potentially-noisy vocabulary of seed terms as input, the goal of our approach is to

induce a taxonomy that consists of these seed terms (and possibly other terms). Our approach

runs in three phases:

• Extraction of hypernym subsequences: in the first phase, hypernym subsequences are

extracted for the seed terms in the input vocabulary. The subsequences can be extracted

using any of the approaches described in the previous chapter, i.e., SubSeq, TopEdge or

TopEdge+SVM (see Section 6.3).

• Initial graph construction: in the second phase, a noisy hypernym graph is constructed

through the aggregation of the extracted subsequences.

• Flow network optimization: in the final phase, the noisy hypernym graph is trans-

formed into a flow network with carefully-designed costs and capacities. An optimal

flow is computed over the flow network. The edges with positive flow constitute the

final taxonomy.
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7.2.1 Initial Graph Construction

The first phase of our approach, i.e., extraction of hypernym subsequences, is already de-

scribed in detail in the previous chapter. We now describe the second phase of our taxonomy

induction approach, namely the construction of a hypernym graph from the extracted subse-

quences. This phase involves two main steps, which are described hereafter.

Domain Filtering. Given a seed term, the usual case is that multiple hypernym subse-

quences corresponding to different senses of the seed term are extracted. For example, apple

can be a company or a fruit, thus resulting in extraction of subsequences apple→fruit→food

and apple→software company→company. However, many of these subsequences will not

pertain to the domain of interest, which is usually defined by either the domain-specific

corpus or the input vocabulary of seed terms.

To eliminate such irrelevant subsequences, we first estimate a smoothed unigram model

using the vocabulary of seed terms and the hypernym terms in the extracted subsequences1.

Subsequently, we compute the generation probabilities for each extracted subsequence as the

average of the generation probabilities for each hypernym term computed using the unigram

model. Finally, we remove all the extracted subsequences that have generation probabilities

below a fixed threshold.

Hypernym Graph Construction. In this step, we aggregate the filtered subsequences into

an initial hypernym graph. We construct this graph by grouping the edges that have the same

start and end terms in all the filtered subsequences. The weight of an edge is computed as

the sum of the scores of the filtered subsequences that contain that edge. The score of a

subsequence is the same as computed during the extraction phase (i.e., log(Pr(Ek (t )|S)×Pr(S))

for SubSeq, and Pr(S) for TopEdge and TopEdge+SVM in Equation 6.2).

To increase the coverage for compound seed terms that do not yet have a hypernym, we also

add an hypernym edge to their lexical head with weight=∞ (i.e., an extremely large value),

whenever the lexical head is already present in the hypernym graph. We use a large weight for

such edges, as they tend to be usually correct.

The hypernym graph resulting from the above steps may contain cycles. As shown in the

prior literature, the presence of cycles in a hypernymy graph is usually a result of incorrect

hypernym edges [132]. Therefore, to remove these cycles, we first detect such cycles using

the algorithm proposed in Johnson [56]. Further, for each detected cycle, we remove the edge

with the smallest weight. As a result, the initial hypernym graph is transformed into a directed

acyclic graph (i.e., DAG). In addition to correct hypernym edges, this DAG also contains many

noisy terms and edges, which are pruned in the next step of our approach.

1In our experiments, we used a weighting function (i.e., a step function with cut-off at 50% of the height of the
subsequence) to favor terms at lower heights as they are usually more domain-specific.
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Figure 7.1 – Execution of the minimum-cost flow optimization algorithm for taxonomy induc-
tion starting from a noisy hypernym graph.

7.2.2 Flow Network Optimization

In the final phase of our approach, we induce a taxonomy from the noisy hypernym DAG

obtained in the previous phase. We cast this task as an instance of the minimum-cost flow

optimization problem (usually referred to as MCFP).

MCFP is an optimization problem, which aims to find the cheapest way of sending a certain

amount of flow through a flow network. It has been used to find the optimal solution in

applications like the transportation problem [64], where the goal is to find the cheapest paths

to send commodities from a group of facilities to the customers via a transportation network.

Analogously, we cast the problem of taxonomy induction as finding the cheapest way of

sending the seed terms to the root terms through a carefully designed flow network F . We

use the network simplex algorithm [99] to compute the optimal flow for F , and we select all

edges with a positive flow as part of our final taxonomy. We now describe our method for

constructing the flow network F . In what follows, we refer to Figure 7.1 at different steps.

Flow Network Construction. Let V be the vocabulary of input seed terms (e.g., apple, orange,

and Spain in Figure 7.1); H is the noisy hypernym graph constructed in Section 7.2.1 (cf.

Figure 7.1(a)); w(x, y) is the weight of the edge x→y in H ; Dx is the set of descendants of term

97



Chapter 7. Taxonomy Induction Using Flow Network Optimization

x in H (e.g., apple is a descendant of food); R is the set of given roots (e.g., food in Figure 7.1).

The construction of the flow network F proceeds as follows (cf. Figure 7.1(b)):

1. For an edge x→y in H , add the edge x→y in F . Set the capacity (c) of the added edge as

c(x, y) = |Dx ∩V |, i.e., the number of seed descendants of the term x. Set the cost (a) of

the edge x→y as a(x, y) = 1/w(x, y). This lowers the costs of the edges that have higher

weights.

2. Add a sentinel source node s. ∀v ∈V , add an edge s→v with c(s, v) = a(s, v) = 1.

3. Add a sentinel sink node t . ∀r ∈ R, add edge r→t with c(r, t ) = |Dr ∩V | and a(r, t ) = 1.

Minimum-cost Flow. Given a demand d of the total flow to be sent from s to t , the goal of

MCFP is to find flow values ( f ) for each edge in F that minimize the total cost of flow over all

edges:
∑

(u,v)∈F
a(u, v) · f (u, v).

In our construct, demand d represents the maximum number of seed terms that can be

included in the final taxonomy. Figures 7.1(c) & 7.1(d) show the minimum-cost flow for the

demand d=3 and d=2 respectively. In both cases, the edge apple→food receives f =0 due

to the presence of edges apple→fruit and fruit→food with lower costs. For d=2, the edge

source→Spain has f =0, implying that the noisy term Spain would be removed from the final

taxonomy.

Intuitively, demand d serves as a parameter for discarding potentially noisy terms in the input

vocabulary. More formally, d can be defined as α|V |, where α, a user-defined parameter,

indicates the desired coverage over seed terms. If the vocabulary contains only accurate terms,

α is set to 1. For a given α, we run the network simplex algorithm with d=α|V | to compute the

minimum-cost flow for F . The final taxonomy consists of all edges with flow > 0.

7.3 Evaluation and Results

In this section, we evaluate the taxonomy induction approach, which is presented in the

previous section. The aim of the empirical evaluation is to address the following questions:

• How does our approach compare against the state-of-the-art approaches under the

assumption of a clean input vocabulary?

• How does our approach perform on a noisy input vocabulary?

• What are the benefits of extracting longer hypernym subsequences compared to single

hypernym edges?
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To answer these questions, we perform two experiments. In Section 7.3.1, we compare our

taxonomy induction approach against the state of the art, under the simplifying assumption

of a clean input vocabulary. Evaluations are performed automatically by computing standard

edge-based precision, recall and F1 measures against a gold standard.

We then drop the simplifying assumption in Section 7.3.2, where we show that our taxonomy

induction performs well even under the presence of significant noise in the input vocabulary.

Evaluation is performed both manually as well as automatically against WordNet as the

gold standard. We also demonstrate that the subsequences-based approach significantly

outperforms edges-based variants, thus demonstrating the utility of hypernym subsequences.

In the remainder of this chapter, we use SubSeq+Flow to refer to our approach towards taxon-

omy induction that uses the SubSeq model followed by the minimum-cost flow optimization.

7.3.1 Evaluation against the State of the Art

Setup. We use the setting of the TExEval-2 task for taxonomy extraction [16]. The task

provides six sets of input terminologies, related to three domains (food, environment, and

science), for four different languages (English, Dutch, French and Italian), thus totaling a set

of 24 (terminology, language) pairs. The task requires participants to generate taxonomies for

each (terminology, language) pair, which are further evaluated using a variety of techniques,

including comparison against a gold standard. Except for a few restricted resources used to

construct gold standard, the participants are allowed to use external corpora for hypernymy

extraction and taxonomy induction. Participants are compared against each other and a

high-precision string inclusion baseline.

We compare SubSeq+Flow with TAXI [102] (also described in Section 5.4.4), the system that

reached the first place in all subtasks of the TExEval-2 task. TAXI utilizes an SVM trained

with individual hypernymy edge features extracted from unstructured text, such as frequency

counts and substring inclusion to classify edges into is-a or not-is-a. The edges, which are

classified as is-a, are added to the taxonomy. Panchenko et al. [102] report that alternate config-

urations of TAXI with different term-level and edge-level features as well as different classifiers

such as Logistic Regression, Gradient Boosted Trees, and Random Forest do not provide any

improvements. As a result, the performance of TAXI reflects the collective performance of a

wide variety of edge-based taxonomy induction approaches.

Before we proceed with the evaluation results, we perform an additional modification to

adapt SubSeq+Flow to the setting of TExEval-2. The TExEval-2 task provides the additional

assumption that all the terms in the gold standard taxonomies (i.e., including leaf terms and

non-leaf terms) are present in the input vocabulary. This assumption would unfairly lower the

performance of SubSeq+Flow, as it would find hypernyms, which are possibly correct but not

present in the gold standard. Hence, to ensure a fair comparison, we restrict the subsequence

extraction and the hypernym graph construction step of SubSeq+Flow (see Sections 6.2.2
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TAXI SUBSEQ

P R F1 P R F1

EN 33.2 31.7 32.2 44.9 31.9 37.2

NL 48.0 19.7 27.6 42.3 20.7 27.9

FR 33.4 24.1 27.7 41.0 24.4 30.5

IT 53.7 20.7 29.1 49.0 21.8 29.9

Table 7.1 – Precision (P), Recall (R) and F1 Metrics for TAXI vs. SubSeq across different lan-
guages. Results are aggregated over all domains per language.

& 7.2.1) to candidate hypernyms that are present in the input vocabulary. Furthermore, for all

languages, we use the same candidate hypernymy relations that are used by TAXI. As a result,

TAXI and SubSeq are identical in input data conditions as well as the evaluation metrics and

only differ in the core taxonomy induction approach.

Evaluation Results. Table 7.1 shows the language-wise precision, recall and F1 values com-

puted against the gold standard for SubSeq+Flow and TAXI. Aggregated over all domains,

SubSeq+Flow outperforms TAXI for all four languages. It achieves >15% relative improvement

in F1 for English and 7% improvement overall. Both methods perform significantly better for

English, which can be attributed to the higher accuracy of candidate hypernymy relations for

English.

Figure 7.2 shows the performance of SubSeq+Flow compared to TAXI and the TExEval-2

baseline across different domains and languages. SubSeq+Flow performs best for food domain,

where it outperforms TAXI across all the languages. SubSeq+Flow performs best for English,

where it outperforms TAXI across 3/4 domains.

In our experiments, we noticed that SubSeq+Flow achieves the largest improvements when a

greater number of hypernym subsequences are found during subsequence extraction. For

example, SubSeq+Flow achieves an average 32.23% relative improvement in F1 over TAXI for

the food domain, where on an average 0.67 subsequences are found per term, compared to

only 0.44 for other domains. Similarly, SubSeq+Flow performs best for the English datasets,

where, on an average, 1.09 subsequences are found per term, compared to only 0.32 for other

languages.

The variation in the number of extracted subsequences per term can be attributed to two

factors: (1) number of terms in the input vocabulary, and (2) number of candidate hypernymy

relations available. Due to the assumption that all candidate hypernyms belong to the input

vocabulary, larger vocabularies of food domain make it more likely for a candidate hypernym

to be found, and hence for a subsequence to be extracted. Similarly, the larger set of available

candidate hypernyms for English (∼400 million vs. <3.2 million for other languages) makes it

more likely for a subsequence to be extracted for English datasets.
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• TopEdge+SVM+Flow: this baseline is analogous to TopEdge+Flow. However, instead of

the TopEdge model, it uses the subsequences extracted by the TopEdge+SVM model.

• SubSeq+TopWeights: Similar to SubSeq+Flow, this baseline also employs the SubSeq

approach for extracting the subsequences. However, instead of the flow network op-

timization step for filtering the noisy graph, this baseline simply retains the top α|E |
edges with the highest weights, where α is the required coverage, and E is the set of all

the edges in the noisy hypernym graph.

This baseline is specifically designed to assess the efficacy of the flow network opti-

mization step towards filtering of noisy edges. It is important to note that this baseline

applies the required coverage parameter (i.e., α) to the set of edges. In contrast, the flow

network optimization-based approaches apply the required coverage parameter to the

set of seed terms. However, the sizes of the taxonomies induced by SubSeq+TopWeights

are similar to other baselines for different values of α.

We also evaluate the quality of input seed terms retained by yet another baseline, which simply

selects the top α|V | terms with the highest occurrence frequencies from the Vocabulary V .

This baseline is hereafter referred to as TopTF.

Setup. We first build a corpus of relevant documents for the food domain. To this end, we

collect all English Wikipedia articles with titles that match at least one seed term (post lemma-

tization) in the English food vocabulary released in the TExEval-2 task. In total, 1,344 matching

Wikipedia articles are found from the initial set of 1,555 seed terms. We run TermSuite [24],

a state-of-the-art term extraction approach to extract an initial terminology of 12,645 terms.

Further, we perform two pre-processing steps: (1) first, we remove all terms with occurrence

frequencies < 10 in the corpus, (2) we remove all terms that have more than 3 tokens (e.g.,

lanterne lasagne lasagnette linguettine), as they are usually a result errors in the term extraction

algorithm. The pre-processing steps result in a final terminology of 1,299 terms.

Table 7.2 shows the top 20 terms from the extracted terminology, which have the highest

occurrence frequencies in the food corpus. As the table shows, the extracted terminology

contains various noisy terms that are not food items, such as usage and privacy policy.

We run SubSeq+Flow and all the baselines with varying values of required coverage, i.e., α

(Section 7.2.2). For each value of α, we evaluate the output taxonomies on two aspects: (1)

quality of the input seed terms retained by the taxonomy; and (2) quality of the taxonomic

edges present in the taxonomy. Figure 7.3 shows a section of the SubSeq+Flow taxonomy for

α=0.9.

Evaluation Results. Similar to the automated evaluation of extracted subsequences (Sec-

tion 6.3), we use WordNet to evaluate the quality of the taxonomies induced by the baselines
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cake cuisine bytes sausage

usage portal node count hot

noodles node preprocessor flour

oil cache lua related

navigation privacy policy isbn pdf

Table 7.2 – Examples of terms with the highest term frequencies in the automatically-extracted
food terminology.

Figure 7.3 – A section of the SubSeq+Flow taxonomy for the food domain (α=0.9).

and SubSeq+Flow. We compare these taxonomies against the sub-hierarchy of WordNet rooted

at food, which we consider as the gold standard.

We compute two metrics, i.e., term precision and edge precision. Term precision of a taxonomy

is computed for the set of the input vocabulary terms retained by the taxonomy as the ratio

of the number of terms in the food sub-hierarchy of WordNet to the total number of terms

present in WordNet. Edge precision is computed as the ancestor precision: all nodes from the

taxonomy that are not present in the WordNet are removed, and precision is computed on the

hypernymy relations from the initial vocabulary to the root. Trivial edges t →food are ignored

for all terms t .

Term Precision. Figure 7.4 reports the term precision of the terms retained by different

approaches for varying values of required coverage (i.e., α). In general, all flow network-based

approaches significantly outperform SubSeq+TopWeights approach, thus demonstrating the

efficacy of the flow network optimization step in the taxonomy induction process. Sub-

Seq+Flow outperforms TopEdge+Flow and TopEdge+SVM+Flow, thus further corroborating

the utility of the subsequence extraction model proposed in the previous chapter (cf. Sec-

tion 6.2.2).

The baseline TopTF underperforms significantly, achieving very low precision for all values

of α. This result demonstrates that the occurrence frequency of a term in a domain-specific

corpus is not a good indicator of its relevance to the domain.

When all input terms are included in the final taxonomy (i.e., α=1), term precision is 45%,
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Overall, these experiments support the following conclusions: (1) taxonomies induced using

the subsequences extracted by the SubSeq model outperform its edge-based counterparts

(i.e., TopEdge and TopEdge+SVM), (2) the flow-network optimization results in more accurate

selection of seed terms as well more accurate taxonomies, and (3) SubSeq+Flow is an effective

approach for taxonomy induction under the presence significant noise in the input vocabu-

lary. In the next chapter, we demonstrate more examples of taxonomies induced using the

SubSeq+Flow approach.

7.4 Discussion and Related Work

Taxonomy induction is a well-studied task, and multiple different lines of work have been

proposed in the prior literature. The first line of work on taxonomy induction aims to extend

the existing partial taxonomies (e.g., WordNet) by inserting missing terms at appropriate

positions [133, 120, 141]. The second line of work aims to exploit collaboratively-built semi-

structured content such as Wikipedia for inducing large-scale taxonomies [125, 108, 109, 91, 50,

31, 41]. However, as pointed out by Hovy et al. [52] and further discussed in Chapter 2, these

taxonomy induction approaches are non-transferable, i.e., they only work for Wikipedia, be-

cause they employ lightweight heuristics that exploit the semi-structured nature of Wikipedia

content. Although taxonomy induction approaches based on external lexical resources such

as WordNet or Wikipedia achieve high precision, they usually suffer from incomplete coverage

over specific domains. To address this issue, another line of work focuses on building lexical

taxonomies automatically from scratch, i.e., unstructured text present in a domain-specific

corpus or Web. Chapter 5 provides a survey of the state of the art of this research direction.

In contrast to taxonomy induction approaches that use external resources, taxonomy in-

duction approaches that use unstructured text typically face three key obstacles. First, they

assume the availability of a clean input vocabulary of seed terms. This requirement is not

satisfied for most domains, thus requiring a time-consuming manual cleaning of noisy input

vocabularies [129]. Second, as discussed in Sections 1.4 & 5.5, these approaches typically

require a set of roots as manual input. Third, these approaches ignore the relationship between

terms and senses, i.e., they produce term taxonomies. In contrast, taxonomies induced from

WordNet or Wikipedia are concept taxonomies, i.e., they have different hypernyms for each

sense of a term (e.g., apple is a fruit or a company). To tackle with this obstacle, taxonomy

induction approaches from unstructured text employ domain filtering techniques, which

perform implicit sense disambiguation by removing the hypernyms corresponding to domain-

irrelevant senses of the terms [129]. Although taxonomies should ideally contain concepts

rather than terms, term taxonomies have still shown significant efficacy in a variety of NLP

tasks [12, 129, 10].

To put it in context, our approach is similar to the previous attempts at inducing taxonomies

from unstructured text. However, one key differentiator is that our approach is robust to

the presence of significant noise in the input vocabulary, thus dealing with the first obstacle
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above. We address the second obstacle in the next chapter, where we propose an automated

approach for detection of roots. To deal with the third obstacle, our approach performs

implicit sense disambiguation via domain filtering at two different steps: (i) domain filtering

of subsequences (Section 7.2.1); (ii) assigning lower cost for likely in-domain edges when

applying the minimum-cost flow optimization (Sections 7.2.1 & 7.2.2). However, despite the

implicit sense disambiguation, we still note that the taxonomies induced by our approach are

term taxonomies, and not concept taxonomies.

7.5 Summary

In this chapter, we presented a novel flow network-based optimization approach for inducing

a clean taxonomy from hypernym subsequences. Given a potentially-noisy vocabulary of

input seed terms, our approach first extracts hypernym subsequences for these seed terms

and aggregates them into a noisy hypernym graph (Section 7.2.1). The task of inducing a

taxonomy from the noisy hypernym graph is cast as an instance of the minimum-cost flow

optimization problem over a carefully-constructed flow network. Our approach provides a

control parameter, i.e., required coverage (α), which can be effectively used for regulating the

term and edge precision of output taxonomies. The key advantage of our approach is that it is

robust to the presence of significant noise in the input vocabulary. However, the approach

presented in this chapter still assumes two manual inputs: (1) an input vocabulary, and (2) the

roots of the taxonomy. In the next chapter, we further extend the flow network framework to

eliminate the need for these manual inputs.

Limitations and Future Work. Similar to past approaches that perform taxonomy induction

from unstructured text, the key limitation of our approach is that it induces a term taxonomy

rather than a concept taxonomy. An interesting and highly beneficial future work would be to

combine our approach with a clustering or synonymy detection approach to combine terms

into well-defined concepts. The second interesting future work would be to further explore

different configurations of the cost and capacity values within the flow network framework.

For example, an alternate configuration could be to use a two-stage approach, i.e., a different

flow network design for term selection followed by another flow network or graph optimization

algorithm for edge selection.

106



8 Extensions to the Flow Network
Framework

8.1 Overview

In the previous chapter, we proposed a novel flow network optimization-based framework

for taxonomy induction given an input vocabulary of seed terms. Empirical experiments

demonstrate that our approach not only performs favorably against the state of the art but also

is robust to the presence of noisy terms in the input vocabulary. Despite such advancements,

our proposed approach still suffers from three limiting constraints:

• Branching factor of seed terms: the design of the flow network from the noisy hyper-

nym, which is introduced in the previous chapter (see Section 7.2.2), introduces the

constraint that the branching factor1 of the seed terms be ≤ 1. It is because the capacity

of Source → Seed term edges is set as 1, hence implying that at most one outgoing edge

for a seed term can be picked in the final taxonomy.

• Manually-input root terms: the flow network optimization step requires a set of root

terms as input, which would be connected to the sentinel sink node in the constructed

flow network (Section 7.2.2). This requirement may not always be satisfied. For example,

taxonomy induction is frequently performed from a domain-specific corpus, where the

set of roots may not be available beforehand.

• Fixed vocabulary: our proposed approach assumes that the input vocabulary of seed

terms is fixed. However, it would be desirable if new seed terms can be discovered and

integrated into the taxonomy automatically.

In this chapter, we propose three extensions to the flow network optimization framework,

which serve to relax the aforementioned constraints. More specifically, in Section 8.2, we

introduce a parameter in the flow network optimization framework, which can be used for

1We recall that branching factor of a taxonomy is defined as the average out-degree of any node in the taxonomy.
Branching factor of a specific node is defined as the out-degree of that node in the taxonomy.
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controlling the branching factor of the seed terms in the induced taxonomies. In Section 8.3,

we present two different approaches for automatic detection of taxonomy roots given an input

vocabulary of seed terms. In Section 8.4, we modify the flow network optimization framework

to discover new seed terms and integrate them into the induced taxonomies. Section 8.5

shows examples of taxonomies induced using our approach in a variety of different settings.

8.2 User-defined Branching Factor

8.2.1 Our Approach

In the previous chapter, we cast the problem of inducing a tree-like taxonomy from a noisy

hypernym graph as an instance of the minimum-cost flow optimization problem (i.e., MCFP).

However, as discussed above, the design of the flow network graph introduces the limitation

that at most one outgoing edge per seed term can be picked in the final taxonomy. This is

because the capacity of source → seed Term edges is set as 1 (cf. Section 7.2.2).

In this section, we demonstrate that this limitation can be easily mitigated by making minor

modifications in the design of the flow network (cf. Section 7.2.2). More specifically, we

introduce a novel parameter b, which serves to control the required branching factor of the

seed terms in the induced taxonomy. Given b, we set the capacities of the flow network as

follows:

• For all seed terms v , set the capacity of the edge source→v as b.

• For all seed terms, set the capacity of their outgoing edges as 1.

• For an edge x→y originating from a non-seed term x, set the capacity (c) of the edge

(x, y) as c(x, y) = b ×|Dx ∩V |, where Dx is the set of descendants of term x in the noisy

hypernym graph, and V is the input vocabulary of seed terms.

The costs of all edges are set in the same fashion as in Section 7.2.2. Figure 8.1(a) shows the

design of the flow network using an artificially constructed example. As shown in Figure 8.1(b),

when b = 1, only one outgoing edge out of apple is selected by the flow network optimization

algorithm. However, when b = 2, both outgoing edges (i.e., apple→fruit and apple→tree) are

selected, thus resulting in a higher branching factor.

8.2.2 Evaluation and Results

To evaluate the efficacy of our model for user-defined branching factor, we employ the same

setting that was used in the automated evaluation of the induced taxonomies (cf. Section 7.3.2).

More specifically, we extract subsequences for 1000 terms, which are randomly sampled

from the TExEval-2 English food vocabulary [16]. We construct the initial potentially noisy
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Figure 8.1 – Sample executions of the flow network optimization algorithm for different
required branching factors (i.e., the parameter b). (a) An example of a flow network designed
for taxonomy induction with branching factor b. The values on the edges represent their
capacities. D(x) represents the number of seed descendants of the node x. (b) Execution of
the flow network optimization for b = 1. The edges shown in bold receive flow > 0, and hence,
are selected in the final taxonomy. (c) Execution of the flow network optimization for b = 2.

hypernym graph as described in Section 7.2.1. Finally, we construct the flow network for

different values of the branching factor parameter b and run the flow network optimization

algorithm (i.e., MCFP) for each case.

Table 8.1 shows some examples of hypernyms in the final taxonomies for different values of

the parameter b. For b = 1, all seed terms have a single hypernym in the induce taxonomy

(e.g., wheatgrass→leafy vegetable). When b in increased, further hypernyms are added for

the seed terms in the final taxonomy. For example, when b = 2, the hypernym edge wheat-

grass→complete protein is added.

It is important to note that b is an indicative parameter, and does not guarantee that exactly b

hypernyms will be picked for each seed term. For example, for b = 3,4, the final taxonomy still

contains only two hypernyms for the seed term candy corn (i.e., chewy candy and halloween

candy). It is because the maximum number of hypernyms, which can be picked for a seed term,

are limited by the number of candidate hypernyms in the noisy hypernym graph obtained

after subsequence aggregation.

Table 8.2, reports the edge precision, the actual branching factor and the total number of edges

in the induced taxonomies for varying values of the parameter b. Similar to Section 6.3, edge

precision is computed using WordNet as the gold standard. However, instead of computing

ancestor precision, we rather compute precision only using the direct parents. This is to
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Seed term Hypernyms (b = 1) Hypernyms (b = 2) Hypernyms (b = 3) Hypernyms (b = 4)

wheatgrass leafy vegetable
leafy vegetable

complete protein

leafy vegetable

complete protein

superfood

leafy vegetable

complete protein

superfood

kohlrabi root vegetable
root vegetable

cruciferous vegetable

root vegetable

cruciferous vegetable

root crop

root vegetable

cruciferous vegetable

root crop

cole crop

yam root vegetable
root vegetable

food crop

root vegetable

food crop

root crop

root vegetable

food crop

root crop

starchy vegetable

candy corn chewy candy
chewy candy

halloween candy

chewy candy

halloween candy

chewy candy

halloween candy

tangerine citrus fruit
citrus fruit

fruit tree

citrus fruit

fruit tree

essential oil

citrus fruit

fruit tree

essential oil

millet food crop
food crop

ancient grain

food crop

ancient grain

food crop

ancient grain

Table 8.1 – Examples of hypernyms extracted for different values of the branching factor (b).

b Edge Precision Branching Factor Total Number of Edges

1 0.136 1.15 1011

2 0.128 1.33 1317

3 0.127 1.37 1450

4 0.126 1.53 1470

Table 8.2 – Edge Precision, branching factor and total number of edges of the induced tax-
onomies for different values of parameter b.

ensure that terms that are hypernyms at different levels of generality are not simultaneously

considered as valid hypernyms for the seed terms. For example, only one of tropical fruit and

fruit should be considered as a valid hypernym for the term apple.

As expected, as b increases, the edge precision decreases, whereas the branching factor and

number of edges increase. The edge precision values are quite low, mainly because they

are computed as direct precision. Furthermore, this can also be partly attributed to the low

coverage of WordNet. The low coverage of WordNet plays a special role, because most of the

additional hypernyms are noun compounds, which are typically missing from the WordNet.

We note that a similar effect was also observed during the evaluation of the expansion phase

of the SubSeq model (Section 6.4.3).

We also note that the branching factor of induced taxonomies is significantly less than the

branching factor parameter (e.g., 1.53 for b = 4), mainly due to two reasons: (1) as mentioned

above, the maximum number of hypernyms picked for a seed term are limited by the number

of candidate hypernyms for the term in the noisy hypernym graph. (2) Our flow network design
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only affects the branching factor of seed terms. For non-seed terms, taxonomy induction

process proceeds in the same fashion as described in Section 7.2.2.

8.3 Automated Root Detection

Up till now, in all our experiments, we assumed that a set of roots are provided to the flow

network optimization step. However, this assumption is rarely satisfied in practice. For

example, the most common use case of taxonomy induction is inducing a taxonomy from a

domain-specific corpus, where a pre-determined set of roots is unavailable. Therefore, in this

section, we propose an extension to the flow network optimization step, which aims to detect

roots automatically given an input vocabulary of seed terms.

8.3.1 Our Approach

Given an input vocabulary of seed terms, we first extract hypernym subsequences using the

SubSeq model. Subsequently, we perform the following steps to detect roots automatically:

• Selection of initial root candidates: we first generate an initial set of terms that are

likely to be roots for the given input vocabulary. To this end, we aggregate all the

hypernym terms in all extracted subsequences and pick the top-k1 hypernym terms

with the highest occurrence frequencies in the extracted subsequences. This set of

candidate roots is referred to as Cr .

• Flow network optimization with root candidates: second, we run the flow network op-

timization with the candidate roots (i.e., Cr ) as the set of roots that would be connected

to the sink node (cf. Section 7.2.2). The taxonomy induced as a result of this step is

hereafter referred to as TCr .

• Selection of final roots: in this step, we filter the candidate roots to generate the final

set of roots. We propose two different approaches for filtering the roots. Each approach

takes a parameter k2 as input, where k2 < k1, and outputs k2 roots. These approaches

are detailed hereafter:

1. Greedy approach: in this approach, we simply pick the top k2 roots that have the

most number of seed terms as descendants in the induced taxonomy TCr .

2. Beam search: in this approach, we perform a guided beam search through the

space of subsets of candidate roots to determine the most appropriate subset. The

steps of this approach are as follows: (1) initiate the beam with the original set

of candidate roots (i.e., Cr ) as the candidate subset. (2) In each iteration, pick all

subsets from the beam, and for each subset, iteratively remove one root to create

new subsets. (3) For each subset, compute a fitness function and keep track of the

subsets with highest fitness values. (4) Return the subset containing k2 roots that

has the highest fitness value.
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We use the Total Cost
|seeds| as the fitness function, where Total Cost is the total cost of

sending the flow from the seed terms to the root, and |seeds| is the number of seed

terms that have at least one hypernym in the induced taxonomy. Intuitively, this

fitness function selects the subset of candidate roots (i.e., Cr ) that minimizes the

average cost of sending a seed term to the roots contained in the subset.

We now describe the above process of automated root detection using an example. We first

create an input vocabulary of seed terms by randomly sampling the descendants of the

WordNet synset insect. Some examples of terms from this constructed vocabulary are bee,

horse tick and oil beetle. This vocabulary is hereafter referred to as the insect vocabulary. We

extract the hypernym subsequences for the seed terms in the insect vocabulary using the

SubSeq model (cf. Section 6.2.2).

To detect roots automatically, we aggregate the hypernyms in the extracted subsequences and

pick the top-k1 (k1 = 10) most frequent terms as candidate roots (i.e., Cr ). In the next step,

we run the flow network optimization using the candidate roots as the roots in flow network

optimization and compute the number of seed descendants of each root in the resulting

taxonomy. Table 8.3 shows the candidate roots along with the number of seed descendants for

the insect vocabulary.

In the final step of root detection, we filter the candidate roots to output the final set of

roots. We take the number of desired roots as an input parameter (i.e., k2). In the greedy

approach, we simply pick top-k2 roots from the candidate roots, with the highest number of

seed descendants. For example, for the insect vocabulary, the terms insect and pest will be

picked as the final roots for k2 = 2 (Table 8.3).

In the beam search approach, we perform a search over the space of subsets of the candidate

roots. Figure 8.2 shows a snippet of the subsets of the candidate roots explored during the

beam search. Finally, the subset with k2 roots and the highest value of the fitness function is

returned as the final set of roots.

8.3.2 Evaluation and Results

As throughout this thesis, we evaluate our root detection approach in an automated fashion

using WordNet as a source of ground truth hypernyms. We proceed in three steps: (1) first, we

sample a set of WordNet synsets, which would be considered as the gold standard roots. (2)

Second, we sample a set of WordNet descendants of the gold standard roots. These sampled

descendants constitute the input vocabulary of seed terms. (3) Finally, we detect roots using

the input vocabulary and evaluate the detected roots against the gold standard roots.

We now describe these steps in detail. We first sample a set of 500 synsets from WordNet that

are at a height2 between 3 and 15. This set of synsets is hereafter referred to as Ws .

2The height of a synset is computed as its average distance from its descendant leaves in the WordNet.
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Candidate Root Number of Seed Descendants

insect 53

pest 34

body 29

animal 18

keyword 16

problem 12

species 12

organism 12

thing 11

bug 10

Table 8.3 – Candidate roots (i.e., Cr ) and the number of seed descendants for the insect
vocabulary.

insect, pest,

body, animal,

keyword, problem,

species, organism,

thing, bug

insect, pest,

body, animal,

keyword, problem,

species, organism,

thing, bug

insect, pest,

body, animal,

keyword, problem,

species, organism,

thing, bug

insect, pest,

body, animal,

keyword, problem,

species, organism,

thing, bug

insect, pest,

body, animal,

keyword, problem,

species, organism,

thing, bug

Figure 8.2 – Beam search through the subset space of candidate roots of the insect vocabulary.
The roots that are struck out are removed from the corresponding subsets.

Gold Standard Root Sampled Descendants

niger-kordofanian

swahili, wolof, nyamwezi,

songa, swazi, sesotho,

kamba, kordofanian, mwera,

kongo, yoruba, gikuyu

bird

monal, eurasian woodcock, sheldrake,

piping plover, horned screamer, caprimulgiform bird,

cream-colored courser, roseate spoonbill

Table 8.4 – Gold standard roots and some examples of their seed descendants, which are
sampled from WordNet.
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WordNet Roots Candidate Roots Detected Roots (greedy) Detected Roots (beam search)

niger-kordofanian (46),

bird (110)

african languages, animal,

bantu language, bird,

bird species, group,

language, species

bird, species bird species, african languages

aircraft (40), autoloader (23),

perception (60), scientist (30)

aircraft, condition,

factor, item,

keyword, scientist,

thing, weapon

aircraft, keyword,

thing, weapon

aircraft, condition,

scientist, weapon

classification (20), clothing (91),

illness (20), perception (80),

sewing (30), tissue (40)

best thing, condition,

disease, factor,

item, keyword,

material, thing,

tissue

best thing, item,

keyword, material,

thing, tissue

disease, factor,

item, material,

thing, tissue

carnivore (111), cutter (40),

equine (97), food (60),

reproductive structure (30), sensitivity (20),

separation (20), young (40)

animal, breed,

dog, food,

horse, item,

product, species,

thing

animal, breed,

dog, food,

horse, item,

product, species

animal, breed,

dog, food,

item, product,

species, thing

Table 8.5 – Examples of roots detected by greedy and beam search approaches. The number of
sampled descendants for each WordNet root are shown in brackets. Detected roots, which are
correct, are highlighted in bold.

Given Ws , we randomly sample r synsets from Ws . This set of r synsets would be considered as

the gold standard roots. Further, for each gold standard root, we randomly sample n WordNet

descendants, where n is randomly varied between [20,30, ..,150]. These sampled descendants

are collected and constitute the input vocabulary. We repeat these steps 180 times, i.e., 20

times for each value of r ∈ [1,9]. As a result, we construct 180 input vocabularies.

Table 8.4 shows an example of a constructed vocabulary for r = 2. The gold standard roots,

i.e., niger-kordofanian and bird, and their corresponding descendants are shown. For each

vocabulary, we detect roots using both greedy and the beam search-based root detection

approach. The desired number of detected roots (i.e., k2 in Section 8.3.1) is set to the value

r , i.e., the number of gold standard roots that were used for the construction of the input

vocabulary. Table 8.5 shows some examples of the gold standard roots and the corresponding

roots that are detected using the greedy and beam search-based approaches.

Results. To evaluate the quality of the detected roots, we compute two metrics: (1) Ancestor

precision, which is computed as the ratio of detected roots that are ancestors of at least one

gold standard root in WordNet. (2) Ancestor recall, which is computed as the ratio of gold

standard roots that are a descendant of at least one of the detected roots.

Figure 8.3 shows the ancestor precision and recall values for greedy and beam search root

detection approaches. Although both approaches achieve similar performance, greedy ap-

proach performs better for smaller values of r (i.e., r ≤ 2), whereas the beam search approach

performs better for r > 2.
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Old Seeds New Seeds

ao an

Source

Sink

Figure 8.5 – Design of the flow network with old and new seeds. Different costs are used for
source → old seed edges (i.e., ao) and source → new seed edges (i.e., an). an � ao indicates that
the old seeds will be preferred over the new seeds.

quences for the current seed terms and perform taxonomy induction using the flow

network optimization. If this is the first iteration, the input vocabulary is used as the set

of current seed terms.

• Discovery of new candidate seeds: in this step, we discover new candidate seed terms

using the taxonomy induced in the previous step. To this end, we compute top-n

candidate hyponyms of all higher-level nodes3 in the induced taxonomy, and aggregate

their counts. These candidate hyponyms are computed using the noisy candidate

hypernymy database (see Section 6.1). Further, we sort the hyponyms by the number of

occurrence counts in a descending order and pick the top nd most frequent hyponyms.

• Update current seeds and demand: in this step, we add the newly discovered candidate

seeds to the set of current seeds. We also increase the value of demand for flow network

by α′nd , where α′ serves as a parameter for controlling the growth of taxonomy in each

iteration.

Our approach introduces two parameters: (1) nd , which represents the number of new seeds

discovered in each iteration, (2) α′ ∈ [0,1], which represents the ratio of the newly discovered

seeds that should be included in the output taxonomy. These parameters can be used to

control the growth of taxonomy in each iteration. For example, increasing the values of nd or

α′ or both, would result in a faster growth of the output taxonomy.

It is noteworthy that in the current approach, the seed terms provided in the input vocabulary

are replaceable, i.e., they can be potentially replaced by the newly discovered seeds. However,

this may not always be desirable. For example, if the input vocabulary is constructed manually

or cleaned after extraction, it would be desirable that most of the seed terms in the input

3A higher-level node is a node which has at least one child in the induced taxonomy.
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Discovered Terms Discarded Terms Selected Terms

cassava, maize, cane,

tobacco, strawberry, mint,

can, salad, if, will

will, mint, can,

salad, if

cassava, maize, cane,

tobacco, strawberry

Table 8.6 – Examples of terms discovered during the expansion of a food taxonomy. Terms that
are selected or discarded are also shown.

vocabulary be present in the final taxonomy. To mitigate this issue, we introduce a small

modification in the design of the flow network construction. More specifically, we set the costs

of source → new seed edges to be significantly higher than source → old seed edges. Figure 8.5

shows this modification graphically. As a result, given a certain demand, the new seeds are

picked only if it is not possible to further pick any of the old seeds.

8.4.2 Evaluation and Results

In this section, we perform a quantitative evaluation of our approach for the automated

expansion of the taxonomies. We reuse the same setting that was used in the automated

evaluation of extracted subsequences (cf. Section 6.3). We start with an initial vocabulary of

600 food terms that are randomly sampled from the TExEval-2 English food vocabulary [16].

Further, we run our taxonomy expansion approach for 10 iterations using two different sets of

parameters: (1) α′ = 0.2 and nd = 50, and (2) α′ = 0.6 and nd = 50.

Table 8.6 shows some examples of the terms, which are discovered during an iteration, as well

as the terms that are selected or discarded. Discarded terms also contain some terms that are

valid expansions such as mint and salad. However, in general, selected terms are significantly

more precise (i.e., correct descendants of food) than the discarded terms.

This observation is further corroborated by the term precision values plotted in Figure 8.6(a,b).

Similar to Section 7.3.2, the term precision is computed as the ratio of the number of seed

terms that are present in the food sub-hierarchy of WordNet to the total number of seed terms

that are present in WordNet. For both values of α′ (i.e., 0.2 and 0.6), the term precision of

the selected terms is significantly higher than both candidate and discarded terms, which

shows the effectiveness of our approach in the removal of noisy terms. When a lower value

of α′ is used (i.e., 0.2), the term precision of the selected terms is significantly higher. As a

result, the term precision of the final taxonomy (i.e., all the seed terms in the output taxonomy)

also decreases slowly. In contrast, when α′ = 0.6, the term precision of the selected terms is

significantly lower. As a result, the term precision of the final taxonomy also decreases rapidly.

Figure 8.6(c,d) plots the total number of terms in the taxonomy, as well as the number of

selected and discarded terms at each iteration. As expected, the taxonomy grows faster for

larger values of α′, because more discovered seeds are included in the final taxonomy.
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These experiments show the functioning of our approach towards the automated expansion of

taxonomies. They also demonstrate that the α′ and nd parameters can be used to control the

relative trade-off between the precision and the size of output taxonomies. The results of these

experiments follow directly from the fact that the SubSeq+Flow model is capable of handling

significant noise in the input vocabulary. This noise-robustness allows us to introduce new

(potentially-noisy) seed terms using a simple hyponym aggregation technique because they

will be further filtered by the flow network optimization step.

8.5 Demonstrations

In this section, we show some examples of taxonomies that are induced using the Sub-

Seq+Flow approach. Since we have already performed extensive quantitative evaluations of

SubSeq+Flow, in this section, we restrict ourselves to qualitative discussions. We use Sub-

Seq+Flow under three different settings, which are described hereafter.

Taxonomy Induction from Clean Vocabulary. In this experiment, we perform taxonomy

induction under the assumption that a clean input vocabulary of seed terms is available. More

specifically, we use a publicly available4 vocabulary of computer science-related terms, which

are extracted from 20 computer science papers. In total, the vocabulary consists of 558 terms.

Given this vocabulary, we employ SubSeq+Flow in conjunction with the greedy approach for

automated detection of roots (see Section 8.3.1). The top-4 detected roots are field, method,

technique, and information. Snippets of the induced taxonomy, which are rooted at these

detected roots, can be seen in Figure 8.7 (page 122).

Taxonomy Induction from Domain-specific Corpus. In this experiment, we use the most

frequently-used setting of taxonomy induction from unstructured text, i.e., taxonomy induc-

tion from a domain-specific corpus. To this end, we first extract a corpus of tweets related

to the disease diabetes through a handful of manually-compiled keywords. Subsequently,

we perform terminology extraction from the corpus using TermSuite [24], thus resulting in a

vocabulary of 3328 terms. We perform taxonomy induction using the SubSeq+Flow approach

(required coverage, i.e., α is set to 0.5) in conjunction with the greedy approach for automated

detection of roots. The top-4 detected roots are food, disease, condition, and thing. Figure 8.8

(page 123) shows snippets of the induced taxonomy, which are rooted at the detected roots

disease and food.

Taxonomy Induction through Automated Expansion. In this experiment, we demonstrate

the automated expansion of the seed vocabulary. However, instead of taking an initial seed

vocabulary as input, we rather take a single term as input. This term would be considered the

4The WIKI-20 dataset at https://code.google.com/archive/p/maui-indexer/downloads.
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root of the induced taxonomy. Given the root term, we construct an initial noisy vocabulary by

collecting all the candidate hyponyms of the root term in the candidate hypernymy database.

The rest of steps are followed as described in Section 8.4. Figure 8.9 (page 124) shows the full

taxonomy induced using these steps, with the term cancer as the root term.

Discussion. Although the output taxonomies contain some noisy terms (e.g., incurable in

Figure 8.8) as well as some overly-generic terms (e.g., other cancer in Figure 8.9), the overall

quality of the taxonomies is good in all the experiments. The key advantage of SubSeq+Flow

is that it is robust to the presence of noise in input vocabulary. This noise-robustness allows

us to use automatically-constructed significantly-noisy input vocabularies, hence enabling

the application of our approach in a variety of settings such as taxonomy induction from

domain-specific corpus as well as a single input term as root.

However, one key issue with these induced taxonomies is that they are term taxonomies. For

example, in Figure 8.9, the concept LUNG CANCER is present in the form of two different terms,

i.e., lung and lung cancer. This issue is faced by most approaches that perform taxonomy

induction from unstructured text. However, despite this drawback, term taxonomies have

been shown to be beneficial in a wide variety of NLP tasks [129, 10].

8.6 Summary

In this chapter, we proposed three extensions to the flow network optimization framework

for taxonomy induction, which was introduced in Chapter 7. These extensions serve to

provide better control over the taxonomy induction process. The first extension introduces

a parameter, i.e., the required branching factor, which can be used to control the relative

tradeoff between precision and branching factor of the seed terms (Section 8.2). The second

extension enables automated detection of taxonomy roots, thus eliminating the requirement

of a manually-input set of roots (Section 8.3). Finally, the third extension demonstrates that a

taxonomy can be expanded automatically by the discovery of new seed terms (Section 8.4).

An interesting outcome of this extension is the induction of taxonomies given a single term as

input (Figure 8.9 with the term cancer).

The main advantage of our approach is the robustness towards the presence of noisy terms in

the input vocabulary, which enables us to use relatively inaccurate term extraction or collec-

tion methods such as automated terminology extraction approaches [24] or noisy candidate

hyponyms (Section 8.4). We also note that other approaches such as finding semantically-

similar words using word embeddings [85, 104] can also be used for expansion in an equivalent

fashion. Overall, our approach facilitates the relaxation of many assumptions employed by

previous taxonomy induction approaches including clean and fixed vocabularies of seed terms

as well as pre-determined sets of taxonomic roots, thus automating the process of taxonomy

induction from unstructured text in the true sense. In the next part of the thesis, we focus on

the applications of the taxonomies that are induced using our approaches.

121



Figure 8.7 – Snippets of the computer science taxonomy, rooted at each of the detected roots.
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Figure 8.8 – Snippets of the diabetes taxonomy, rooted at disease and food.
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Figure 8.9 – Taxonomy induced using the term cancer as root.

124



Part IIIApplications of Taxonomies

125





9 Applications of Taxonomies

9.1 Overview

In the previous parts of this thesis, we focused on the task of taxonomy induction in a variety

of different settings. In Chapters 3 & 4, we induced large-scale taxonomies from Wikipedia for

English as well as other Wikipedia languages. In Chapters 7 & 8, we proposed a novel approach

SubSeq+Flow, which induces taxonomies from unstructured text. We also demonstrated that

SubSeq+Flow provides a significant advancement over the state of the art, by relaxing many of

the simplifying assumptions that were frequently used by past approaches.

In this chapter, we demonstrate the utility of our approaches through some applications

of their induced taxonomies. We first provide a brief survey of past approaches that utilize

taxonomies for a variety of NLP-related tasks. Further, we introduce a novel task of mining of

generalization templates such as passport of X, and demonstrate that the HEADS taxonomy

(induced in Chapter 3) can be effectively used for generalizing the fillers in placeholders of such

templates (e.g., X = COUNTRIES). While we focus on the templates in English, our approach

is language-independent and can be easily adapted to any of the Wikipedia languages using

our multilingual taxonomies (induced in Chapter 4). Finally, we provide a brief qualitative

comparison of the task of finding semantically-similar terms using our taxonomies vs. more

frequently-used approaches such as word embeddings.

9.2 Literature Survey

Knowledge in the form of term or concept taxonomies has been shown to benefit a wide

variety of NLP-related tasks as well as real-world applications. WordNet is a prime example

of a knowledge base, which has been utilized extensively for its taxonomic information [86].

The main utility of taxonomies such as WordNet is that they provide additional semantic

features, which augment other textual and context-based features, thus resulting improved

performance in many tasks. Detailed surveys of such tasks that benefit from taxonomies

can be found in survey papers such as Biemann [12], Hovy et al. [52] and Wang et al. [132].
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In this section, we provide a brief overview of these tasks, and also discuss a few of their

corresponding approaches that use taxonomies.

Word-sense Disambiguation. Word-sense disambiguation aims to identify the correct senses

for a term in a specific context. For example, the term “apple” usually refers to the software

company APPLE INC. in the technology domain, whereas to the fruit APPLE in food domain.

WordNet is frequently used as a sense-inventory for word-sense disambiguation tasks [129].

Many approaches have demonstrated that WordNet augmented with semantic relations such

as hypernymy, which are extracted from Wikipedia, aid in improving the accuracy of word-

sense disambiguation systems [106, 92].

Semantic Similarity Between Words. Many NLP tasks including information retrieval and

coreference resolution benefit from a quantified measure of semantic similarity between

words. Semantic similarity is frequently computed using WordNet as a knowledge base [32].

However, Ponzetto and Strube [108] demonstrated that a taxonomy induced automatically

from Wikipedia, through the removal of not-is-a edges from the Wikipedia categories network,

results in a performance similar to manually-constructed WordNet.

Document Clustering and Classification. The clustering or classification of text documents

is typically performed by computing their features vectors and using standard machine learn-

ing techniques such as K-means or Naive Bayes over the feature vectors. The augmentation of

these features with the information present in taxonomies has been shown to be beneficial for

document clustering [53] as well as document classification [121].

Question Answering. Question answering systems are one of the prime examples of real-

world applications, which have benefitted from taxonomic information. The most popular

example is IBM Watson, a state-of-the-art question answering system, which employs the

semantic type information present in publicly available taxonomies such as YAGO for restrict-

ing the set of answer candidates [29]. IBM Watson was shown to consistently outperform its

human opponents at the task of answering general knowledge-based questions in the game

show Jeopardy! [137]. Another example is Snow [121], who demonstrate that features com-

puted from taxonomies result in improved performance of the QACTIS question answering

system ([115]).

Information Retrieval. The semantic knowledge present in taxonomies aids in the de-

velopment of information retrieval applications, which go beyond the traditional bag-of-

words model. For example, Liu et al. [75] demonstrates that automatically-induced large-

scale taxonomies result in better performance of a nearest neighbor search task over short

queries. Chuang and Chien [21] construct a taxonomy of search queries in an automated
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fashion, and demonstrate that it can be used for web-based IR systems. Demartini et al. [26]

presents an entity retrieval system, which utilizes taxonomies induced from Wikipedia.

Named Entity Recognition and Disambiguation. The goal of named entity recognition (or

NER) is to identify the mentions of named entities (e.g., JOHNNY DEPP) in raw text. NER is a

well-studied task in NLP and has received lots of attention due to its wide-scale applicability

in real-life applications such as Web Search [7]. NER is typically performed by identifying

the mentions of the entities in text and further classifying them into coarse-grained semantic

classes such as PERSON or LOCATION. Taxonomies can be used to add more contextual

information (such as fine-grained semantic classes) to the terms in the classification task, thus

resulting in improved performance [38, 43]. Another related task is named entity disambigua-

tion, which aims to associate the entity mentions with an appropriate reference from a lexical

knowledge base. Bunescu and Pasca [18] use the taxonomic information present in Wikipedia

categories network to augment context-based features, resulting in improved performance of

named entity disambiguation.

9.3 Generalization Templates

Generalization is a form of inductive reasoning that forms an important part of the human

cognitive abilities [79, 48]. The key utility of taxonomies is that they serve a mechanism for

generalizing a set of terms or concepts. In this section, we introduce a novel task that aims

to assess the quality of generalizations produced by a taxonomy. More specifically, this task

aims to discover generalization templates from the titles of Wikipedia entities, and further

generalizes the placeholder field to a suitable generalization category.

Before we proceed, we first provide some formal definitions. A generalization template is de-

fined as a lexicalized linguistic template with placeholders, which can be replaced by suitable

fillers to generate the titles of Wikipedia entities. For example, Bank of X is a generalization

template with a placeholder X, which can generate a title such as “Bank of Switzerland” by the

substitution of X with the filler “Switzerland”. A prefix template contains the placeholder at

the beginning (e.g. X railway station), whereas a suffix template contains the placeholder at

the end (e.g. bank of X).

Given these definitions, the goal of our task is two-fold: (1) discover generalization templates

that can be used to generate titles of Wikipedia entities. (2) For each template, select Wikipedia

categories that are suitable generalizations for the set of fillers of the template.

To achieve these goals, we perform three steps. In the first step, we discover candidate

generalization templates from the titles of Wikipedia entities. We restrict the discovery of

generalization templates to prefix templates and suffix templates in English. However, we note

that our overall approach is general, and can be easily extended to templates with multiple

placeholders as well as other languages.
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Algorithm 1: Template Discovery Algorithm
Input :Set of all Wikipedia page titles T

Output :Set of discovered templates and their fillers

1: TF :=�
2: for pt ∈ T do

3: tokens := tokenize(pt )

4: for i=1,...,length(tokens)−1 do

5: prefix := concat(tokens[1, i ])

6: suffix := concat(tokens[i +1, length(tokens)])

7: if valid_split(prefix, suffix) then

8: if contains_head(prefix) then

9: TF := TF∪ (concat(prefix,"X "), suffix)

10: else if contains_head(suffix) then

11: TF := TF∪ (concat("X ",suffix), prefix)

12: Aggregate TF templates and sort by number of fillers

13: Return templates with number of fillers > t

Prefix Template Sample Fillers

X railway station new delhi, kingsland

X river sierra leone, saint marie

X district shurugwi, bago

X airport east london, belleville

X high school baden, karate

Suffix Template Sample Fillers

battle of X northampton, santa clara

list of X codec, redheads

history of X tennesse, rapid transit

university of X sucre, queensland

flag of X sri lanka, las vegas

Table 9.1 – Examples of prefix and suffix templates along with their fillers.

In the second phase, the algorithm group all the (candidate template, filler) pairs in TF by

the templates, thus generating generate an aggregate set of fillers for each template (line 12).

Finally, the algorithm selects all templates, for which the number of fillers is greater than a

fixed threshold t (line 13).

Using this algorithm, we discovered a set of 8674 templates that had at least ten fillers each.

The set consists of 5727 prefix templates and 2947 suffix templates. Some examples of these

prefix and suffix templates as well as their example fillers are shown in Table 9.1.

9.3.2 Entity Disambiguation

In the previous step, we discovered pairs of generalization templates and their fillers from the

titles of Wikipedia pages. However, these fillers are lexicalized, i.e., they are present in their
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raw string forms. In contrast, the taxonomies induced from Wikipedia (such as the HEADS

taxonomy or MultiWiBi taxonomies, see Chapter 3) contain entities or categories. Therefore,

before such a Wikipedia taxonomy can be employed for generalization, these lexicalized fillers

must be mapped to their corresponding Wikipedia entities. However, this task of mapping

fillers to Wikipedia entities is non-trivial, because multiple entities with the same string are

present in Wikipedia (e.g., BANK and BANK (GEOGRAPHY )).

To disambiguate lexicalized fillers to Wikipedia entities, we use the state-of-the-art approach

towards entity disambiguation proposed in Carmel et al. [20]. More specifically, we build

an offline database of lists of candidate entities for each lexicalized string by exploiting the

titles, redirects and disambiguation pages within Wikipedia. Further, we use this database

to compute the probability of an entity given a title string. Finally, for a lexicalized filler, we

choose the entity, which has the highest probability given the lexical string of the filler, as the

corresponding entity for the filler.

9.3.3 Category selection

In this step, we aim to find a set of Wikipedia categories that provide reasonable, common-

sense explanations for the filler entities of a generalization template. For example, for the

template Bank of X, we wish to pick a category that represents geographic entities such as

countries. Since a brute-force search through all possible subsets of categories is compu-

tationally intractable, we instead employ a two-step approach. In the first step, we use an

activations-based method (i.e., activations baseline) to identify the most relevant Wikipedia

categories for the given template. In the second step, we use a beam search-based method

guided by these activations scores to determine the most suitable subset of the identified

categories. We now describe these steps in detail.

Activations Baseline. We now describe the activations baseline approach for computing

the scores of Wikipedia categories given a set of entities disambiguated from the fillers. The

pseudocode of the activations baseline is provided in Algorithm 2. The algorithm takes as

input a taxonomy T , the set of filler entities E f and the set of all Wikipedia entities Ea . Given

these inputs, the algorithm proceeds by first computing the set of ancestor categories (using

breadth-first search, or BFS) in taxonomy T for all entities in Ea (line 1). In the second step,

the algorithm initializes the set of activations received by filler entities (act f ) as well as the

set of activations received by all entities (acta) to zero for all categories (line 2). Further, the

algorithm runs in a fixed number of iterations ni (line 3). In each iteration, the algorithm

computes a subset of fixed size (i.e., sample_size) from the set of filler entities (i.e., E f ) and

updates the activations act f received by their ancestor categories (line 6-8). Similarly, it

computes a subset from the set of all Wikipedia entities (i.e., Ea) and updates the activations

acta of their ancestor categories (line 9-11). This sampling process normalizes contributions

by entities to offset possible errors in taxonomy or disambiguation process.

132



9.3. Generalization Templates

Algorithm 2: Sampled Activations Baseline
Input :Wikipedia Taxonomy T, filler entities E f , all entities Ea

Output :Set of (category, score) pairs

1: A := {(e,BFS(e,T))∀e ∈ Ea }

2: act f := acta := scores := {(c,0)∀c ∈ T }

3: for i=1..ni do

4: SE f
:= sample(E f , sample_size)

5: SEa := sample(Ea , sample_size)

6: for all p ∈ SE f
do

7: for all c ∈ A[p] do

8: act f [c]++
9: for all p ∈ SEa do

10: for all c ∈ A[p] do

11: acta [c]++
12: act f := {(c, v

ni
)∀ (c, v) ∈ act f }, acta := {(c, v

ni
)∀ (c, v) ∈ acta }

13: score := {(c, v ∗ (v −acta [c])∀ (c, v) ∈ act f }

14: return score

The activation scores of categories are averaged over the number of iterations (line 12). The

final score of a category is computed as act f × (act f −acta) (line 13). In this formulation, the

first term, i.e., act f , promotes categories that receive high activations from filler entities. In

contrast, the second term penalizes popular categories that would generally receive high

activations independent of the given template. The primary intuition behind the algorithm is

that categories relevant for a given template should on an average receive higher activations

from a subset of filler entities than from a random subset of all entities.

Beam Search. In this step, our aim is to use the activations scores computed in the activa-

tions baseline to determine the most suitable subset of categories for a generalization template.

To this end, we perform a beam search over the space of subsets of categories that receive

positive activations scores. We now describe the method in detail.

We maintain two separate beams1, i.e., Bp for storing the partial solutions and B f for storing

the final solutions. Initially, the set of all the filler entities E f is added as a partial solution in

the beam Bp . In each iteration, we derive new solutions from the existing solutions in Bp and

insert them into Bp as well as B f .

To derive new solution from an existing partial solution so ∈ Bp , we first duplicate so , i.e., we

copy all the nodes (both pages and categories) of so . Further, we select each parent p for each

node n ∈ so iteratively, and add it to s0, thus creating a new candidate solution. For a new

solution sn , which is created through the selection of parent p, we remove all nodes in sn that

are subsumed2 by p. Score of a solution is computed as average of activations scores of its

constituent nodes (activations scores for all entities are set to 0). Finally, we pick the solution

1Beams of width=1000 worked well for our development set.
2Given a taxonomy T and filler entities E f , the node n1 is subsumed by the node n2, if either n1 is a direct

descendant of n2 in T , or all e ∈ E f that are descendants of n1 are also descendants of n2.
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from B f that has the highest score as the final set of categories for the generalization template.

9.3.4 Evaluation and Results

Evaluation of categories selection is a complex task due to the significantly large number of

Wikipedia categories. Therefore, to perform this evaluation, we make a series of simplifying

assumptions. First, we assume that if a category provides a possible explanation for a template

p, it must receive more activations from filler entities of p than a random set of entities. In

other words, the activations-based score of the category should be greater than 0.

Given this assumption, we first construct a subgraph Gs of the candidate categories as follows:

(1) add all categories that receive positive score during the activations-based scoring step

as a node in Gs . (2) Add an edge from category c1 ∈ Gs to c2 ∈ Gs , if there exists a path

from c1 to c2 in the Wikipedia taxonomy. Subsequently, we partition the Gs into its weakly

connected components (hereafter referred to as WCC). For each WCC, three expert human

judges annotate the most suitable (possibly null) set of categories. Finally, all categories as

well as entities, which are descendants of the categories annotated as suitable, form the set of

ground truth categories (or entities).

To evaluate a categories selection procedure, we create the set of selected categories (entities)

in a similar fashion and compute precision-recall statistics against the ground truth set. We

compare the beam search-based approach against two baselines:

• All-roots: in this baseline, we simply selects all roots of Gs . By definition, this baseline

generates 100% recall, however, at the cost of precision.

• Greedy: in this baseline, we perform a downward traversal starting from each root in

Gs . During traversal, for each category c, we move to its children only if the sum of

activations scores of its children are greater than c . Intuitively, this baseline aims to find

local maxima of activations scores in the subgraph Gs .

For these experiments, we use the HEADS taxonomy induced in Chapter 3 as the Wikipedia

taxonomy. Figure 9.2 shows the categories with positive activations scores for the template

Highways of X as well as the category selected by the beam search-based method. Table 9.2

show the precision-recall statistics for categories and entities respectively. As the results show,

beam search-based categories selection outperforms both baselines and produces better

F1 scores. The all-roots baseline achieves the highest recall, which is expected because all

descendants (both categories and entities) are picked.

Table 9.3 shows some examples of generalization templates as well as the categories selected by

the beam search approach. An interesting example is X marina (shown in Table 9.3), because

it shows that our approach is capable of capturing different groups of generalizations of a
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Figure 9.2 – Categories along with their activations scores for the template Highways of X. The
category ADMINISTRATIVE TERRITORIAL ENTITIES is picked as the final generalization by the
beam search-based method.

Entities Categories

Method P R F1 P R F1

all-roots 0.38 1.00 0.56 0.30 1.00 0.46
greedy 0.41 0.74 0.53 0.32 0.78 0.46
beam search 0.58 0.70 0.63 0.44 0.62 0.51

Table 9.2 – Evaluation of different approaches for selection of categories.

Template Fillers Selected Generalizations

Railways in X nepal, plymouth, sydney administrative territorial entities, populated places

Flag of the X orange free state, second spanish republic
regions, events, administrative territorial entities,

territories, landforms, social groups

X obscura dysgonia, cynaeda plants, animal orders, organisms, vertebrates, genera

X marina
brighton marina, amata marina,

osney mill marina, najas marina

plants, monotypic taxa, organisms, pollinators, legumes,

populated places, administrative territorial entities

Timeline of the X 2007 pet food recalls, samnite wars events

Casualties of the X iraq war, ukranian crisis invasions, disasters, conflicts, human right abuses

Law society of X scotland, england administrative territorial entities

X cottage hospital uxbridge, turriff populated places

Dancesport at the X 1998 asian games, world games 2005 international sports competitions

Table 9.3 – Lists of selected generalizations computed using the beam search-based method
for selection of categories.
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template such as places (i.e., POPULATED PLACES3, ADMINISTRATIVE TERRITORIAL ENTITIES4)

as well as taxonomic classifications of living entities (i.e., PLANTS, ORGANISMS).

Although we used the HEADS taxonomy for these experiments, theoretically, our approach is

compatible with any taxonomy that provides generalizations for Wikipedia entities. However,

it would still be desirable that the taxonomy has a good path-level accuracy. It is because,

in taxonomies with good path-level accuracy, filler entities (such as FRANCE, SWITZERLAND)

would consistently activate the same set of good generalizations (e.g., COUNTRIES). In contrast,

a taxonomy, which has lower path-level accuracy, would activate significant noisy generaliza-

tions, thus leading to a poor set of selected categories.

To demonstrate this effect, we repeat the category selection step, i.e., activations baseline

followed by the beam search-based category selection, for the state-of-the-art MultiWiBi

taxonomies, i.e., WIBIE and WIBIC +HE (see Section 3.3.3). Table 9.4 (page 140) shows the

results of this experiment. A quantitative comparison of these results requires significant

annotations, and is outside the scope of this thesis. However, it is immediately clear that the

generalization categories obtained by WIBIE as well as WIBIC taxonomies are significantly

noisy. For example, GENETICS is selected as a candidate generalization for Tomb of X by

WIBIC +HE , whereas FINE ART is selected by WIBIE . In contrast, the results obtained by HEADS

are more accurate, thus demonstrating its superior ability to select meaningful generalization

categories for the filler entities.

This task demonstrates that a taxonomy can be used effectively to generate commonsense

explanations for a set of related entities. While in this experiment the sets of related entities

are discovered using linguistic templates of compound entities from Wikipedia, the overall

approach is general and can be extended to many other cases. For example, instead of entity

names, the templates can be generated from verb-noun phrases (e.g., eat X). Such templates

along with our beam-search approach can be used for discovering commonsense knowledge

facts (e.g., birds fly, people eat food) in a fully-automated fashion. Another advantage of our

approach is that it is language-independent. Therefore, in conjunction with the multilingual

Wikipedia taxonomies (Chapter 4), this approach can be easily extended to all Wikipedia

languages. This task also serves to demonstrate the utility of generating taxonomies with

higher path-level accuracies (Section 4.3.2), as it results in more accurate sets of generalization

categories for the sets of related entities.

During the course of this experiment, we experimented with a wide variety of scoring tech-

niques for category selection (Section 9.3.3). However, we noticed one clear pattern: all

scoring methods that used the precision of a category as a feature performed significantly

worse than models that ignored the precision. We hypothesize that it is primary because

human commonsense reasoning is inherently inductive and approximate. While we reserve a

more rigorous analysis of this hypothesis for future work, we consider this as an important

3Populated places indicate cities or towns.
4Administrative territorial entities indicate regions such as states or countries.
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insight for building models that perform human-like commonsense reasoning.

9.4 Word Embeddings vs. Taxonomies

Word embeddings represent a set of language modeling techniques, which are aimed towards

finding mathematical vector representations for words or phrases. Intuitively, word embed-

ding techniques perform a mathematical embedding of words (or phrases) from a space with

one dimension per word (or phrase) to a continuous vector space with much lower dimen-

sions. One of the key use cases of word embeddings is to discover words (or phrases) that are

semantically similar to a given term [85, 104, 35].

In this section, we qualitatively compare the set of semantically-similar terms that are returned

by state-of-the-art word embeddings against those returned by taxonomies induced with the

SubSeq+Flow approach. To this end, we first manually choose a set of terms across four

different languages, i.e., English, French, Dutch and Italian. For each (term, language) pair,

we find the most semantically-similar terms as computed using the fastText embeddings [35].

Further, we induce taxonomies using our SubSeq+Flow approach with each term as the root

(as performed in Section 8.5). To compute similar terms, we randomly sample a set of terms

from the set of direct children and grandchildren (i.e., second-level descendants) of the root

term in the induced taxonomy.

Table 9.5 (page 141) shows the results of this experiment, and demonstrates that both ap-

proaches perform well in discovering semantically-similar words. A quantitative evaluation

of this experiment is inherently complex, and outside the scope of this thesis. However, it

is noticeable immediately that the terms output by word embeddings are usually a mix of

synonyms (e.g., havenstad for stad), hyponyms (e.g., leukemia for cancer) or frequently co-

occurring words (e.g., prostate for cancer). In contrast, the terms discovered by SubSeq+Flow

are mostly hyponyms (e.g., vinh for stad).

Overall, this experiment demonstrates that SubSeq+Flow is a viable approach for discovering

semantically-similar hyponym terms for a given term. Furthermore, in comparison with

word embeddings, the behavior of the terms discovered by SubSeq+Flow is more well-defined.

Therefore, SubSeq+Flow can serve as a complementary approach to Word Embeddings for

discovering semantically-similar hyponyms.

9.5 Summary

In this chapter, we focused on the applications of taxonomies in various NLP-related tasks and

applications. We first provided a brief survey of the past approaches that utilize taxonomies.

Further, we presented our approach for discovering and generalizing linguistic templates from

Wikipedia entities such as Passport of X. We demonstrated that the entities, which usually

replace the placeholder (i.e., X), can be generalized to suitable Wikipedia categories using
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a beam search-based approach for category selection. Our experiments also demonstrate

qualitatively that HEADS taxonomy (induced in Chapter 3) results in significantly better gen-

eralizations than state-of-the-art MultiWiBi taxonomies. Although in this chapter, we only

focused on English linguistic templates for entity names, our approach is general and can be

easily extended to other languages as well as other kinds of linguistic templates.

Finally, in the last section, we show examples of semantically-similar terms discovered by

SubSeq+Flow across four languages. While we reserve a rigorous quantitative evaluation for

future work, the examples demonstrate that quality of these terms is similar to those returned

by state-of-the-art word embeddings. Moreover, the terms returned by SubSeq+Flow are more

likely to be hyponyms, whereas those returned by word embeddings are usually a mix of many

semantic relations such as synonyms, hyponyms, or frequently co-occurring words.

Limitations and Future Work. The work presented in this chapter is still ongoing and many

research question remain to be answered. First, the task of generalization templates can

be extended to other languages and other kinds of linguistic templates, thus resulting in

automated extraction of multilingual commonsense facts. Second, there are many parallels

between the category selection approach for generalization templates (Section 9.3.3) and the

beam search-based method for automated root detection (Section 8.3). For example, both

approaches use a scoring method for scoring categories (or terms) followed by a beam search

optimization to pick the right set of generalizations. However, the key difference is that in the

former a taxonomy is given, whereas in the latter, a taxonomy is constructed along with root

detection. It would be interesting and useful to unify the two approaches under a common

conceptual framework. Finally, the comparison of hyponyms detected by taxonomies vs. word

embeddings is performed qualitatively. An important future work is to do a more rigorous

quantitative evaluation. Another interesting future work could be to train word embeddings

using taxonomic information, and compare their performance to original word embeddings.
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Table 9.4 – Lists of selected generalization categories computed using the beam search-based
categories selection method over the HEADS and MultiWiBi taxonomies.
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Table 9.5 – Examples of semantically-similar terms found using fastText embeddings vs. Sub-
Seq+Flow taxonomies.
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10 Conclusion

Machine-readable semantic knowledge lies at the core of the fields of Artificial Intelligence (AI)

and Natural Language Processing (NLP). It has been shown to be a key ingredient in building

AI that can achieve human-like performance in intelligence-oriented tasks. However, the

acquisition of large-scale machine-readable semantic knowledge is not trivial by any means

and has inspired a substantial and growing body of research over the last few decades. The

earlier work in this direction involved large-scale manual efforts (such as WordNet or Cyc).

However, they were quickly deemed insufficient given the vast scale of knowledge, thus paving

the way for semi-automated and automated knowledge acquisition approaches.

In this thesis, we focused on the automated acquisition (or induction) of a specific type of

knowledge resource, i.e., a taxonomy, which is a collection of is-a relations that represent a co-

herent tree-like hierarchy between terms (or concepts). We addressed two of the most popular

settings of automated taxonomy induction, namely taxonomy induction from Wikipedia, and

taxonomy induction from unstructured text. In both settings, we proposed novel approaches

that resulted in significant improvements over the state of the art. Furthermore, for taxonomy

induction from unstructured text, our work also facilitated the relaxation of many simplifying

assumptions, which limited the applicability of previous approaches. In the final part of the

thesis, we discussed some use cases of the induced taxonomies. The next section provides an

overview of the main achievements of this thesis. Section 10.2 proposes possible directions

for future work.

10.1 Achievements

The main achievements of this thesis in different tasks are as follows:

• Taxonomy induction from English Wikipedia: in Chapter 3, we focused on a specific

case of taxonomy induction, i.e., taxonomy induction from the Wikipedia categories

network (WCN) in English. We proposed a novel set of heuristics, which exploit the

lexical head of Wikipedia categories to pick suitable generalizations for Wikipedia en-
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tities and categories. The application of our heuristics results in the induction of a

large-scale unified taxonomy (referred to as the HEADS taxonomy) consisting of millions

of Wikipedia entities and categories. Our experiments demonstrate that the HEADS tax-

onomy achieves higher edge-level accuracy than state-of-the-art taxonomies released

by MultiWiBi [31]. However, more importantly, our experiments also demonstrate that

the generalization paths obtained using our taxonomies are twice as accurate as the

MultiWiBi taxonomies, thus indicating a significant improvement over the state of the

art. This work also serves to demonstrate that edge-level accuracy of taxonomies may

not always correlate well with their path-level accuracy.

A key outcome of this work is the release of HEADS taxonomy1. This work also has

multiple consequences on the rest of the thesis. First, the HEADS taxonomy is projected

to other languages using the interlanguage links, thus leading to the construction of

taxonomies in all Wikipedia languages (Chapter 4). Second, the path-level measures

(i.e., ACPP and ARCPP) introduced in this chapter are further reused for evaluation

of taxonomies across multiple languages (Chapter 4). Finally, HEADS taxonomy is

utilized for selection of suitable generalization categories for the fillers of generalization

templates of Wikipedia entities (Chapter 9).

• Taxonomy induction from multilingual Wikipedia: in Chapter 4, we presented a novel

fully-automated approach towards inducing taxonomies from Wikipedia in languages

other than English. Given an English Wikipedia taxonomy, our approach leverages the

interlanguage links of Wikipedia to project an initial taxonomy in the target language.

Training datasets are constructed automatically using the projected taxonomy. Standard

text classifiers are trained on the constructed datasets and used in an optimal path

discovery framework to induce a high-precision, wide-coverage taxonomy in the target

language. Taxonomies induced using our approach outperform the state-of-the-art

MultiWiBi taxonomies on both edge-level and path-level metrics across multiple lan-

guages. Furthermore, our approach also provides a control parameter for regulating the

trade-off between the precision and the branching factor of the induced taxonomies,

thus providing better control over the taxonomy induction process. Our approach differs

from most previous approaches aimed towards taxonomy induction from Wikipedia in a

significant fashion: it does not employ any complex heuristics. As a result, our approach

is simpler, principled and easy to replicate.

A key outcome of this work is the release of our taxonomies across 280 languages, which

are significantly more accurate than the state of the art and provide higher coverage.

• Extraction of hypernym subsequences: in Chapter 6, we presented a novel probabilis-

tic model (referred to as SubSeq), which extracts long-range hypernym subsequences

from noisy automatically-harvested hypernymy relations. Barring a small manually-

annotated set of hypernymy edges, SubSeq is fully-unsupervised and runs in an auto-

mated fashion. SubSeq captures the intuition that more accurate hypernyms for general

1HEADS taxonomy is available at http://headstaxonomy.com.
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terms (such as fruit) can be extracted by utilizing the candidate hypernyms of its descen-

dants (such as apple or banana). Furthermore, empirical evaluation demonstrates that

SubSeq significantly outperforms multiple baselines, thus resulting in the extraction of

more accurate hypernym subsequences. The utility of SubSeq is further demonstrated

in Chapter 7, where it is shown that the subsequences extracted by the SubSeq model

result in the induction of more accurate taxonomies.

• A flow network optimization-based framework for taxonomy induction: in Chapter 7,

we presented a novel flow network-based optimization approach for inducing a clean

taxonomy from a noisy hypernym graph. The noisy hypernym graph is constructed

through the aggregation of hypernym subsequences extracted for the seed terms in the

input vocabulary. The task of taxonomy induction from the noisy hypernym graph is

cast as an instance of the minimum-cost flow optimization problem over a carefully-

designed flow network. Our experiments demonstrate that our approach outperforms a

state-of-the-art taxonomy induction system, i.e., TAXI, across multiple languages in the

TExEval-2 task of taxonomy extraction [16, 102].

The key advantage of our approach is that the design of the flow network provides for

a control parameter, i.e., required coverage (α), which can be modulated to control

the ratio of input seed terms that would be present in the final vocabulary. As a result,

our taxonomy induction approach is robust to the presence of significant noise in the

input vocabulary. This noise robustness has far-reaching consequences, because it

eliminates the need for a time-consuming manual cleaning step of input vocabularies,

thus automating the process of taxonomy induction in the true sense.

• Extensions to the flow network framework: in Chapter 8, we extended the flow network

optimization-based framework to enable better control over the taxonomy induction

process. First, we introduced a new parameter that can be modulated to control the

relative tradeoff between precision and branching factor of the seed terms in the output

taxonomies. Second, we proposed two approaches aimed towards automated detection

of roots of the taxonomy, thus eliminating the requirement of a manually-input set of

roots. This extension is a considerable improvement over the state of the art because

most previous approaches assumed the availability of a pre-determined set of roots.

Finally, we presented an extension, which automatically discovers new seed terms given

an initial vocabulary. This extension leads to the induction of taxonomies given a single

root term as input. This extension is essentially enabled by the noise-robustness of the

flow network optimization-based taxonomy induction, which allows us to use relatively

inaccurate term extraction or collection methods for construction of seed vocabularies.

Overall, these extensions further help in relaxing many of the simplifying assumptions,

which limited the applicability of prior taxonomy induction approaches.

• Applications of taxonomies: in Chapter 9, we focused on the applications of automatically-

induced taxonomies. We introduced a novel task, which aims towards the discovery

of suitable generalizations for the placeholder in lexicalized templates (e.g., X is the
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placeholder in Passport of X). We first discover such lexicalized templates from the titles

Wikipedia entities. Further, we demonstrate that the set of entities, which replace the

placeholder in a template, can be generalized to suitable Wikipedia categories using

a Wikipedia taxonomy and a beam search-based approach for category selection. We

also demonstrate qualitatively that the HEADS taxonomy results in the selection of more

appropriate generalization categories than the state-of-the-art MultiWiBi taxonomies.

Finally, we showed some examples of semantically-similar terms, which are discovered

by the taxonomy induction approach presented in Chapters 7 & 8. A qualitative compar-

ison suggests that our taxonomy induction approach might be more effective than word

embeddings for computing semantically-similar hyponyms.

10.2 Future Work

The field of automated taxonomy induction is quite challenging, with a large number of

unaddressed issues and open questions. While we consider the work done in this thesis as an

important advancement towards the field, there are still a variety of issues and challenges in

taxonomy induction that need to be addressed. In the remainder of this section, we identify a

few of these issues and propose possible directions for future work:

• Use-case based evaluation metrics: in this thesis, we proposed path-level metrics as

an alternative measure for assessing the quality of taxonomies and demonstrated qual-

itatively that higher path-level accuracy results in better performance on the task of

generalizing a set of entities (Chapters 3 & 9). In the prior work, a variety of evaluation

measures for taxonomies have been introduced [16], which evaluate different aspects

of taxonomies including structural properties and accuracy. However, despite so many

evaluation measures, the relationship between the performance on these measures

and performance in external tasks is not clear. It would be useful if the relationship

between such evaluation measures and the utility of the taxonomy in external tasks

can be characterized and quantified. This line of work is especially important because

taxonomies are intermediate resources, and mainly beneficial through their utility in

external applications.

• Continuous representations: one of the biggest disadvantages of taxonomies is that

they are discrete representations of knowledge. This is in contrast with word embed-

dings, which provide continuous vector representations for words or phrases. The

continuous nature of their representations allows word embeddings to be used directly

in a wide variety of machine learning models such as neural networks. While there

is some recent work towards inducing continuous representations of words that in-

corporate taxonomic information [95], it is in its nascent stages. However, still, this

research direction is promising and consequential, as it would serve to further expand

the applicability of taxonomies.

• Different types of hierarchies: in this thesis, we focused on a specific type of term hier-
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archy that contains is-a relations between terms or concepts. However, many different

kinds of hierarchies exist and can be beneficial for many intelligence-oriented tasks. For

example, Harkous [45] demonstrates that a state-of-the-art question answering system,

which answers questions related to privacy policies, can be built using a hierarchy of

topics related to privacy.

Another limitation of our work is that it largely focuses on noun phrases as terms or

concepts, due to the designs of the vocabulary extraction and candidate hypernymy

extraction approaches. However, taxonomies can be induced on other linguistic units

such as adjectives, verbs or relational phrases. For example, Grycner et al. [37] induces

a taxonomy of relational phrases instead of unitary terms and demonstrates its util-

ity in the document retrieval task. Expansion of taxonomy induction approaches to

such linguistic units would benefit many NLP applications. Another interesting but

challenging research direction could be the induction of taxonomies for non-linguistic

information types such as images or videos. Research efforts in such directions would

lead to more widespread applications of generalization knowledge and further enhance

the capabilities of artificially intelligent systems.

• A unified approach: in this thesis, we presented a wide variety of approaches towards

taxonomy induction under different settings. While some general principles were re-

peated, the taxonomy induction methods still diverged significantly across different

settings. A very important and beneficial future work is to unify the ideas presented in

this thesis into a comprehensive framework that performs taxonomy induction from a

possibly-multilingual heterogeneous set of resources. Such unified approach in con-

junction with continuous representations of taxonomies would facilitate much wider

applicability of taxonomies for intelligence tasks.
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