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Abstract

Machine-readable semantic knowledge in the form of taxonomies (i.e., a collection of is-a
edges) has proved to be beneficial in an array of Natural Language Processing (NLP) tasks
including inference, textual entailment, question answering and information extraction. Such
widespread utility of taxonomies has led to multiple large-scale manual efforts towards tax-
onomy induction such as WordNet and Cyc. However, manual construction of taxonomies
is time-intensive, and usually, requires substantial annotation efforts by domain experts.
Furthermore, the resulting taxonomies suffer from low coverage and are unavailable for spe-
cific domains or languages. Therefore, in recent years, there has been a growing body of
work, which aims to induce taxonomies automatically, either from unstructured text or semi-
structured collaborative content such as Wikipedia.

In this thesis, we focus on the task of automated taxonomy induction under a variety of dif-
ferent settings. We first focus on the task of inducing taxonomies from Wikipedia, which is
the largest and most popular publicly-available semi-structured resource of world knowledge.
More specifically, we introduce a set of novel heuristics aimed towards inducing a large-scale
taxonomy from the English Wikipedia categories network. We also propose a novel compre-
hensive path-based evaluation framework for taxonomies. Our experiments show that the
taxonomy induced using our approach significantly outperforms the state of the art across
edge-based as well as path-based evaluation metrics. Moreover, our experiments also demon-
strate that good performance of a taxonomy in traditional edge-based metrics does not always
translate to good performance in the path-based metrics.

Subsequently, we focus on the multilingual aspect of taxonomy induction from Wikipedia. We
propose a novel approach, which leverages the interlanguage links of Wikipedia to induce
taxonomies in other languages. Our approach first constructs training datasets for the is-a re-
lation in other languages. Off-the-shelf text classifiers are trained on the constructed datasets
and used in an optimal path discovery framework to induce high-precision, wide-coverage
taxonomies for all Wikipedia languages. Compared to the state of the art, our approach is
simpler, more principled, and results in taxonomies that are significantly more accurate across
both edge-based and path-based metrics. A key outcome of our work is the release of our
taxonomies across 280 languages, which are significantly more accurate than the state of the
art and provide higher coverage.
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Abstract

In the second part of this thesis, we focus on the task of taxonomy induction from unstructured
text. We propose a novel approach towards taxonomy induction from an input vocabulary
of seed terms that is extracted automatically from raw text. Unlike all previous approaches,
which typically extract singular hypernym edges for terms, our approach utilizes a novel
probabilistic framework to extract long-range hypernym subsequences. Taxonomy induction
from the extracted subsequences is cast as an instance of the minimum-cost flow problem on
a carefully designed directed graph. Through experiments, we demonstrate that our approach
outperforms the state-of-the-art taxonomy induction approaches across four languages. We
also show that our approach is robust to the presence of noise in the input vocabulary. Our
approach facilitates the relaxation of many simplifying assumptions, which were employed by
previous taxonomy induction approaches, such as clean input vocabularies of seed terms as
well as pre-determined sets of roots. As a result, our work serves to automate the process of
taxonomy induction from unstructured text in the true sense.

Finally, we introduce a task of discovering and generalizing lexicalized templates from the
titles of Wikipedia entities. The experimental results on this task demonstrate that taxonomies,
which perform better on our proposed path-based evaluation metrics, result in a more accu-
rate set of generalizations for a given set of entities.

In summary, this thesis proposes new approaches towards automated taxonomy induction. It
improves upon the state of the art in a variety of different settings. It also serves to relax many
of the simplifying assumptions that limited the applicability of prior approaches.

Keywords: taxonomy induction, knowledge acquisition, natural language processing, Wikipedia,
multilinguality, hypernym subsequences, minimum-cost flow optimization, generalization
templates, neural networks.
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Résumé

La représentation des connaissances sous forme de taxonomies (c.-a-d. une collection de liens
est-une) lisible par les machines, s’est avérée bénéfique pour un ensemble de taches du traite-
ment automatique du langage naturel (TALN), comme par exemple I'inférence, I'implication
textuelle, les systemes questions-réponses et |'extraction d’informations. Une telle utilisation
généralisée des taxonomies a conduit a de multiples efforts pour construire manuellement des
taxonomies a grande échelle, telles que WordNet et Cyc. Cependant, la construction manuelle
des taxonomies prend beaucoup de temps et nécessite généralement des efforts d’annotation
importants de la part des experts du domaine. En outre, les taxonomies qui en résultent
souffrent d'une couverture faible et ne sont pas disponibles pour des domaines ou des langues
spécifiques. C’est pourquoi, au cours des dernieres années, un nombre croissant de travaux
ont visé a construire automatiquement des taxonomies, soit a partir de textes non structurés,
soit a partir de contenus collaboratifs semi-structurés tels que Wikipédia.

Dans cette thése, nous nous concentrons sur la construction automatique de taxonomies
dans différents contextes. Dans un premier temps, nous nous penchons sur la construction de
taxonomies a partir de Wikipédia, qui est une ressource semi-structurée des connaissances,
la plus grande du monde, la plus populaire et disponible au public. Plus spécifiquement,
nous introduisons un nouvel ensemble d’heuristiques visant a construire une taxonomie a
grande échelle a partir du réseau de catégories du Wikipédia en anglais. Nous proposons
également un nouveau cadre d’évaluation complet des taxonomies fondé sur les séquences.
Nos expériences montrent que la taxonomie construite par notre approche surpasse de facon
significative I'état de I'art sur les mesures d’évaluation au niveau des liens et des séquences.
De plus, nos expériences démontrent que d’obtenir de bonnes performances au niveau des
liens n'engendre pas toujours une bonne performance dans les mesures d’évaluation basées
sur les séquences.

Par la suite, nous nous concentrons sur ’aspect multilingue de la construction automatique
de taxonomies a partir de Wikipédia. Nous proposons une approche novatrice, qui exploite les
liens interlangues de Wikipédia pour construire des taxonomies dans d’autres langues. Notre
méthode commence par construire des jeux de données d’apprentissage pour la relation
est-une dans les autres langues. Des classificateurs de texte standards sont entrainés sur ces
jeux de données et sont ensuite utilisés pour la découverte optimale de séquences afin de
construire une taxonomie de haute précision et a large couverture dans toutes les langues de

\%



Résumé

Wikipédia. Comparativement a I'état de I'art, notre approche est plus simple, plus systéma-
tique, et produit des taxonomies beaucoup plus précises sur diverses mesures d’évaluation
au niveau des liens et des séquences. L'un des principaux résultats de notre travail est la
publication de nos taxonomies dans 280 langues, qui sont beaucoup plus précises que I'état
de I'art avec une couverture plus élevée.

Dans la deuxieme partie de cette these, nous nous concentrons sur la tiche de construction
de taxonomies a partir de textes non structurés. Nous proposons une nouvelle méthode de
construction a partir d’'un vocabulaire de termes initiaux, extraits automatiquement du texte
brut. Contrairement a toutes les approches précédentes, qui extraient des liens hyperony-
miques singuliers pour les termes, nous utilisons un nouveau cadre probabiliste pour trouver
de longues sous-séquences d’hyperonymes. La construction de taxonomies a partir des sous-
séquences extraites est formulée comme un exemple du probleme de flot a colit minimum
sur un graphe orienté soigneusement concu. Au travers d’expériences, nous démontrons que
notre méthode surpasse les approches de construction automatique de taxonomies dans
quatre langues. Nous montrons également que cette technique est robuste a la présence de
bruit dans le vocabulaire d’entrée. Enfin, notre approche facilite 'assouplissement de nom-
breuses hypotheéses simplificatrices, qui ont été utilisées dans le cadre d’approches antérieures
de construction de taxonomies, telles que des vocabulaires de termes initiaux non bruités ou
des ensembles de racines prédéterminés. Notre travail permet ainsi d’automatiser le processus
de construction de taxonomies a partir de textes non structurés au sens propre du terme.

Enfin, nous introduisons une tache de découverte et de généralisation des modeles lexicali-
sés a partir des titres des entités de Wikipédia. Les résultats expérimentaux sur cette tache
montrent que les taxonomies, qui donnent les meilleurs résultats sur les mesures d’évaluation
proposées au niveau des séquences, permettent d’obtenir un ensemble plus précis de généra-
lisations pour un ensemble donné d’entités.

En résumé, cette thése propose de nouvelles approches pour la construction automatique
de taxonomies. Il améliore I'état de I’art dans une variété de contextes différents. Elle permet
également d’assouplir un bon nombre des hypothéses simplificatrices qui ont limité 'applica-
bilité des approches antérieures.

Mots clés : Construction automatique de taxonomies, acquisition de connaissances, traite-
ment automatique du langage naturel, Wikipédia, multilinguisme, sous-séquences d’hyperonymes,
probleme du flot de colit minimum, modeles de généralisation, réseaux neuronaux.
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|§ Introduction

“There is a set of clear-cut challenges, all centering around knowledge, that have received insufficient
attention in Al, and whose solution could bring the realization of Turing’s dream — the dream of a
machine we can talk with just like a person, and which is therefore (at least) our intellectual equal.
These challenges have to do with the representation of linguistically expressible knowledge, the role
of knowledge in language understanding, the use of knowledge for several sorts of commonsense
reasoning, and knowledge accumulation.”

Lenhart K. Schubert [116].

1.1 Overview

The acquisition of machine-readable semantic knowledge has been a fundamental challenge
in the field of Artificial Intelligence (AI). The importance of semantic knowledge in building
Al, which can achieve human-level performance in complex intelligence tasks, has been
continuously accentuated by a variety of different works over the past few decades [80, 81, 116].
Humans acquire and accumulate such knowledge by processing information from a variety of
media such as sensory-motor interactions and verbal dialogue [70, 116]. However, the transfer
of such knowledge from humans to automated intelligent systems is not straightforward by
any means. Due to its inherent complexity, this transfer is usually referred to as the knowledge
acquisition bottleneck [28].

Initial efforts towards loosening this knowledge acquisition bottleneck were mostly man-
ual and involved enormous human efforts aimed towards compiling large-scale knowledge
resources [86, 74, 124]. For example, CYC, a comprehensive knowledge base of everyday com-
mon sense knowledge, was constructed using a person-century of human effort that involved
codifying knowledge into millions of concepts and common sense axioms [74]. However,
despite such humongous efforts, the assembled knowledge resources typically suffered from
low coverage over specific domains and were usually unavailable for languages other than
English. Therefore, in recent years, there has been substantial interest in the acquisition of
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Figure 1.1 - Types of semantic knowledge resources with relative expressiveness and com-
plexity of acquisition [82].

semantic knowledge in a semi-automated or fully-automated fashion [120, 125, 129].

Automatically acquired knowledge resources differ widely in their complexity as well as the
expressiveness of the semantics that they encode. They can be loosely categorized into three
different categories:

1. Term lists represent a simple collection of terms, and may possibly contain their defini-
tions or synonyms. A ferm is defined as a word or string used to describe a thing or an
idea (e.g., apple, singing, johnny depp). Some examples of knowledge resources in this
category include dictionaries, vocabularies, glossaries and lexicons.

2. Term hierarchies specify groupings or classifications of terms or concepts into higher-
level generic objects. These groupings typically correspond to two types of semantic
relations, i.e., is-a and has-related. The is-arelation asserts that one term is a general-
ization of another term. For example, the relation is-a(apple, fruit) indicates that fruit
is a generalization of apple. In contrast, the has-related relation asserts an associative
link between two terms. For example, the terms singer and band can be grouped by the
semantic relation has-related. Subject headings and taxonomies are the prime examples
of term hierarchies.

3. Semantic databases are the most complex type of knowledge resources. They employ
a fully-structured knowledge model, which is based on concepts rather than terms. A
concept is defined as a thing or an idea, which can be represented by one or more terms.
For example, the concept of a SINGER can be represented by multiple terms such as
singer or vocalist.
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polony
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Figure 1.2 — A snippet of the taxonomy of the food domain (Chapter 7). The arrow (—)
represents an is-a relationship between the two terms.

Semantic databases encode knowledge in the form of facts, axioms and specific semantic
relations between concepts. They also differentiate between concepts that serve as
classes (e.g., fruit) and their instances (e.g., apple and banana). In contrast with term
hierarchies, the relations in semantic databases are greater in number and more specific
in their function. As a result, semantic databases are used in complex information
systems such as the Semantic Web [82]. Ontologies are the most prominent examples of
semantic databases.

Semantic databases offer the highest expressiveness, followed by the term hierarchies and
the term lists respectively. Higher expressiveness of a knowledge resource typically results
in greater complexity of its acquisition process. Figure 1.1 illustrates the relationship be-
tween the expressiveness of a knowledge resource and the complexity of its acquisition. As
shown in the figure, unlike the term hierarchies, the semantic databases explicitly encode
the relationship between the concepts SINGER and BAND using the specific semantic relation
member-of. A more detailed discussion of the different types of knowledge resources can be
found in Medelyan et al. [82] and Buitelaar and Magnini [17].

In this thesis, we focus on the automated acquisition of a specific type of term hierarchy, i.e., a
taxonomy. In the literal sense, the word “taxonomy” refers to a structure used for the purposes
of classification of things or concepts in a particular domain. In the formal sense, a taxonomy
is defined as a collection of is-a relations between terms or concepts, which represents a
complete and coherent tree-like hierarchy. A taxonomy comprising of is-a relations on terms
is referred to as a term taxonomy or a lexicalized taxonomy. A taxonomy consisting of is-a
relations on concepts is referred to as a concept taxonomy.

The process of automated acquisition of a taxonomy is referred to as automated taxonomniy
induction. The induced taxonomies can be either specific to a particular domain (e.g., Sports
or Finance), or wide-scale spanning across multiple domains. Figure 1.2 shows a snippet of
the term taxonomy of the food domain induced in Chapter 7. Before we proceed with the
discussion on automated taxonomy induction, we first describe the is-a relation in more detail,
as it will serve us for the remainder of this thesis.
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1.2 The Is-A Relation

The is-a relation asserts that one term (or concept) is a generalization of another term (or
concept). In the Natural Language Processing (NLP) community, the is-a relation is frequently
referred to as the hypernymy relation. The inverse of is-a is typically referred to as the hy-
ponymy relation or the specialization relation. For example, the semantic relation is-a(apple,
fruit) can be equivalently expressed as follows: (1) fruit is a hypernym of apple, (2) appleis a
hyponym of fruit, (3) fruit is a generalization of apple, and (4) appleis a specialization of fruit.

In this thesis, we use is-a, hypernymy and generalization interchangeably. We now describe
other semantic relations that are closely related to the is-a relation:

¢ SubClass-Of: the subclass-of relation defines a subsumption relationship between two
classes (e.g., subclass-of (pop singer, singer)).

* Instance-Of: the instance-of relation defines the relationship between an example
instance and its class concept (e.g., instance-of (alicia keys, pop singer)). The class
concept is usually referred to as the fype of the example instance.

¢ Part-of: the part-of relation (also referred to as the meronymy relation) defines the
relationship between a constituent part and its whole (e.g., part-of (finger, hand)).

* Geo-containment: the geo-containment relation defines the relationship between a
sub-region and its enclosing region (e.g., geo-containment(vaud, switzerland)).

¢ Synonymy: the synonymy relation defines the relationship between two terms that are
similar in meaning (e.g., (singer, vocalist)).

¢ Co-hyponymy: the co-hyponymy relation (also referred to as the sibling relation) defines
the relationship between two terms that generalize to the same class or concept (e.g.,
apple and orange are both hyponyms of fruit).

In this thesis, we use the definition of the is-a relation, which is provided by WordNet [86]. In
this definition, the relations subclass-of and instance-of are considered as valid is-a relations.
Other relations, i.e., part-of, geo-containment, synonymy and co-hyponymy are considered as
invalid is-a (or not-is-a) relations. Additionally, terms or concepts that are either unrelated
or do not fall under any of the above semantic relations are also considered to be in not-is-a
relationship. Table 1.1 shows examples of these semantic relations, and helps to summarize
this discussion.

1.3 Automated Taxonomy Induction

We now proceed with the discussion on the automated acquisition of taxonomies, also referred
to as automated taxonomy induction. More specifically, in Section 1.3.1, we discuss the utility
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is-a not-is-a
iphone—smartphone (instance-of) finger~~hand (part-of)
rose—flower (instance-of) flower~~plant (part-of)
switzerland— country (instance-of) switzerland~~europe (geo-containment)
lausanne—city (instance-of) lausanne~~vaud (geo-containment)
cricket—sport (instance-of) story~~tale (synonymy)
european country—country (subclass-of) singer~~vocalist (synonymy)
singer—artist (subclass-of) apple~~orange (co-hyponymy)
flower—plant organ (subclass-of) johnny depp~~brad pitt (co-hyponymy)
fruit—food (subclass-of) computer~»yogurt (unrelated)

smartphone—electronic device (subclass-of) gas~»water (unrelated)

Table 1.1 — Examples of valid is-a and invalid is-a (i.e., not-is-a) relations. The arrow —
represents an is-a relationship, whereas ~~ represents a not-is-a relationship.

of taxonomies as well as motivate their automated acquisition. In Section 1.3.2, we provide a
brief overview of the main approaches towards automated taxonomy induction and discuss
their relative advantages and drawbacks.

1.3.1 Motivation

Intuitively, taxonomies serve to leverage added information in knowledge-intensive tasks.
The hyponyms inherit information from their direct as well as ancestor hypernyms, thus
eliminating the need to relearn all the relevant information. For example, the fact that “birds
fly” can be learned once, and inherited by all the descendant hyponyms of bird. Similarly,
given the query bird, an information retrieval system can also retrieve documents containing
the descendant hyponyms of bird, hence resulting in a greater recall.

As a matter of fact, taxonomies have been shown to be beneficial in a variety of NLP tasks
including information retrieval [21], inference and textual entailment [34, 33, 128], question
answering [44, 142], information extraction [12], query understanding [88, 54] and personal-
ized recommendations [145]. Moreover, they have supported numerous practical applications
such as information management [96], biomedical systems [67] and e-commerce [1]. A popu-
lar real-world example is IBM Watson, a state-of-the-art question answering system, which
employs the semantic type information present in taxonomies to restrict the set of answer
candidates [29]. In the game show Jeopardy!, IBM Watson consistently outperformed its
human opponents at the task of answering general knowledge questions [137].

WordNet is one of the prime examples of lexical knowledge bases that have been utilized
for their taxonomic information [86]. WordNet groups English words into sets of synonyms
(also referred to as synsets), and provides relational information about these synsets such
as hypernymy, hyponymy, and meronymy. WordNet has been cited more than 10,000 times
in the academic literature and has enjoyed widespread use in a variety of NLP-related and
real-world tasks.
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However, WordNet is compiled and maintained manually through extensive efforts by domain
experts. These manual efforts are extremely time-consuming and do not scale well to the
immense range of real-world knowledge. Furthermore, many knowledge domains are dynamic
(e.g., Politics or Sports), where new information is produced continuously. Such domains are
typically not present in WordNet because inclusion of such domains would require frequent
manual updates to maintain the correctness of WordNet. As a result, despite significant efforts,
WordNet is still incomplete and provides limited coverage in many domains [103, 51].

Such shortcomings hold true for most manually constructed taxonomies or knowledge re-
sources and have led to a surge of semi-automated and fully-automated approaches towards
taxonomy induction in recent years. In the next section, we provide a brief overview of these
approaches and discuss their relative advantages and drawbacks.

1.3.2 Main Approaches

Depending on the type of input, approaches towards automated taxonomy induction can be
broadly classified into three categories:

1. Fully-structured resources: the first line of work aims to automatically expand existing
manually-constructed fully-structured knowledge resources such as WordNet or Cyc.
These approaches typically consist of two steps: (1) discovery of relevant terms that are
missing in the existing resource, (2) appropriate placement of the discovered terms. For
example, Widdows [133] places missing terms in the regions of WordNet that contain
the most semantically-similar neighbors. Similarly, Snow et al. [120] add missing terms
to the WordNet by greedily maximizing the posterior conditional probability of a set of
textual evidence.

Advantages. These approaches typically achieve the highest accuracy, because they use
highly accurate resources that are manually compiled by domain experts. Additionally,
they also provide a high degree of ontologization, i.e., they contain well-defined con-
cepts and semantic relations. For example, WordNet provides sets of synonyms known
as synsets, which are connected to each other in a network of well-defined semantic
relations such as hypernymy and meronymy.

Drawbacks. The main drawback of these approaches is the lack of sufficient coverage.
Although multiple approaches were proposed to increase the coverage of such resources
by facilitating mass collaboration among the Internet users [113, 130, 131], none of these
efforts have achieved any significant advancements towards the aim of providing truly
wide-coverage resources.

2. Semi-structured resources: the second line of work aims to extract a wide-coverage
taxonomy from semi-structured resources such as Flickr [112], Wikitionary [83, 143]
or Wikipedia [109, 91, 30, 31, 39, 41]. Unlike fully-structured resources, the content of
semi-structured resources is only partially-structured into a fixed set of components
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such as Wikipedia pages, categories, Wikitionary definitions or Flickr image tags. Since
Wikipedia is by far the largest of these semi-structured resources, the most significant
of these approaches are the ones that extract taxonomies from Wikipedia. These ap-
proaches benefit from the large scale as well as the semi-structured nature of Wikipedia,
which enables the acquisition of highly accurate semantic knowledge through the appli-
cation of lightweight heuristics. Some of these approaches also combine the taxonomies
extracted from Wikipedia with WordNet, thus resulting in wide-coverage as well as
high-precision taxonomies [125, 50]. Chapter 2 provides a comprehensive survey of
taxonomy induction approaches from Wikipedia.

Advantages. Taxonomies induced from semi-structured resources provide significantly
greater coverage than those induced from fully-structured resources, while still main-
taining good accuracy [39]. Moreover, Wikipedia, the most popular semi-structured
resource used for taxonomy induction, is available in more than 280 languages, thus
facilitating the induction of wide-coverage taxonomies in multiple languages [31, 41].
Wikipedia is also continuously updated and maintained by a large number of users in
a collaborative fashion, therefore, resulting in the induction of up-to-date taxonomies
that provide good accuracy even in highly dynamic domains such as Politics.

Drawbacks. While these approaches provide much greater coverage than fully-structured
resources, they still lack coverage in highly specialized or niche domains such as Law or
Finance. Furthermore, the growth of Wikipedia has slowed over the recent years, thus
making it unlikely that such specialized domains will be covered in the future [126].

. Unstructured resources: finally, the third line of work aims to extract taxonomies from
the simplest kind of resource, i.e., unstructured or raw text corpora. This line of work
is relatively recent and less studied, and has only received a few publications [68, 129,
5, 102, 40]. Taxonomy induction from unstructured text typically involves two steps:
(1) extraction of individual is-a relations between terms from unstructured text, (2) the
structured organization of terms into a taxonomy using the extracted is-a relations.
Chapter 5 provides a comprehensive survey of approaches that perform taxonomy
induction from unstructured text.

Advantages. The main advantage of taxonomy induction from unstructured text is that it
can be performed on arbitrary domains because domain-specific raw text can be easily
harvested on a large scale using the Web [19, 102]. As a result, these approaches typically
provide greater coverage than the previous approaches. Furthermore, the temporal
information present in most Web documents can be utilized effectively for inducing
taxonomies that are up-to-date with the latest information trends present in highly
dynamic domains [146, 77].

Drawbacks. Taxonomy induction from unstructured text is the most challenging of the
approaches mentioned above. Therefore, it suffers from multiple drawbacks. First, as
expected, the accuracy of taxonomies induced from unstructured text is significantly
lower than those induced from fully-structured or semi-structured resources. Second,
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the taxonomies induced from unstructured text provide a much lower degree of on-
tologization. More specifically, in contrast to other approaches that produce concept
taxonomies, taxonomy induction approaches that utilize unstructured text typically
produce term taxonomies. Finally, these approaches typically require a clean vocabulary
of terms as input [129, 16]. This requirement is not usually satisfied for most domains,
hence leading to a time-consuming step of manual cleaning of vocabularies.

Overall, these taxonomy induction approaches are complementary to each other. Approaches
that use fully-structured resources provide better accuracy and a greater degree of ontolo-
gization but lower coverage, whereas approaches that use unstructured text provide lower
accuracy and poor degree of ontologization but higher coverage. Approaches that use semi-
structured resources provide a “sweet spot in the middle”, i.e., they provide wide coverage
while still maintaining good accuracy and degree of ontologization. All three approaches have
been used effectively in NLP-related tasks as well as real-world intelligent applications. A more
detailed discussion of these approaches and their use cases can be found in Hovy et al. [52].

1.4 Thesis Objectives

In this thesis, we focus on two of the most widely-used as well as potentially impactful ap-
proaches towards automated taxonomy induction: (1) taxonomy induction from Wikipedia,
and (2) taxonomy induction from unstructured text. In each approach, our primary objective is
to improve upon the state of the art, resulting in the induction of taxonomies that have higher
accuracy and coverage. Furthermore, in each approach, we have specific key objectives, which
are described hereafter.

Taxonomy Induction from Wikipedia. The large-scale and high quality of Wikipedia con-
tent has enabled multiple approaches towards automated taxonomy induction over the past
decade [108, 109, 125, 91, 25, 50, 52, 78, 30, 31, 39, 41]. We propose the following key objectives
in taxonomy induction from Wikipedia:

¢ Path-level accuracy: before we proceed with this discussion, we first define the con-
cepts of edges and paths in the context of taxonomies. As mentioned in Section 1.1,
a taxonomy is defined as a collection of is-a relations between terms (or concepts).
However, a taxonomy can also be defined as a graph with terms (or concepts) as vertices,
and is-arelations as directed edges between the vertices. A path sampled from this graph
represents a long-range generalization, which transitively connects specific terms with
increasingly more general terms. For example, a taxonomy consisting of the is-a edges
apple— fruit and fruit— food, would provide the generalization path apple— fruit— food.

An ideal taxonomy should not only provide accurate is-a edges, but also be a good source
of accurate generalization paths. While taxonomies induced from Wikipedia have been
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able to achieve high edge-level accuracy (e.g., 85% from the English Wikipedia [30, 31]),
it is not uncommon for their generalization paths to traverse at least one or more
of the incorrect edges. Consequently, the resulting taxonomies transitively connect
concepts such as Natural language processing to many incorrect ancestor concepts
such as Physical body and Mass', thus limiting their utility in practice. Moreover, the
evaluation of these approaches is strictly limited to edge-level measures, and completely
ignores the accuracy or quality of their generalization paths.

Objectives. In light of these shortcomings, the objective of this thesis is two-fold: (1)
introduce novel measures for evaluation of taxonomies that take into account the
accuracy and quality of their generalization paths, and (2) induce taxonomies that are
not only an accurate source of is-a edges but also generalization paths.

* Multilinguality: while many approaches that focus on the English Wikipedia have been
proposed in the past [108, 109, 125, 91, 50, 30, 39], the task of inducing multilingual
taxonomies from Wikipedia has received much less attention. A few systems have been
proposed including MENTA [25], YAGO3 [78] and MultiWiBi [31]. However, only one of
these systems, MultiWiBi, is fully-automated as well as self-contained in Wikipedia, i.e., it
does not require any manual labeling or external knowledge resources such as WordNet.
MultiWiBi taxonomies suffer from two major drawbacks. First, MultiWiBi taxonomies
achieve low accuracy in both edge-level and path-level measures for languages other
than English. Second, MultiWiBi taxonomies are generated using a complex set of
heuristics that are difficult to replicate.

Objectives. The objective of this thesis is to propose a novel approach towards inducing
multilingual taxonomies from Wikipedia, which significantly improves upon the state of
the art in both edge-level as well as path-level accuracy measures. Similar to MultiWiBi,
it is desirable that the proposed approach be fully-automated as well as self-contained
in Wikipedia. However, unlike MultiWiBi that uses complex heuristics, it is desirable
that the proposed approach be simpler, more principled and easy to replicate.

Taxonomy Induction from Unstructured Text. Compared to taxonomy induction from
Wikipedia, taxonomy induction from unstructured text is significantly harder. Therefore,
taxonomy induction approaches that use unstructured text suffer from multiple shortcomings.
We propose the following key objectives to mitigate some of these shortcomings.

* Accurate hypernymy extraction for general terms: as mentioned in Section 1.3.2, the
first step of taxonomy induction from unstructured text involves the extraction of hy-
pernymy (or is-a) relations. In the past literature, this extraction is typically performed
using lexico-syntactic patterns [47, 119, 98, 69, 141, 68, 94, 89, 129, 76, 5, 6, 118]. A lexico-
syntactic pattern is a generalized linguistic structure that indicates a certain semantic
relationship between its placeholder terms. For example, the lexico-syntactic pattern “X

IThese examples are taken from http://wibitaxonomy.org [30].
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is aY” indicates an is-a relationship between the terms X and Y (e.g., “apple s a fruit
that ...”). However, is-a extraction based on the lexico-syntactic patterns has a major
drawback, i.e., it becomes increasingly erroneous as the generality of terms increases,
mainly due to the increase in term ambiguity [129]. For example, the hypernyms for the
term fruit are likely to be less accurate and more ambiguous than the hypernyms for
the term apple, because fruit is more general than apple.

Objectives. One of the principal objectives of this thesis is to mitigate the aforementioned
drawback, by utilizing the ancestor hypernyms of specific terms (such as apple) to extract
more accurate hypernyms for general terms (such as fruit).

¢ Noisy input vocabulary: past approaches aimed towards taxonomy induction from
unstructured text have a constraint: they require a clean vocabulary of seed terms
as input [76, 15, 16]. This constraint is severely limiting because even the most ad-
vanced automated vocabulary extraction approaches output vocabularies that contain
numerous noisy terms [24]. As a result, a manual cleaning step of such automatically
extracted vocabularies is usually required, before the taxonomies can be induced [129].
Although some taxonomy induction approaches do not explicitly state this constraint,
they are still either evaluated only with clean vocabularies [68, 5, 102] or use a small-
scale automatically-extracted vocabulary, which is unlikely to contain noisy terms [94].
Moreover, none of these approaches are specifically designed from the ground up to
handle significant noise in the input vocabulary.

Objectives. The objective of this thesis is to propose a novel approach towards taxonomy
induction from unstructured text, which is robust to the presence of significant noise in
the input vocabulary, thus automating the induction process in the true sense.

¢ Automated root detection: taxonomies resemble tree-like hierarchies that are rooted
at higher-level terms (or concepts). For example, the taxonomy in Figure 1.2 is rooted at
the term food. Consequently, taxonomy induction approaches that utilize unstructured
text typically assume a set of one or more root terms as input [68, 76, 77, 129, 102].
If such a set is unavailable, some approaches adopt higher-level terms from existing
taxonomies (such as WordNet) as input root terms [129]. Although a few approaches
are capable of inducing taxonomies without a set of input roots, the final roots of their
induced taxonomies are neither evaluated quantitatively nor qualitatively [5, 75].

Objectives. The objective of this thesis is two-fold: (1) detect roots automatically during
taxonomy induction from unstructured text, thus alleviating the requirement of a set of
root terms as input, and (2) propose a framework for qualitative as well as quantitative
evaluation of automatically-detected roots.

1.5 Thesis Contributions

We now present the main contributions of this thesis. Each of these contributions addresses
one or more of the objectives mentioned in the previous section.
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¢ Taxonomy induction from English Wikipedia: we propose a novel fully-automated
approach towards taxonomy induction from the English Wikipedia. Wikipedia links
millions of entities (e.g., JOHNNY DEPP) with thousands of inter-connected categories of
different granularity (e.g., AMERICAN MALE FILM ACTORS, AMERICAN FILM PRODUCERS).
Our approach exploits the syntactic evidence present in the titles of these categories
to connect the Wikipedia entities with increasingly more general categories, hence
resulting in a wide-coverage taxonomy.

Furthermore, we also propose a novel, comprehensive framework for taxonomy eval-
uation, which focuses on the accuracy and granularity of longer generalization paths,
as opposed to individual is-a edges. Our experiments demonstrate that our taxonomy
provides generalization paths that are more than twice as accurate as the state of the
art. Additionally, our taxonomy provides specializations that are more than thrice as
accurate as the state of the art. The taxonomy is available at http://headstaxonomy.com.

This work has been published in the NLP conference COLING’16 ( Gupta et al. [39]).

¢ Multilingual taxonomy induction from Wikipedia: we propose a novel fully-automated
approach towards inducing multilingual taxonomies from Wikipedia. Given an English
taxonomy, our approach first leverages the interlanguage links of Wikipedia to construct
training datasets for the is-a relation in the target language. Character-level classifiers
are trained on the constructed datasets and used in an optimal path discovery frame-
work to induce high-precision, wide-coverage taxonomies in other languages. Our
experiments demonstrate that our approach significantly outperforms the state-of-the-
art, heuristics-heavy approaches in both edge-level and path-level evaluation measures
across six different languages.

This work is presented in Gupta et al. [41], which is accepted to appear in AAAI'18.

* Extraction of hypernym subsequences: we propose a novel probabilistic model that
extracts long-range hypernym subsequences such as apple— tropical fruit— fruit— food
from unstructured text in a fully-unsupervised and automated fashion. Our approach
utilizes the hypernyms of specific terms (such as apple) to choose more accurate hyper-
nyms for general terms (such as fruit). We evaluate our model using both manual and
automated evaluation methodologies. Our experiments demonstrate that our model
performs favorably against multiple baselines. To the best of our knowledge, this is the
first approach that extracts long-range hypernym subsequences from unstructured text.

¢ Taxonomy induction using flow network optimization: we propose a novel approach
towards inducing a taxonomy from a collection of potentially-noisy is-a edges or sub-
sequences. Our approach casts the task of taxonomy induction as an instance of the
minimum-cost flow optimization problem (MCFP) on a carefully-designed flow network.
Through experiments, we demonstrate that our approach outperforms state-of-the-art
taxonomy induction approaches across four languages. However, more importantly,
we also show that our approach is robust to the presence of significant noise in the
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input vocabulary. To the best of our knowledge, this noise-robustness has not been
empirically proven in any previous approach.

The previous two contributions (i.e., extraction of the hypernym subsequences and the flow
network framework) have been published in the Databases and Knowledge Management
conference CIKM’17 ( Gupta et al. [40]).

¢ Extensions to the flow network framework: we propose three extensions to the flow
network framework to enhance its capabilities. First, we introduce a parameter that
serves to control the branching factor of the output taxonomies, where the branching
factor is defined as the average number of hypernyms per term. Second, we present
two approaches aimed towards automated detection of appropriate roots for a given
vocabulary. We evaluate the efficacy of these approaches using artificially constructed
vocabularies from WordNet. To the best of our knowledge, this is the first attempt to-
wards automated detection of roots and their evaluation in the context of taxonomy
induction from unstructured text. Finally, we demonstrate that the flow network frame-
work enables the automated discovery of new vocabulary terms given an initial seed
vocabulary. An interesting outcome of this experiment is the induction of high-quality
taxonomies given a single input term such as cancer or fruit (Chapter 8).

¢ Generalization templates: before we proceed, we first define a generalized template
as a lexicalized linguistic template that contains placeholders, which can be replaced by
suitable fillers to generate titles of entities. For example, the generalization template
“Bank of X” can be used to generate the titles of entities such as BANK OF INDIA and BANK
OF SCOTLAND using the fillers “India” and “Scotland” respectively.

We introduce a novel task that aims towards selecting suitable generalizations for the
placeholder slot in a generalization template. For example, in the generalization tem-
plate “Bank of X”, the lexical fillers “India” and “Scotland” can be generalized to the
higher-order concept COUNTRIES. We propose a novel beam search-based approach
that uses a Wikipedia taxonomy to select suitable generalizations for the lexical fillers.
Our experiments demonstrate that the generalizations obtained using our English
Wikipedia taxonomy are significantly better than those obtained using the state-of-the-
art taxonomies. Although in this thesis we focus only on the generalization templates in
English, our approach is inherently language-independent and can be replicated easily
for other Wikipedia languages.

A qualitative description of this work is presented in the NLP conference COLING’16
(Gupta et al. [39]).

1.6 Thesis Outline

This thesis is divided into three parts. In the first part of the thesis, we focus on taxonomy
induction from Wikipedia. It is structured as follows:

12



1.6. Thesis Outline

¢ Chapter 2, Background and related work: in this chapter, we describe the various
components of Wikipedia. We also provide a comprehensive survey of the state-of-the-
art approaches used for taxonomy induction from Wikipedia.

¢ Chapter 3, Taxonomy induction from English Wikipedia: in this chapter, we present
our approach towards inducing a large-scale taxonomy from the English version of
Wikipedia. We also present our path-based framework for the evaluation of taxonomies.

e Chapter 4, Multilingual taxonomy induction from Wikipedia: in this chapter, we
present our approach for inducing large-scale taxonomies from Wikipedia in languages
other than English.

In the second part of the thesis, we focus on taxonomy induction from unstructured text. It is
structured as follows:

* Chapter 5, Background and related work: in this chapter, we provide an overview of
the state-of-the-art approaches towards taxonomy induction from unstructured text.

¢ Chapter 6, Extraction of hypernym subsequences: in this chapter, we present our
approach that extracts hypernym subsequences from unstructured text in a fully-
unsupervised fashion.

¢ Chapter 7, Taxonomy induction using flow network optimization: in this chapter, we
present our approach that employs flow network optimization to induce a taxonomy
from the extracted hypernym subsequences.

¢ Chapter 8, Extensions to the flow network framework: in this chapter, we extend the
taxonomy induction approach based on flow network optimization to support the fol-
lowing capabilities: (1) user-defined branching factor for seed terms, (2) automated root
detection, and (3) automated expansion of taxonomies by discovery of new vocabulary
terms. We also show some examples of the taxonomies, which are induced using our
approaches in a variety of settings.

The third part of this thesis, i.e., Chapter 9, Applications of taxonomies, focuses on the
applications of the induced taxonomies. It provides a brief survey of the state of the art and
introduces the task of generalization templates. The last chapter, i.e., Chapter 10, Conclusion,
concludes the thesis and proposes directions for further research.
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¥4 Background and Related Work

2.1 Overview

The large scale as well as the high quality of Wikipedia content has enabled a wide-variety of
knowledge acquisition approaches over the recent years, including thesauri extraction [11, 55],
taxonomy induction [108, 109, 30, 31, 39, 41] and ontology acquisition [140, 125, 50, 8, 91].
The extracted knowledge has been utilized in many NLP-related tasks including named entity
recognition [84, 97], word sense disambiguation [106, 92], computation of semantic similarity
between words [123, 107], document clustering [53], question answering [29, 3] and informa-
tion retrieval [57, 26, 27]. Acquisition of taxonomies from Wikipedia started with the pioneer-
ing work of Ponzetto and Strube [108], who demonstrated that a large-scale and high-quality
taxonomy could be extracted from Wikipedia using simple heuristics in a fully-automated
fashion. The extracted taxonomy achieved performance similar to manually-constructed
ontologies (such as WordNet) at the task of computing semantic similarity between words.
Since then, a steady body of research has focused on this direction, and a wide of variety of
approaches have been proposed.

In this chapter, we provide an overview of these approaches towards taxonomy induction from
Wikipedia. However, we first provide a brief introduction of Wikipedia and describe its main
components. We also discuss the key advantages offered by Wikipedia, which render it as a
particularly favorable candidate for large-scale knowledge acquisition.

2.2 Components of Wikipedia

Wikipedia is a publicly-available online repository of encyclopedic entries, which are com-
monly referred to as Wikipedia articles. Wikipedia is built and maintained in a collaborative
editing framework, which allows any user to edit any article. The collaborative editing frame-
work along with a large number of contributing users has resulted in Wikipedia becoming the
largest and the most popular source of reference knowledge on the internet [138]. Wikipedia
content is semi-structured, i.e., it is partially structured into a variety of components such as
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articles, categories, and infoboxes that interact with each other. In this section, we describe a
few of these components in detail, which are relevant for the task of taxonomy induction. A
larger list of components can be found in Wikipedia [135].

Wikipedia Articles. A Wikipedia article (or page) is an encyclopedic entry about a single
concept, where the concept represents a specific sense of a nominal string. For example, the
Wikipedia page SWITZERLAND refers to the country sense of the string “Switzerland”, whereas
SWITZERLAND (SOFTWARE) refers to the software sense. Wikipedia pages frequently refer to
entities (e.g., JOHNNY DEPP, LAUSANNE) or real-world concepts (e.g., ACTING, FRUIT). Entities
that are homonymous are associated with different pages, which are further disambiguated
by a disambiguation string (e.g., BRAD PITT vs. BRAD PITT (boxer)). Since Wikipedia pages
frequently refer to entities, the terms Wikipedia entities, Wikipedia pages and Wikipedia
articles are used interchangeably in the academic literature.

Wikipedia pages form the largest and the most important component of the knowledge
present in Wikipedia. More than 44 million Wikipedia pages are available across 280 different
languages [139]. Figure 2.1 shows a condensed version of the English Wikipedia page for the
entity JOHNNY DEPP.

Wikipedia Categories. A Wikipedia category groups related pages and categories into broader
categories. For example, the Wikipedia page JOHNNY DEPP is categorized into categories
such as CATEGORY:AMERICAN MALE FILM ACTORS and CATEGORY:AMERICAN FILM PRODUCERS,
whereas CATEGORY:AMERICAN FILM PRODUCERS is further categorized into CATEGORY:FILM
PRODUCERS BY NATIONALITY. Categories for the English Wikipedia page JOHNNY DEPP are
shown at the bottom in Figure 2.1. Similar to the Wikipedia articles, Wikipedia categories are
also collaboratively created and maintained by a large number of contributing users.

Interlanguage Links. Interlanguage links are hyperlinks that connect corresponding pages
(or categories) across Wikipedias in different languages. For example, the English Wikipedia
page for JOHNNY DEPP is linked to its equivalent versions in 49 different languages including
French (JOHNNY DEPP) and Greek (T{6v. Nten). Two nodes (i.e., pages or categories) linked
by an interlanguage link are referred to as equivalent to each other. Interlanguage links for
the English Wikipedia page JOHNNY DEPP are shown at the left side in Figure 2.1.

Internal Hyperlinks. Internal hyperlinks are links embedded in the text of Wikipedia pages,
which link to other Wikipedia pages. For example, the English Wikipedia page JOHNNY DEPP
links to the Wikipedia pages ACADEMY AWARD FOR BEST ACTOR and HOLLYWOOD. Some
examples of these links can be seen in the article text in Figure 2.1.
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Atticle  Talk Read View source View history |Search Wikipedia Q

e

WIK\IPEDIA Johnny Depp [}

MDD, From Wikipedia, the free encyclopedia

John Christopher Depp 11 (born June 9, 1963)\") is an American actor, producer, and musician. He has won the Golden
Main page pl pp 11 ( )! p C Johnny Depp

Contents Globe Award and Screen Actors Guild Award for Best Actor. He rose to prominence on the 1980s television series 21
Featured content

Jump Street, becoming a teen idol.
Current events

Random article Depp has taken on the task of challenging himself to portray "larger-than-life" roles, starting with a supporting role in Oliver
Donate to Wikipedia Stone's Vietnam War film Plafoon in 1986, then playing the title character in the romantic dark fantasy Edward
Wikipedia store
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Figure 2.1 — A condensed version of the Wikipedia page for JOHNNY DEPP. The Wikipedia
categories are shown at the bottom (A). The interlanguage links are shown at the left (B).
The infobox is shown at the right (C).

Infoboxes. Infoboxes are tables that summarize important attributes of the entity referred
to by the Wikipedia page. For example, the infobox for JOHNNY DEPP, which is shown on the
right side in Figure 2.1, mentions important attributes about JOHNNY DEPP such as date of
birth or occupation.

2.3 Wikipedia for Knowledge Acquisition

Wikipedia is the largest and the most popular collaboratively-built repository of encyclopedic
knowledge. The collaborative editing framework of Wikipedia and the semi-structured nature
ofits content enables Wikipedia to alleviate many of the problems faced by the knowledge
acquisition approaches that use fully-structured or unstructured resources. Compared to
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such resources as well as other semi-structured resources, Wikipedia offers many unique
advantages, which are described hereafter.

* Knowledge acquisition bottleneck: one of the major reasons the knowledge acquisition
bottleneck exists (see Section 1.1 for definition) is because a large amount of world
knowledge is not explicitly mentioned in textual language. For example, the fact that
“birds fly” is not frequently expressed in the unstructured text. However, Wikipedia
explicitly encodes such knowledge, because the first lines of Wikipedia pages are usually
textual definitions [136, 92]. As a result, Wikipedia aids in mitigating the knowledge
acquisition bottleneck. In fact, this fact has already been exploited for knowledge
extraction by previous approaches [30].

* Ontologization: Wikipedia already provides a high degree of ontologization, because
its pages and categories refer to specific, unambiguous concepts or named entities.

¢ Semi-structured content: as discussed in the previous section, Wikipedia content is
partially structured into well-defined components such as pages, categories, and in-
foboxes. This partial structure facilitates the acquisition of semantic knowledge through
simple rule-based approaches such as heuristics that exploit the regularities in the
structure of Wikipedia content. In fact, the surge of such heuristics-based approaches,
chiefly enabled by Wikipedia, has been referred to as “the heuristic renaissance” [52].

* High quality and large scale: due to a large number of contributing users, Wikipedia
content is generally accurate, large-scale and covers most domains. In fact, it has
been estimated that Wikipedia content is the result of a cumulative human effort of
approximately 100 million hours, spread across millions of users [134].

¢ Dynamism: Wikipedia content is continuously updated and maintained by the con-
tributing users in a collaborative fashion. Consequently, Wikipedia serves as an up-
to-date and accurate source of knowledge even for highly dynamic domains such as
Politics or Sports.

e Multilinguality: Wikipedia is one of the largest multilingual knowledge repositories
ever constructed. Wikipedia is available in more than 280 languages, with at least
13 languages offering more than 1 million articles [138]. Furthermore, many of the
Wikipedia pages across different languages are connected by interlanguage links, which
can be utilized effectively for tasks such as multilingual taxonomy induction [31, 78, 41]
and construction of parallel corpora [2].

Overall, Wikipedia offers some unique features that enable the acquisition of high-quality,
large-scale, and multilingual knowledge using relatively simple heuristics-based methods!. In
the next section, we describe some of these methods that aim towards induction of taxonomies.

LA more detailed discussion of this topic can be found in Hovy et al. [52].
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Academic disciplines
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Figure 2.2 — A snippet of the English WCN [52].

2.4 State-of-the-Art Approaches

As discussed in Section 2.2, Wikipedia provides categories, which serve as groupings of
Wikipedia pages as well as other related categories. This system of categorization can be
converted into a directed graph, which consists of pages and categories as vertices, and the
groupings as directed edges. This graph, which represents a semantic network between the
pages and the categories, is often referred to as the Wikpedia Categories Network (hereafter
referred to as the WCN). A different WCN exists for each of the languages of Wikipedia. Fig-
ure 2.2 shows a snippet of the English WCN.

WCN edges are usually noisy, containing a mix of is-a edges (e.g., Johnny Depp— American ac-
tors) and not-is-a edges that mainly indicate topic relatedness (e.g., Johnny Depp~~ Hollywood).
Although the WCN can also be used directly in an ‘as-is’ fashion [107, 52], Ponzetto and Strube
[108] demonstrated that the removal of not-is-a edges from the WCN results in significantly
better performance in tasks such as computing the semantic relatedness between words.
The main reason behind this improvement is that the original WCN is overly-connected and
noisy. In fact, depending on the language, only 80+5% of the WCN edges indicate correct is-a
relationships [41]. The remaining edges are not-is-a edges, which lead to accumulation of
errors during the traversal of WCN, and hence, result in erroneous conclusions such as Johnny
Deppis a hyponym descendant of Government.

Therefore, in the past decade, there has been significant interest in the removal of not-is-a
edges from WCN. However, selectively discarding the not-is-a edges from the WCN, while
retaining the is-a edges is not trivial by any means, and has been the object of a steady body of
research. This process is referred to as taxonomy induction from Wikipedia, and a variety of
approaches towards this have been proposed. Some of these approaches are self-contained
in Wikipedia, i.e., they rely solely on Wikipedia for taxonomy induction. In contrast, other

21



Chapter 2. Background and Related Work
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Figure 2.3 — A snippet of the WikiTaxonomy induced from the English WCN [52]. The origi-
nal WCN corresponding to this snippet is shown in Figure 2.2.

approaches use external resources such as WordNet or other manually-constructed ontologies.
We now describe some of these approaches in detail.

2.4.1 WikiTaxonomy

WikiTaxonomy, presented by Ponzetto and Strube [105, 108, 109], is one of the first attempts
towards taxonomy induction from Wikipedia. WikiTaxonomy labels the edges of WCN as
is-a and not-is-a using a cascade of heuristics, which utilize the syntactic structure of the
category labels, the topology of WCN and lexico-syntactic patterns. For example, the is-a
edge CATEGORY:AMERICAN FILM ACTORS— CATEGORY:ACTORS BY NATIONALITY is induced by
a syntactic analysis of the category names, i.e., by matching the syntactic heads of these
categories (i.e., actor).

WikiTaxonomy contains more than 100,000 is-a relations between pages and categories. It
provides better coverage than manually created taxonomies such as WordNet, especially
for entity-centric and specialized domains such as Arts and Business. Furthermore, since
WikiTaxonomy is extracted using an approach that is self-contained in Wikipedia, it can be
easily adapted for other languages such as German [59]. Figure 2.3 show a snippet of the
WikiTaxonomy, which is extracted from the snippet of the WCN shown in Figure 2.2.

2.4.2 WikiNet

In contrast with WikiTaxonomy that only extracts a taxonomy, WikiNet aims to extract a full
ontology from the WCN [91]. To this end, WikiNet expands the not-is-arelations of the WCN
into more fine-grained relations such as part-of and located-in, through a variety of heuristics
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that exploit the shallow structure of Wikipedia components such as categories and infoboxes.
More specifically, the categories-based heuristics of WikiNet utilize the syntactic structure of
the category labels, and the topology of the WCN to extract a variety of semantic relations.
The infoboxes-based heuristics extract attributes (e.g., place of birth) of entities from their
corresponding infoboxes in the Wikipedia pages. The extracted relations are mapped to other
languages using the interlanguage links, thus resulting in a multilingual semantic network.
Similar to WikiTaxonomy, WikiNet is also self-contained in Wikipedia. WikiNet achieves an
accuracy of 76.4% for the is-a relation, and up to 95.56% for other relations such as member-of.

2.4.3 YAGO

YAGO, an acronym for Yet Another Great Ontology, is a large-scale full-fledged ontology that is
derived through the unification of Wikipedia and WordNet [125]. Similar to WikiTaxonomy
and WikiNet, YAGO also employs heuristics that exploit the shallow structure of Wikipedia
categories and infoboxes to extract semantic relations. However, in contrast with WikiTaxon-
omy and WikiNet that are self-contained in Wikipedia, YAGO uses the taxonomic hierarchy
from WordNet as the source of higher-level hypernyms. More specifically, YAGO connects
Wikipedia pages with the synsets in WordNet using two simple heuristics:

* Assign the label instance-of (i.e., a valid is-a relation, see Section 1.2) to the WCN edges
between Wikipedia pages and their parent categories that have a plural lexical head. For
example, the edge JOHNNY DEPP—CATEGORY:AMERICAN MALE FILM ACTORS is labeled
as instance-of, because the lexical head of the string “American male film actors” is
“actors”, which is plural. The intuition behind this heuristic is that categories that have
a plural lexical head are more likely to be genuine classes or collections (e.g., CATE-
GORY:COUNTRIES) as opposed to entities or instances (e.g., CATEGORY:FRANCE) [136].

* map a WCN category to the WordNet synset, which denotes the most frequent sense
of the lexical head of the WCN category. For example, the Wikipedia Category CATE-
GORY:AMERICAN MALE FILM ACTORS is mapped to the most frequent WordNet synset
for the word “actor”. The frequencies for the senses are computed using a sense-tagged
corpus (i.e., SemCor [87]).

In addition to the above heuristics, YAGO also uses other heuristics to extract implicit relations
from the labels of WCN categories. For example, the category CATEGORY:1980 BIRTHS can be
used to extract the relation that its descendants were born in 1980. A more detailed discussion
of these heuristics can be found in Suchanek et al. [125]. YAGO integrates all extracted relations
into a unified knowledge base, which follows the semantics of a formal Semantic Web language
(i.e., RDF), and can be accessed by query languages such as SPARQL. YAGO contains more than
1.7 million entities and more than 15 million facts about these entities [140]. YAGO achieves a
high accuracy of >95% and has been employed in a wide variety of intelligent applications
including IBM Watson [29].
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YAGO2. YAGO is further extended to include spatial and temporal knowledge in Hoffart et al.
[50]. The resulting knowledge base is referred to as YAGO2. It contains 447 million facts about
9.8 million entities and achieves a high accuracy of 95%.

YAGO3. YAGO3 extends YAGO by combining the information present in WordNet as well as
Wikipedias in multiple languages into one coherent knowledge base [78]. Similar to YAGO and
YAGO?2, YAGO3 achieve a high accuracy of >95% across ten different languages.

2.4.4 DBpedia

Similar to YAGO, DBpedia also aims to extract a fully-structured knowledge base from the
semi-structured content of Wikipedia [9]. DBpedia maps Wikipedia entities? to a manually
constructed coarse-grained ontology of approximately 300 classes. This ontology is collabo-
ratively maintained and contains classes that corresponding to popular entity types such as
PERSON and ORGANIZATION. DBpedia employs a cascade of parsers to extract information
from different structured components of the Wikipedia pages such as redirects, interlanguage
links, categories, and infoboxes. Furthermore, the extracted knowledge is linked with existing
knowledge resources such as YAGO, Freebase and Cyc. Similar to YAGO, DBpedia knowledge
is also represented using the formal Semantic Web language RDF and can be accessed by
SPARQL. Multiple versions of DBpedia have been released over the years [9, 14, 73]. The latest
version of DBpedia consists of 1.46 billion facts about 13.7 million entities that are extracted
from Wikipedia editions of 111 different languages [73].

2.4.5 MENTA

MENTA is one of the first projects that aimed towards exploiting the multilingual nature
of Wikipedia [25]. MENTA integrates Wikipedia pages in multiple languages with WordNet
into a single coherent taxonomic hierarchy. To this end, MENTA uses a linker, which links
the Wikipedia categories with their equivalent WordNet synsets. The linker uses the Ridge
Regression model [13] trained over a small set of manually-labeled examples. The features of
the regression model are computed using a variety of information such as the term overlap
between Wikipedia categories and WordNet synsets, cosine similarity between the vectors of
descriptions of Wikipedia categories and WordNet synsets, and WordNet synsets picked by the
most frequent sense heuristic of YAGO. The application of the linker results in a unified graph
of Wikipedia categories and WordNet synsets, which is further partitioned to form equivalence
classes of entities. A Markov chain-based ranking approach is employed to construct the final
taxonomy. At the time of its creation, MENTA was presumably one of the largest multilingual
lexical knowledge bases and described 5.4 million entities in more than 270 languages.

2As mentioned in Section 2.2, we use Wikipedia pages, articles and entities interchangeably.
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2.4.6 MultiWiBi

The Multilingual Wikipedia Bitaxonomy Project (also referred to as MultiWiBi), is the most
recent approach towards taxonomy induction from Wikipedia [30, 31]. Similar to WikiTax-
onomy and WikiNet, but unlike YAGO, DBpedia and MENTA, MultiWiBi is self-contained in
Wikipedia, i.e., it does not require external resources such as WordNet or manually labeled
training examples for taxonomy induction. MultiWiBi proceeds in three steps:

¢ English bitaxonomy induction: in the first step, a bitaxonomy, i.e., a separate taxonomy
for Wikipedia pages and categories, is induced from the English WCN.

¢ Bitaxonomy projection: in the second step, a cascade of heuristics, which utilize the
interlanguage links and the topology of the WCN, is employed to map the taxonomic
relations from the English page taxonomy to the pages in a target language such as
French or German.

¢ Target language bitaxonomy induction: in the final step, starting from the mapped
page taxonomy, a full-fledged large-scale bitaxonomy is induced in the target language.

These steps are fully-automated and language-independent. Consequently, the execution of
these steps results in large-scale bitaxonomies for each of the Wikipedia languages. We now
describe the three steps in more detail.

English Bitaxonomy Induction. In the first step, MultiWiBi aims to identify lemmas that
are good candidate hypernyms for Wikipedia English entities. To this end, it syntactically
parses the first line of the Wikipedia pages, because the first line is usually considered to
be a textual definition [94]. For example, actor, producer and musician are extracted as
candidate hypernymy lemmas for JOHNNY DEPP from the first line of its Wikipedia page (see
Figure 2.1). The candidate hypernym lemmas are further disambiguated to Wikipedia entities
using a cascade of heuristically-motivated hypernym linkers. For example, the candidate
hypernym lemma actor is disambiguated to the Wikipedia entity ACTOR. This process results
in the extraction of a large number of hypernym edges that connect two Wikipedia entities
(e.g., JOHNNY DEPP—ACTOR). These hypernym edges form an initial taxonomy between the
Wikipedia pages. It is important to note that due to the requirement of syntactic parsing, this
step is language-specific and hence only performed for the English Wikipedia.

In the second step, MultiWiBi utilizes the English page taxonomy to induce a taxonomy over
the categories in the English WCN. To this end, it assumes that the generalization information
present in the page taxonomy is beneficial for taxonomizing the categories, and vice-versa.
More specifically, it assumes that a hypernymy relation is likely between two categories (or
pages), if hypernymy relations exists between their corresponding pages (or categories) in
the WCN. This idea is presented as the bitaxonomy algorithm, which aims to update the
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English lemma Translations

plane piano_cartesiano:0.20 piano:0.15 pialla:0.04 aeroplano:0.03 aereo:0.023 piano_astrale:0.02 ...
car automobile:0.33 autovettura:0.11 automobili:0.05 auto:0.02 autovetture:0.01 vettura:0.01 ...
key chiave:0.37 chiavi:0.03 chiave_crittografica:0.001 chiave_segreta:0.0005 ...

Figure 2.4 — The English-Italian probabilistic translation table for lemmas extracted from
Wikipedia as published by Flati et al. [31]. The numbers indicate the translation probabili-
ties.

category (or page) taxonomy by exploiting the page (or category taxonomy) iteratively. The
page taxonomy is initially set to the taxonomy induced in the first step, and the algorithm is
run until convergence. As a consequence, MultiWiBi outputs a bitaxonomy, i.e., a separate
page taxonomy and a category taxonomy.

Bitaxonomy Projection. This step of MultiWiBi aims to exploit the interlanguage links in
Wikipedia to induce a taxonomy in an arbitrary target language (such as French). To this end, it
employs a simple rule (hereafter referred to as the projection rule): add a hypernymy edge be-
tween two nodes (page or category) in the target language, if a hypernymy edge exists between
their English equivalents. For example, the French hypernymy edge AUGUSTE—EMPEREUR
ROMAIN is induced from the English hypernymy edge AUGUSTUS—ROMAN EMPEROR, and the
interlanguage links AUGUSTUS«>AUGUSTE, ROMAN EMPEROR«<>EMPEREUR ROMAIN.

The application of the projection rule results in the creation of an initial bitaxonomy in the
target language. However, this initial bitaxonomy only consists of hypernyms for pages (or
categories) that have an English equivalent in the Wikipedia. As a result, they suffer from low
coverage. Theoretically, similar to English bitaxonomy induction, a syntactic parser could be
used in the target language as well for extracting candidate hypernym lemmas by parsing the
first lines of the Wikipedia pages. However, high-quality syntactic parsers are only available
for a few languages. Furthermore, their accuracy varies significantly across different languages
and is usually lower for non-English languages [71, 72].

Therefore, MultiWiBi compensates for the lack of syntactic parsers in other languages by
constructing a probabilistic translation table of lemmas contained in the texts of Wikipedia
pages. To this end, it exploits the anchor texts of the internal hyperlinks of Wikipedia. Figure 2.4
shows an excerpt of the English-Italian translation table. This probabilistic translation is
constructed for every language and further utilized by heuristics that pick candidate hypernym
lemmas for Wikipedia entities in the target language. The exact details of the construction of
the probabilistic translation table, as well as the heuristics, are fairly complex and beyond the
scope of this thesis. For a full description, we would like to point the readers to the original
publication, i.e., Flati et al. [31].

Target Language Bitaxonomy Induction. The application of the above step results in the
induction of an initial bitaxonomy as well as a set of translated hypernym lemmas in the
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target language. Subsequently, the bitaxonomy algorithm is reapplied to produce the final
bitaxonomy in the target language.

Comparative Evaluation. A detailed comparative evaluation of MultiWiBi against the state
of the art can be found in Flati et al. [31]. We briefly summarize the results as follows. For
English, the bitaxonomies induced by MultiWiBi performs favorably compared to the state of
the art, achieving higher precision and coverage than most previous approaches. MultiWiBi
achieves 90.76% precision over pages and 90.65% precision over categories. MultiWiBi also
achieves high coverage, resulting in at least one hypernym for 94.78% of the pages and 98.26%
of the categories. While the precision of YAGO is higher than MultiWiBi for English categories
(93.58% vs. 90.65%), its coverage is significantly lower (56.74% vs. 98.26%).

MultiWiBi also reports the evaluation results for three other languages, i.e., French, Italian
and Spanish. For all three languages, MultiWiBi achieves 80%-85% precision, and 93%-96%
coverage. Similar to English, the precision of MultiWiBi taxonomies is slightly lower than
YAGO as well as DBpedia, but its coverage is significantly higher.

Despite, achieving slightly lower precision than YAGO and DBpedia, MultiWiBi has its advan-
tages: (1) MultiWiBi achieves significantly higher coverage over both pages and categories
than other approaches, thus resulting in a more useful resource. (2) MultiWiBi is the only
approach that is language-independent as well as self-contained in Wikipedia. A positive
consequence of the language-independence is that MultiWiBi taxonomies are available for all
Wikipedia languages.

2.5 Summary

In this chapter, we provided a brief overview of the state of the art of taxonomy induction
from Wikipedia. We described the main components of Wikipedia, and also discussed the
key advantages that Wikipedia offers over other resources. Finally, we discussed a few of the
past approaches aimed towards taxonomy induction from Wikipedia. These approaches differ
from each other in a variety of aspects. Some of these approaches aim towards the extraction of
taxonomies from Wikipedia (WikiTaxonomy, MENTA, MultiWiBi), whereas others aim towards
the extraction of a full-fledged ontology (WikiNet, YAGO, DBpedia). While WikiTaxonomy,
WikiNet, and MultiWiBi rely solely on Wikipedia, other approaches use external knowledge
resources such as WordNet. However, despite such significant efforts, the taxonomies induced
from these approaches still suffer from multiple shortcomings. In the next two chapters, we
describe some of these shortcomings and propose yet another approach towards taxonomy
induction from Wikipedia, which aims to address these shortcomings.
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8] Taxonomy Induction from English
Wikipedia

3.1 Overview

In the previous chapter, we described multiple past approaches that have been proposed
towards the induction of large-scale taxonomies from Wikipedia. However, despite substantial
progress, recent methods still produce taxonomies with glaring gaps in precision and coverage.
More importantly, even if the approaches correctly identify individual is-a edges with an
accuracy as high as 85% (i.e., MultiWiBi [31]), it is not uncommon for long-range generalization
paths to traverse at least some incorrect edges. Consequently, the resulting taxonomies
transitively connect entities (such as Natural language processing) to many ancestor categories
(such as Physical body, Mass)! that are incorrect generalizations, thus limiting the utility of
such taxonomies in practice.

In this chapter, we propose a novel approach towards taxonomy induction from the English
WCN. Our approach exploits syntactic evidence present in the titles of Wikipedia categories to
connect entities (i.e., pages) with increasingly more general categories. Our approach draws
inspiration from many of the previous approaches including WikiTaxonomy, WikiNet, YAGO
and MultiWiBi (see Chapter 2). However, our approach is the most similar to WikiTaxonomy
and MultiWiBi due to two reasons: (1) similar to WikiTaxonomy and MultiWiBi, our approach
also aims towards the extraction of a taxonomy rather than a full ontology. (2) similar to
these approaches, our approach is also self-contained in Wikipedia, i.e., it does not require
additional knowledge resources such as WordNet.

Furthermore, we also propose a novel, comprehensive framework for taxonomy evaluation,
which focuses on the accuracy and quality of long-range generalization paths. We perform an
in-depth comparison of the taxonomy induced using our approach against the state of the
art (i.e., MultiWiBi), and show that our approach results in significant improvements in both
edge-level and path-level accuracy measures while maintaining similar coverage.

IExamples taken from MultiWiBi (http://wibitaxonomy.org).
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Child Node Parent Categories

CATEGORY:AMERICAN FILM AWARDS
CATEGORY:AWARDS ESTABLISHED IN 1929
CATEGORY:1929 ESTABLISHMENTS IN CALIFORNIA
CATEGORY:CINEMA OF SOUTHERN CALIFORNIA
CATEGORY:HOLLYWOOD HISTORY AND CULTURE
CATEGORY:ACADEMY AWARDS

ACADEMY AWARDS

CATEGORY:AWARD WINNERS BY SUBJECT
CATEGORY:ARTS AWARD WINNERS
CATEGORY:FILM PEOPLE
CATEGORY:FILM AWARDS

CATEGORY:FILM AWARD WINNERS

Table 3.1 — Examples of parent categories from the English WCN. Categories that are selected
as candidate generalizations are shown in bold. Other categories are discarded.

3.2 Our Approach

In this section, we present our approach towards taxonomy induction from the English
Wikipedia. Our approach aims to induce a unified taxonomy of pages and categories from the
English WCN. To this end, it employs a cascade of linguistically-motivated heuristics. Each of
these heuristics exploits the lexical information present in Wikipedia categories to generate a
set of candidate generalizations for the WCN nodes (i.e., pages and categories). As an example,
Table 3.1 shows two WCN nodes along with their parent categories from the English WCN.
Categories that would be selected as the candidate generalizations are shown in bold.

Our heuristics can be grouped into two categories based on the node type: category heuristics
pick candidate generalizations for categories, whereas page heuristics pick candidate gen-
eralizations for pages. Before we present our heuristics, we first specify some concepts and
notations that will serve us for the remainder of this section:

 E: the set of all English WCN edges.

* h.: lexical head of the title string of category c. For example, actors is the lexical head for
the category CATEGORY:AMERICAN MALE FILM ACTORS.

¢ C,(n): set of dll direct parent categories of a node n (page or category) in WCN, i.e.,
Cq(n) = {c| (n,c)eE}. This does not include Wikipedia maintenance categories (e.g.,
CATEGORY:SPORTS AWARD STUBS), which are removed using a handful of blacklisted
keywords such as “articles”, “stubs”, “templates”, etc.

* Cpi(n): subset of parent categories (Cq(n)), whose titles have a plural lexical head,
such as CATEGORY:ADMINISTRATIVE DIVISIONS. As discussed in Section 2.4.3, cate-
gories with plural heads have played an important role in prior work on taxonomy
induction from Wikipedia because they are more likely to be genuine classes (e.g., CAT-
EGORY:COUNTRIES) as opposed to individual entities (e.g., CATEGORY:FRANCE). As a

30



3.2. Our Approach

matter of fact, the Wikipedia guidelines for naming categories also specify that categories
that indicate sets of entities should have a plural lexical head [136].

* Lp: set of defining lemmas attached to the root copular verb in the first sentence of
the text of the Wikipedia page p. For example, L, for JOHNNY DEPP is {actor, producer,
musician}, as described by its first line (cf. Figure 2.1): “John Christopher Depp 11
(born June 9, 1963)[1] is an American actor, producer, and musician.”. As discussed in
Section 2.4.6, this construct was first introduced by MultiWiBi [31], who showed that
first line of page text can be used for generating candidate hypernym lemmas for the
Wikipedia entities.

3.2.1 Category Heuristics

We now describe the category heuristics in detail. For a Wikipedia category c, each category
heuristic aims to select zero or more categories that are suitable generalizations of c.

Same Head. Similar to the head-matching heuristic in previous work (i.e., WikiTaxonomy [108]),
for a category ¢, same head heuristic picks all categories ¢’ € C,(c) as the candidate general-
izations, which have the same lexical head as c¢. For example, CATEGORY:AMERICAN ACTORS is
picked as candidate generalization for CATEGORY:AMERICAN CHILD ACTORS because they have
the same lexical head “actors”.

Global Head Support. Most previous approaches, such as WikiTaxonomy and MultiWiBi,
augment the same head heuristic with other heuristics that exploit the topology of the WCN.
However, we propose a novel high-precision heuristic global head support, which further
employs the lexical heads of categories to yield highly-accurate generalization edges between
Wikipedia categories.

We first define the global support (sup(h;, hy)) between a pair of lexical heads (h,, hy) as the
number of edges in E (i.e., the set of all English WCN edges), from a category with lexical head
h; to a category with lexical head hy. A higher value of sup(h;, hy) indicates that a category
with lexical head h; is likely to be a correct generalization for a category with lexical head h; .
Table 3.2 shows a sample of pairs of lexical heads and their global support values.

Given these definitions, for a category c, the global head support heuristic picks the category
¢’ € Cp;(c) with the highest global support sup(h, ho) as the candidate generalization, if
sup(h, h) is above a fixed threshold Tyyp. In our experiments, Tgyp = 5 achieved the best
results, providing wide coverage while maintaining precision.

We now illustrate this heuristic with an example. Assume that the child category (c) is CATE-
GORY:ACTORS, which has three direct parents in the original WCN: CATEGORY:ACTING, CAT-
EGORY:ENTERTAINERS and CATEGORY: THEATRICAL OCCUPATIONS. The global head support
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Lexical Head (;) Lexical Head (i) Global Support (sup(h;, h2))

actors 8798
people 1238
actors men 142
entertainers 96
singers 96
biologists 199
scientists 101
biologists people 11
oceanographers 11
scholars 2

Table 3.2 — Pairs of lexical heads and their global supports. Lexical heads with the highest
global support for actors and biologists are shown.

heuristic picks CATEGORY: ENTERTAINERS as the candidate generalization for CATEGORY:ACTORS,

” «

entertainers”) is highest among candidate heads {“acting”, “entertain-

» o«

because sup(“actors”,

”» «

ers”, “occupations”} (as shown in Table 3.2).

Type Similarity. Before we present this heuristic, we first compute vector representations
for all the plural lexical heads in the WCN. More specifically, we compute the dimensions
of the vector representation for a lexical plural head h as the co-occurrence counts of plural
head h with every plural head k' in WCN. The co-occurrence count between two plural heads
is defined as the number of pairs of categories with heads k and k' which have at least one
common child (page or category). In other words, the co-occurrence count between two plural
lexical heads is defined as the number of instances, where categories with these heads are
co-parents of a WCN node. The vector representation of the plural lexical head & is referred
to as vp. Using these vector representations, we compute the type similarity (tsim(h;, hy))
between two plural heads h; and hy as the cosine similarity between vy, and vy, . Table 3.3
shows the lexical heads with the highest type-similarity for the lexical head artists.

Given these definitions, for a category c, the type similarity heuristic picks the category ¢’ €
Cpi(c) as the candidate generalization, which has the lexical head h' with the highest type
similarity tsim(h, '), if the similarity is above a fixed threshold Tisjm. In our experiments,
Tisim = 0.2 achieved the best results.

The global head support and the type similarity heuristics are similar to each other, and only
differ in the ranking function used (sup(hy, hy) vs. tsim(hy, h2)). The global head support
heuristic is more precise, whereas the type similarity heuristic has higher coverage, because
tsim(hy, hp) can be computed even between lexical heads that never co-occur in the WCN.
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Lexical Head (h;) Type-similarity (tsim(h;, hy))

watercolorists 0.903
songwriters 0.896
bluesman 0.895
etchers 0.889
animators 0.880
printmakers 0.874
muralists 0.873
parsons 0.865

Table 3.3 — Lexical heads with the highest type-similarity for the lexical head (h;) artists.

Only Plural Parent. For a category ¢, if Cp;(c) contains only one category, the only plural
parent heuristic picks it as the candidate generalization. This heuristic follows from the fact
that categories that have a plural lexical head typically tend to be set categories [136].

Only Singular Parent. For a category ¢ with a non-plural head h, if C,(c) contains only one
category, the only singular parent heuristic picks it as the candidate generalization. A similar
heuristic has been used by MultiWiBi [31].

The previous two heuristics result in the exclusion of the cases when a category with a non-
plural head is the only parent of a category with a plural head. The intuition behind this
exclusion is that such edges typically tend to be not-is-a edges because set categories can be
only generalized to other set categories.

Grouping Child Category. Categories with titles matching the pattern X by Y (e.g., CATE-
GORY:ACTORS BY NATIONALITY) usually indicate groupings of instances of class X by attribute
Y [90]. Following this observation, for a category ¢ whose title matches the pattern X by Y, the
grouping child category heuristic picks the category with title X as the candidate generaliza-
tion, if it exists in the WCN. For example, using this heuristic, CATEGORY:ACTORS is picked as
the candidate generalization for CATEGORY:ACTORS BY NATIONALITY.

Grouping Parent Category. For a category c, the grouping parent category heuristic picks
those categories in Cy;(c) as candidate generalizations, whose titles match the pattern X by Y.
For example, CATEGORY: OCCUPATIONS BY TYPE is picked as the candidate generalization for
CATEGORY:LEGAL PROFESSIONS, because CATEGORY:OCCUPATIONS BY TYPE is the direct parent
of CATEGORY:LEGAL PROFESSIONS, and the title of CATEGORY: OCCUPATIONS BY TYPE matches
the pattern Xby Y.
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Suffix Head. For a category c, the suffix head heuristic picks all categories ¢’ € Cp,;(c) as
the candidate generalizations, if their lexical heads & are suffixes of k.. For example, CATE-
GORY:PEOPLE is picked as the candidate generalization for CATEGORY: SPORTSPEOPLE, because
“people” is suffix of “sportspeople”.

Lookahead Candidates. For a category c, the lookahead candidates heuristic picks its
grandparents (second-level ancestor categories) as the candidate generalizations, if they
satisfy the conditions in the SAME HEAD, GROUPING PARENT CATEGORY or SUFFIX HEAD heuristics.
Higher-level ancestors are ignored as they tend to be noisy and introduce semantic drift from
the original category.

Title Head. For a category c, the title head heuristic picks the category with the title h. as
the candidate generalization, if the lemma of k. is in top T;% most frequent lemmas among
the defining lemmas L, of the child pages of c. For example, CATEGORY:WRITERS is picked
as a candidate generalization for CATEGORY:LEGAL WRITERS, because many child pages of
CATEGORY:LEGAL WRITERS have “writer” as a defining lemma. In our experiments, T; = 10
achieved the best results.

3.2.2 Page Heuristics

We now describe the page heuristics in detail. For a Wikipedia page p, each page heuristic
aims to pick zero or more suitable generalization categories from its direct parents in the WCN
(i.e., Ca(p)).

Exact Defining Lemma. For a page p, the exact defining lemma heuristic picks the category
¢ € Cp(p) as a candidate generalization, if the lemma of the lexical head of ¢ is presentin L.
For example, all parent categories of page JOHNNY DEPP with the lexical head “actors” are
picked as candidate generalizations, because “actor” is present in Ljoinny Depp-

Type-similar Lemma. For a page p, the type-similar lemma heuristic picks a category c €
Cpi(p) as the candidate generalization, if the type similarity between the lemmatized lexical
head of the category (h.) and at least one of the defining lemmas in L, is greater than the
fixed threshold Tisim. For example, all parent categories of the page Johnny Depp with the
lexical head people are picked as the candidate generalizations because actor is present in
Lyonnny Depe and tsim (uctors, people) > Tisim. Similar to the previous section, Tisiy, is set to
0.2.

Plural Head. Similar to YAGO [125], for a page p, plural head heuristic picks all categories
in Cp(p) as the candidate generalizations.
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Child Node Heuristic Number of edges Percent Contribution
Same head 1,666,049 87.5
Global head support 153,667 8.1
Type similarity 10,973 0.5
Only plural parent 27,916 1.47

Categories Only singular parent 24,595 1.29
Lookahead 21,763 1.14
Grouping child category <1000 <0.05
Grouping parent category <1000 <0.05
Suffix head <1000 <0.05
Title head <1000 <0.05
Exact defining lemma 5,691,931 51.3

Pages Type-similar lemma 3,584,712 32.3
Plural head 1,819,344 16.4

Table 3.4 — Relative contribution of page and category heuristics.

3.2.3 Taxonomy Construction

Up till now, we described the heuristics that are used to pick candidate generalizations for
pages and categories. We now describe our approach towards taxonomy construction, which
runs in three steps:

1. Application of heuristics. The heuristics, which are described in the previous sec-
tion, are applied to individual pages or categories in the order of decreasing edge-level
precision, where precision of the heuristics is computed using a manually-annotated
development set. The order of the heuristics is the same, in which they have been
presented in Section 3.2.1 & 3.2.2. For each node (i.e., page or category), the process
stops when one of the heuristics produces at least one generalization. Subsequently, the
remaining heuristics for that node are ignored.

Table 3.4 shows the relative contributions of each heuristic after this step. For pages,
the exact defining lemma heuristic generates the most number of edges followed by
the type-similar lemma and plural head heuristics. For categories, the same head
heuristic provides the highest number of edges. This result is expected because a large
number of lower-level> WCN edges have the same lexical heads for both child and parent
categories (e.g., CATEGORY:AMERICAN MALE FILM ACTORS— CATEGORY:AMERICAN FILM
ACTORS). Furthermore, the WCN is a bottom-heavy graph, i.e., the number of lower-level
categories in WCN is significantly higher than the number of higher-level categories,
thus justifying the significantly greater contribution by the same head heuristic.

However, relying solely on the same head heuristic would result in a significantly lower-
quality taxonomy, due to the poor coverage at higher-level categories. For example, the
node CATEGORY:ACTORS cannot be further generalized using the same head heuristic.
In such cases, the other category heuristics play an important role. For example, the

21n this context, lower-level means closer to the leaves of the WCN.
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global head support heuristic picks CATEGORY: ENTERTAINERS as the generalization for
CATEGORY:ACTORS.

2. Transfer. Many concepts or entities have both page and category nodes in Wikipedia
(e.g., SWITZERLAND and CATEGORY:SWITZERLAND). For such concepts, the general-
izations discovered using the category heuristics can be transferred to the pages and
vice-versa. To realize this intuition, we first define the concept of equivalency between
a page and a category. A page and category are considered to be equivalent to each
other, if they have the same title after the lemmatization of each token. For example, the
category CATEGORY:AMERICAN ACTORS and the page AMERICAN ACTOR are considered
to be equivalent to each other. If a disambiguation string is specified in the title (e.g.,
biology in FAMILY (BIOLOGY)), it should also match post-lemmatization. For example,
the category CATEGORY:FAMILIES (BIOLOGY) is equivalent to the page FAMILY (BIOLOGY),
but not to the page FAMILY.

Given this definition, the pairs of categories and pages that are equivalent are discov-
ered, and the candidate generalizations generated by page (category) heuristics are
transferred to the equivalent category (page). This step adds 272,485 generalization
edges to the output taxonomy.

3. Simplification. Certain Wikipedia categories encode information that is orthogonal to
types. For example, CATEGORY:20TH-CENTURY ACTORS refers to time, because it groups
actors born in the 20th century. Similarly, CATEGORY:ACTORS FROM SINGAPORE refers
to the location and CATEGORY:ACTORS BY NATIONALITY refers to group-by attributes.

Such categories are usually redundant, as they represent extra information related to the
spatial or temporal domain that is orthogonal to type-based categorization. Therefore,
in this step, such categories are detected using a set of hand-crafted regular expressions
and eliminated, i.e., their children are linked directly to their parents, and the redundant
categories are removed. In total, 65% of the parent categories from the original WCN are
identified as redundant and removed. This step is hereafter referred to as simplification.

Figure 3.1 illustrates the taxonomy construction process with an artificial example. Fig-
ure 3.1(a) shows the candidate generalizations for the page Tom CRUISE and its parent cat-
egories. Different page heuristics (e.g., @y, B and y,) are used to propose the candidate
generalizations for the page ToM CRUISE. Assuming a, is ranked higher than f, and y,,
generalizations proposed by a, are retained, whereas others are ignored. Fig. 3.1(b) shows
the taxonomy after the application of heuristics, which contains redundant category nodes
such as CATEGORY:PEOPLE BY STATUS and CATEGORY: MALE ACTORS FROM NY. Such redundant
categories are removed in the process of simplification, resulting in a more compact final
taxonomy (Fig. 3.1(c)).
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Figure 3.1 - Taxonomy induction phases. Black circles denote entities. White circles denote
categories. Dashed lines denote paths including possibly multiple edges. (a) Step 1: Page
heuristics (ap, B and y) and category heuristics (a., B and y.) are applied sequentially to
select candidate generalizations for each node (page or category), until one produces at least
one candidate (white circles). Gray nodes show candidates that would have been produced
by remaining heuristics. These nodes are ignored. (b) Step 2: Initial taxonomy after the
application of heuristics. Nodes that encode redundant information are detected (shown in
blue). (c) Final taxonomy after the removal of the redundant nodes.

3.3 Evaluation and Results

The taxonomy induced after the application of the steps mentioned in the previous section is
referred to as the HEADS taxonomy. In this section, we evaluate the HEADS taxonomy against
the state-of-the-art taxonomies induced from the English WCN. More specifically, we first
present edge-level evaluation using standard metrics such as precision and recall [110, 30].
Further, we demonstrate that, as popular as they might be, such metrics do not reflect the real
quality of a taxonomy. We propose a more comprehensive evaluation framework, which takes
into account the correctness of multi-edge generalization paths. Our experiments show that
performance along these newly-proposed dimensions is not necessarily correlated with the
edge-level metrics and cannot be estimated directly from them.

We compare the HEADS taxonomy against the taxonomies released by MultiWiBi, because
of two reasons: (1) unlike most other approaches, MultiWiBi and ours is self-contained in
Wikipedia. They do not require manually-labeled training examples or external resources,
such as WordNet or Wikitionary. (2) MultiWiBi is already shown to outperform most other
approaches (see Section 2.4.6).

Experimental Setup. HEADS taxonomy is constructed using a November 2015 snapshot of
the English Wikipedia. However, the taxonomies released by MultiWiBi are generated using the
October 2012 snapshot. Therefore, to perform a uniform comparison, we initially attempted
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Taxonomy WIBI1 WIBI¢ HEADS
Nodes 3,414,512 597,179 4,580,662
Entities (E) 3,414,512 - 4,239,486
Categories (C) - 597,179 341,176
Leaves 3,308,755 465,682 4,359,178
Edges (total) 3,859,717 594,917 11,648,975
E—-E 3,859,717 - -
E-C - - 11,077,992
C—-C - 594,917 570,983
Branching factor 1.13 0.996 2.54
WCCs 6,448 2,301 3,195
Largest WCC

3,386,995 469,453 4,563,949

Nodes

(99.2%) (78.6%) (99.6%)
3,838,286 469,453 11,634,161

Edges
(99.4%) (78.9%) (99.9%)

Table 3.5 — Topological properties of the HEADS and the MultiWiBi taxonomies. (WCC:
weakly connected component).

to re-implement the taxonomy induction approach of MultiWiBi. However, we were unable
to replicate the reported results. Moreover, the source code for MultiWiBi was not available
publicly and was not shared upon request. Therefore, we instead compared the HEADS
taxonomy directly against the entity and category taxonomies released by MultiWiBi [31].
These MultiWiBi taxonomies are hereafter referred to as WiBIg (for entities) and WiBI (for
categories).

It is important to stress that MultiWiBi taxonomies are generated using an older snapshot
of Wikipedia. However, to the best of our knowledge, there is no evidence to suggest that
taxonomy induction is easier or harder on more recent vs. older snapshots. In fact, noisy edges
between categories such as JAPAN~+660 BC can be found in both snapshots. Meanwhile, the
WCN has grown significantly, with more than twice as many categories (1.37M vs. 619K) and
20% more entities (4.7M vs. 3.8M), therefore, possibly adding to the complexity of the task.

3.3.1 Topological Properties

The main topological properties of the HEADS and the MultiWiBi taxonomies are shown in
Table 3.5. HEADS contains fewer categories and category— category edges than WiBi¢, due
to the simplification step (see Section 3.2.3), which removes approximately 65% of parent
categories from the WCN. HEADS covers a larger number of entities than MultiWiBi tax-
onomies, but a direct comparison of absolute sizes is not necessarily meaningful, since the
three taxonomies are defined in different spaces (i.e., WiB1g has entity—entity edges, WiBi¢
has category— category edges, while HEADS has entity—category and category— category
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is-a Edges not-is-a Edges
Nidaan—Indian films Chambezon~~Geography
Psychiatrists—People Writing~~Language

Catte Adams—Singer-songwriter Jan Ellis~»Rugby union
SLR cameras—Cameras by type  Visitor attractions in Bonn~+Bonn

Table 3.6 — Examples of is-a and not-is-a edges from the gold standard.

edges). In addition, as already mentioned, MultiWiBi taxonomies are generated using an older
snapshot of Wikipedia.

As shown in Table 3.5, the largest weakly connected component in HEADS and WIBIg covers
over 99% of the nodes. HEADS has 50% fewer connected components than WiB1g, which
is desirable, as each component is an enclave of isolated entities, which cannot be further
generalized. WiBI1¢, which is an order of magnitude smaller than WiB1r and HEADS, has
even fewer connected components, but is overall less connected, with the largest connected
component containing only 78% of the nodes.

Finally, Table 3.5 also reports the branching factors of the three taxonomies, where the branch-
ing factor is computed as the average out-degree of a node in the taxonomy. The branching
factor of HEADS is significantly higher than the branching factor of MultiWiBi taxonomies,
which allows it to better account for multiple aspects of a concept or entity, e.g., JOHNNY DEPP
is both an actor and a film producer.

3.3.2 Edge-level Evaluation

We first compare HEADS and MultiWiBi taxonomies using the methodology introduced and
consistently followed in prior literature, namely computing the edge-level precision and recall
scores against a gold standard [110, 31]. For the construction of gold standard, 500 entities and
500 categories are randomly selected, and their parents in the WCN are annotated by three
human judges as is-a or not-is-a generalizations®. Table 3.6 shows some examples of these
edges along with their annotations. Precision and recall with respect to the gold standard
edges are computed for each sampled node, and then averaged over all the nodes in the gold
standard. Table 3.7 shows the precision and recall scores for HEADS and MultiWiBi taxonomies.

Compared to the MultiWiBi taxonomies, HEADS shows significantly lower precision and recall
scores in this evaluation. However, the losses can be largely attributed to two reasons. First,
many heuristics in HEADS taxonomy pick candidate generalizations that are not direct parents
of the child node in the WCN (e.g., grouping child category heuristic in Section 3.2.1). Such
generalizations are missing from the gold standard, and hence considered a loss of precision
and recall irrespective of their correctness. Similarly, the simplification step removes many
correct but redundant generalizations from the HEADS taxonomy, and replaces them with

3The inter-annotator agreement (i.e., Fleiss’ Kappa) was 0.52. Annotations were harmonized by majority voting.
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Taxonomy Edgetype P R C A

E-C 78.5 100 100 90.2

WCN

cC—-C 80.7 100 97.0 84.0

E—-C 394 249 89.8 95.6
HEADS

cC—-C 40.5 344 249 931
WIBIg E—E 84.1 794 926 78.9
WIBI¢ c-C 85.2 829 973 84.0

Table 3.7 — Edge-level evaluation. E—C represents entity—category edges, E—E represents
entity—entity edges, and C—C represents category— category edges. MultiWiBi results are as
reported by Flati et al. [30]. P: precision, R: recall, C: coverage, A: accuracy.

more compact generalizations. For example, in Figure 3.1, the simplification step replaces the
edge ToM CRUISE—MALE ACTORS FROM NY with ToM CRUISE—~MALE ACTORS. Such cases
result in a loss of both precision and recall, because correct gold standard edges are removed
from the HEADS taxonomy, and replaced with other correct edges that are not present in the
gold standard.

Therefore, due to such issues, Table 3.7 also reports an additional edge-level metric, i.e.,
accuracy. In contrast to precision and recall, which are computed using a gold standard,
accuracy is computed by directly annotating the correctness of a random sample of 450 edges
from each taxonomy. Formally, accuracy is defined as the ratio of edges annotated as is-a
over the total number of edges sampled from a taxonomy. As shown in Table 3.7, HEADS
is more accurate than WIBIg for entities, though a direct comparison is not meaningful,
as WiBIg contains entity—entity edges and HEADS contains entity—category edges. For
category— category edges, HEADS achieves a fairly significant > 10% improvement in accuracy
compared to WiBI¢ taxonomy.

Finally, Table 3.7 also reports coverage, which is defined as the fraction of entities and categories
in a taxonomy with at least one generalization, independent of its correctness. HEADS shows
lower coverage on categories because 65% of categories in the WCN are filtered out due to the
simplification procedure.

3.3.3 Path-accuracy Evaluation

Motivation. Good performance at edge-level, though widely used as an indicator of quality
of a taxonomy [108, 90, 30], does not automatically translate into good performance at path
level. For example, the generalization path apples— fruits~~ vegetarians— people— organisms
is 75% edge-accurate (i.e., 3/4 edges are correct as indicated by the symbol —), but it can lead
to the wrong inference that apples are vegetarians and, in turn, people and organisms. In fact,
a single incorrect edge, i.e., fruits~~vegetarians, causes a cascade of generalization errors for
fruits and all its descendants, and a cascade of specialization errors for vegetarians and all its
ancestors. Moreover, the addition of another correct edge organisms— things would increase
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Figure 3.2 — Length distribution of the generalization paths sampled from HEADS and the
MultiWiBi taxonomies.

the edge-level accuracy, but would not affect the path-level accuracy.

The above example suggests that edge-level performance of a taxonomy may not always
correlate with path-level performance. Therefore, as an alternative to the standard edge-level
evaluation, we propose a structured path-based framework for taxonomy evaluation. More
specifically, our framework seeks to answer the following questions about a taxonomy:

1. What is the accuracy of multi-edge generalization paths?
2. Are individual generalizations at the right level of granularity?

3. What is the accuracy of the specializations of a node?

Evaluation Framework. The previous example (i.e., apples--»organisms) demonstrates
that during traversal of an upward generalization path, the correctness of individual edges is
inconsequential to finding a good generalization for the starting node (i.e., apples) once the
first wrong edge (fruits~vegetarians) is encountered. Therefore, an ideal taxonomy should
not only provide a large proportion of correct edges, but also provide correct generalization
paths, i.e., paths which are correct in their entirety. However, in practice, it is common for
relatively deep taxonomies to provide long generalization paths, which pick at least one wrong
generalization edge. In such cases, it is still desirable to have a long correct path prefix, i.e., the
maximal prefix of a path which is correct in its entirety.

In this section, we evaluate HEADS and the MultiWiBi taxonomies on their ability to provide
paths with longer correct path prefixes. To avoid bias, it is desirable that paths sampled from
different taxonomies start from the same starting entities. Therefore, WiBI, which lacks the
notion of entities, is first augmented with Entity—Category edges from HEADS, resulting in a
new hybrid taxonomy. This hybrid taxonomy is hereafter referred to as WiBi¢+Hp.
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WiBIg WiB1c+Hg HEADS
Structure Government
TAlgebraic structure ... 23 more categories ... Apes
{Category (mathematics) 1Cinema by region {Humans
1Sequence {Cinema by continent {People
1Process (science) 1North American cinema 1Producers
{Filmmaking {Cinema of the United States {American producers
1 Film producer {American film producers fAmerican film producers
Johnny Depp Johnny Depp Johnny Depp

Table 3.8 - Upward generalization paths for JOHNNY DEPP in three taxonomies. Correct path
prefixes are shown in bold.

WiBig WiBic+Hp HEADS

Law Concepts by field

1Principle 1... 9 more categories ...

TProcess (philosophy) fComputer programming {Systems

TAbstraction (computer science) {Debugging 1Operating systems
1Software framework 1Debuggers {Linux kernel features
DTrace DTrace 1DTrace

Table 3.9 — Upward generalization paths for DTRACE in three taxonomies. Correct path
prefixes are shown in bold.

For evaluation, we first sample a set of 250 entities that are present in all three taxonomies (i.e.,
HEADS, WiB1g and WiBi¢c+Hpg). Further, we sample one generalization path for each (entity,
taxonomy) pair, thus resulting in a total of 750 paths. Figure 3.2 shows the length distribution
of the generalization paths sampled from each taxonomy. As expected, paths sampled from
the HEADS taxonomy are shorter than MultiWiBi taxonomies due to the simplification step (cf.
Section 3.2.3). To compare the quality of these generalization paths, three human annotators
inspect each path starting from the entity and annotate” the first incorrect generalization, thus
marking their correct path prefixes. Table 3.8 and 3.9 shows some examples of these sampled
paths along with their correct path prefixes.

We report two path-accuracy metrics: (1) the average length of CPP, which is hereafter referred
to as ACPP, and (2) the average ratio of lengths of CPPs to the full paths, which is referred to as
ARCPP. As an example, for the generalization path apple— fruit~~ farmer— human— animal
with the not-is-a edge fruit~- farmer, the path length is 5, length of CPP is 2, and ratio of length
of CPP to total path is 0.4 (i.e., %).

Intuitively, ACPP indicates the average number of upward generalization edges that can
be traversed in a generalization path sampled until the first wrong generalization edge is
encountered. Similarly, ARCPP indicates the average fraction of a generalization path that

4At least two annotators agreed for 93% of paths. All three annotators agreed for 53% of paths. Annotations are
harmonized using majority voting.
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Method AL ACPP ARCPP

WIBIg  6.37 2.47 0.53
WiBIic+Hg 13,57  3.59 0.34
HEeADS  6.00 4,99 0.87

Table 3.10 — Comparison of average path length (AL), average length of correct path prefix
(ACPP), and average ratio of CPP to path lengths (ARCPP) for HEADS and the MultiWiBi
taxonomies.
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Figure 3.3 — Average length of correct path prefix (i.e., ACPP) in different taxonomies (com-
puted using the set of 750 annotated paths).

can be traversed until the first wrong generalization edge is encountered. ARCPP is useful for
comparing taxonomies that have significantly different average path lengths.

Table 3.10 shows the ACPP and ARCPP values for HEADS and the MultiWiBi taxonomies. HEADS
significantly outperforms both WiBIig as well as WiB1¢+H g, achieving both higher ACPP as
well as ARCPP. Figure 3.3 plots ACPP against total path lengths for HEADS and MultiWiBi
taxonomies, along with their 95% confidence interval bars®. For a correct generalization
path, the length of the correct path prefix is the same as the path length. Therefore, an ideal
taxonomy with only correct generalization paths would show up as the line ACPP = Path length
in Figure 3.3. The behavior of HEADS taxonomy is very close to an ideal taxonomy for the
majority of path lengths, and outperforms WiB1g or WiBI¢c+Hp at all lengths.

It is interesting to note that this difference does not translate into similar differences in the
edge-level evaluation, where all taxonomies consistently show relatively high accuracy (cf.
Section 3.3.2). The superior performance of HEADS is further confirmed by the results in
Figure 3.4, which plots the probability of obtaining a correct generalization path of length up
to k against k. HEADS paths are more than twice as accurate as WiBIg, and thrice as accurate
as WiBI¢+Hp. Furthermore, in contrast with MultiWiBi taxonomies, HEADS generalization
paths maintain high probability of correctness (> 0.7) at all lengths.

5The confidence intervals reflect the distribution of the paths being sampled. A larger confidence bar indicates
lower probability that a path of that length is present in the annotated samples.
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Figure 3.4 — Probability of correct generalization paths vs. length (computed using the set of 750
annotated paths). The probability at length k is the ratio of correct paths of length < k to the total
number of paths of length < k. Paths with length > 13 are omitted, as they are not present in HEADS
samples, and always incorrect in WiBIg and WiBIo+Hg samples.

WiBIc+Hy Label HEADS

Physical systems
Technology systems 1
Technology by type 1

2
1
2
Transport! 1 2 Physical systems
Transportby mode! 2 2 1Technology systems
Water transport! 0 2 (Transportsystems
Watercraft] 2 2  {Vehicles
Ships1 2 2 1Ships
USS Calhoun (1851) 1 2 2 1USS Calhoun (1851)

Table 3.11 — Example of the generalization paths sampled from HEADS and the MultiWiBi
taxonomies, along with their respective annotations. The source entity is USS Calhoun (1851)
and the destination category is Physical systems.

3.3.4 Path-granularity Evaluation

A good taxonomy should not only provide correct generalization paths but also ensure that
each edge in the path provides generalization at the right level of granularity, i.e., neither too
specific nor too general. To evaluate this aspect, we sample 100 generalization paths originat-
ing from the same starting entities from each taxonomy. For each path, each individual edge
is annotated by three human annotators with one of the following labels: 0 for wrong general-
ization (e.g., fruits~vegetarians); 1 for under-generalization (e.g., fruits by country— fruits);
2 for good-generalization (e.g., edible fruits— fruits); 3 for over-generalization (e.g., edible
fruits— physical bodies). An edge under-generalizes if it adds or removes little information rel-
ative to the source node (e.g. cricketers by team— cricketers) or if it is a synonym or rephrasing
of the original category (e.g. coaches by sport—sport coaches). An edge over-generalizes if it
removes too much information (e.g., edible fruits— physical bodies).

To ensure that the paths, which are compared, are similar in length and complexity across
different taxonomies, we only consider pairs of shortest paths (p;, p») with the same starting
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Figure 3.5 — Generalization granularity evaluation for HEADS and WiBI1¢c+Hpg using a set
of 100 generalization paths. Labels on the horizontal axis indicate generalization granular-
ity: 0 (wrong generalization), 1 (under-generalization), 2 (good-generalization) and 3 (over-
generalization). Top row shows overall distribution of labels. Other rows represent number of
sampled paths, which have an edge with the corresponding label at the given distance from
starting node.

and ending nodes in the taxonomies. Furthermore, the paths are selected such that the
difference in the length of the shortest paths, i.e., |[|p1| = p2]l, is minimal®. An example of such
pair of paths along with their annotations is shown in Table 3.11.

WIiBIg is excluded from this experiment, because in contrast to HEADS and WiBi¢+Hpg,
WIBIg does not contain categories. Therefore, for WiBI1g, the condition of the same final
node cannot be satisfied. Figure 3.5 graphically summarizes the results of this experiment.
In general, HEADS outperforms WiBI¢+Hp, achieving significantly higher percentages of
good-generalizations (91.8% vs. 66.9%). HEADS also has fewer under-generalizations than
WiBIic+Hpg (0.3% vs 16.3%), which can be largely attributed to the simplification step that
removes redundant categories (cf. Section 3.2.3). However, it is interesting to note that de-
spite the removal of 65% of categories through simplification, HEADS still does not suffer
significantly from over-generalizations.

3.3.5 Evaluation of Specializations

A good taxonomy should not only provide accurate generalizations going upwards in the
taxonomy but also provide accurate specializations going downwards. Therefore, in this
section, we evaluate HEADS and MultiWiBi taxonomies on the quality of their specializations.
To this end, three human annotators annotate the correctness of a sample of descendants of
higher-level nodes in the taxonomies WiBig, WiBI¢ and HEADS. To avoid bias, the higher-level
nodes (entities for WIBIg; categories for WiBI¢, HEADS) are sorted in decreasing order of the
number of descendants in the respective taxonomies. Ten nodes at fixed ranks (5, 10, .., 50)
from each list are selected for evaluation. To enable a comparison of WiB1g with WiBi¢ and

61t is ensured that the paths are not identical (i.e., py # p2).
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Ancestor Descendant Annotation
CATEGORY:PLACES CATEGORY:EDUCATION IN MANCHESTER, CONNECTICUT 0
CATEGORY:PLACES CATEGORY:FLORENCE CATHEDRAL 1
CATEGORY:PLACES CATEGORY:FLUVANNA COUNTY, VIRGINIA 1
CATEGORY:POLITICIANS  CATEGORY:DEFENCE MINISTRIES 0
CATEGORY:POLITICIANS ~ CATEGORY:DISTRICT ATTORNEYS 1

Table 3.12 — Examples of (ancestor, descendant) pairs and their annotations. 0 indicates an
incorrect specialization, whereas 1 indicates a correct specialization.

Taxonomy Overall accuracy Per-node accuracy
WIBIg 24.3 23.0
HEADS (entity) 70.3 72.7
WiBIc 38.1 40.8
HEADS (category) 67.0 72.5

Table 3.13 — Accuracy of specializations. Results for entity and category descendants of HEADS
are reported separately.

HEADS, category nodes are manually mapped to equivalent entity nodes and vice-versa (e.g.,
Category:Places is mapped to the entity Place). The annotators judge the correctness of 10
randomly sampled descendants for each selected node in each of the three taxonomies.

Table 3.12 shows some examples of the sampled pairs along with their annotations. Table 3.13
shows the results of this experiment. Both overall and per-node accuracy are reported. Overall
accuracy is defined as the fraction of sampled (node, descendants) pairs that are correct,
whereas per-node accuracy is defined as the average ratio of correct descendants per node.
Results for entity and category descendants of HEADS are reported separately. The results
demonstrate that the descendants provided by HEADS are almost three times as accurate as
WIBIg, and almost twice as accurate as WIBI¢.

3.4 Discussion and Related Work

In the previous chapter (Section 2.3), we discussed the unique advantages offered by Wikipedia
that enable the acquisition of high-quality semantic knowledge on a large scale using relatively
simple rule-based methods. Our approach serves to demonstrate some of these advantages in
a practical manner. For instance, the heuristics employed by our approach are effective, chiefly
because Wikipedia content is already meaningfully-structured into pages and categories.
Furthermore, due to the Wikipedia guidelines [136], the titles of the categories follow regular
syntactic patterns, which allow our heuristics to make simplifying assumptions that hold true
in most of the cases. Such factors enable our approach to acquire a wide-coverage high-quality
taxonomy using simple rule-based heuristics.

Our approach draws inspiration from many of the previous approaches towards taxonomy
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induction from Wikipedia (see Section 2.4 for a survey). Similar to most of the prior work, our
approach also aims to discard the WCN edges that are least likely to represent is-a relations.
Similarly, like most previous approaches, our approach is also heuristic-driven. Furthermore,
similar to WikiNet and YAGO, our approach also aims to exploit the syntactic structure of the
categories to choose suitable generalizations for WCN Nodes.

The first main contribution of our work is the introduction of novel heuristics. While a few of
our heuristics are adapted from previous work (as cited in Sections 3.2.1& 3.2.2), the rest of
our heuristics are introduced for the first time. The most important of these novel heuristics is
the global support heuristic, which enables the extraction of a large number of high-quality
is-a edges (Table 3.4). Our second contribution is the path-based framework, which proposes
the measures ACPP and ARCPP (Section 3.3.3) for evaluating the quality of a taxonomy. Exper-
imental results using the path-based framework demonstrate that performance of a taxonomy
on edge-level may not be correlated with the performance on the path-level. Indeed, HEADS
taxonomy achieves seemingly similar performance to MultiWiBi on edge-level metrics, but sig-
nificantly outperforms the MultiWiBi taxonomies on path-level metrics (Section 3.3.3 & 3.3.4).
Furthermore, HEADS taxonomy is a also significantly more accurate source of specializations
(Section 3.3.5). A key outcome of our work is the release of HEADS taxonomy, which is publicly
available at http://www.headstaxonomy.com. Figure 3.6 (page 49) shows a snippet of the
HEADS taxonomy.

During the course of this work, we also experimented with a few variants of our approach that
did not produce optimal results. For example, we trained a SVM classifier using the outputs of
the category (or page) heuristics as features, and a small manually-annotated set of edges as
training data. While the edge-level accuracy of this approach was similar to HEADS, it suffered
from poor path-level performance. The primary reason for this effect was the difficulty to
choose an appropriate classification threshold that would result in an appropriate level of
generality of the taxonomy roots. We also experimented with ancestor-level versions of many
of the heuristics presented in Section 3.2.1. However, we discarded them as they typically
produced noisy generalizations. Finally, we also experimented with the taxonomy prior to
the simplification step (Section 3.2.3). While the pre-simplification taxonomy produced good
results as well, we introduced the simplification step for mainly two reasons: (1) produce a
more compact and type-oriented taxonomy, (2) reduce the effort of annotations.

3.5 Summary

Whether built from scratch or derived by filtering existing data, automatically-constructed
taxonomies are accurate and useful only to the extent that they correctly assert not only short-
range but also longer-range generalizations or specializations among concepts or entities. In
this chapter, we presented a novel approach towards taxonomy induction from the English
Wikipedia categories network. Similar to previous approaches, our approach also employs a set
of heuristics to distill a unified taxonomy of pages and categories. However, our experiments
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show that our high-precision heuristics result in a taxonomy, which is significantly better than
the state of the art in edge-level accuracy as well as a variety of path-level evaluation metrics.

Implications. The work done in this chapter has multiple implications on the rest of this thesis.
First, the HEADS taxonomy is used in the next chapter to induce high-quality, large-scale tax-
onomies for other Wikipedia languages such as French. Second, some of the ideas formulated
during this work are used towards taxonomy induction from unstructured text (Chapter 6).
Finally, in Chapter 9, the task of generalizing linguistic templates demonstrates that the higher
path-level accuracy of HEADS taxonomy leads to significantly better generalizations than the
MultiWiBi taxonomies.

Limitations and Future Work. A key limitation of our work is that it is largely heuristic-driven.
As discussed in the previous section, our efforts to utilize a classifier with the heuristics as
features failed due to the difficulty of choosing an appropriate classification threshold. An
interesting future work would be to use such a classifier in conjunction with another classifier
that is specifically aimed towards detecting appropriate roots of the taxonomy.
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Figure 3.6 — A snippet of the HEADS taxonomy.
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Multilingual Taxonomy Induction
from Wikipedia

4.1 Overview

In the previous chapter, we proposed our approach that employs a novel set of heuristics to
induce a large-scale taxonomy from the English WCN (i.e., Wikipedia categories network).
We also demonstrated that the taxonomy induced using our approach (referred to as HEADS
taxonomy) significantly outperforms the state of the art in edge-level accuracy and path-level
evaluation measures. However, our approach has a severely-limiting constraint: it depends
heavily on the syntactic structure of Wikipedia categories. As a result, it is not easily extensible
to most other languages, which lack the availability of an accurate syntactic parser [71, 72].
MultiWiBi (described in Section 2.4.6) mitigated this constraint by constructing a probabilistic
translation table from the anchor texts of internal hyperlinks of Wikipedia. A set of complex
heuristics, which used the probabilistic translation table, was further employed to extract
candidate hypernym lemmas in languages other than English.

However, in this chapter, we propose a different and completely novel approach to compensate
for the lack of accurate syntactic parsers in other languages. Our approach is fully-automated,
language-independent, and self-contained in Wikipedia. Similar to MultiWiBi, it also starts
with a taxonomy induced from the English WCN. However, instead of relying on a set of
complex heuristics for transferring this taxonomy to a target language (such as French), our
approach first leverages the interlanguage links of Wikipedia to construct training datasets
automatically for the is-a relation in the target language. Off-the-shelf text classifiers are
trained on the constructed datasets and used in an optimal path discovery framework to
induce high-precision, wide-coverage taxonomy in the target language.

Our approach provides a significant advancement over the state of the art in multilingual
taxonomy induction from Wikipedia because of the following reasons:

* Most previous approaches such as MENTA or MultiWiBi rely on a set of complex heuris-
tics that utilize custom hand-crafted features. In contrast, our approach is simpler, more
principled and easily replicable.

51



Chapter 4. Multilingual Taxonomy Induction from Wikipedia

¢ Our approach significantly outperforms the state-of-the-art approaches across multiple
languages in both (1) standard edge-based precision/recall measures and (2) path-
quality measures. Furthermore, our taxonomies have significantly higher branching
factor than the state-of-the-art taxonomies without incurring any loss of precision.

¢ As a consequence of our work, we release presumably the largest and the most accurate
multilingual taxonomic resource spanning over 280 languages. We also release edge-
based gold standards for three different languages (i.e., French, Italian, Spanish) and
annotated path datasets for six different languages (i.e., French, Italian, Spanish, Chinese,
Hindi, Arabic) for further comparisons and benchmarking purposes.

4.2 Our Approach

We now describe our approach for inducing multilingual taxonomies from Wikipedia. Our
approach takes three inputs: (1) the HEADS taxonomy, which is a unified taxonomy of English
Wikipedia pages and categories induced in the previous chapter, (2) the interlanguage links
(described in Section 2.2), and (3) the WCN in the target language (such as French). Given
these inputs, our approach aims to induce a unified taxonomy of pages and categories for the
target language. It runs in three phases:

1. Projection phase: in the first phase, the interlanguage links are used to create a high-
precision, low-coverage taxonomy for the target language by simply projecting the is-a
edges from the HEADS taxonomy.

2. Training phase: in the second phase, the high-precision taxonomy is leveraged to train
classifiers that classify edges into is-a or not-is-a in the target language.

3. Induction Phase: in the final phase, a high-precision, high-coverage taxonomy is in-
duced in the target language by running optimal path search over the target WCN. The
probability of a WCN edge being is-a is computed using the trained classifiers and used
as edge weights during the optimal path search.

It is noteworthy that although we use the HEADS taxonomy in the projection phase, our
approach is compatible with any English taxonomy that consists of WCN nodes (i.e., pages or
categories). We now describe the three phases of our approach in more detail.

4.2.1 Projection Phase

Let T, be the given English taxonomy, which is the HEADS taxonomy in our case. Let G be
the WCN and T be the (initially empty) output taxonomy in the target language f (such as
French). For a node (i.e., page or category) nr € G, which has the English equivalent! 7,, and
for which no hypernym exists yet in T, we perform the following steps:

1Two nodes are considered equivalent, if they are linked by an interlanguage link (Section 2.2).
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People (EN) Personne (FR)

4 4
Emperors (EN) : Empereur (FR) i
N f X
N Empereur !
4 . A . N

' Ancestor Relation N Romain (FR) N Rome (FR)

WCN Edge N T~y
) Augustus Auguste
- Interlanguage link (EN) (FR)

Figure 4.1 — Example of projection phase.

1. Collect the set A, of all ancestor nodes of 1, in T, up to a fixed height k;.
2. Fetch the set Ay of equivalents for nodes in A, in the target language f.
3. Find the shortest path in Gy between ny and any node in Ay up to a fixed height k,.

4. Add all the edges in the shortest path to the output taxonomy T.

If no English equivalent n, exists, then the node ny is ignored. In our experiments, k; = 14
sufficed as HEADS taxonomy had a maximum height of 14, and no cycles. k; is set to 3 to
maintain high precision.

Figure 4.1 shows an example of the projection phase with French as the target language. For
the French node Auguste, its English equivalent (i.e., Augustus) is fetched via the interlanguage
link. The ancestors of Augustus in English taxonomy (i.e., Emperors, People) are collected,
and mapped to their French equivalents (i.e., Empereur, Personne). Finally, the WCN edges
in the shortest path from Auguste to Empereur (i.e., Auguste— Empereur Romain, Empereur
Romain— Empereur) are added to the French taxonomy.

4.2.2 Training Phase

Up till now, we constructed an initial taxonomy for the target language by simply projecting
the English taxonomy using the interlanguage links. However, the resulting taxonomy suffers
from low coverage, because nodes that do not have an English equivalent are ignored. For
example, only 44.8% of the entities and 40.5% of the categories from the French WCN have a
hypernym in the projected taxonomy.

Therefore, to increase coverage, we train two different binary classifiers for classifying re-
maining target WCN edges into is-a (positive) or not-is-a (negative). The first classifier is
for Entity— Category edges and the other for Category— Category edges®. We construct the
training data for edge classification as follows:

2Entity—Entity and Category—Entity edges are not present in the WCN.
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1. Assign an is-alabel to the edges in Ty (i.e., the projected taxonomy in the target lan-
guage).

2. Assign a not-is-alabel to all the edges in G (i.e., the target WCN) that are not in Ty but
originate from a node covered in 7.

For example, in Figure 4.1, the edge Auguste— Empereur Romain is assigned the is-a label, and
other WCN edges starting from Auguste (e.g., Auguste— Rome) are assigned the not-is-alabel.
We note that the not-is-alabels, which are assigned during this phase, are not final; they are
only temporarily assigned for training the edge classifiers. The final labels are assigned in the
next phase (i.e., the induction phase). While, some edges that are assigned temporary not-is-a
labels may actually be correct is-a edges, this design ensures that most of the edges with the
assigned is-alabel, are correct is-a edges, thus leading to training of classifiers that achieve
high accuracy.

Classifiers. To classify edges into is-a or not-is-a, we train classifiers using the constructed
training sets. We experiment with the following off-the-shelf text classifiers:

1. Bag-of-words TFIDF: given edge A— B, concatenate the features vectors for A and B
computed using TFIDF over the bag of words of their titles (e.g., “Empereur Romain” is
the title of category Empereur Romain) and train a linear Support Vector Machine over
the concatenated features. This method is hereafter referred to as Word TFIDF.

2. Bag-of-character-rn-grams TFIDF: same as Word TFIDE except TFIDF is computed
over bag of character n-grams3 (hereafter referred to as Char TFIDF).

3. fastText: a simple yet efficient baseline for text classification based on a linear model
with a rank constraint and a fast loss approximation. Experiments show that fastText
typically produces results on par with sophisticated deep learning classifiers [35].

4. Convolutional Neural Network (CNN): we use a single-layer CNN model trained on top
of word vectors as proposed by Kim [60]. We also experiment with a character version of
this model, in which instead of words, vectors are computed using characters and fed
into the CNN. These models are referred to as Word CNN and Char CNN respectively.
Finally, we experiment with a two-layer version of the character-level CNN proposed
by Zhang et al. [144], which is referred to as Char CNN-21.

5. Long Short-term Memory Network (LSTM): we experiment with both word-level and
character-level versions of LSTM [49]. These models are hereafter referred to as Word
LSTM and Char LSTM respectively.

3 n-values={2,3,4,5,6} worked best in our experiments.

54



4.3. Evaluation and Results

4.2.3 Induction Phase

In the last step of our approach, we discover taxonomic edges for nodes not yet covered in
the projected taxonomy (7). To this end, we first set the weights of Entity— Category and
Category—Category edges in the target WCN as the probability of being is-a (as computed
using the corresponding classifiers). Further, for each node ny that does not have a hypernym
in Ty, we find the top k paths* with the highest probabilities originating from n r to any
node in Tr. The probability of a path is defined as the product of probabilities of individual
edges. If multiple paths with the same probabilities are found, the shortest paths are chosen.
The individual edges of the most probable paths are added to the T, resulting in the final
taxonomy in the target language.

4.3 Evaluation and Results

We now evaluate the taxonomies induced using the approach described in the previous section.
Similar to the evaluation of the English taxonomy in the previous chapter (Section 3.3), we
evaluate our multilingual taxonomies against the state of the art using both edge-based and
path-based evaluation methods. More specifically, in Section 4.3.1, we compute standard
edge-level precision, recall, and coverage measures against a gold standard for three different
languages (i.e., French, Italian and Spanish). In Section 4.3.2, we perform a comprehensive
path-level comparative evaluation across six languages.

Analogous to the evaluation in the previous chapter, we compare our taxonomies against the
MultiWiBi taxonomies [31], because there are multiple similarities between MultiWiBi and
our approach:

¢ Only MENTA, MultiWiBi, and our taxonomies are constructed in a fully language-
independent fashion. Hence, they are available for all 280 Wikipedia languages.

¢ Unlike YAGO3, MENTA and most other approaches, MultiWiBi and ours are self-contained
in Wikipedia. They do not require manually labeled training examples or external re-
sources, such as WordNet or Wikitionary.

¢ MultiWiBi is already shown to outperform most previous approaches across multiple
languages [31].
4.3.1 Edge-level Evaluation

Experimental Setup. We create gold standards for three languages (French, Spanish and
Italian) by selecting 200 entities and 200 categories randomly from the 2015 WCN and annotat-

4L is set to 1 unless specified otherwise.
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ing their correctness®. Table 4.1 (page 57) shows a sample of annotated edges from the French
gold standard. In total, 4045 edges were annotated across the three languages.

For evaluation, we reuse the same metrics, which are used in Section 3.3.2 as well as Multi-
WiBi [31]: (1) Macro-precision (P) defined as the average ratio of correct hypernyms to the
total number of hypernyms returned (per node), (2) Recall (R) as the ratio of nodes for which
at least one correct hypernym is returned, and (3) Coverage (C) as the ratio of nodes with at
least one hypernym returned irrespective of its correctness.

Training Details. All neural network models are trained on Titan X (Pascal) GPU using the
Adam optimizer [61]. A grid search is performed to determine the optimal values of hyper-
parameters. For CNN models, we use an embedding of 50 dimensions. The number of filters
is set to 1024 for word-level models and 512 for character-level models. For Char CNN-2I
model, we use the same parameters used in Zhang et al. [144]. For LSTM models, we use an
embedding of 128 dimensions, and 512 units in the LSTM cell. We also experimented with
more complex architectures, such as stacked LSTM layers and bidirectional LSTMs. However,
these architectures failed to provide any significant improvements over the simpler ones.

Results. Table 4.2 shows the results for different methods including the state-of-the-art
approaches (i.e., MENTA and MultiWiBi) and multiple versions of our three-phase approach
with different classifiers. It also includes two baselines, i.e., WCN and UNIFORM. The WCN
baseline outputs the original WCN as the induced taxonomy without performing any filtering
of edges. UNIFORM is a uniformly-random baseline, in which all the edge weights are set to 1
in the induction phase (cf. Section 4.2.3).

Table 4.2 shows that all classifiers-based models achieve significantly higher precision than
UNIFORM and WCN baselines, thus showing the utility of weighing with classification proba-
bilities in the Induction phase. Interestingly, UNIFORM achieves significantly higher precision
than WCN for both entities and categories across all three languages, hence, demonstrating
that optimal path search in the Induction phase also contributes towards hypernym selection.
All classifier-based approaches (except Word TFIDF) significantly outperform MultiWiBi for
entities across all languages as well as for French and Spanish categories. Although MultiWiBi
performs better for Italian categories, Char TFIDF achieves similar performance (89.2% vs.
89.7%) ©.

Coverage is 100% for all the baselines and the classifiers-based approaches because at least one
path is discovered for each node in the induction phase, thus resulting in at least one (possibly

5Two annotators annotated each edge independently. Inter-annotator agreement (Cohen’s Kappa) varied
between 0.71 to 0.93 for different datasets.

6We note that entity edges are qualitatively different for MultiwWiBi and other methods, i.e., MultiWiBi has
Entity—Entity edges whereas other methods have Entity—Category edges. Given that fact and the unavailability
of the gold standards from MultiWiBi, we further support the efficacy of our approach with a direct path-level
comparison in the next section.
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is-a not-is-a

Naissance a Omsk— Naissance en Russie par ville Naissance a Omsk~»Omsk
Port d’Amérique du Sud—Port par continent Port d’Amérique du Sud~-Géographie de 'Amérique du Sud

Table 4.1 — Examples of Annotated Edges (French).

Entity Category
Language Method P R C P R C

Original WCN 72.0 100 100 | 78.8 100 100
MENTA 81.4 488 59.8 | 82.6 55.0 65.7
MultiWiBi 84.5 809 94.1 | 80.7 80.7 100
French UNIFORM 80.6 83.2 100 | 85.7 86.7 100
Word TFIDF  86.5 90.1 100 | 82.1 83.1 100
Char TFIDF 88.0 91.7 100 | 92.3 93.4 100
fastText 86.5 90.1 100 | 90.5 91.6 100

Word LSTM 87.8 91.5 100 | 91.6 92.7 100
CharLSTM 86.2 89.8 100 | 93.9 95.1 100
Word CNN 86.3 90.0 100 | 92.8 93.9 100
CharCNN 86.2 89.9 100 | 93.3 94.4 100
Char CNN-21 87.7 91.0 100 | 92.2 933 100

Original WCN 745 100 100 | 76.2 100 100
MENTA 79.7 532 66.7 | 77.1 254 328
MultiwiBi 80.1 79.4 96.3 | 89.7 89.0 99.2
Italian UNIFORM 77.7 81.6 100 | 86.6 883 100
Word TFIDF  90.0 94.4 100 | 84.1 85.7 100
Char TFIDF 88.4 92.8 100 | 89.2 90.9 100
fastText 86.8 91.1 100 | 87.3 89.0 100

Word LSTM  90.9 95.4 100 | 83.1 84.8 100
CharLSTM 89.8 94.4 100 | 83.3 83.8 100
Word CNN 89.6 94.3 100 | 83.1 84.8 100
CharCNN 92.6 97.2 100 | 869 88.7 100
Char CNN-21 87.7 92.1 100 | 86.1 87.8 100

Original WCN 81.4 100 100 | 80.9 100 100
MENTA 81.0 429 527 | 80.5 542 66.4
MultiwiBi 87.0 82.0 93.7 | 84.8 84.4 100
Spanish UNIFORM 88.0 90.7 100 | 83.0 85.0 100
Word TFIDF  89.9 92.7 100 | 78.9 80.8 100
Char TFIDF 925 954 100 | 88.3 90.4 100
fastText 93.0 95.9 100 | 88.9 91.0 100

Word LSTM  93.4 96.3 100 | 88.2 90.3 100
CharLSTM 92.3 953 100 | 88.8 90.3 100
Word CNN 929 958 100 | 87.6 89.7 100
CharCNN 929 958 100 | 929 95.1 100
Char CNN-21 93.3 96.3 100 | 89.9 92.1 100

Table 4.2 — Edge-level precision (P), recall (R) and Coverage (C) scores for different methods.
MENTA and MultiWiBi results are as reported by Flati et al. [31]. The top 3 results are shown in
bold, and the best is also underlined.
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Chapter 4. Multilingual Taxonomy Induction from Wikipedia

incorrect) hypernym for each node in the final taxonomy. These results also demonstrate that
the initial projected taxonomy (Section 4.2.1) is reachable from every node in the target WCN.

Word vs. Character Models. In general, character-level models outperform their word-
level counterparts. Char TFIDF significantly outperforms Word TFIDF for both entities and
categories across all languages. Similarly, Char CNN outperforms Word CNN. Char LSTM out-
performs Word LSTM for categories, but performs slightly worse for entities. We hypothesize
that this is due to the difficulty in training character LSTM models over larger training sets.
Entity training sets are much larger, as the number of Entity— Category edges are significantly
greater than the number of Category— Category edges (usually by a factor of 10).

Neural Models vs. TFIDE. CNN-based models perform slightly better on average, followed
closely by LSTM and TFIDF respectively. However, the training time for neural networks-based
models is significantly higher than TFIDF models. For example, it takes approximately 25
hours to train the Char CNN model for French entities using a dedicated GPU. In contrast, the
Char TFIDF model for the same data is trained in less than 5 minutes.

Therefore, for the sake of efficiency, as well as to ensure simplicity and reproducibility across
all languages, we choose Char TFIDF taxonomies as our final taxonomies for the rest of the
evaluations. However, it is important to note that more accurate taxonomies can be induced
by using our approach with neural-based models, especially if the accuracy of taxonomies is
critical for the application at hand.

4.3.2 Path-level Evaluation

In the previous chapter, we demonstrated that high edge-level precision may not always
translate to high path-level precision for taxonomies. We introduced the notion of length
of correct path prefix (CPP), i.e., the maximal correct prefix of a generalization path, as an
alternative measure of the quality of a taxonomy (see Section 3.3.3). We computed two metrics
based on the lengths of CPPs: (1) the average length of CPP (ACPP), and (2) the average ratio
of lengths of CPPs to the full paths (ARCPP). Following the same evaluation methodology, we
first randomly sample paths originating from 25 entities and 25 categories using the MultiWiBi
and Char TFIDF taxonomies’ for six different languages (i.e., French, Italian, Spanish, Arabic,
Hindi, and Chinese). For each path, we annotate the first wrong hypernym edge in the
upward direction. In total, we annotated 600 such paths across the six languages for the two
approaches (i.e., MultiWiBi and Char TFIDF).

Table 4.3 shows some examples of these sampled paths, along with their CPPs. Table 4.4
shows the comparative results. Char TFIDF taxonomies significantly outperform MultiWiBi
taxonomies, achieving higher ACPP for all languages and higher ARCPP for most languages.

7Same starting entities and categories are used for all taxonomies per language.
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MultiWiBi

Patrimoine mondial en Equateur ~ Conservation de la nature — Ecologie — Biologie
— Sciences naturelles — Subdivisions par discipline — Sciences — Discipline académique
— Académie — Concept philosophique

Char TFIDF

Patrimoine mondial en Equateur — Patrimoine mondial en Amérique

— Patrimoine mondial par continent — Patrimoine mondial — Infrastructure touristique
— Lieu ~» Géographie — Discipline des sciences humaines et sociales

— Sciences humaines et sociales — Subdivisions par discipline

Table 4.3 — Samples of generalization paths for French categories. Correct path prefix (CPP) for
each path is shown in bold.

Entity Category
Language Method AL ACPP ARCPP | AL ACPP ARCPP

MultiwiBi 824  2.96 0.49 8.92 3.6 0.56
French

Char TFIDF 11.08 5.08 0.49 8.36 3.76 0.49

Itali MultiwiBi 7.36  2.68 0.45 14.84 3.72 0.27
alian

Char TFIDF  8.32 4.88 0.61 8.32 4.52 0.57

. MultiwiBi  7.04  3.08 0.55 12.08  4.08 0.36
Spanish

Char TFIDF  12.8 5.0 0.48 12.76  5.28 0.48

Arabi MultiwiBi  8.96 2.12 0.31 14.64 4.12 0.31

i
apie Char TFIDF ~ 7.48 5.88 0.81 6.96 5.04 0.74
Hindi MultiwiBi 7.72  1.88 0.27 7.4 1.8 0.36
indi

Char TFIDF 10.28  4.92 0.47 8.0 2.44 0.38

. MultiWwiBi 7.4 2.56 0.47 8.0 4.43 0.63
Chinese

Char TFIDF  6.32 3.92 0.68 6.95 4.48 0.68

Table 4.4 — Comparison of average path length (AL), average length of correct path prefix
(ACPP), and average ratio of CPP to path lengths (ARCPP) for the MultiWiBi and Char TFIDF
taxonomies.

Therefore, compared to the state-of-the-art MultiWiBi taxonomies, Char TFIDF taxonomies
are a significantly better source of generalization paths across multiple languages.

However, the overall performance of the Char TFIDF taxonomies is still significantly worse
than HEADS taxonomy, which achieved an ARCPP of 0.87 (see Table 3.10). This effect is
expected, because Char TFIDF taxonomies are created through the projection of the HEADS
taxonomy. As a result, the errors in HEADS taxonomy would be propagated to the Char TFIDF
taxonomies, thus, resulting in accuracy of HEADS being an upper bound for Char TFIDF
taxonomies. This also suggests that hand-crafted language-specific features in conjunction
with an accurate syntactic parser, as used for the induction of HEADS taxonomy, could possibly
result in the induction of more accurate taxonomies for other languages as well.
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Figure 4.2 — Validation accuracies for Word TFIDF vs. Char TFIDF models.
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Figure 4.3 — Confusion matrices for Word TFIDF vs. Char TFIDF models for French cate-
gories. Each cell shows the total number of edges along with the ratios in brackets.

4.4 Analysis

In this section, we perform additional analyses to gain further insights into our approach.
More specifically, in Section 4.4.1 & 4.4.2, we perform an in-depth comparison of the Word
TFIDF and Char TFIDF models. In section 4.4.3, we show the effect of the parameter k, i.e., the
number of paths discovered during optimal path search (see Induction Phase in Section 4.2.3),
on the branching factor and the precision of the induced taxonomies.
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Word TFIDF | Char TFIDF

dolphins, dolphins, miami
miami, entraineur, des

s dol, s dolp, es dol
hins, dolph, hins d

Table 4.5 — Top features for the not-is-a edge ENTRAINEUR DES DOLPHINS DE MI-
AMI~>DOLPHINS DE MIAMI.

Word TFIDF \ Char TFIDF

dolphins, américain, miami
entraineur, sportif, entraineur

ur spo, r spor, eur sp

tif am, if am, if amé

Table 4.6 — Top features for the is-a edge ENTRAINEUR DES DOLPHINS DE MIAMI—ENTRAINEUR
SPORTIF AMERICAIN.

4.4.1 Word vs. Character Models

To compare word and character-level models, we first report the validation accuracies® for
Word TFIDF and Char TFIDF models in Figure 4.2, as obtained during the training phase (cf.
Section 4.2.2). Char TFIDF models significantly outperform Word TFIDF models, achieving
higher validation accuracies across six different languages. The improvements are usually
higher for languages with non-Latin scripts. This effect can be partly attributed to the error-
prone nature of whitespace-based tokenization for such languages. For example, the word
tokenizer for Hindi splits words at many accented characters in addition to word boundaries,
thus leading to erroneous features and poor performance. In contrast, character-level models
are better equipped to handle languages with arbitrary scripts, because they do not need to
perform text tokenization.

4.4.2 False Positives vs. False Negatives

To further compare word and character models, we focus on the specific case of French
categories. In Figure 4.3, we show the confusion matrices of Word TFIDF and Char TFIDF
model computed using the validation set for French categories. While, in general, both models
perform well, Char TFIDF outperforms Word TFIDE producing fewer false positives as well as
false negatives. In fact, we noticed similar patterns across most languages for both entities
and categories.

We hypothesize that the superior performance of Char TFIDF is because character n-gram
features incorporate the morphological properties computed at the sub-word level as well
as word boundaries, which are ignored by the word-based features. To demonstrate this, we
show in Tables 4.5 & 4.6, the top Word TFIDF and Char TFIDF features of a not-is-a and an is-a
edge. These edges are misclassified by Word TFIDF but correctly classified by Char TFIDE

8validation set is constructed by randomly selecting 25% of the edges with each label (i.e., is-a and not-is-a) as
discovered during the projection phase.
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Figure 4.4 — Precision vs. branching factor for different number of paths (k) in the Induction
phase (cf. Section 4.2.3).

While Word TFIDF features are restricted to individual words, Char TFIDF features can capture
patterns across word boundaries. For example the 6-gram feature “ur spor” occurs in multiple
hypernyms with different words: e.g., Commentateur sportif américain, Entraineur sportif
américain and Entraineur sportif russe. Such features incorporate morphological information
such as plurality and affixes, which can be important for the detection of an is-a relationship.
Furthermore, Char TFIDF features are more robust to morphological variations, and hence,
more suitable for handling inflected languages. This is also evidenced by our heuristics in
Chapter 3 as well as prior work by Suchanek et al. [125] that utilize multiple hand-crafted fea-
tures based on such morphological information. Therefore, character-level models equipped
with such features perform better at the task of WCN edge classification than their word-level
counterparts.

4.4.3 Precision vs. Branching Factor

Along with standard precision/recall measures, structural evaluation also plays an important
role in assessing the quality of a taxonomy. One of the important structural properties of a
taxonomy is the branching factor, which is defined as the average out-degree of the nodes
in the taxonomy. Taxonomies with higher branching factors are desirable because they are
better equipped to account for multiple facets of a concept or entity (e.g., BILL GATES is both a
philanthropist and an entrepreneur).
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However, there is usually a trade-off between branching factor and precision in automatically
induced taxonomies [129]. Higher branching factor typically results in lowering of precision
due to erroneous edges with lower scores being added to the taxonomy. Prioritizing the
precision over the branching factor or vice-versa is usually determined by the specific use
case at hand. Therefore, it is desirable for a taxonomy induction method to provide a control
mechanism over this trade-off.

In our approach, the number of paths discovered (k) during the optimal path search in the
induction phase (Section 4.2.3), serves as the parameter for controlling this trade-off. As k
increases, the branching factor of the induced taxonomy increases because more paths per
term are discovered. To demonstrate this effect, we plot the values of precision and branching
factor of Char TFIDF taxonomies for varying values of k for French categories® in Figure 4.4.
Precision and branching factors for the MultiWiBi taxonomy and the original WCN are also
shown for comparison purposes.

Char TFIDF significantly outperforms MultiWiBi, either achieving higher precision (k<2) or
higher branching factor (k=2). At k=2, Char TFIDF presents a sweet spot, outperforming
MultiWiBi in both precision and branching factor. For k=3, Char TFIDF taxonomies start
to resemble the original WCN because most of the WCN edges are selected by optimal path
discovery. This experiment demonstrates that in contrast to MultiWiBi’s fixed set of heuristics,
our approach provides better control over the branching factor of the induced taxonomies.

4.5 Discussion and Related Work

The large-scale and high quality of Wikipedia content has enabled multiple approaches
towards knowledge acquisition and taxonomy induction over the past decade. The earlier
attempts at taxonomy induction from Wikipedia focused on the English language. These
include WikiTaxonomy, WikiNet, YAGO and the first versions of DBpedia and MultiWiBi. Later
attempts aimed to extend the taxonomy induction process to other languages by exploiting
the multilingual nature of Wikipedia content. These include MENTA, YAGO3, and the later
versions of DBpedia and MultiWiBi. Chapter 2 provides a survey of these approaches.

In the previous chapter (Chapter 3), we proposed an approach that induces a unified taxonomy
of entities and categories from the English WCN using a novel set of high-precision heuristics.
In contrast, our approach proposed in this chapter is language-independent and results in
taxonomies for all Wikipedia languages. Our approach borrows inspiration from many of the
past approaches. First, similar to most previous approaches, it also classifies WCN edges into
is-a or not-is-a. Second, similar to MultiWiBi, our approach also projects an English taxonomy
into other languages using the interlanguage links.

However, unlike the previous approaches, our approach does not employ any linguistic heuris-
tics or hand-crafted features. Instead, it uses standard text classifiers trained on an auto-

9Similar effects are observed for both entities and categories for all languages.
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matically constructed dataset to assign edge weights to WCN edges. Taxonomic edges are
discovered by running optimal path search over the WCN in a fully-automated and language-
independent fashion. The principled design of our approach leads to two advantages: (1)
our approach achieves 100% coverage, because unlike most heuristics, the text classifiers are
applicable for all nodes, and (2) the parameter k in the optimal path search framework helps
to regulate the precision vs. branching factor tradeoff, thus providing better control over the
structural properties of the induced taxonomies.

Although the approach presented in this chapter uses the HEADS taxonomy as the input
English taxonomy, theoretically it is general and replicable with any English taxonomy that
consists of WCN nodes. However, since our approach collects ancestors of WCN nodes in the
English taxonomy (Section 4.2.1), the high path-level accuracy of the HEADS taxonomy is a
major advantage as it ensures more accurate sets of ancestors.

Our experiments show that taxonomies derived using our approach significantly outperform
the state-of-the-art taxonomies, derived by MultiWiBi using more complex heuristics. We
hypothesize that it is because our model primarily uses categories as hypernyms, whereas
MultiWiBi first discovers hypernym lemmas for entities using potentially noisy textual features
derived from unstructured text. Categories have redundant patterns, which can be effectively
exploited using simpler models. This has also been shown in Chapter 3, where we employed
simple high-precision heuristics based on the lexical head of categories to achieve significant
improvements over MultiWiBi for English.

Additionally, for taxonomy induction in other languages, MultiWiBi uses a probabilistic trans-
lation table, which is likely to introduce further noise. However, the high-precision heuristics
described in Chapter 3 are not easily extensible to languages other than English, due to the
requirement of a syntactic parser for lexical head detection. Therefore, we present this ap-
proach that learns such features from automatically generated training data, hence resulting in
high-precision, high-coverage taxonomies for all Wikipedia languages. Figure 4.5 shows some
examples of generalization paths sampled from these taxonomies for ten different languages.
Our taxonomies contain more than 1 million is-a edges for 10 languages, and more than
100,000 is-a edges for 46 languages. For rest of the languages, taxonomies are smaller (i.e.,
less than 50,000 is-a edges), mainly due to the smaller sizes of their corresponding WCNs.
Nonetheless, our approach is still effective as it achieves 100% coverage over the WCNs by
design.

4.6 Summary

In this chapter, we presented a novel fully-automated approach towards multilingual taxonomy
induction from Wikipedia. Unlike previous state-of-the-art approaches, which are complex
and heuristic-heavy, our approach is simpler, principled and easy to replicate. Our approach
runs in three phases. In the first phase, our approach leverages an English Wikipedia taxonomy
and the interlanguage links of Wikipedia to project an initial taxonomy in the target language.
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4.6. Summary

In the second phase, it constructs a training dataset automatically for the is-a relation in the
target language. In the final phase, off-the-shelf text classifiers are trained on the constructed
datasets and used in an optimal path discovery framework to induce a high-precision as well
as wide-coverage taxonomy in the target language.

Taxonomies induced using our approach outperform the state of the art on both edge-level
and path-level metrics across multiple languages. Our approach also provides a parameter for
controlling the trade-off between precision and branching factor of the induced taxonomies.
Additionally, our experiments demonstrate that character-level models perform better than
their word-level counterparts at the task of classifying WCN edges because they are equipped
with features related to word boundaries and morphological information. A key outcome of
this work is the release of our taxonomies across 280 languages, which are significantly more
accurate than the state of the art and provide higher coverage.

Limitations and Future Work. The first key limitation of our approach is that it uses an
English taxonomy as the the source taxonomy for projection. This design could possibly
introduce a bias in the taxonomies induced in other languages. For example, this design
would favor the target language categories that have an English equivalent over categories
without an English equivalent. An interesting future work would be analyze the relative
distributions of interlanguage links across pages and categories in different languages, and
use that information to identify potentially-beneficial source languages other than English.
Another interesting approach could be to run taxonomy induction for all languages in iterative
fashion in a unified framework, such that the taxonomies induced in each language aids
the taxonomy induction all other languages. The second key limitation of our approach is
that only one specific approach for the construction of the negative examples are presented
in the training phase (Section 4.2.2). Experiments can be performed with other equivalent
approaches. For example, negative training examples can be generated by projecting not-is-a
edges from the source taxonomy. Finally, we only experimented with a few models for the
classification of edges. Many other classification models could be tried and may potentially
lead to improved results.
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Catégorie:Personne

Catégorie:Personnalité par métier
Catégorie:Personnalité par nationalité et par profession
Catégorie:Personnalité américaine par profession

Catégorie:Artiste américain

Catégorie:Acteur américain

Kategorie:Menschenartige
Kategorie:Person

Kategorie:Schauspieler

Categoria:Artistas por pais
Categoria:Artistas de Estados Unidos
Categoria:Actores de Estados Unidos

Categoria:Actores de Estados Unidos por género

Categoria:Actores de voz de Estados Unidos

Kategorie:Filmschauspieler
Johnny Depp Johnny Depp
(French) (German)
Categoria:Amnioti
Categoria:Arte- Categoria:Mammiferi
Categoria:Artistas

Categoria:Primati

Categoria:Ominidi

Categoria:Persone
Categoria:Persone per nazionalita

Categoria:Statunitensi

Categoria:Attori statunitensi
Johnny Depp Johnny Depp
(Spanish) (Italian)

Thé loai:Nhan vat céng chiing
Thé loai:Nghé si
Thé loai:Dién vién
Thé loai:Nam di&n vién
Thé loai:Nam dién vién theo phwong tién
Thé loai:Nam di&n vién truyén hinh

Thé loai:Nam dién vién truyén hinh theo quéc tich
Thé loai:Nam dién vién truyén hinh My

KaTteropus:YenosekoobpasHble 06e3bsiHbI
KaTeropus:Yenosek
KaTteropus:Iiogn

Kareropus:Jliogn no npocpeccunam

KaTteropusi:ApTucTbl
KaTteropns:AKTEpbl
KaTteropusi:AKTépbl Mo cTpaHam

KaTeropus:Aktépbl CLUA

Categorie:Actori
Categorie:Actori dupa mediu
Categorie:Actori de televiziune
Categorie:Actori de televiziune dupa nationalitate

Categorie:Actori de televiziune americani

Kateropus:Aktépbl TenesnaeHus CLLUA
Johnny Depp Oenn, JXOHHM
(Vietnamese) (Russian)
Categorie:Hominoidea Karnyopia:Aeg1étnTeg
Categorie:Om

Katnyopia:EmayyéApara
Karnyopia:ZuvteAeoTég TOU BedTpou
Karnyopia:HBoTrol0i
Karnyopia:HBoTrol0i avd eBvikdTnTa

Katnyopia:Apepikavoi notroioi

Katnyopia:Apepikavoi avdpeg nbotroloi
Johnny Depp (Greek) Tgovi Nretr
(Romanian) (Greek)
Aalail:anias
e Laia) dalail:Caioas
e Laia) iy Ao TFRIFER TEIT
i Aof-FaracT
& il Cian Geaitsiaas Sofr: s
) Cpgar i Foft: 37 Ferdar
O3t i O sl ins AofrATeas 3 sifAaar
O sbias Cigioas Hoft-Reear 3ifAarar
Loial) o (yshawrCiias AON-TSEIAT 3R fhea 31fAarar
058 sl @ sliasi i Foft:3ARST Roear 3ifdarar
0 s St 37
(Arabic) (Hindi)

Figure 4.5 — Sample Generalization Paths for the entity JOHNNY DEPP in ten languages.
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Background and Related Work

5.1 Overview

Taxonomy induction is a well-studied task, and multiple different lines of work have been
proposed in the prior academic literature. Early works on taxonomy induction utilize human-
compiled knowledge resources including fully-structured resources (such as WordNet) or semi-
structured resources (such as Wikipedia). Taxonomy induction approaches based on such
resources achieve good precision and hence have been used in a wide variety of NLP-related
tasks (Section 2.1). Additionally, the taxonomies extracted from Wikipedia are extremely
large-scale, consisting of millions of entities (see Chapters 2-4). However, despite their large
scale, such taxonomies still suffer from incomplete coverage over highly specialized domains
such as Law and Finance, because such domains are usually under-represented in external
knowledge resources. For example, WordNet is mostly limited to frequent nouns, adjectives,
verbs, and adverbs [42, 89]. Similarly, Wikipedia articles are disproportionately focused on
popular entities [65]. Furthermore, the utility of Wikipedia is further diminished by its slowed
growth [127].

To address such issues, another line of work has been proposed, which focuses on building
lexical taxonomies completely from scratch, i.e., unstructured or raw text such as domain-
specific corpus or Web. The main advantage of performing taxonomy induction from scratch
is that it can be performed on arbitrary domains because domain-specific text corpora can be
easily harvested on a large scale using the Web [19, 102]. Furthermore, most Web documents
provide temporal information that can be effectively utilized to induce up-to-date taxonomies
even in highly dynamic domains such as Politics [146, 77].

In this chapter, we provide a brief survey of the past approaches towards taxonomy induction
from unstructured text. These approaches typically consist of two main stages: (1) hypernymy
extraction, i.e., extraction of hypernymy (or is-a) relations between terms from unstructured
text, and (2) term organization, i.e., the structured organization of terms into a taxonomy, i.e.,
a coherent tree-like hierarchy. In Section 5.2, we discuss the past approaches aimed towards
the first stage, i.e., hypernymy extraction from unstructured text, whereas, in Section 5.3,
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Pattern Context Extracted Relation
NPis/was a NP “apple is a fruit” apple—fruit

NP such as NP “authors such as shakespeare” shakespeare—author
NP or/and other NP “carrots or other vegetables” carrot—vegetable
NP, especially NP “swiss cities, especially Zurich”  zurich—swiss city
NP, e.g. NP “scientists, e.g. Einstein” einstein—scientist

Table 5.1 — Examples of lexico-syntactic patterns and extracted relations. NP indicates a
noun phrase.

we focus on the second stage, i.e., term organization. In Section 5.4, we describe a few
primary examples of end-to-end taxonomy systems that perform taxonomy induction from
unstructured text.

5.2 Hypernymy Extraction

The task of extraction of hypernymy relations from unstructured text has been relatively
well-studied in prior literature. Its approaches can be classified into two main categories:
Distributional approaches and Pattern-based approaches.

Distributional approaches use clustering to extract hypernymy relations from unstructured
text [100, 22, 111]. Such approaches draw primarily on the distributional hypothesis [46],
which states that terms that are semantically-similar appear in similar contexts. The main
advantage of distributional approaches is that they can discover relations, which are not
explicitly expressed in the unstructured text.

In contrast, pattern-based approaches utilize pre-defined rules or lexico-syntactic patterns
to extract terms and hypernymy relations from text [47, 98, 118]. Pattern-based approaches
were pioneered by Hearst [47], and have been fairly popular ever since. Patterns are either
chosen manually [47, 69] or learnt automatically via bootstrapping [119]. Table 5.1 shows
some examples of these lexico-syntactic patterns along with sample contexts as well as the
extracted hypernymy relations. Pattern-based approaches usually result in much higher
accuracies [94, 129]. However, unlike distributional approaches, which are fully unsupervised,
pattern-based approaches require a set of seed patterns to initiate the extraction process.
Furthermore, pattern-based approaches can only extract relations that are explicitly expressed
in unstructured text.

A third line of approaches towards hypernymy extraction uses machine learning classifiers,
which are trained on distributional features or pattern-based features or a combination of
both. For example, Snow et al. [119] search sentences containing two terms known to be
in a taxonomic relation, and further automatically learn patterns from their parse trees. A
classifier is trained based on such automatically-extracted pattern-based features, and used to
identify novel hypernym pairs. Velardi et al. [129] extract hypernyms from a domain corpus
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and the Web, by extracting definitional sentences such as “apple is a fruit” (apple— fruit). Defi-
nitional sentences are recognized by a domain-independent machine-learned classifier that
utilizes World Class Lattices (a form of regular expressions) trained on a dataset of Wikipedia
definitions [93].

A more detailed survey of hypernym extraction techniques from unstructured text can be
found in Wang et al. [132]. However, we describe a few of these techniques in detail, as they
are employed by our taxonomy induction approaches in the following chapters.

* WeblIsA is one of the most notable efforts towards hypernymy extraction from unstruc-
tured text. WeblsA is a dataset of hypernymy relations in English extracted automati-
cally from the CommonCrawl web corpus using 59 hand-crafted lexico-syntactic pat-
terns [118]. WeblsA is extremely large-scale, consisting of more than 400 million! hyper-
nymy relations in English. Moreover, it is publicly available and can be downloaded and
accessed via simple APIs?.

* PattaMaika implements pattern-based knowledge extraction using UIMA Ruta®, which
is a rule-based text annotation engine released by Apache [66]. Similar to WeblsA, Patta-
Maika is publicly available*, and has been used in previous works to extract hypernyms
for multiple languages including English, Italian, and Dutch [102].

¢ PatternSim is a general tool for information extraction based on lexico-syntactic pat-
terns. It has been used in a variety of tasks such as computation of semantic similar-
ity [101] and hypernymy extraction from English and French corpora [102]. Similar to
WebIsA and PattaMaika, it is also publicly available®.

Overall, the task of hypernymy extraction from unstructured text is relatively well-studied.
Many large-scale datasets as well as extraction systems have been publicly released and can
be reused in an ‘as-is’ fashion by taxonomy induction approaches.

5.3 Term Organization

We now proceed with the discussion of the second stage of taxonomy induction, namely the
structured organization of terms into a coherent tree-like hierarchy. Similar to hypernym
extraction, approaches towards structured organization of terms can also be divided into two
main categories: (1) clustering-based approaches, and (2) graph-based approaches.

1In contrast, the largest English taxonomies induced from Wikipedia comprised of approximately 12 million
hypernymy relations.

2http://webdatacommons.org/isadb/

Shttp:// uima.apache.org/ruta.html

4http://ltmaggie.informatik.uni-hamburg.de/jobimtext/documentation/pattern-extraction-with-
pattamaika/

Shttps://github.com/cental/PatternSim

71



Chapter 5. Background and Related Work

Clustering-based approaches aim to cluster terms that are co-hyponyms, i.e., they share
the same hypernym. Typically, hierarchical clustering algorithms are employed to induce a
tree-like hierarchy of terms. For example, Song et al. [122] employs an adapted version of
hierarchical clustering for induction of large-scale taxonomies from a given set of keywords.
Another approach, Alfarone and Davis [5] clusters terms using the K-Medoids algorithm, and
computed the lowest common ancestor as the hypernym of a collection of terms.

Graph-based approaches cast the task of term organization as a graph optimization problem.
They first construct a noisy hypernym graph from the extracted hypernym relations. The
noisy hypernym graph is further pruned using a graph-based optimization algorithm, thus
resulting in the induction of the final taxonomy. Graph-based approaches are well-suited for
this task because taxonomies are essentially directed graphs with is-a edges between terms.
One of the first such approaches was proposed by Kozareva and Hovy [68], who discover
generalization paths from seed terms to a target root, by finding the longest path in a noisy
hypernym graph. Another prominent approach is Ontolearn Reloaded [129], which employs
the Chu-Liu/Edmonds’s optimal branching algorithm [58] on the noisy hypernym graph with
edge weights computed using the topology of the graph.

Both clustering-based and graph-based approaches have been effectively used in the prior aca-
demic literature for inducing taxonomies from unstructured text. A more detailed discussion
of these approaches can be found in Velardi et al. [129] and Wang et al. [132].

5.4 State-of-the-art Approaches

We now describe a few salient end-to-end systems that perform taxonomy induction from
unstructured text. Many of these systems use techniques or resources that are mentioned in
the previous sections.

5.4.1 Kozareva’s Method

Kozareva and Hovy [68] starts with an initial set of root terms (e.g., animal) and basic-level

terms® (e.g., lion). It further employs lexico-syntactic patterns to harvest new candidate
hypernyms for the basic-level terms using the Web. This step is performed recursively for the
newly-harvested hypernyms until the root term is reached. Another set of lexico-syntactic
patterns are employed to validate the extracted hypernymy relations.

Validated hypernymy relations are aggregated, leading to the construction of an initial noisy
hypernym graph. The nodes in the noisy hypernym graph that have out-degree below a certain
threshold are discarded. Cycles are detected and removed from the noisy hypernym graph,
and the hypernymy relations constituting the longest paths between the basic-level terms and
the root term form the final taxonomy.

6A basic-level term corresponds to the basic-level categories as defined in Rosch [114].
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Figure 5.1 — Longest Path Optimization for
Taxonomy Induction [68].

Figure 5.2 — Animal Taxonomy Induced from Scratch by
Kozareva and Hovy [68].

Figure 5.1 shows a snippet of the noisy hypernym graph and the extracted longest path
between the terms lion and animal. Figure 5.2 shows the final induced taxonomy for Animal

domain. Kozareva and Hovy [68] report that their algorithm reconstructs up to 62% of the

original WordNet from scratch over the tested regions, and also discovers novel hypernymy

relations that are missing from WordNet.

5.4.2 Ontolearn Reloaded

Ontolearn Reloaded, proposed by Velardi et al. [129], is a novel algorithm that learns taxo-

nomic relations from scratch, by extracting terms, definitions, and hypernyms from the Web.

Ontolearn takes two inputs: (1) a domain-specific corpus, and (2) a set of candidate roots.

Given these inputs, Ontolearn Reloaded works in four main steps:

1. Term extraction: in the first step, TermExtractor [117], which is a standard auto-

mated terminology extraction algorithm, is employed to extract a potentially-noisy

domain-specific terminology from the given corpus.
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Figure 5.3 — Taxonomy induction process of Ontolearn Reloaded [129].

2. Manual cleaning: domain-irrelevant terms are manually discarded from the ex-
tracted terminology, thus resulting in a clean terminology.

3. Hypernym extraction: lexico-syntactic patterns-based classifiers, also known as
Word-Class Lattices ( [93]), are used to extract definitions for the domain-relevant terms
from the Web. Domain-irrelevant definitions are further detected using a classifier
and discarded. The hypernyms are extracted from the syntactic parses of retained
definitions. For example, the definition “In graph theory, a flow network is a directed

4

graph...” results in the extraction of the hypernymy relation flow network— directed
graph. The hypernym extraction process stops when any of the input candidate roots

are reached.

4. Taxonomy induction: in the final step, the hypernyms extracted from the definitions
are aggregated to form an initial noisy hypernym graph. A novel weighting policy is
employed for computing the edge weights of the noisy hypernym graph. Similar to
Kozareva’s method (Section 5.4.1), the weighting policy aims to assign higher weights
to hypernym edges that fall on longer generalization paths. Finally, the application of
Chu-Liu/Edmonds’s optimal branching algorithm on the weighted hypernym graph
results in the induction of the final taxonomy.

Figure 5.3 summarizes the above-mentioned taxonomy induction process of Ontolearn
Reloaded. Ontolearn Reloaded is the first approach that performs taxonomy induction without
making significant simplifying assumptions. As a result, Ontolearn Reloaded is considered a
significant advancement over its prior approaches. However, despite such advancements, it
still has a severely-limiting constraint: it requires a manual step of cleaning the terminology,
which restricts its applicability in a fully-automated setting.

5.4.3 Taxify

Taxify is a hybrid approach that uses clustering-based as well graph-based techniques to
induce a taxonomy from a domain-specific corpus in a fully-unsupervised fashion [5]. Taxify
runs in four phases. In the first phase, an initial set of is-a relations are extracted automatically
using a combination of lexico-syntactic patterns as well as distributional semantics. In the
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second phase, the terms are clustered using the K-Medoids algorithm, and the lowest common
ancestor of terms in a cluster is considered as their hypernym. In the third phase, a graph-
based optimal branching algorithm is employed to detect and remove potentially-incorrect
is-a edges. In the final phase, confidence scores are assigned to the is-a edges based on the
provenance of their discovery. Taxify performs favorably against Kozareva’'s method as well as
Ontolearn Reloaded across five different domains.

5.4.4 SemkEval Tasks

More recently, Bordea et al. [15, 16] introduced the first shared SemEval tasks on Taxonomy
Extraction Evaluation, thus providing a common ground for evaluation. These SemEval tasks
are referred to as TExEval [15] and TExEval-2 [16]. In both tasks, participants were provided
with a clean vocabulary of domain-specific terms and a root term and asked to perform
taxonomy learning by finding relations between pairs of terms. Resultant taxonomies were
evaluated using a variety of methods such as structural evaluation, comparison against a
gold standard as well as manual evaluation of edge-level accuracy. While TExEval task only
focused on taxonomy induction over English, TExEval-2 task introduced three more languages,
i.e., French, Italian and Dutch. INRIASAC, the top system in TExEval, uses features based on
substrings and co-occurrence statistics [36] whereas TAXI, the top system in TExEval-2, uses
lexico-syntactic patterns, substrings and focused crawling [102]. We now describe TAXI in
detail, because it is used for comparative evaluation in Chapter 7.

TAXI. TAXI s a state-of-the-art taxonomy induction system, which reached first place in all
the subtasks of the TExEval-2 task [102]. TAXI harvests candidate hypernyms using substring
inclusion and lexico-syntactic patterns from unstructured text corpora. TAXI also uses the
candidate hypernymy relations from the WebIsA database (see Section 5.2). It further utilizes
an SVM trained with edge-level features, such as frequency counts of candidate hypernyms and
substring inclusion, to classify edges as positive and negative. The edges that are classified as
is-aare added to the taxonomy. Panchenko et al. [102] also report that alternate configurations
of TAXI with different term-level and edge-level features as well as different classifiers such as
Logistic Regression, Gradient Boosted Trees, and Random Forests fail to provide improvements
over their approach. The key advantage of TAXI is that it is easily reproducible because its
source code, as well as the extracted hypernyms, are released publicly’.

5.5 Key Challenges

In the first chapter (Section 1.4), we mentioned some of the key shortcomings of taxonomy in-
duction approaches that utilize unstructured text. In this section, we reiterate those shortcom-
ings with additional context from the discussions presented in this chapter. Past approaches

http://tudarmstadt-lt.github.io/taxi/
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towards taxonomy induction from scratch typically suffer from these shortcomings:

¢ Hypernymy extraction for general terms: hypernymy extraction approaches based on
the lexico-syntactic patterns usually become increasingly erroneous as the generality
of terms increases, mainly due to the increase in term ambiguity. This effect was docu-
mented by Ontolearn Reloaded [129]. In the next chapter, we further demonstrate this
effect using an empirical experiment.

* Noisy input vocabulary: most of the previous approaches, which are described in the
previous section, require a clean vocabulary of seed terms as input. This constraint
can be severely limiting because state-of-the-art automated vocabulary extraction ap-
proaches output vocabularies that contain numerous noisy terms. Although Taxify does
not explicitly state this constraint, it is still evaluated only with clean vocabularies.

¢ Automated root detection: Kozareva’s method, Ontolearn Reloaded and TAXI assume a
set of one or more root terms as input. If such a set is unavailable, Ontolearn Reloaded
employs higher-level terms from WordNet as the set of root terms. Although Taxify [5]
performs taxonomy induction without a set of input roots, the final roots of the induced
taxonomies are neither evaluated quantitatively nor qualitatively.

5.6 Summary

In this chapter, we provided a brief overview of the state of the art of taxonomy induction
from unstructured text. The main stages of taxonomy induction from unstructured text are
hypernymy extraction (Section 5.2) and term organization (Section 5.3). Hypernymy extraction
is well-studied in prior literature and is mainly performed using either distributional methods
or lexico-syntactic patterns. Although distributional methods are better equipped to extract
implicit relations, lexico-syntactic patterns typically result in a higher accuracy of the extracted
relations. The second stage, i.e., term organization, is performed using either clustering of
terms, or graph-based optimization approaches. Although many of these methods have been
utilized effectively for taxonomy induction, they still suffer from multiple shortcomings. In the
following chapters, we propose novel methods that attempt to address these shortcomings.
More specifically, in Chapter 6, we propose a novel model that utilizes the hypernyms of more
specific terms, to choose more accurate hypernyms for more general terms. In Chapter 7, we
introduce a novel flow network optimization-based approach towards term organization, that
is robust to the presence of significant noise in the input vocabulary. Finally, in Chapter 8,
we demonstrate that flow network optimization-based approach can be easily extended to
support automated detection of roots.
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Extraction of Hypernym
Subsequences

6.1 Overview

As discussed in the previous chapter, taxonomy induction from unstructured text typically
consist of two main stages: (1) extraction of hypernymy relations from unstructured text, and
(2) the structured organization of terms into a taxonomy. The hypernym relations, which are
extracted in the first phase, are usually directly employed in the second stage. However, in this
chapter, we propose a novel approach that first extracts long-range hypernym subsequences
from the extracted hypernyms. A hypernym subsequence is defined as a series of one or more
contiguous hypernym edges (e.g., apple— fruit— food). Through experiments, we demonstrate
that the subsequences extracted using our approach are significantly more accurate compared
to multiple baselines. Moreover, in the next chapter, we demonstrate that the taxonomy
induction approaches, which utilize these extracted hypernym subsequences, perform much
better than equivalent approaches that solely rely on hypernym edges.

Since hypernymy extraction is relatively well-studied as well as orthogonal to our contribu-
tion, we assume the availability of a pre-existing database of hypernymy relations. More
specifically, we use WeblsA, which is one of the largest databases of hypernymy relations in
English (also described in Section 5.2). WebIsA contains more than 400 million hypernymy
relations in English. However, these relations tend to be very noisy, typically containing a
mixture of closely-related semantic relations such as hyponymy, meronymy, synonymy, and
co-hyponymy (see Section 1.2 for definitions of these semantic relations). For example, WebIsA
has more than 12,000 hypernyms for the term apple, including numerous noisy hypernyms
such as orange, everyone and smartphone. For each hypernymy relation, WeblIsA also provides
the occurrence frequencies in the CommonCrawl corpus. The hypernymy relations with the
highest occurrence frequencies for the term apple are shown in Table 6.1.

In the remainder of this thesis, the noisy hypernymy relations present in WebIsA are referred
to as the candidate hypernyms. In the next section, we present our approach that extracts
hypernym subsequences from these candidate hypernyms.

77



Chapter 6. Extraction of Hypernym Subsequences

Candidate hypernym  Occurrence frequency

company 5536
fruit 3898
apple 2119
vegetable 928
orange 797
tech company 619
brand 463
hardware company 460
technology company 427
food 370

Table 6.1 — WeblIsA hypernyms for the term apple along with their occurrence frequencies [118].
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Figure 6.1 — Normalized occurrence frequency and average rank vs. the height of the edge in
the paths sampled from WordNet.

6.2 Our Approach

6.2.1 Motivation

To motivate the extraction of hypernym subsequences, we first note that Table 6.1 includes
hypernyms of apple at different levels of generality, such as fruit and food. In fact, we observe
this pattern in the candidate hypernyms of most terms. This suggests that we can leverage
such information to not only extract the direct hypernyms of apple, but to also extract longer
hypernym subsequences, such as apple— fruit— food.

This becomes even more important given the result by Velardi et al. [129], who demonstrated
that hypernym extraction becomes increasingly erroneous as the generality of terms increases,
mainly due to the increase in term ambiguity. To further support this hypothesis, we perform
an experiment where we first randomly sample 100 paths from WordNet. For each edge
a— b in a sampled path, we plot the normalized occurrence frequency’® of “b as a candidate
hypernym for a” against the height of the edge (Table 6.1). We also plot the average rank of b

INormalization is performed by dividing the frequency counts by the maximum.
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among candidate hypernyms of a, where candidate hypernyms are ranked by their normalized
occurrence frequencies in decreasing order.

Figure 6.1 shows the results of this experiment. Since edges in the WordNet are assumed to
be the ground truth, it is desired that they have a higher normalized frequency and lower
ranks. However, this small-scale experiment demonstrates that as the height of the edge
increases, the normalized frequencies decrease whereas the average ranks increase. Therefore,
the accuracy of candidate hypernyms is lower for more general terms that appear higher
in WordNet paths. Hence, for such terms, it makes sense to not solely base the hypernym
selection on the noisy set of candidate hypernyms. We can potentially improve the accuracy of
the selected hypernyms for general terms (such as fruit) by relying on hypernym subsequences
starting from more specific terms (such as apple). Those subsequences would be evidenced
by the less-noisy candidate hypernyms of the more specific terms.

In sum, extracting hypernym subsequences is both possible and potentially beneficial. The
remainder of this section describes our model that exploits this intuition.

6.2.2 Model

We now describe our model for extracting hypernym subsequences for a given term. We begin
with a general formulation using directed acyclic graphs (hereafter referred to as DAG), and
we make simplifying assumptions to derive a model for hypernym subsequences. We first
describe some notations, which will serve us for the rest of this section:

* fo: agiven seed term, e.g., apple;
¢ [;: lexical head of any term ¢, e.g., [;=soup for t=chicken soup;

¢ E: Hypernym Evidence, i.e., the set of all the candidate hypernymy relations, in the form
of 3-tuples (hyponym, hypernym, frequency);

* Ei(1): Hypernym Evidence for term ¢, i.e., the set of top- k candidate hypernyms for the
term ¢, which have the highest occurrence frequency counts (Table 6.1 shows a sample
from Ey(t) for t=apple);

o Ei(t,m): m'™" ranked candidate hypernym from E(t), where m < k, and ranks are
computed by sorting candidate hypernyms in decreasing order of frequency counts;

* sim(#;, £;): A similarity measure between terms #; and ¢; estimated using evidence E;

* G;: a DAG consisting of generalizations for a term ¢ (Figure 6.2 shows an example of a
possible DAG for t=apple).

For a given term ty, we define the goal of our model as finding a DAG G,, which maximizes
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Food Company

/\

Hardware Technology

Fruit  company company

Apple

Figure 6.2 — An example DAG built using generalizations of term apple.

the conditional probability of G, given the evidence Ey (%), for a fixed k:

P
I

argmax Pr(Gy, |Ex ()
GtO

argmax Pr(Ey(f)1Gy,) x Pr(Gy,) (6.1)

Due to the combinatorial nature of the search space of Gy, finding an exact solution to the
above equation is intractable, even for a small k. Therefore, we make the following simplifying
assumptions, which facilitate an efficient search through the search space of Gy,:

* G, can be approximated as a set of independent hypernym subsequences with possibly
repeated hypernyms. In other words, Gy, = U?zl Sio where Sio is the i subsequence
and b is a fixed constant. For example, the DAG shown in Figure 6.2 can be approx-
imated as a set of three subsequences: (i) apple— fruit— food, (ii) apple— hardware
company— company, and (iii) apple— technology company— company. This assumption
intuitively derives from the fact that any DAG can be represented by a finite number of
subsequences. These subsequences can be generated in linear time, by first performing
a topological sort of the DAG, and further iterating over all the paths from the term £, to
the terms with the highest ranks in the topological sort [23].

¢ Vi, the joint events (Ex(f), S io) are independent. Intuitively, this assumption implies
that each subsequence independently contributes to the evidence Ej(f).

¢ Vi, the direct hypernyms of £y in S lto are unique. In other words, for a candidate hy-
pernym #, of the given term £, there is at most one subsequence with the first edge
to— h.. Intuitively, this assumption implies that a candidate hypernym £, uniquely
sense-disambiguates the term .

In conjunction, these assumptions imply that G, is composed of b hypernym subsequences,
where each subsequence independently attempts to generate Ey (). Given these assumptions,
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Equation 6.1 transforms into:

b . .
Gy, = argmax [ Pr(E(1)lS]) x Pr(S}) 6.2)
U?leio i=1

Estimation. We now describe the estimation of Pr(Ej (f)|S io) and Pr(S io) for a hypernym sub-
sequence S lto' In order to motivate the estimation of the conditional probability Pr(E(%y)|S Zto)’
we start with an example. Consider a valid hypernym subsequence for the term apple, whose
candidate hypernyms are in Table 6.1:

apple — fruit— food — substance — matter — entity

At first sight, it might seem desirable for a candidate hypernym from E(fy) (e.g., fruit) to
have a high similarity with as many terms in the subsequence as possible. However, since the
similarity measure is estimated using the hypernym evidence E, it is plausible that terms such
as matter and entity have a low similarity with the candidate hypernym fruit, simply because
they are at a higher level of generality.

To avoid penalizing such valid subsequences, we let the conditional probability Pr(E(#)|S ;0)
be proportional to the maximum similarity possible between the candidate hypernym and
any term in the subsequence (e.g., for the candidate hypernym fruit, the similarity is 1 as fruit
is in the subsequence). We aggregate those similarity values across the candidate hypernyms.

More formally, assuming subsequence Sio = top—hj1—hio... hip, where n is the length of S’;O,
we compute the conditional probability as:

. k
Pr(Ey(£o)1S;) o< Y (A1)™ max (sim(Ex(to, m), hij)) (6.3)
m=1 Jell,n]

where A, (a fixed parameter) serves as a rank-penalty to penalize candidate hypernyms with
lower frequency counts.

We now proceed to compute Pr(S io), the other constituent of Equation 6.2. Towards that, we
assume that the subsequence S éo is a collection of independent hypernym edges. Thus, Pr(S io)
becomes the product of the probabilities of the individual edges in S 20:

. n-1
Pr(S},) o< Pre(to, hi1) x (A2)" || Pre(hij, higj+1y) (6.4)
j=1
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where Pr.(x1, x») is the probability of an individual hypernym edge x; — x, between terms x;
and x; A, is a length penalty parameter.

Finally, we estimate Pr.(x, x2) as a log-linear model using a set of features f, weighted by the
learned weight vector w:

Pro(x1,x2) o< exp(w-f(x1,x2)) (6.5)
We also use this edge probability to compute the aforementioned similarity function (sim) as:

sim(x;,x;) = max(Pre(x;, x;),Pre(xj, x;)) (6.6)

Intuitively, Pr(Eg(#)|S fb) promotes subsequences, which contain a larger number of candidate
hypernyms from E(fy), whereas Pr(S io) promotes subsequences, which consist of individual
edges with a larger probability of hypernymy.

Subsequence Extraction. After inserting Equations 6.3 & 6.4 into Equation 6.2 and taking
logarithm, the objective function becomes:

b k
Gy, =argmax ). [log Y (A)™ max (sim(Eg(t, m), hij))
Uy, si, i=1 m=1 Jjel,n] o

n-1
+logPre(ty, hi1) + nls + Z logPr,(h;j, hi(j+1))]
j=1

This objective function leads to the following search algorithm for the extraction of hypernym
subsequences:
1. For a given term ¢y, iterate over all candidate hypernyms in Ej ().

2. For each h; € E(tp), perform a depth-limited beam search over the space of possible
subsequences by recursively exploring the candidate hypernyms of & (i.e., Ex(h¢)).

3. Foreach h. € Ei(tp), choose the subsequence S with the highest score (i.e., log(Pr(Ex (f)]S) x
Pr(5))).

4. Choose the top-b candidate hypernyms in a greedy fashion, based on their correspond-
ing subsequence scores.

While, in theory, we can iterate over all candidate hypernyms in Ej (%), in practice, we employ
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an alternative two-phase execution that significantly improves the running time as well as
produces more meaningful subsequences. These two phases are described as follows.

Search Phase. Proceed as in the aforementioned steps. However, in the special case where a
candidate hypernym #h, is a compound term and its lexical head [, is also present in Ej(f),
skip & in step (1) of the algorithm. For example, for ty = apple, candidate hypernyms tech
company, software company and hardware company are skipped in step (1) due to the presence
of company in Ey.(1p) (see Table 6.1).

Expansion Phase. In this phase, we augment the subsequences extracted in the search
phase to account for skipped compound terms. We focus on the case where the lexical
head of the skipped compound terms occurs in a subsequence. In that case, we expand
the incoming edge of the lexical head with zero or more of those compound terms. For
example, in the subsequence apple— company— organization, a potential expansion of the
edge apple— company is: apple— American software company— software company— company.

However, special attention has to be taken while generating these expansions. For example,
the expansion apple— American software company— British software company— company is
invalid due to the co-hyponymy edge American software company— British software company.
In contrast, the expansion apple— American software company— software company— company
is a valid expansion. To avoid invalid expansions, we restrict the possible expansions to the
cases where the set of pre-modifiers of a compound term is a superset of its hypernym’s
pre-modifiers (e.g., {American, software }>{software}).

We generate all possible expansions for each edge and rank them by averaging a TF-IDF-
style metric across the pre-modifiers of compound terms in each expansion. The goal of our
approach for ranking the potential expansions is two-fold:

1. promote the pre-modifiers, which frequently appear in the evidence Ej ().

2. penalize the noisy pre-modifiers unrelated to fy that frequently occur in compound
terms (e.g., several, other, etc.).

To achieve these goals, we compute the TF score of a pre-modifier as its average frequency
of occurrence in the candidate hypernyms E(#;). We compute IDF as the average frequency
of occurrences of the pre-modifier in Ei(f) for a random term ¢. Finally, we choose the
top-ranked expansion per edge.

To illustrate the result of the previous steps, we show in Table 6.2 an example of extracted
subsequences along with their expanded versions for the food domain. Intuitively, the two-
phase execution serves to distinguish between two different forms of generalization:
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Initial subsequences

mortadella—sausage—meat—food
laksa—soup—dish—food

Expanded subsequences

mortadella—large italian sausage— sausage— processed meat—meat—food
laksa—spicy noodle soup—noodle soup—soup—dish—food

Table 6.2 — Examples of hypernym subsequences found during the search phase, and their
expanded versions.

1. Type-based generalization, which provides core types as generalizations. Examples
of such core types include company and organization in the hypernym subsequence
apple— company— organization.

2. Attribute-based generalization, which enriches type-based generalization edges. For
example, apple—american software company— software company— company enriches
the type-based generalization edge apple— company.

In our experiments, we observed that models, which distinguish between these two forms of
generalizations, performed consistently better than models that attempted to unify them. We
hypothesize that it is because these two types of generalization are fundamentally different. In
comparison with the type-based generalization edges, attribute-based generalization edges
are more likely to be correct, because of the condition of the same lexical head. Hence,
attribute-based generalization edges do not require the same strength of evidence as the
type-based generalization edges.

Our hypothesis is further corroborated by the observation that type-based and attribute-
based generalizations can also be noticed in the taxonomies induced from the Wikipedia
categories networks. For example, the generalization path for Johnny Depp sampled from the
HEADS Taxonomy (cf. Table 3.8) contains the subsequence JOHNNY DEPP—AMERICAN FILM
PRODUCERS—AMERICAN PRODUCERS—PRODUCERS, which evidences the two different forms
of generalization. Similar patterns can be observed in multiple languages (Figure 4.5), thus,
further supporting our hypothesis.

6.2.3 Features

We now describe the edge features that we employ for estimating the probability of a hyper-
nymy relation between two terms (cf. Equation 6.5). Each edge feature is a function, which
takes two terms (i.e., hyponym and hypernym) as input, and return a float value. Edge features
can be further divided into three categories based on the data needed for their computation:
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Counts-based Features. These features mainly use the frequency counts of the hypernyms
found in the hypernym database (cf. Table 6.1). We use the following count-based features:

* Normalized Count (ny). As the name suggests, for the pair (x;, x;), this feature returns
the normalized frequency count of x; in the hypernym Evidence for x; (i.e., Ex(x;)).

Jreq(xi,x;) 7, where freq(xq, x) is the frequency count of

More specifically, ne(xi,xj) = maxfreq (e xn)

Xp in Ep(x4).

* Normalized Diff (n;): this feature computes an asymmetric hypernymy score based
on the frequency counts. It returns the difference of the normalized counts in the two
directions (x; — x; and x; — x;), i.e., ng(x;, xj) = nf(x;, Xj) — ng(x;j, x;). Intuitively, the
normalized diff feature helps in down-ranking noisy relations such as synonyms and
co-hyponyms (e.g., apple and orange) because they usually receive high-frequency
counts in both directions. A similar feature is also used by Panchenko et al. [102].

String-based Features. These features mainly use the term strings of the hyponyms and the
hypernyms in their computation. We use the following string-based features:

* Substring Beginswith: For the pair (x;, x;), this features returns 1 if x; begins with x;,
otherwise returns 0. For example, (sportspeople, sports) will receive the value 1, whereas
(sports, people) will receive the value 0.

* Substring Endswith: For the pair (x;,x;), this features returns 1 if x; ends with x;,
otherwise returns 0. For example, (sportspeople, people) will receive the value 1, whereas
(sports, people) will receive the value 0.

* Substring Contains: For the pair (x;, x;), this features returns 1 if x; contains x;, other-
wise returns 0. For example, both (sportspeople, sport) and (sportspeople, people) will
receive the value 1.

* Length Ratio: this feature returns the ratio of lengths of the hypernym term to the
hyponym term.

Generality-based Features. We introduce two novel features for explicitly incorporating the
generality or abstractness of a term in our model. To this end, we first define the generality g(¢)
of a term ¢ as the log of the number of distinct hyponyms present in all candidate hypernymy
relations (E); i.e., g(¢) =log(1 + |x | x—t € E|). We also define the generality of an edge as the
difference in generality between the hypernym and the hyponym: g.(x;, x;) = g(x;) — g(x;).
We now describe the generality-based features that use these definitions:

* Generality Diff (g4): Intuitively, this feature aims to promote edges at the right level of
generality and penalize edges, which are either too general (e.g., apple— thing) or too
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specific (i.e., edges between synonyms or co-hyponyms, such as apple— orange). To
realize this intuition, we first sample a random set of terms and collect the edges with
the highest Normalized diff (n,) for these terms (hereafter referred to as fop edges). We
compare the distribution of generality (i.e., g.) for the top edges vs. the distribution of
generality for a set of randomly sampled edges.

Further, we make the assumption that it is more likely to sample the generality of a
correct edge (i.e., edge at right level of generality) from the distribution of top edges
as compared to random edges. Hence, given D; and D, as the Gaussian distributions
estimated from the samples of generality for top edges and random edges respectively,
we define the feature as: gq(x;, x;) = Prp, (ge(xi, xj)) — Prp, (ge(xi, x)).

* Generality Probability (g,): The computation of this feature is similar to the previous
feature. However, in the final equation, only the first constituent computed using the
top edges distribution is used, i.e., g, (x;, x;) = Prp, (ge(xi, x;)).

The relative weights for the features (w in equation 6.5) are estimated using a support vector
machine (hereafter referred to as SVM) trained on a manually annotated set of 500 edges (50
terms, 10 edges per term).

6.3 Evaluation and Results

The subsequence extraction approach presented in the previous section is hereafter referred to
as SubSeq. In this section, we evaluate the quality of subsequences extracted by SubSeq using
two different evaluation methodologies. First, in Section 6.3.1, we perform automated evalua-
tion using WordNet as a source of ground truth hypernym edges. Second, in Section 6.3.2, we
perform manual annotations to assess the quality of the subsequences.

Before we proceed with the evaluations, we first introduce two baselines for comparison
purposes. Similar to SubSeq, these baselines also utilize beam search to discover long-range
hypernym subsequences for a given starting term using the candidate hypernyms. However,
in contrast with SubSeq, which aims to maximize the objective function in Equation 6.7, these
baselines aim to maximize the product of probabilities of individual edges in the subsequence.
In other words, the objective function for these baselines is Pr(S ’;0) instead of Pr(E()|S io) X
Pr(S}) (cf. Equation 6.2).

The first baseline uses only the Normalized Count feature (rn7 in the previous section) as the
probability of an individual edge. It is hereafter referred to as TopEdge. The second baseline
uses the SVM for computing the probability of an individual edge. It is hereafter referred to as
TopEdge+SVM. These two baselines are collectively referred to as the edge-based baselines.
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6.3.1 Automated Evaluation

Experimental Setup. In this experiment, we evaluate the quality of hypernym subsequences
extracted by the edge-based baselines as well as SubSeq, using a fully automated approach.
Our evaluation requires two inputs: (1) a source for ground truth hypernyms for seed terms,
and (2) a vocabulary of seed terms, for which hypernym subsequences can be extracted.

We use WordNet as the source of ground truth hypernyms. In contrast with the candidate
hypernymy database, which is automatically extracted from unstructured text, the WordNet
is constructed manually by domain experts. As a result, it is highly accurate and usually
considered the gold standard for hypernymy extraction and taxonomy induction tasks [133,
120, 10]. For a given term, WordNet provides multiple synsets, where each synset corresponds
to a unique sense of the term. Other synsets are provided as the hypernyms for each synset.
For example, the WordNet synsets for the term apple apple include the “fruit” sense as well
as “tree” sense. The hypernym for the synset corresponding to the “fruit” sense is “edible
fruit”, whereas the hypernym for the synset corresponding to the “tree sense” is “fruit tree”.
Incidentally, the “company” sense of apple is not present the WordNet, which serves to show
its low coverage and hence, the need for automated taxonomy induction approaches.

To construct a vocabulary of seed terms, we randomly sample 100 terms from the food vocabu-
lary released by the Taxonomy Extraction Evaluation task of SemEval 2016 (i.e., TExEval-2 [16]).
During sampling, terms that are not present in the WordNet are ignored, because their ground
truth hypernyms cannot be extracted.

For each sampled term, we extract hypernym subsequences of different lengths using SubSeq
as well as the TopEdge and TopEdge+SVM baselines. To evaluate these subsequences, we also
extract a hypernym path for the sampled terms using the WordNet. If multiple hypernym
paths are found in WordNet for a seed term, the hypernym path containing the synset “food”
is considered as the ground truth.

Table 6.3 shows examples of these hypernym subsequences of different lengths for two terms
(i.e., blintz and oat) as well as the hypernym paths sampled from the WordNet. For a hypernym
subsequence S with the corresponding WordNet path W, we compute two scores: (1) precision,
which is defined as the ratio of number of terms present in both S and W to the number of
terms present in S, (2) recall, which is defined as the ratio of present in both S and W to the
number of terms present in W.

We report four evaluation metrics in this evaluation: (1) average precision@1 (P@1), which
is defined as the average precision of the highest ranked subsequence returned by the sub-
sequence extraction method (i.e., SubSeq or the edge-based baselines), (2) average recall@1
(R@1), which is defined as the average recall of the highest ranked subsequence returned
by the subsequence extraction method, (1) average precision@5 (P@5), which is defined as
the average precision of the top-5 subsequences returned by the subsequence extraction
method, (2) average recall@5 (R@5), which is defined as the average recall of the top-5 ranked
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Model ‘ Length (n) ‘ Subsequence

blintz—goody

blintz—goody— thing

blintz—goody—ulead—editor

blintz—goody—ulead—social networking —networking—part

TopEdge blintz—goody—ulead—editor—storyliner—role

oat—food

oat—crop—thing

oat—crop—total loss—partial loss—loss

oat—cereal grain—grain—balanced diet—diet—factor
oat—cereal—industry—field of life—other carrier—carrier

blintz—thin pancake

blintz—homemade jewish food—food— exclusive info

blintz—homemade jewish food—food— exclusive info—stats from the world
blintz—dish—hit—home run—run

blintz—homemade jewish food—food—supply—keyword—beta test—test

TopEdge+SVM
oat—cereal grain—grain

oat— cereal grain—grain—supply

oat—cereal grain—grain—balanced diet—diet

oat—cereal grain—grain—balanced diet—diet—{factor
oat—cereal grain—grain—supply—keyword—beta test—test

blintz—homemade jewish food—food

blintz—homemade jewish food—food—supply

blintz—thin pancake—pastry—snack food—food

blintz—homemade jewish food—food—supply—necessity—thing
blintz—homemade jewish food—food— supply—keyword—beta test—test

SubSe:
4 oat— cereal grain—grain

oat— cereal grain—grain—supply
oat— cereal grain—grain—complex carbohydrate— carbohydrate
oat— cereal grain—grain—complex carbohydrate— carbohydrate— essential nutrient—nutrient

DU W N s WN| OO s WD O W DG s W NG R WD

oat— cereal grain—grain—supply—keyword—beta test—test

blintz—pancake—cake—baked goods—food

WordNet
orane oat— grain—foodstuff—food

Z
=

Table 6.3 — Examples of hypernym subsequences of different lengths extracted using TopEdge,
TopEdge+SVM and SubSeq approaches. Hypernym paths sampled from the WordNet are also
shown.

subsequences returned by the subsequence extraction method. All averages are performed
per seed term.

Results. Figure 6.3 shows the comparative values of the evaluation metrics for the three
subsequence extraction methods. The results demonstrate that SubSeq consistently outper-
forms both TopEdge and TopEdge+SVM baselines for all values of subsequences lengths, thus
demonstrating the efficacy of our subsequence extraction approach. Furthermore, TopE-
dge+SVM also consistently outperforms TopEdge, which demonstrates the benefit of using
the SVM trained with multiple features over a single feature.

The experimental results also show that as the subsequence length increases, the precision
metrics decrease, whereas the recall metrics increase. This effect can be intuitively explained
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Figure 6.3 — Comparative precision and recall scores for TopEdge, TopEdge+SVM and Sub-
Seq. These scores are computed in an automated fashion using the WordNet as a source of
ground truth hypernyms.

by the observation that candidate hypernyms (cf. Table 6.1) usually only contain correct
hypernyms up to 3/4 levels of generality. Hence, longer subsequences would typically drift
from the original term, thus causing loss of precision. Although the behavior of metrics
computed using the highest and the top 5 subsequences is similar, P@5 and R@5 are more
smooth compared to P@1 and R@1 metrics as they are averaged over a larger set of values.

Examples presented in Table 6.3 serve in explaining the superior performance of SubSeq
over the edge-based baselines. These examples show that the terms in the subsequences
returned by TopEdge and TopEdge+SVM baselines start to drift semantically from the seed
term as their height in the subsequence increases. For example, the last two terms in the
TopEdge subsequence (length=4) for the seed term blintz are ulead and editor, which are
completely unrelated to blintz or food. Similarly, the last two terms in the TopEdge+SVM
subsequence are exclusive info and stats from the world, which are unrelated to blintz. However,
in contrast, the last two terms in the SubSeq subsequence are snack food and food, which are
correct hypernyms for the seed term blintz. While, this drift is also present in some of the
subsequences extracted by SubSeq, it is significantly reduced due to the first constituent of
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Model n=3 n=4 n=5
Micro Macro | Micro Macro | Micro Macro
TopEdge 0.45 0.42 0.34 0.36 0.16 0.18
TopEdge+SVM | 0.61 0.62 0.39 0.37 0.22 0.22
SubSeq 0.89 0.88 0.67 0.65 0.51 0.50

Table 6.4 - Micro-averaged and macro-averaged precision values for subsequences of different
lengths extracted by SubSeq and the edge-based baselines.

the Equation 6.2 (i.e., Pr(E(tp)|S Z;O)). A similar effect can be observed for most subsequences
up to length 5. As the subsequence length is further increased, precision decreases for SubSeq
subsequences as well, as is corroborated by the results in Figure 6.3.

The automated evaluation performed in this section demonstrates that the SubSeq model
produces hypernym subsequences, which are significantly more accurate than the edge-based
baselines. In the next section, we further corroborate our findings by performing a manual
evaluation of the subsequences.

6.3.2 Manual Evaluation

In the previous section, we compared the subsequences extracted by SubSeq with the subse-
quences extracted by the edge-based baselines. We also plotted the precision and recall values
for different subsequences lengths in Figure 6.3. However, it is noteworthy that the absolute
values of precision in Figure 6.3 are low (< 0.25). This can be partly attributed to the low cover-
age of WordNet. Since we perform an automated evaluation using WordNet as a gold standard,
it is quite possible that many correct hypernyms are marked as incorrect, just because they
are absent from the WordNet. This is further exacerbated by the fact that WordNet typically
does not contain noun compounds (e.g., complex carbohydrate), thus resulting in lowering of
computed precision and recall scores.

Therefore, to mitigate these shortcomings of the automated evaluation, in this section, we
perform a direct manual evaluation of the hypernym subsequences returned by different
models. To this end, we sample 60 hypernym subsequences (20 per model) for lengths= 3,4,5
and manually annotate the correctness of each hypernym?.

Table 6.4 summarizes the results of this evaluation. Micro-averaged and macro-averaged
precision for different (model, subsequence length) pairs are reported separately. Similar to the
previous evaluation, this evaluation also demonstrates that SubSeq significantly outperforms
the edge-based baselines. As expected, the precision decreases as the subsequence length
increases. The results of this experiment indicate that the relative precision scores obtained in
the automated evaluation correlate well with those computed in the manual evaluation.

2Two annotators independently annotated each hypernym. The inter-annotator agreement (Pearson’s correla-
tion coefficient) was 93.8%.
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Overall, these experiments demonstrate that SubSeq outperforms the edge-based baselines in
both automated and manual evaluation. Hence, we safely conclude that SubSeq is a better
approach for extracting generalization subsequences. In the next chapter, we demonstrate that
the superior quality of hypernym subsequences extracted by SubSeq results in the induction
of more accurate taxonomies.

We note that we do not employ the path-level metrics introduced in Section 3.3.3 (i.e., ACPP
and ARCPP) for the evaluation of the subsequences, mainly due to the following reasons: (1)
the extracted subsequences are usually much shorter than the generalization paths sampled
from the Wikipedia taxonomies. (2) Hypernym extraction from unstructured text is prone
to noise, which would render ACPP and ARCPP excessively penalizing. (3) The hypernym
subsequences are only intermediate results, which are further aggregated and filtered for
the induction of final taxonomy. The discussion related to taxonomy induction from the
hypernym subsequences is presented in the next chapter.

6.4 Analysis

In this section, we perform a variety of experiments to gain further insights into the SubSeq
model. More specifically, in Section 6.4.1, we demonstrate the effects of various features used
for the computation of individual edge probabilities. In Section 6.4.2, we study the effect of
various parameters on the performance of SubSeq. Finally, in Section 6.4.3, we analyze the
effect of the expansion phase employed during the extraction of hypernym subsequences.

6.4.1 Feature Analysis

In Section 6.2.3, we described the different features used by SubSeq and the edge-based base-
lines for computation of individual edge probabilities. TopEdge+SVM and SubSeq methods
use the SVM, which is trained over these features using a manually annotated set of 500 edges
(50 terms, 10 edges per term). In this Section, we perform an experiment to analyze the relative
performance of these features. To this end, we compute the values of all the features for the
set of 500 edges. For each feature, we first sort the edges (per term) by the feature value in
descending order. Further, we select top-k edges for varying values of k € [1,10], and compute
precision@k using the manually annotated set as the ground truth.

Figure 6.4 plots the results of this experiment. Precision@k for edges sorted by the SVM proba-
bilities are also plotted. In general, the count-based features achieve the highest precision,
followed by generality-based and string-based features. SVM achieves better performance
than all individual features, thus demonstrating its usefulness in computing more accurate
edge probabilities. The utility of the SVM was also corroborated by the experiments in the
previous section, which demonstrated that TopEdge+SVM consistently outperforms TopEdge.
For k =10, all features achieve the same precision, because all the edges per term are selected.
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Figure 6.4 — Relative Performance of Features.

6.4.2 Parameter Senstivity

We discussed the effect of the subsequence length parameter (i.e., n in Equation 6.7) in
Section 6.3.1. In this section, we discuss the effect of the remaining parameters on the per-
formance of subsequence extraction. Similar to the automated evaluation in 6.3.1, we first
construct a gold standard by sampling a set of 100 terms from the food domain randomly
and extracting their generalization paths from WordNet. For a given set of parameters, we
run the subsequence extraction using SubSeq model and compute the precision, recall and
F1 averaged over the top-5 subsequences per term. The most important parameters that we
focus on are: the number of hypernyms used (i.e., k in Equation 6.3), and the rank-penalty
(i.e., A1 in Equation 6.3).

Figure 6.6 shows the effect of the number of candidate hypernyms used (k) for subsequence
extraction. As k increases, both precision and recall increase initially but drop afterward,
which shows the benefit of utilizing lower-ranked hypernyms for subsequence extraction.
However, it also illustrates the significant noise present in candidate hypernyms beyond a
certain k. Figure 6.5 shows the effect of rank-penalty (11), the parameter used to penalize
candidate hypernyms with lower frequency counts. Both precision and recall are low for lower
values of 1, and peak at 1,=0.95.

We also evaluated the sensitivity to other parameters. We found out that subsequence extrac-
tion is stable across different values of beam width greater than 20 as well as the length penalty
(A2). The number of subsequences extracted (i.e., b in Equation 6.3) depends on the use case
at hand and is typically set to 5.

6.4.3 Effect of Expansion Phase

We now analyze the effect of the expansion phase (Section 6.2.2), which aims to expand the
type-based generalization edges (e.g., apple— company) with attribute-based generalization
edges (e.g., apple— american software company— software company— company).
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Figure 6.8 — Precision/Recall metrics for subsequences with and without the expansion
phase.

In Figure 6.7, we plot the average lengths of extracted subsequences with and without the
expansion phase. As expected, the expansion phase typically leads to longer subsequences.
Figure 6.8 plots the comparative precision and recall values for subsequences extracted with
and without expansion phase. Similar to Section 6.3.1 & 6.4.2, these scores are computed
automatically using WordNet as the gold standard. The expansion phase results in lower
precision but greater recall, mainly due to the lengthening of subsequences.

However, the lowering of precision can be misleading, because the expansion phase adds
noun compound terms (e.g., american software company) to the hypernym subsequences,
which are usually under-represented in the WordNet. For example, WordNet does not contain
most of the noun compound hypernyms shown in Table 6.3 such as homemade jewish food,
complex carbohydrate and cereal grain. Therefore, we also perform a manual evaluation to
judge the utility of the expansion phase. To this end, we manually annotate the correctness
of the expansions of a random sample of 100 edges. An expansion is annotated as correct if
all of its edges are correct. Our evaluations show that the expansion phase produces correct
expansions for 88% of the edges, thus demonstrating its utility for subsequence extraction.

6.5 Summary

In this chapter, we presented SubSeq, a novel probabilistic model for extracting long-range
hypernym subsequences from noisy hypernymy relations that are extracted automatically
from unstructured text. Except for a manually annotated set of 500 edges used for computing
edge probabilities, SubSeq is fully-unsupervised and runs in an automated fashion. Our
experiments demonstrate that SubSeq significantly outperforms equivalent baselines TopEdge
and TopEdge+SVM. In the next chapter, we propose an approach that induces taxonomies
from the subsequences extracted by SubSeq and demonstrate that it performs favorably
against a variety of baselines as well as the state of the art.
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fd Taxonomy Induction Using Flow
Network Optimization

7.1 Overview

As discussed in the previous chapters, taxonomy induction from unstructured text consists of
two main stages: (1) extraction of hypernymy relations from unstructured text, and (2) the
structured organization of terms into a taxonomy. In this chapter, we focus on the second stage,
namely the structured organization of terms into a taxonomy. We propose a novel approach
that casts the task of structured organization of terms as an instance of the minimum-cost
flow optimization problem [4, 63]. Unlike previous approaches that assume the availability of
a clean vocabulary of input terms (see Section 5.4 for a survey), our approach is specifically
designed from the ground up to handle significant noise in the input vocabulary. We describe
our approach in detail in the remainder of this chapter.

7.2 Our Approach

Given a potentially-noisy vocabulary of seed terms as input, the goal of our approach is to
induce a taxonomy that consists of these seed terms (and possibly other terms). Our approach
runs in three phases:

¢ Extraction of hypernym subsequences: in the first phase, hypernym subsequences are
extracted for the seed terms in the input vocabulary. The subsequences can be extracted
using any of the approaches described in the previous chapter, i.e., SubSeq, TopEdge or
TopEdge+SVM (see Section 6.3).

e Initial graph construction: in the second phase, a noisy hypernym graph is constructed
through the aggregation of the extracted subsequences.

¢ Flow network optimization: in the final phase, the noisy hypernym graph is trans-
formed into a flow network with carefully-designed costs and capacities. An optimal
flow is computed over the flow network. The edges with positive flow constitute the
final taxonomy.
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7.2.1 Initial Graph Construction

The first phase of our approach, i.e., extraction of hypernym subsequences, is already de-
scribed in detail in the previous chapter. We now describe the second phase of our taxonomy
induction approach, namely the construction of a hypernym graph from the extracted subse-
quences. This phase involves two main steps, which are described hereafter.

Domain Filtering. Given a seed term, the usual case is that multiple hypernym subse-
quences corresponding to different senses of the seed term are extracted. For example, apple
can be a company or a fruit, thus resulting in extraction of subsequences apple— fruit— food
and apple— software company— company. However, many of these subsequences will not
pertain to the domain of interest, which is usually defined by either the domain-specific
corpus or the input vocabulary of seed terms.

To eliminate such irrelevant subsequences, we first estimate a smoothed unigram model
using the vocabulary of seed terms and the hypernym terms in the extracted subsequences!.
Subsequently, we compute the generation probabilities for each extracted subsequence as the
average of the generation probabilities for each hypernym term computed using the unigram
model. Finally, we remove all the extracted subsequences that have generation probabilities
below a fixed threshold.

Hypernym Graph Construction. In this step, we aggregate the filtered subsequences into
an initial hypernym graph. We construct this graph by grouping the edges that have the same
start and end terms in all the filtered subsequences. The weight of an edge is computed as
the sum of the scores of the filtered subsequences that contain that edge. The score of a
subsequence is the same as computed during the extraction phase (i.e., log(Pr(E(#)[S) x Pr(S))
for SubSeq, and Pr(S) for TopEdge and TopEdge+SVM in Equation 6.2).

To increase the coverage for compound seed terms that do not yet have a hypernym, we also
add an hypernym edge to their lexical head with weight=co (i.e., an extremely large value),
whenever the lexical head is already present in the hypernym graph. We use a large weight for
such edges, as they tend to be usually correct.

The hypernym graph resulting from the above steps may contain cycles. As shown in the
prior literature, the presence of cycles in a hypernymy graph is usually a result of incorrect
hypernym edges [132]. Therefore, to remove these cycles, we first detect such cycles using
the algorithm proposed in Johnson [56]. Further, for each detected cycle, we remove the edge
with the smallest weight. As a result, the initial hypernym graph is transformed into a directed
acyclic graph (i.e., DAG). In addition to correct hypernym edges, this DAG also contains many
noisy terms and edges, which are pruned in the next step of our approach.

n our experiments, we used a weighting function (i.e., a step function with cut-off at 50% of the height of the
subsequence) to favor terms at lower heights as they are usually more domain-specific.
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Figure 7.1 — Execution of the minimum-cost flow optimization algorithm for taxonomy induc-
tion starting from a noisy hypernym graph.

7.2.2 Flow Network Optimization

In the final phase of our approach, we induce a taxonomy from the noisy hypernym DAG
obtained in the previous phase. We cast this task as an instance of the minimum-cost flow
optimization problem (usually referred to as MCFP).

MCEFP is an optimization problem, which aims to find the cheapest way of sending a certain
amount of flow through a flow network. It has been used to find the optimal solution in
applications like the transportation problem [64], where the goal is to find the cheapest paths
to send commodities from a group of facilities to the customers via a transportation network.
Analogously, we cast the problem of taxonomy induction as finding the cheapest way of
sending the seed terms to the root terms through a carefully designed flow network F. We
use the network simplex algorithm [99] to compute the optimal flow for F, and we select all
edges with a positive flow as part of our final taxonomy. We now describe our method for
constructing the flow network F. In what follows, we refer to Figure 7.1 at different steps.

Flow Network Construction. Let V be the vocabulary of input seed terms (e.g., apple, orange,
and Spain in Figure 7.1); H is the noisy hypernym graph constructed in Section 7.2.1 (cf.
Figure 7.1(a)); w(x, y) is the weight of the edge x—y in H; Dy is the set of descendants of term
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xin H (e.g., appleis a descendant of food); R is the set of given roots (e.g., food in Figure 7.1).
The construction of the flow network F proceeds as follows (cf. Figure 7.1(b)):

1. For an edge x—y in H, add the edge x— y in F. Set the capacity (c) of the added edge as
c(x,y) =|Dxn V], i.e., the number of seed descendants of the term x. Set the cost (a) of
the edge x—y as a(x, y) = 1/w(x, y). This lowers the costs of the edges that have higher
weights.

2. Add a sentinel sourcenode s. Vv € V, add an edge s—v with c(s,v) = a(s,v) = 1.

3. Add a sentinel sink node t. Vr € R, add edge r—t with ¢(r, t) = |D,n V| and a(r, t) = 1.

Minimum-cost Flow. Given a demand d of the total flow to be sent from s to ¢, the goal of
MCEFP is to find flow values (f) for each edge in F that minimize the total cost of flow over all
edges: Y a(u,v): f(u,v).
(u,v)eF

In our construct, demand d represents the maximum number of seed terms that can be
included in the final taxonomy. Figures 7.1(c) & 7.1(d) show the minimum-cost flow for the
demand d=3 and d=2 respectively. In both cases, the edge apple— food receives f=0 due
to the presence of edges apple— fruit and fruit— food with lower costs. For d=2, the edge
source— Spain has f=0, implying that the noisy term Spain would be removed from the final
taxonomy.

Intuitively, demand d serves as a parameter for discarding potentially noisy terms in the input
vocabulary. More formally, d can be defined as a|V|, where «, a user-defined parameter,
indicates the desired coverage over seed terms. If the vocabulary contains only accurate terms,
a is set to 1. For a given a, we run the network simplex algorithm with d=a|V| to compute the
minimum-cost flow for F. The final taxonomy consists of all edges with flow > 0.

7.3 Evaluation and Results

In this section, we evaluate the taxonomy induction approach, which is presented in the
previous section. The aim of the empirical evaluation is to address the following questions:

e How does our approach compare against the state-of-the-art approaches under the
assumption of a clean input vocabulary?

* How does our approach perform on a noisy input vocabulary?

¢ What are the benefits of extracting longer hypernym subsequences compared to single
hypernym edges?
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To answer these questions, we perform two experiments. In Section 7.3.1, we compare our
taxonomy induction approach against the state of the art, under the simplifying assumption
of a clean input vocabulary. Evaluations are performed automatically by computing standard
edge-based precision, recall and F1 measures against a gold standard.

We then drop the simplifying assumption in Section 7.3.2, where we show that our taxonomy
induction performs well even under the presence of significant noise in the input vocabulary.
Evaluation is performed both manually as well as automatically against WordNet as the
gold standard. We also demonstrate that the subsequences-based approach significantly
outperforms edges-based variants, thus demonstrating the utility of hypernym subsequences.

In the remainder of this chapter, we use SubSeq+Flow to refer to our approach towards taxon-
omy induction that uses the SubSeq model followed by the minimum-cost flow optimization.

7.3.1 Evaluation against the State of the Art

Setup. We use the setting of the TExEval-2 task for taxonomy extraction [16]. The task
provides six sets of input terminologies, related to three domains (food, environment, and
science), for four different languages (English, Dutch, French and Italian), thus totaling a set
of 24 (terminology, language) pairs. The task requires participants to generate taxonomies for
each (terminology, language) pair, which are further evaluated using a variety of techniques,
including comparison against a gold standard. Except for a few restricted resources used to
construct gold standard, the participants are allowed to use external corpora for hypernymy
extraction and taxonomy induction. Participants are compared against each other and a
high-precision string inclusion baseline.

We compare SubSeq+Flow with TAXI [102] (also described in Section 5.4.4), the system that
reached the first place in all subtasks of the TExEval-2 task. TAXI utilizes an SVM trained
with individual hypernymy edge features extracted from unstructured text, such as frequency
counts and substring inclusion to classify edges into is-a or not-is-a. The edges, which are
classified as is-a, are added to the taxonomy. Panchenko et al. [102] report that alternate config-
urations of TAXI with different term-level and edge-level features as well as different classifiers
such as Logistic Regression, Gradient Boosted Trees, and Random Forest do not provide any
improvements. As a result, the performance of TAXI reflects the collective performance of a
wide variety of edge-based taxonomy induction approaches.

Before we proceed with the evaluation results, we perform an additional modification to
adapt SubSeq+Flow to the setting of TExEval-2. The TExEval-2 task provides the additional
assumption that all the terms in the gold standard taxonomies (i.e., including leaf terms and
non-leaf terms) are present in the input vocabulary. This assumption would unfairly lower the
performance of SubSeq+Flow, as it would find hypernyms, which are possibly correct but not
present in the gold standard. Hence, to ensure a fair comparison, we restrict the subsequence
extraction and the hypernym graph construction step of SubSeq+Flow (see Sections 6.2.2
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TAXI SUBSEQ

p R Fl P R F1
EN 332 31.7 32.2 44.9 31.9 37.2
NL 48.0 19.7 276 423 20.7 27.9
FR 334 24.1 27.7 41.0 24.4 30.5
IT 53.7 20.7 29.1 49.0 21.8 29.9

Table 7.1 — Precision (P), Recall (R) and F1 Metrics for TAXI vs. SubSeq across different lan-
guages. Results are aggregated over all domains per language.

& 7.2.1) to candidate hypernyms that are present in the input vocabulary. Furthermore, for all
languages, we use the same candidate hypernymy relations that are used by TAXI. As a result,
TAXI and SubSeq are identical in input data conditions as well as the evaluation metrics and
only differ in the core taxonomy induction approach.

Evaluation Results. Table 7.1 shows the language-wise precision, recall and F1 values com-
puted against the gold standard for SubSeq+Flow and TAXI. Aggregated over all domains,
SubSeqg+Flow outperforms TAXI for all four languages. It achieves >15% relative improvement
in F1 for English and 7% improvement overall. Both methods perform significantly better for
English, which can be attributed to the higher accuracy of candidate hypernymy relations for
English.

Figure 7.2 shows the performance of SubSeq+Flow compared to TAXI and the TExEval-2
baseline across different domains and languages. SubSeq+Flow performs best for food domain,
where it outperforms TAXI across all the languages. SubSeq+Flow performs best for English,
where it outperforms TAXI across 3/4 domains.

In our experiments, we noticed that SubSeq+Flow achieves the largest improvements when a
greater number of hypernym subsequences are found during subsequence extraction. For
example, SubSeq+Flow achieves an average 32.23% relative improvement in F1 over TAXI for
the food domain, where on an average 0.67 subsequences are found per term, compared to
only 0.44 for other domains. Similarly, SubSeq+Flow performs best for the English datasets,
where, on an average, 1.09 subsequences are found per term, compared to only 0.32 for other
languages.

The variation in the number of extracted subsequences per term can be attributed to two
factors: (1) number of terms in the input vocabulary, and (2) number of candidate hypernymy
relations available. Due to the assumption that all candidate hypernyms belong to the input
vocabulary, larger vocabularies of food domain make it more likely for a candidate hypernym
to be found, and hence for a subsequence to be extracted. Similarly, the larger set of available
candidate hypernyms for English (~400 million vs. <3.2 million for other languages) makes it
more likely for a subsequence to be extracted for English datasets.
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Figure 7.2 — Relative improvement % in F1 for SubSeq, compared to TAXI (TX) and the TExEval-
2 Baseline (BL), for different domains and languages. N is the average number of terms in the
input vocabulary for that domain. Science eurovoc datasets are shown separately, as they have
significantly fewer input terms than other science datasets.

Overall this experiment shows that under the assumption of a clean input vocabulary, Sub-
Seq+Flow is more accurate than TAXI for most domains in English, and domains with large
vocabularies such as food in other languages.

7.3.2 Evaluation with Noisy Vocabularies

In the previous experiment, we performed taxonomy induction under the simplifying as-
sumption that a clean input vocabulary of relevant domain terms is available. In this section,
we drop this simplifying assumption and evaluate the performance of SubSeqg+Flow in the
presence of significant noise in the input vocabulary.

TAXI and most previous taxonomy induction approaches are inapplicable in this setting,
as they assume a clean input vocabulary of seed terms. Therefore, instead, we compare
SubSeq+Flow against a variety of baselines. Similar to SubSeq+Flow, these baselines also take
the seed terms and a required coverage («) as input. However, they differ from SubSeq+Flow in
one of the two aspects: (1) the approach towards subsequence extraction, or (2) the approach
towards filtering the noisy hypernym graph. We now describe the baselines in detail:

¢ TopEdge+Flow: instead of the subsequences extracted using the SubSeq model, this
baseline employs the subsequences extracted using the TopEdge model. The construc-
tion of the noisy hypernym graph and the flow network optimization step are identical
to SubSeqg+Flow.
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¢ TopEdge+SVM+Flow: this baseline is analogous to TopEdge+Flow. However, instead of
the TopEdge model, it uses the subsequences extracted by the TopEdge+SVM model.

* SubSeq+TopWeights: Similar to SubSeq+Flow, this baseline also employs the SubSeq
approach for extracting the subsequences. However, instead of the flow network op-
timization step for filtering the noisy graph, this baseline simply retains the top «/|E|
edges with the highest weights, where a is the required coverage, and E is the set of all
the edges in the noisy hypernym graph.

This baseline is specifically designed to assess the efficacy of the flow network opti-
mization step towards filtering of noisy edges. It is important to note that this baseline
applies the required coverage parameter (i.e., @) to the set of edges. In contrast, the flow
network optimization-based approaches apply the required coverage parameter to the
set of seed terms. However, the sizes of the taxonomies induced by SubSeq+TopWeights
are similar to other baselines for different values of a.

We also evaluate the quality of input seed terms retained by yet another baseline, which simply
selects the top a|V| terms with the highest occurrence frequencies from the Vocabulary V.
This baseline is hereafter referred to as TopTF.

Setup. We first build a corpus of relevant documents for the food domain. To this end, we
collect all English Wikipedia articles with titles that match at least one seed term (post lemma-
tization) in the English food vocabulary released in the TExEval-2 task. In total, 1,344 matching
Wikipedia articles are found from the initial set of 1,555 seed terms. We run TermSuite [24],
a state-of-the-art term extraction approach to extract an initial terminology of 12,645 terms.
Further, we perform two pre-processing steps: (1) first, we remove all terms with occurrence
frequencies < 10 in the corpus, (2) we remove all terms that have more than 3 tokens (e.g.,
lanterne lasagne lasagnette linguettine), as they are usually a result errors in the term extraction
algorithm. The pre-processing steps result in a final terminology of 1,299 terms.

Table 7.2 shows the top 20 terms from the extracted terminology, which have the highest
occurrence frequencies in the food corpus. As the table shows, the extracted terminology
contains various noisy terms that are not food items, such as usage and privacy policy.

We run SubSeq+Flow and all the baselines with varying values of required coverage, i.e., @
(Section 7.2.2). For each value of a, we evaluate the output taxonomies on two aspects: (1)
quality of the input seed terms retained by the taxonomy; and (2) quality of the taxonomic
edges present in the taxonomy. Figure 7.3 shows a section of the SubSeq+Flow taxonomy for
a=0.9.

Evaluation Results. Similar to the automated evaluation of extracted subsequences (Sec-
tion 6.3), we use WordNet to evaluate the quality of the taxonomies induced by the baselines
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cake cuisine bytes sausage
usage portal node count hot
noodles node preprocessor | flour
oil cache lua related
navigation | privacy policy isbn pdf

Table 7.2 - Examples of terms with the highest term frequencies in the automatically-extracted
food terminology.

polony

liverwurst —  liver sausagN

fuet — > sausage
breakfast food —— food

potato pancake /'

>
blini ———* pancake

pitha

Figure 7.3 — A section of the SubSeq+Flow taxonomy for the food domain (a=0.9).

and SubSeq+Flow. We compare these taxonomies against the sub-hierarchy of WordNet rooted
at food, which we consider as the gold standard.

We compute two metrics, i.e., term precision and edge precision. Term precision of a taxonomy
is computed for the set of the input vocabulary terms retained by the taxonomy as the ratio
of the number of terms in the food sub-hierarchy of WordNet to the total number of terms
present in WordNet. Edge precision is computed as the ancestor precision: all nodes from the
taxonomy that are not present in the WordNet are removed, and precision is computed on the
hypernymy relations from the initial vocabulary to the root. Trivial edges ¢t — food are ignored
for all terms .

Term Precision. Figure 7.4 reports the term precision of the terms retained by different
approaches for varying values of required coverage (i.e., a). In general, all flow network-based
approaches significantly outperform SubSeq+TopWeights approach, thus demonstrating the
efficacy of the flow network optimization step in the taxonomy induction process. Sub-
Seq+Flow outperforms TopEdge+Flow and TopEdge+SVM+Flow, thus further corroborating
the utility of the subsequence extraction model proposed in the previous chapter (cf. Sec-
tion 6.2.2).

The baseline TopTF underperforms significantly, achieving very low precision for all values
of a. This result demonstrates that the occurrence frequency of a term in a domain-specific
corpus is not a good indicator of its relevance to the domain.

When all input terms are included in the final taxonomy (i.e., @=1), term precision is 45%,
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Figure 7.4 — Term precision of the seed terms retained by various approaches vs. the required
coverage (i.e., a).
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Figure 7.5 — Edge precision (ancestor-level) of the taxonomies induced by various approaches
vs. the required coverage (i.e., ).

indicating that only 45% of the terms, which are extracted by the terminology extraction
algorithm, belong to the WordNet food sub-hierarchy. In contrast, the term precision for the
original seed terms provided by the TExEval-2 task is 75.8%. The large difference in these
values confirms the presence of significant noise in the output of the automated terminology
extraction approach.

Edge Precision. Figure 7.5 show the edge precision of the taxonomies induced by different
approaches for varying values of required coverage, i.e., . Results demonstrate that the
relative performances of different approaches on edge precision is similar to their relative
performances in term precision. SubSeq+Flow outperforms all other approaches, whereas
flow network optimization-based approaches outperform SubSeq+TopWeights.

For all approaches, both term and edge precision scores decrease with increase in a. This
behavior is expected because as « increases additional (potentially-noisy) seed terms and
edges are included in the output taxonomies. The value of a can be adjusted manually to
control the relative trade-off between precision and coverage of output taxonomies.
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Overall, these experiments support the following conclusions: (1) taxonomies induced using
the subsequences extracted by the SubSeq model outperform its edge-based counterparts
(i.e., TopEdge and TopEdge+SVM), (2) the flow-network optimization results in more accurate
selection of seed terms as well more accurate taxonomies, and (3) SubSeq+Flow is an effective
approach for taxonomy induction under the presence significant noise in the input vocabu-
lary. In the next chapter, we demonstrate more examples of taxonomies induced using the
SubSeq+Flow approach.

7.4 Discussion and Related Work

Taxonomy induction is a well-studied task, and multiple different lines of work have been
proposed in the prior literature. The first line of work on taxonomy induction aims to extend
the existing partial taxonomies (e.g., WordNet) by inserting missing terms at appropriate
positions [133, 120, 141]. The second line of work aims to exploit collaboratively-built semi-
structured content such as Wikipedia for inducing large-scale taxonomies [125, 108, 109, 91, 50,
31, 41]. However, as pointed out by Hovy et al. [52] and further discussed in Chapter 2, these
taxonomy induction approaches are non-transferable, i.e., they only work for Wikipedia, be-
cause they employ lightweight heuristics that exploit the semi-structured nature of Wikipedia
content. Although taxonomy induction approaches based on external lexical resources such
as WordNet or Wikipedia achieve high precision, they usually suffer from incomplete coverage
over specific domains. To address this issue, another line of work focuses on building lexical
taxonomies automatically from scratch, i.e., unstructured text present in a domain-specific
corpus or Web. Chapter 5 provides a survey of the state of the art of this research direction.

In contrast to taxonomy induction approaches that use external resources, taxonomy in-
duction approaches that use unstructured text typically face three key obstacles. First, they
assume the availability of a clean input vocabulary of seed terms. This requirement is not
satisfied for most domains, thus requiring a time-consuming manual cleaning of noisy input
vocabularies [129]. Second, as discussed in Sections 1.4 & 5.5, these approaches typically
require a set of roots as manual input. Third, these approaches ignore the relationship between
terms and senses, i.e., they produce term taxonomies. In contrast, taxonomies induced from
WordNet or Wikipedia are concept taxonomies, i.e., they have different hypernyms for each
sense of a term (e.g., appleis a fruit or a company). To tackle with this obstacle, taxonomy
induction approaches from unstructured text employ domain filtering techniques, which
perform implicit sense disambiguation by removing the hypernyms corresponding to domain-
irrelevant senses of the terms [129]. Although taxonomies should ideally contain concepts
rather than terms, term taxonomies have still shown significant efficacy in a variety of NLP
tasks [12, 129, 10].

To put it in context, our approach is similar to the previous attempts at inducing taxonomies
from unstructured text. However, one key differentiator is that our approach is robust to
the presence of significant noise in the input vocabulary, thus dealing with the first obstacle
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above. We address the second obstacle in the next chapter, where we propose an automated
approach for detection of roots. To deal with the third obstacle, our approach performs
implicit sense disambiguation via domain filtering at two different steps: (i) domain filtering
of subsequences (Section 7.2.1); (ii) assigning lower cost for likely in-domain edges when
applying the minimum-cost flow optimization (Sections 7.2.1 & 7.2.2). However, despite the
implicit sense disambiguation, we still note that the taxonomies induced by our approach are
term taxonomies, and not concept taxonomies.

7.5 Summary

In this chapter, we presented a novel flow network-based optimization approach for inducing
a clean taxonomy from hypernym subsequences. Given a potentially-noisy vocabulary of
input seed terms, our approach first extracts hypernym subsequences for these seed terms
and aggregates them into a noisy hypernym graph (Section 7.2.1). The task of inducing a
taxonomy from the noisy hypernym graph is cast as an instance of the minimum-cost flow
optimization problem over a carefully-constructed flow network. Our approach provides a
control parameter, i.e., required coverage (a), which can be effectively used for regulating the
term and edge precision of output taxonomies. The key advantage of our approach is that it is
robust to the presence of significant noise in the input vocabulary. However, the approach
presented in this chapter still assumes two manual inputs: (1) an input vocabulary, and (2) the
roots of the taxonomy. In the next chapter, we further extend the flow network framework to
eliminate the need for these manual inputs.

Limitations and Future Work. Similar to past approaches that perform taxonomy induction
from unstructured text, the key limitation of our approach is that it induces a term taxonomy
rather than a concept taxonomy. An interesting and highly beneficial future work would be to
combine our approach with a clustering or synonymy detection approach to combine terms
into well-defined concepts. The second interesting future work would be to further explore
different configurations of the cost and capacity values within the flow network framework.
For example, an alternate configuration could be to use a two-stage approach, i.e., a different
flow network design for term selection followed by another flow network or graph optimization
algorithm for edge selection.
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Extensions to the Flow Network
Framework

8.1 Overview

In the previous chapter, we proposed a novel flow network optimization-based framework
for taxonomy induction given an input vocabulary of seed terms. Empirical experiments
demonstrate that our approach not only performs favorably against the state of the art but also
is robust to the presence of noisy terms in the input vocabulary. Despite such advancements,
our proposed approach still suffers from three limiting constraints:

¢ Branching factor of seed terms: the design of the flow network from the noisy hyper-
nym, which is introduced in the previous chapter (see Section 7.2.2), introduces the
constraint that the branching factor! of the seed terms be < 1. It is because the capacity
of Source — Seed term edges is set as 1, hence implying that at most one outgoing edge
for a seed term can be picked in the final taxonomy.

¢ Manually-input root terms: the flow network optimization step requires a set of root
terms as input, which would be connected to the sentinel sink node in the constructed
flow network (Section 7.2.2). This requirement may not always be satisfied. For example,
taxonomy induction is frequently performed from a domain-specific corpus, where the
set of roots may not be available beforehand.

¢ Fixed vocabulary: our proposed approach assumes that the input vocabulary of seed
terms is fixed. However, it would be desirable if new seed terms can be discovered and
integrated into the taxonomy automatically.

In this chapter, we propose three extensions to the flow network optimization framework,
which serve to relax the aforementioned constraints. More specifically, in Section 8.2, we
introduce a parameter in the flow network optimization framework, which can be used for

1We recall that branching factor of a taxonomy is defined as the average out-degree of any node in the taxonomy.
Branching factor of a specific node is defined as the out-degree of that node in the taxonomy.
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controlling the branching factor of the seed terms in the induced taxonomies. In Section 8.3,
we present two different approaches for automatic detection of taxonomy roots given an input
vocabulary of seed terms. In Section 8.4, we modify the flow network optimization framework
to discover new seed terms and integrate them into the induced taxonomies. Section 8.5
shows examples of taxonomies induced using our approach in a variety of different settings.

8.2 User-defined Branching Factor

8.2.1 Our Approach

In the previous chapter, we cast the problem of inducing a tree-like taxonomy from a noisy
hypernym graph as an instance of the minimum-cost flow optimization problem (i.e., MCFP).
However, as discussed above, the design of the flow network graph introduces the limitation
that at most one outgoing edge per seed term can be picked in the final taxonomy. This is
because the capacity of source — seed Term edges is set as 1 (cf. Section 7.2.2).

In this section, we demonstrate that this limitation can be easily mitigated by making minor
modifications in the design of the flow network (cf. Section 7.2.2). More specifically, we
introduce a novel parameter b, which serves to control the required branching factor of the
seed terms in the induced taxonomy. Given b, we set the capacities of the flow network as
follows:

¢ For all seed terms v, set the capacity of the edge source— v as b.
* For all seed terms, set the capacity of their outgoing edges as 1.

¢ For an edge x— y originating from a non-seed term x, set the capacity (c) of the edge
(x,y) as c(x,y) = b x|Dyn V|, where Dy is the set of descendants of term x in the noisy
hypernym graph, and V is the input vocabulary of seed terms.

The costs of all edges are set in the same fashion as in Section 7.2.2. Figure 8.1(a) shows the
design of the flow network using an artificially constructed example. As shown in Figure 8.1(b),
when b = 1, only one outgoing edge out of apple is selected by the flow network optimization
algorithm. However, when b = 2, both outgoing edges (i.e., apple— fruit and apple— tree) are
selected, thus resulting in a higher branching factor.

8.2.2 Evaluation and Results

To evaluate the efficacy of our model for user-defined branching factor, we employ the same
setting that was used in the automated evaluation of the induced taxonomies (cf. Section 7.3.2).
More specifically, we extract subsequences for 1000 terms, which are randomly sampled
from the TExEval-2 English food vocabulary [16]. We construct the initial potentially noisy
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Figure 8.1 — Sample executions of the flow network optimization algorithm for different
required branching factors (i.e., the parameter b). (a) An example of a flow network designed
for taxonomy induction with branching factor b. The values on the edges represent their
capacities. D(x) represents the number of seed descendants of the node x. (b) Execution of
the flow network optimization for b = 1. The edges shown in bold receive flow > 0, and hence,
are selected in the final taxonomy. (c) Execution of the flow network optimization for b = 2.

hypernym graph as described in Section 7.2.1. Finally, we construct the flow network for
different values of the branching factor parameter b and run the flow network optimization
algorithm (i.e., MCFP) for each case.

Table 8.1 shows some examples of hypernyms in the final taxonomies for different values of
the parameter b. For b = 1, all seed terms have a single hypernym in the induce taxonomy
(e.g., wheatgrass— leafy vegetable). When b in increased, further hypernyms are added for
the seed terms in the final taxonomy. For example, when b = 2, the hypernym edge wheat-
grass—complete protein is added.

It is important to note that b is an indicative parameter, and does not guarantee that exactly b
hypernyms will be picked for each seed term. For example, for b = 3,4, the final taxonomy still
contains only two hypernyms for the seed term candy corn (i.e., chewy candy and halloween
candy). It is because the maximum number of hypernyms, which can be picked for a seed term,
are limited by the number of candidate hypernyms in the noisy hypernym graph obtained
after subsequence aggregation.

Table 8.2, reports the edge precision, the actual branching factor and the total number of edges
in the induced taxonomies for varying values of the parameter b. Similar to Section 6.3, edge
precision is computed using WordNet as the gold standard. However, instead of computing
ancestor precision, we rather compute precision only using the direct parents. This is to
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Seed term Hypernyms (b =1) Hypernyms (b = 2) Hypernyms (b = 3) Hypernyms (b = 4)
leafy vegetable leafy vegetable
leafy vegetable fy veg . fy veg i
wheatgrass | leafy vegetable . complete protein complete protein
complete protein
superfood superfood
root vegetable
root vegetable X 8
X root vegetable X cruciferous vegetable
kohlrabi root vegetable . cruciferous vegetable
cruciferous vegetable root crop
root crop
cole crop
root vegetable
root vegetable &
root vegetable food crop
yam root vegetable food crop
food crop root crop
root crop
starchy vegetable
chewy candy chewy candy chewy candy
candy corn | chewy cand
¥ i B halloween candy halloween candy halloween candy
. . citrus fruit citrus fruit
X . . citrus fruit K K
tangerine citrus fruit . fruit tree fruit tree
fruit tree L S
essential oil essential oil
food cro food cro food cro
millet food crop X P X X P X X P .
ancient grain ancient grain ancient grain

Table 8.1 - Examples of hypernyms extracted for different values of the branching factor (b).

b ‘ Edge Precision ‘ Branching Factor ‘ Total Number of Edges

1 0.136 1.15 1011
2 0.128 1.33 1317
3 0.127 1.37 1450
4 0.126 1.53 1470

Table 8.2 — Edge Precision, branching factor and total number of edges of the induced tax-
onomies for different values of parameter b.

ensure that terms that are hypernyms at different levels of generality are not simultaneously
considered as valid hypernyms for the seed terms. For example, only one of tropical fruit and
fruit should be considered as a valid hypernym for the term apple.

As expected, as b increases, the edge precision decreases, whereas the branching factor and
number of edges increase. The edge precision values are quite low, mainly because they
are computed as direct precision. Furthermore, this can also be partly attributed to the low
coverage of WordNet. The low coverage of WordNet plays a special role, because most of the
additional hypernyms are noun compounds, which are typically missing from the WordNet.
We note that a similar effect was also observed during the evaluation of the expansion phase
of the SubSeq model (Section 6.4.3).

We also note that the branching factor of induced taxonomies is significantly less than the
branching factor parameter (e.g., 1.53 for b = 4), mainly due to two reasons: (1) as mentioned
above, the maximum number of hypernyms picked for a seed term are limited by the number
of candidate hypernyms for the term in the noisy hypernym graph. (2) Our flow network design
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only affects the branching factor of seed terms. For non-seed terms, taxonomy induction
process proceeds in the same fashion as described in Section 7.2.2.

8.3 Automated Root Detection

Up till now, in all our experiments, we assumed that a set of roots are provided to the flow
network optimization step. However, this assumption is rarely satisfied in practice. For
example, the most common use case of taxonomy induction is inducing a taxonomy from a
domain-specific corpus, where a pre-determined set of roots is unavailable. Therefore, in this
section, we propose an extension to the flow network optimization step, which aims to detect
roots automatically given an input vocabulary of seed terms.

8.3.1 Our Approach

Given an input vocabulary of seed terms, we first extract hypernym subsequences using the
SubSeq model. Subsequently, we perform the following steps to detect roots automatically:

¢ Selection of initial root candidates: we first generate an initial set of terms that are
likely to be roots for the given input vocabulary. To this end, we aggregate all the
hypernym terms in all extracted subsequences and pick the top-k; hypernym terms
with the highest occurrence frequencies in the extracted subsequences. This set of
candidate roots is referred to as C;.

* Flow network optimization with root candidates: second, we run the flow network op-
timization with the candidate roots (i.e., C;) as the set of roots that would be connected
to the sink node (cf. Section 7.2.2). The taxonomy induced as a result of this step is
hereafter referred to as T, .

¢ Selection of final roots: in this step, we filter the candidate roots to generate the final
set of roots. We propose two different approaches for filtering the roots. Each approach
takes a parameter k, as input, where k» < k;, and outputs k, roots. These approaches
are detailed hereafter:

1. Greedy approach: in this approach, we simply pick the top k, roots that have the
most number of seed terms as descendants in the induced taxonomy T, .

2. Beam search: in this approach, we perform a guided beam search through the
space of subsets of candidate roots to determine the most appropriate subset. The
steps of this approach are as follows: (1) initiate the beam with the original set
of candidate roots (i.e., C;) as the candidate subset. (2) In each iteration, pick all
subsets from the beam, and for each subset, iteratively remove one root to create
new subsets. (3) For each subset, compute a fitness function and keep track of the
subsets with highest fitness values. (4) Return the subset containing k, roots that
has the highest fitness value.
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We use the T‘l’s%g;’l“ as the fitness function, where Total Cost is the total cost of
sending the flow from the seed terms to the root, and |seeds| is the number of seed
terms that have at least one hypernym in the induced taxonomy. Intuitively, this
fitness function selects the subset of candidate roots (i.e., C,) that minimizes the

average cost of sending a seed term to the roots contained in the subset.

We now describe the above process of automated root detection using an example. We first
create an input vocabulary of seed terms by randomly sampling the descendants of the
WordNet synset insect. Some examples of terms from this constructed vocabulary are bee,
horse tick and oil beetle. This vocabulary is hereafter referred to as the insect vocabulary. We
extract the hypernym subsequences for the seed terms in the insect vocabulary using the
SubSeq model (cf. Section 6.2.2).

To detect roots automatically, we aggregate the hypernyms in the extracted subsequences and
pick the top-k; (k; = 10) most frequent terms as candidate roots (i.e., C;). In the next step,
we run the flow network optimization using the candidate roots as the roots in flow network
optimization and compute the number of seed descendants of each root in the resulting
taxonomy. Table 8.3 shows the candidate roots along with the number of seed descendants for
the insect vocabulary.

In the final step of root detection, we filter the candidate roots to output the final set of
roots. We take the number of desired roots as an input parameter (i.e., k). In the greedy
approach, we simply pick top-k; roots from the candidate roots, with the highest number of
seed descendants. For example, for the insect vocabulary, the terms insect and pest will be
picked as the final roots for k, =2 (Table 8.3).

In the beam search approach, we perform a search over the space of subsets of the candidate
roots. Figure 8.2 shows a snippet of the subsets of the candidate roots explored during the
beam search. Finally, the subset with k, roots and the highest value of the fitness function is
returned as the final set of roots.

8.3.2 Evaluation and Results

As throughout this thesis, we evaluate our root detection approach in an automated fashion
using WordNet as a source of ground truth hypernyms. We proceed in three steps: (1) first, we
sample a set of WordNet synsets, which would be considered as the gold standard roots. (2)
Second, we sample a set of WordNet descendants of the gold standard roots. These sampled
descendants constitute the input vocabulary of seed terms. (3) Finally, we detect roots using
the input vocabulary and evaluate the detected roots against the gold standard roots.

We now describe these steps in detail. We first sample a set of 500 synsets from WordNet that
are at a height? between 3 and 15. This set of synsets is hereafter referred to as W;.

2The height of a synset is computed as its average distance from its descendant leaves in the WordNet.
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Candidate Root Number of Seed Descendants

insect 53
pest 34
body 29
animal 18
keyword 16
problem 12
species 12
organism 12
thing 11
bug 10

Table 8.3 — Candidate roots (i.e., C;) and the number of seed descendants for the insect
vocabulary.

insect, pest,
body, animal,
keyword, problem,
species, organism,

thing, bug
insect’, pest, \ insect, pest, insect, pest,
body, animal, body, animal, body, animal,
« o e keyword, problem, keyword, problem, keyword, problem, o e e
species, organism, species, organism, species, erganism,
thing, bug +thing, bug thing, bug

\ insecj‘ best, /

body, animal,
keyword, problem,
species, organism,
thing, bug

Figure 8.2 — Beam search through the subset space of candidate roots of the insect vocabulary.
The roots that are struck out are removed from the corresponding subsets.

Gold Standard Root Sampled Descendants

swahili, wolof, nyamwezi,

. . songa, swazi, sesotho,

niger-kordofanian .
kamba, kordofanian, mwera,

kongo, yoruba, gikuyu

monal, eurasian woodcock, sheldrake,
bird piping plover, horned screamer, caprimulgiform bird,
cream-colored courser, roseate spoonbill

Table 8.4 — Gold standard roots and some examples of their seed descendants, which are
sampled from WordNet.
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‘WordNet Roots

Candidate Roots

Detected Roots (greedy)

Detected Roots (beam search)

niger-kordofanian (46),
bird (110)

african languages, animal,
bantu language, bird,
bird species, group,
language, species

bird, species

bird species, african languages

aircraft (40), autoloader (23),
perception (60), scientist (30)

aircraft, condition,
factor, item,
keyword, scientist,
thing, weapon

aircraft, keyword,
thing, weapon

aircraft, condition,
scientist, weapon

classification (20), clothing (91),
illness (20), perception (80),
sewing (30), tissue (40)

best thing, condition,
disease, factor,
item, keyword,
material, thing,
tissue

best thing, item,
keyword, material,
thing, tissue

disease, factor,
item, material,
thing, tissue

carnivore (111), cutter (40),

animal, breed,

animal, breed,

animal, breed,

dog, food,
equine (97), food (60), horfe item dog, food, dog, food,
reproductive structure (30), sensitivity (20), o duct, s ecies horse, item, item, product,
separation (20), young (40) p th;ng ’ product, species species, thing

Table 8.5 - Examples of roots detected by greedy and beam search approaches. The number of
sampled descendants for each WordNet root are shown in brackets. Detected roots, which are
correct, are highlighted in bold.

Given W;, we randomly sample r synsets from W;. This set of  synsets would be considered as
the gold standard roots. Further, for each gold standard root, we randomly sample n WordNet
descendants, where 7 is randomly varied between [20, 30, ..,150]. These sampled descendants
are collected and constitute the input vocabulary. We repeat these steps 180 times, i.e., 20
times for each value of r € [1,9]. As a result, we construct 180 input vocabularies.

Table 8.4 shows an example of a constructed vocabulary for r = 2. The gold standard roots,
i.e., niger-kordofanian and bird, and their corresponding descendants are shown. For each
vocabulary, we detect roots using both greedy and the beam search-based root detection
approach. The desired number of detected roots (i.e., k» in Section 8.3.1) is set to the value
r, i.e., the number of gold standard roots that were used for the construction of the input
vocabulary. Table 8.5 shows some examples of the gold standard roots and the corresponding
roots that are detected using the greedy and beam search-based approaches.

Results. To evaluate the quality of the detected roots, we compute two metrics: (1) Ancestor
precision, which is computed as the ratio of detected roots that are ancestors of at least one
gold standard root in WordNet. (2) Ancestor recall, which is computed as the ratio of gold

standard roots that are a descendant of at least one of the detected roots.

Figure 8.3 shows the ancestor precision and recall values for greedy and beam search root
detection approaches. Although both approaches achieve similar performance, greedy ap-
proach performs better for smaller values of r (i.e., r < 2), whereas the beam search approach
performs better for r > 2.
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Figure 8.3 — Ancestor precision/recall metrics for greedy and beam search root detection
approaches.

We hypothesize that for r < 2, most of the gold standard roots receive a large number of seed
descendants and therefore, these gold standard roots are picked by the greedy approach,
hence resulting in better performance. However, when the number of gold standard roots
increase, the diversity of seed terms in the vocabulary increases. This diversity results in many
gold standard roots ranking significantly lower in the number of seed descendants. These
gold standard roots are masked by candidate roots related to other gold standard roots. For
example, pest receives the second highest number of descendants in Table 8.3, which could
potentially mask other gold standard roots. Such gold standard roots are not picked by the
greedy approach, hence resulting in its lower performance. In contrast, the beam search
approach is better equipped to handle such diversity, as it searches through the space of
subsets of the candidate roots. Therefore, it can detect a set of roots that receive a significantly
different number of seed descendants.

Figure 8.3 shows that ancestor precision is approximately 0.4 for most values of r, which can
be considered low. However, we noticed that in many cases, the gold standard roots used
for the construction of the vocabularies are highly technical terms. Such technical terms
are difficult to detect automatically, because WordNet is manually constructed by domain
experts, whereas our subsequence extraction approach uses candidate hypernyms that are
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Figure 8.4 — Ancestor™! precision metric for greedy and beam search root detection ap-
proaches.

extracted automatically from unstructured text. However, we noticed that in such cases, our
approach frequently detects one of the descendants of the gold standard roots as the root. For
example, the gold standard root gramineous plant from WordNet results in the detection of its
child grass as a root. To assess this effect quantitatively, we compute an additional evaluation
metric ancestor™! precision, which is defined which as the ratio of detected roots that are
either ancestors or children of at least one gold standard root in the WordNet. Figure 8.4 plots
the ancestor precision of greedy and beam search approaches for different values of r. The
absolute value of ancestor™! precision is much higher and stays greater than 0.6 for most
values of r, thus showing that the children of gold standard roots are frequently detected by
our root detection approach.

8.4 Automated Expansion of Taxonomies

Up till now, in all our experiments, we assumed that the input vocabulary of seed terms is
fixed. However, in this section, we demonstrate that we can also extend the flow network
framework to expand the input vocabulary automatically by discovering new seed terms.
Such an extension would help to increase the coverage of output taxonomies. Hence, it
would be useful when a domain-specific corpus is either unavailable or too small to extract a
high-coverage vocabulary.

8.4.1 Our Approach

We now describe our approach towards automated expansion of taxonomies. Given an initial
vocabulary of seed terms, our approach aims to discover new seed terms that are potentially
relevant to the domain specified by the input vocabulary. Our approach runs in a fixed number
ofiterations. In each iteration, we perform the following steps:

¢ Taxonomy induction using current seeds: in this step, we extract hypernym subse-
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old Seeds,” / dl '\a)\'\b\\_ New Seeds!
e - Do
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Figure 8.5 — Design of the flow network with old and new seeds. Different costs are used for
source — old seed edges (i.e., a,) and source — new seed edges (i.e., a,). a, > a, indicates that
the old seeds will be preferred over the new seeds.

quences for the current seed terms and perform taxonomy induction using the flow
network optimization. If this is the first iteration, the input vocabulary is used as the set
of current seed terms.

* Discovery of new candidate seeds: in this step, we discover new candidate seed terms
using the taxonomy induced in the previous step. To this end, we compute top-n
candidate hyponyms of all higher-level nodes® in the induced taxonomy, and aggregate
their counts. These candidate hyponyms are computed using the noisy candidate
hypernymy database (see Section 6.1). Further, we sort the hyponyms by the number of
occurrence counts in a descending order and pick the top n; most frequent hyponyms.

¢ Update current seeds and demand: in this step, we add the newly discovered candidate
seeds to the set of current seeds. We also increase the value of demand for flow network
by a’'ng, where a’ serves as a parameter for controlling the growth of taxonomy in each
iteration.

Our approach introduces two parameters: (1) ng, which represents the number of new seeds
discovered in each iteration, (2) a’ € [0, 1], which represents the ratio of the newly discovered
seeds that should be included in the output taxonomy. These parameters can be used to
control the growth of taxonomy in each iteration. For example, increasing the values of n, or
a’ or both, would result in a faster growth of the output taxonomy.

It is noteworthy that in the current approach, the seed terms provided in the input vocabulary
are replaceable, i.e., they can be potentially replaced by the newly discovered seeds. However,
this may not always be desirable. For example, if the input vocabulary is constructed manually
or cleaned after extraction, it would be desirable that most of the seed terms in the input

3A higher-level node is a node which has at least one child in the induced taxonomy.
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Discovered Terms Discarded Terms Selected Terms

cassava, maize, cane,
tobacco, strawberry, mint,
can, salad, if, will

will, mint, can, cassava, maize, cane,
salad, if tobacco, strawberry

Table 8.6 — Examples of terms discovered during the expansion of a food taxonomy. Terms that
are selected or discarded are also shown.

vocabulary be present in the final taxonomy. To mitigate this issue, we introduce a small
modification in the design of the flow network construction. More specifically, we set the costs
of source — new seed edges to be significantly higher than source — old seed edges. Figure 8.5
shows this modification graphically. As a result, given a certain demand, the new seeds are
picked only if it is not possible to further pick any of the old seeds.

8.4.2 Evaluation and Results

In this section, we perform a quantitative evaluation of our approach for the automated
expansion of the taxonomies. We reuse the same setting that was used in the automated
evaluation of extracted subsequences (cf. Section 6.3). We start with an initial vocabulary of
600 food terms that are randomly sampled from the TExEval-2 English food vocabulary [16].
Further, we run our taxonomy expansion approach for 10 iterations using two different sets of
parameters: (1) a’ =0.2 and ny =50, and (2) a’ = 0.6 and ng4 = 50.

Table 8.6 shows some examples of the terms, which are discovered during an iteration, as well
as the terms that are selected or discarded. Discarded terms also contain some terms that are
valid expansions such as mint and salad. However, in general, selected terms are significantly
more precise (i.e., correct descendants of food) than the discarded terms.

This observation is further corroborated by the term precision values plotted in Figure 8.6(a,b).
Similar to Section 7.3.2, the term precision is computed as the ratio of the number of seed
terms that are present in the food sub-hierarchy of WordNet to the total number of seed terms
that are present in WordNet. For both values of a’ (i.e., 0.2 and 0.6), the term precision of
the selected terms is significantly higher than both candidate and discarded terms, which
shows the effectiveness of our approach in the removal of noisy terms. When a lower value
of &’ is used (i.e., 0.2), the term precision of the selected terms is significantly higher. As a
result, the term precision of the final taxonomy (i.e., all the seed terms in the output taxonomy)
also decreases slowly. In contrast, when a’ = 0.6, the term precision of the selected terms is
significantly lower. As a result, the term precision of the final taxonomy also decreases rapidly.

Figure 8.6(c,d) plots the total number of terms in the taxonomy, as well as the number of
selected and discarded terms at each iteration. As expected, the taxonomy grows faster for
larger values of ', because more discovered seeds are included in the final taxonomy.
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These experiments show the functioning of our approach towards the automated expansion of
taxonomies. They also demonstrate that the @’ and n, parameters can be used to control the
relative trade-off between the precision and the size of output taxonomies. The results of these
experiments follow directly from the fact that the SubSeq+Flow model is capable of handling
significant noise in the input vocabulary. This noise-robustness allows us to introduce new
(potentially-noisy) seed terms using a simple hyponym aggregation technique because they
will be further filtered by the flow network optimization step.

8.5 Demonstrations

In this section, we show some examples of taxonomies that are induced using the Sub-
Seq+Flow approach. Since we have already performed extensive quantitative evaluations of
SubSeqg+Flow, in this section, we restrict ourselves to qualitative discussions. We use Sub-
Seq+Flow under three different settings, which are described hereafter.

Taxonomy Induction from Clean Vocabulary. In this experiment, we perform taxonomy
induction under the assumption that a clean input vocabulary of seed terms is available. More
specifically, we use a publicly available* vocabulary of computer science-related terms, which
are extracted from 20 computer science papers. In total, the vocabulary consists of 558 terms.
Given this vocabulary, we employ SubSeq+Flow in conjunction with the greedy approach for
automated detection of roots (see Section 8.3.1). The top-4 detected roots are field, method,
technique, and information. Snippets of the induced taxonomy, which are rooted at these
detected roots, can be seen in Figure 8.7 (page 122).

Taxonomy Induction from Domain-specific Corpus. In this experiment, we use the most
frequently-used setting of taxonomy induction from unstructured text, i.e., taxonomy induc-
tion from a domain-specific corpus. To this end, we first extract a corpus of tweets related
to the disease diabetes through a handful of manually-compiled keywords. Subsequently,
we perform terminology extraction from the corpus using TermSuite [24], thus resulting in a
vocabulary of 3328 terms. We perform taxonomy induction using the SubSeq+Flow approach
(required coverage, i.e., a is set to 0.5) in conjunction with the greedy approach for automated
detection of roots. The top-4 detected roots are food, disease, condition, and thing. Figure 8.8
(page 123) shows snippets of the induced taxonomy, which are rooted at the detected roots
disease and food.

Taxonomy Induction through Automated Expansion. In this experiment, we demonstrate
the automated expansion of the seed vocabulary. However, instead of taking an initial seed
vocabulary as input, we rather take a single term as input. This term would be considered the

4The WIKI-20 dataset at https://code.google.com/archive/p/maui-indexer/downloads.
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root of the induced taxonomy. Given the root term, we construct an initial noisy vocabulary by
collecting all the candidate hyponyms of the root term in the candidate hypernymy database.
The rest of steps are followed as described in Section 8.4. Figure 8.9 (page 124) shows the full
taxonomy induced using these steps, with the term cancer as the root term.

Discussion. Although the output taxonomies contain some noisy terms (e.g., incurable in
Figure 8.8) as well as some overly-generic terms (e.g., other cancer in Figure 8.9), the overall
quality of the taxonomies is good in all the experiments. The key advantage of SubSeq+Flow
is that it is robust to the presence of noise in input vocabulary. This noise-robustness allows
us to use automatically-constructed significantly-noisy input vocabularies, hence enabling
the application of our approach in a variety of settings such as taxonomy induction from
domain-specific corpus as well as a single input term as root.

However, one key issue with these induced taxonomies is that they are term taxonomies. For
example, in Figure 8.9, the concept LUNG CANCER is present in the form of two different terms,
i.e., lung and lung cancer. This issue is faced by most approaches that perform taxonomy
induction from unstructured text. However, despite this drawback, term taxonomies have
been shown to be beneficial in a wide variety of NLP tasks [129, 10].

8.6 Summary

In this chapter, we proposed three extensions to the flow network optimization framework
for taxonomy induction, which was introduced in Chapter 7. These extensions serve to
provide better control over the taxonomy induction process. The first extension introduces
a parameter, i.e., the required branching factor, which can be used to control the relative
tradeoff between precision and branching factor of the seed terms (Section 8.2). The second
extension enables automated detection of taxonomy roots, thus eliminating the requirement
of a manually-input set of roots (Section 8.3). Finally, the third extension demonstrates that a
taxonomy can be expanded automatically by the discovery of new seed terms (Section 8.4).
An interesting outcome of this extension is the induction of taxonomies given a single term as
input (Figure 8.9 with the term cancer).

The main advantage of our approach is the robustness towards the presence of noisy terms in
the input vocabulary, which enables us to use relatively inaccurate term extraction or collec-
tion methods such as automated terminology extraction approaches [24] or noisy candidate
hyponyms (Section 8.4). We also note that other approaches such as finding semantically-
similar words using word embeddings [85, 104] can also be used for expansion in an equivalent
fashion. Overall, our approach facilitates the relaxation of many assumptions employed by
previous taxonomy induction approaches including clean and fixed vocabularies of seed terms
as well as pre-determined sets of taxonomic roots, thus automating the process of taxonomy
induction from unstructured text in the true sense. In the next part of the thesis, we focus on
the applications of the taxonomies that are induced using our approaches.
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lupys —MMMM» autoimmune disease

hypertensive
risk factor for stroke

risk of heart failure

incurable
diabetic blindness
detection of diabetic retinopathy\> blindness
diabetic macular edema disease
diabetic retmopat/hy///' eyed
glaucoma /
apnea macular

lack of sleep proliferative retinopathy

obstructive sleep apnea sleep disorder

\ .
dyslipidemia = disorder

> metabolic disorder
hyperglycemia /

insulin resistance anxiety disorder

ptsd /

fruit pie

peanut butter pie

pecan pie pie _—
/ dessert

pumpkin pie better grain
white rice » rice \=‘ grain
brown rice high fructose corn syrup

refined sugar —— >  process food
root vegetable

okra —
= leafy vegetable ———»  vegetable
gourd 3 food
best diabetic food = —» diabetic food

diet diabetic food

 _»soda
diet soda

simple carbohydrate
& carbohydrate

complex carbohydrate/

diet carbohydrate
chocolate cake
cake
cup cake

gingerbread house

Figure 8.8 — Snippets of the diabetes taxonomy, rooted at disease and food.
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's lymphoma
cancer of the cervix
melanoma lymphoma
malignant melanoma
ovarian

myeloma

> other cancer
lung //

colorectal

breast

prostate

testicular cancer
urinary ( renal pelvic ) tract cancer

~——W//——% tractcancer
( renal pelvic ) tract cancer B — pelvic ) tract cancer
ovarian cancer
leukemia

blood cancer
multiple myeloma

non-small cell lung cancer |

\
leukaemia
recurrent cancer
hodgkin \
pancreatic cancer
tumor or other cancer
prostate cancer
brain tumour tumour

bladder cancer

——

tube cancer
stomach cancer “
childhood leukemia or other cancer
kidney cancer \
anal cancer \A
> cancer
liver cancer
like cauliflower ) or cervical cancer ————————» cervical cancer _/ /
colorectal cancer ‘
leukemia or other cancer ;\;\
non-melanoma skin cancer //
colon cancer ‘
cell lung cancer i

brain tumor or other cancer

retinobl childhood cancer

thyroid cancer |

stromal tumor breast cancer

neuroblastoma

gastrointestinal stromal tumor malignancy

thyroid

solid tumor uterine cancer
sarcoma
~ » braintumor tumor
childhood brain tumor —

q cell carci oral cancer
cell lung carcinoma \-Q’ carcinoma
lung carcinoma skin cancer

cell carcinoma

I lung cancer
mesothelioma

Figure 8.9 — Taxonomy induced using the term cancer as root.
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Applications of Taxonomies

9.1 Overview

In the previous parts of this thesis, we focused on the task of taxonomy induction in a variety
of different settings. In Chapters 3 & 4, we induced large-scale taxonomies from Wikipedia for
English as well as other Wikipedia languages. In Chapters 7 & 8, we proposed a novel approach
SubSeq+Flow, which induces taxonomies from unstructured text. We also demonstrated that
SubSeq+Flow provides a significant advancement over the state of the art, by relaxing many of
the simplifying assumptions that were frequently used by past approaches.

In this chapter, we demonstrate the utility of our approaches through some applications
of their induced taxonomies. We first provide a brief survey of past approaches that utilize
taxonomies for a variety of NLP-related tasks. Further, we introduce a novel task of mining of
generalization templates such as passport of X, and demonstrate that the HEADS taxonomy
(induced in Chapter 3) can be effectively used for generalizing the fillers in placeholders of such
templates (e.g., X = COUNTRIES). While we focus on the templates in English, our approach
is language-independent and can be easily adapted to any of the Wikipedia languages using
our multilingual taxonomies (induced in Chapter 4). Finally, we provide a brief qualitative
comparison of the task of finding semantically-similar terms using our taxonomies vs. more
frequently-used approaches such as word embeddings.

9.2 Literature Survey

Knowledge in the form of term or concept taxonomies has been shown to benefit a wide
variety of NLP-related tasks as well as real-world applications. WordNet is a prime example
of a knowledge base, which has been utilized extensively for its taxonomic information [86].
The main utility of taxonomies such as WordNet is that they provide additional semantic
features, which augment other textual and context-based features, thus resulting improved
performance in many tasks. Detailed surveys of such tasks that benefit from taxonomies
can be found in survey papers such as Biemann [12], Hovy et al. [52] and Wang et al. [132].
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In this section, we provide a brief overview of these tasks, and also discuss a few of their
corresponding approaches that use taxonomies.

Word-sense Disambiguation. Word-sense disambiguation aims to identify the correct senses
for a term in a specific context. For example, the term “apple” usually refers to the software

company APPLE INC. in the technology domain, whereas to the fruit APPLE in food domain.
WordNet is frequently used as a sense-inventory for word-sense disambiguation tasks [129].
Many approaches have demonstrated that WordNet augmented with semantic relations such

as hypernymy, which are extracted from Wikipedia, aid in improving the accuracy of word-
sense disambiguation systems [106, 92].

Semantic Similarity Between Words. Many NLP tasks including information retrieval and
coreference resolution benefit from a quantified measure of semantic similarity between
words. Semantic similarity is frequently computed using WordNet as a knowledge base [32].
However, Ponzetto and Strube [108] demonstrated that a taxonomy induced automatically
from Wikipedia, through the removal of not-is-a edges from the Wikipedia categories network,
results in a performance similar to manually-constructed WordNet.

Document Clustering and Classification. The clustering or classification of text documents
is typically performed by computing their features vectors and using standard machine learn-
ing techniques such as K-means or Naive Bayes over the feature vectors. The augmentation of
these features with the information present in taxonomies has been shown to be beneficial for
document clustering [53] as well as document classification [121].

Question Answering. Question answering systems are one of the prime examples of real-
world applications, which have benefitted from taxonomic information. The most popular
example is IBM Watson, a state-of-the-art question answering system, which employs the
semantic type information present in publicly available taxonomies such as YAGO for restrict-
ing the set of answer candidates [29]. IBM Watson was shown to consistently outperform its
human opponents at the task of answering general knowledge-based questions in the game
show Jeopardy! [137]. Another example is Snow [121], who demonstrate that features com-
puted from taxonomies result in improved performance of the QACTIS question answering
system ([115]).

Information Retrieval. The semantic knowledge present in taxonomies aids in the de-
velopment of information retrieval applications, which go beyond the traditional bag-of-
words model. For example, Liu et al. [75] demonstrates that automatically-induced large-
scale taxonomies result in better performance of a nearest neighbor search task over short
queries. Chuang and Chien [21] construct a taxonomy of search queries in an automated
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fashion, and demonstrate that it can be used for web-based IR systems. Demartini et al. [26]
presents an entity retrieval system, which utilizes taxonomies induced from Wikipedia.

Named Entity Recognition and Disambiguation. The goal of named entity recognition (or
NER) is to identify the mentions of named entities (e.g., JOHNNY DEPP) in raw text. NER is a
well-studied task in NLP and has received lots of attention due to its wide-scale applicability
in real-life applications such as Web Search [7]. NER is typically performed by identifying
the mentions of the entities in text and further classifying them into coarse-grained semantic
classes such as PERSON or LOCATION. Taxonomies can be used to add more contextual
information (such as fine-grained semantic classes) to the terms in the classification task, thus
resulting in improved performance [38, 43]. Another related task is named entity disambigua-
tion, which aims to associate the entity mentions with an appropriate reference from a lexical
knowledge base. Bunescu and Pasca [18] use the taxonomic information present in Wikipedia
categories network to augment context-based features, resulting in improved performance of
named entity disambiguation.

9.3 Generalization Templates

Generalization is a form of inductive reasoning that forms an important part of the human
cognitive abilities [79, 48]. The key utility of taxonomies is that they serve a mechanism for
generalizing a set of terms or concepts. In this section, we introduce a novel task that aims
to assess the quality of generalizations produced by a taxonomy. More specifically, this task
aims to discover generalization templates from the titles of Wikipedia entities, and further
generalizes the placeholder field to a suitable generalization category.

Before we proceed, we first provide some formal definitions. A generalization template is de-
fined as a lexicalized linguistic template with placeholders, which can be replaced by suitable
fillers to generate the titles of Wikipedia entities. For example, Bank of X is a generalization
template with a placeholder X, which can generate a title such as “Bank of Switzerland” by the
substitution of X with the filler “Switzerland”. A prefix template contains the placeholder at
the beginning (e.g. X railway station), whereas a suffix template contains the placeholder at
the end (e.g. bank of X).

Given these definitions, the goal of our task is two-fold: (1) discover generalization templates
that can be used to generate titles of Wikipedia entities. (2) For each template, select Wikipedia
categories that are suitable generalizations for the set of fillers of the template.

To achieve these goals, we perform three steps. In the first step, we discover candidate
generalization templates from the titles of Wikipedia entities. We restrict the discovery of
generalization templates to prefix templates and suffix templates in English. However, we note
that our overall approach is general, and can be easily extended to templates with multiple
placeholders as well as other languages.
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Wikipedia
Taxonomy N
Wikipedia Template : Activation
Entity Titles Discovery : Baseline
I C— :

Filler
Disambiguation

Beam Search

il

Figure 9.1 — Pipeline for discovery and category selection of generalization templates.

In the second step, we disambiguate the fillers of the discovered templates to Wikipedia
entities. In the final step, we select Wikipedia categories that are suitable generalizations
of the disambiguated filler entities. To this end, we first compute scores for the Wikipedia
categories, by activating categories that are ancestors of the disambiguated filler entities in a
Wikipedia taxonomy. This step is hereafter referred to as the activations baseline. Further, we
collect all categories that receive positive scores in the activations baseline and employ a beam
search-based method to select the set of categories that are the most suitable generalizations.
Figure 9.1 summarizes our approach in a graphical fashion. We now describe these three steps
in detail.

9.3.1 Template Discovery

We now describe the algorithm for discovering the generalization templates as well as their
fillers from the titles of Wikipedia pages. The pseudocode of the algorithm is provided in
Algorithm 1. Let TF be the initially empty set of (candidate template, filler) pairs (line 1). The
algorithm proceeds in two phases. In the first phase, it iterates over all possible prefix-suffix
splits of each Wikipedia page title (line 3-6). For each valid split of a Wikipedia title, the
algorithm assigns the part containing the lexical head of the title as the candidate template
and the other part as the filler (line 7-11). A split is considered valid if it satisfies each of the
following conditions:

1. Both prefix and suffix of the split should match the title of at least one Wikipedia page
after ignoring the stop words and sense disambiguation string in the title. For example,
this condition is satisfied for BANK OF INDIA, because a Wikipedia page exists for both
bank and india.

2. Both the prefix and the suffix should contain at least one noun as determined by a POS
tagger (e.g., Stanford parser [62]). For example, the split (At, first sight) is not a valid split,
because “At” is not tagged as a noun.
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Algorithm 1: Template Discovery Algorithm
Input :Set of all Wikipedia page titles T'
Output:Set of discovered templates and their fillers
1: TF:=¢
2: for pre T do
3: tokens := tokenize(p;)
4 for i=1,..., length(tokens) — 1 do
5 prefix := concat(tokens(1, i])
6: suffix := concat(tokens[i + 1,length(tokens)])
7
8
9

if valid_split(prefix, suffix) then
if contains_head(prefix) then
: TF := TF U (concat(prefix, " X "), suffix)
10: else if contains_head(suffix) then
11: TF := TFU (concat(" X", suffix), prefix)
12: Aggregate TF templates and sort by number of fillers
13: Return templates with number of fillers > ¢

Prefix Template =~ Sample Fillers

Xrailway station  new delhi, kingsland

Xriver sierra leone, saint marie
X district shurugwi, bago
X airport east london, belleville

X high school baden, karate

Suffix Template  Sample Fillers

battle of X northampton, santa clara
list of X codec, redheads

history of X tennesse, rapid transit
university of X sucre, queensland

flag of X sri lanka, las vegas

Table 9.1 — Examples of prefix and suffix templates along with their fillers.

In the second phase, the algorithm group all the (candidate template, filler) pairs in TF by
the templates, thus generating generate an aggregate set of fillers for each template (line 12).
Finally, the algorithm selects all templates, for which the number of fillers is greater than a
fixed threshold ¢ (line 13).

Using this algorithm, we discovered a set of 8674 templates that had at least ten fillers each.
The set consists of 5727 prefix templates and 2947 suffix templates. Some examples of these
prefix and suffix templates as well as their example fillers are shown in Table 9.1.

9.3.2 Entity Disambiguation

In the previous step, we discovered pairs of generalization templates and their fillers from the
titles of Wikipedia pages. However, these fillers are lexicalized, i.e., they are present in their
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raw string forms. In contrast, the taxonomies induced from Wikipedia (such as the HEADS
taxonomy or MultiWiBi taxonomies, see Chapter 3) contain entities or categories. Therefore,
before such a Wikipedia taxonomy can be employed for generalization, these lexicalized fillers
must be mapped to their corresponding Wikipedia entities. However, this task of mapping
fillers to Wikipedia entities is non-trivial, because multiple entities with the same string are
present in Wikipedia (e.g., BANK and BANK (GEOGRAPHY)).

To disambiguate lexicalized fillers to Wikipedia entities, we use the state-of-the-art approach
towards entity disambiguation proposed in Carmel et al. [20]. More specifically, we build
an offline database of lists of candidate entities for each lexicalized string by exploiting the
titles, redirects and disambiguation pages within Wikipedia. Further, we use this database
to compute the probability of an entity given a title string. Finally, for a lexicalized filler, we
choose the entity, which has the highest probability given the lexical string of the filler, as the
corresponding entity for the filler.

9.3.3 Category selection

In this step, we aim to find a set of Wikipedia categories that provide reasonable, common-
sense explanations for the filler entities of a generalization template. For example, for the
template Bank of X, we wish to pick a category that represents geographic entities such as
countries. Since a brute-force search through all possible subsets of categories is compu-
tationally intractable, we instead employ a two-step approach. In the first step, we use an
activations-based method (i.e., activations baseline) to identify the most relevant Wikipedia
categories for the given template. In the second step, we use a beam search-based method
guided by these activations scores to determine the most suitable subset of the identified
categories. We now describe these steps in detail.

Activations Baseline. We now describe the activations baseline approach for computing
the scores of Wikipedia categories given a set of entities disambiguated from the fillers. The
pseudocode of the activations baseline is provided in Algorithm 2. The algorithm takes as
input a taxonomy T, the set of filler entities Ef and the set of all Wikipedia entities E,. Given
these inputs, the algorithm proceeds by first computing the set of ancestor categories (using
breadth-first search, or BFS) in taxonomy T for all entities in E, (line 1). In the second step,
the algorithm initializes the set of activations received by filler entities (act 1) as well as the
set of activations received by all entities (act,) to zero for all categories (line 2). Further, the
algorithm runs in a fixed number of iterations »n; (line 3). In each iteration, the algorithm
computes a subset of fixed size (i.e., sample_size) from the set of filler entities (i.e., Ef) and
updates the activations acty received by their ancestor categories (line 6-8). Similarly, it
computes a subset from the set of all Wikipedia entities (i.e., E,;) and updates the activations
act, of their ancestor categories (line 9-11). This sampling process normalizes contributions
by entities to offset possible errors in taxonomy or disambiguation process.
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Algorithm 2: Sampled Activations Baseline
Input :Wikipedia Taxonomy T, filler entities E £ all entities E,
Output:Set of (category, score) pairs

1: A:={(e,BFS(e,T))Ve€Ey}

2: actf :=actg, :=scores:={(c,0)Vce T}

3: fori=1..n; do

4 Sg ;o= sample(E £ sample_size)
5 Sg, = sample(E,, sample_size)
6 forallpESEfdo

7: forall ce A[p] do

8 actye [c]++

9 forall p € Sg, do

10: forall ce A[p] do

11: actg[c]++

12: actp:={(c, nii) Y (c,v) €acty}, actq :={(c, nii) Y (¢, v) € acty}
13: score:={(c,v * (v—actgy[c])V(c,v) € actf}
14: return score

The activation scores of categories are averaged over the number of iterations (line 12). The
final score of a category is computed as act £ % (acty —acty,) (line 13). In this formulation, the
first term, i.e., acty, promotes categories that receive high activations from filler entities. In
contrast, the second term penalizes popular categories that would generally receive high
activations independent of the given template. The primary intuition behind the algorithm is
that categories relevant for a given template should on an average receive higher activations
from a subset of filler entities than from a random subset of all entities.

Beam Search. In this step, our aim is to use the activations scores computed in the activa-
tions baseline to determine the most suitable subset of categories for a generalization template.
To this end, we perform a beam search over the space of subsets of categories that receive
positive activations scores. We now describe the method in detail.

We maintain two separate beams!, i.e., By for storing the partial solutions and B f for storing
the final solutions. Initially, the set of all the filler entities E s added as a partial solution in
the beam B,,. In each iteration, we derive new solutions from the existing solutions in B;, and
insert them into B, as well as By.

To derive new solution from an existing partial solution s, € B),, we first duplicate s,, i.e., we
copy all the nodes (both pages and categories) of s,. Further, we select each parent p for each
node n € s, iteratively, and add it to s, thus creating a new candidate solution. For a new
solution s,, which is created through the selection of parent p, we remove all nodes in s, that
are subsumed? by p. Score of a solution is computed as average of activations scores of its
constituent nodes (activations scores for all entities are set to 0). Finally, we pick the solution

1Beams of width=1000 worked well for our development set.
2Given a taxonomy T and filler entities E f the node n; is subsumed by the node ny, if either n; is a direct
descendantof ny in T, oralle€ E r that are descendants of n; are also descendants of n5.

133



Chapter 9. Applications of Taxonomies

from By that has the highest score as the final set of categories for the generalization template.

9.3.4 Evaluation and Results

Evaluation of categories selection is a complex task due to the significantly large number of
Wikipedia categories. Therefore, to perform this evaluation, we make a series of simplifying
assumptions. First, we assume that if a category provides a possible explanation for a template
p, it must receive more activations from filler entities of p than a random set of entities. In
other words, the activations-based score of the category should be greater than 0.

Given this assumption, we first construct a subgraph G, of the candidate categories as follows:
(1) add all categories that receive positive score during the activations-based scoring step
as a node in G;. (2) Add an edge from category c; € Gs to ¢ € G, if there exists a path
from c; to ¢ in the Wikipedia taxonomy. Subsequently, we partition the G; into its weakly
connected components (hereafter referred to as WCC). For each WCC, three expert human
judges annotate the most suitable (possibly null) set of categories. Finally, all categories as
well as entities, which are descendants of the categories annotated as suitable, form the set of
ground truth categories (or entities).

To evaluate a categories selection procedure, we create the set of selected categories (entities)
in a similar fashion and compute precision-recall statistics against the ground truth set. We
compare the beam search-based approach against two baselines:

¢ All-roots: in this baseline, we simply selects all roots of G;. By definition, this baseline
generates 100% recall, however, at the cost of precision.

¢ Greedy: in this baseline, we perform a downward traversal starting from each root in
G;. During traversal, for each category ¢, we move to its children only if the sum of
activations scores of its children are greater than c. Intuitively, this baseline aims to find
local maxima of activations scores in the subgraph G;.

For these experiments, we use the HEADS taxonomy induced in Chapter 3 as the Wikipedia
taxonomy. Figure 9.2 shows the categories with positive activations scores for the template
Highways of X as well as the category selected by the beam search-based method. Table 9.2
show the precision-recall statistics for categories and entities respectively. As the results show,
beam search-based categories selection outperforms both baselines and produces better
F1 scores. The all-roots baseline achieves the highest recall, which is expected because all
descendants (both categories and entities) are picked.

Table 9.3 shows some examples of generalization templates as well as the categories selected by
the beam search approach. An interesting example is X marina (shown in Table 9.3), because
it shows that our approach is capable of capturing different groups of generalizations of a
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Figure 9.2 — Categories along with their activations scores for the template Highways of X. The
category ADMINISTRATIVE TERRITORIAL ENTITIES is picked as the final generalization by the

beam search-based method.

Entities Categories
Method P R F1 P R F1
all-roots 0.38 1.00 056 030 1.00 0.46
greedy 041 074 053 032 0.78 0.46
beamsearch 0.58 0.70 0.63 0.44 0.62 0.51

Table 9.2 — Evaluation of different approaches for selection of categories.

Template Fillers

Selected Generalizations

Railways in X nepal, plymouth, sydney

administrative territorial entities, populated places

regions, events, administrative territorial entities,

Flag of the X orange free state, second spanish republic L .
territories, landforms, social groups
X obscura dysgonia, cynaeda plants, animal orders, organisms, vertebrates, genera
X . brighton marina, amata marina, plants, monotypic taxa, organisms, pollinators, legumes,
marina

osney mill marina, najas marina

populated places, administrative territorial entities

Timeline of the X 2007 pet food recalls, samnite wars

events

Casualties of the X  iraq war, ukranian crisis invasions, disasters, conflicts, human right abuses
Law society of X scotland, england administrative territorial entities

X cottage hospital uxbridge, turriff populated places

Dancesport at theX 1998 asian games, world games 2005 international sports competitions

Table 9.3 — Lists of selected generalizations computed using the beam search-based method

for selection of categories.
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template such as places (i.e., POPULATED PLACES3, ADMINISTRATIVE TERRITORIAL ENTITIES?)
as well as taxonomic classifications of living entities (i.e., PLANTS, ORGANISMS).

Although we used the HEADS taxonomy for these experiments, theoretically, our approach is
compatible with any taxonomy that provides generalizations for Wikipedia entities. However,
it would still be desirable that the taxonomy has a good path-level accuracy. It is because,
in taxonomies with good path-level accuracy, filler entities (such as FRANCE, SWITZERLAND)
would consistently activate the same set of good generalizations (e.g., COUNTRIES). In contrast,
a taxonomy, which has lower path-level accuracy, would activate significant noisy generaliza-
tions, thus leading to a poor set of selected categories.

To demonstrate this effect, we repeat the category selection step, i.e., activations baseline
followed by the beam search-based category selection, for the state-of-the-art MultiWiBi
taxonomies, i.e., WiB1g and WiBi¢c+Hp (see Section 3.3.3). Table 9.4 (page 140) shows the
results of this experiment. A quantitative comparison of these results requires significant
annotations, and is outside the scope of this thesis. However, it is immediately clear that the
generalization categories obtained by WiB1 as well as WiBI¢ taxonomies are significantly
noisy. For example, GENETICS is selected as a candidate generalization for Tomb of X by
WiBic+Hpg, whereas FINE ART is selected by WiBi1g. In contrast, the results obtained by HEADS
are more accurate, thus demonstrating its superior ability to select meaningful generalization
categories for the filler entities.

This task demonstrates that a taxonomy can be used effectively to generate commonsense
explanations for a set of related entities. While in this experiment the sets of related entities
are discovered using linguistic templates of compound entities from Wikipedia, the overall
approach is general and can be extended to many other cases. For example, instead of entity
names, the templates can be generated from verb-noun phrases (e.g., eat X). Such templates
along with our beam-search approach can be used for discovering commonsense knowledge
facts (e.g., birds fly, people eat food) in a fully-automated fashion. Another advantage of our
approach is that it is language-independent. Therefore, in conjunction with the multilingual
Wikipedia taxonomies (Chapter 4), this approach can be easily extended to all Wikipedia
languages. This task also serves to demonstrate the utility of generating taxonomies with
higher path-level accuracies (Section 4.3.2), as it results in more accurate sets of generalization
categories for the sets of related entities.

During the course of this experiment, we experimented with a wide variety of scoring tech-
niques for category selection (Section 9.3.3). However, we noticed one clear pattern: all
scoring methods that used the precision of a category as a feature performed significantly
worse than models that ignored the precision. We hypothesize that it is primary because
human commonsense reasoning is inherently inductive and approximate. While we reserve a
more rigorous analysis of this hypothesis for future work, we consider this as an important

S3populated places indicate cities or towns.
4 Administrative territorial entities indicate regions such as states or countries.
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insight for building models that perform human-like commonsense reasoning.

9.4 Word Embeddings vs. Taxonomies

Word embeddings represent a set of language modeling techniques, which are aimed towards
finding mathematical vector representations for words or phrases. Intuitively, word embed-
ding techniques perform a mathematical embedding of words (or phrases) from a space with
one dimension per word (or phrase) to a continuous vector space with much lower dimen-
sions. One of the key use cases of word embeddings is to discover words (or phrases) that are
semantically similar to a given term [85, 104, 35].

In this section, we qualitatively compare the set of semantically-similar terms that are returned
by state-of-the-art word embeddings against those returned by taxonomies induced with the
SubSeq+Flow approach. To this end, we first manually choose a set of terms across four
different languages, i.e., English, French, Dutch and Italian. For each (term, language) pair,
we find the most semantically-similar terms as computed using the fastText embeddings [35].
Further, we induce taxonomies using our SubSeq+Flow approach with each term as the root
(as performed in Section 8.5). To compute similar terms, we randomly sample a set of terms
from the set of direct children and grandchildren (i.e., second-level descendants) of the root
term in the induced taxonomy.

Table 9.5 (page 141) shows the results of this experiment, and demonstrates that both ap-
proaches perform well in discovering semantically-similar words. A quantitative evaluation
of this experiment is inherently complex, and outside the scope of this thesis. However, it
is noticeable immediately that the terms output by word embeddings are usually a mix of
synonyms (e.g., havenstad for stad), hyponyms (e.g., leukemia for cancer) or frequently co-
occurring words (e.g., prostate for cancer). In contrast, the terms discovered by SubSeq+Flow
are mostly hyponyms (e.g., vinh for stad).

Overall, this experiment demonstrates that SubSeq+Flow is a viable approach for discovering
semantically-similar hyponym terms for a given term. Furthermore, in comparison with
word embeddings, the behavior of the terms discovered by SubSeq+Flow is more well-defined.
Therefore, SubSeq+Flow can serve as a complementary approach to Word Embeddings for
discovering semantically-similar hyponymes.

9.5 Summary

In this chapter, we focused on the applications of taxonomies in various NLP-related tasks and
applications. We first provided a brief survey of the past approaches that utilize taxonomies.
Further, we presented our approach for discovering and generalizing linguistic templates from
Wikipedia entities such as Passport of X. We demonstrated that the entities, which usually
replace the placeholder (i.e., X), can be generalized to suitable Wikipedia categories using
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a beam search-based approach for category selection. Our experiments also demonstrate
qualitatively that HEADS taxonomy (induced in Chapter 3) results in significantly better gen-
eralizations than state-of-the-art MultiWiBi taxonomies. Although in this chapter, we only
focused on English linguistic templates for entity names, our approach is general and can be
easily extended to other languages as well as other kinds of linguistic templates.

Finally, in the last section, we show examples of semantically-similar terms discovered by
SubSeq+Flow across four languages. While we reserve a rigorous quantitative evaluation for
future work, the examples demonstrate that quality of these terms is similar to those returned
by state-of-the-art word embeddings. Moreover, the terms returned by SubSeq+Flow are more
likely to be hyponyms, whereas those returned by word embeddings are usually a mix of many
semantic relations such as synonyms, hyponyms, or frequently co-occurring words.

Limitations and Future Work. The work presented in this chapter is still ongoing and many
research question remain to be answered. First, the task of generalization templates can
be extended to other languages and other kinds of linguistic templates, thus resulting in
automated extraction of multilingual commonsense facts. Second, there are many parallels
between the category selection approach for generalization templates (Section 9.3.3) and the
beam search-based method for automated root detection (Section 8.3). For example, both
approaches use a scoring method for scoring categories (or terms) followed by a beam search
optimization to pick the right set of generalizations. However, the key difference is that in the
former a taxonomy is given, whereas in the latter, a taxonomy is constructed along with root
detection. It would be interesting and useful to unify the two approaches under a common
conceptual framework. Finally, the comparison of hyponyms detected by taxonomies vs. word
embeddings is performed qualitatively. An important future work is to do a more rigorous
quantitative evaluation. Another interesting future work could be to train word embeddings
using taxonomic information, and compare their performance to original word embeddings.
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Table 9.4 — Lists of selected generalization categories computed using the beam search-based

categories selection method over the HEADS and MultiWiBi taxonomies.
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Table 9.5 — Examples of semantically-similar terms found using fastText embeddings vs. Sub-

Seq+Flow taxonomies.
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|{1] Conclusion

Machine-readable semantic knowledge lies at the core of the fields of Artificial Intelligence (AI)
and Natural Language Processing (NLP). It has been shown to be a key ingredient in building
Al that can achieve human-like performance in intelligence-oriented tasks. However, the
acquisition of large-scale machine-readable semantic knowledge is not trivial by any means
and has inspired a substantial and growing body of research over the last few decades. The
earlier work in this direction involved large-scale manual efforts (such as WordNet or Cyc).
However, they were quickly deemed insufficient given the vast scale of knowledge, thus paving
the way for semi-automated and automated knowledge acquisition approaches.

In this thesis, we focused on the automated acquisition (or induction) of a specific type of
knowledge resource, i.e., a taxonomy, which is a collection of is-a relations that represent a co-
herent tree-like hierarchy between terms (or concepts). We addressed two of the most popular
settings of automated taxonomy induction, namely taxonomy induction from Wikipedia, and
taxonomy induction from unstructured text. In both settings, we proposed novel approaches
that resulted in significant improvements over the state of the art. Furthermore, for taxonomy
induction from unstructured text, our work also facilitated the relaxation of many simplifying
assumptions, which limited the applicability of previous approaches. In the final part of the
thesis, we discussed some use cases of the induced taxonomies. The next section provides an
overview of the main achievements of this thesis. Section 10.2 proposes possible directions
for future work.

10.1 Achievements
The main achievements of this thesis in different tasks are as follows:
¢ Taxonomy induction from English Wikipedia: in Chapter 3, we focused on a specific
case of taxonomy induction, i.e., taxonomy induction from the Wikipedia categories

network (WCN) in English. We proposed a novel set of heuristics, which exploit the
lexical head of Wikipedia categories to pick suitable generalizations for Wikipedia en-
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tities and categories. The application of our heuristics results in the induction of a
large-scale unified taxonomy (referred to as the HEADS taxonomy) consisting of millions
of Wikipedia entities and categories. Our experiments demonstrate that the HEADS tax-
onomy achieves higher edge-level accuracy than state-of-the-art taxonomies released
by MultiWiBi [31]. However, more importantly, our experiments also demonstrate that
the generalization paths obtained using our taxonomies are twice as accurate as the
MultiWiBi taxonomies, thus indicating a significant improvement over the state of the
art. This work also serves to demonstrate that edge-level accuracy of taxonomies may
not always correlate well with their path-level accuracy.

A key outcome of this work is the release of HEADS taxonomy'. This work also has
multiple consequences on the rest of the thesis. First, the HEADS taxonomy is projected
to other languages using the interlanguage links, thus leading to the construction of
taxonomies in all Wikipedia languages (Chapter 4). Second, the path-level measures
(i.e., ACPP and ARCPP) introduced in this chapter are further reused for evaluation
of taxonomies across multiple languages (Chapter 4). Finally, HEADS taxonomy is
utilized for selection of suitable generalization categories for the fillers of generalization
templates of Wikipedia entities (Chapter 9).

Taxonomy induction from multilingual Wikipedia: in Chapter 4, we presented a novel
fully-automated approach towards inducing taxonomies from Wikipedia in languages
other than English. Given an English Wikipedia taxonomy, our approach leverages the
interlanguage links of Wikipedia to project an initial taxonomy in the target language.
Training datasets are constructed automatically using the projected taxonomy. Standard
text classifiers are trained on the constructed datasets and used in an optimal path
discovery framework to induce a high-precision, wide-coverage taxonomy in the target
language. Taxonomies induced using our approach outperform the state-of-the-art
MultiWiBi taxonomies on both edge-level and path-level metrics across multiple lan-
guages. Furthermore, our approach also provides a control parameter for regulating the
trade-off between the precision and the branching factor of the induced taxonomies,
thus providing better control over the taxonomy induction process. Our approach differs
from most previous approaches aimed towards taxonomy induction from Wikipedia in a
significant fashion: it does not employ any complex heuristics. As a result, our approach
is simpler, principled and easy to replicate.

A key outcome of this work is the release of our taxonomies across 280 languages, which
are significantly more accurate than the state of the art and provide higher coverage.

Extraction of hypernym subsequences: in Chapter 6, we presented a novel probabilis-
tic model (referred to as SubSeq), which extracts long-range hypernym subsequences
from noisy automatically-harvested hypernymy relations. Barring a small manually-
annotated set of hypernymy edges, SubSeq is fully-unsupervised and runs in an auto-
mated fashion. SubSeq captures the intuition that more accurate hypernyms for general

1HEADS taxonomy is available at http://headstaxonomy.com.
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terms (such as fruit) can be extracted by utilizing the candidate hypernyms of its descen-
dants (such as apple or banana). Furthermore, empirical evaluation demonstrates that
SubSeq significantly outperforms multiple baselines, thus resulting in the extraction of
more accurate hypernym subsequences. The utility of SubSeq is further demonstrated
in Chapter 7, where it is shown that the subsequences extracted by the SubSeq model
result in the induction of more accurate taxonomies.

A flow network optimization-based framework for taxonomy induction: in Chapter 7,
we presented a novel flow network-based optimization approach for inducing a clean
taxonomy from a noisy hypernym graph. The noisy hypernym graph is constructed
through the aggregation of hypernym subsequences extracted for the seed terms in the
input vocabulary. The task of taxonomy induction from the noisy hypernym graph is
cast as an instance of the minimum-cost flow optimization problem over a carefully-
designed flow network. Our experiments demonstrate that our approach outperforms a
state-of-the-art taxonomy induction system, i.e., TAXI, across multiple languages in the
TExEval-2 task of taxonomy extraction [16, 102].

The key advantage of our approach is that the design of the flow network provides for
a control parameter, i.e., required coverage (a), which can be modulated to control
the ratio of input seed terms that would be present in the final vocabulary. As a result,
our taxonomy induction approach is robust to the presence of significant noise in the
input vocabulary. This noise robustness has far-reaching consequences, because it
eliminates the need for a time-consuming manual cleaning step of input vocabularies,
thus automating the process of taxonomy induction in the true sense.

Extensions to the flow network framework: in Chapter 8, we extended the flow network
optimization-based framework to enable better control over the taxonomy induction
process. First, we introduced a new parameter that can be modulated to control the
relative tradeoff between precision and branching factor of the seed terms in the output
taxonomies. Second, we proposed two approaches aimed towards automated detection
of roots of the taxonomy, thus eliminating the requirement of a manually-input set of
roots. This extension is a considerable improvement over the state of the art because
most previous approaches assumed the availability of a pre-determined set of roots.
Finally, we presented an extension, which automatically discovers new seed terms given
an initial vocabulary. This extension leads to the induction of taxonomies given a single
root term as input. This extension is essentially enabled by the noise-robustness of the
flow network optimization-based taxonomy induction, which allows us to use relatively
inaccurate term extraction or collection methods for construction of seed vocabularies.
Overall, these extensions further help in relaxing many of the simplifying assumptions,
which limited the applicability of prior taxonomy induction approaches.

Applications of taxonomies: in Chapter 9, we focused on the applications of automatically-
induced taxonomies. We introduced a novel task, which aims towards the discovery
of suitable generalizations for the placeholder in lexicalized templates (e.g., X is the
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placeholder in Passport of X). We first discover such lexicalized templates from the titles
Wikipedia entities. Further, we demonstrate that the set of entities, which replace the
placeholder in a template, can be generalized to suitable Wikipedia categories using
a Wikipedia taxonomy and a beam search-based approach for category selection. We
also demonstrate qualitatively that the HEADS taxonomy results in the selection of more
appropriate generalization categories than the state-of-the-art MultiWiBi taxonomies.
Finally, we showed some examples of semantically-similar terms, which are discovered
by the taxonomy induction approach presented in Chapters 7 & 8. A qualitative compar-
ison suggests that our taxonomy induction approach might be more effective than word
embeddings for computing semantically-similar hyponyms.

10.2 Future Work

The field of automated taxonomy induction is quite challenging, with a large number of

unaddressed issues and open questions. While we consider the work done in this thesis as an

important advancement towards the field, there are still a variety of issues and challenges in

taxonomy induction that need to be addressed. In the remainder of this section, we identify a

few of these issues and propose possible directions for future work:
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¢ Use-case based evaluation metrics: in this thesis, we proposed path-level metrics as

an alternative measure for assessing the quality of taxonomies and demonstrated qual-
itatively that higher path-level accuracy results in better performance on the task of
generalizing a set of entities (Chapters 3 & 9). In the prior work, a variety of evaluation
measures for taxonomies have been introduced [16], which evaluate different aspects
of taxonomies including structural properties and accuracy. However, despite so many
evaluation measures, the relationship between the performance on these measures
and performance in external tasks is not clear. It would be useful if the relationship
between such evaluation measures and the utility of the taxonomy in external tasks
can be characterized and quantified. This line of work is especially important because
taxonomies are intermediate resources, and mainly beneficial through their utility in
external applications.

Continuous representations: one of the biggest disadvantages of taxonomies is that
they are discrete representations of knowledge. This is in contrast with word embed-
dings, which provide continuous vector representations for words or phrases. The
continuous nature of their representations allows word embeddings to be used directly
in a wide variety of machine learning models such as neural networks. While there
is some recent work towards inducing continuous representations of words that in-
corporate taxonomic information [95], it is in its nascent stages. However, still, this
research direction is promising and consequential, as it would serve to further expand
the applicability of taxonomies.

* Different types of hierarchies: in this thesis, we focused on a specific type of term hier-
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archy that contains is-a relations between terms or concepts. However, many different
kinds of hierarchies exist and can be beneficial for many intelligence-oriented tasks. For
example, Harkous [45] demonstrates that a state-of-the-art question answering system,
which answers questions related to privacy policies, can be built using a hierarchy of
topics related to privacy.

Another limitation of our work is that it largely focuses on noun phrases as terms or
concepts, due to the designs of the vocabulary extraction and candidate hypernymy
extraction approaches. However, taxonomies can be induced on other linguistic units
such as adjectives, verbs or relational phrases. For example, Grycner et al. [37] induces
a taxonomy of relational phrases instead of unitary terms and demonstrates its util-
ity in the document retrieval task. Expansion of taxonomy induction approaches to
such linguistic units would benefit many NLP applications. Another interesting but
challenging research direction could be the induction of taxonomies for non-linguistic
information types such as images or videos. Research efforts in such directions would
lead to more widespread applications of generalization knowledge and further enhance
the capabilities of artificially intelligent systems.

A unified approach: in this thesis, we presented a wide variety of approaches towards
taxonomy induction under different settings. While some general principles were re-
peated, the taxonomy induction methods still diverged significantly across different
settings. A very important and beneficial future work is to unify the ideas presented in
this thesis into a comprehensive framework that performs taxonomy induction from a
possibly-multilingual heterogeneous set of resources. Such unified approach in con-
junction with continuous representations of taxonomies would facilitate much wider
applicability of taxonomies for intelligence tasks.

147






Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

Steven S. Aanen, Damir Vandic, and Flavius Frasincar. Automated product taxonomy
mapping in an e-commerce environment. Expert Syst. Appl., 42(3):1298-1313, 2015. doi:
10.1016/j.eswa.2014.09.032. URL https://doi.org/10.1016/j.eswa.2014.09.032.

S. E Adafre and Maarten de Rijke. Finding Similar Sentences across Multiple Languages
in Wikipedia. Proceedings of the 11th Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 62—69, 2006.

David Ahn, Valentin Jijkoun, Gilad Mishne, Karin Miiller, Maarten de Rijke, and Stefan
Schlobach. Using wikipedia at the TREC QA track. In Proceedings of the Thirteenth Text
REtrieval Conference, TREC 2004, Gaithersburg, Maryland, USA, November 16-19, 2004,
2004. URL http://trec.nist.gov/pubs/trec13/papers/uamsterdam.qa.pdf.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows - theory,
algorithms and applications. Prentice Hall, 1993. ISBN 978-0-13-617549-0.

Daniele Alfarone and Jesse Davis. Unsupervised learning of an IS-A taxonomy from
a limited domain-specific corpus. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, [JCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 1434-1441, 2015. URL http://ijcai.org/Abstract/15/206.

Luis Espinosa Anke, Horacio Saggion, Francesco Ronzano, and Roberto Navigli. Ex-
tasem! extending, taxonomizing and semantifying domain terminologies. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,
Phoenix, Arizona, USA., pages 2594-2600, 2016. URL http://www.aaai.org/ocs/index.
php/AAAI/AAATL6/paper/view/12219.

Javier Artiles, Satoshi Sekine, and Julio Gonzalo. Web people search: results of the
first evaluation and the plan for the second. In Proceedings of the 17th International
Conference on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008, pages
1071-1072, 2008. doi: 10.1145/1367497.1367661. URL http://doi.acm.org/10.1145/
1367497.1367661.

Soren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. DBpedia: A nucleus for a Web of open data. In Lecture Notes in Computer

149



Bibliography

91

(10]

(11]

(12]

(13]

(14]

(15]

(16]

150

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 4825 LNCS, pages 722-735, 2007.

Soren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary G. Ives. Dbpedia: A nucleus for a web of open data. In The Semantic Web,
6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC
2007 + ASWC 2007, Busan, Korea, November 11-15, 2007., pages 722-735, 2007. doi:
10.1007/978-3-540-76298-0_52. URL https://doi.org/10.1007/978-3-540-76298-0_52.

Mohit Bansal, David Burkett, Gerard de Melo, and Dan Klein. Structured learning for
taxonomy induction with belief propagation. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore,
MD, USA, Volume 1: Long Papers, pages 1041-1051, 2014. URL http://aclweb.org/
anthology/P/P14/P14-1098.pdf.

Boualem Benatallah, Fabio Casati, Dimitrios Georgakopoulos, Claudio Bartolini, Wasim
Sadiq, and Claude Godart, editors. Web Information Systems Engineering - WISE 2007,
8th International Conference on Web Information Systems Engineering, Nancy, France,
December 3-7, 2007, Proceedings, volume 4831 of Lecture Notes in Computer Science,
2007. Springer. ISBN 978-3-540-76992-7. doi: 10.1007/978-3-540-76993-4. URL https:
//doi.org/10.1007/978-3-540-76993-4.

Chris Biemann. Ontology learning from text: A survey of methods. LDV Forum, 20(2):
75-93, 2005. URL http://www.jlcl.org/2005_Heft2/Chris_Biemann.pdf.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN
0387310738.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Séren Auer, Christian Becker, Richard
Cyganiak, and Sebastian Hellmann. Dbpedia - a crystallization point for the web of data.
Web Semant., 7(3):154-165, September 2009. ISSN 1570-8268. doi: 10.1016/j.websem.
2009.07.002. URL http://dx.doi.org/10.1016/j.websem.2009.07.002.

Georgeta Bordea, Paul Buitelaar, Stefano Faralli, and Roberto Navigli. Semeval-2015 task
17: Taxonomy extraction evaluation (texeval). In Proceedings of the 9th International
Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2015, Denver, Colorado, USA,
June 4-5, 2015, pages 902-910, 2015. URL http://aclweb.org/anthology/S/S15/S15-2151.
pdf.

Georgeta Bordea, Els Lefever, and Paul Buitelaar. Semeval-2016 task 13: Taxonomy
extraction evaluation (texeval-2). In Proceedings of the 10th International Workshop on
Semantic Evaluation, SemEval@NAACL-HLT 2016, San Diego, CA, USA, June 16-17, 2016,
pages 1081-1091, 2016. URL http://aclweb.org/anthology/S/S16/S16-1168.pdf.



Bibliography

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

Paul Buitelaar and Bernardo Magnini. Ontology learning from text: An overview. In In
Paul Buitelaar, R, Cimiano, R, Magnini B. (Eds.), Ontology Learning from Text: Methods,
Applications and Evaluation, pages 3-12. 10S Press, 2005.

Razvan C. Bunescu and Marius Pasca. Using encyclopedic knowledge for named entity
disambiguation. In EACL 2006, 11st Conference of the European Chapter of the Associa-
tion for Computational Linguistics, Proceedings of the Conference, April 3-7, 2006, Trento,
Italy, 2006. URL http://aclweb.org/anthology/E/E06/E06-1002.pdf.

Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik,
Bente Maegaard, Joseph Mariani, Héléene Mazo, Asuncién Moreno, Jan Odijk, and Stelios
Piperidis, editors. Proceedings of the Tenth International Conference on Language Re-
sources and Evaluation LREC 2016, Portoroz, Slovenia, May 23-28, 2016, 2016. European
Language Resources Association (ELRA). URL http://www.lrec-conf.org/lrec2016.

David Carmel, Ming-Wei Chang, Evgeniy Gabrilovich, Bo-June Paul Hsu, and Kuansan
Wang. Erd ’'14: entity recognition and disambiguation challenge. In The 37th In-
ternational ACM SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR '14, Gold Coast, QLD, Australia - July 06 - 11, 2014, page 1292, 2014. doi:
10.1145/2600428.2600734. URL http://doi.acm.org/10.1145/2600428.2600734.

Shui-Lung Chuang and Lee-Feng Chien. Automatic query taxonomy generation for
information retrieval applications. Online Information Review, 27(4):243-255, 2003. doi:
10.1108/14684520310489032. URL https://doi.org/10.1108/14684520310489032.

Trevor Cohen and Dominic Widdows. Empirical distributional semantics: Methods and
biomedical applications. Journal of Biomedical Informatics, 42(2):390-405, 2009. doi:
10.1016/j.jbi.2009.02.002. URL https://doi.org/10.1016/j.jbi.2009.02.002.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, 3rd Edition. MIT Press, 2009. ISBN 978-0-262-03384-8. URL
http://mitpress.mit.edu/books/introduction-algorithms.

Damien Cram and Béatrice Daille. Terminology extraction with term variant detection.
In Proceedings of ACL-2016 System Demonstrations, Berlin, Germany, August 7-12, 2016,
pages 13-18, 2016. doi: 10.18653/v1/P16-4003. URL https://doi.org/10.18653/v1/
P16-4003.

Gerard de Melo and Gerhard Weikum. MENTA: inducing multilingual taxonomies from
wikipedia. In Proceedings of the 19th ACM Conference on Information and Knowledge
Management, CIKM 2010, Toronto, Ontario, Canada, October 26-30, 2010, pages 1099—
1108, 2010. doi: 10.1145/1871437.1871577. URL http://doi.acm.org/10.1145/1871437.
1871577.

Gianluca Demartini, Claudiu S. Firan, Tereza lofciu, Ralf Krestel, and Wolfgang NejdL
Why finding entities in wikipedia is difficult, sometimes. Inf. Retr, 13(5):534-567, 2010.
doi: 10.1007/s10791-010-9135-7. URL https://doi.org/10.1007/s10791-010-9135-7.

151



Bibliography

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

152

Ofer Egozi, Shaul Markovitch, and Evgeniy Gabrilovich. Concept-based information
retrieval using explicit semantic analysis. ACM Trans. Inf. Syst., 29(2):8:1-8:34, 2011. doi:
10.1145/1961209.1961211. URL http://doi.acm.org/10.1145/1961209.1961211.

Edward A Feigenbaum. Knowledge engineering: The applied side. Intelligent Systems,
pages 37-55, 1983.

David A. Ferrucci, Eric W. Brown, Jennifer Chu-Carroll, James Fan, David Gondek, Aditya
Kalyanpur, Adam Lally, J. William Murdock, Eric Nyberg, John M. Prager, Nico Schlaefer,
and Christopher A. Welty. Building watson: An overview of the deepqga project. Al
Magazine, 31(3):59-79, 2010. URL http://www.aaai.org/ojs/index.php/aimagazine/
article/view/2303.

Tiziano Flati, Daniele Vannella, Tommaso Pasini, and Roberto Navigli. Two is bigger
(and better) than one: the wikipedia bitaxonomy project. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics, ACL 2014, June 22-
27, 2014, Baltimore, MD, USA, Volume 1: Long Papers, pages 945-955, 2014. URL
http://aclweb.org/anthology/P/P14/P14-1089.pdf.

Tiziano Flati, Daniele Vannella, Tommaso Pasini, and Roberto Navigli. Multiwibi: The
multilingual wikipedia bitaxonomy project. Artif. Intell., 241:66-102, 2016. doi: 10.1016/
j.artint.2016.08.004. URL https://doi.org/10.1016/j.artint.2016.08.004.

Jian-Bo Gao, Bao-Wen Zhang, and Xiao-Hua Chen. A wordnet-based semantic similarity
measurement combining edge-counting and information content theory. Engineering
Applications of Artificial Intelligence, 39(Supplement C):80 — 88, 2015. ISSN 0952-1976.
doi: https://doi.org/10.1016/j.engappai.2014.11.009. URL http://www.sciencedirect.
com/science/article/pii/S0952197614002814.

Maayan Geffet and Ido Dagan. The distributional inclusion hypotheses and lexical
entailment. In ACL 2005, 43rd Annual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, 25-30 June 2005, University of Michigan, USA,
pages 107-114, 2005. URL http://aclweb.org/anthology/P/P05/P05-1014.pdf.

Oren Glickman, Ido Dagan, and Moshe Koppel. A probabilistic classification approach
for lexical textual entailment. In Proceedings, The Twentieth National Conference on
Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages 1050-1055, 2005. URL
http://www.aaai.org/Library/AAAI/2005/aaai05- 166.php.

Edouard Grave, Tomas Mikolov, Armand Joulin, and Piotr Bojanowski. Bag of tricks
for efficient text classification. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics, EACL 2017, Valencia, Spain,
April 3-7, 2017, Volume 2: Short Papers, pages 427-431, 2017. URL http://aclanthology.
info/papers/E17-2068/bag- of-tricks-for-efficient-text- classification.



Bibliography

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

Gregory Grefenstette. INRIASAC: simple hypernym extraction methods. In Proceedings
of the 9th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2015,
Denver, Colorado, USA, June 4-5, 2015, pages 911-914, 2015. URL http://aclweb.org/
anthology/S/S15/S15-2152.pdf.

Adam Grycner, Gerhard Weikum, Jay Pujara, James R. Foulds, and Lise Getoor. RELLY:
inferring hypernym relationships between relational phrases. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015,
Lisbon, Portugal, September 17-21, 2015, pages 971-981, 2015. URL http://aclweb.org/
anthology/D/D15/D15-1113.pdf.

Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. Named entity recognition in query. In
Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2009, Boston, MA, USA, July 19-23, 2009,
pages 267-274, 2009. doi: 10.1145/1571941.1571989. URL http://doi.acm.org/10.1145/
1571941.1571989.

Amit Gupta, Francesco Piccinno, Mikhail Kozhevnikov, Marius Pasca, and Daniele
Pighin. Revisiting taxonomy induction over wikipedia. In COLING 2016, 26th In-
ternational Conference on Computational Linguistics, Proceedings of the Conference:
Technical Papers, December 11-16, 2016, Osaka, Japan, pages 2300-2309, 2016. URL
http://aclweb.org/anthology/C/C16/C16-1217.pdf.

Amit Gupta, Rémi Lebret, Hamza Harkous, and Karl Aberer. Taxonomy induction using
hypernym subsequences. In Proceedings of the 26th ACM International Conference on
Information and Knowledge Management, CIKM 2017, Singapore, November 6-10, 2017,
2017.

Amit Gupta, Rémi Lebret, Hamza Harkous, and Karl Aberer. 280 birds with one stone:
Inducing multilingual taxonomies from wikipedia using character-level classification.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, February
2-7, 2016, New Orleans, Louisiana, USA., 2018.

Iryna Gurevych and Elisabeth Wolf. Expert-built and collaboratively constructed lexical
semantic resources. Language and Linguistics Compass, 4(11):1074-1090, 2010. doi: 10.
1111/j.1749-818X.2010.00251.x. URL https://doi.org/10.1111/j.1749-818X.2010.00251 .x.

Sherzod Hakimov, Salih Atilay Oto, and Erdogan Dogdu. Named entity recognition and
disambiguation using linked data and graph-based centrality scoring. In Proceedings
of the 4th International Workshop on Semantic Web Information Management, SWIM
2012, Scottsdale, AZ, USA, May 20, 2012, page 4, 2012. doi: 10.1145/2237867.2237871.
URL http://doi.acm.org/10.1145/2237867.2237871.

Sanda M. Harabagiu, Steven J. Maiorano, and Marius Pasca. Open-domain textual
question answering techniques. Natural Language Engineering, 9(3):231-267, 2003. doi:
10.1017/S1351324903003176. URL https://doi.org/10.1017/S1351324903003176.

153



Bibliography

(43]

(46]

(47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

[55]

154

Hamza Harkous. Data-Driven, Personalized Usable Privacy. PhD thesis, IC, Lausanne,
2017.

Zellig S Harris. Distributional structure. Word, 10(2-3):146-162, 1954.

Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora. In 14th
International Conference on Computational Linguistics, COLING 1992, Nantes, France,
August 23-28, 1992, pages 539-545, 1992. URL http://aclweb.org/anthology/C92-2082.

Evan Heit. Properties of inductive reasoning. Psychonomic Bulletin & Review, 7(4):
569-592, 2000.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computa-
tion, 9(8):1735-1780, 1997. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.
1162/neco.1997.9.8.1735.

Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. YAGO?2:
A spatially and temporally enhanced knowledge base from wikipedia. Artif. Intell., 194:
28-61, 2013. doi: 10.1016/j.artint.2012.06.001. URL https://doi.org/10.1016/j.artint.
2012.06.001.

Eduard H. Hovy, Zornitsa Kozareva, and Ellen Riloff. Toward completeness in concept
extraction and classification. In Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2009, 6-7 August 2009, Singapore, A meeting
of SIGDAT, a Special Interest Group of the ACL, pages 948-957, 2009. URL http://www.
aclweb.org/anthology/D09-1099.

Eduard H. Hovy, Roberto Navigli, and Simone Paolo Ponzetto. Collaboratively built
semi-structured content and artificial intelligence: The story so far. Artif. Intell., 194:
2-27,2013. doi: 10.1016/j.artint.2012.10.002. URL https://doi.org/10.1016/j.artint.2012.
10.002.

Xiaohua Hu, Xiaodan Zhang, Caimei Lu, E. K. Park, and Xiaohua Zhou. Exploiting
wikipedia as external knowledge for document clustering. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris,
France, June 28 - July 1, 2009, pages 389-396, 2009. doi: 10.1145/1557019.1557066. URL
http://doi.acm.org/10.1145/1557019.1557066.

Wen Hua, Zhongyuan Wang, Haixun Wang, Kai Zheng, and Xiaofang Zhou. Understand
short texts by harvesting and analyzing semantic knowledge. IEEE Trans. Knowl. Data
Eng., 29(3):499-512, 2017. doi: 10.1109/TKDE.2016.2571687. URL https://doi.org/10.
1109/TKDE.2016.2571687.

Masahiro Ito, Kotaro Nakayama, Takahiro Hara, and Shojiro Nishio. Association the-
saurus construction methods based on link co-occurrence analysis for wikipedia. In
Proceedings of the 17th ACM Conference on Information and Knowledge Management,



Bibliography

[56]

[57]

(58]

(59]

(60]

(61]

[62]

[63]

(64]

(65]

CIKM 2008, Napa Valley, California, USA, October 26-30, 2008, pages 817-826, 2008. doi:
10.1145/1458082.1458191. URL http://doi.acm.org/10.1145/1458082.1458191.

Donald B. Johnson. Finding all the elementary circuits of a directed graph. SIAM J.
Comput., 4(1):77-84, 1975. doi: 10.1137/0204007. URL https://doi.org/10.1137/0204007.

Rianne Kaptein, Pavel Serdyukov, Arjen P. de Vries, and Jaap Kamps. Entity ranking using
wikipedia as a pivot. In Proceedings of the 19th ACM Conference on Information and
Knowledge Management, CIKM 2010, Toronto, Ontario, Canada, October 26-30, 2010,
pages 69-78, 2010. doi: 10.1145/1871437.1871451. URL http://doi.acm.org/10.1145/
1871437.1871451.

Richard M. Karp. A simple derivation of edmonds’ algorithm for optimum branchings.
Networks, 1(3):265-272, 1971. doi: 10.1002/net.3230010305. URL https://doi.org/10.
1002/net.3230010305.

Laura Kassner, Vivi Nastase, and Michael Strube. Acquiring a taxonomy from the
german wikipedia. In Proceedings of the International Conference on Language Resources
and Evaluation, LREC 2008, 26 May - 1 June 2008, Marrakech, Morocco, 2008. URL
http://www.lrec-conf.org/proceedings/lrec2008/summaries/544.html.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1746-1751, 2014. URL http://aclweb.org/anthology/D/D14/D14-1181.pdf.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics, 7-12 July
2003, Sapporo Convention Center, Sapporo, Japan., pages 423-430, 2003. URL http:
/ laclweb.org/anthology/P/P03/P03-1054.pdf.

Morton Klein. A primal method for minimal cost flows with applications to the assign-
ment and transportation problems. Management Science, 14(3):205-220, 1967. URL
https://EconPapers.repec.org/RePEc:inm:ormnsc:v:14:y:1967:i:3:p:205-220.

Morton Klein. A primal method for minimal cost flows with applications to the assign-
ment and transportation problems. Management Science, 14(3):205-220, 1967.

Tomas Kliegr, Vaclav Zeman, and Milan Dojchinovski. Linked hypernyms dataset-
generation framework and use cases. In 3rd Workshop on Linked Data in Linguistics:
Multilingual Knowledge Resources and Natural Language Processing, page 82. Citeseer,
2014.

155



Bibliography

(66]

(67]

(68]

(69]

[70]

(71]

[72]

(73]

156

Peter Kluegl, Martin Toepfer, Philip-Daniel Beck, Georg Fette, and Frank Puppe. UIMA
ruta: Rapid development of rule-based information extraction applications. Natural
Language Engineering, 22(1):1-40, 2016. doi: 10.1017/51351324914000114. URL https:
//doi.org/10.1017/S1351324914000114.

Sebastian Kohler, Sandra C. Doelken, Christopher J. Mungall, Sebastian Bauer, He-
len V. Firth, Isabelle Bailleul-Forestier, Graeme C. M. Black, Danielle L. Brown, Michael
Brudno, Jennifer Campbell, David R. FitzPatrick, Janan T. Eppig, Andrew P. Jackson,
Kathleen Freson, Marta Girdea, Ingo Helbig, Jane A. Hurst, Johanna Jdhn, Laird G. Jack-
son, Anne M. Kelly, David H. Ledbetter, Sahar Mansour, Christa L. Martin, Celia Moss,
Andrew Mumford, Willem Ouwehand, Soo-Mi Park, Erin Rooney Riggs, Richard H. Scott,
Sanjay Sisodiya, Steven Van Vooren, Ronald J. Wapner, Andrew O. M. Wilkie, Caroline E
Wright, Anneke T. Vulto-van Silfhout, Nicole de Leeuw, Bert B. A. de Vries, Nicole L.
Washington, Cynthia L. Smith, Monte Westerfield, Paul N. Schofield, Barbara J. Ruef,
Georgios V. Gkoutos, Melissa Haendel, Damian Smedley, Suzanna E. Lewis, and Peter N.
Robinson. The human phenotype ontology project: linking molecular biology and
disease through phenotype data. Nucleic Acids Research, 42(Database-Issue):966-974,
2014. doi: 10.1093/nar/gkt1026. URL https://doi.org/10.1093/nar/gkt1026.

Zornitsa Kozareva and Eduard H. Hovy. A semi-supervised method to learn and con-
struct taxonomies using the web. In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2010, 9-11 October 2010, MIT Stata
Center, Massachusetts, USA, A meeting of SIGDAT, a Special Interest Group of the ACL,
pages 1110-1118, 2010. URL http://www.aclweb.org/anthology/D10-1108.

Zornitsa Kozareva, Ellen Riloff, and Eduard H. Hovy. Semantic class learning from the
web with hyponym pattern linkage graphs. In ACL 2008, Proceedings of the 46th Annual
Meeting of the Association for Computational Linguistics, June 15-20, 2008, Columbus,
Ohio, USA, pages 1048-1056, 2008. URL http://www.aclweb.org/anthology/P08-1119.

Anton E Lawson. How do humans acquire knowledge? and what does that imply about
the nature of knowledge? Science & Education, 9(6):577-598, 2000.

Joél Legrand and Ronan Collobert. Joint rnn-based greedy parsing and word composi-
tion. CoRR, abs/1412.7028, 2014. URL http://arxiv.org/abs/1412.7028.

Joél Legrand and Ronan Collobert. Deep neural networks for syntactic parsing of
morphologically rich languages. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany,
Volume 2: Short Papers, 2016. URL http://aclweb.org/anthology/P/P16/P16-2093.pdf.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N.
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Séren Auer, and
Christian Bizer. DBpedia - a large-scale, multilingual knowledge base extracted from
wikipedia. Semantic Web Journal, 6(2):167-195, 2015. URL http://jens-lehmann.org/
files/2015/swj_dbpedia.pdf.



Bibliography

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

[82]

(83]

Douglas B. Lenat. CYC: A large-scale investment in knowledge infrastructure. Commun.
ACM, 38(11):32-38, 1995. doi: 10.1145/219717.219745. URL http://doi.acm.org/10.
1145/219717.219745.

Xueqing Liu, Yangqiu Song, Shixia Liu, and Haixun Wang. Automatic taxonomy construc-
tion from keywords. In The 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’12, Beijing, China, August 12-16, 2012, pages 1433—
1441, 2012. doi: 10.1145/2339530.2339754. URL http://doi.acm.org/10.1145/2339530.
2339754.

Anh Tuan Luu, Jung-jae Kim, and See-Kiong Ng. Taxonomy construction using syntactic
contextual evidence. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A
meeting of SIGDAT, a Special Interest Group of the ACL, pages 810-819, 2014. URL
http://aclweb.org/anthology/D/D14/D14-1088.pdf.

Anh Tuan Luu, Siu Cheung Hui, and See-Kiong Ng. Utilizing temporal information for
taxonomy construction. TACL, 4:551-564, 2016. URL https://transacl.org/ojs/index.
php/tacl/article/view/954.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. YAGO3: A knowledge
base from multilingual wikipedias. In CIDR 2015, Seventh Biennial Conference on Inno-
vative Data Systems Research, Asilomar, CA, USA, January 4-7, 2015, Online Proceedings,
2015. URL http://cidrdb.org/cidr2015/Papers/CIDR15_Paperl.pdf.

Jean M Mandler and Laraine McDonough. Drinking and driving don’t mix: Inductive
generalization in infancy. Cognition, 59(3):307-335, 1996.

John McCarthy. Programs with common sense. RLE and MIT Computation Center, 1960.

John McCarthy. Epistemological problems of artificial intelligence. In Proceedings of the
5th International Joint Conference on Artificial Intelligence. Cambridge, MA, USA, August
22-25, 1977, pages 1038-1044, 1977. URL http://ijcai.org/Proceedings/77-2/Papers/094.
pdf.

Olena Medelyan, Ian H. Witten, Anna Divoli, and Jeen Broekstra. Automatic construction
of lexicons, taxonomies, ontologies, and other knowledge structures. Wiley Interdisc.
Rew.: Data Mining and Knowledge Discovery, 3(4):257-279, 2013. doi: 10.1002/widm.
1097. URL https://doi.org/10.1002/widm.1097.

Christian M. Meyer and Iryna Gurevych. What psycholinguists know about chemistry:
Aligning wiktionary and wordnet for increased domain coverage. In Fifth International
Joint Conference on Natural Language Processing, JCNLP 2011, Chiang Mai, Thailand,
November 8-13, 2011, pages 883-892, 2011. URL http://aclweb.org/anthology/I1/111/
111-1099.pdf.

157



Bibliography

(84]

(85]

(86]

(87]

(88]

(89]

[90]

(91]

[92]

158

Peter Mika, Massimiliano Ciaramita, Hugo Zaragoza, and Jordi Atserias. Learning to tag
and tagging to learn: A case study on wikipedia. IEEE Intelligent Systems, 23(5):26-33,
2008. doi: 10.1109/M1S.2008.85. URL https://doi.org/10.1109/MIS.2008.85.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Dis-
tributed representations of words and phrases and their compositionality. In Advances
in Neural Information Processing Systems 26: 27th Annual Conference on Neural Infor-
mation Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States., pages 3111-3119, 2013. URL http://papers.nips.cc/paper/
5021-distributed-representations- of-words-and-phrases-and- their-compositionality.

George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39-41,
1995. doi: 10.1145/219717.219748. URL http://doi.acm.org/10.1145/219717.219748.

George A Miller, Claudia Leacock, Randee Tengi, and Ross T Bunker. A semantic concor-
dance. In Proceedings of the workshop on Human Language Technology, pages 303-308.
Association for Computational Linguistics, 1993.

Dan I. Moldovan, Sanda M. Harabagiu, Marius Pasca, Rada Mihalcea, Richard Goodrum,
Roxana Girju, and Vasile Rus. LASSO: A tool for surfing the answer net. In Proceedings
of The Eighth Text REtrieval Conference, TREC 1999, Gaithersburg, Maryland, USA,
November 17-19, 1999, 1999. URL http://trec.nist.gov/pubs/trec8/papers/smu.pdf.

Ndapandula Nakashole, Gerhard Weikum, and Fabian M. Suchanek. PATTY: A taxonomy
of relational patterns with semantic types. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea, pages
1135-1145, 2012. URL http://www.aclweb.org/anthology/D12-1104.

Vivi Nastase and Michael Strube. Decoding wikipedia categories for knowledge ac-
quisition. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelli-
gence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pages 1219-1224, 2008. URL
http://www.aaai.org/Library/AAAI/2008/aaai08-193.php.

Vivi Nastase, Michael Strube, Benjamin Boerschinger, Cécilia Zirn, and Anas Elghafari.
Wikinet: A very large scale multi-lingual concept network. In Proceedings of the Interna-
tional Conference on Language Resources and Evaluation, LREC 2010, 17-23 May 2010,
Valletta, Malta, 2010. URL http://www.Irec-conf.org/proceedings/lrec2010/summaries/
615.html.

Roberto Navigli and Simone Paolo Ponzetto. Babelnet: The automatic construction,
evaluation and application of a wide-coverage multilingual semantic network. Artif.
Intell., 193:217-250, 2012. doi: 10.1016/j.artint.2012.07.001. URL https://doi.org/10.
1016/j.artint.2012.07.001.



Bibliography

(93]

(94]

[95]

(96]

[97]

(98]

[99]

[100]

[101]

[102]

Roberto Navigli and Paola Velardi. Learning word-class lattices for definition and
hypernym extraction. In ACL 2010, Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, July 11-16, 2010, Uppsala, Sweden, pages
1318-1327,2010. URL http://www.aclweb.org/anthology/P10-1134.

Roberto Navigli, Paola Velardi, and Stefano Faralli. A graph-based algorithm for inducing
lexical taxonomies from scratch. In IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011,
pages 1872-1877, 2011. doi: 10.5591/978-1-57735-516-8/IJCAI11-313. URL https:
//doi.org/10.5591/978-1-57735-516-8/1JCAI11-313.

Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical
representations. CoRR, abs/1705.08039, 2017. URL http://arxiv.org/abs/1705.08039.

Robert C. Nickerson, Upkar Varshney, and Jan Muntermann. A method for taxonomy
development and its application in information systems. EJIS, 22(3):336-359, 2013. doi:
10.1057/€jis.2012.26. URL https://doi.org/10.1057/ejis.2012.26.

Joel Nothman, Tara Murphy, and James R. Curran. Analysing wikipedia and gold-
standard corpora for NER training. In EACL 2009, 12th Conference of the European
Chapter of the Association for Computational Linguistics, Proceedings of the Conference,
Athens, Greece, March 30 - April 3, 2009, pages 612-620, 2009. URL http://www.aclweb.
org/anthology/E09-1070.

Michael P. Oakes. Using hearst’s rules for the automatic acquisition of hyponyms for
mining a pharmaceutical corpus. In International Workshop Text Mining Research,
Practice and Opportunities, Proceedings, Borovets, Bulgaria, 24 September 2005, held in
conjunction with RANLP 2005, pages 63-67, 2005.

James B. Orlin. A polynomial time primal network simplex algorithm for minimum
cost flows. Math. Program., 77:109-129, 1997. doi: 10.1007/BF02614365. URL https:
//doi.org/10.1007/BF02614365.

Sebastian Padé and Mirella Lapata. Dependency-based construction of semantic space
models. Computational Linguistics, 33(2):161-199, 2007. doi: 10.1162/c0li.2007.33.2.161.
URL https://doi.org/10.1162/co0li.2007.33.2.161.

Alexander Panchenko, Olga Morozova, and Hubert Naets. A semantic similarity measure
based on lexico-syntactic patterns. In 11th Conference on Natural Language Processing,
KONVENS 2012, Empirical Methods in Natural Language Processing, Vienna, Austria,
September 19-21, 2012, pages 174-178, 2012. URL http://www.oegai.at/konvens2012/
proceedings/23_panchenkol2p/.

Alexander Panchenko, Stefano Faralli, Eugen Ruppert, Steffen Remus, Hubert Naets,
Cédrick Fairon, Simone Paolo Ponzetto, and Chris Biemann. TAXI at semeval-2016
task 13: a taxonomy induction method based on lexico-syntactic patterns, substrings

159



Bibliography

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

160

and focused crawling. In Proceedings of the 10th International Workshop on Semantic
Evaluation, SemEval @NAACL-HLT 2016, San Diego, CA, USA, June 16-17, 2016, pages
1320-1327,2016. URL http://aclweb.org/anthology/S/S16/516-1206.pdf.

Marco Pennacchiotti and Patrick Pantel. Ontologizing semantic relations. In ACL 2006,
21st International Conference on Computational Linguistics and 44th Annual Meeting
of the Association for Computational Linguistics, Proceedings of the Conference, Sydney,
Australia, 17-21 July 2006, 2006. URL http://aclweb.org/anthology/P06-1100.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A
meeting of SIGDAT, a Special Interest Group of the ACL, pages 1532-1543, 2014. URL
http://aclweb.org/anthology/D/D14/D14-1162.pdf.

Simone Paolo Ponzetto. Creating a knowledge base from a collaboratively generated en-
cyclopedia. In Human Language Technology Conference of the North American Chapter
of the Association of Computational Linguistics, Proceedings, April 22-27, 2007, Rochester,
New York, USA, pages 9-12, 2007. URL http://www.aclweb.org/anthology/N07-3003.

Simone Paolo Ponzetto and Roberto Navigli. Knowledge-rich word sense disambigua-
tion rivaling supervised systems. In ACL 2010, Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, July 11-16, 2010, Uppsala, Sweden, pages
1522-1531, 2010. URL http://www.aclweb.org/anthology/P10-1154.

Simone Paolo Ponzetto and Michael Strube. Knowledge derived from wikipedia for
computing semantic relatedness. J. Artif. Intell. Res., 30:181-212, 2007. doi: 10.1613/jair.
2308. URL https://doi.org/10.1613/jair.2308.

Simone Paolo Ponzetto and Michael Strube. Deriving a large-scale taxonomy from
wikipedia. In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence,
July 22-26, 2007, Vancouver, British Columbia, Canada, pages 1440-1445, 2007. URL
http://www.aaai.org/Library/AAAI/2007/aaai07-228.php.

Simone Paolo Ponzetto and Michael Strube. Wikitaxonomy: A large scale knowledge re-
source. In ECAI 2008 - 18th European Conference on Artificial Intelligence, Patras, Greece,
July 21-25, 2008, Proceedings, pages 751-752, 2008. doi: 10.3233/978-1-58603-891-5-751.
URL https://doi.org/10.3233/978-1-58603-891-5-751.

Simone Paolo Ponzetto and Michael Strube. Taxonomy induction based on a collab-
oratively built knowledge repository. Artif. Intell., 175(9-10):1737-1756, 2011. doi:
10.1016/j.artint.2011.01.003. URL https://doi.org/10.1016/j.artint.2011.01.003.

Hoifung Poon and Pedro M. Domingos. Unsupervised ontology induction from text. In
ACL 2010, Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, July 11-16, 2010, Uppsala, Sweden, pages 296-305, 2010. URL http://www.
aclweb.org/anthology/P10-1031.



Bibliography

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Tye Rattenbury, Nathaniel Good, and Mor Naaman. Towards automatic extraction of
event and place semantics from flickr tags. In SIGIR 2007: Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, Amsterdam, The Netherlands, July 23-27, 2007, pages 103-110, 2007. doi:
10.1145/1277741.1277762. URL http://doi.acm.org/10.1145/1277741.1277762.

Matthew Richardson and Pedro M. Domingos. Building large knowledge bases by mass
collaboration. In Proceedings of the 2nd International Conference on Knowledge Capture
(K-CAP 2003), October 23-25, 2003, Sanibel Island, FL, USA, pages 129-137, 2003. doi:
10.1145/945645.945665. URL http://doi.acm.org/10.1145/945645.945665.

Eleanor Rosch. Principles of categorization. Concepts: core readings, 189, 1999.

Patrick Schone, Gary M. Ciany, R. Cutts, Paul McNamee, James Mayfield, and Thomas
Smith. Qactis-based question answering at TREC 2005. In Proceedings of the Fourteenth
Text REtrieval Conference, TREC 2005, Gaithersburg, Maryland, USA, November 15-18,
2005, 2005. URL http://trec.nist.gov/pubs/trec14/papers/dept-o-defense.qa.pdf.

Lenhart K. Schubert. Turing’s dream and the knowledge challenge. In Proceedings, The
Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative
Applications of Artificial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts,
USA, pages 1534-1538, 2006. URL http://www.aaai.org/Library/AAAI/2006/aaai06-244.

php.

E Sclano and P. Velardi. Termextractor: a web application to learn the shared terminol-
ogy of emergent web communities. In Enterprise Interoperability II - New Challenges
and Industrial Approaches, Proceedings of the 3th International Conference on Interoper-
ability for Enterprise Software and Applications, IESA 2007, March 27-30, 2007, Funchal,
Madeira Island, Portugal, pages 287-290, 2007. doi: 10.1007/978-1-84628-858-6_32.
URL https://doi.org/10.1007/978-1-84628-858-6_32.

Julian Seitner, Christian Bizer, Kai Eckert, Stefano Faralli, Robert Meusel, Heiko Paul-
heim, and Simone Paolo Ponzetto. A large database of hypernymy relations extracted
from the web. In Proceedings of the Tenth International Conference on Language Re-
sources and Evaluation LREC 2016, Portoroz, Slovenia, May 23-28, 2016., 2016. URL
http://www.lrec-conf.org/proceedings/lrec2016/summaries/204.html.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. Learning syntactic patterns for auto-
matic hypernym discovery. In Advances in Neural Information Processing Systems 17
[Neural Information Processing Systems, NIPS 2004, December 13-18, 2004, Vancouver,
British Columbia, Canada], pages 1297-1304, 2004. URL http://papers.nips.cc/paper/
2659-learning-syntactic- patterns- for-automatic- hypernym-discovery.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. Semantic taxonomy induction from
heterogenous evidence. In ACL 2006, 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computational Linguistics,

161



Bibliography

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

162

Proceedings of the Conference, Sydney, Australia, 17-21 July 2006, 2006. URL http://
aclweb.org/anthology/P06-1101.

Rion Langley Snow. Semantic Taxonomy Induction. PhD thesis, Stanford University,
2009.

Yangqiu Song, Shixia Liu, Xueqing Liu, and Haixun Wang. Automatic taxonomy
construction from keywords via scalable bayesian rose trees. IEEE Trans. Knowl.
Data Eng., 27(7):1861-1874, 2015. doi: 10.1109/TKDE.2015.2397432. URL https:
//doi.org/10.1109/TKDE.2015.2397432.

Michael Strube and Simone Paolo Ponzetto. Wikirelate! computing semantic related-
ness using wikipedia. In Proceedings, The Twenty-First National Conference on Artificial
Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Con-
ference, July 16-20, 2006, Boston, Massachusetts, USA, pages 1419-1424, 2006. URL
http://www.aaai.org/Library/AAAI/2006/aaai06-223.php.

Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge engineering:
Principles and methods. Data Knowl. Eng., 25(1-2):161-197, 1998. doi: 10.1016/
S0169-023X(97)00056-6. URL https://doi.org/10.1016/S0169-023X(97)00056- 6.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic
knowledge. In Proceedings of the 16th International Conference on World Wide Web,
WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, pages 697-706, 2007. doi: 10.1145/
1242572.1242667. URL http://doi.acm.org/10.1145/1242572.1242667.

Bongwon Suh, Gregorio Convertino, Ed H. Chi, and Peter Pirolli. The singularity is not
near: Slowing growth of wikipedia. In Proceedings of the 5th International Symposium
on Wikis and Open Collaboration, WikiSym "09, pages 8:1-8:10, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-730-1. doi: 10.1145/1641309.1641322. URL http://doi.acm.
org/10.1145/1641309.1641322.

Bongwon Suh, Gregorio Convertino, Ed H. Chi, and Peter Pirolli. The singularity is not
near: slowing growth of wikipedia. In Proceedings of the 2009 International Symposium
on Wikis, 2009, Orlando, Florida, USA, October 25-27, 2009, 2009. doi: 10.1145/1641309.
1641322. URL http://doi.acm.org/10.1145/1641309.1641322.

Idan Szpektor, Ido Dagan, Roy Bar-Haim, and Jacob Goldberger. Contextual preferences.
In ACL 2008, Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics, June 15-20, 2008, Columbus, Ohio, USA, pages 683-691, 2008. URL http:
/ Iwww.aclweb.org/anthology/P08-1078.

Paola Velardi, Stefano Faralli, and Roberto Navigli. Ontolearn reloaded: A graph-based
algorithm for taxonomy induction. Computational Linguistics, 39(3):665-707, 2013. doi:
10.1162/COLI_a_00146. URL https://doi.org/10.1162/COLI_a_00146.



Bibliography

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

Luis von Ahn. Games with a purpose. IEEE Computer, 39(6):92-94, 2006. doi: 10.1109/
MC.2006.196. URL https://doi.org/10.1109/MC.2006.196.

Luis von Ahn and Laura Dabbish. Designing games with a purpose. Commun. ACM,
51(8):58-67, 2008. doi: 10.1145/1378704.1378719. URL http://doi.acm.org/10.1145/
1378704.1378719.

Chengyu Wang, Xiaofeng He, and Aoying Zhou. A short survey on taxonomy learn-
ing from text corpora: Issues, resources and recent advances. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP
2017, Copenhagen, Denmark, September 9-11, 2017, pages 1201-1214, 2017. URL
http://aclanthology.info/papers/D17-1124/d17-1124.

Dominic Widdows. Unsupervised methods for developing taxonomies by combining
syntactic and statistical information. In Human Language Technology Conference of
the North American Chapter of the Association for Computational Linguistics, HLT-
NAACL 2003, Edmonton, Canada, May 27 - June 1, 2003, 2003. URL http://aclweb.org/
anthology/N/N03/N03-1036.pdf.

Wikipedia. = Wikipedia community.  https://en.wikipedia.org/wiki/Wikipedia_
community, 2017. [Online; accessed 11-October-2017].

Wikipedia. Wikipedia:manual of style. https://en.wikipedia.org/wiki/Wikipedia:
Manual_of_Style, 2017. [Online; accessed 11-October-2017].

Wikipedia. Editing guidelines for wikipedia categories. ttps://en.wikipedia.org/wiki/
Wikipedia:Categorization, 2017. [Online; accessed 27-July-2017].

Wikipedia. Watson (computer). https://en.wikipedia.org/wiki/Watson_(computer),
2017. [Online; accessed 7-October-2017].

Wikipedia. Wikipedia. https://en.wikipedia.org/wiki/Wikipedia, 2017. [Online; ac-
cessed 11-October-2017].

Wikipedia. List of wikipedias — wikipedia, the free encyclopedia. https://en.wikipedia.
org/w/index.php?title=List_of_Wikipedias&oldid773693902, 2017. [Online; accessed
9-April-2017].

YAGO. Yago: A high-quality knowledge base. http://www.mpi-inf.mpg.de/departments/
databases-and-information-systems/research/yago-naga/yago/, 2017. [Online; ac-
cessed 26-July-2017].

Hui Yang and Jamie Callan. A metric-based framework for automatic taxonomy in-
duction. In ACL 2009, Proceedings of the 47th Annual Meeting of the Association for
Computational Linguistics and the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLD 2-7 August 2009, Singapore, pages 271-279, 2009. URL
http://www.aclweb.org/anthology/P09-1031.

163



Bibliography

[142]

[143]

[144]

[145]

[146]

164

Shuo Yang, Lei Zou, Zhongyuan Wang, Jun Yan, and Ji-Rong Wen. Efficiently answering
technical questions - A knowledge graph approach. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA., pages 3111-3118, 2017. URL http://aaai.org/ocs/index.php/AAAI/AAAIL7/paper/
view/14576.

Torsten Zesch, Christof Miiller, and Iryna Gurevych. Using wiktionary for computing
semantic relatedness. In Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, AAAI 2008, Chicago, 1llinois, USA, July 13-17, 2008, pages 861-866, 2008.
URL http://www.aaai.org/Library/AAAI/2008/aaai08-137.php.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional net-
works for text classification. In Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 649-657, 2015. URL http://papers.nips.cc/paper/
5782-character-level- convolutional-networks-for- text- classification.

Yuchen Zhang, Amr Ahmed, Vanja Josifovski, and Alexander J. Smola. Taxonomy
discovery for personalized recommendation. In Seventh ACM International Con-
ference on Web Search and Data Mining, WSDM 2014, New York, NY, USA, Febru-
ary 24-28, 2014, pages 243-252, 2014. doi: 10.1145/2556195.2556236. URL http:
//doi.acm.org/10.1145/2556195.2556236.

Xingwei Zhu, Zhaoyan Ming, Xiaoyan Zhu, and Tat-Seng Chua. Topic hierarchy con-
struction for the organization of multi-source user generated contents. In The 36th
International ACM SIGIR conference on research and development in Information Re-
trieval, SIGIR 13, Dublin, Ireland - July 28 - August 01, 2013, pages 233-242, 2013. doi:
10.1145/2484028.2484032. URL http://doi.acm.org/10.1145/2484028.2484032.



Amit Gupta

9 +41 78 67 19 118
=1 amitguptal51@gmail.com

Ph.D. “B http://amitgupta.co
Natural Language Processing, Machine Learning Nationality: Indian
—  Professional Experience

Sept 2013 - Dec 2017

Jul 2015 - Dec 2015

Apr 2013 - Aug 2013

Sep 2012 - Mar 2013

Jul 2010 - Aug 2012

Jan 2009 - Apr 2009

May 2008 - July 2008

May 2007 - July 2007

Sep 2013 - Dec 2017

Jul 2005 - Jun 2010

Doctoral Assistant, Ecole Polytechnique Fédérale de Lausanne, Switzerland.
Worked on the problem of automated taxonomy induction and its applications under
the supervision of Prof. Karl Aberer. The thesis is nominated for the EPFL's best
dissertation award, which is awarded to top 5% theses in EPFL per year. Results of
the award awaited in 2018.

Intern, Google Inc., Zurich.

Worked on taxonomy induction from Wikipedia and learning generalization templates
for Wikipedia entities under the supervision of Dr. Daniele Pighin. Internship work is
published at COLING'16.

Senior Data Scientist, Zlemma.com, Pune.

Conceptualized and implemented a parser for extracting structured data from unstruc-
tured resumes using advanced machine learning techniques. The system outperformed
all the competitors in the market.

Founder, Squareft.in, New Delhi.

Designed and developed a next generation map-based portal for the real estate market.
Performed full stack web development using technologies such as RubyOnRails, HTML,
js, coffee, Amazon EC2.

Strategist, Tower Research Capital Inc., New York and Gurgaon.

Worked on mathematical modeling of signals and high-frequency trading strategies
for European and Canadian markets. Involved in all aspects of trading including
development, testing, deployment, and monitoring of an end-to-end trading system.
Research Assistant, Rice University, Houston.

Worked on the problem of automated taxonomy induction and its applications under
the supervision of Prof. Karl Aberer.

Summer Intern, INRIA, Sophia Antipolis.

Worked on poisson reconstruction of 2D and 3D surfaces using polygon soups.
Summer Intern, Vanderbilt University, Nashville.

Worked on a collaborative project between Stanford University and Vanderbilt University
funded by the Department of Education, USA to promote learning and reasoning skills

in middle school students. Analyzed behavior patterns of students using hidden markov
models.

Education

Ecole polytechnique fédérale de Lausanne, Switzerland, 5.63 /6.
Ph.D. in Computer Science.

IIT Bombay, Powai, 9.27 / 10.
B.Tech. + M.Tech. in Computer Science.

165



Jan 2009 - Apr 2009

EPFL 2017

EPFL 2013
[IT Bombay 2010
ACM ICPC 2008

[IT-JEE 2005
AIEEE 2005
INMO 2004
NSEP 2004

NTSE 2003

AAAI 2018

CIKM 2017

LDOW 2017

COLING 2016

Greedy Algorithms
2008

ITS 2008

166

Rice University, Houston, 4.15 / 4.
Exchange student for a semester in the Department of Computer Science.

Achievements and Awards

Ph.D. thesis is nominated for EPFL’s best dissertation award (awarded to
top 5% thesis in EPFL).

Awarded the EPFL EDIC fellowship for pursual of doctoral studies.

Awarded Dr. George B. Fernandez fellowship for academic excellence.

Selected to represent [IT-Bombay in South Asia Regionals, ACM-Inter Collegiate
Programming Competition.

Ranked 6 (All India Rank) among 200,000 students in [IT—Joint Entrance
Screening Examination.

Ranked 37" (All India Rank) among 200,000 students in CBSE All India
Engineering Entrance Examination. Awarded the CBSE AIEEE Scholarship.

Ranked 17th (All India Rank) in Indian National Mathematics Olympiad, hence,
selected for the International Mathematics Olympiad Training Camp.

Ranked among top 1% (All India) students in National Standard Examination
in Physics.

Awarded National Talent Search scholarship.

Publications

Gupta, A., Lebret, R., Harkous, H., & Aberer, K. (2017). 280 Birds with
One Stone: Inducing Multilingual Taxonomies from Wikipedia using Character-
level Classification. In proceedings of the 32nd AAAI Conference on Atrtificial
Intelligence (accepted to appear in AAAI 2018).

Gupta, A., Lebret, R., Harkous, H., & Aberer, K. (2017). Taxonomy Induction
using Hypernym Subsequences. In Proceedings of the 26th Conference on
Information and Knowledge Management (No. EPFL-CONF-230205)

Smeros, P., Gupta, A., Catasta, M., & Aberer, K. (2017). deepschema. org:
An Ontology for Typing Entities in the Web of Data. In 10th Workshop on
Linked Data on the Web (LDOW 2017) (No. EPFL-CONF-227993).

Gupta, A., Piccinno, F., Kozhevnikov, M., Pasca, M., & Pighin, D. (2016).
Revisiting Taxonomy Induction over Wikipedia. In Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics: Technical
Papers, Osaka, Japan, December 11-17 2016 (No. EPFL-CONF-227401, pp.
2300-2309).

Bellur, U., Vadodaria, H., & Gupta, A. (2008). Semantic Matchmaking
Algorithms. In Greedy Algorithms. InTech.

Jeong, H., Gupta, A., Roscoe, R., Wagster, J., Biswas, G., & Schwartz,
D. (2008). Using Hidden Markov models to characterize student behaviors

in learning-by-teaching environments. In Intelligent Tutoring Systems (pp.
614-625). Springer Berlin/Heidelberg.



|
Mathematics

Theoretical Computer
Science

Machine Learning

Databases

Miscellaneous

May 2009 - Jun 2010

Jan 2009 - Apr 2009

Jan 2007 - Apr 2007

EPFL

[IT Bombay

I
Programming
Languages

Libraries & Software
Packages

Scripting Languages
Other

Relevant Courses

Introduction to Probability, Linear Algebra, Random Processes and Statistical
Inference, Combinatorics, Game Theory (Rice University)

Algorithms and Data Structures, Design and Analysis of Algorithms, Graph
theory, Formal Methods in Computer Science, Theory of Computation, Linear
Optimization, Distributed Algorithms (EPFL)

Artificial Intelligence, Statistical Foundations of Machine Learning, Data Mining,
Information Retrieval and Mining for web, Adaptive Systems (Rice University),
Foundations of Imaging Science (EPFL)

Database and Information systems, Big Data (EPFL)

Operating Systems, Software Systems, Computer Networks, Network Security |
& 11, Principles of Programming Languages, Language Processors, Advanced
Compilation in Parallel processors (Rice University)

Other Projects

Master’s Thesis, Topic: Financial Forecasting, |IT Bombay, Powai.

Defined new mathematical properties for time series, which helped in highly accurate
clustering. Used the clustering information to construct a new forecasting system,
which achieved an improvement of 12% over existing methods.

Course Project, Topic: Netflix Recommender System Challenge, Rice Univer-
sity, Houston.

Designed and developed a system for recommending movies to users based on Netflix
user preferences data. Achieved more than 9% improvement over the existing Netflix
solution.

Course Project, Topic: Email Client, lIT Bombay, Powai.

Worked in a team of two to build a fully-featured email client solution (similar to
Thunderbird) using Java swing Library.

Teaching Assistantship

Programmation |, Programmation Il, Distributed Information Systems, Software
Engineering (project coach).

Linear Optimization.

Technical Skills
Python, C/C++, JAVA, Lua, Ruby.

Torch, MySQL, Postgresql, MongoDB, ElasticSearch, Hadoop, MATLAB,
RubyonRails.

Perl, Awk, Bash.
IATEX, SQL, HTML.

Languages
English (Fluent), Hindi (Native), French (Basic)

167










<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


