Stability and Performance Limits of Adaptive Primal-Dual Networks

This paper studies distributed primal-dual strategies for adaptation and learning over networks from streaming data. Two first-order methods are considered based on the Arrow-Hurwicz (AH) and augmented Lagrangian (AL) techniques. Several revealing results are discovered in relation to the performance and stability of these strategies when employed over adaptive networks. The conclusions establish that the advantages that these methods exhibit for deterministic optimization problems do not necessarily carry over to stochastic optimization problems. It is found that they have narrower stability ranges and worse steady-state mean-square-error performance than primal methods of the consensus and diffusion type. It is also found that the AH technique can become unstable under a partial observation model, while the other techniques are able to recover the unknown under this scenario. A method to enhance the performance of AL strategies is proposed by tying the selection of the step-size to their regularization parameter. It is shown that this method allows the AL algorithm to approach the performance of consensus and diffusion strategies but that it remains less stable than these other strategies.

Published in:
IEEE Transactions on Signal Processing, 63, 11, 2888-2903

 Record created 2017-12-19, last modified 2018-12-03

External link:
Download fulltext
Rate this document:

Rate this document:
(Not yet reviewed)