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Abstract

Biological systems are often treated as time-invariant by computational models that use fixed parameter values. In this
study, we demonstrate that the behavior of the p53-MDM2 gene network in individual cells can be tracked using adaptive
filtering algorithms and the resulting time-variant models can approximate experimental measurements more accurately
than time-invariant models. Adaptive models with time-variant parameters can help reduce modeling complexity and can
more realistically represent biological systems.
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Introduction

In science and engineering, computational models are needed to

describe the relationship between input and output data of a

system as well as to estimate future outputs based on inputs. One

common approach for constructing models from measured input/

output data is system identification (SI), which uses computational

techniques to build models of dynamical systems using the data

[1]. It is usually not feasible to build a white-box SI model, in

which all necessary information about the system is available. A

more practical approach is to construct a grey-box SI model,

which depends on some prior knowledge about the system, or a

black-box SI model, which does not require any prior knowledge

about the system. Parameters of a grey-box model usually describe

specific physical processes, e.g., the rate constant of a reaction,

whereas parameters of a black-box model may not [1].

Gene regulatory networks are dynamical systems. Biologists

regularly attempt to infer gene regulatory networks and build

mathematical models based on measured signaling (protein,

messenger RNA, microRNA, etc.) levels. Recent technological

advancement has made it possible to perform time-lapse

microscopy to track dynamical signaling states in individual cells

using fluorescent reporters (reviewed in [2]). SI is thus well suited

for deducing gene network models based on such measurements.

However, models of gene regulatory networks derived by SI

have to cope with various sources of uncertainty (Fig. 1a). First,

knowledge of gene networks, especially their stochastic processes

[3,4], is usually incomplete, which limits the accuracy of the

assumed model (e1). Second, the behavior of the network is

influenced by environmental factors (e2), which are often difficult

to model. Third, the observed data are subject to measurement

errors (e3). All these sources of uncertainty contribute to the

perceived stochasticity of gene networks preventing the model

estimates from better matching the data.

To achieve a better ‘‘fit’’ between models and measurements,

researchers often resort to increasing the order or complexity of

their models [5,6] while assuming constant model parameters

[7–9]. However, since many of the processes underlying the

uncertainties of gene networks are likely to be inherently time-

variant, we hypothesize that time-variant models can potentially

match and estimate experimental measurements better than time-

invariant models. Furthermore, tracking the change of parameter

values over time may help quantitatively approximate how time-

variant gene networks behave.

In this study, we demonstrate that adaptive filtering (in

engineering, the term filter is used to refer to a system that

processes or ‘‘filters’’ input signals to generate output signals)

techniques can be applied to creating time-variant models for gene

networks [10]. Widely used in engineering disciplines such as

communications, signal processing, and control, an adaptive filter

iteratively and continuously adjusts the model parameters based

on the error between the measured and estimated data (Fig. 1B).

Using recently available time-series data for the p53-MDM2

network as an example [5], we demonstrate that adaptive filters

can be used to ‘‘track’’ the changing parameters of gene network

models and to enhance model estimation. The tumor suppressor

p53 is one of the most studied proteins in cancer research [11,12].

In cellular stress conditions such as radiation-induced DNA

damage, p53 levels are reported to oscillate in a sustained manner

(Fig. 1C) [13]. p53 and MDM2 form a negative feedback loop –

p53 transcriptionally activates MDM2, while MDM2 degrades

p53 via ubiquitination [14]. The levels of p53 and MDM2 in

individual MCF7 cells have been tracked by time-lapse micros-

copy using the p53-CFP and MDM2-YFP fluorescent reporters

[5].

Results and Discussion

Before a model is constructed from data using SI, three choices

should be made: the model structure, model order, and parameter

estimation method by which a candidate model structure/order

combination is assessed [1]. As illustrated later, the choice of

parameter estimation method determines whether the model is

adaptive or not. We use an autoregressive with exogenous input
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(ARX) model structure for the p53-MDM2 network (see Methods).

Widely used for SI in engineering, ARX is often capable of

accurately approximating and describing underlying system

dynamics in real-world applications [1]. The ARX model

structure is represented by a combination of three parameters:

na, nb, and nk. The model order, which reflects the model

complexity, is taken to be the total number of the parameters used

(the sum of na and nb). Note that the ARX models are ‘‘discrete-

time’’ models commonly used in engineering (signal processing)

and computational physics [15,16]. The parameter values of

discrete-time difference equation models such as ARX are

determined by, but do not map one-on-one to, the rate constants

of physical reactions. This is different from continuous-time

differential equation models, wherein each parameter directly

represents the rate constant of a physical reaction. For instance, let

us assume we have two genes (u and y) whose protein levels are

measured every 10 minutes using time-lapse microscopy. We

assume no prior knowledge about the relationship between u and

y. For this case, one possible 1st order discrete-time model can be:

y(i)za1y(i{1)~b1u(i{1) or y(i)~{a1y(i{1)zb1u(i{1)

ð1Þ

Eq. 1 indicates that y measured at time i can be expressed as a

linear combination of y and u measured at time i-1 (10 minutes

ago). As shown in Appendix S1 (Note 1), the parameters a1 and b1

are determined by a combination of rate constants within the

10 minute time window and each parameter does not directly

represent one specific reaction. The rate constants are also related

to the modes of the characteristic polynomial whose coefficients

are formed from the parameters of the discrete-time model [15].

We first assume the ARX model is time-invariant, so the model

has constant parameters. We proceed to find the model order that

gives best estimates. For each model order, the best parameter

values that fit the measured data are identified using the Least

Squares estimation method (see Methods). After trying 1,000 na, nb,

and nk combinations, which includes a grey-box model (na = 2,

nb = 1, nk = 2, see Appendix S1 (Note 1) for its derivation starting

from the Geva-Zatorsky’s linear model [6]) that reflects prior

knowledge of the negative feedback loop, it was found that the

model order with the best performance is 4 (na = 1, nb = 3, nk = 2)

(Appendix S1 (Note 2)). However, Figure 1D shows that even this

best model only has a score of 12.9% according to the Best Fit

measure with 100% corresponding to a perfect fit and 0%

corresponding to a simple average (see Methods). The Best Fit

score is not improved when we applied to the same data other SI

model structures such as ARMAX, output-error, and state-space

(Appendix S1 (Note 3)). These results indicate that it is challenging

for the time-invariant ARX model to find parameters that fit the

measured data well. It is worth noting that such poor fit between

models and measurements are common for gene network models.

The poor model estimates are probably caused by many factors.

The p53-MDM2 dynamics are known to be influenced by other

genes and proteins [11,12]. For example, Colaluca et al. reported

that NUMB enters into a tricomplex with p53 and MDM2,

thereby preventing p53 ubiquitination [17]. Another example is

the kinase ATM, which can affect the p53-MDM2 dynamics by

activating p53 [6]. Hence fluctuations of protein levels such as

NUMB and ATM can translate into p53 and MDM2 fluctuations,

which, together with many other factors, contribute to the system

uncertainty (e1). Furthermore, the dynamics are also influenced by

environmental uncertainty (e2) (e.g., temperature variations and

cell-cell interactions) and by measurement uncertainty (e3). These

uncertainties are likely time-variant, causing the time-invariant

ARX model to provide poor estimates.

Can a time-variant p53-MDM2 model improve the model

performance? If so, it will indicate that the measured dynamics of

the p53-MDM2 negative feedback in individual cells has a time-

variant component. To test this hypothesis, we implement and

compare three adaptive filtering algorithms, NLMS (Normalized

Least Mean Squares), RLS (Recursive Least Squares), and

Figure 1. System identification of the p53-MDM2 gene network. (a) Models describe relationships between measured input and output data.
They are subject to three types of uncertainty: system uncertainty (e1), environmental uncertainty (e2), and measurement uncertainty (e3). (b) An
adaptive filter iteratively adjusts the model parameters based on the error between the measured and estimated data. (c) p53 and MDM2 levels
oscillate after radiation-induced DNA damage. (d) The best time-invariant ARX model (na = 1, nb = 3, nk = 2) only has a Best Fit score of 12.9%.
doi:10.1371/journal.pone.0031657.g001
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Kalman filter (see Methods), which allow the model to track the

changing parameters over time. NLMS is a variation of LMS

(Least Mean Squares), a popular adaptive filter due to its simplicity

and robustness [10]. The LMS iteration step-size m is a tradeoff

among the rate of convergence, stability, and steady-state

performance, and we use NLMS, which uses a self-adjustable

step-size, to improve performance. The second algorithm, RLS, is

computationally more intensive and usually has a faster conver-

gence rate than NLMS. Through a ‘‘forgetting factor’’ l, RLS can

assign larger weights to recent data and smaller weights to data in

the remote past, thereby enabling the algorithm to track changing

systems [10]. The third is the Kalman filter, which is widely used

in real engineering applications such as GPS (Global Positioning

System) and the most complex algorithm among the three options

studied in this work. The underlying state-space model for Kalman

filtering can assume different characteristics for the biological noise

(e2) and the measurement error (e3). Thus, any knowledge about

the noise spectrum can be utilized to improve model performance.

The three adaptive algorithms can be evaluated by readers using

the program and data provided in the supporting information files

(Software S1 and Data S1 (p53) and S2 (MDM2)). Instructions for

using the program can be found at Appendix S1 (Note 4). See also

Video S1.

Using the previous 4th order ARX model (na = 1, nb = 3, nk = 2),

all three adaptive filter algorithms improve the Best Fit score to

around 80% (Fig. 2A) with the NLMS solution being the least

computationally intensive, compared to the 12.9% achieved by the

time-invariant model. Using NLMS, to find out if the model order

significantly affects the performance, we tested a 3rd order grey-

box ARX model (na = 2, nb = 1, nk = 2) described earlier and a

simple 2nd order ARX model (na = 1, nb = 1, nk = 1). Figure 2B

illustrates that adaptive filtering (NLMS)-based time-variant

models (4, 5, and 6) significantly outperform time-invariant models

(1, 2, and 3). It is also seen that NLMS allows the low-order (3rd

and 2nd) adaptive models (time-varying models using adaptive

filtering) to achieve comparable performance to the high-order

(4th) model. These observations suggest that the measured

dynamics of the p53-MDM2 gene network has a time-variant

component (e1, e2, and/or e3), which enables lower-order, time-

variant models to outperform higher-order, time-invariant models.

More broadly, our results suggest that the common practice of

increasing model complexity without taking into account the time-

variant uncertainties may not necessarily yield better estimates for

gene networks.

Tracking the parameters over time provides an intuitive way for

evaluating the time-variant component of the measured p53-

MDM2 dynamics. Figure 2C and 2D show the results of using the

NLMS algorithm for tracking the 3rd-order ARX model (na = 2,

nb = 1, nk = 2) parameters (see also Appendix S1 (Note 5)). In

Figure 2C, it is seen that the parameter values are continuously

updated to reduce the estimation error at each iteration. Each

color line represents the changing values of a single parameter.

The resulting fit between measurements and estimates is observed

in Figure 2D - the adaptive filter iteratively estimates the MDM2

level and the corresponding Best Fit score is 84.7%. Note that

there is a period of relatively large estimation errors in the initial

transient phase while the filter is learning.

In this work, we demonstrate that time-variant models using

adaptive filters can provide more accurate estimates of single cell

measurements than time-invariant models. Taking time variation

into consideration allows lower-order, simpler models to outper-

form higher-order, time-invariant models. SI with adaptive filters

can provide a useful modeling methodology thanks to the

increasing number of time-series and single cell measurements

that are becoming available these days. The exact mechanisms of

these systems are often not completely understood, making grey-

and black-box SI models a convenient tool for estimating system

behaviors. Although we introduced adaptive filtering as an

estimation technique for better fitting a model to data, the same

approach may be used to elucidate the adaptive behavior of

biological systems. In that respect, tools from adaptive networks

[18–20] are potentially appropriate for modeling the adaptive

nature of large-scale interacting biological systems, including gene

networks. Another possible extension of our work is to use

adaptive filters and various forms of control mechanisms, such as

linear quadratic and robust control methods, for identifying and

controlling the stochastic dynamics of gene networks in real time.

This approach will require designing and building synthetic gene

circuit components that can function as sensors and controllers.

Recent advances in fields such as systems and synthetic biology

enable such applications that use in silico controls to regulate in vivo

gene circuits [21].

Methods

Image extraction and fluorescence quantification
285 Image frames were extracted from the video file [5] and the

fluorescence quantification of p53 and MDM2 was carried out

using the National Instruments Vision Assistant 2010. We

manually marked the location of each cell nucleus in each frame

and 285 data points were obtained for each protein.

ARX model structure
For a single-input/single-output system, the ARX model

structure is represented as [1]:

y(i)za1y(i{1)z:::zanay(i{na)~b1u(i{nk)z:::

zbnbu(i{nk{nbz1)ze(i)

where y(i) represents the output at time i, u(i) represents the input

at time i, na and nb designate the number of past output and input

samples that enter into the model, nk is the delay before the input

affects the system output, and e(i) represents the uncertainty at

time i.

System identification and the Best Fit score
For SI we used the MATLAB System Identification Toolbox

(Mathworks, USA) and the LabVIEW System Identification

Toolkit (National Instruments, USA). For Least Squares-based

time-invariant parameter estimation, the input and output data

were divided into two sets of data, estimation and validation sets.

Estimation data (from image frames 1 to 142) is the data set used

to fit a model to the data, while validation data (from image frames

143 to 285) is the data set used for model validation purposes. For

the adaptive filter implementations, the input and output data

were not divided into estimation and validation sets because this

division is not necessary; instead, the filters were iteratively and

continuously applied to the data set.

The performance was measured using the Best Fit score and the

equation for computing the score is:

Best Fit~1{
y{ŷyk k
y{�yyk k~1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

y(i){ŷy(i)½ �2
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

y(i){�yy½ �2
s
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where N is the number of samples used (data), i is the sample

index, y~½y(1),y(2):::,y(N)�T , ŷy~½ŷy(1),ŷy(2):::,ŷy(N)�T , and �yy~

½�yy,�yy:::,�yy�T (N entries). y is the measured output (MDM2) vector

and ŷy is the estimated output vector. �yy is a vector with the repeated

mean �yy of the data y. A score of 100% corresponds to a perfect fit,

and a score of 0% indicates that the fit is no better than guessing

the output to be the mean value (ŷy~�yy). For the adaptive filtering

algorithms, the Best Fit score was computed using the last 200 (out

of 285) data points to exclude the initial transient effects.

In the equation-error approach, the data vector Q(i) consists of

na elements of the output (MDM2) data vector y and nb elements

of the input (p53) data vector u as shown below.

Q(i)~½{y(i{1),:::,{y(i{na),u(i{nk),:::,u(i{nk{nbz1)�T

Least Squares method
The parametric vector to be estimated is denoted by

w~½w1,w2,:::,wm�T (m~naznb), and its entries refer to the

parameters a1,:::,ana,b1,:::,bnbf g of the ARX model. The

estimated output ŷy(i) and the error e(i) are computed using the

following equations.

ŷy(i)~Q(i)T w

e(i)~y(i){ŷy(i)

The least-squares criterion is expressed as:

J(w)~
XN

i~p

e(i)½ �2~
XN

i~p

y(i){Q(i)T w
� �2

p~max na,nkznb{1½ �ð Þ

The parameter vector wLS that minimizes J(w) is given by:

wLS~
XN

i~p

Q(i)Q(i)T

" #{1XN

i~p

Q(i)y(i)

Adaptive filtering algorithms
The parametric vector to be estimated is denoted by

w(i)~½w1(i),w2(i),:::,wm(i)�T (m~naznb), and its entries refer

to the parameters a1,:::,ana,b1,:::,bnbf g of the ARX model at each

iteration. Adaptive algorithms for estimating ARX models fall into

the class of adaptive IIR filters [22]. In this work, we illustrate the

modeling capabilities of adaptive methods by focusing on the

equation-error approach; other approaches are also possible

including conditions to examine the stability of the resulting

models. The estimated output ŷy(i) and the error e(i) are computed

using the following equations.

ŷy(i)~Q(i)T w(i)

e(i)~y(i){ŷy(i)

Figure 2. A time-variant model using adaptive filtering. (a) The three types of adaptive filter implementations (NLMS, RLS, and Kalman filter)
achieve similar Best Fit scores (near 80%) with the 4th order ARX model (na = 1, nb = 3, nk = 2). (b) Adaptive filtering-based time-variant models (4, 5,
and 6) outperform time-invariant models (1, 2, and 3). The performance of the adaptive filter is insensitive to the order of the model in these
simulations; with NLMS, a 3rd order grey-box ARX model (na = 2, nb = 1, nk = 2) and a 2nd order ARX model (na = 1, nb = 1, nk = 1) performing as well as
the 4th order ARX model (na = 1, nb = 3, nk = 2). The ARX na, nb, and nk values are enclosed by parentheses in the figure. (c) Parameter tracking by the
NLMS filter for the 3rd order ARX model (na = 2, nb = 1, nk = 2). Each color line represents the changing values of a single parameter. (d) The NLMS
algorithm enables the model to closely match measurements, increasing the Best Fit score to 84.7%. The estimation errors are reduced after an initial
brief ‘‘learning’’ period for the adaptive filter.
doi:10.1371/journal.pone.0031657.g002
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1. Normalized Least Mean Squares (NLMS). The

parametric vector w(i) is updated according to the following

equation.

w(iz1)~w(i)zm(i)e(i)Q(i)

where i is the iteration index and m(i) is the iteration step size at

time i.
The self-adjustable step size m(i) is chosen as:

m(i)~
m

ez Q(i)k k2

where m is the fixed iteration step size (0.1 was used for the

simulated experiments) and e in the denominator is a very small

positive constant ~1|10{6
� �

that avoids division by zero or by a

small number when Q(i)k k2
is zero or approaches zero. The

correction term m(i)e(i)Q(i) that is added to w(i) in the recursion is

normalized with respect to the squared-norm of Q(i). As a result,

the algorithm is less affected by large fluctuations in the data. Since

NLMS is obtained as a stochastic-gradient approximation to

Newton’s Method, NLMS exhibits a faster convergence behavior

than LMS [10].
2. Recursive Least Squares (RLS). The estimated

parametric vector w(i) is updated according to the following

equation [10].

w(iz1)~w(i)ze(i)g(i)

The gain vector g(i) is defined by the following equation.

g(i)~
P(i):Q(i)

lzQ(i)T P(i)Q(i)

A typical range of values for the forgetting factor is 0.98,l,1 and

we used 0.98 for the simulated experiments. P(i) is an m by m

matrix updated using the following equation.

P(iz1)~l{1P(i){l{1g(i)Q(i)T P(i)

The initial condition for P(i) was chosen as P(0)~dI, where d is a

large number ~1|105
� �

and I is an identity matrix (m by m).

3. Kalman Filter. Similar to RLS, the estimated parametric

vector w(i) is updated according to the following equation [10].

w(iz1)~w(i)ze(i)k(i)

The gain vector k(i) is defined by the following equation:

k(i)~
P(i):Q(i)

RzQ(i)T P(i)Q(i)

where R is the measurement noise variance, which is related to the

observation uncertainty (measurement error) e3. The R value

assumed in the simulations was R~1. P(i) is an m by m matrix

updated using the following Riccati recursion:

P(iz1)~P(i){K(i)Q(i)T P(i)zQ

where Q is the covariance matrix (m by m) of the process noise,

which is related to the environmental uncertainty (biological noise)

e2. We select Q in the form:

Q~s2I

where the standard deviation is chosen as s~1 and I is an identity

matrix (m by m). In the simulations, the initial condition for the

Riccati recursion was chosen as P(0)~dI, where d is a large

number ~1|105
� �

.

Supporting Information

Appendix S1 Supplementary Notes. Note 1: Derivation of

the Grey-Box Model (na = 2, nb = 1, nk = 2). Note 2: Finding the

Best Fit ARX Model Order Using the Least Squares Estimation

Method. Note 3: Comparing the Performance of Different Model

Structures. Note 4: Instructions for Using AFGN.exe. Note 5:

Steps for reproducing Figure 2C and 2D.

(PDF)

Software S1 AFGN.exe. A LabVIEW-based GUI for evaluat-

ing adaptive algorithms introduced in the main text.

(EXE)

Data S1 p53_data.txt. p53 fluorescence measurement data

file.

(TXT)

Data S2 mdm2_data.txt. MDM2 fluorescence measurement

data file.

(TXT)

Video S1 A video demonstration of running AFGN.exe.
(AVI)
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