Infoscience

Journal article

Adaptive Models for Gene Networks

Biological systems are often treated as time-invariant by computational models that use fixed parameter values. In this study, we demonstrate that the behavior of the p53-MDM2 gene network in individual cells can be tracked using adaptive filtering algorithms and the resulting time-variant models can approximate experimental measurements more accurately than time-invariant models. Adaptive models with time-variant parameters can help reduce modeling complexity and can more realistically represent biological systems.

Related material