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Mean-Square Performance of a Convex
Combination of Two Adaptive Filters
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Abstract—Combination approaches provide an interesting
way to improve adaptive filter performance. In this paper, we
study the mean-square performance of a convex combination of
two transversal filters. The individual filters are independently
adapted using their own error signals, while the combination is
adapted by means of a stochastic gradient algorithm in order to
minimize the error of the overall structure. General expressions
are derived that show that the method is universal with respect
to the component filters, i.e., in steady-state, it performs at least
as well as the best component filter. Furthermore, when the
correlation between the a priori errors of the components is low
enough, their combination is able to outperform both of them.
Using energy conservation relations, we specialize the results
to a combination of least mean-square filters operating both in
stationary and in nonstationary scenarios. We also show how the
universality of the scheme can be exploited to design filters with
improved tracking performance.

Index Terms—Adaptive filtering, convex combination, energy
conservation, stochastic algorithms.

I. INTRODUCTION

VARIABLE step-size adaptive filters allow the filters to dy-
namically adjust their performance in response to condi-

tions in the input data and error signals [1]–[5]. More gener-
ally, on-line adaptation of certain filter parameters or even cost
functions has been attempted to influence filter performance,
such as adjusting the forgetting factor of recursive least squares
(RLS) algorithms [6], [7] or minimizing adjustable cost func-
tions [8]–[11]. Recently, there has been an interest in combi-
nation schemes, where the outputs of several filters are mixed
together to get an overall output of improved quality [12]–[15],
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Fig. 1. Adaptive convex combination of two transversal filters. Each
component is adapted using its own rules and errors, while the mixing
parameter �(n) is chosen to minimize the quadratic error of the overall filter.

with some of these approaches sacrificing performance in lieu
of analytical tractability. The issue of how to optimally combine
the component filters is a challenging one and deserves closer
investigation.

In [16] we presented a combination of one fast and one slow
least mean-square (LMS) filter that was effective at combining
fast convergence and low residual misadjustment, an approach
that was later refined in [17], [18]. This scheme, which can
be used with other kinds of filters, calculates the output as the
convex combination of the outputs of the component filters and
the mixing parameter itself is adjusted on-line by means of a
nonlinear rule. The use of the nonlinearity results in improved
adaptation of the combination and reduces the gradient noise. In
this paper, we pursue a detailed mean-square performance anal-
ysis of this scheme for both stationary and nonstationary envi-
ronments by using energy conservation arguments [19]. In par-
ticular, we will show that the combination filter structure is uni-
versal [14], [20] in the sense that it performs, in the mean-square
error sense, as well as the best of its components. Furthermore,
and interestingly, when certain conditions are satisfied by the
component filters, their combination will be shown to outper-
form both of them. The analysis will also suggest a tracking
filter with improved performance.

Specifically, we shall study the following adaptive convex
combination scheme, which obtains the output of the overall
filter as (see Fig. 1) [17], [18]:

(1)

where and are the outputs of two transversal filters
at time , i.e., , with
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being the weight vectors characterizing the component filters
and their common regressor vector. Moreover, is a
mixing scalar parameter that lies between zero and one. The idea
is that if is assigned appropriate values at each iteration,
then the above combination would extract the best properties of
the individual filters and .

We shall consider the case in which both component filters
are independently adapted, using their own design rules. Thus,
for general transversal schemes, we will assume that

(2)

where stands for the desired signal, is a state vector,
and refers to the adaptation function. For simplicity, we
shall assume in the following that both and have
length , so that the overall filter can also be thought of as a
transversal filter with weight vector

(3)

For the adaptation of the mixing parameter we shall use
a gradient descent method to minimize the quadratic error of the
overall filter, namely, . However, instead
of directly modifying , we will adapt a variable that
defines via a sigmoidal function as

(4)

The update equation for is given by

(5)

The benefits of employing the sigmoidal activation function are
twofold. First, it serves to keep within the desired range [0,
1]. Second, as seen from (5), the adaptation rule of reduces
both the stochastic gradient noise and the adaptation speed near

and when the combination is expected
to perform close to one of its component filters without degra-
dation, while allowing a fast adaptation for intermediate values
of . Still, note that the update of in (5) stops when-
ever is too close to the limit values of zero or one. To cir-
cumvent this problem, we shall restrict the values of to lie
inside a symmetric interval , which limits the permis-
sible range of to , where is a
constant close to one. In this way, a minimum level of adapta-
tion is always guaranteed.

In this paper we shall study the mean-square performance
of the above combination procedure (1)–(5), as well as the be-
havior of the following modified version:

(6)

where

(7)

with being a small positive constant. In other words, the adap-
tation of will continue to be given by (5) in terms of ,
and we shall instead set to zero or one whenever is
close to the endpoints rather than limit to the values

or as before.
The analysis that follows will show that is universal

with respect to its components, i.e., it performs, in steady-state,
at least as well as the best component filter and, in certain situ-
ations, better than any of them. Similarly, will be seen to
be nearly universal, in the sense that it can perform as close as
desired to the best component filter.

II. STATIONARY DATA MODEL AND NOTATION

In the sequel we adopt the following assumptions.

a) and are related via a linear regression model

for some unknown weight vector of length and
where is an independent identically distributed
(i.i.d.) noise, independent of for any and , and
with variance .

b) The initial conditions , and are inde-
pendent of for all .

c) , and
.1

It is also convenient to introduce some notation and additional
variables.

1) We define the weight error vector of a transversal filter as
the difference between the optimal solution and the filter
weights. Thus we define

for the component filters and for their
combination.

2) A priori errors

and

3) A posteriori errors

To measure filter performance it is customary to use the excess
mean-square error (EMSE), which is defined as the excess over
the minimum mean-square error that can be achieved by a filter

1Note that, unlike many other analyses in the adaptive filtering literature, we
are not assuming that fu(n)g is a sequence of independent regressors.
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of length , namely, . When analyzing steady-state opera-
tion, we are mainly interested in the limiting value as goes to

. Using

it can be easily seen that

so that the EMSE of the filters (isolated and combined) can be
calculated as

individual filters

(8)

combination (9)

During the analysis, it will become useful to refer to an ad-
ditional variable that measures the steady-state correlation be-
tween the a priori errors of the elements of the combination, i.e.,

(10)

We shall refer to this variable as the cross-EMSE of the com-
ponent filters. From its definition, and from Cauchy–Schwartz
inequality, it follows that the magnitude of can never
be simultaneously higher than the individual EMSEs of filters

and , i.e., and .

III. UNIVERSALITY OF THE COMBINATION FILTER

In this section we analyze the steady-state performance of
the two combination schemes (1) and (6). First, we will express

and as a function of the EMSEs of the com-
ponent filters, their cross-EMSE, and the steady-state value of
the mixing parameter. Here, refers to the EMSE of the
combination filter that results from using (6).

A. Steady-State EMSE of the Combination

To obtain an expression that relates the EMSE of the overall
filter to those of its component filters, we subtract both terms of
(1) from and find that

(11)

where . Likewise, the a priori error of the
overall scheme can be expressed as a convex combination of the
a priori errors of the component filters as

(12)

Now, taking the limit of as , we have2

(13)

2Note that for �(n) a constant, (13) simplifies to J (1) = � J (1)+
(1� �) J (1) + 2�(1� �)J (1).

Analogously, for the modified combination (6), we obtain a sim-
ilar expression, but in terms of

(14)

The appearance of cross-expectation terms between the
mixing parameter and the a priori errors of the com-
ponent filters, together with the fact that (5) governing the
adaptation of is nonlinear in , make it difficult to
evaluate (13) and (14) exactly. However, there exist two cases
in which the evaluation of and can be
simplified.

• If , and since ,
then necessarily as almost surely.
Consequently, almost surely and
almost surely, allowing the simplifications

(15)

(16)

where in simplifying (15) we used the fact that is close
to one. In fact, this approximation can be as accurate as
desired by increasing the value of .

• Similarly, when , we conclude
that

(17)

(18)

Consequently, to obtain a better understanding about the per-
formance of the combination filters, it is necessary to examine
the steady-state value of and under what conditions

.

B. Steady-State Behavior of the Mixing Parameter

The learning rule for the mixing parameter is given by
(5). Taking expectations of both sides of this expression, we
arrive at

(19)

where the square brackets denote truncation to the indicated
values, as explained after (5). Note that this is only an approx-
imation since we have switched the order of the expectation
and the truncation operators on the right-hand side. The ap-
proximation seems reasonable because of the likelihood of
before truncation being much higher than or much lower
than is small. To see this, note that the closer is to
the limits , the smaller the magnitude of the update factor

1 .
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Now, introducing (11) into (19), and using the relation
, we obtain an expression

relating the adaptation of the mixing parameter to the a priori
errors of the component filters

(20)

In the first line of (20), the expectation term depending on
vanishes as a consequence of being independent of the
other factors inside the expectation and . Re-
garding the expectations in the second and third lines, they can
be simplified by using the following assumption.

Assumption: In steady state, is independent of the a
priori errors of both component filters.

This condition is reasonable when using a reduced adaptation
speed for , and therefore it is better justified when ap-
proaches in steady state given the fact that in these situa-
tions, the factor 1 in (5) is close to zero.

Using this assumption, and taking the limit as , (20)
becomes

(21)

where we introduced the differences

(22)

which measure the difference between the individual EMSEs
and the cross-EMSE.

Equation (21) shows that the limiting value of de-
pends on the values of . From our remark at the end
of Section II, following (10), we know that these two constants
cannot be simultaneously less than zero, so we need to consider
the following three situations.

Case 1) . In this case,
we have and . Furthermore, it
can be seen that, since , both

and are
lower bounded by . It follows that we
can assume

as (23)

for a positive con-
stant. Therefore, it follows that the only valid sta-
tionary point for (21) is almost surely;
and, in the light of the results of the previous sub-
section, we obtain in this case that

(24)

That is, both combination schemes perform like
their best component filter in this case.

Case 2) . Now, we have
and , allowing us to write

as (25)

for a positive constant
. Applying parallel arguments to those in the

previous case, we conclude that al-
most surely, and

(26)

Again, the behavior of the overall filter is as good
as its best element.

Case 3) . When the cross-
EMSE is lower than the EMSEs of both individual
filters, we have , and a stationary
point of (21) may be approximately characterized
by the condition

(27)

It is difficult to derive from the above relation an
expression for . Further
understanding about the performance of the system
in this case can be obtained by assuming (only for
this third case) that the variance of is small for

. Proceeding in this way, we obtain from
(27)

(28)

from which

(29)

It follows that

if

if

(30)

For and , we already
know that the performance of the combination is
that of its best component. However, for interme-
diate values of in (30), the overall filter will
most likely not converge toward the best element
in the mixture. This behavior does not imply that
the combination of filters is suboptimal in this third
case. In fact, it outperforms both component filters.
Indeed, it can be verified that the value for in
(29) (neglecting the truncation) is the one that min-
imizes (13) and (14) under the assumption of zero
variance for since then

(31)
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TABLE I
EMSEs OF THE UNIVERSAL AND NEARLY UNIVERSAL COMBINATIONS OF TWO FILTERS AS A FUNCTION OF THE STEADY-STATE EXPECTATION OF a(n)

(32)

given that, for intermediate values of , and as-
suming zero variance for , we have

. Introducing (29) without the truncation into
these expressions, we get after some algebra (see
Appendix I)

(33)

so that, since , the
following bounds hold:

i.e.,

(34)

In summary, the above three cases allow us to conclude that
the combination filter defined by (1)–(5) is nearly universal, i.e.,
its steady-state performance is approximately at least as good as
that of the best component filter (with the approximation being
as accurate as desired for increasing ). Regarding the combi-
nation (6), the discussion shows its universality in the sense that
it performs at least as well as the best element in the mixture.
Furthermore, in some circumstances, both schemes are able to
outperform their components. In Table I we summarize these
results for the different values of .

The conclusions so far have an intuitive interpretation. When
the magnitude of the cross-EMSE lies between the EMSEs
of the individual filters, the cross-correlation between their
a priori errors is high enough so that the combination of the
filters can perform at most as the best individual filter. However,
when , further knowledge can
be gained by using an appropriate weighted combination of
the filter outputs, thus leading to a lower excess error for the
combination.

The above analysis does not assume any particular form for
the update function , and it consequently applies to the com-
bination of general adaptive filters (2). To illustrate the overall
filter performance for a particular update of and ,
it is enough to derive expressions for the associated EMSEs and
cross-EMSE. We will do so in the following section for a convex
combination of LMS filters.

IV. COMBINATION OF LMS FILTERS WITH

DIFFERENT STEP-SIZES

In this section we study the stationary performance of an
adaptive convex combination of two LMS filters (CLMS) that
only differ in their step-sizes. Consequently, the adaptation rule
(2) for each component is given by

(35)

Without loss of generality, we will assume that
, so that the first filter adapts faster.

A. Stationary Performance of CLMS

Using the energy conservation approach of ([19, ch. 6]), and
assuming that at steady-state operation is independent
of the a priori errors of the LMS filters (in the following we
shall refer to this assumption as the separation principle), it is
known that the EMSEs of the LMS components, in a stationary
environment, are given by [19, (6.5.11)]

assuming (36)

In passing, we note that the EMSE is an increasing function of
over the indicated interval, since

(37)

To derive an expression for the cross-EMSE of the two filters,
we proceed from the energy conservation relation [19, (6.3.7)],
which relates the weight and a priori and a posteriori errors of a
general class of transversal adaptive schemes and which applies
to the LMS updates, namely

(38)

Multiplying the transpose of (38) by (38) itself for and
, respectively, and cancelling terms, we arrive at the following

generalized energy conservation relation:

(39)

Taking expectations of both sides, and using the fact that in
steady state
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we get

(40)

The above expression holds for any filters and
satisfying (38). When these weights arise from LMS updates,
it can be shown that their a priori and a posteriori errors are
related via [19, (6.3.3)]

(41)

Introducing (41) into (40) and multiplying terms, we get

(42)

Now, substituting , for , gives

(43)

Several of the above expectations vanish as a consequence of
being a zero-mean process and independent of the a priori

errors of the filters at iteration , so we can write

(44)

where we have defined

(45)

that can be easily shown to lie between and .
Finally, applying the separation principle to (44) (i.e., that

is independent of the a priori errors in steady state),
the cross-EMSE of the filters is then given by

(46)

The similarity that exists between (46) and (36), together
with the fact that , allows us to conclude that

, so we are in the second of
the situations considered in Section III-B. Consequently, (26)
applies and both the universal and nearly universal combination
schemes achieve the lower EMSE of the -LMS filter, although
they can never improve on this performance.

Fig. 2 plots (46) for different selections of and
. The optimal solution in this example

was formed with independent random values between
1 and 1, and is given by

The re-
gressor is obtained from a process as

, where was

Fig. 2. Steady-state theoretical and estimated cross-EMSE of two LMS filters
for different values of � and � = � =r.

Fig. 3. Stationary theoretical and estimated EMSE of the universal
combination y (n).

obtained from a first-order autoregressive model with transfer
function , fed with an i.i.d.
Gaussian random process whose variance was selected to get

. Finally, additive i.i.d. noise with variance
, and independent of , was added to form the

desired signal. Each estimated cross-EMSE was calculated
by averaging for 20 000 iterations after the
convergence of both LMS filters, and over 50 independent
runs. The figure indicates that (46) is appropriate to model
the cross-correlation between the a priori errors of two
independent LMS filters for a wide range of step-sizes. Fig. 3
represents the theoretical and estimated stationary EMSE of
the universal combination with . Again, there
exists a close match between the results of our analysis and the
real values of for different selections of and .
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Fig. 4. (a) EMSEs of two LMS filters with step-sizes � = 0:1 and � =

0:01, as well as that of their adaptive combination (CLMS) with � = 100 and
a = 4. (b) Evolution of the mixing parameter.

Finally, a typical performance of the combination scheme (1)
is depicted in Fig. 4(a) for a case with

, and . At is changed into

to study the ability of the combined scheme to react to changes
in the filtering scenario. The curves in this figure have been
averaged over 10 000 independent runs. As predicted by our
analysis, the combined filter attains the lower stationary EMSE
of the -LMS filter. Furthermore, we see that it also presents
the faster convergence of the fast LMS component. Fig. 4(b)
represents the time evolution of the mixing coefficient. We can
see that it rapidly changes toward during the initial
convergence and after , while its steady-state value
is in stationary intervals.

B. Tracking Performance of CLMS

We now examine the tracking performance of the CLMS
filter in a nonstationary environment. For this purpose, we first
modify the data model of Section II and assume that the weight
vector varies according to the random-walk model

where is an i.i.d. random zero-mean vector with co-
variance matrix , and independent of

, for all , and of the initial con-
ditions , , and . From its definition,

can be seen as a measure of the speed of changes in .
When using this modified model we can keep the definitions

given in Section II for the weight and a priori errors of the filters

and redefine the a posteriori errors as

Recall that the argument for the universality of the combi-
nation scheme relied solely on the a priori errors of the filters.
Consequently, and since the definitions for these errors have not
changed, the conclusions about the universality of the mixtures

obtained in Section III still apply to the nonstationary scenario,
as well as the three cases studied in Section III-B. We now pro-
ceed to evaluate more explicitly the EMSE and cross-EMSE ex-
pressions in the nonstationary case.

To begin with, note that when analyzing the tracking prop-
erties of LMS filters it is customary to study the influence of
the step-size on the performance of the filter for a fixed covari-
ance matrix . However, our goal here is to show that CLMS is
able to improve over the tracking capabilities of its components
and, consequently, we will analyze the EMSE of the filters for
varying and for given and .

Again, energy conservation arguments can be used to show
that, in the tracking scenario described above, the EMSE of an
LMS filter with step-size is given by [19, (7.5.9)]

assuming (47)

As is known, the EMSE expression consists of two terms. The
first term is the EMSE corresponding to a stationary environ-
ment (and it increases with ), while the second term is in-
versely proportional to and is related to the tracking capabil-
ities of the filter. We show in Appendix II that (47) achieves a
minimum over the interval at the following
optimal step-size:

(48)

In the following, it will be useful to employ an alternative figure
of merit to measure filter performance in tracking situations. We
define the normalized square deviation (NSD) of a filter as the
ratio of its EMSE to the theoretical EMSE of an LMS filter with
optimal step-size . Thus, for the components of the CLMS
filter, we set

(49)

Similarly, the NSDs of the nearly universal and universal com-
bined schemes, and the cross-NSD between the component fil-
ters, will be defined as

(50)

(51)

(52)

Next, we need to obtain an expression for in the
nonstationary case. Since the derivation is similar to what we
carried out in the stationary case, we shall be brief and point
out only the main results. Our starting point in this case is the
relation [19, ch. 7]

(53)
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TABLE II
CLMS NORMALIZED SQUARE DEVIATION AS A FUNCTION OF Tr(Q)

which holds for a general class of transversal filters. Multiplying
the transpose of (53) by (53) itself, for and , respec-
tively, and after cancelling terms, we get

(54)

To simplify this expression, we use
to write

(55)

Now, note that

But since is independent of by assumption, and
is also independent of as a consequence of
being i.i.d. and independent of ,

we can simplify (55) to

(56)

Using this result, and the fact that in steady state
, we get from (54) that

(57)

which is the extension of (40) to the nonstationary case.
To proceed further, we need to specialize this result for

and . Using (41) and , we arrive
after some manipulations at

(58)

Finally, application of the separation principle (i.e., that
is independent of in steady state) allows us to

rearrange terms and to get

(59)

Again, as discussed in Section III-B, the performance of the
CLMS filter depends on the signs of . So, to study
CLMS performance, we need to analyze the relations among

, and for any value of in
the nonstationary case. In order to do this, let us consider first a
small step-size approximation for (47), (48), and (59), i.e.,

(60)

(61)

(62)

Then, subtracting (62) from (60), and recalling that
, it is straightforward to verify that

(63)

(64)

where we have defined3

(65)

Thus, we find that, depending on the value of , all three
cases described in Section III-B can occur—see also Table II.

• If , we have that
(or, equivalently,
), so we are in Case I, and the combination per-

forms like the -LMS.
• Just the opposite occurs for , with

and .
• Finally, when , we have that both

and are greater than zero, i.e., (34) applies, and the
combination outperforms both components.

Fig. 5(a) and (b) illustrates the above theoretical conclusions.
We have depicted the theoretical steady-state values for the
NSDs of two LMS filters with and , for
their cross-NSD, and for the NSD achieved by their adaptive
convex combination with , for different values of

. Additional settings were and .

3Note that under the small step-size approximation, q (q ) is the value of
Tr(Q) for which � (� ) is the optimal step-size [see (61)].
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Fig. 5. (a) Theoretical normalized mean-square deviation of two LMS filters
with steps � = 0:1 and � = 0:01 as a function of the trace of the covariance
matrix of q(n). Their cross-NSD is also depicted using a dashed line, as is the
NSD of their adaptive combination. (b) Theoretical steady-state value for the
mixing parameter.

We have only depicted the theoretical values for ; this
curve and that for are indistinguishable for the level
of detail in the figure. We can see that the CLMS scheme offers
improved tracking performance, not only because it inherits
the best tracking properties of each LMS but also because it
performs better than either for certain rates of variations, as can
be seen in Fig. 5(a) for .

To further illustrate our analysis, we have carried out simula-
tions for the same example considered in the previous subsec-
tion, except that now random changes modify the optimal solu-
tion at each iteration. The entries of are taken as indepen-
dent Gaussian values with equal variances. As for the settings
for the CLMS filter, we have again used step-sizes
and for the components, and and
to adapt the combination. Fig. 6 shows a close match between
the theoretical and estimated values for the residual NSD of
the CLMS filter, and the cross-NSD of the component filters
for most values of . All results have been averaged over
20 000 samples after filter convergence, and over 50 indepen-
dent runs.

To further examine the universal capabilities of the combined
filters (1) and (6), it is necessary to study their behavior in
relation to the performance of their two component LMS filters.
In Fig. 7 we depict the ratio between ( for
the strictly universal scheme) and the lowest EMSE of the

Fig. 6. Steady-state theoretical and estimated cross-NSD of two LMS filters
with � = 0:1 and � = 0:01, and NSD for the resulting CLMS combination.

Fig. 7. Steady-state EMSE of the component filters in relation to the excess
mean-square error of the best LMS component.

components for each value of , so that a level of 0 dB is
associated to universality. As expected, both and
obtain similar results, but the nearly universal combination
suffers some degradation for and
given that, unlike is not allowed to take exactly the
values zero and one. For , both combination
schemes show almost identical behaviors, achieving a lower
EMSE than any of the components. Although universality is
satisfied for at least seven orders of magnitude, this property is
lost for . The reason is that, for these values of

, the error incurred by the combination is very high and,
since the adaptation of is directly proportional to ,
this fact introduces a nonnegligible error in the subsequent
analysis.

V. COMBINATION OF LMS FILTERS WITH IMPROVED

TRACKING PERFORMANCE

The tracking analysis of the CLMS filter in the previous sec-
tion suggests that the combination method can be exploited to
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get from the mixture an improved tracking performance for any
value of . To see this, recall from Section IV-B (see also
Fig. 5) that the limiting value of indicates if the com-
bined filter is operating in Case I, II, or III as discussed in
Section III-B.

• When , the filter operates in
Case I, and so we have .

• If , the filter operates in Case
II.

• For intermediate values of , we have
, and Case III appears, allowing the combined filter to

obtain a lower EMSE than any of its components.
Furthermore, note that in Case II we have ,
while in Case I we have . Consequently, it
is possible to improve the tracking performance of the combi-
nation of filters by using the value of the mixing coefficient to
manage the step-sizes of the component LMS filters.

1) If , with being a threshold close to one (i.e.,
when the combination is most likely in Case I), multiply
the step-sizes of both filters by , thus getting
and , where the prime superscript is being used
to denote the new values of the step-sizes.

2) If , decrease the values of both step-sizes
accordingly to and .

Obviously, application of these procedures only makes sense if
, so it is no longer necessary to recur to the truncation

of the mixing parameter .
To show why application of these two simple rules makes

it possible to get , let us assume first that
is such that the filter is operating in Case I. Consequently,

, and the first rule will be applied. Then we have that
the new step-sizes necessarily verify any of the two following
conditions.

• : in this case we still have that
(Case I) so that

(66)

allowing us to conclude that

(67)

• : now, we can see that
so that the new values of the step-sizes make the filter
operate in Case III and

(68)

So, again we have .
Parallel arguments can be used to show that dividing the step-
sizes by when serves also to decrease the EMSE
of the combination.

In Table III we list the pseudocode for the proposed combina-
tion of variable step LMS algorithms (CVS-LMS) based on the

TABLE III
SUMMARY OF THE CVS-LMS ALGORITHM

above ideas. We have added an additional parameter that
serves to guarantee the stability of the filter when changes
very fast, leading to many successive increments of and .

We have carried out experiments using the proposed
CVS-LMS algorithm in the tracking scenario of Section IV-B.
We set the filter parameters to ,
and , and the NSD for each value of has
been calculated by averaging the error over 20 000 samples
(after CVS-LMS convergence is complete) and over 50 inde-
pendent runs. We can see in Fig. 8 how the new filter improves
the performance of a conventional LMS with fixed step-size

, achieving an NSD of about 0 dB for several
orders of magnitude in . The NSD increment that can be
observed for the highest values of is due to the upper
limit imposed on the step-sizes .

A. Comparison With Previous Variable Step-Size LMS
Algorithms

We have carried out a number of experiments comparing the
combination approach with several variable step-size LMS al-
gorithms. We will focus here on the robust variable step-size
(RVSS) LMS method of [3] and on the adaptive learning rate
(ALR) LMS algorithm of [4], which are good representatives of
these versions.

When using an adaptive step-size, the LMS update takes the
form

(69)
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Fig. 8. Tracking performance of a conventional LMS filter with fixed step-size
� = 0:0125 and of a CVS-LMS scheme with parameters � (0) = 0:05; r =
4; � = 100, and � = 0:2.

TABLE IV
SUMMARY OF THE RVSS-LMS ALGORITHM

where is adjusted according to a certain rule. In [2] it
was proposed to use the instantaneous value of the quadratic
error incurred by the filter to control . RVSS-LMS [3]
elaborates on the same idea and manages the step-size by
means of a low-pass filtered estimation of the autocorrelation

. Using a different criterion, ALR-LMS [4]
estimates the norm of the mean flow used to adapt the LMS
filter (i.e., ). This value is a measure of the
proximity of to the solution of the filtering problem, and,
therefore, it can be used to manage the step size. Summaries
of the RVSS-LMS and ALR-LMS algorithms are provided in
Tables IV and V, respectively.

Fig. 9(a) shows the tracking performance of RVSS-LMS as
a function of for different values of the free parameters.
Following the guidelines in [3], we used in all cases,
exploring different values for and . Regarding the min-
imum and maximum values for , we selected and

to obtain a fair comparison with CVS-LMS. Again,
all results have been obtained by averaging the error over 20 000
samples (after filter convergence) and 50 runs.

Although better than conventional LMS, RVSS-LMS is still
subject to a compromise regarding its performance for different

TABLE V
SUMMARY OF THE ALR-LMS ALGORITHM

Fig. 9. Comparison between the tracking NSDs of the CVS-LMS filter and
those of the RVSS algorithm of [3] and the ALR method of [4], for different
values of the free parameters.

values of . Consequently, a straightforward manner to im-
prove its tracking capability would be to use an adaptive combi-
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nation of two filters with complementary settings (for instance,
with a high and a low ). In this regard, it is useful to remark
that, unlike RVSS-LMS, CVS-LMS is not subject to this per-
formance compromise and its NSD remains close to zero for
the displayed range of .

Similar conclusions can be extracted when comparing
CVS-LMS and ALR-LMS [Fig. 9(b)]. In this case, the settings
for ALR-LMS were and , and
we explored different values for and .

VI. CONCLUSION

Combination approaches are an effective way to improve the
performance of adaptive filters. In this paper we have analyzed
the behavior of one such approach, showing its universality in
the sense that it performs at least as well as the best of the
components. Furthermore, when the component filters satisfy
certain conditions, we have seen that their combination outper-
forms both of them.

Using energy conservation arguments, we have specialized
the results to a convex combination of LMS filters with dif-
ferent step-sizes, operating both in stationary and in nonsta-
tionary environments. The understanding about the functioning
of the combination has suggested a filter with improved tracking
performance for different speeds of changes.

Logical lines for further research include the analysis of
convex combinations of multiple filters [18], or combinations
with a different mixing coefficient for each tap [17], as well as
the application of the proposed method to other scenarios, such
as adaptive equalization or noise cancellation.

APPENDIX I

To derive (33) we proceed from (31). Rearranging terms we
get

Now, we use the definitions (22) to rewrite the above expression
as

But since and
, we have

from which (33) is obtained.

APPENDIX II

To show that (48) minimizes the tracking EMSE of an LMS
filter for , we note first that given
by (47) and its first derivative with respect to are continuous
functions over that interval, and that, since
are all positive constants, . Furthermore,
we have that

Consequently, must have at least one minimum inside
the interval (0, 2 ). Setting the derivative of
with respect to equal to zero, we get that only two candidate
minima exist

From these two values, it can be easily verified that only (48)
satisfies , and the proof concludes.
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