A State-Space Approach to Adaptive RLS
Filtering *

ALl H. SAYED! AND THOMAS KAILATH?

This is a slightly expanded version of the same article published in
IEEE Signal Processing Magazine, vol. 11, no. 3, pp. 18-60, July 1994.

Last update performed on Nov. 15, 1994.

Abstract

In the last fifteen years or so there has been an explosion of activity in the field of adaptive
filtering algorithms, especially of the exponentially weighted recursive-least squares type. Many
different algorithms and many different derivations have been presented, many of which have by
now been described in textbooks, of which we especially mention the comprehensive treatment by
Haykin (1991). In this paper, we present yet another approach, based on making a close connection
with the field of recursive state-space estimation algorithms, which have been intensively studied
over the last thirty-five years. We shall show that the Riccati-based Kalman filtering algorithm and
its several variants (information form, square-root form, Chandrasekhar form) can be essentially
put into a one-to-one relationship with many of the algorithms in adaptive filtering theory (QR,
FTF, LSL, etc). In fact, among others, all the algorithms in Haykin’s book can be obtained in this
way. Moreover, as now done in Kalman filtering, we emphasize the so-called square-root or array
formulations of the following general form: a prearray of numbers obtained from the problem solution
at one time instant is triangularized by an orthogonal transformation, or a sequence of elementary
orthogonal transformations; the solution at the next time instant can be directly obtained from the
elements of the triangular postarray. Many complicated sets of equations, with many variables and
many subscripts, can be avoided by using the array forms.

Finally we indicate how the celebrated LMS algorithm, long regarded as a (gradient) approxi-
mation to an exact RLS solution, can be regarded as being optimal in the so called H*® criterion,
much studied over the last decade in robust control and estimation theory.

*This work was supported in part by the Army Research Office under Grant DAAH04-93-G-0029, and
the Advanced Research Projects Agency of the Department of Defense and was monitored by the Air Force
Office of Scientific Research under Grant F49620-93-1-0085.

tThe work of A. H. Sayed was also supported by a fellowship from Fundacio de Amparo & Pesquisa do
Estado de Sao Paulo, Brazil, while on leave from the Department of Electrical Engineering, Escola Politécnica
da Universidade de Sdo Paulo, Brazil. He is an Assistant Professor in the Department of Electrical and
Computer Engineering, University of California, Santa Barbara, CA 93106.

Information Systems Laboratory, Stanford University, CA 94305.

1 Introduction

Adaptive filtering is increasingly being considered in numerous interesting applications to help cope
with time-variations of system parameters and to compensate for the lack of a priori knowledge of
the statistical properties of the input data. Over the last several years, a wide range of algorithms
has been developed. These basically fall into four main groups: Recursive Least Squares (RLS)
algorithms and the corresponding fast versions, QR- and Inverse QR- Least—Squares algorithms,
Least—Squares Lattice (LSL) and QR Decomposition-based Least—-Squares Lattice (QRD-LSL)
algorithms, and gradient-based algorithms such as the Least-Mean Squares (LMS) algorithm. Tt is
practically impossible to list here all the relevant references and all the major contributors to this
rich field. However, the books [1]-[7], along with their extensive lists of references, should provide
an excellent idea of the main results in this area. But we shall most often use the widely referenced
textbook of Haykin [1] as a guide throughout our presentation.

If one scans through the available literature on adaptive filter theory, it will not be difficult to
realize how varied are the methods employed in the several references on the topic (see, e.g., [1]-
[23]). It very often happens that different arguments and techniques are employed to derive different
versions of the same algorithm. This has the obvious advantage of leading to interesting explorations
of new approaches. But it has the disadvantage, in several instances, of leading to solutions that
are sometimes complex to describe, and with seemingly little connection with already established
results. This makes software and hardware implementations rather complicated. More importantly
perhaps is that it also has the disadvantage of obscuring potential connections that should obviously
exist among variants of the same algorithm; only recently has there been some discussion of the
close relations between some of the algorithms (see, e.g., [3] and [20]-[25]).

Our purpose here is to present yet another approach, not for the sake of adding to the already
long list of available approaches, but for the sake of achieving two important goals. The first one is to
show how several different variants of the recursive least-squares algorithm can be directly related to
the widely studied Kalman filtering problem of estimation and control. Only very special instances
of this relation have been considered so far in the literature. Reference [26] was perhaps the first to
rephrase the growing memory recursive least-squares problem in a stochastic state-space framework,
with the unknown state corresponding to the unknown weight vector (see also [5, pp. 331-335]).
Different attempts to incorporate the case of exponentially decaying memory were also made, but in
all of them some annoying discrepancies remained that were overcome essentially by fiat (see, e.g.,
[1, pp- 502-504]. This lack of a direct correspondence appears to have inhibited application of the
extensive body of Kalman filter results to the adaptive filtering problem.

However by a simple, in retrospect, device we can obtain a perfectly matched state-space model
for the case of exponentially decaying memory, with a direct correspondence between the variables
in the exponentially weighted RLS problem and the variables in the state-space estimation problem.
The main benefit of this is that recursive state-space estimation problems have been extensively
studied since the sixties, especially in the control engineering literature, see e.g., [27]-[30]. Besides
the celebrated Riccati-equation-based Kalman filtering algorithm, many algorithmic and implemen-
tational alternatives have been studied over the years. These include the so-called information filter
forms and for certain kinds of time-variant state-space models (including those encountered in adap-
tive filtering), the Riccati recursions can be replaced by the order-of-magnitude faster Chandrasekhar
recursions [31]; moreover all these variants have certain computationally better square-root (or ar-
ray) forms. The interesting fact then is that when the exponentially-weighted RLS filtering problem
is reformulated in state-space form, the now well-known alternative Kalman filtering solutions turn
out to be equivalent to the various classes of adaptive filtering algorithms derived in the last decade
- see Tables 1 and 2. (The acronyms and the algorithms themselves will be spelled out in detail in
later sections.).

Our second important goal is to present all the different versions of the RLS algorithm in
computationally convenient square-root forms: a prearray of numbers has to be triangularized by
a rotation, or a sequence of elementary rotations, in order to yield a postarray of numbers. The
quantities needed to form the next prearray can then be read off from the entries of the postarray,
and the procedure can be repeated; the explicit forms of the rotation matrices are not needed in

Table 1: Most common adaptive schemes.

Adaptive Algorithm | Order-Recursive | Fixed-Order | Cost per iteration
RLS x O(M?)
QR and Inverse QR x O(M?)
FTF, FAEST x o(M)
Least-squares lattice x O(M)
QRD-based lattice X Oo(M)
LMS x O(M)

Table 2: State-space estimation algorithms vs. Adaptive algorithms.

State-Space Estimation Algorithm Adaptive Algorithm(s)
Riccati-based Kalman filter RLS
Chandrasekhar form FTF and FAEST
Information form QR
Square-root covariance form Inverse QR
Recursive information form QRD- and least-squares lattices
MiniMax or H* filter gradient RLS/LMS

most cases. This is more truly an algorithm in the sense that it operates on a set of numbers and
provides another set of numbers, with no explicit equations involved. The rotations themselves
can be implemented in a variety of by now well-known ways: as a sequence of elementary circular
or hyperbolic rotations, in square-root- and/or division-free forms, as Householder transformations,
etc. These may differ in computational complexity, numerical behavior, and ease of hardware (VLSI)
implementation. But, if preferred, explicit expressions for the rotation matrices can also be written
down, thus leading to explicit sets of equations in contrast to the square-root form.

At this point, it will be helpful to give a table of contents as an aid to scanning the paper.
However before doing that, special note should be made of the last row in Table 2. The celebrated
LMS algorithm is generally regarded as a (highly) approximate RLS algorithm; however in Section 9,
it will be noted that it can be regarded as optimal under a different, so-called H* criterion.

Contents
1 Introduction 2
1.1 Notation o o e 4

2 Square-Root or Array Algorithms 5
2.1 Elementary Circular and Hyperbolic Rotations 5
2.2 A Rotation Example: Modularity and Parallelizability 6
2.3 Two RLS Algorithms in Array Forms 8

3 Stochastic and Deterministic Least-Squares Problems 10
3.1 The Stochastic Problem e 10
3.1.1 Non-ZeroMeans e 12

3.2 The Deterministic Problem o Lo 12
3.3 Equivalence of the Problems o 0 o 14

4 The Kalman Filter and Adaptive Problems 15

4.1 The Special Case of Adaptive RLS (Fixed-Order) Problems 17
4.2 The Special Case of Adaptive Lattice (Order-Recursive) Problems 18

5 Algorithmic Variants of the Kalman Filter 20
5.1 The (Covariance) Kalman Filter 20
5.2 The Information Filter e 20
5.3 The Square-Root Kalman Filter., 21
5.4 An Extended Square-Root Information Filter 22
5.5 The Square-Root Chandrasekhar Filter 24
5.6 The Chandrasekhar Filter in Explicit Form 26

6 The Recursive Least-Squares (RLS) Problem 26
6.1 The State-Space Formulation 30
6.2 Relations between the RLS and Kalman Variables 31

7 Different Classes of Fixed-Order Adaptive Algorithms 33
7.1 The RLS Algorithm 33
7.2 The Square-Root RLS (Inverse QR) Algorithm 34
7.3 The Conventional QR Algorithm 35
7.4 The Extended QR Algorithm, 35
7.5 Fast Transversal Filter Algorithms 36
7.5.1 Normalized Fast Transversal Filters 40

7.5.2 Fast Transversal Filters in Explicit Form 41

7.5.3 Forward and Backward Prediction Filters; the Conversion Factor 43

8 Different Classes of Order-Recursive Adaptive Algorithms 48
8.1 Joint Process Estimation and Prediction Problems 49
8.2 Two First-Order Linear Combiners 55
8.3 Two First-Order State-Space Models 57
8.3.1 QR-Decomposition-Based Least-Squares Lattice (QRD-LSL) Filters 58

8.3.2 Least-Squares Lattice (LSL) Filters Using Aposteriori Residuals 62

8.3.3 Lattice Filters Using Apriori Residuals with Error Feedback 64

8.3.4 Normalized Least-Squares Lattice (LSL) Filters 65

8.3.5 Other Forms of Lattice Filters 67

8.4 The Filtering or Joint Process Array 68

9 The Least-Mean-Squares (LMS) Algorithm 70
10 Concluding Remarks 72

1.1 Notation

The following notational conventions will be useful to remember. We shall use small boldface
letters to denote vectors and capital boldface letters to denote matrices. Also, given a positive
definite matrix A, A > 0, a square-root factor will be defined as any matrix, say A'/2, such that
A = (A'/2)(A'/?)*, where the “x” denotes Hermitian conjugation (complex conjugation for scalars).
Such square-root factors are clearly not unique. They can be made unique, e.g., by insisting that
the factors be Hermitian or that they be triangular (with positive diagonal elements). In most
applications, the triangular form is preferred. For convenience, we shall also write

(Al/Z)* — A*/Z , (Al/Z)fl — A71/2 , (Afl/Z)* — Af*/2 .

Thus note the expressions A = AY/2A*/2, A~—1 = A=*/2A~1/2, Also, we shall not confine ourselves
to real data. Complex quantities will be allowed for the sake of generality. Finally, the symbol I,,
will denote the identity matrix of size n x n.

2 Square-Root or Array Algorithms

The square-root or array form is so important that it will be worthwhile to explain its generic form
here, and give a couple of examples showing the compactness and simplicity it can bring.

An array algorithm is described via rotation operations on a prearray of numbers, chosen to ob-
tain a certain zero pattern in a postarray where the desired quantities can be read out. Schematically,
we have

T T T T z 0 0 O
T T T T z z 0 O
e = ,
T r x z ¢z z 0
T T z T T T z

where @ is any rotation matrix that triangularizes the prearray. In general, ® is required to be
a J— unitary matrix in the sense that @J®* = J, where J is a signature matrix with +1's on
the diagonal and zeros elsewhere. The unitary case corresponds to J = I. A rotation @ that
transforms the prearray to triangular form can be achieved in a variety of ways: by using a sequence
of elementary Givens and hyperbolic rotations [33], Householder transformations [33]-[35], square-
root-free versions of such rotations (see, e.g., [33] and [36]-[38]), etc.

2.1 Elementary Circular and Hyperbolic Rotations

An elementary 2 X 2 unitary rotation ® (also known as Givens or circular rotation) takes a row
vector x = [a b | and rotates it to lie along the basis vector eg = [1 0 |. More precisely, it
performs the transformation

[a b]O®=[%y[aP+]P 0]. (1a)
The quantity +4/|a|? + |b|2? that appears on the right-hand side is consistent with the fact that the

prearray, [a b |, and the postarray, [£+/]a]?> +[b]2 0 |, must have equal Euclidean norms. An
expression for @ is given by

1 1 p] b
0=—— M here p=—-, a#0. 1b
\E¥MP[P 1] v p=g ot (1b)

In the trivial case a = 0 we simply choose ® as the permutation matrix,
0 1
o-[21]

We should also note that, in the special case of real data, a general unitary rotation as in (1b) can
be expressed in the alternative form:

where the so-called cosine and sine parameters, ¢ and s, respectively, are defined by

1 p
C=—— , §= — .
V1+|pl? V1+|pl?

This justifies the name circular rotation for ®, since the effect of © is to rotate the original vector
x along the circle of equation z? + y* = |a|? + |b|?, by an angle 6 determined by the inverse of the
above cosine and/or sine parameters, § = tan~! p, in order to align it with the basis vector [1 0].
The trivial case a = 0 corresponds to a 90 degrees rotation in an appropriate clockwise (if b > 0) or
anti-clockwise (if b < 0) direction.

On the other hand, an elementary 2 x 2 hyperbolic rotation © takes a row vectorx =[a b |
and rotates it to lie either along the basis vector g = [1 0 | (if |a| > |b]) or along the basis vector
e;=[0 1] (if |a| < |b]). More precisely, it performs either of the transformations

[a b]O@=[£y]a2 =2 0] if |a| > [b] , (2a)

[a b]O®=[0 £/ —]a?] if |a| <|b]. (2b)

The quantity 1/%(]a|? — |b|?) that appears on the right-hand side of the above expressions is consis-
tent with the fact that the prearray, [a b], and the postarrays must have equal J—norms. By the
J—norm of a row vector x we mean the indefinite quantity xJx*, which can be positive, negative,
or even zero. Here,

J:[(l) _01]:(169—1).

An expression for a J—unitary hyperbolic rotation ® that achieves (2a) or (2b) is given by

1 1 —p b
0= h =2 b 2
P [—p* 1] where p a,a#0,|a|>||, (2¢)
0- [. _”] where p* =2, b#0, |a| < |b| 2d)
V1= L] £ ’ ’

We should also note that, in the case of real data, a general hyperbolic rotation as in (2¢) or (2d)
can be expressed in the alternative form:

ch —sh
6_[—sh ch] ’

where the so-called hyperbolic cosine and sine parameters, ch and sh, respectively, are defined by

ch=——— , sh= ———.
1—1p| 1—|p|

This justifies the name hyperbolic rotation for @, since the effect of @ is to rotate the original vector
x along the hyperbola of equation z? — y? = |a|> — |b|?, by an angle 0 determined by the inverse
of the above hyperbolic cosine and/or sine parameters, § = tanh™! p, in order to align it with
the appropriate basis vector. Note also that the special case |a| = |b| corresponds to a row vector
x=[a b] with zero hyperbolic norm since |a|? — [b|? = 0. It is then easy to see that there does
not exist a hyperbolic rotation that will rotate x to lie along either bases vectors.

We finally remark that the above expressions for the circular and hyperbolic rotations involve
square-root operations. In many situations though it may be desirable to avoid the computation of
square-roots since it is usually very expensive. For this and other reasons, square-root and division-
free versions of the above elementary rotations were also developed and constitute an attractive alter-
native (see, e.g., [36]—[38] for more details). So also one could use unitary or J—unitary Householder
reflections to simultaneously annihilate several entries in a row, e.g. to transform [T T T z]
directly to the form [' 0 0 0] (see, e.g., [33]-[35]). Combinations of rotations and reflections
can also be used.

2.2 A Rotation Example: Modularity and Parallelizability

Consider, for example, a 4—column (real) prearray A along with a 4 x 4 signature matrix J,

a b ¢ d
T T T 1
A=|2z z z 2 J = 1

and assume that we are interested in applying a J— unitary transformation ® to A in order to align
its first row along the basis vector eg, viz., we want

a 0 0 O

Then one way to achieve this, among many possible options, would be the following: we first an-
nihilate the b entry by using a circular rotation that leaves unchanged the last two columns of the
prearray,

@ E[c d ag 0 ¢ d
x T z z % S0 # # z oz
x T oz z S0 —Co) — | # # z z
I 1 R

T z T # # oz oz

We then annihilate the d entry by using a second circular rotation that leaves unchanged the first
two columns of the prearray,

ap 0 @) c; ;]e ca 0
z =z * ok
z 1 — | # # ox o«
. . . . C1 S1

S : $1 —c1 N
oz #o# ok x

We finally annihilate the ¢; entry by using a hyperbolic rotation, which leaves unchanged the second
and fourth columns of the prearray (assuming |¢1| < |a1),

0 0 a 0 0 O
#o# x chi - —sh y # y
#O# ok 1 =y # v *
. —shy chy . ’
: : o 1 Do
#o# ok x y # oy

The parameters that define the previous rotations are clearly given by
¢ a s b
0=—"F————, S0= —F—r—-r—,
Vlal> + b2 Vlal> + b2
c d
= —F—7—r sy 1= (70— >
Vlel? +|d|? Vel? +1d|?
ai C1
chi = shy =

ViaP =le? Ve —le?

It will become clear throughout our discussion that the different adaptive schemes can be rewritten
in terms of square-root arrays, where the necessary operations are elementary rotations as described
above. Such array descriptions lend themselves rather directly to parallelizable and modular im-
plementations. Indeed, once a rotation matrix is chosen, then all the rows of the prearray undergo
the same rotation transformation and can thus be processed in parallel. Returning to the above
example, where we started with the prearray A, we see that the parameters of the first rotation,
(co, 80), are completely determined by the entries a and b. Once the first rotation is specified, all
the rows of A are then transformed by it, and can thus be processed in parallel, and by the same
functional (rotation) block, to obtain the desired postarray. The procedure continues by determining
the second rotation and so on.

Table 3: The FTF algorithm in explicit form.

nm(n) = ajy (n — 1)uni1(n)
fu(n) =y (n =)nu(n)
Fu(n) = AFu(n = 1) +nar(n) f37(n)
Tma(n) =)‘f%&n)l) m(n—1)

_|. O “1_nu(n) _
knr1(n) ky(n—1) A Ft-p am(n — 1)
an(n) =auln -1 = fi0 [|
Tpr(n) = MBur(n — Dkaryr,mia(n Z
() = [1 = Ca) raris (Mkarsrpres ()] ares(n)
Rescue Variable = [1 — U (n)ymi1(n)kM+1,M+1 (n)]
by (n) = va () ¥ pr(n)

; BM(")=>\BM(TL—1)+‘I’M()b (n)
[kMO(n)] =knry1(n) — kng1,m41(n)em (n — 1)
K

car(r) = ean(n = 1) = by () | K |
ap(n) =d(n) — Wi (n — Dup(n)
ex(n) = yae(m)a (m)
$rag(n) = oag (0 — 1) + kaa (n)ey (n)

2.3 Two RLS Algorithms in Array Forms

To show the compactness and simplicity the array form can bring, we display in Table 3 the usual
set of equations for the so-called FTF algorithm (the table and notation is taken from the textbook
[1, p.-591] — the reader need not worry at this stage about the meaning of the different quantities.
The table is presented only for illustrative purposes). Table 4 shows the corresponding square-root
array form that will be derived in Section 7.5. So also Tables 5 and 6 show the corresponding forms
for the so-called QRD-LSL algorithm (Table 5 is extracted from the textbook [1, p.664]). Once it
is understood what they do, there are clearly significant (conceptual, if nothing else) advantages in
the more compact forms. We should note that some authors have deduced the compact array forms
by a careful study and reorganization of the explicit sets of equations in Tables 3 and 5 - see, e.g.,
[3, page 465] and [22]. In our approach the difference is that we can immediately write down the
compact forms of Tables 4 and 6, with the equations in Tables 3 and 5 being only one among several
sets of (cumbersome) explicit equations that one could derive, if desired.

Table 4: A square-root version of the FTF algorithm.

re?(i4+1) 0
©, =

C: .
[z(—)l—l] Li+1

Table 5: The QRD-LSL algorithm in explicit form.

For timen = 1,2,... and order m = 1,2,..., M, repeat

Bmfl(n — 1) =)\Bmfl(n — 2) + |6b’m,1(n — 1)|2
AY2BL/2 (n—2)
B:"/El(n—l)
Gm—1(n—1)
B:n/il(n—l)
efm(n) = om-1(n — 1)egm_1(n) — s} o (n = DXN7f 1 (n—1)
T m1(n) = Com1(n = DN/2m; (0= 1) + sp,m—1(n = Degm—1(n)

2 (n = 1) = epmo1(n —)72, (n - 1)

fmfl(n) =)J"mfl(n - 1) + |6f’m,1(’n,)|2
A2EL2 (n-1)

m—1

Chm-1(n—1) =

sb,m—l(n -]-) =

cfym_]- (n) =

stm-1(n) = FIZ (n)

ebm(n) = cpm-1(n)enm-1(n —1) = 8}, (WN/2m oy (n — 1)
Mrm=1(n) = Cpma MNPy (n—1) + 5p.m1(n)epm1(n —1)

For time n = 1,2,..., repeat

BM(n) =)\BM(’I’L - 1) + |61,7M(’n)|2
AY2BY2 (1)

Cb’M(n) = B;\f(n)
— 6b,M(”)
Sb,M(n) = B}sz(n)

em+1(n) = co,m(n)ens (n) — 83 1 (M)A ?piy (n — 1)
Pir(n) = com(n)AY2ph (n — 1) + sy m(n)enm(n)
Y () = s ()73 (n)

emr+1(n) = Varos (n)errr1(n)

For m=1,2,..., M, set

Wf,mfl(o) = 7rb,m71(0) =0, pm(O) =0

For m=0,1,..., M, set

Br(—1) = Fra(0) =6 > 0

Forn =1,2,..., compute

e1,0(n) = ep0(n) = u(n), e(n) = d(n), 1(n) = 1.

Table 6: Square-root QRD-LSL algorithm.

Set q3,(0) = @ (~1) = 0, 3,(0) = &}, (-1) = Iz > 0
For each N > 0, set fo(N) = bo(N) = u(N), v%(N) = 1, and repeat for M > 0

VIRYA(N —1) B, (N) 3%2(N) 0
VAGE(N —1) fi(N +1) @MN— Ty (N) JFX4+1(N+1))
0 13 (V) bu(N)&3 "2 (N) mypt (V)
VISIA(N) Fi (N +1) 12N +1) 0
AGIN) by (N) | Oy = @ (N +1) Bipr (N +1)
0 137 (N) N+ 1)@ TN +1) 75, (VN +1)

®fv1, N1 and 911)\/1, N are unitary rotations.

3 Stochastic and Deterministic Least-Squares Problems

The application of the least-squares criterion to estimation problems in both the deterministic and
the stochastic settings will play a central role in our development. Certainly, several other opti-
mization criteria can be used for estimation problems, but for signal processing one of the most
important, at least in the sense of having had the most applications, is the linear least-squares crite-
rion. This striking criterion was perhaps first developed by Gauss in his work on celestial mechanics
[39]. It was later successfully employed by Wiener [40] in the early 1940s in the context of stationary
processes observed over infinite or semi-infinite intervals. But in the late 1950s interest shifted to
nonstationary processes with known finite-dimensional state-space models, where the availability of
the computationally efficient recursive Kalman-Bucy filter [28, 41] has essentially monopolized the
field in the last few decades. We thus include a brief overview of the topic (see, e.g., [27, 29, 30]).

3.1 The Stochastic Problem

Let z be an n x 1 zero-mean random vector and let y be a column of (N + 1) zero-mean random
vectors of size p x 1 each,

Yo
y1
y= .
yn
The problem of interest is to estimate the value of z by means of a linear operation on observed
values of the {y;}, say

iZKoyo—f—Klyl—i——FKNyN:[Kg K1 KN]y:KOy, (3&)

where the K; are n X p matrices, and K¢ is thus a constant matrix to be determined so as to minimize
(over K) the trace of the mean-square error (m.s.e.) matrix defined by

m.s.e. = E[(z —Ky)(z — Ky)*] .

Here, the letter £ denotes expected value. The optimal solution is obtained by requiring that the
error variable, z — K%y, be uncorrelated with the observation vector y, viz.,

E[(z—-K°)y*]=0,

10

which leads to K°(Eyy*) = Ezy*. That is, the optimal linear least mean-squares estimate (L.1.m.s.e.,
for short) of z reduces to solving the linear system of equations,

K°R, = Ry, (3b)

where we have denoted the autocorrelation matrix Fyy* by Ry and the cross-correlation vector
Ezy* by R,y. Assuming the invertibility of Ry, we get the following expression for z,

z=R,R,'y. (3c)

An extremely important special case, which will be central to our later analysis, occurs when the
observation vector y and the variable z are linearly related such as

y=Az+v. (4a)

Here A stands for a constant matrix of appropriate dimensions ((N +1)p x n)) and v is a zero-mean
random noise vector with autocorrelation matrix Ry, Evv* = Ry, and which is assumed to be
uncorrelated with z, Fzv* = 0. The autocorrelation matrix of z is also assumed to be known,
Ezz* = R,. Under these assumptions, the autocorrelation matrix Ry and the cross-correlation
vector R,y in (3b) can be evaluated in terms of the known quantities {A, R,, Ry }. Indeed,

Ry =AR,A"+R, , R,; =R,A".
The 1.1.m.s.e. of z will then be given by
z=R,A*[AR,A* +R,] 'y. (4b)

If it further happens that R, and R, are nonsingular matrices, then the above expression for z can
be rewritten in an equivalent form that will be convenient for later analysis,

i=[R;'+A"R;'A] " A*R;ly . (4¢)

In deriving (4c) from (4b) we employed a very useful matrix identity, often known as the matrix
inversion lemma (see, e.g., [42, p. 656]). It states that if E and C are two invertible matrices then

(E+BCD) !=E!-E'B(DE'!B+C!)"'DE!. (5)

This can be verified by multiplying the right-hand side by (E+BCD) and verifying that the identity
matrix results. The results of this section are summarized in Table 7.

Table 7: Linear least mean-squares estimation: The stochastic zero-mean case.

Given Data l.lLm.s.e. of z

{z,y},

{Ry,Ray}, z=R.yRy'y.

Fz=FEy=0.

y = Az + v, %z=R,A*[AR,A* +R,] 'y,
{Rza Rv}7 or

Ez=Ey=Ev=0,Ezv*=0. | z2=[R,; !+ A"‘R‘le]f1 A*Rly.

11

3.1.1 Non-Zero Means

What if the random variables z and y in (3a) are not zero-mean, say £z = z, Ey = § ? The problem
of interest then corresponds to estimating (z — Z) as a linear combination of the entries of (y — ¥).
If we introduce the change of variables z’ = (z — zZ) and y' = (y — ¥), then this is equivalent to
estimating a zero-mean vector z' from a linear combination of the entries of a zero-mean vector y’.
This is precisely the setting studied in the previous section and, according to (3b), the solution is
given by z’ = K'y’ where K’ is obtained by solving the linear system of equations

K'Ry =Ry, Ry = Ey'y”, Ryy = Ed'y"™ .

The matrix Ry is equal to the covariance matrix of y, where by the covariance matrix of the random
variable y, denoted by cov(y), we mean E(y —§)(y—¥)*. Also, R,y is equal to the cross-covariance
vector cov(z,y) = E(z — Z)(y — ¥)*. Therefore, the 1.1.m.s.e. estimate of z satisfies

(z — 2) = cov(z,y)eov ' (y) [y — 7] - (6a)

Comparing with (3c), we see that the non-zero mean case simply corresponds to replacing z and y by
(z—2) and (y—¥), respectively, as well as replacing the autocorrelation and cross-correlation matrices
R, and R,, by the covariance and cross-covariance matrices cov(y) and cov(z,y), respectively. It
is also immediate to conclude that in the important special case of a linear relation between y and
z as in (4a), where we now assume cov(z,v) = 0, that (4b) and (4c) should be replaced by (using
¥ =Az+v)

% =17 + cov(z)A* [Acov(z)A* + cov(v)] ' [y — Az — ¥] , (7a)

% =17+ [cov (z) + A*cov 1(v)A] ~t A*cov 1(v) [y — Az —+¥] . (7b)

The results of this section are summarized in Table 8. We now move on to review the deter-
ministic version of the least-squares problem and highlight connections with the stochastic point of
view.

Table 8: Linear least mean-squares estimation: The stochastic non-zero-mean case.

Given Data Ll.m.s.e. of =z

{z,y},

cov(y), cov(z), 2 = 7+ cov(z, y)cov(y) [y — 51

FEz =%, Fy =75.

y =Az+v,

{cov(z), cov(v)}, # =7 + cov(z)A* [Acov(z)A* + cov(v)] ' [y — Az — ¥],
cov(z,v) =0, or

Ez=3%, Ey=y§, Ev=+v | 2=%+ [cov ' (z) + A*cov !(v)A] T Arcovi(v) [y — Az —¥].

3.2 The Deterministic Problem

We now let z represent a column vector of n unknown parameters, rather than a vector of random
variables. We are further given (N + 1) noisy measurements {y;} that are assumed to be linearly
related to z as follows

yi = Aiz +v;.

That is, the noise component is assumed to be additive. We are then required to estimate z from
the measurements {y;} as we further elaborate.

12

The (N + 1) measurements are grouped together into a single matrix expression:

Yo Ao Vo
y1 A Vi
. = . Z + .)
YN Ay VN
————
y A v
or, more compactly,
y=Az+v. (8a)

The basic distinction between the earlier relation (4a) and (8a) is that the quantities in the latter
expression are all assumed to be deterministic while (4a) involves random variables. This distinction
will become more apparent as we proceed.

Because of the noise component v in (8a), the observed vector y does not lie in the range space
of the matrix A. Our objective then is to determine an estimate for z, say Z, in order to minimize
the square of the distance between y and Az, viz.,

min [y — Azlf3 . (8b)

The resulting z is often called the least-squares solution, while Az is called the linear least-squares
estimate (l.Ls.e.) of y.

The solution to (8b) follows from a simple projection argument: the vector y does not necessarily
lie in the range space of the matrix A. The orthogonal projection of y onto this range space yields
a vector ¥ that is closest to y in the least-squares sense, since the resulting error vector (y — y) will
be orthogonal to the range of A. The orthogonality condition is equivalent to A*(y —§) = 0. That
is, and replacing ¥ by Az,

A" (y - Ai) = Oa

which implies that the least-squares solution can be obtained by solving the linear system of equations
A*Az = A"y.
If A is further assumed to be full rank then we can alternatively write
Z=(A*A) A%y . (8¢)
A more general optimization criterion that is often used instead of (8b) is the following

mzin [(z — 20)* I " (z — zo0) + |ly — Az[[3] . (9a)
This is still a quadratic cost function in the unknown vector z, but it includes the additional term
(z—20)* Iy (z — zo), where Il is a given positive-definite (weighting) matrix and z, is also a given
vector. Choosing ITy = ool leads us back to the original expression (8b).

The point is that the freedom in choosing IT; allows us to incorporate additional apriori knowl-
edge into the statement of the problem. Indeed, different choices for IIy will indicate how confident
we are about the closeness of the optimal solution Z to the given vector zg. Assume, for example,
that we set Iy = €I, where € is a very small positive number. Then the first term in the new
cost function (9a) becomes dominant. It is thus not hard to see that, in this case, the cost will be
minimized if we choose z close enough to zg in order to annihilate the effect of the first term. In
simple words, a “small” TI, reflects a high confidence that zy is a good and close enough guess for
the optimal solution z. On the other hand, a “large” I, indicates a high degree of uncertainty in
the initial guess zg.

To facilitate the solution of (9a), we introduce the change of variables z’ = z — zg and y' =
y — Azy. Then (9a) becomes
min [z"*TI; 'z’ + ||y’ — AZ'||3] ,

z

13

which can also be written in the equivalent form

][]

This is now of the same form as our earlier minimization problem (8b), but where the observation
vector y in (8b) is replaced by

0

yl 9

1.Ia1/2
A .

The orthogonality condition is then applicable but with the modified matrices, viz.,

T

thus leading to the solution

2

min
zl

2

and the matrix A in (8b) is replaced by

7 = [I;' + A*A] " A%y .
Substituting for 7' =% — 129 and y' =y — Az leads to the optimal solution
B =120+ [TI;' + A*A] ' A*[y — Azg] . (9b)

We also see here that instead of requiring the invertibility of A*A, as in (8c), we now require
the invertibility of the matrix [Ha 14 A*A] . This is yet another reason in favor of the modified
criterion (9a) since it allows us to relax the full rank condition on A. The solution (9b) can also be
re-expressed as the solution of the following linear system of equations:

[M;' +A*A](2 — zo) = A* [y — Az,
N————— N———
P s

where we have denoted, for convenience, the coefficient matrix by ® and the right-hand side by s.
Moreover, it further follows that the value of (9a) at the minimizing solution (9b), denoted by Emin,
is given by either of the following two expressions:

Emin = Min. value = ||y — Azo||3 — (y — Azo)*A[I;' + A*A] 'A% (y — Az) (9¢)
s (irzo)
= (v — Az)[I+ AT A*] " (y — Az). (9d)

Expressions (9b) and (9c) are often rewritten into the so-called normal equations:

=pwlt 11t]=[%] (%)

The results of this section are summarized in Table 9.

3.3 Equivalence of the Problems

A comparison of expression (9b) with the earlier result (7b) is now in order. Expression (7b) provides
the l.1.m.s.e. of z in a stochastic framework, while (9b) provides the least-squares solution of (9a) in
a deterministic framework. But it is clear that if we replace the quantities in (7b) by

cov(z) =1y, Z=12, cov(v)=1I, v=0,

14

Table 9: Linear least-squares estimation: The deterministic case.

Optimization Problem Solution

{z, ¥},

min, ||y — Az||2, z=(A*A) tA%y.

A full rank.

{Z7Y7z0aH0}a)

min,, [(z — 20)* Ty ' (z — 20) + |ly — Az||3], | 2 =20+ [II;" + A*A] ~A*[y — Az).

II, positive-definite. Min. value = (y — Azg)*[I + ATIjA*] 1 (y — Azg).

then the stochastic expression (7b) coincides with the deterministic solution (9b). This equivalence
plays a central role in our analysis. It allows us to move back and forth between the deterministic
and the stochastic frameworks rather smoothly. Table 10 summarizes the relations between the
variables in both frameworks.

We now proceed to assume that the observations {y;} in the linear model (4a) admit an under-
lying state-space structure. This would then allow us to introduce the Kalman filter as an efficient
recursive procedure for the solution of (4b).

Table 10: Equivalence of the stochastic and deterministic frameworks.

Stochastic Framework Deterministic Framework
Stochastic variables {z,y},y = Az + v. Deterministic variables {z,y},y = Az + v.
z = Fz. Initial guess of z, zo.
cov(z). Weighting matrix ITj.
y = Az. Initial guess of y, Azg.
Vv=Ev=0, cov(v) =1 -——
Z. Z.
ming trace{cov[(z —Z) — K(y — §)]}. min, [(z — 20)*TI; ' (z — z0) + ||y — Azl|3].
p=2+[cov-l(z) + A*A] 'A% [y — AzZ]. | 2 =120+ [II;' + A*A] ' A*[y — Az
Min. value = (y — Azg)*[I + ATI,A*|"!(y — Az).

4 The Kalman Filter and Adaptive Problems

We try to keep the presentation as simple and straightforward as possible in order to convey the main
ideas. The reader is referred to [27, 30], and the many references therein, for further information
and discussion on the subject. We shall often limit ourselves to the results that are essential to the
discussion in future sections.

We consider a p x 1 stochastic process {y;} that admits an n-dimensional state-space represen-
tation of the form

xiy1 = Fixi+Gir; ,

15

yi = Hix;+v; , for i>0, (10&)

where 7 is a discrete-time index, F;, H;, and G; are known n X n, p X n, and n X m matrices,
respectively, and the {r;} and {v;} are uncorrelated zero-mean stochastic variables with covariance
matrices

EViV; = Rldz] , E’I‘il';f = QZJU , R;>0.

The symbol J;; is the Kronecker delta function that is equal to unity when ¢ = j and zero elsewhere.
We also assume that the initial state x¢ is a random variable of mean Xg and covariance matrix Ily,
and which is uncorrelated with r; and v;, for all time instants 1,

Exq =%y, cov(xg) =y, cov(xg,r;) = cov(xg,v;)=0.

Let X; and ¥; denote the linear least-squares estimates of x; and y; given the first i observa-
tions {yo,¥1, -.-, ¥i—1}, respectively. We are interested in determining a recursive procedure for
computing the so-called innovations variables,

e =y —¥i=y; — HiX;.

The reason for the term ”innovations” is that e; is the “new information” in the variable y; that

is not in the previous observations {yg,...,yi—1}. Also, it is not hard to see that the {e;} are
uncorrelated to each other and that the sets {yo,...,y:} and {ey,...,e;} can be linearly related to
each other for all ¢, ¢ = 0,1,..., N. Since §; = H;X;, a recursive procedure for finding the {e;} is

effectively a procedure for “updating” %; to %X;;1. An efficient solution is given by the celebrated
Kalman filtering algorithm (see, e.g., [27, 28, 30]). The efficiency arises from the fact that to find

{eo,...,en} takes O(IN?) computations in general, while if the {y;} have a state-space model with
n states, and n < N as is usual, then the Kalman filter requires only O(Nn?) computations to find
{eo,.-.,en}. Moreover, if the state-space model has a special structure, the effort can be reduced

to O(Nn?) computations by using the so-called Chandrasekhar recursions (see, e.g., Section 5.5).
For the special forms arising in adaptive filtering, these flop counts reduce to O(Nn?) and O(Nn),
respectively.

The interested reader may consult the Appendix where we have included, for the sake of com-
pleteness and illustration, a derivation of the (covariance) Kalman algorithm.

Algorithm 4.1 (The Kalman Filter) The llm.s. estimates y; and X; can be recursively com-
puted as follows: start with X9 = Xo and repeat for i > 0,

yi = Hix;

%ip1 = Faxi + KiR_ (yi — 34) (10b)
where the quantities Re; and K; are computed via the expressions
R.;=H,P;H; +R; , K;=F,P,H; , (10c)
and P; satisfies the Riccati difference recursion,
P11 = F,P;F; - KR K/ + GiQ:G] , Po=Il. (10d)

As explained in the Appendix, the quantities Re; and P; can be interpreted as the covariance
matrices of the innovations {e;} and the state-estimation error, X; = x; — X;, respectively, Re; =
cov(e;), P; = cov(k;). Also, K; = cov(x;1,€;), and

(v — 9)*[cov(y)] Ly — 7) = Z eR_le;. (10e)

16

This last equality follows from the fact that (y — §¥) = Le, where L is the lower triangular factor
(with unit diagonal entries) of the covariance matrix of y; the diagonal factor being equal to Re =
{Reo®...®Ren}:

cov(y) = LR.L".

Here, y is a column vector with entries {y;}.

It can be checked that the number of operations (i.e., multiplications and additions) that are
needed in going from index i to index (i + 1) in the Riccati recursion (10d) is O(n?), where n is the
state dimension.

4.1 The Special Case of Adaptive RLS (Fixed-Order) Problems

A special case of the state-space model (10a) turns out to be of crucial importance in our future
development. For the moment, we shall only elaborate on some of its properties and implications.
The model of interest here is one with the following special choices:

Gi=Qi=0, Ri=I, Fi=)\""L
where) is a positive scalar less than or equal to one (0 < A < 1). That is,

_1
Xit1 = ATXg,
yi = Hixij+v;, (11a)

with
EXO = Xg) COV(X()) = HO) EVZ'V; = I(;z] .

The associated Kalman filter equations collapse to the following:
%1 = A3 [%+ PHI [HPH + 17 (v - Hiki) |, %0 =%,
P,y = A1 [Pi — P,H [H,P;H + 17 HiPi] . Po =TI, . (11b)

Assume now that we run the above Kalman recursions from 7 = 0 to ¢ = N. We shall then end
up with the Ll.m.s.e. of xn41 given the first N observations {yo,¥1,.-.,¥~n},

%N4+1 = llms.e. of xy41 given {yo,¥1,---, YN} -

But we know from the special model (11a) that xy4; is simply a scaled version of the initial state
X since

17 (N+1)
XN+1 = I:/\if] Xq -
If we denote, for convenience, z = xg then
11 (N+1) .
[Af] XN4+1 = Z, the Ll m.s.e. of x¢ given {yo,...,yn}.

Let us now see what is the interpretation of this observation in the deterministic setting.
For this purpose, we expand (11a) in order to emphasize the linear relation between z = x¢ and
the observations {y;},

Yo I,) Hy Vo
Y1 AiEIp H]_ Vi
Y2 | = AL He | xo+ | V2 |, (il
YN 2]V, Hy VN
—_———
Y A v

17

where we have denoted the matrix multiplying xo by A. The last expression is of the same form
y = Az + v, where z = x¢. By refering to Table 10, we see that the corresponding deterministic
least-squares problem is the following:

nggn [(x0 — %0)*TI " (%0 — Xo) + ||y — Axoll3] ,

which can be rewritten as

N
min | (xo — %0)'TI5 (%0 — o) + Y [lyi —Hixill3| , (11d)
=0

subject to x;11 = A~ 2x;. Moreover, comparing (9d) with (10e) we also conclude that the value of
the above cost function at its minimizing solution is equal to Eév:o e;fR;;ei.

The adaptive problem to be considered later will be shown to collapse to minimizing a cost
function of this type. Hence, its solution will be immediately obtained by reformulating it as a
state-space estimation problem with an underlying state-space model of the special form (11a). We

summarize this basic fact as a theorem for later reference.

Theorem 4.1.1 Consider a set of (N + 1) deterministic data {y;,%;}},, where the y; are p x 1

1 .y
column vectors, the x; are n X 1 column vectors, and x;11 = A" 2x;, for a positive real scalar A.
Consider further p x n matrices H;, a positive-definite matrixz I1y, and an n X 1 column vector Xg.
The solution of the least-squares minimization problem

N
Hgn l(xo — %0)*TI; (%0 — %o) + Z lly: — Hixi”g])
=0

is equal to (A%) XN+1, where Xy41 is recursively computed as follows: start with Py = I,

Xo = Xo and repeat fori=1,2,...,N:
Xipr = ATE [iz +P;H; [H;PH; +1) ' (y; — Hifii)] ;
Pii = A1 [Pi — P;H: [H,P;H} +I]*1H,-P,-] .

Moreover, the minimum value of the above cost function is equal to

N N
Min. value = ZefR;je,- = Z(y, - Hzﬁz)*(l + HlPZH;k)_l(yz - Hzf{,)
=0 =0

The result of the theorem plays a fundamental role in our derivation. It establishes the link
between the deterministic setting of the recursive least-squares (RLS) problem and the stochastic
setting of a related Kalman filtering problem. This link will allow us to move back and forth, and
very conveniently, from one interpretation to another.

Also, we should highlight at this stage that, while in the statement of the theorem the H; are
matrix quantities and the y; are vector quantities, this is really more general than what is needed to
handle the RLS problem that we treat in future sections. In these sections, we shall focus, for ease
of exposition, on the case where the H; are replaced by row vectors, h;, and the y; are replaced by
scalars, y(z). But it should be clear from the result of the theorem that our development is equally
applicable to vector observations y; and to matrices H;.

4.2 The Special Case of Adaptive Lattice (Order-Recursive) Problems

Another special case of the state-space model (10a) will play a significant role in the derivation of
the so-called adaptive lattice filters. It is identical to the model in (11a) but with scalar quantities.

18

That is, the state vector x; is replaced by a scalar (one-dimensional) state z(¢), the output vector
yi is replaced by a scalar observation y(i), the noise vector v; is replaced by a scalar signal v(7),
and the matrix H; is replaced by a scalar h(i) (note that we use parenthesis, (), to indicate time
dependency for scalar quantities. In the vector case we have been using subscripts),

z(i+1) = A 2a(i),
y()) = h(i)z(i) +v(i) , (12a)
with
Ez(0) = z(0) , cov(z(0)) =m(0) , Ev(i)v*(j) =di; -

This is clearly a special case of the earlier model (11a), and the result of Theorem 4.1.1 is thus
immediately applicable,

Theorem 4.2.1 Consider a set of (N +1) deterministic scalar data {y(i), z(i)}Y.,, where z(i+1) =
A=22(i), for a positive real scalar \. Consider further scalars h(i), a positive number (0), and a
scalar Z(0). The solution of the least-squares minimization problem

N
min l(ﬂc(O) - #(0)" 7 1(0)(2(0) — 2(0)) + M ly(0) — A(D)2(D)*| , (12b)
=0

#(N+1), where Z(N+1) is recursively computed as follows: start with p(0) = m(0),
%(0) = £(0) and repeat fori=1,2,...,N:

. A3 » N

2(i+1) = W[¢(’)+P(l)h (@)y(@)] ,
A 1p(i)

1+ p(i)|h(3)>

Moreover, the minimum value of the cost function (12b) is equal to

Min. value—zle Z' 1+p ?(”)'2

p(i+1) =

To get a geometric interpretation for the above result, we note that expression (11c) collapses
to the following:

y(0) h(0) (0)

y(1) A2 h(1) (1)

y(2) | =| XA 'h(2) 2(0)+ | v@ |, (12¢)
L) (A~ 2)Nh(N) v(N)

and the problem then is to determine a scalar coefficient z(0) in order to “match” the column
vector y with the column vector a in the least-squares sense specified by (12b). In the special case
m(0) = oo, this is equivalent to projecting the vector y onto the vector a leading to (cf.(8¢)):

Z2= (0) given {y(0),...,y(N)}.

a*a

19

5 Algorithmic Variants of the Kalman Filter

There are several variants to the Kalman filter recursions (10b)—(10d). These essentially differ in the
ways they propagate the quantities K;, Re; and P; that are needed in the Kalman recursions. We
shall not discuss these algorithmic variants in details here, but shall rather focus on the particular
alternatives that are relevant to our subsequent discussion. For more details, the reader may consult
[27, 30] and [43]-[45].

We shall concentrate on the special model (11a) of Section 4.1 rather than consider the general
state-space description given in (10a). But we hasten to add that the discussion that follows can be
easily extended to models of the form (10a). This constitutes a significant strength of the state-space
formulation: it allows us, for instance, to consider more general matrices F; in (11a) rather than

the particular choice F; = A=21, fore.g., F; = diagonal{)\;%,)\;%, ey)\;%}. It also allows for more
general matrices G;, Q; and R;. The careful reader will soon realize that these more general cases
can be handled by proper extensions of the arguments in this paper. But we shall concentrate here
on the special model (11a).

The results described in the rest of this section are summarized in Table 11. Readers familiar
with the Kalman filter may wish to examine it briefly and go on to the next section on adaptive
filtering. Other readers may also do this, returning for some details to the appropriate portions of
this section as they are cited in the RLS problems of Sections 6 through 8.

5.1 The (Covariance) Kalman Filter

The model in (11a) assumes G; = Q; = 0, R; =T and F; = A~ 21. The associated Kalman filter
equations are summarized below for ease of reference.

Algorithm 5.1.1 Given the state-space model (11a), the ll.m.s. estimate X; can be recursively
computed via the recursions: start with Xo = Xg and Py = Ily, and repeat for i > 0,

Ripr = ATER+ KR, (yi — Hi%),
R.; = HPH;+I, K;=)\:P;H;
Pi1 = A 'P;-KR_K]. (13)

Assuming that p < n, as often happens, the number of operations (i.e., multiplications and ad-
ditions) that are needed in going from index i to index (i + 1) is O(pn?), where n is the state
dimension and p is the output dimension. This is smaller than the O(n3) figure that we mentioned
earlier because we are now assuming a very special matrix F;, viz., a multiple of the identity.

5.2 The Information Filter

The recursions (13) propagate the Riccati variable P;. In several applications, however, the uncer-
tainty in the initial state xo may be high. That is, IIy = oI with o > 1, which implies that the
starting point for the Riccati recursion involves large numbers. This is particularly the case in a
standard least-squares minimization problem, such as (11d), where II, is assumed to be infinite and
where the problem of interest is to solve for x¢ in

min |y — Ax0||§ .
X0

For such problems, it is preferable to propagate the inverse of the Riccati variable, Pz._l, rather
than P; itself. The resulting algorithm is known as the information filter (see, e.g., [27, 43]). In
contrast, the original Kalman filter recursions are often called the covariance form. It can be derived
from the recursions of Algorithm 5.1.1 rather immediately by invoking the matrix inversion lemma

(5).

20

Algorithm 5.2.1 (The Information Filter) Given the state-space model (11a), the Ll m.s. es-
timate X; can also be recursively computed via the recursions: start with Py %0 = II, %0 and
Pal = I'Ial, and repeat for i > 0,

P = AP;'+HH],

Moreover, the inverse of innovations covariance matriz, Re ;, and the normalized innovation R;ei
,
are gien by
-1 _ * —1 _ 1 s
Re,i =1-)\HiPi+lHi s Re,iei =Yy — AZHZ'XH_]_.

The state-estimate at any particular time-instant can be recovered from

[Pi_+11]71 [Pz‘_+11ii+1] = Xiy1 - (14)

Note that the information filter propagates the quantity P;lfci rather than %; itself. Also, the
number of operations (i.e., multiplications and additions) that are needed in going from index i to
index (i + 1) is still O(pn?), where n is the state dimension and p is the output dimension.

5.3 The Square-Root Kalman Filter

The Kalman recursions (13) propagate the covariance matrix P; via a Riccati difference equation.
Due to roundoff errors, however, the Riccati recursion may not guarantee a positive-definite matrix
P; at all times 7. This problem can be avoided by using an alternative so-called square-root array
form of the Kalman filter equations. The array form propagates a square-root factor of P;, viz.,
Pi/ 2, By squaring P;/ % we shall always be guaranteed to obtain a positive-definite covariance
matrix, P; = P;/zP:/z.

Before proceeding to the derivation of the square-root filter, we first state and prove a simple
result from matrix theory that plays an important role in the argument.

Lemma 5.3.1 Given two n X m (n < m) matrices A and B. Then AA* = BB* if, and only if,
there exists an m x m unitary matriz ® (@O* =1,) such that A = BO.

Proof: One implication is immediate. If there exists a unitary matrix ® such that A = B® then
AA* = (BO)(BO)* = B(GO®*)B* = BB*. One proof for the converse implication follows by
invoking the singular value decompositions of A and B,

A=Us[Za 0]Vsy, B=Ug[Zs 0]Vgs*,

where Ux and Up are n X n unitary matrices, VAo and Vg are m X m unitary matrices, and X
and X are n X n diagonal matrices with nonnegative (ordered) entries. The squares of the diagonal
entries of ¥ o (Xg) are the eigenvalues of AA* (BB*). Moreover, Ua (Ug) can be constructed from
an orthonormal basis for the right eigenvectors of AA* (BB*). Hence, it follows from the identity
AA* =BB* that we have ¥4 = ¥p and Up =Ug. Let ® = VgV},. We then get @0* =1,
and BO® = A.

|

We now use the above result to motivate the square-root form of the Kalman filter. For this
purpose, we note that the Kalman recursions (13) can be expressed in factored form as

1 HP!? [I 0]_ R 0 |[RZ R’k
0 A3pY? || PYPH; A-iP)? || xR.? P 0 P2 |
X A B B*

21

The above equality fits into the statement of Lemma 5.3.1. We thus conclude that there exists a
unitary matrix ©; that relates the arrays A and B (an interesting geometrical motivation for the
existence of such rotations can be found in [43])

._[R 0

e,
—x/2 1/2
Kz’Re,i/ Pi—i/-l

pl/2
lI HP; (15a)

0 A ip;/?

In fact any unitary matrix @; that takes the prearray of numbers

I HP)/?
0 A\ :p}/?

and triangularizes it; thus leading to a postarray of numbers of the form

@i:[x 0], (15b)

I HP/?
Y Z

0 A 3P}’

for some {X,Y,Z}, achieves the transformation (15a). To verify that the quantities {X,Y,Z} can
indeed be chosen as {Rl/2 KiR;:f/z, lefl}, we proceed by squaring both sides of (15b),

e, ?
" Ix o][x 07
“ly z||ly z| >

and comparing terms on both sides of the equality to get the identities:

@ *
]

I HP/?

I H;P?
0 A :P)/?

0 AP

XX* = I+H;P,H;=R.; ,
YX* = M\ 3PH; =K, ,
ZZ* = M 'P;-K.R_K; =Pi.

Hence, we can choose X = RY/2, Y = KiR,;;‘/2 = K,;, and Z = P}/?. We are thus led to the

e, ? i+1-
square-root version of the Kalman recursion [27, 43].

Algorithm 5.3.1 (The Square-Root Kalman Filter) Given the state-space model (11a), the
l.lm.s. estimate X; can also be recursively computed via the recursions: start with X9 = Xo and
P(l)/2 = H(l)/2, and repeat for i > 0,

I H;P/? RYZ 0
0 \-ipl/2 i= | 5 /2 | > (15¢)
2 Kpi Pl

where ©; is any unitary transformation that produces the block zero entry in the postarray, and
-1
N EUN = .
ki1 = A 3% + Ko [Rl/ 2] (yi — Hik;) -

e,

The number of operations needed in going from step i to step (i + 1) is still O(n?), the same
order as the Riccati-based algorithm.

5.4 An Extended Square-Root Information Filter

The information filter equations of Algorithm 5.2.1 can also be expressed in square-root form, where
a square-root factor of P ! is propagated rather than Pl-_1 itself. Since the argument is essentially

22

similar to what we have done in the previous section, we only highlight the major steps here. We
form the prearray of numbers

ARPY? \SHG

2P, yr

0 I ’

AP0
and choose any unitary matrix ®; that introduces a block zero in the second block entry of the top
row, say

AsP; "% A3H; X 0
xP? yr || Y Z
0 I ! W T
)_%P;ﬂ 0 S V
By squaring and comparing terms on both sides of the equality
ASP Y2 NHY ASP; Y2 NBHE X 0 X o]
Axp—*/2 * Axp—*/2 *
xiPi/ y; 0,0 xiPi/ y; _| Y Z Y Z
0 I N 0 I W T W T ’
)_%P;ﬂ 0 I)\—%P}/Z 0 S V S V

we readily conclude that we can make the following identifications:

X =P’ Y=%,P ", W= H,P}[], T=R.;?, Z=¢e/R.;*, S=P}[5, V=-K,;.

Algorithm 5.4.1 (The Extended Square-Root Information Filter) Given the state space model
(11a), the l.1.m.s. estimate X; can also be recursively computed via the recursions: start with X9 = Xo,

P(l)/2 = H(l)/2, Pal/z = Hal/z, and repeat for ¢ > 0,

AP/ \HY Pfﬂ/z/ °,

Axy—* * A —%/2 * —%x/2

x:P,; /2 y; @ — XiaPi - &R (16a)
0 I B IDYS : £ i —*/2 ’

_191/2 ! il

AER 0 1 H Ky,

where ©; is any unitary matriz that produces the block zero entry in the top block row of the postarray.
The state estimate is given by

Rig1 = A 3% + Ky [R_l/zei] = [Piﬁ] [P;rll/zfiiﬂ])

e,?
. —1/2 —1/2. = 1/2 .
where the quantities {R;'"e;, P, {"%;y1} and {K,;,P;\1} are read from the entries of the second
and last lines of the postarray, respectively.

The number of operations needed in going from step i to step (i + 1) is still O(n?). The term
“extended” is used here to indicate that the above array is a simple extension of the usual form of the
square-root information filter as given in [43]: the top three block lines are standard in the square-
root description of the information filter, while the last block line is borrowed from the square-root
Kalman filter (15¢). An alternative interpretation of (16a) as one that avoids the backsubstitution

required to obtain X; from Pz-_l/ 25@ (viz., to use the so-called Faddeeva’s method) is described in
[50].

An extension may also be noted here. If the covariance matrix of the noise signal v; in the model
(11a) is not the identity matrix but rather Ev;v¥ = R;, then the previous square-root arguments

J
are still applicable and they immediately show that the array equation (16a) becomes

23

AP ASHGR, P/’ 0
%P yiR; %P R

; = ol 16b
—191/2 1/2 -
A ZPz'/ 0 Pi—{-l —K,yi

Hence, the equality R;zl-ei =y; —)\%Hifciﬂ in Algorithm 5.2.1 converts to

R;}ei =R’ [Yz' -)\%Hiiiﬂ] .
This modification is useful when a weighted least-squares criterion is used (as happens, for e.g., in
Section 8.3.1 ahead). It is easy, for instance, to verify that the corresponding optimization problem
is the following;:

N
min | (xo —%o)*IIy ™" (%o — Xo) + Z()’i — Hix;)"R; (v — Hixi)] . (16¢)

X0 .
i=0

5.5 The Square-Root Chandrasekhar Filter

All the algorithmic variants presented so far have an O(n?) computational complexity, and this is
true whether or not the state-space model (11a) or, more generally, the model in (10a) have constant
parameters {F;, G;, H;, Q;, R;}. However, one expects a computationally more efficient procedure
in the case of constant-parameter systems {F,G,H,Q,R} (see, e.g., [44]-[45]) or in the case of
time-variant models that exhibit structure in their time-variation (see, e.g., [31]).

The Kalman recursions of Algorithm 4.1 require the Riccati variable P; in order to compute the
covariance matrix Re ; and the gain matrix K;, which are in turn used to update the state estimate
according to (10b). But an alternative procedure exists in the case of constant-parameter, as well
as structured, state-space models [31, 43], where the R ; and K; are computed without the need
to explicitly evaluate P;.

To clarify this, we follow [31] and say that a general state-space model (10a) is structured if there
exist n X n matrices ¥; such that F;, H;, and G; vary according to the following rules:

H,=H;.9¥ , Fiu¥, =%F;,, Gy =% 1G;. (17a)

Constant-parameter systems satisfy (17a) with ¥; = I. Also, the covariance matrices R; and Q;
are assumed constant for all i (R; = R, Q; = Q). More general cases are treated in [31].

The special model (11a) exhibits G; = Q; = 0, R; = 0 and F; = A~2I. The G; and F;
obviously satisfy (17a) for any constant matrix ¥. Hence, the model (11a) will be structured if a
¥ exists such that the H; matrix satisfies H; = H; 1 ¥. We shall see later in Section 7.5 that, in
the context of RLS filtering, a shift structure in the input data results in a structured model (11a)
with a particular ¥ and, hence, the result of this section will be immediately applicable. So assume
there exists a ¥ such that H; = H; ;%Y. We now verify that this leads to an order of magnitude
speed up of the Kalman filter, for sufficiently sparse ¥.

The savings in computation are achieved by considering the difference matrix P;,; — ¥P;¥*,
as we further elaborate. If this difference has rank o then we can (nonuniquely) factor it as

P, — ¥P,¥* = L;S,L} ,

where L; is an n x @ matrix, and S; is an a X « signature matrix with as many +1's as P;; —¥P, ¥*
has positive and negative eigenvalues. We now form the prearray of numbers

Ri,/iz H; 1 L;
‘I’prz' AT 3 L; ’

24

and choose any J = (I @ S;)—unitary matrix ©;, i.e., ®;JO; = J, that block-triangularizes the

prearray,
X 0
o-|3 2|

By comparing the J—norms on both sides of the equality,

e,i

R./? H;,L;
\I’Kp,i)\7%14,

RY? H L | [T 0], R HiyL
= _1 O, . O; — _1
UK,; M\ zL; 0 S; PK,; M\ 2L;

J

BERIIE

no
| — |
= M
N ©
—

*

we conclude that we can make the identifications X = Ri/ z.2+1, Y =K, ;1 and

ZS,Z* = Piio — OP, T* .

We can thus choose Z = L;;; and set S;;; = S; since, by definition, P;;» — ¥P,; 1 ¥* =
Li11Si41L7, ;. Note that our argument shows that the inertia matrix S; does not vary with 1,
and we can choose it equal to Sg, where Sq is defined via the factorization

P; — ¥P¥* = (A 'y — KoR_(Kj) — ¥IIo¥* = LoSoLg.

The point is that we often get @ < n. The resulting arrays then propagate an n x « factor, L;,
rather than the n x n matrix P;.

Algorithm 5.5.1 (The Square-Root Chandrasekhar Filter) Given the state space model (11a),
and assuming there exists an n x n matrix ¥ such that H; = H; 1, then l.I.m.s. estimate X; can
also be recursively computed as follows: let

Reo = I+ HoIH:, Ko =\"3II,H},
and factor the difference [A*IHO - KOR;(I)KS - \I’HO\I'*] as
AT — KR K§ — $IIo¥* = LoSoLy ,

where Lo is n X a, Sg is an a X a signature matriz, and o is the rank of the difference on the
left-hand side.

Now start with X9 = Xo, Ri,/g =[I+ HOI'IOHS]l/2 , I_{p,o, Ly and Sq as above, and ¥, and repeat
fori>0,

(17b)

1/2 1/2
Rg,i H'H-lle' 0, = [I_{e,/z'+1 0] ’
¥K,, I zL; Kpit1 Lip
where ©; is any J = (I ® So)—unitary matriz that produces the block zero entry in the postarray.
Moreover,

. .= 172171 .

Xit+1 = A 2X; + Kpﬂ' [Re,i] (y, - H,’Xi),
where the quantities Rlla’/ iz and K, ; are propagated in the postarray.

In many situations we get @ < n. Examples will be given later in the adaptive filter area. If

the matrix ¥ is sparse enough so that the product ¥K,, ; would require O(n) operations, then the
number of operations needed per iteration is O(n) for p € n and a < n.

25

5.6 The Chandrasekhar Filter in Explicit Form

We also remark that the Chandrasekhar recursions of Algorithm 5.5.1 can be alternatively expanded
and rewritten in an unnormalized form [43, 44]. This is achieved by considering the alternative
factorization

P - WP — (LR LI

where R, ; is an o X o matrix that is not necessarily restricted to a signature matrix. Using the
factors LE“) and R, ; one can check that the follwing equations hold (see, e.g., [31, 45, 47]).

Algorithm 5.6.1 (The Explicit Chandrasekhar Filter) Given the state space model (11a), and
assuming there exists an n X n matrix ¥ such that H; = H; 1 ¥, then l.l.m.s. estimate X; can also
be recursively computed as follows: let

Reo = I+ HoILH, Ko=) *ILH},
and factor the difference [/_11'10 — KOR;%)K(’; — \Ill'Io\Il*] as
A7, - KoR, 3K — I ¥* = LR, 1L;™"

where L((,u) isn xo, Rro is a X o, and o is the rank of the difference on the left-hand side. Now
start with X9 = Xo, Re 0, Kp,o, Rro, L((]u) and ¥, and repeat for i > 0,

R Hi+1L§“) Re,it1 0
¥K;)_%L,Eu) 3= Kz'+1 L,Ei)l) (18)
L:(u)H:+1 Rr,i 0 RT,i-l—l
where X; is given by
I, ~R_'H;,L"
Bi=| _poipr@pe AT
-R,;L; "H;, I,

Moreover, X L » X
Xit+1 = AT2 X; + Kz [Re,i] (yz — Hlx,)

It can be further verified that the above X; satisfies the generalized unitarity relation

[Re,i 0] Erz — [Re,i+1 0] ,

»n*
0 _Rr,i 0 _Rr,i—i-l

K3
We may finally note that the above recursions are also related to the famous Levinson and Schur
algorithms in prediction theory, as discussed in [24, 45, 47].
Table 11 summarizes the different forms of the Kalman recursions that we considered so far for
the state-space model (11a).

6 The Recursive Least-Squares (RLS) Problem

‘We now move to formulate and solve the recursive least-squares problem by invoking the equivalence
result of Theorem 4.1.1 and by employing the state-space tools presented so far. We have already
formulated the standard least-squares problem in Section 3.2. We shall exhibit here a more detailed
analysis along with some notational conveniencies.

The core problem in adaptive filtering is the following. Consider a sequence of (N + 1) scalar
data points, {d(i)}X,, also known as reference or desired signals, and a sequence of (N + 1) row
vectors {u,-}évzo, also known as input signals. Each input vector u; is a 1 x M row vector whose
individual entries we denote by {u;(i)}}Z;, viz.,

u; = [ul(z) Ug(i) uM(z)] . (19a)

26

Table 11: Algorithmic variants of the Kalman filter.

The assumed model is:
Gi=Qi=0, R;=I, F;=\3I,
Xiy1 = A3, yi = Hixi + v,

EXO =X 5 COV(X()) =].-.[0 5 EVz'V;-= = I(S“ B)ACO = }_{0, Po = Ho.

Filter Name

Expressions

Rip1 =\ 3% + Kz'Re_;(Yi - H;%;),

The Covariance Kalman R.;=H;P,H; +1, K; =)*%PiH;‘,

Filter P = AP, - KR, IK].
P, =[P +HIH]],
The Information Filter P L% = A7 [P'%; + HYyi],

R, =1-)\H;P;, H},
— 1 A
Re;ei =Yy — A2 Hixi+1,

Rip1 = [Pi_+11]_1 [Pz'_Jrll’A‘Hl] :

pl/2 1/2
The Square-Root I HZPil /2 ;= I}e” ?/2 ,
0 A 2P, K,: P\
_ “1
Covariance Filter Xiy1 = ATIR; + K, [Ri/ f] (y; — Hi%;) .
ASPTY2 \SH: Pi_:lﬂ/ 0)
P2 x 2 P77 erRY/?
The Extended Square-Root %P, Y @, = | M o © St
0 I APHLP G, R
_1.1/2 1/2 _
ATzP; 0 Pi/l —Kpi
Information Filter Xiy1 = A% + K, [R;;/Qei] = [P;ﬁ] [P;_i_ll/2ii+1] .
H;, =H;.,7,
The Square-Root AT, — KoR_(K§ — I ¥ = LoSoLj
1/2 T 1/2
Chandrasekhar Filter RS*" H”llL’ Q; = [Ry 0] ,
\I’Kp’i A7z2L; Kp,z'—i—l Lz’+1

e,i

~ 1
Xiy1 =)_%5{1 + Kpﬂ' [R1/2] (y,' — HZJAC,)

H;, =H;.,7,
The Explicit A - KRS 5K — I ¥ = ~L{“R; L™,
Re; Hz’+1L§u) Re it1
Chandrasekhar Filter JK; AL [Zi= | K
L:‘(u) H’ik-i-l RT,Z' 0
o[
| -RILMHEE,, I

Xip1 = A% + Ki[Rei] ' (yi — Hik).

b

A

The entries of u; can be regarded as the values of M input channels at time i: channels 1 through M.
Consider also a known column vector W and a positive-definite weighting matrix IIy. The objective
is to determine an M X 1 column vector w, also known as the weight vector, so as to minimize the
weighted error sum:

—1 N
EN) = (w—w)" [\ (w = w) + 30 AV () - uw? (19b)
i=0

where)\ is a positive scalar that is less than or equal to one (0 < A < 1). It is often called the
forgetting factor since past data is exponentially weighted less than the more recent data. The
special case A = 1 is known as the growing memory case, since, as the length N of the data grows,
the effect of past data is not attenuated. In contrast, the exponentially decaying memory case (A < 1)
is more suitable to time-variant environments. Also, the factor A~ (¥+1) that multiplies I, in the
error-sum expression (19b) can be incorporated into the weighting matrix ITo. But it is left explicit
for convenience as will become apparent later (see expressions (20a) and (20c) below). We shall
denote the individual entries of w by {w(i)}X,,

w=[wl) w? .. wM)]".

Before proceeding any further, let us provide a pictorial depiction of the problem at hand, see
Figure 1. At each time instant ¢, the inputs of the M channels are linearly combined via the
coefficients of the weight vector and the resulting signal is compared with the desired signal d(3).
This results in a residual error €(i) = d(i) — u;w, for every ¢, and the objective is to find a weight
vector w in order to minimize the (exponentially weighted) squared-sum of the residual errors over
an interval of interest, say from s = 0 up to i = N.

Figure 1: A linear combiner.

We also redraw the linear combiner of Figure 1 in a more compact form as in Figure 2. The input
data {u;} are fed into the linear combiner one at a time: ug, followed by u;, and so on. The reference
signals {d(i)} are also fed into the combiner sequentially starting with d(0) and then d(1) and so
on. The objective is to determine a column vector w such that the scalar sequence generated by
the inner products {u;w} follows the reference sequence {d(¢)} in the sense that the (exponentially
weighted) squared-sum, or energy, of the resulting residuals {€(0), €(1), ...} is minimized.

The linear combiner in either Figures 1 or 2 is said to be of order M since it is determined by M
coefficients {w(j)}}Z,. However, a special case of the combiner in either figure will be relevant while
deriving the lattice adaptive filters (see, e.g., Sections 8.2 and 8.3). It corresponds to a first-order
combiner, viz., one that compares a scalar sequence of reference signals d(z) with another also scalar
sequence of input signals u(7) via a single weighting coefficient, say w, as depicted in Figure 3. [As
a side note, we remark that for the lattice filters that we discuss in Sections 8.2 and 8.3, the scalar
sequences {d(z),u(i)} will be the sequences of forward and backward prediction errors.].

28

u; U w {3 ... €(1) €0)

Figure 2: A compact representation of the linear combiner.

- u(1) u(0) w {5 ... €(1) €(0)

Figure 3: A first-order linear combiner.

The expression for the weighted error-sum (19b) can be rewritten in matrix form as well. For
this purpose, we introduce the residual vector ey, the reference vector d, the data matrix Dy,
and a diagonal weighting matrix Ay,

d(0) — upw d(0) u1(0) w2(0) ... wupu(0)
d(l) —uyw d(1) ur(l) we(l) ... upy(1)
ey = d(2) — Us2W — d(2) _ Ul (2) U2(2) e UM(Z) w, (19C)
d(N) — uyw | d(N) - w(N) w(N) ... um(N) j
dn Dy

AY? = . . (19d)

It then follows that

EN) = (w—w) [\OIIL] T (w -)+ [|AYen3 (19¢)

The quantity A}\{Qe N is an exponentially weighted error vector,
1/2 1/2 1/2
A ’en = AN?dy — AN Dyw .

We conclude from (9a) and (9b) that the optimal solution W is given by

1
(W — W) = [,\(N+1>H51 + D’;VANDN] D% Ay [dy — Dyw] .

29

This can be rewritten more compactly by introducing the “covariance” matrix ®y and the “cross-
covariance” vector sy,

QN = I:)\(N+1)Hal + D*NANDN , SNy = D}'{VAN [dN — DNW] . (203.)

Then, the optimal solution is obtained by solving the following (also known as normal) linear system
of equations,
QN(VAV—V_V):SN. (20b)

It is also rather straightforward to verify that ® and sy satisfy simple time-update relations, viz.,
‘§N+1 -)\@N = u}"v+1uN+1, SN+1 —)\SN = 117\J+1 [d(N +].) - uN+1v_v] y (20C)

with ®_; = IIj ! and s_1 = 0. Hence, ® 41 and ® differ only by a rank-one matrix. It further
follows from (9d) that we can express the minimum value of £(N) in the form:

2
Emin(N) = HA}V/Z(dN _ DNV"V)H2 — sy @ s (20d)

The solution W obtained by solving (20b) is the optimal weight estimate based on the available data
from time 7 = 0 up to time 7 = N. We shall denote it from now on by wy,

‘§N(WN —W) =S8N .

The subscript x in wy indicates that the data up to, and including, time N were used. This is to
differentiate it from the estimate obtained by using a different number of data points. Indeed, the
main objective of the recursive least-squares (RLS) problem is to show how to update the estimate
wy, which is based on the data from time 0 to time N, to the estimate w1, which is based on
the data from time 0 to time (N + 1), without the need to resolve a new set of linear equations of
the form

Py (WNpr — W) =sSny1 -

Such a recursive update of the weight estimate should be possible since the coefficient matrices ®
and ® 1 of the associated linear systems differ only by a rank-one matrix. In fact, a wide variety
of algorithms has been devised for this end and our purpose here is to derive these different schemes
in a unified framework that is based on insights gained from state-space estimation techniques.

6.1 The State-Space Formulation

Let us now rework the error-sum expression (19b) in order to reduce it to the same form (11d) that
we discussed in Section 3.2. This will then allow us to invoke Theorem 4.1.1 of Section 4.1. If the A
were equal to 1 then expression (19b) would be identical in form to expression (11d) and we could
immediately apply Theorem 4.1.1. For a general non-unity A, though, the expression (19b) can be
reworked to the familiar form (11d) as follows:

-1 N
EN) = (w—w)" [\OHIIL] T (w - w) + 37 AV d(0) — ww?
} =0 \
e Fietee 1-1 L d) w
— N w—w)* 1 W — W —u .
= v DT)+ 3| T
——v
5 y(4) xi
[N
= AV |(x0 — %o)"* [/\711-[0]_1 (x0 —Xo) + Z ly(i) —wixi|?| (21a)
L =0

30

where we have defined the quantities,

X =W, Xg=W. (21b)

y(z):(ﬁ)z’xl:(ﬁ)z’ 0

Note that it follows from the definition of x; that x;11 =)*%xi. This manipulation shows that
we can always rescale the original problem (19b), with an exponential factor A, to an equivalent
minimization problem with A = 1, (the constant factor A" does not affect the optimization problem;
it only scales the value at the minimum),

N
min | (Xo —Xo)" [\ ') " (%0 — Ro) + > ly() —wixil|
1=0

where {Xo,y(?),u;, o, N, A} are known and x;1; = A\~2x;. This problem is clearly a special case
of the equivalence result of Theorem 4.1.1. We thus conclude that the weight estimate can be
recursively updated by writing down the state-space estimation algorithm (and its many variants)
that corresponds to the following special M —dimensional state-space model,

1
Xig1 = A 2x;
y(@) = wx; +v(i), (21¢)

with
Xo = W, X9 = W ,cov(xg) =)_11_.[0, E’U(Z)’U*(]) = 51']' .

This is a special case of the model (11a) that we considered in Section 4.1: the y; is now a scalar
variable y(i) and the matrix H; is replaced by the row vector u;.

Also, an attractive feature of the scaling provided by (21b) is that it leads to a state-space
model (21c) with a constant (in fact, equal to unity) noise variance, Ev(i)v*(j) = d;;. This will
be helpful later when we further impose shift structure on the input channels and show that the
resulting model (21c) can be regarded as structured in the sense defined in Section 5.5, and for
which the Chandrasekhar recursions will be immediately applicable. Furthermore, it also turns out,
as shown in the next section, that the scaling (21b) leads to a simple relation between the Riccati
variable, P; 1, associated with the model (21c) and the inverse of the “covariance” matrix, ®; t
associated with the least-squares problem (20b): P;.; will be a constant (viz., A~ ') times &, .
This means that if we write down the Riccati difference equation for P;;; then it translates almost
immediately to the widely-known RLS recursion for & 1. Other types of scaling may be used to
define alternative auxiliary models as in (21c¢). This would lead to alternative relations between the
RLS and the Kalman variables, which can then be used to relate a Kalman-type algorithm to an
RLS-type algorithm in precisely the same way as done in the remaining part of this paper. The
scaling in (21b) is motivated by the simple relation that it provides between P;;; and ®; ' and by
the constant noise variance.

6.2 Relations between the RLS and Kalman Variables

The different variants of the Kalman recursions, when applied to (21c), will now provide different
algorithms for the solution of the RLS minimization problem (19b). But note that the variables
used in (21c) are scaled versions of the variables used in (19b). For example, y(¢) is a scaled version
of d(i). So is x; relative to w. This means that when writing down the state-space estimation
algorithms that correspond to (21c), we should then proceed to replace the variables of (21c) by
the corresponding RLS variables. This would allow us to describe the algorithms in terms of the
original RLS variables. This section is meant to clarify the connections between the RLS variables
{d(i), w,u;, Iy, ®;, w;} and the Kalman variables.
The Kalman recursions that correspond to the model (21c) are given by: X9 = X9 = W, Py =
A",
)A(,'+1 =)\7%5(, + k,”l"gl (Z)C(Z) , (22&)

31

where e(7) = y(i) — u;%;, k; =)_%Piu}‘, re(1) = 1+ u;P;u}, and P; satisfies the Riccati difference
equation
Pii1 =)' [P, —Pur, ' (i) u;P;] . (22b)

Recall that w; denotes the estimate of w that is based on the data {d(j),u;} from time j =0
to time j = ¢. Likewise, the state-estimate X;;; denotes the estimate of the state x;,; that is based
on observations {y(j)} from time j = 0 to time j = . We know from Theorem 4.1.1 that they are
related as

i1 = wi/ (V)T

This is also clear from the defining relation x;11 = w/(v/\)i*1.
With the RLS problem we also associate two residuals at each time instant i: the apriori error
€4(1), defined by
ea(i) = d(i) - ;Wi ,

and the aposteriori error e,(i), defined by
ep(i) = d(l) - u;w; .

These residuals can be easily related to the Kalman filter innovation e(z), which is defined by
e(i) = y(i) — u;%x;. Its variance is denoted by r.(i). Now note that

eli) = yli)—uki = ﬁ [d(i) — wwi_1] = ﬁ eali).

On the other hand, the expression for the aposteriori error e, () leads to
ep(i) =d(i) —ww; = d@&) — (VA ki
_ . i+1 1, —1y. .
= d(i) = (VO AR+ ki (0)e6)]
= [d() — uywi_1] — A2 wkir; (i) eq (4)

[1 - \/Xuik,-re_l(i)] ea(i)

w;P;u’l . 1. .
[1-]) = Ol

This means that the so-called conversion factor that converts the apriori error e, (z) to the aposteriori
error e,(i), and which we denote by (i) (following [1, page 578]), is equal to r_*(3).
Finally, if we apply the matrix inversion lemma (5) to (22b) we obtain

P L — P! =)ufuy, Pyl =100,

and it readily follows (recall (20c)) that P}, is a scaled version of the “covariance” matrix ®; that
we defined in (20a). More precisely,
P = \®,.
If we denote the inverse of the “covariance” matrix ®; by P;, viz., P; = 'I>Z-_1, then we also have
that B
P,=)\71Pz' .

[This notation is chosen to reflect the one conventional in RLS estimation — see (23). Otherwise a
different symbol than P would be better]. B

We further denote v/Ak;r;!(i) by g;, which implies that v2k,; = giv™*/2(i) = g. The
correspondence between the Kalman and the RLS variables, and which follows from the scaling
(21b), are summarized in Table 12. The entries of the table allow us to translate a Kalman-type
algorithm to an RLS-type algorithm, and vice-versa.

32

Table 12: Correspondence between the Kalman and RLS variables.

Kalman Variables || RLS Variables Description
y(7) d(i)/ (V) Reference signal.
X; w/ (VM) Weight vector.
Xit1 w;/ (V)i Weight estimate.
AP & ' =P, Inverse of covariance matrix.
VK1 (4) gi Gain vector.
ky; % g7 */2(4) Normalized gain vector.
ki =8 Normalized gain vector.
e(?) % Apriori error.
e(i) (e\%))i re (i) Aposteriori error.
r1(4) 7(2) Conversion factor.
X0 W Initial guess.
Xq W_ 1 =W Initial guess.
P, PR 1 Y Weighting matrix.

7 Different Classes of Fixed-Order Adaptive Algorithms

Now that we have established a clear correspondence between the Kalman and the RLS variables,
we can proceed to write down the different variants of the Kalman recursions in terms of the original
RLS variables.

7.1 The RLS Algorithm

The first step is to use the correspondences of Table 12 in order to rewrite the Kalman recursions
(22a) and (22b) in terms of the RLS variables. This leads to the widely known RLS algorithm (see,
e.g., [1, p. 483)]).

Algorithm 7.1.1 Consider a set of (N +1) data {u;,d(i)};Z,, where the u; are 1 x M row vectors
and the d(i) are scalars. Consider also an M x 1 column vector w, an M x M positive-definite
matriz Iy and a scalar) (0 € A < 1). The solution of the minimization problem

N
1 .
min l(w —w)* [)_(N+1)1'I0] (w—w)+ E MV=44d(6) —wyw)? |
=0

w

can be recursively computed as follows: start with w_; = w, P_; = IIy and repeat for i > 0:

w; = W1 +g[d(i) —wiw;],
.)_lpi_lu:
& = TraiwP_ju’
P, = X1'[P_1—guP;q]. (23)

Then the optimal solution is w = wy. The computational complezity of the algorithm is O(M?) per
iteration.

It further follows that the value of (19b) at the minimizing solution, denoted by Enin (IV), satisfies
the following time-update relation (recall the last statement in Theorem 4.1.1):

N
Emin(N) = M D Jy(i) —wkir' ()| ,
=0

33

e

N-1
= MAYVTY () —wkProt @) |+ AN e(N) Pt
i=0

= AMmin(N —1) +e,(N)es(N).
It also follows from the expression for g; that
g =)\71151'_111;k —)flgiuif’i_luf = qu: = @;lu:

The equivalence between the Kalman recursions and the RLS recursions is rather well-known in
the special case A = 1. However, surprising as it may seem, it has not been clearly shown for A # 1.
The reason is that the equivalence is usually established by working out the solution of the RLS
problem and comparing it with the Kalman filter equations for an appropriate state-space model
of the form (21c) (with A = 1, see, e.g., [5, pp. 331-335]). However, as noted in [1, pp. 502-504],
when A # 1, a complete equivalence of the RLS solution and the Kalman filter recursions is not
immediate. The simple, in retrospect, device is a proper scaling of certain variables, as shown in
(21b), along with a proper identification of the correspondences between Kalman-type variables and
RLS-type variables as detailed in Table 12.

7.2 The Square-Root RLS (Inverse QR) Algorithm

We now write down the square-root Kalman filter (15¢) that corresponds to (21c), viz., X9 = Xg = W,
and P/? = A\=1/211/? | and for i > 0,

1 uPl? o - ri2@) 0
0 Axpl/? | ks P3|

where ©; is any unitary transformation that produces the block zero entry in the postarray, and
-1
. 1. & .) .
Xit1 = A72%; + kp g [7}1;/2(1)] (y(1) — ui%;) .
In terms of the RLS variables, this leads to the so-called square-root RLS algorithm.

Algorithm 7.2.1 Consider a set of (N +1) data {u;,d(d)};Z,, where the u; are 1 x M row vectors
and the d(i) are scalars. Consider also an M x 1 column vector w, an M x M positive-definite
matriz Iy and a scalar X (0 € X\ < 1). The solution of the minimization problem

1 N .
min l(w —w)* [)_(N'H)HO] (w—w)+ Z AN=H4d (i) — uiw|2] ,

w
i=0

can be recursively computed as follows: start with w_, =W, f’i/lz = l'I(l)/2 and repeat for i > 0:
51/2 /21
1 %“ipill . — [(1) _(1)/2]
o LB giv () Py

where ©; is any unitary rotation that produces the block zero entry in the postarray, and

wi=wis + [g20)] [0 6~ wiwi]

Then the optimal solution is w = wy. The computational complezity of the algorithm is O(M?) per
iteration.

The above recursions are often known as the square-root RLS algorithm (see, e.g., [5]) but, more
recently, they have also been refered to as the inverse QR algorithm (see, e.g., [48, 49]). An extension
of this result to the mutlichannel case is described in [51]. The reason for the terminology is that
the recursions propagate a square-root factor of the inverse of the “covariance” matrix ®;, while the
conventional QR algorithm that we derive in the next two sections propagates a square-root factor
of ®; itself.

34

7.3 The Conventional QR Algorithm

We now write down the first three lines of the square-root information array (16a) that corresponds
to (21c), viz., %o = %o = w, Py/> = \~Y/2I13/%, and for i > 0,

ARP 2 by P/’ 0

~ — % . _ A % —%/2 w/.—*%/2/.

x;P; /2 y*(z) 0; = Xz’+1Pi+1/ e*(i)re / (4))
0 1 ANuPL ()

where @; is any unitary matrix that produces the block zero entry in the postarray. In terms of the

RLS variables, this leads to the conventional QR algorithm (see, e.g., [1, p. 518, pp.534-538]). First
a clarification on the notation used below in the statement of the algorithm. The quantity X; P, */2

that appears in the second line of the above prearray translates into (\/Xl)i_l w;{l‘iﬁf 21 We then

denote the term w;"flti':le by q; 4, ie.,
2
qi1= szlwifl .

It further follows from the normal equations (20b) that

qi-1 = ‘I’i__ll/ZSifl + @:ﬁiv‘v .
Algorithm 7.3.1 Consider a set of (N +1) data {u;,d(i)};Z,, where the u; are 1 x M row vectors
and the d(i) are scalars. Consider also an M x 1 column vector w, an M x M positive-definite

matriz ILy and a scalar A (0 < A < 1). The solution of the minimization problem

w

N
1 .
min l(w —w)* [)\7(1\”'1)1'[0] (w—w)+ Z ANZd(G) — wyw|?]
=0

can be recursively computed as follows: start with w_, = W, @17/12 = Ha*/z, q.1 = Hgl/zv'v, and
repeat for i > 0:
1/2 « 1/2
\/X§z'£1 u; ‘i’i/ ' 0 _
Vg, (@) |®i=| q ea(i)7y' (@) | - (24)
0 1 w7 g2

Then the optimal solution is w = Wy, where wy is obtained by solving the upper triangular system
of equations:
Q*N/sz =qN -

The computational complezity of the algorithm is O(M?) per iteration.

7.4 The Extended QR Algorithm

The conventional QR solution determines the optimal weight wy by solving a triangular linear
system of equations, e.g., via back-substitution,

@TV/ZWN =qN -

A major drawback of a back-substitution step is that it involves serial operations and, thus, does
not lend itself to a parallelizable implementation. However, this step can be completely avoided
by further invoking the last line of the square-root information form (16a) that we have ignored so
far. The resulting algorithm is an extended version of the QR recursion and completely avoids the
backsubstitution step (see also [22, 24, 50]).

35

The extended square-root information filter that corresponds to (21c) is the following: %o =
%o = w, Py/? = A\~1/2I)/%, P, /% = AY/210, /7, and for i > 0,

AP;2 Abus P’ 0
5P y6) | g, - ‘:‘+1P,+{2 e (i)re /i)

0 1 Arw P () ’
_151/2 =

where ®; is any unitary matrix that produces the block zero entry in the top block row of the
postarray. The state estimate is then given by

Kivr = A 3%i + Ky 102 (0)e0)]

where the quantities k,; and re 1/2 (?)e(i) are immediately read from the entries of the postarray
(second and last lines). This expression allows us to update the weight estimate without invoking a
back-substitution step. In terms of the RLS variables, we obtain the following algorithm.

Algorithm 7.4.1 Consider a set of (N +1) data {u;,d(3)}Y.,, where the u; are 1 x M row vectors
and the d(i) are scalars. Consider also an M x 1 column vector w, an M x M positive-definite
matriz Iy and a scalar) (0 € X < 1). The solution of the minimization problem

min [(w —w)* [HNH)nO] T w—w) + i AN=id(7) — uswl?

w

can be recursively computed as follows: start with w_1 = W, <I’17/12 = Ha*ﬂ, @:}/2 = 1'[3/2,

q_1 = Hgl/zv‘v, and repeat for i > 0:

VOX ST 3, 0
" * (1205
i w) || w @070 | 50
0) 1 u;®; /2 (5)
—x/2 —% — % .
%q’pl 0 2, /2 —giv*/*()
wi = wio1 + [g772(0)] [es26)] (25b)
where the quantities g;y*/2(i) and €% (i)y*/%(i) are read directly from the second and last lines of

the postarray. The optimal solution is w = wy, which can also be computed via wy = @N*/qu

Moreover, the computational complexity per step is O(M?).

The time-update (25b) of the weight-estimate uses only quantities that are immediately available
from the postarray. This procedure admits a systolic implementation as depicted in Figures 4 and 5
for a thrid-order linear combiner. The triangular array on the top rotates u; and VA AP, 1/2 77 into

<I>§/ and zero. The triangular array on the bottom rotates \lf<I> % and zero to yield &, */ % and

g7 ~*/2(i). The linear array rotates d* (i) and v/Aq}_; into q and e} (z)”yi . A motivation for this
solution using insights from the theory of structured matrices is provided in [50].

Therefore, the extended QR algorithm is precisely the extended information form of the standard
Kalman filter; however this connection could not be established till the RLS problem was properly
recast into a state-space estimation problem.

7.5 Fast Transversal Filter Algorithms

We showed in the previous sections that the RLS adaptive algorithm, and several of its variants, can
be obtained by setting up a suitable state-space model, viz., model (21c), and by using variations of
the state-space estimation algorithm.

36

Ww;

gl

0= =

Figure 4: A systolic implementation of the extended QR algorithm.

n_y a + /Aal? + |in|?

o p=1in/Va
P
m o out [a out](—[\/Xa m] 141_\,)\2
P
P
e (o o[]
P
e
n
9{“’} w—w—ine
e

Figure 5: Functional descriptions of the cells in the systolic array.

37

w(1) w(2)
ESCI

L/ \

NP
S
S

e
=

€(7)

Figure 6: A linear combiner with shift structure in the input channels.

Now, the state-space model we set up has a very special structure: F; = A\~1/2I, G; = 0, and
R; = 1 are constant, while H; = u; is not. The entries of the input vector u; are the values of
M channels at time ¢ (cf. (19a)). But it often happens in practice that the channel inputs are not
totally independent. In fact, they are usually delayed versions of a single input signal as follows. If
we denote the value of the first channel at time ¢ by w(3) (instead of u; (i) as we did before in (19a)),
then the input vector at time i will exhibit a shift structure of the form

w=[u@l) uw@-1) ... u@i—M+1)]. (26a)

This has a simple pictorial representation as shown in Figure 6. The term z~! represents a unit-time
delay. The structure that takes u() as an input and provides the inner product Ej\il u(i+1—7)w(4)
as an output is widely known as a transversal or as an FIR (finite-impulse response) filter.

The shift structure in u; suggests that we might be able to get fast RLS algorithms by using
the extended Chandrasekhar recursions in place of the Riccati-based recursions. In fact this is true,
and many results in the literature can be obtained in a more transparent (square-root array) form,
and many variations and extensions derived in this way. Consider, for instance, two successive input
vectors u; and u;41,

w = [u(@) w@-1) ... ui-M+2) wi-M+1)],
wyr = [uw@E+1l) w@) ... u@-M+3) ui-M+2)].

It is clear that the first (M — 1) entries of u; and the last (M — 1) entries of u;y; coincide. Alter-
natively, u; and u;41 can be related as follows:

w=wpZ+u@—-M+1)[0 ... 0 1], (26b)

where Z denotes the lower triangular shift matrix with ones on the first subdiagonal and zeros
elsewhere. Multiplying u;;1 by Z from the right corresponds to shifting its entries by one position
to the left. The relation (26b) can be simplified if we consider an alternative, but equivalent, state-
space model instead of (21c).

More specifically, we consider the following (N + 1)—dimensional state-space model (the model
in (21c) was M —dimensional):

Xit1 =)*%xi,
y(@) = hixi +0(7), (27)
with
M v)o* (5 AT, 0 _
XO_I:O:|’XO_|:0:|’E’U(Z)’U(J):&ij,COV(XO):[00 0:|:)\ M, @0,

38

and where the (N + 1)-dimensional row vector h; is defined as
h; =[u(@) u(@-1) ... u(0) 0].

That is, h; has all the input data from time 0 up to and including time i. The remaining entries are
filled with zeros. This is again a special case of (11a). It is also evident that by extending the state
with zeros, the product h;x; in (27a) is still equal to the product u;x; in (21c). Moreover, the top
M entries of the state-estimate will again provide us with the weight-estimate. But note now that
the h; satisfies

h,=h;,7Z,

which is a simpler relation than (26b). It also immediately implies that the extended state-space
model (27a) is structured in the sense that we defined earlier in Section 5.5 via (17a). We thus
expect to obtain a fast algorithm for state-estimation via the Chandrasekhar recursions (17b). We
shall see that this is indeed the case.

Returning to (27a), if we write down the corresponding Kalman recursions (13) of Algorithm 5.1.1
we obtain

b

ii+1 =)_%fc, + kz"l"e_l(i) [y(i) - h,}tz] 5
re(i) = 1+hP;hf, k; =\ 3P;h;,
Pz'—i—l = ! [P, — ch:’l‘e_l(l)thz] ,

with Py = A~'II; @ 0. Due to the trailing zeros in Py and h;, it can be easily verified that the gain
vectors k; and Ep,,- =k;re */ 2(z) also have trailing zeros and we express them as

c; = c;
ki:[oz]akp,izliol]’

where c; and &; are M x 1. The computational complexity of the above algorithm is O(M?2) operations
(multiplications and additions) per time step. However, though time-variant, the special structure
of h;, viz., h; = h;1Z, can be exploited to reduce the operation count to O(M). This is done by
invoking the Chandrasekhar recursions of Section 5.5.

To apply the Chandrasekhar recursions (17b), we first need a factorization of the difference
P; — ZPyZ* (recall the statement of Algorithm 5.5.1). So assume that the difference Py — ZPyZ*
turns out to be of low rank, say a (more on this further ahead), and let us factor it as

LoSoL{ = Py — ZP(Z*

where Ly and Sg are (N + 1) x @ and a x a matrices, respectively. The factor Ly also has trailing
zeros and we partition it in the form }
L
Lo = [00])

where Lg is (M + 1) x a. Let also h; denote a row with the first M + 1 coefficients of h;. Writing
down the extended Chandrasekhar recursions (17b) for the state-space model (27a) we obtain (as
anticipated in Table 4 in Section 2) the following square-root algorithm: start with %o = %o =

[‘g] ,Po=2"II, @0, ré/2 0)=[1+ hoPoh(’;]l/z, Lo and Sg as above, and repeat for ¢ > 0,

re/?(6) L re?i+1) 0
1= @z = C; ~ , 27b
] e T]

where ©; is any J = (1 & Sp)—unitary matrix that produces the zero entry on the right hand-side
of the above expression. Moreover,

C;

0] [Ti/z(i)] - (y(i) — hyx;). (27¢)

~ _1,
Xit1 = 2xX; + [

39

These arrays were also derived in [14, 52] by employing an alternative state-space description with
constant coefficients. However, our point of view enables certain further deductions. Note that the
state-space model (27a) is structured with a very special matrix ¥ relating h; and h;yq, viz., ¥ = Z.
But our derivation in Section 5.5 allows for more general matrices ¥, which need not be restricted to
the shift matrix. Hence, our derivation is equally applicable to more general structures in the input
data, other than the conventional shift structure. This readily allows us to derive faster recursions
even for more general matrices ¥, which is a clear manifestation of the generality and strength of
the state-space point of view. Such extensions will be discussed elsewhere.

7.5.1 Normalized Fast Transversal Filters

The computational complexity of each step in (27b) is O(aM), where the value of a depends on the
choice of ITy, as we further elaborate. Let us first rewrite (27b) in terms of standard RLS variables.
We already know that ro/2(i) = v */2(i) and ¢; = %gi’y’*/z (i). Tt remains to identify h;;; and
L;. Recall that h;; denotes a row with the first M + 1 coefficients of h; ;. Tt follows that

hiyi =[u(i+1) uw@) w(i@-1) ... w(@E+2-M) u(i+1-M)].

The first M entries of l~1,~+1 are precisely those of u; 1, while its last M entries are those of u;. We
can thus partition h;y; in either of the following two forms:

hi+1=[uz~+1 u(z+1—M)]:[u(z+1) le'] . (28)

As for the matrix L;,;, we need to determine Ly.! For this purpose, we focus now, for simplicity,
on the so-called prewindowed case where it is assumed that no input data is available prior to and
including time i = 0 (other cases can be found in [52]). That is, u(i) = 0 for ¢ < 0. In this case, we
get)

ko = A72Pohj = 0.

Therefore, k, o = 0 and P; = A~1Py, which leads to

_ s _y1)y-1| Mo O | I O |,
P —ZPoZ" =)\ {)\ [0 0 Z 0 0 VAR

It is thus clear that different choices for Il lead to different values for a, the rank of Py — ZPyZ*.
A simple choice here is to let

I, = § - diagonal {)\2,\3 ... AM+1}

where 0 is a positive quantity (usually much larger than one). This leads to a rank-two difference

matrix,
1

0

Pl—ZP0Z*25 _)\M)

0

which then implies that we can choose (compare with [1, page 600])

1 0

fo=v3-|0 0 ,So=[(1) _01]
0 \¥

1See also the discussion in Section 7.5.3 where further connections with the so-called forward and backward
prediction vectors are explicited.

40

Algorithm 7.5.1.1 Consider a set of (N+1) data {u;,d(:)};Lq, where the u; are 1 x M row vectors
and the d(i) are scalars assumed equal to zero for i < 0. Consider also an M x 1 column vector W,
an M x M positive-definite matriz,

Iy = § - diagonal {)*,)\3,... , AM+1},

where 0 K X\ < 1. The solution of the minimization problem

w
=0

1 N .
min l(w —w)* [)_(N+1)Ho] (w—w)+ Z AN=H4d(i) - uiw|2] ,

can be recursively computed as follows: start with w_y = W, y~*/2(0) = 1, hy; = [u(l) 0],

go = 0’
1 0
fo=v5 |0 o |, Soz[(l) _01],
0 AT
and repeat for i > 0
y*/2(5) [u@+1) w]L; 7**/2(/2'2+ 1) 0
0 = ©;= gi+17 /(i +1) i
[gi’}’_*/z(i)] Lz [0 \/XLz+1

where ©; is any J = (1@ So)—unitary matriz that produces the zero entry on the right hand-side of
the above expression, and L; is a two-column matriz. Moreover,

wi = wint + g0 @] 1d6) — wwisa] -

The optimal solution is w = wy, and the computational complezity is O(M) per iteration.

The above recursions represent a square-root version of fast RLS algorithms known as FTF [12]
(Fast Transversal Filter) and FAEST [17] (Fast Aposteriori Error Sequential Technique). We may
proceed to write down an explicit expression for the rotation @;; thus leading to an explicit set of
recursions that relate the different quantities in the arrays. But a distinctive feature of a square-root
formulation as above is that the rotation matrix ®; need not be explicitly formed and moreover
it can be implemented in a variety of ways, as explained before in Section 2. Different choices for
©; correspond to different procedures for achieving the desired zero pattern in the postarray. Each
choice would then lead to a different algorithm. The discussion in [52] and [21, pp. 254-262] is a
vivid example of how explicit rewriting of the recursions can lead to several variants.

We can not pretend here to be able to detail all the possible implementations of these rotations.
But we instead stress the general theme and the general structure of our descriptions: we take
a prearray of numbers and rotate it, in one of several possible ways, to obtain a desired pattern
of zeros in the postarray. The same theme will arise again when we derive the adaptive lattice
filters in Section 8: a general square-root array is derived in Section 8.3.1 (Algorithm 8.3.1.1), and
then several explicit relations are deduced from the array in later sections (see, e.g., Sections 8.3.2
and 8.3.3) thus leading to other forms of lattice filters.

7.5.2 Fast Transversal Filters in Explicit Form

To illustrate the procedure, we shall show how to write down one set of explicit Chandrasekhar
recursions by invoking (18).
Using the same diagonal matrix IIj as in the previous section, we introduce the factorization

Moo 17t
M

0 T

P, - ZPoZ* = -L{"' R IL;™ = —§

Q =

oo~
[o B}
[N

41

with the identifications (compare with [1, page 600])

A—M 0]

() 0 1 1
LyY=(0 0 ,Rw:_.[
1 0 d 0 -1

In terms of the original RLS variables we can then show the following.
Algorithm 7.5.2.1 Consider a set of (N+1) data {u;,d(i)}Y.,, where the u; are 1 x M row vectors

and the d(i) are scalars assumed equal to zero for i < 0. Consider also an M x 1 column vector w,
an M x M positive-definite matriz,

Iy = diagonal {*,\3,... AM*+1},

where 0 K A < 1). The solution of the minimization problem

w

1 N .
min l(w —-w)* [)_(N+1)Ho] (w—w)+ Z AN=H4d (i) - uiw|2] ,
=0

can be recursively computed as follows: start withw_, =w, v 1(0) =1, hy = [u(l) 0] , 8 =0,

0 1
- 1 -M
L7 =0 0 ’R"’OZS'[AO —01]
1 0
and repeat for i > 0
i —1; : EREAC RN
Y7H(0) [u(@i+1) w]L; 71+ 1) 0
0 = (u) Y | -
[&7 ()] L: 3 = [gira7” (1)] VALY |,
f‘;f(u) |: U (ilj‘ 1)] Rr,i 0 R, i1
L K3 E
where
1 (@) [u(i+1) w]Lg")
¥ = ./)
e[
) u’L

= (u . .
and Ll() is a two-column matriz. Moreover,

-1

w; = w1+ [@7 7 @)] [YyTHE)] T [d(E) — wiwi—a]

The optimal solution is w = wy, and the computational complezity is O(M) per iteration.

In order to further stress our claim that Algorithms 7.5.1.1 and 7.5.2.1 are indeed array forms of
the previously mentioned fast variants of RLS filtering, we shall proceed in the next section to write
down the explicit FTF recursions using the relations derived so far. For this purpose, we elaborate
on an important aspect of the Chandrasekhar recursions and introduce the notion of forward and
backward prediction porblems. These problems will be further motivated later in Section 8.1. Here
we only stress the points that are necessary to the arguments in question.

42

7.5.3 Forward and Backward Prediction Filters; the Conversion Factor

The Chandrasekhar recursions bring up important and interesting connections with certain forward
and backward prediction problems, which we explore here to show how some useful facts in recursive
least-squares theory (see, e.g., [1, p. 573-581]) fall out rather immediately from simple state-space
arguments. We shall also provide an interpretation for the factors f;z(“) and R, ; that are used in
the unnormalized Chandrasekhar recursions.

To begin with, an interesting point to notice is that the Chandrasekhar recursions (27b) (and
more generally (17b)) are only functions of the matrices that characterize the state-space description,
viz., {F;, G;,H;, Lo, Iy }. They do notdepend on the observed data, which appear only in the update
equation for the state-estimate, e.g., (27¢). This means that if we have two state-space models with
the same matrices {F;, G;,H;,Lo,IIy}, but with different state-vectors and observed data, then
the same Chandrasekhar recursions can be used to propagate the quantities needed to update the
state-estimates for both models.

This motivates us to introduce two prediction problems (the terminology of forward and back-
ward prediction problems is further explored in Section 8.1). Assume we are interested in solving
the following minimization problem (compare with (19b))

N
1 .
min [(w{l —wi,)* [)_(N+1)1'I0] (wi, — i)+ E AV w4 1) —wywl, 2] (29a)
=0

where, comparing with (19b), we have replaced d(i) by u(i + 1). The resulting solution, WL, N will
provide us with an M*" order forward predictor for u(N + 1) in the sense that uNwﬁ,I, N will serve
as an estimate for u(N + 1) in terms of the last M inputs {u(N),u(N —1),...,u(N — M + 1)} that
are present in uy. The exact same arguments as in earlier sections will then show that this problem
can be solved by considering the following auxiliary state-space model

xzf+l =)_%x{,
41
Wit L pd o), (20b)

(V)i
with

P iy o AU, 0
xéz[woM],xﬁ[woM] BT =8 Cov(xg):[0 0] ’

which has the same structure as the model we set up earlierin (27a). The update of the state-estimate
then leads to a time-update for the forward predictor vector: wﬁl, Nop — wﬁm ~» and to the apriori

forward prediction error at time (N + 1), [u(N +1)— uNwﬁ/[’N_l] (i.e., based on the data up to
time). This can also be converted to the aposteriori prediction error [u(N +1) - uNw{/I’ | via

the conversion factor r, f(N), which we shall denote by 71{,1 (N) (this is to be consistent with our
later notation in Section 8.3.1 — the superscript # will in fact be dropped shortly).

Similarly, we can set up a backward prediction problem of order M by solving the minimization
problem

—1 N .
min [(w’;w —wh,) [A—(NH)HO] (why —Whe) + 3" A i u(i — M) — uiw?MP] . (30a)
i=0

where, comparing with (19b), we have replaced d(¢) by u(i — M). The resulting solution, W?VI’ N Will
provide us with an M*" order backward predictor for u(i — M), in the sense that u;wh, y will serve
as an estimate for u(N — M) in terms of the future M inputs {u(N),u(N —1),...,u(N — M + 1)}

43

that are present in uy. This can also be solved by considering the following auxiliary state-space
model

xi-’_H =)_%xg,
u(i — M) b by;
- 7 h;x] +v°(i) , (30b)
(V)i

with

wh _ wb N xb/ - ATUI, O
S I A B O R K

which again has the same structure as the model we set up earlier in (27a) as well as in (29b).
The update of the state-estimate then leads to a time-update for the backward predictor vector:
Wiy N_1 — Wiy n and to the apriori backward prediction error at time N, [u(N — M) — unwi; y_,]
(i.e., based on the data up to time N). This can also be converted to the aposteriori prediction error
[w(N — M) —uywh, y] via the conversion factor r,*(N), which we shall denote by v},(N) (the
superscript ? will also be dropped shortly).

But note that the values of the Riccati variables and the innovation covariances for both state-
space models (29b) and (30b) are identical, since the h; and the initial condition A\~'II, are the
same. Therefore, the same Chandrasekhar recursions can be used to propagate the gain matrices
that are necessary for the time-update of the prediction vectors. Consequently, the gain vectors in
the following updates are the same, say g n,

wﬁl’N = w{l’N_l +8Mm,N [U(N +1)— uNwﬁ/I’N_l] ,
W?M,N = w?\/I,Nfl +8Mm,N [U(N - M) - U—NW?\/I,NA] .

These two equations are often written at different time instants as (see, e.g., [1, p- 573, p.576])

wgl,Nfl = wg/I,N72 +8mMN-1 [”(N) - 11N71W§/1,N,2])

wII)VI,N = WI;VI,Nfl + 8m,N [U(N - M) - UNW?VI,NA] . (30c)
Moreover, the conversion factors for both the forward and the backward prediction problems coincide
since rf (N) = r2(N) (= r(N)). Hence,

u(N+1)—uNWL’N _ u(N — M) —uywh,

u(N+1)— ung/“\P1 ~u(N-M) - uNwhs o1 ,

or equivalently,
Y3 (N) = 73 (N) . (31a)
We can, therefore, drop the superscripts / and ? from the conversion factors and just write v (V).

In the remaining part of this paper, it will be most convenient to write u,; y instead of uy; this is
in order to express the fact that uy is a row vector with M entries,

uyn=[ulN) w(N-1) ... u(N-M+1)].

Correspondingly, we shall denote the nonzero M x M leading submatrix of the Riccati variable
associated with either models (29b) or (30b) at time (N + 1) by Pps ny4+1. It is then immediate to
see, as a result of the relations in Section 7.1, that

_P * _ —1 *
gu,N = Punuy y = ‘1>M,NUM,Na

where Py ny1 = APy v and

N
N+1 —1 N—1 —1p-1
§M,N:)\(+)HO,M+ E A ’u}“uM,i = A PM,N+1'
=0

44

The conversion factor yp (V) can also be expressed in the form

1
N)=rY(N) = =1-u P, U2 31b
’YM() e () 1+)‘_1uM,N‘§JT/Il,N—1u*J<\/I,N M,N N M,N ()

Also, the innovations associated with the state-space models (29b) and (30b) play an important
role in developing time-updates formulas. To clarify this point, let <T>qu(N +1) denote the minimum
value of the cost function (29a); this symbol is chosen in order to be consistent with later notation.
Let also ®4,(N + 1) denote the minimum value of an M?**—order backward prediction problem as
in (30a) but that uses data up to time (N + 1). If we introduce the innovations associated with
problems (29a) and (30a),

am(+1) =ul+1) —upiwl, o, Bu()=uli—M)—upwh,
and define the normalized innovations
Fau(i+1) = an G+ Dy (), bar(d) = Bur(i)vay (i),

then the following time-update relations follow immediately from the last statement of Theorem 4.2.1
when applied to the state-space models (29b) and (30b) (this is similar to the derivation of the
recursion for Emin (N) right after Algorithm 7.1.1)

3 (N+1) = XL (N)+|fm(N + 1), &% (N +1) =A% (N)+ [bu(N + 1) (31c)

Relating the Chandrasekhar Factors f;gu) and R, ; to the Prediction Problems.

We now elaborate on the significance of the factors faz(u) and R, ; that arise in the unnormalized
Chandrasekhar recursions. For this purpose, we shall exploit the shift structure in the input data
and derive an explicit factorization for P;;; — ZP;Z*. We shall also assume, for simplicity?, that
HO—)OOIandeM:W?MZO.

Now consider two higher-order prediction problems, i.e., of order (M + 1), that employ data
from time 0 up to time (N + 1). In this case, expressions (29a) and (30a) are accordingly replaced
by (we continue to assume prewindowed data, viz., u(¢) = 0 for ¢ < 0.):

N+1 N+1
N+1— Nt1—ip o b 2
mln E ANt l| (t+1) — umt, ,wM+1| mln E ANt t — M —1) —umi1,iWpry1| -
M+1 i=0 w41 i=0

The question of interest here is to relate ®ar41,n41 t0 Bar, v and yar41 (N + 1) to yar(N). This is
a rather immediate task due to the inherent shift structure in the input data {u(-)}. We know from

above that
N+1

Pri1 N1 = Z AN g umgns = AP v
i=0
Moreover, each uy/41,; can be partitioned into (recall (28)) upy1; = [u(i) uni—1 |- It is then
straightforward to verify that the (M + 1) x (M + 1) matrix ® /41 n+1 admits the following parti-
tionings
_ [P N1 . S?\J,N+1
= n AN+ ,
Sﬁ,N-H 2o AN+ Ju(i — M)[?

N g . *
Zi:o AN Hu(i + 1)|2 SJ\/]ICN

‘§M+1,N+1 = %
Sm,N M,N

where we have defined

Nt1
SMN_Z)‘N ahu(i 1), shng = Z)\N+1 "ujyu(i — M).

%See footnote prior to (31d).

45

We now invoke the following well-known Schur decomposition formula for the inversion of a
block matrix (e.g., [42])

[é g]‘lz[g Do—l] + [_DI_lc] (A-BD!C)'[I -BD!].

Applying this expression to the first partitioning of ® 741 y41 immediately leads to

{’JT/II+1,N+1 =
-1
0 0 N-— z *f -1 f —
[0 ot |+ [amhety) (0 e v mitneln) T3 —eidoiin]
But we know that QM{NSL,N = WL,N and (Ei:O MW= u(i 4+ 1)12 — sy, N<I>M1N '’ N) is the min-

imum value of the cost function (29a) (recall (9¢)). We have denoted this minimum value by
&7 (N +1). We can therefore write3

0 0 1 1
el = [L] P S [] 1wty] 314
M+1,N+1 0 <I>Ml,N <I>§/I(N +1) _Wi/l,N [M.N] (314)

If we multiply the above expression by uny1,n+1 from the left and by uj,; y; from the right, it
then collapses to an order-update relation for the conversion factor itself, viz.,

[fu(N +1)P
(N +1) = ym(N) — = ; (31e)
- 3 (N +1)
where fyy(N+1)=u(N+1) — uM,Nw}fM,N‘ It is also immediate to see that
0 far(N+1) [1]
— EEE A S . 31f
g8M+1,N+1 [gM.N] @{l(N+1) —szvf,N (31f)

By following a similar argument, we can as well derive analogous recursions in terms of the
backward prediction errors, leading to

&1 0 1 —wt

-1 _) M,N 1

PN = [M0N+1 0] + 30 (N +1) [1 i] [-Wani 1], (31g)
|bM(N+ 1)|2

N+1: N+1_ = ’

(31h)

where by (N +1) = u(N + 1 — M) — up,n41Why nyq and &4, (N + 1) denotes the minimum value
of an M*"—order backward prediction problem as in (30a) but that uses data up to time (N + 1).

Also, §M,N+1WII)\J,N+1 = SIJ)VI,N-H'
These are important relations in recursive least-squares theory (see, e.g., [1, Chapter 15]). Note
for instance that by equating relations (31d) and (31g) we obtain

PNy 0] JO o 1_
0 0 0 &,y

b -1 b *
“WM,N+1 1] l &%, (N+1) (1]] [“WMN+1 1
1 -w 0 = 1 -w ’
M,N & (N+1) M,N
3Had we instead assumed a Tl ar of the form TIo ar = & - diag.{\?,..., A !}, we would have obtained

(67*AN 4+ &,(N +1)) in the denominator of (31d) rather than simply /(N + 1) since \N 1L}, ., =
N @ AW +1)1'I5, 1) Similar modifications would also be introduced in subsequent relations.

46

which implies, in terms of the state-space Riccati factorization studied earlier in Section 7.5.1, that
we can choose

b Hb
Fw) _ | TWMN4 1 [A%, (N +1) 0 ‘
Lyt = 1 —wi v] » Renver = [0 AL (N +1) | (313)

The Fast Transversal Filter Algorithm.

We can now write down the explicit equations of the so-called FTF algorithm. We first rewrite
(30c) in terms of aposteriori-prediction errors. Indeed, it follows from the first equation of (30c) that

w‘If\/I,N = fof,Nq + g (N) Y (N) [U(N +1) - uNwil,N—l ,
— ,
kv Fa (N+1)
= WJ{LN,l + kM,NfM(N +]-)) (31.])

where we have introduced, for notational convenience, the vector ks ;. We can rewrite the above
equality in the alternative form

[i ST P

Likewise, for the backward prediction vector we obtain
b b
“WyunNi | | TWMN | _ ky N1
| LT v en [|

These two relations are standard in the FTF description. All we need now is to show how to compute
kv and kas yy1. But this relation follows immediately from Algorithm 7.5.2.1. Indeed, assume
we write down the prearray at time N and use the factorization (31i). It is easy to see that the
prearray has the following form:

T (V) Bu(N +1) am(N+1)
0 —wt 1
[kv, N] [1M,N] [_vaf,Nq] :
B (N +1) ABE (N) 0
| ot (N +1) 0 —\&7 (N) J

and that the associated transformation matrix is

1 —Ym(N)Bu(N +1) —yu(N)am(N +1)
Bu(N+1)
n=| — ,\%?M(N) 1 0
at, (N+1)
,\Ag{u(zv) 0 1

It readily follows from the array equations of Algorithm 7.5.2.1 that

[kM,N+1] _ [0] n ay (N +1) [1] . IBX/I_(N+1) I:_W?VI,N]
0 kN BT (N) ~WuM,N-1 A®%(N) 1 ’

which is the update equation used in the FTF algorithm (see, e.g., [1, p. 591]). In fact, the sum
of the first two terms on the right-hand side of the above expression can be seen to be equal to

47

ky41,n41 in view of (31f) and (31j). We can therefore split the update of ks, n41 into two parts:

X _ 0 + ay (N +1) 1
ML ky,n Al (N) | —whina |
Kyt | _ By (N+1) [—wh, N

R I |

Also, because of the last zero entry in the vector containing ks, n+1 we readily see that the factor
Bar(N+1)

(V) has to be equal to the last entry of kar41,n+1. This allows us to evaluate Su (N + 1) via

Bu (N + 1) = A8, (N)v*(N),

where v(N) denotes the last entry of ka1, v41.

The above relations lead to the explicit FTF recursions. But we should also stress our original
remark that, in principle, we do not need to write down explicit equations; the arrays, as they stand,
contain all the desired information and it is then a matter of implementing the rotation matrices in
convenient ways.

More important perhaps, specially for our later analysis, is that relations (31c), (31e), and (31h)
have an important state-space interpretation. They can be viewed as part of the information filter
forms associated with two first-order state-space models. Once such a connection is established,
alternative relations can then be written down by invoking other variants of the Kalman filter, as
anticipated in earlier sections. In order to better appreciate the implications of this observation,
we shall elaborate more closely, and more slowly, on the structure of the forward and backward
prediction problems introduced in this section; culminating with the desired first-order state-space
models in (42).

8 Different Classes of Order-Recursive Adaptive Algorithms

The adaptive algorithms derived so far are fixed-order solutions of (19b) in the sense that they
recursively evaluate weight estimates w; that correspond to a fixed-order combiner, say of order M.
In other words, the size of w, and of its successive estimates w;, was fixed and equal to M all through
the recursions. From now on we shall be dealing with weight-vectors of varying dimensions. We
shall therefore write wj, instead of w to indicate a weight vector of size M x 1, and we shall write
Wwr,; instead of w; to indicate an estimate at time ¢ of the weight vector wys of size M. Apart from
these notational inconveniences, the central theme will still prevail, viz., the equivalence result of
Theorem 4.1.1. We shall also assume here, for simplicity and ease of exposition, that the weighting
matrix Iy in (19b) is very large, i.e., IIy — ocol. This simplifies (19b) to

N
minz MVZHd () — wywl? .
=0

So assume that we wish to increase the filter order, say from M to M + 1, while still processing
only the original (N + 1) data {u;,d(i)}},. In other words, suppose that instead of solving

N
min lz AN=4d () —uM,in|2] : (32a)
=0
with
uy,; = [u(@) w(E—-1) ... u@@i—-M+1)] ,

we are now interested in solving

N
min lz AN=H4d (i) — uM+1,iWM+1|2])

Whrr41
* lizo

48

with
up1i = [w(@) u(@—-1) ... uw@i-M+1) uw(@-M)].

Let wps, v and wps1 1,y denote the corresponding solutions. The adaptive algorithms of the previous
sections give an explicit recursive (or time-update) relation between wy, v and wy y_1. We are
now interested in a recursive (or order-update) relation between wys n and W41 N-

The first M components of wr41,n seem to have no simple relation to wys, . But there is an
alternative to the FIR implementation of Figure 6 that allows us to easily carryover the information
from previous computations for the order M filter. This is the so-called lattice filter, which is based
on the following idea. Suppose that our interest in solving (32a) is not to explicitly determine the
weight estimate was v, but rather to determine estimates for the reference signals {d(-)}, say

JM(N) =uy,NnWu,n = estimate of d(N) of order M.
Likewise, for the higher-order problem,
JM+1 (N) = upmi1,NWrm41,nv = estimate of d(N) of order M + 1.

The lattice solution allows us to update dy; (V) to dps41(N) without explicitly computing the weight
estimates wps v and wps41,v. This is achieved by orthogonalizing the input data as we explain in
the next section.

8.1 Joint Process Estimation and Prediction Problems

The major step here is to note that, for all ¢, the input vectors uy; and uas41,; have the same first
M entries. We shall now argue that this observation allows us to reduce the minimization of (32a)
to the equivalent problem of solving two first-order least-squares minimization problems of the type
depicted earlier in Figure 3, and for which the special case of Section 4.2 is immediately applicable.

There is no loss of generality in our argument here if we focus on particular values for M and
A, say M = 3 and A = 1, since our purpose in this section is to motivate the need for forward and
backward residuals in simple terms. We shall then proceed to show in the next two sections how to
embed the problem of updating these residuals into the state-space framework; thus deriving several
variants of the corresponding lattice algorithms.

So assume we want to solve the following problem: minimize over ws the cost function (the data
{u(-)} is assumed to be zero prior to the initial time instant i = 0, viz., u(i) = 0 for 7 < 0)

(0) u(0)
d(1) u(1) u(0) 0 w3(1)
— . ws(2) . (33a)
: : : : w3 (3)
d(N) | u(N) u(N-—-1) u(N-2) ~
dx Us 2

As explained above, we shall denote the optimal solution by w3 . The subscript x indicates that it
is an estimate based on the data u(-) up to time N. Determining w3 ny corresponds to determining
the entries of a 3—dimensional weight vector so as to approximate the column vector d i by the linear
combination Usws x in the least-squares sense (33a). We thus say that expression (33a) defines a
third-order estimator for the reference sequence {d(-)}. The resulting aposteriori estimation errors
will be denoted by

e3(0) d(0) u(0) 0 0
es(1) d(1) u(l) u(0) 0 ws, N (1)
. = . - . . . ws n(2) |,
: w3,N(3)
e3(N) d(N) u(N) u(N-1) u(N-2)
ds

49

where €3(7) denotes the aposteriori estimation error in estimating d(i) from a linear combination of
the 3 most recent inputs,
e3(1) = d(i) —uziws, N -

We already know from the discussion in Section 3.2, prior to expression (8c), that the aposteriori
residual vector d; has to be orthogonal to the data matrix Us, viz., U§&3 = 0. We also know that
the optimal solution w3 n provides an estimate Uszws y that is the closest element in the range
space of Uz to the column vector dy.

Now assume that we wish to solve the next-higher order problem, viz., of order M = 4: minimize
over w4 the cost function

d(0) u(0) 0 0 0
d(1) u(1) u(0) 0 0 wy (1)
: _ : : : “’4% (33b)
d(N — 1) wN=1) u(N=2) u(N=3) u(N—-4) || wy1)
d(N) | u(N) u(N-1) u(N-2) u(N-3) |
o v A

This statement is very close to (33a) except for an extra column in the data matrix Uy: the first
three columns of Uy coincide with those of Us, while the last column of Uy, contains the extra new
data that are needed for a fourth-order estimator,

0
0

U4 = U3 .
u(N —4)
u(N —3)

The problem in (33b) requires us to linearly combine the four columns of Uy in order to compute
the fourth-order estimates of {d(0),d(1),...,d(N)}. In other words, it requires us to determine the
closest element in the range space of Uy to the same column vector dy. We already know what is
the closest element to dy in the range of Us, which is a submatrix of Us. This suggests that we
should try to decompose the range space of Uy into two orthogonal subspaces, viz.,

Range(U4) = Range(U3) @ Range(m) ,

where m is a column vector that is orthogonal to Us, Usm = 0. The notation Range(Us) &
Range(m) also means that every element in the range space of Uy can be expressed as a linear
combination of the columns of Uz and m.

But this decomposition can be easily accomplished by projecting the last column of Uy onto
the range space of its first three columns and keeping the residual vector as m. This is precisely
a Gram-Schmidt orthogonalization step and it is equivalent to the following minimization problem:

minimize over w}

0 u(0) 0 0
0 u(1) u(0) 0 wh(1)
_ : : ; w2 || - (34a)
w(N — 4) uw(N—-1) u(N—-2) u(N-3) |Lw53)
u(N — 3) u(N) u(N—-1) u(N-2) J w?

Last column
of U4

50

This is also a special case of (32a) where we have replaced the sequence {d(0),...,d(N)} by
{0,0,0,u(0),...,u(N —4),u(N — 3)}. We shall denote the optimal solution by wg’N. The subscript
~ indicates that it is an estimate based on the data u(-) up to time N. Determining w N corresponds
to determining the entries of a 3—dimensional weight vector so as to approximate the last column
of Uy by a linear combination of the columns of Usj, viz., U3wg’ N> in the least-squares sense. Note
that the entries in every row of the data matrix Uj are the three “future” values corresponding to
the entry in the last column of Uy. Hence, the last element of the above linear combination serves
as a backward prediction of u(N — 3) in terms of {u(N), u(N —1),u(N —2)}. A similar remark holds
for the other entries. The superscript ? stands for backward. We thus say that expression (34a)
defines a third-order backward prediction problem. The resulting backward aposteriori prediction
errors will be denoted by

b3(0) 0 u(0) 0 0
bs(1) 0 u(1) u(0) 0 wh (1)
: = : - : : : w n(2) |,
bs(N — 1) u(N — 4) w(N—-1) w(N—-2) w(N-3) |Lwin(3)
bs(N) u(N —3) uN) u(N-1) w(N=-2) | 2
bs

where b3(i) denotes the aposteriori backward prediction error in estimating u(i — 3) from a linear
combination of the future 3 inputs,

b3(i) = u(i — 3) —uz,;wh v .

We already know from the discussion in Section 3.2, prior to expression (8c), that the aposteriori
backward residual vector bz has to be orthogonal to the data matrix Uz, Uibs = 0, which thus
implies that it can be chosen as the m column that we mentioned earlier, viz.,

Range(U,) = Range(Us) @ Range(bs). (34b)

Our original motivation for introducing the aposteriori backward residual vector b; was the
desire to solve the fourth-order problem (33b), not afresh, but in a way so as to exploit the solution
of lower order; thus leading to an order-recursive algorithm.

Assume we have available ds and bz, which are both orthogonal to Uz. Knowing that bs leads
to an orthogonal decomposition of the range of Uy as in (34b), then updating ds into a fourth-order
aposteriori residual vector d4, which has to be orthogonal to Uy, simply corresponds to projecting
the vector d; onto the vector bs.

To clarify this, assume we pose the problem of projecting d; onto bs, which is equivalent to
asking for a scalar coefficient ¢3 so as to minimize

llds — ¢sbsll3 .

This is clearly a standard least-squares problem (recall Section 4.2 and Theorem 4.2.1). The optimal
solution for the scalar ¢3 is given by
- 1

= _—— bids.
¢3 b;bg 343

Let x denote the resulting residual vector: x = d; - (f)gbg. It is clearly orthogonal to bs. The
claim is that x can be taken as d4. To verify this we need to show that x is orthogonal to Uy, viz.,
Ujx = 0, or equivalently,

0 0 ... uw(N—4) u*(N-3)

Now Ujx is clearly zero since x is a linear combination of 83 and b3 and both vectors are orthogonal
to Us. Asfor the column [0 0 ... u(N—4) u(N-23)]T, it is also orthogonal to x because

51

it is in the range space of U4 and, consequently, it can be expressed as a linear combination of bs
and the columns of Ujz. The vector x is orthogonal to both b; and Us.

We thus know how to update d3 into d4 by projecting dz onto bs. To proceed with this order
update procedure, we need to know how to order-update the backward residual vector as well. That
is, we need to know how to go from bs to by. This can be determined by following similar arguments,
which motivates us to introduce the forward prediction problem: minimize over wg the cost function

u(1) u(0))
wig (1)
u(2) _ u(l) u(O) 0 wzﬁ.@) (35a)
(N +1) wN) u(NV=1) uwNv-2) | LB
o, v,

As explained before, we shall denote the optimal solution by w; - The subscript y indicates that it

is an estimate based on the data u(-) up to time N. Determining W:]; N corresponds to determining
the entries of a 3—dimensional weight vector so as to approximate the column vector

u(N-+ 1)

by a linear combination of the columns of Uj, viz. U3w3 - Note that the entries of the successive
rows of the data matrix Us are the past three inputs relative to the corresponding entries of the
column vector. Hence, the last element of the linear combination U3W£, N serves as a forward
prediction of u(N + 1) in terms of {u(N),u(N — 1),u(N — 2)}. A similar remark holds for the
other entries. The superscript ¥ stands for forward. We thus say that expression (35a) defines a
third-order forward prediction problem. The resulting aposteriori forward prediction errors will be
denoted by

f3(1) u(1) u(0) 0 0
f3(2) u(2) u(1) u(0) 0 wa,N(]'
- B wa,N(2)
f3(N +1) u(N +1) w(N) uw(N-1) u(N-2) w3,y (3)
f3 wg,N

where f3(i + 1) denotes the aposteriori forward prediction error in estimating u(z + 1) from a linear
combination of the past 3 inputs,
fs(i+1) =u(i+1) -

f
u3,iWs n -

Now assume that we wish to solve the next-higher order problem, viz., of order M = 4: minimize
over w}f the cost function

u(1) u(0) 0 0 0 wi(1)
u(2) w(l) u(0) 0 0 w} (2)
: -1 % : : : 4 (35b)
: : : : : wy (3)
(N +1) u(N) u(N-1) u(N-2) u®-3) | | wi@)
Us 2

We again observe that this statement is very close to (35a) except for an extra column in the data
matrix Uy, in precisely the same way as happened with d4 and bz. We can thus obtain f; by
projecting f3 onto bz and taking the residual vector as fy,

min [|f; — nsbs]|3 .
n3

This is clearly a standard least-squares problem. The optimal solution for the scalar 73 is given by

1
i3 = —— b;if:
n3 b§b3 313 »

and f; = f3 — f3bs . Also, using the orthogonality condition we can easily relate the norm of the
resulting error vector f; to that of the previous error vector f3. Indeed,

fall3 = f562 = £ [fs — Ashs] ,

f;f; since f; L bs,
= f3f; —s3fsbs,
|£3bs|?
lIbsll3

= [Ifl5 - (36a)

where in the last equality we used the expression for #j3. It is thus clear that the forward residual

error decreases in norm with increasing prediction orders. Similarly, the backward residual vector
b3 can be updated to by by projecting bs onto f3,

min [[bs — &65)3
&3

and we get
b3fs|”
lI£3113

We have sofar avoided the use of time indices for the prediction vectors b3 and f3 in order not to
overload the notation. But from now on it will be most helpful to explicitly indicate the time indices
in order to avoid potential confusions. In the above discussion, if we write b3(N) and f3(INV + 1)
instead of bz and f; then it is easy to verify that we must replace f; and by by f4(N + 1) and
bs(N + 1), respectively. Note the change in the time index as we move from bz to by. This is
because by is obtained by projecting bz onto f3, which corresponds to the following definition for
b47

[Iballz = [[bs]l3 — (36b)

ba(1) 0 u(1) u(0) 0 0 .
ba(2) 0 u(2) u(1) u(0) 0 wg,NH(l)
. _ . _ . . . w4,N+1(2)
: : : : : 4,n+1(3)
ba(N) u(N — 4) u(N) u(N—1) u(N-2) u(N-3) wh n11(4)
ba(N + 1) u(N — 3) u(N + 1) u(N) u(N —1) u(N—2) .
b
ba(N+1) s
In general then, expressions (36a) and (36b) are given by the following relations:
f1,(N +)by (N))?
furt(N+D|2 = |Ifu(V+1 2 _ [, (36¢)
b (N)fu (N +1)?
byui(N+1)[3 = |bu(N)3 - [biy 36d

That is,

frri(N+1) « project far (N +1) onto bpy(N),
by (N +1) « project by (N) onto fi(N +1).

53

We should remark at this point that the terms ||far(N + 1)||3 and ||ba(NV)||?3 in (36¢) and
(36d) are nothing but the minimum values of the prediction problems (29a) and (30a), respectively
(assuming W/, = w3, = 0 and IIy — coI). We have denoted these values earlier by &/ (N + 1)
and ®%,(N), respectively, as well as provided recursive formulas for their time-update in (31c). The
expressions? (36¢) and (36d) then provide order-update formulas that can be alternatively written
in the form

|f3 (N + 1)ba (N)[?

$, (N+1) = B (N+1) — (V)) (36e)
b _ &b by (MM (N + 1)
Py (N+1) = oy(N) 3 (N+1) : (36£)

These formulas are still in terms of the inner product b%,(N)fax (N + 1), which we shall denote
by s4,(N). Recursions for this quantity will be motivated in the sequel. For now note that if we
denote by 7jm,n the optimal coefficient that is used to linearly combine fas (N + 1) and by (V) into
fari (N +1),

frri (N +1) = fu(N + 1) — ju,nbu(N),

then we already know that 7y, n satisfies the normal equations (a trivial equality of scalars in this
case):
% (N)fm,n = shy ().

In state-space language, as further detailed in the next section, the three quantities that appear in
this equality can be interpreted in terms of Kalman variables: the ®%,(N) can be related to the
inverse of a Riccati variable, the Ay, v can be related to the state estimate, and s%;(IV) is, therefore,
related to the product of the inverse of the Riccati variable by the state-estimate. This is a term
that appears in the information filter variant of the Kalman filter. For this reason, in the discussion
in the coming sections, the information filter form will the one to be highlighted first. But before
proceeding into the relevant details, it will be useful at this stage to mention another interpretation
for s,(IN) that readily follows from the geometric arguments presented so far in this section.

The normal equations (9e) associated with the forward and backward prediction problems (29a)
and (30a) are given by

1 (N +1 —wh 0
L YR a [;] — [M(O +1) R S WJ\/II,N+1 =| & V1) |
M

~“Wu,N
We proceed, for the sake of illustration, with the backwards normal equations (we continue to
assume, for convenience of exposition, that A = 1):

N . *
Ticolui + D)2 sty [~Whs N1] _ [0]
ng[,N Py N 1 (N +1) |”

~~

Prry1,N 41

where S{VI, ~ and @7 v are as defined in Section 7.5.3. It is easy to see that since

&N _W?\l—l,N — B 0
! 1 o4 (N) |

we must have

o lu@+ 1)) s
lz_os'f | @M,N] x| =| 0 |, (36g)
M,N M,N 1 o5, | (N)

* Although relations (36¢c) and (36d) were motivated in this section by assuming A = 1, they still hold
for non-unity A when the prediction vectors in the exponentially weighted case are properly defined, as
explicited in Theorem 8.2.1 below, and when the definitions of the residual energies ®%, (N +1) and &%;(N),
and the inner product 3, (N + 1)ba (N), also include exponential weighting.

54

where § is a quantity to be determined. The claim is that § can be easily seen to be the inner
product 32 | (N). Indeed, it follows from above that (using stVI’N = @M’NWL’N)

—wt b
§ = Sﬁ,N[wl\{_l’N] =WH,N‘§M,N|: w”i_l’N])
up,o ! up,o b
E— . . [~WM_1N]
= WunN : : 1 .
up,N up,N
Um,~
But .
—W * * *
Useor | 0 | = b 0) L Wil Ui = (o — (N + 1)
where we have denoted by u/ the column vector [u(1) ... u(N +1)]T. Hence, § = u* by 1 (N)—

£, (N + 1)bas_1(N). But £f3,(N + 1)bp_1(N) = 0 and uf can be decomposed into far_; (N + 1)
plus a component in the range space of the first (M — 1) columns of Ups,n. This component is
orthogonal to bys_1(N) and, consequently,

§=1f_1(N+1)by_1(N)=s2_(N).

A similar argument to the above will further show that we also have

[1 —wif_,n 0]‘1>M+1,N+1 = [®, (N+1) 0 6 |.
Consequently,

0
[1 _WH—I,N 0 }‘I’M+1,N+1 _W?\/Ifl,Nfl =0= Sﬁq(N)-
1

If we now invoke the time-update expression ® p141, 841 = ®rm41,n +“7\/1+1,N+1“M+1,N+1v we readily

conclude that the inner product term s | (V) also satisfies the following time-update formula:®

shr1(N) = sy 1 (N = 1) + far—1 (N + 1)B3, 1 (N). (36h)

In summary, the projection arguments of this section have provided us with rather immediate
time-update relations for the quantities <T>fu(N + 1), ®%,(N), and s%,(N) that are needed in the
order-recursive updates of the prediction vectors. Connections to the earlier state-space formulation
are detailed in the next sections.

8.2 Two First-Order Linear Combiners

We argued in the previous section that if we are given the forward and backward residual vectors f3
and bs, then the higher-order forward residual f; can be obtained by simply setting up a first-order
least-squares problem, viz., by projecting f3 onto bs. This is equivalent to saying: use the entries of
the forward vector f3 as reference signals and the entries of the backward vector bs as input signals
in a first-order combiner, as anticipated earlier in Figure 3 of Section 6. The diagram is repeated in
Figure 7 with the appropriate signals.

Likewise, the backward residual vector bz can be updated to by by simply projecting bz onto
f3. This is again equivalent to the following. Use the entries of the backward vector bs as reference
signals and the entries of the forward vector f3 as input signals in a first-order combiner, as we also
anticipated in Figure 3 of Section 6. The diagram is again repeated in Figure 8 with the appropriate

®In the case of exponential weighting, we only need to add a X factor before the s§, (N — 1) term.

55

f3(2) f3(1)

b3(1) b3(0) N3 {3 - f4(2) fu(D)

Figure 7: A first-order linear combiner: updating the forward residual errors.

signals, where we have denoted the scalar weights in Figures 7 and 8 by 73 and &3, respectively. It
is also clear from the definition of the residual vectors f3 and bs that, in the general case, the initial
conditions should be:

u(1) U((l))

u(2 U
fo(N+1) =) » bo(N) = (.)
u(N +1) w(N)

That is, fo(4) = bo(j) = u(j) for all j > 0.

bs(1) bs(0)

52) f(1) 7] e S WG/ RN)

Figure 8: A first-order linear combiner: updating the backward residual errors.

The following statement summarizes the discussion so far, but for general values of M, N and
A. [We shall concentrate, for the time being, on the fundamental problem of updating the forward
and backward residuals. The update of the estimation residuals {es/(-)} follows immediately and
will be considered later in Section 8.4.].

Theorem 8.2.1 Consider a set of data points {u(i)}}¥, and let up,; denote an M x 1 row vector
of the form

up=[u(@) uw@-1) ... u@-M+1)].
Define the aposteriori forward residual vector of order M at time (N + 1),
fu(1) u(1) a0
fu(2) u(2) we |
fM(N—I—].): . = . - . WM,Na

)

Far(N +1) \u(N‘—i—l)l S

uf Unm

56

where WL’ N is the optimal solution of the minimization problem (recall the definition of the weighting

matriz A}f in (19d))

. 12 ¢ f] 2
r‘i,l}’n”AN [u Unwi, |5 -

Define also the aposteriori backward residual vector of order M at time N,

b (0) 0 up,0
b (N) = : = : - : Wi n s
bar(N — 1) w(N - M —1) uynoy | 0N
bM(N) ’LL(N—M) llM’N
ub Unr

where ijM,N is the optimal solution of the minimization problem
. 1/2 1. b b 102
mgn||AA{ [’ —Unwi] 3.
WM

Then the residual vectors can be order-updated by solving the following two first-order least-squares
problems:

fM+1(N+ 1) = fM(N+ 1) —ﬁM,NbM(N) , bM+1(N+ 1) = bM(N) _EM,NfM(N+ 1) , (37&)

where Hyr,n and éM,N are optimal solutions of the following:

N N

min 3 AN [fa G+ 1) = mabae (D, mind AN bar(f) S GHDP - (37D)
7=0 7=0

The initial conditions are fo(j) = bo(j) = u(j) for all j.

More generally, we may replace (37b) by the minimization criteria (with u > 0)

A(N+1) N .)

1}71}411 s — a1+ DA (G + 1) — b ()| (38a)
e]:0 -
[\(N+1)] N N

min | = — [éu — &l + D O by () — G+ DI (38b)
M i =0 |

where we have added a positive weighting factor p and initial guesses 7» and &v. The resulting
fu,n and v N are then used to update the residuals in (37a). It is often the case, though, that
im = &u = 0. Also, p is often chosen as a very large positive number, which reduces (38a) and
(38b) to (37b). These conditions will be assumed hereafter.

8.3 Two First-Order State-Space Models

The result stated in Theorem 8.2.1 reduces the problem of order-updating the prediction residuals
to the solution of two first-order least-squares problems: in one case the forward residuals are used
as the reference signals and the backward residuals are used as input signals, while in the other case
the roles of the residuals are reversed.

This fits nicely into the setting anticipated earlier in Section 4.2, Theorem 4.2.1. Indeed, we can
set up two first-order state-space models that correspond to the solution of the above order-update
problems (38a) and (38b), in exactly the same way that we argued in Section 6.1.

57

Define the state-variables

n0 =y VN

as well as the normalized signals
fu(i+1) _ bu(d)
yl(z) - (\/X)z) y2(7‘) - (\/X)z

Then the appropriate models are

z1(i+1) = A\"32,(4), z2(i + 1) = A2 35(4)
y1(8) = bar (1)1 (3) + v1(3), Y2(3) = far (@ + 1)z2(3) + v2(i)

with 1 (0) = Z5(0) = 0, cov(z1(0)) = A~ = cov(z2(0)), and Evq (i)v;(j) = Eva(1)vi(j) = 8- It is
important to stress here that in these models, the prediction errors by (i) and fas(i + 1) are defined
relative to the prediction vectors of time instant NV, viz., w?m N and vaf, N

(39)

If we now proceed to write down the different variants of the Kalman recursions that correspond
to the above two state-space estimation problems, and then translate the variables to the corre-
sponding quantities in the least-squares setting, we get different variants of adaptive lattice filters.
The argument follows precisely what we did earlier in Section 6. For this reason, we shall try to be
brief.

8.3.1 QR-Decomposition-Based Least-Squares Lattice (QRD-LSL) Filters

We start by writing down the extended square-root information form that corresponds to each of
the first-order state-space models in (39), thus leading to extended QR arrays in exactly the same
manner as we did earlier in Section 7.4. The resulting square-root arrays turn out to be central to
the derivation of different variants of adaptive lattice algorithms. Indeed, we shall see in the next
three sections that other lattice versions discussed in the literature can be regarded as alternative
rewritings of the square-root arrays of Algorithm 8.3.1.1 below. [This should come as no surprise
since the arrays of Algorithm 8.3.1.1 correspond to the extended square-root information filter form,
and this form is clearly equivalent to the other variants of the Kalman filter — more on this further
ahead.].

To begin with, the two-column array for the order-update of the forward residuals is [apart
from the notational differences, this is a specialization for the time instant i = N and to the scalar
case, of the array (25a) that we wrote earlier for a general least-squares problem. Note also that
had we written the prearray for another time instant, say 1 = j < N, then the (2,1) entry in the
postarray will not be related to fasy1(j+1). This is because the definition of far41(j+ 1) is relative
to the prediction vector wﬁl 1N that is computed by employing all the input data up to time NV,
or equivalently, all the entries of the prediction vector by (N).]

VABYA(N 1) bi(N) (V) 0
VIEE(N =1) f5(N +1) a3 (N) %ﬁ;)
0 1 Ohn = b2 s , (40a)
1 g*b/2 (N —1) 0 bM(]\[)f;/J\g (N) 71\/{+1(N)
ATM @, (N) ~33,(N)

where we have defined the scalar “covariance” and “cross-covariance” quantities (cf. (20a))

Y (N) = AN ’1+E/\N % ()bm (), By (-1)=p"t,

58

su(N) = ZAN () fu(i+1) 5 sh(-1)=0,

8” (V)
au(N) = %, au(=1)=0.

and g%,(N) denotes the normalized gain g4, (N)fy;;fl/ 2(N).

The second entry of the second row of the postarray is denoted by f3,, (N + 1)71\711/ 2(N). We
recall from (25a) that it should be the product of an apriori error and the square-root of the conver-
sion factor or, equivalently, the product of an aposteriori error and the inverse of the square-root of
the conversion factor. We have used this second interpretation to write f3; , (N + 1)7;[2‘1/ () since
fir41(N +1) denotes the aposteriori error. Also, the term "y}f,, +1(IN) is used to denote the conversion
factor of order (M + 1), whose inverse converts the aposteriori forward residual far41(N + 1), of
order M + 1 and at time (N + 1), to the corresponding apriori forward residual, say

ams1 (N + Dl (N) = furpn (N +1) (40b)

Here, amy1(N +1) = fu(N 4+ 1) — bu(N)ijm,n—1. We could have clearly written Qhri1 (N +

l)yﬂil(N) instead of f3,,, (V + 1)71;{1/ ?(N). This would have allowed us to express the recursion
in terms of apriori residuals rather than aposteriori residuals, and vice-versa. This explains the
origin of existing variants of lattice algorithms that work either with apriori or aposteriori errors (or
combination of both). It is a matter of choice. Two explicit examples to this effect are considered
in the next two sections.

Correspondingly, the two-column array for the order-update of the backward residuals is

f/2
VIBIA(N) fi (N +1) <I’Mf(f\““l) O
* * * M+1
VM%UW %qN) oL, vis = (N +1) (N ’
L gty . ’ fu(N + 1)@, (V + 1) -%il(NH)
vz () o,/ /PN+1) —gh(N+D)

where we have defined the scalar “covariance” and “cross-covariance” quantities (cf. (20a))

N+1

S (N+1) = AN NOANFT () far(5) , ®5,(0) =7t
j=1
N+1 4
sV +1) = S AN (by (G~ 1), s3,(0) =0,
j=1
f
st (N +1
fN +1) N+ ooy,

(N +1)]

and gj’:,I(N + 1) denotes the normalized gain g{l(N + 1)71_/[:1_’{2(N +1).

Also, the term %%, (N + 1) is used to denote the conversion factor, whose inverse converts the
aposteriori backward residual bps4 1 (N +1), of order M +1 and at time (N +1), to the corresponding
apriori backward residual, say (recall (31a))

Brr+1 (N + DAy (N 4+ 1) = bpga (N +1) . (40c)

Here, Bp11(N +1) = by (N) — fmu (N + 1)€m,n-1-

The above arrays can be rewritten so as to propagate angle-normalized residuals as we further
explain. For this purpose, we employ the apriori residuals (or innovations) associated with problems
(29a) and (30a),

Mm@ +1) =u(i+1) —upiwh, o, Bum(i) =u(i— M) —umiwh, ;.

59

and note (cf. the discussion in Section 7.5.3) that the corresponding conversion factors are identical,
viz.,

apyy1(N +D)yp41(N) = fau1 (N + 1), Brusr(N 4+ Dyppr (N +1) = by (N +1).

To begin with, it is rather immediate to relate the conversion factors ypr4+1(-) and the minimum values
assumed by the forward and backward prediction cost functions in (37b) (or in the more general
expressions (38a) and (38b)). This is a consequence of our earlier remark at the end of Theorem 4.2.1,
which simply states that the minimum value of a projection problem can be alternatively computed
as the sum of the energies of the corresponding normalized innovations.

To clarify the implications of this statement, let us introduce the corresponding angle-normalized
residuals,

Forr G +1) = anra (i + Dyps (), bar(e) = Ba(i)vyy” (0)-

Recall that the conversion factor is the inverse of the variance of the innovations at time 7. Hence,
fr+1(G + 1) and by (i) can be interpreted as normalized innovations (i.e., with unit variance).

We further let <I>§/I 4+1(N+1) and b, 4+1(N +1) denote the respective minimum values of the for-
ward and backward prediction cost functions in (37b) (or in the more general expressions (38a) and
(38b) — they are also equal to the squared Euclidean norms of fa741 (N +1) and bps41 (N +1), respec-
tively). Then recall that the following relations followed from the last statement of Theorem 4.2.1
when applied to the state-space models (29b) and (30b),

S (N+1) = A4, (V) + [Fuaa (N +1)P,
(40d)
<T>’1’M+1(N+1) = /\<T>’1’M+1(N)+|EM+1(N+1)|2.

These relations allow us to relate the minimum residual energies to the conversion factors. Indeed,
it follows from (31e) and (31h) that

[fau(N +1))?
(N +1) = yu(N) |1 - —7—
&7 (N +1)

|EM(N + 1)|2

N+1) = N+1|[1-"—F—r——

eV +D) = 1) 1 L]
which collapse to the following simple relations:
(N +1) _y SL(N) oy (N+1) 8,0
Tm(N) d (N+1)" ym(N+1) o (N +1)

Moreover, recursions (40d), coupled with (36a) and (36b), also lead to

|511)\/1+1(JV')|7z F 2 |511)\/1+1(N_ ? 7 2
— T+ |fm2 (N +1 = A=+ |1 (N +1)|%,
#h,,) e @) e
(40e)
FOAN+DP? N)|2 .
—|S—A?“(L v+ = Ail—”f’“(s B,
@y (N +1) @341 (N)

where we have denoted by sfu(N +1) and s, (N) the right-hand sides of the normal equations that
determine £y, v and 7y, in (37a), respectively, viz.,

— ~

8% (N)in = sy (N), &4, (N +D)émn = sh (N +1).

We also have (cf. (36h))

(V) = Ash(N — 1) + fu(N +1)85(N)
(40f)
sV +1) = Xs§(N) + f3 (N +1)Bu(N) .

We have therefore exhibited relations that employ the angle-normalized residuals. An important
fallout of these relations is that they allow us to rewrite the previous two array equations in terms
of the angle-normalized residuals. To clarify this, define the diagonal matrix of conversion factors,

I’y = diagonal {yap(0), ym(1),...,ym(N)},
and the vectors of forward and backward apriori prediction errors, respectively,

ap (1) B (0)
ap =) /BM =
apm(N +1) B (N)

Likewise, define the corresponding vectors fy; and by,. Then fy; = I‘}VézaM and by = I‘}Véz M-
Thus projecting fy; onto by, is equivalent to projecting I‘}V/Iza M onto I‘}VézﬂM, viz.,

min||A Y By — marbar)[; = min ATy (e = maeBao)I - (41)

The point to notice here is that the projection problem (41), along with the corresponding problem
of projecting by; onto £/, also allow us to order-update the angle-normalized forward and backward
residual quantities in much the same way as the projection problems of Theorem 8.2.1. Indeed,
the 7, v that solves (41) is the same coefficient that solves the original problem of projecting
far(N + 1) onto by (N), min,,, ||A}\{2(fM(N + 1) — nubum(N))||3- This is a consequence of the
time-update relations (40d) and (40f). These relations imply that the Euclidean norms ||bas(N)||3
and ||ba||2 are equal, as well as the inner products b%,(N)f};(N + 1) and b},fir.6 Therefore, the
forward and backward projection problems can be alternatively solved by working instead with the
angle-normalized quantities.

This motivates us, in view of (41), to introduce the following state-space models (recall (16¢)),
which are essentially identical to (39) but use the apriori residuals instead,

21 (i +1) = A\~ 324(3), 2o (i + 1) = A" 23,(d) (42)
y1(2) = Bu(D)z1(3) +v1(2), y2(¢) = ap (@ + 1)z2(3) + v2(3)
i (i+1) Bur(i)
N om(? o PMm\t
yl(l) - (\/X)z 9 y2(7') - (\/X)z)

cov(z1(0)) = A~ = cov(z2(0)) and (recall our earlier remark prior to expression (16b) at the end
of Section 5.4)

Buy(i)v} (4) = Bva(i)v3(5) = 1ar (0) -
We further stress that in the above models, the prediction errors B (i) and apr(i + 1) are defined
relative to the prediction vectors of time instant (i — 1), viz., waVI’F1 and w?\“_l,

apm(@+1)=u(i+1) - uM,iwaJ._l, Bu(i) =u(i — M) — uM,,-w’,’M’i_l.

Writing down the extended square-root information filters for each of the models in (42) will then
lead us to a square-root version of the so-called QRD-LSL algorithm (compare with [1, p.664], [22,

SRecall that &4, (N) = |[bar(N)||3 and s5;(N) = b}, (N)far(N +1).

61

p-1158] and [19] — we are, for the time being and for simplicity, ignoring the joint process estimation
part. This is discussed further ahead where we show that it simply corresponds to adding one more
line to the arrays). It should also be clear that not all the lines of the two arrays are really necessary
to order-update the prediction residuals. They are nevertheless kept for completeness. For example,
the last line in each of the arrays given below are not explicitly used in the description of the QRD-
LSL in [1]. Also, although we are exhibiting the arrays in terms of angle-normalized quantities, they
can as well be written in terms of unnormalized quantities as in (40a). In other words, apriori or
aposteriori prediction errors can also be used by appropriately modifying the arrays.

Algorithm 8.3.1.1 The solutions of the minimization criteria (38a) and (38b), along with the
order update relation (87a) for the forward and backward residual errors, can be recursively updated

as follows: start with <I>b/2(1) = <I>f/2(0) \/1_, @ (-1)=0= q{l(o), (u is usually a large positive
number). For each time instant N > 0 do:

o Set fo(N) = bo(N) = u(N) and y(N) =1,

e and repeat for each order M =0,1,2,..., Max— 1,

VAR (N -1) B, (V) (V) 0
\/—_*b(- 1) SN +1) =y T (N) f_M+1(N+1)
0 ne)| TN T b (N)EAN) ma()|

18,4 (N -1) 0 85" (N) —~ 35 (N)

VARIA(N) Fr (N +1) IP(N +1) 0
NGi(N) BN oy Ty (N +1) Birya (N +1)
0 (V) | MV f (N 4+ 1)@, (N 1) viﬁluv +1)
ﬁ‘i’z&*f/Q(N) 0 &, 77N +1) —§t (N +1)

where the quantities {®4,(N), &% (N),54,(N), 5%, (N), a5, (N),q.,(N)} are defined as before except
with angle-normalized residuals. The unitary matrices @IJ’M’ N ond @ﬁl, N41 can be determined by the
requirement that the (1,2) entries in the corresponding postarrays must be zero.

The validity of the above arrays can be verified by squaring and comparing terms on both sides,
in much the same way as we did before while deriving the extended information filter (Section 5.4).
For example, relations (40d) justify the first lines of the postarrays. Likewise, relations (31e) and
(31h) and relations (40f) and (40e) justify the third and second lines of the postarrays, respectively.
This establishes our earlier claim at the end of Section 7.5.3 that relations (31e), (31h), and (31c)
could be regarded as part of the information filter forms associated with two first-order state-space
models, viz., models (42).

8.3.2 Least-Squares Lattice (LSL) Filters Using Aposteriori Residuals

Let us now elaborate on our earlier claim that the arrays of Algorithm 8.3.1.1 are indeed central to
the derivation of other variants of adaptive lattice algorithms. That is, (recall our earlier remark in
the last paragraph prior to Section 7.5.2), we shall verify that by expanding the above arrays we
get different lattice versions. But we shall also later show, and in order to be consistent with the
spirit of our formulation, how to get these other lattice versions by invoking the other forms of the
Kalman recursions, other than the extended square-root information form that we used to derive
Algorithm 8.3.1.1.

To obtain an explicit set of equations for the least-squares lattice algorithm that uses aposteriori
residuals, we compare (some of the terms) on both sides of the arrays of Algorithm 8.3.1.1, by

62

squaring, as we did, for e.g., in the derivation of the square-root Kalman filter in Section 5.3. This
first leads to the following expressions in terms of angle-normalized residuals:

87, (N +1) = ABL,(N) + | far(N + 1)]2
51, (N +1) = A5 (N) + fi;(N 4+ 1)ba (N)
bar(N)73r > (N) = bar1 (N +)y (N + 1) + fur(N + 1)@, (N +)50, (VN +1) >

2
a1 (N +1) = yar (N) — Lt

(43a)

nd
* B4, (N) = ABh, (N = 1) + [bas (N)
55, (N) = A3%, (N — 1) + b3 (N) fm (N + 1)
Fu(N + 1)y (N) = Fua (N + Dyars (N) 4 bar(N)$,2 (N)&5,(N) (43b)
Ym+1(N) = ym(N) — %“%l(m;

If we now replace fus (N + 1)711\42(N) by far(N +1) and bpsp1 (N + 1)711\43_1(N+ 1) by bpry1(N +1)
we get the following so-called LSL algorithm using aposteriori errors (see, e.g., [22] and [1, p.619]).

Algorithm 8.3.2.1 The solutions of the minimization criteria (38a) and (38b), along with the order
update relation (37a) for the forward and backward residual errors, can be recursively updated as

follows: start with <I>b/2(1) = 5%2(0) = \/Lﬁ (1 is usually a large positive number), and EQ(O) = 0.
For each time instant N > 0 do:

o Set fo(N) =bo(N) = u(N) and v(N) =1,

e and repeat for each order M =0,1,2,..., Max— 1,

- - 2

B4, (N +1) = A4, (V) + LrBADC

&5, (N) = A®L, (N — 1) +f"’;("N((’+VNz)l -

sh (N +1) = X&h, (V) + B = S (N)
= fM(N + 1) +bM()kM+1(N +1
1

=5u(N+1)

1 (N +1))
br1(N +1) = by (N) + faur (N +1)kS, (N +1)
Kiga (V +1) = — D)

Bhaa (N +1) = — 2%

Ym+1(N) = ymu(N) — Lo (M2 IZI,I‘ZI(Z\};

It is worth pointing out that, for 4 — oo, the expressions for &%, (N) and &%, (N + 1) given
in Section 8.3.1 can be interpreted as weighted energies of the backward and forward residuals,
respectively. It thus immediately follows from (36a) and (36b) that they satisfy the following simple
order-update relations (recall (36e) and (36f)):

s (N + P

= z sy & 3
&f (N+1):<I>f(N+1)—|S_M7, &% (N +1) =84, (N) - =
M+1 M M+1 M <I>§,I(N+1)

@4, (N)

These can then be used to order-update (rather than time-update) the residual energies in the above
algorithm, which coincides with the form given in [1, p. 619], for instance.

The above lattice algorithm could have also been immediately obtained from a state-space point
of view as follows: instead of applying the square-root information filter to the auxiliary models (42),
as we did in Section 8.3.1, we simply write down the explicit information filter of Section 5.2. For
example, the update expression for the inverse of the Riccati variable in Algorithm 5.2.1 leads to the
time-update recursions for 5&(N +1) and ®%,(N) as shown in the statement of Algorithm 8.3.2.1
above, since we already know that the inverse of the Riccati variable corresponds, apart from scaling,
to the “covariance” matrix in the least-squares setting (recall the correspondences in Table 12).

63

As for the order-updates for the forward and backward residuals, these are simply the expressions
for the computation of the the aposteriori errors. Consider, for example, apr1(N + 1) and the
associated state-space model (42). The information filter provides us with the normalized apriori
error (recall Algorithm 5.2.1 and the remark at the end of Section 7.5.2),

r (N)e(N) = yae41 (V) [31(N) = VABM (N1 (N +1)] .

In terms of the least-squares variables, the normalized error r; 1 (N)e(NN) is equal to the aposte-

riori forward residual W fu+1(IN + 1) and we get, by invoking the correspondences of Table 12,

that fary1(N +1) = far(N +1) — by (N)fiar n, iee., we replaced y1(N) by ap (N +1)/(v2)Y and
#1(N + 1) by 7ipr n/(VA)NHL. The estimate of the scalar weight 7, 7, n, is often denoted by the
(negative of the) so-called reflection coefficient k{l 4+1(N +1) in the statement of the LSL algorithm.
Hence, k{,j 4+1(N + 1) is nothing but (apart from the sign) the state-estimate at time (N +1). In-
deed, k%, (N + 1) is defined as the ratio k},,, (N + 1) = —5%,(N)/®5,(N), which is precisely the
solution of the normal equations associated with the first-order least-squares problem that updates

the forward residual: B
(V) [k (N +)] = 34 (V) - (45)

That is, —kJJ:/IJrl(N + 1) is equal to both (v/X)¥+1%; (N + 1) and 7ja n (recall again the correspon-
dences in Table 12). Moreover, the update for P +11§c,~+1 in Algorithm 5.2.1 converts to the update
for the 57,(-) and 5%,(-) .

8.3.3 Lattice Filters Using Apriori Residuals with Error Feedback

Therefore, the LSL recursions given above correspond to the explicit recursions of the information
form of Algorithm 5.2.1. In particular, the reflection coefficients are computed as the ratio of the
“cross-covariance” and the “covariance” quantities, as suggested by (14). But we argued above
that the reflection coefficients are nothing but (apart from the sign) the state-estimates. Hence, we
can alternatively use the Kalman recursions to recursively update each one of them. For example,
instead of computing k{l 41 (N +1) as the ratio —53,(N)/®},(N), we use the state-estimate update
that follows by applying the Kalman filter to the auxiliary model (42). This gives the following
equation,

kI]:l+1(N+ 1) 1 kJJ\C/I+1(N) 1 1 X i (N +1)
T = N T T A s B (V) TS
(VX)N+ (VXN A®y (N —1) (VXN
S— N——— ~ ~ - — _
#1(N+1) #1(N) p(N)h*(N) ro L (N)e(N)

or, more compactly,

BuN)an 1 (N + 1) yar 41 (V)

f —.f
kM+1(N + 1) - kM+1 (N) -)‘@IJZ\/I(N — 1) (46)
If we now replace ypr1(N) by
|ba (V)|
7M+1(N):7M(N) q)b (N))

then the above time-update for the reflection coefficient collapses to the usual expression encountered
in the literature and given below. A similar update follows for k%, +1 (N +1). Using these updates
for the reflection coefficients and rewriting the previous algorithm in terms of the apriori residuals
leads to the following so-called LSL algorithm with error-feedback (see, e.g., [1, p.633]). Again, we
can as well rewrite the expressions in terms of aposteriori errors, thus leading to a version of the
algorithm that uses the aposteriori residuals. In the previous section we exhibited an example of a
lattice filter that uses the aposteriori errors. We therefore exhibit here, for the sake of illustration,
an example of a lattice filter that uses the apriori residuals.

64

Algorithm 8.3.3.1 The solutions of the minimization criteria (38a) and (38b), along with the
order update relation (37a) for the forward and backward residual errors, can be recursively updated
as follows: start with ®%,(—1) = '5{\4(0) = %, kaM(O) = k%,(0) = 0, (u is usually a large positive
number). For each time instant N > 0 do:

e Set ag(N) = Bo(N) =u(N) and v(N) =1,

e and repeat for each order M =0,1,2,..., Max— 1,

B, (N +1) = AL (N) + yar(N)|aas (N +1)[2
&b (N) = AL, (N — 1) + yar(N)|Bar (V)2
a1 (N +1) = am (N +1) + Bur (Nl 1 (V)

Bua(N +1) = B (N) + am(N + 1)kf; 1 (N)

Bl (N +1) = ki (V) = ’;—i’x]’)v Bir(WN)ar1 (N +1)

B (N +1) = Ky (N) — PENS 03 (N + Dfaga (N +1)
Tar41(N) = yar (V) — 22100 (O

8.3.4 Normalized Least-Squares Lattice (LSL) Filters

The LSL filters considered in the previous two sections involve the propagation of two reflection

coefficients, viz.,

E}‘V{(N +1)
25/(N)

(N +1)
& (N +1)

ki (N +1) = - , Ky (N +1)=— ,

which can also be time-updated via relations of the form (46). However, a normalized version of the
recursions of Algorithm 8.3.3.1 involving the propagation of a single reflection coeflicient can also
be derived [8].

For this purpose, we employ a proper normalization of the forward and backward reflection coef-
ficients and define the normalized reflection coefficient ppr41 (N + 1) (we shall justify this definition,
and the resulting expressions, in terms of state-space arguments further ahead),

=b
N

/(N +1
SN kg (N +1) = Ty (V+1)
M

b
00 Ky (N +1)
M

(N +1) =

We see that ppr11(IV +1) is a scaled version of both k}\c,url (N +1) and k35, (N +1). We also define
the “covariance-” or “energy-"normalized residuals,

= _ fu(N+1) = _ bar(N)
I =g M = gemy

These normalizations allow us to reduce the number of recursions in Algorithm 8.3.3.1. It will
turn out, for example, that the recursions for the covariances %, (N) and &%, (N+1) can be dropped.
Note for instance that the order-update relations (44), with the help of (45), can be re-expressed in
terms of the normalized reflection coefficient,

L, (N+1) =3 (N +1)[1— [pma (N +)], @%, 1 (N) = 8% (N) [1—|pmr (N + 1] .

Also, using the time-updates for either of the reflection coeflicients in Algorithm 8.3.3.1 we can
obtain a time-update for the normalized coefficient ppr11 (N + 1). For example, starting with

_ M (N)
o5, (N)

kK (N +1) =k, (N) Bir(Nan1 (N +1),

65

and multiplying both sides by the ratio 5?\,/12(N)/ 5%2(N + 1), leads to the following sequence of
easily verifiable identities,

pru+1(N +1)

We therefore get

= */2 = 1/2 —% =
st (N +1) = [1= B (NE] " pasa (V) [1 = [Far(WP] ™ = Bag (N T (N +1)
which incidentally is the famous Yule’s PARCOR update formula discussed in [11].
Similary the recursions for the forward and backward residuals of Algorithm 8.3.2.1 reduce to
recursions for the corresponding “covariance”-normalized residuals, as stated below.

Algorithm 8.3.4.1 The solutions of the minimization criteria (38a) and (38b), along with the
order update relation (37a) for the forward and backward residual errors, can be recursively updated
as follows: start with ppr(0) =0, and for each time instant N > 0 do:
7 — _u(N) 7 — _u(N)
o Set fo(N) = 375Ny bo(N) = 3 (N)’

e and repeat for each order M =0,1,2,..., Max— 1,

paaia N +1) = [1= e P] " paass (¥ [1= FarP] " = BTV + 1)

Pt +1) = [1= barP] " [FasV + 1)+ Baa(Mpaea (N + 1) gy (¥ +1)

= = —1/ =
bus (N +1) = [1= [Far (N + D] o (V) + Tas (N + D (V +1)] pafa (N +1)
where we have defined

. 1/2
Pirsar(N +1) = [1= |ppr (N +1)[7] 77 .

Note that the initialization requires apriori knowledge of the quantities 55/ ?(N) and 58/ 2(N).
But recall that ®3(N) is, by definition, related to the energy of the input signal up to time N, viz.,

N
BH(N) = AVH L S AN) 2,
i=0

A similar remark holds for the quantity i)(";/ (N). The above algorithm, therefore, needs to be
supplied with estimates for these quantities.

We further remark that the above recursions can also be interpreted as resulting from state-space
estimation algorithms. Indeed, and following similar steps to what we did in (41), while reducing the
original optimization problem on {fas, ba} to an equivalent optimization problem on {ar, B}, we
can also reduce the optimization problem on {fus, by} to another equivalent optimization problem
on {fy,by}. The estimation equations for the corresponding state-space models will then lead to
the above recursions: the update for the state-estimate will lead to the recursion for ppr11(N + 1),
as was the case with k{l 4+1(IN +1), while the expressions for the innovations lead to the updates for

66

? m41(N+1) and 3M+1 (N+1). An interesting aspect of the state-space models that correspond to

the “energy”-normalized variables {f a, b} is that () times) the associated Riccati variable at tlme
N + 1 is equal to unity. This is because the inverses of the Riccati variables are the “covariances”

or the “energies” of the (normalized) sequences {?M()} and {ZM()}

8.3.5 Other Forms of Lattice Filters

It is clear from the derivation so far that the variety of algorithms that can be written down is
essentially a matter of taste as well as patience. The central theme though is always the same: once
the recursive least-squares problem has been collapsed to two smaller first-order problems, then the
solutions can be readily obtained by constructing two first-order auxiliary state-space models and
then writing down the different estimation algorithms.

Indeed, the different variants of the Kalman state-space estimation algorithms lead to different
relations among the variables of the forward and backward prediction problems. Any properly chosen
collection of these relations will then lead to a valid lattice algorithm. For example, the QRD-LSL
algorithm uses some of the lines in the arrays of Algorithm 8.3.1.1, viz., the top three lines of each of
the arrays. The LSL filter with aposteriori errors uses the explicit information filter equations, while
the LSL filter with error feedback uses a combination of the information and the Kalman filters.

Yet a fourth variant in [20, p.887] can also be rederived by choosing an appropriate collection
of the rows of the arrays of Algorithm 8.3.1.1, along with one of the order-updates in (44), as we
readily verify. It follows from the third lines of each of the arrays of Algorithm 8.3.1.1 that the last
expressions in (43a) and (43b) hold, viz.,

|fu(N +1)?
& (N +1)

|ba (N) |2

Ym+1(N +1) = yu(N) — 3 (N) Yo(N)=1.

y Ym+1(N) =y (N) —

We thus conclude that the forward and backward residuals satisfy the following relation

|[fri1 (N + 1) B |b_M+1(N+1)|2 _ |fu (N + 1)[2 ~ |b_M(N)|2 e

and that 12
M 2
> b (V)]]
TNy = [1- 3
=-S5
It further follows from the second and third lines of the first array of Algorithm 8.3.1.1 that

Fu(N +1) = farpr (N +1) + bar (V) &, (N) 3, (N) - (47b)

It is then easy to see that expressions (47a)-(47b) and (44) can be alternatively expressed in the
square-root form,

B4 (N+1) (V) PV +1) 0
s = ,
fry1(N+1) bar (N) MN Fv (N+1) bar+1(N+1)
0N+ @) 12N+ AW

since, by definition, 35,(N) = 3" 2(N)@%; (N). Here %, is a unitary rotation that produces the
zero entry in the (1,2) position of the postarray. ’

We thus obtain the following so-called Hybrid QR /Lattice least-squares algorithm. The neces-
sary equations from Algorithm 8.3.1.1 are spelled out explicitly in order to facilitate the comparison
with [20, p. 887].

Algorithm 8.3.5.1 The solutions of the minimization criteria (38a) and (38b), along with the
order update relation (37a) for the forward and backward residual errors, can be recursively updated

as follows: start with <I>b/2(1) = <I>f/2(0) \/_, (1 is usually a large positive number), g4, (—1) =
0 = g4;(0), fo(N) = bo(N) = u(N) and yo(N) =1.

67

(1) For M =0,1,2,..., Maz— 1 do:
[VAGE(N —1) Fy(N+1)]O%yy=[(V) fyua(N+1)].
(2) Compute <I>f/2 LN +1),

f/2 * f
[\/Xq)Ma:c(N) fMax(N +1)] G')Maa:1\7+1

[cpf” (N +1) o] .
(3) For M = Max— 1, Max—2,...,0 do:

[&2, +1) @) [Bl =[82w+ 0]

)

N+
(4a) Compute %() as (z denotes an irrelevant entry),

@th/;x(NH)
(N+1)
1/2 azr
[0 7Ma,:1:()]GMaxN-H - [5’Mf/;x(N+l) e] ;
(4b) For M = Maz — 1, Maz — .,0 do:

[Fa41(N41) ba (N) o Fa(N+1) bar41(N+1)

> f []
*F/2 = %b/2 b, = =%F/2 = *b/2 .
Mfri(N+1) 3:0/%()] M,N &:1/2(N+1) <1>M{H(N+1)

(5) Compute Ty (N),

Mazx 12
Vi I_Mf:l b ()P
Moz o P B (N)

(6) For M = Max— 1, Max— 2,...,0 do:

[0 2@ | = s34 M)][5

The unitary matrices (:)?\/1, N and (:)i,L N41 ore determined by the requirement that the (1,2) entries
in the corresponding postarrays must be zero (as in Algorithm 8.3.1.1).

Other combinations of equations clearly exist, and the search for the most appropriate combi-
nation is not closed. We do not attempt to exhaust all the possibilities, but we do stress a central
theme: the existing adaptive schemes have been derived at different places in the literature and at
different times. The varied aspects of the recursions highlight the varied approaches to the prob-
lem. Each approach ends up with a set of recursions that very often does not look similar to other
available sets. But the point of view taken in this paper shows that the different adaptive solutions
correspond in fact to using different combinations of a group of estimation equations, either in ex-
plicit or square-root forms. The entire group of equations is not needed per se since it contains more
than enough relations. But different selections of the equations will lead to different algorithms.
The question of which of these different possibilities is the best needs further exploration; moreover,
it can be that what is best depends on the constraints arising in different situations.

8.4 The Filtering or Joint Process Array

We now return to the estimation of the sequence {d(-)}. We argued in Section 8.1 that if we are
given the backward residual vector b; and the third-order estimation residual vector ds, then the
higher-order estimation residual vector ds can be obtained by simply setting up a first-order least-
squares problem: use the entries of the residual vector ds as reference signals and the entries of the

68

63(1) 63(0)

b3(1) bg(O) ¢3 {3 64(1) 64(0)

Figure 9: A first-order linear combiner for joint process estimation.

backward vector bs as input signals in a first-order combiner, as we anticipated earlier in Figure 3
of Section 6. The diagram is repeated in Figure 9 with the appropriate signals.

This again fits nicely into the setting anticipated in Section 4.2, Theorem 4.2.1. Indeed, we can
set up a first-order state-space model that corresponds to the solution of the above order-update
problem, in exactly the same way as we argued in Section 6.1. This leads to the following square-root
array for joint process estimation (see e.g., [1, p.664] and [20]).

Algorithm 8.4.1 Consider the minimization problem
)\(N+1

min
(33

o + SN eae i) = darbar) |

7=0
where {eM(j)}ﬁ-VZO denote the entries of the M™ order aposteriori residual vector dy;. The angle-
normalized aposteriori residuals {epm(j) = eM(j)'yA_/[l/z(j)} can be order-updated as follows: start

with 5%2(—1) = ﬁ, g4 (=1) = 0, (u is usually a large positive number). For each time instant
N >0 do:

o Set by(N) = u(n), &(N) = d(N) and v(N) =1,

e and repeat for each order M =0,1,2,..., Maz— 1,

VARLZ(N ~ 1) Bia(N) (V) 0
VN -1 g0 | o, TN & (V)
- e | O = s A |
LN 1) 0 &) =gV
where we have defined :)
~d _ Sm
qM(N) - é%Q(N) ’
N
(V) =D NI (e (i) , 54 (-1) =0
7=0

and the unitary matriz GIJ)\/I,N is defined by the requirement that the (1,2) entry in the postarray
must be zero.

Note that the above array uses precisely the same rotation as the first array in Algorithm 8.3.1.1.

Hence, the second line in the above array can be included as one more line in the first array of
Algorithm 8.3.1.1, thus completing the algorithm to also include the joint-process estimation part.

69

We can as well expand the above array in order to obtain an explicit update relation of the form
(see e.g., [1, p.619]),

ad
eaess (V) = () = L bus(V)
) as bar (V) (V)
54 (N) = A5, (N —1) + MVM(]J\‘?) :

9 The Least-Mean-Squares (LMS) Algorithm

The derivation so far in the paper has been concerned with exact recursive solutions that minimize
the cost function (19b). Consider, for simplicity, a specialization of (19b) with w = 0, IT; — oo,
and A =1,

N
minz |d(i) — u;w|*, (48)
=0

which is clearly a quadratic cost function in the unknown w. The RLS solution propagates successive
estimates of w as in Algorithm 7.1.1,

w; = wi_1 + & [d(@) —u;wi_1], w_1 =0,

using a gain vector g; that is computed in terms of a variable P; that satisfies the Riccati difference
equation (23). This requires O(M?) operations per iteration.

There is yet another celebrated class of adaptive algorithms that is based on steepest descent
ideas (see, e.g., [6])- These algorithms are particularly appealing due to their simplicity and O(M)
computational efficiency, albeit at the price of slower convergence. In them, the weight vector is
updated along the direction of the instantaneous gradient of the quadratic cost function thus leading
to a weight update of the form

w; = w;_1 + pu} [d(i) —u;w; 1], w_1 =0, (49)

where p is a so-called step-size parameter. This was dubbed by Widrow and Hoff [53] as the LMS
(least-mean-squares) algorithm. Though the name is a bit misleading, this is perhaps the most
widely known and most widely used adaptive filtering algorithm, and in diverse areas that range
from channel equalization, to spectral estimation, to control theory, to antenna arrays, and no doubt
other areas as well. This is because of its simplicity and proven robustness to disturbances and model
errors. No rigorous proof of these good properties seems to have been found.

In the last decade, in the field of robust control (see, e.g., [55, 56]) there has been extensive
studies of a different performance criterion, known as the H* (or minimax) criterion. Very few
exact H* solutions are known, so it may be of additional interest to researchers in adaptive filtering
that it has been recently shown that the LMS algorithm is optimal under the H* criterion; this
was again done by using an appropriate state-space model [54]. We can not enter into this topic
here, but we may attempt to give the flavor of the results following the line of reasoning suggested
in [57], where several (local and global) optimality criteria are further established for gradient-type
algorithms.

The argument that follows is intended to show that the weight estimates provided by the LMS
algorithm guarantee the following bound

Zilio luiw — wyw; 4 |?
_ N ;
pHlw — w3+ 37, [v(9)]?

The numerator is the sum of the energies of the residuals (u;w —u;w;_;) over 0 < i < N. For each
instant 4, the difference (u;w — u;w;_1) represents the error in estimating u;w by using u;w;_;.
Likewise, the sum in the denominator consists of two terms: the energy of the noise signal over
the same interval of time and the (weighted) energy of the weight error due to the initial guess.

(50a)

70

If we denote by 7 the operator that maps the disturbances {v(-)}Y, and the initial uncertainty
p=%%(w — w_1) to the residuals {u;w — u;w;_1}Y, then the inequality in (50a) states that the
2—induced norm of 7 is always bounded by one. This explains the robust behaviour of the LMS
algorithm: it shows that the energy of the residuals is always guaranteed to be upper bounded by
the energy of the disturbances and the initial uncertainty.

A simple proof of (50a) is the following. Assume we are given noisy measurements {d(i)}~ ,

d(i) = wiw + v(i) ,

and that we are interested in finding a recursive update for the weight vector w so as to meet a
certain optimality criterion. But let us for the moment ignore any optimality criterion and just note
the following: if we pick any positive real number y so as to satisfy the inequality

1

¥
%

0<pu< (50b)

u;u

and then choose at will any vector q as an estimate for the unknown weight w, then it is always
true that the following inequality holds

|uiw — u;q/?

Wz wdl g (50¢)
ptlw — qll3

This follows from the condition on x and by noting that
lwiw — wiqf? = [ui(w — @)® < [Juil3]lw — qll3.

The quantity in the numerator of (50c) is the square of the error in estimating u;w by using u;q.
Likewise, the quantity in the denominator of (50c) is the square of the distance between the true w
and the estimate q.

It is also certainly true that if we increase the denominator by any positive value, say |v(i)|?,
then the ratio is still bounded by 1,

|uiw — u;q
pHlw = qll3 + (@)

(50d)

The inequalities (50c) and (50d) are valid for any data u; as long as u satisfies (50b). That is,
they are valid for any choice of q. They are thus certainly valid for a q that is generated by the
LMS algorithm (49). So if we replace q by w;_1 we also get

lu;w — wyw;_q |2
p W —wi 1|13 + |v(i)]?

(51a)

One might then wonder in what sense does the LMS recursion alter (51a)? It turns out that it allows
us to further tighten the inequality. More precisely, it allows us to conclude that the following also
holds,

lu;w — wyw;_q |2
pHIw —wi |13 — ptlw — w3+ [u(i)]2

(51b)

Comparing (51b) with (51a) we see that the denominator of (51b) is smaller since the positive term
pu~t||w — w;||2 is being subtracted from the denominator of (51a). But although the denominator
got smaller, the ratio is still guaranteed to be bounded by one. A simple proof of (51b) follows by
noting that the inequality holds if

pH W = wia [P = T IW = Wil o+ o (6] = Juw — wgwia|* > 0.

But the quantity on the left-hand side can be easily seen, after replacing w; by the LMS update
(49), to be equal to (1 — pu;u})|d(i) — w;w;_1|?, which is clearly always nonnegative.

71

So assume now that we run the LMS recursion up to time N and that

1
0<pu< min -
0<i<N u;u}

Then the inequality in (51b) holds for each time instant i, i.e.,
lww —wywi1|* < 7w = wisa |3 — o7 lw = will3 + (@)

for every 0 < i < N. Summing over ¢ we conclude that we must have

N N
D fuiw — wiwia? < pHlw = woa B+ D o)
i=0 i=0

which proves our earlier claim in (50a). Extensions of this result to other classes of gradient-type
algorithms, along with convergence proofs, are discussed in [57].

10 Concluding Remarks

The main point to stress here is that by a proper recasting of the original adaptive problem into
a state-space form, we can derive many known adaptive filtering algorithms very directly and in
computationally effective square-root versions. Even more interesting is the fact that insights gained
from this formulation allow for immediate extensions. This is due to the fact that state-space models
have a rich and long history and lend themselves rather easily to different types of manipulations and
derivations. This constitutes a significant strength of the state-space formulation. It allows us, for
instance, to consider more general matric:as F; in (11a) rather than the particular choice F; =)_%I,

for e.g., F; = diagonal{\; %, Ay %, .-y An 2 }. It also allows for more general matrices G;, Q; and R;,
and for more general shift structures in the input signals via different choices of the matrix ¥ in the
extended Chandrasekhar recursions of Sections 5.5 and 7.5. Indeed, different choices for ¥, as well
as F;, would allow us to consider alternative windowing schemes for the data. These extensions will
be discussed elsewhere.

We have focused here on the single channel RLS problem, where the reference sequence {d(-)} and
the input sequence {u(-)} were assumed to be scalar quantities. But we have noted in several places
that the approach extends rather immediately to cases where the reference and input sequences
consist of vector quantities (see, e.g., [25, 32]). We may remark that a strength of the multichannel
square-root array formulation is that though the arrays naturally have block entries, the elementary
rotations or reflections can be applied to the scalar entries, thus simplifying implementation issues
(e-g., no matrix inversions will be necessary).

Finally we may remark that the discussion in Section 9 can also be formulated in a state-space
framework, but with the random variables allowed to exist in a certain indefinite metric space (see,
e.g., [58]). These results should have further implications for the adaptive filtering problem, as well
as for problems in robust estimation and control.

72

APPENDIX
A Derivation of the Riccati-Based Kalman Filter

The innovations are

ei=y;—¥i = yi— (H%+%)
= yi—-Hx, =HZX +v;,
where we have defined %; = x; —%;. If we compute the covariance of the innovations using the above

equation we readily see that
Re,i = cov(ei) =R;+ HiPiH;,

where we have defined the error covariance matrix, P; = cov(%X;). For well-posedness, we need the
positive-definiteness of the covariance matrix of the observations {y;}, which is easily seen to imply
that the {Re ;} have to be positive-definite. The Kalman filter can now be readily derived by using
the orthogonality of the innovations and the state-space structure. Thus we first write
i
X1 = Xiy1 + Zcov(xi“,ej)cov*l(ej)ej .
§=0
To seek a recursion we decompose the above as
i—1
Xit1 = Z cov(Xit1, ej)R;}ej + KiRe_’%ei ,
7=0

where we have defined K; = cov(x;1,e;). Now

cov(xit1,e;) = Ficov(xi,e;) + Gicov(r;,e;)
= FiCOV(Xi, H;x; + V,’) +0
= F,’COV(f{,’, H,iz) +0= FZP,H: .

Note also that the first summation can be rewritten as

i—1 i—1
F; Z cov(x;, ej)R;;ej + G; Z cov(r;, ej)R;;ej =F;(%;, —%)+0,
Jj=0 Jj=0

and X;;1 = F;X;. Combining these facts we find
ﬁi-}—l = Fz}AC, + KzR;je,

It now remains to find a recursion for P;. To this end, note that if we define the covariance
matrices IT; = cov(x;) and ¥; = cov(X;), then the orthogonality of the projection and error yields,
P; =1II, — X;. Using the state-space equation (10a) it is easy to find the following recursion for IT;,

II,;; = F,ILF; + G;QIG].
Likewise, from the recursion X;11 = F;%; + KiR;zl-ei one obtains,
i1 = F2F; + KR, K] .
Subtracting the above two equations yields the desired Riccati recursion for P;,
P11 = F,P,;F; + GiQ,G; - K,R_ ;K] .

Of course, the K; and Re; can be computed in other ways as shown in Section 5: via square-root
arrays or, when the model has special structure, via the Chandrasekhar recursions.

73

References

[1]
[2]

[3]

[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

S. Haykin, Adaptive Filter Theory, NJ: Prentice Hall, second edition, 1991.

M. L. Honig and D. G. Messerschmitt, Adaptive Filters - Structures, Algorithms and Applica-
tions, Kluwer Academic Publishers, 1984.

J. G. Proakis, C. M. Rader, F. Ling, and C. L. Nikias, Advanced Digital Signal Processing, NY:
Macmillan Publishing Co., 1992.

S. J. Orfanidis, Optimum Signal Processing, McGraw-Hill, Inc., second edition, 1988.
P. Strobach, Linear Prediction Theory, Berlin Heidelberg: Springer-Verlag, 1990.
B. Widrow and S. D. Stearns, Adaptive Signal Processing, NY: Prentice-Hall, Inc., 1985.

N. Kalouptsidis and S. Theodoridis, Adaptive System Identification and Signal Processing Al-
gorithms, NJ: Prentice Hall, 1993.

D. T. L. Lee, M. Morf, and B. Friedlander, Recursive least-squares ladder estimation algorithms.
IEEFE Transactions on Circuits and Systems, vol. CAS-28, no. 6, pp. 467-481, June 1981.

B. Porat, B. Friedlander, and M. Morf, Square root covariance ladder algorithms, IEEE
Transactions on Automatic Control, vol. AC-27, no. 4, pp. 813-829, August 1982.

B. Friedlander, Lattice filters for adaptive processing, Proceedings of the IEEE, vol. 70, no. 8,
pp- 829-867, August 1982.

H. Lev-Ari, T. Kailath, and J. Cioffi, Least squares adaptive lattice and transversal filters: A
unified geometrical theory, IEEE Transactions on Information Theory, vol. IT-30, no. 2, pp.
222-236, March 1984.

J. Cioffi and T. Kailath, Fast recursive-least-squares transversal filters for adaptive filtering,
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-32, pp. 304-337,
April 1984.

S. T. Alexander, Fast adaptive filters: A geometrical approach, IEEE Signal Processing Mag-
azine, vol. 3, no. 4, pp. 18-28, October 1986.

D. T. M. Slock and T. Kailath, Numerically stable fast transversal filters for recursive least
squares adaptive filtering, IEEE Transactions on Signal Processing, vol. SP-39, no. 1, pp.
92-114, January 1991.

M. Morf, Fast Algorithms for Multivariable Systems, PhD thesis, Stanford University, Stanford,
CA, 1974.

M. Morf, T. Kailath, and L. Ljung, Fast algorithms for recursive identification, Proc. IEEE
Conference on Decision and Control, pp. 916-921, Clearwater Beach, FL, December 1976.

G. Carayannis, D. Manolakis, and N. Kalouptsidis, A fast sequential algorithm for least squares
filtering and prediction, ITEEE Transactions on Acoustics, Speech, and Signal Processing, vol.
ASSP-31, no. 6, pp. 1394-1402, December 1983.

I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, Computationally efficient QR decomposi-
tion approach to least squares adaptive filtering, IEE Proceedings, vol. 138, no. 4, pp. 341-353,
August 1991.

J. Cioffi, The fast adaptive rotor’s RLS algorithm, IEFEFE Transactions on Acoustics, Speech
and Signal Processing, vol. ASSP-38, pp. 631-653, 1990.

P. A. Regalia and M. G. Bellanger, On the duality between fast QR methods and lattice
methods in least squares adaptive filtering, IEEE Transactions on Signal Processing, vol. 39,
no. 4, pp. 879-891, April 1991.

74

[21]

[22]

[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]
[31]

[32]
[33]

[34]

[35]

[36]
[37]

[38]

[39]
[40]

[41]

D. T. M. Slock, Fast Algorithms for Fized-Order Recursive Least-Squares Parameter Estimation,
PhD thesis, Stanford University, Stanford, CA, 1989.

B. Yang and J. F. Béhme, Rotation-based RLS algorithms: Unified derivations, numerical
properties, and parallel implementations, IEEE Transactions on Signal Processing, vol. SP-40,
no. 5, pp- 1151-1167, May 1992.

K. Zhao, Order-Recursive Least Squares Adaptive Algorithms, PhD thesis, Northeastern Uni-
versity, August 1992.

A. H. Sayed, Displacement Structure in Signal Processing and Mathematics, PhD thesis,
Stanford University, Stanford, CA, August 1992.

A. H. Sayed and T. Kailath, A state-space approach to adaptive filtering, Proc. ICASSP, vol.
3, pp- 559-562, Minneapolis, MN, April 1993.

D. Godard, Channel equalization using a Kalman filter for fast data transmission, IBM J. Res.
Develop., vol. 18, pp. 267-273, May 1974.

T. Kailath, Lectures on Wiener and Kalman Filtering. NY: Springer-Verlag, second edition,
1981.

R. E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME J.
Basic Eng., vol. 82, pp. 34-45, March 1960.

T. Kailath, A view of three decades of linear filtering theory, IEEE Transactions on Information
Theory, vol. IT-20, no. 2, pp. 146-181, March 1974.

B. D. O. Anderson and J. B. Moore, Optimal Filtering, NJ: Prentice-Hall Inc., 1979.

A. H. Sayed and T. Kailath, Extended Chandrasekhar recursions, IEEE Transactions on
Automatic Control, vol. AC-39, no. 3, pp. 619-623, March 1994.

B. H. Khalaj, A. H. Sayed, and T. Kailath, A unified approach to multichannel least-squares
algorithms, Proc. ICASSP, vol. 5, pp. 523-526, Minneapolis, MN, April 1993.

G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore: The Johns Hopkins
University Press, second edition, 1989.

C. M. Rader and A. O. Steinhardt, Hyperbolic Householder transformations, ITEEE Transac-
tions on Acoustics, Speech and Signal Processing, vol. ASSP-34, no. 6, pp. 1589-1602, December
1986.

A. W. Bojanczyk and A. O. Steinhardt, Stabilized Hyperbolic Householder transformations,
IEEFE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-37, no. 8, pp. 1286—
1288, August 1989.

M. Gentleman, Least squares computations by Givens transformations. J. INst. Math. Appl.,
vol. 12, pp. 329-336, 1973.

S. J. Hammarling, A note on modifications to the Givens plane rotation. J. Inst. Math. Appl.,
vol. 13, pp. 215-218, 1974.

S. F. Hsieh, K. J. R. Liu, and K. Yao, A unified square-root-free approach for QRD-based
recursive least-squares estimation, IEEE Transactions on Signal Processing, vol. SP-41, no. 3,
pp. 1405-1409, March 1993.

C. F. Gauss, Theory of the Motion of Heavenly Bodies, NY: Dover, New York, 1963 (English
translation of Theoria Motus Corporum Coelestium, 1809).

N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series, MA: MIT
Press, 1942.

R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory, Trans.
ASME J. Basic Eng., vol. 83, pp. 95-107, December 1961.

75

[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]
[52]

[53]
[54]

[55]

[56]

[57]

[58]

T. Kailath, Linear Systems, NJ: Prentice Hall, 1980.

M. Morf and T. Kailath, Square root algorithms for least squares estimation, IEEFE Transactions
on Automatic Control, vol. AC-20, no. 4, pp. 487497, August 1975.

M. Morf, G. S. Sidhu, and T. Kailath, Some new algorithms for recursive estimation in constant,
linear, discrete-time systems, IEEE Transactions on Automatic Control, vol. AC-19, no. 4, pp.
315-323, August 1974.

T. Kailath, A. C. Vieira, and M. Morf, Orthogonal transformation (square-root) implementa-
tions of the generalized Chandrasekhar and generalized Levinson algorithms, in Lecture Notes
in Control and Information Sciences, A. Bensoussan and J. Lions, eds. New York: Springer-
Verlag, vol. 32, pp. 81-91, 1978.

A H. Sayed and T. Kailath, Structured matrices and fast RLS adaptive filtering, Proc. 2nd
IFAC Workshop on Algorithms and Architectures for Real-Time Control, P. J. Fleming and
W. H. Kwon, eds., Seoul, Korea: Pergamon Press, pp. 211-216, September 1992.

B. Friedlander, T. Kailath, M. Morf, and L. Ljung, Extended Levinson and Chandrasekhar
equations for general discrete-time linear estimation problems, IEEE Transactions on Auto-
matic Control, vol. AC-23, no. 4, pp. 6563-659, August 1978.

S. T. Alexander and A. L. Ghirnikar, A method for recursive least squares filtering based upon
an inverse QR decomposition, IEEE Transactions on Signal Processing, vol. SP-41, no. 1, pp.
20-30, January 1993.

C. T. Pan and R. J. Plemmons, Least-squares modifications with inverse factorizations: Parallel
implications, J. Comput. Appl. Math., vol. 27, pp. 109-127, 1989.

A. H. Sayed, H. Lev-Ari, and T. Kailath, Time-variant displacement structure and triangular
arrays, IEEFE Transactions on Signal Processing, vol. SP-42, no. 5, pp. 1052-1062, May 1994.

P. Park and T. Kailath, An extended inverse QR Algorithm, to appear in Signal Processing.

A. Houacine, Regularized fast recursive least squares algorithms for adaptive filtering, IEEE
Transactions on Signal Processing, vol. SP-39, no. 4, pp. 860-870, April 1991.

B. Widrow and M. E. Hoff, Jr., Adaptive switching circuits, IRE WESCON Conv. Rec., Pt. 4,
pp- 96-104, 1960.

B. Hassibi, A. H. Sayed, and T. Kailath, LMS is H* optimal, Proc. Conference on Decision
and Control, vol. 1, pp. 74-79, San Antonio, Texas, December 1993.

J. C. Doyle, K. Glover, P. Khargonekar, and B. Francis, State-space solutions to standard H»
and H,, control problems, IEEFE Transactions on Automatic Control, vol. AC-34, no. 8, pp.
831-847, August 1989.

P.P. Khargonekar and K. M. Nagpal, Filtering and smoothing in an H*>— setting, IEEE Trans.
on Automatic Control, vol. AC-36, pp. 151-166, 1991.

A. H. Sayed and M. Rupp, On the robustness, convergence, and minimax performance of
instantaneous-gradient adaptive filters, to appear in Proc. Asilomar Conference on Signals,
Systems, and Computers, Nov. 1994.

B. Hassibi, A. H. Sayed, and T. Kailath, Recursive linear estimation in Krein spaces - Part I:
Theory, Proc. Conference on Decision and Control, vol. 4, pp. 3489-3494, San Antonio, Texas,
December 1993.

76

