Abstract

Drop-on-Demand Inkjet printing can be used as an effective technique to deposit the sensing layer in chemical sensors. However, formulation of inks containing functional materials remains challenging due to rheological constraints imposed by the inkjet printer. Here, we show a systematic process to formulate and print functional inks containing polymer and carbon black (CB) particles. The functional ink is used for sensing different analytes considering the polarity of the polymer. We formulated inks containing polyvinylpyrrolidone (PVP) with the molecular weight of 40 kDa and 360 kDa. We used high-structured carbon black as the conductive filler. Printing parameters were optimized and the polymer composite was printed on the sensor platform with screen printed interdigitated electrode (IDE). The ink showed good stability over time and no sedimentation was observed even after 7 days. In the next step we characterize the sensing behavior of the printed composites.

Material and Method

Ink formulation
- Prepare co-solvent
- Prepare dilute polymer solution
- Add carbon black
- Sonication

Ink characterization
- Viscosity as a function of shear rate
- Viscosity as a function of temperature
- Thermal gravimetric analysis (TGA)
- Dynamic light scattering (DLS)

Print Optimization
- Optimize droplet generation
- Optimize printing parameter
- Optimize substrate temperature

Print Characterization
- Optical Microscopy
- Surface Profilometry
- Electrical Measurement

Solvent
- DI water
- Gamma butyrolactone

Polymer
- Polyvinylpyrrolidone 40 kDa
- Polyvinylpyrrolidone 360 kDa

Filler
- Ketjen black EC-JD 600

Schematic of the sensor platform with screen printed IDE

Inkjet Printing

We used a Microfab inkjet printer with a print-head having an orifice diameter of 80 µm to print the composite directly onto the sensor platform. The temperature of the substrate was raised to 60°C for a faster solvent evaporation. A layer of 4 mm × 4 mm of the polymer composite, consisting of an array of 40 × 40 array of droplets, was printed onto the substrate. The inter drop spacing was set to 100 µm with 100 ms wait time in between two droplet bursts.

Material Characterization

Thermal stability of the polymers was measured using TGA. The viscosity of the dilute polymer solutions was measured as a function of shear rate and temperature using the cone on plate geometry. The CB-loaded ink was sonicated for 5 min. The particle size distribution was measured by DLS. The ink shows good stability over time. After 7 days we did not observe any sign of sedimentation.

Print characterization

Film thickness was measured with a Dektak surface profiler. The thickness of the printed layer for both materials is around 2 µm. Electrical characterization was performed to obtain the resistance of the printed films. The resistivity of PVP40 and PVP360 loaded inks are 3×10^6 Ω and 4×10^3 Ω respectively.

Reference

Acknowledgments

This project is joint between EPFL and Moscow’s Institute of Physics and Technology and is funded by the Swiss National Science Foundation (SNF).